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The chapter was written by Murali Muniraju and improved upon following
comments from Prof Satya Parida and Dr Ashley Banyard. The revised thesis
chapter was read and commented on by Prof Satya Parida, Dr Ashley Banyard and

Prof Andrew Easton.

14



Summary

Across the developing world peste des petits ruminants virus (PPRV) places a huge
disease burden on small ruminant agriculture. PPR is mainly controlled by
vaccinating animals with live attenuated vaccines. However, the current PPR
vaccines and companion serological tests do not enable serological differentiation
between naturally infected and vaccinated animals (DIVA), therefore a meaningful
serological assessment of vaccine coverage and epidemiological surveillance is not
possible. Therefore, the main objective of this PhD study was to establish a reverse
genetics system for PPRV, so that a marker vaccine could be developed to enable the
serological differentiation between vaccination and infection, alongside developing

proof of concept for increasing the valency of the existing vaccines.

Initially, as a prerequisite to full genome synthesis the full genome sequence for a
PPRYV vaccine strain was confirmed. An efficient reverse genetics system for the
PPRYV Nigeria75/1 vaccine strain was established in this study and 3 recombinant
PPRVs were rescued including a faithful clone of the vaccine strain (rPPRV
Nigeria75/1), a clone expressing GFP as a heterologous protein (rPPRV+GFP
Nigeria75/1) and a negatively marked vaccine containing mutations to the
haemagglutinin (H) gene (rPPRV-C77 Nigeria75/1). All 3 rescued viruses showed
similar growth characteristics in vitro when compared to the parental vaccine strain
and, following in vivo assessment the H mutant provided full protection in goats
upon virulent virus challenge. Although the mutations made to H abrogated in vitro

binding of C77, the mutations made were not sufficient to enable DIVA in vivo.

Finally proof of concept was developed for the segmentation of PPRV and
expression of heterologous proteins in an effort to generate a multivalent vaccine. A
recombinant two-segmented version of PPRV was successfully rescued that
expressed GFP from one segment and the bluetongue virus VP2 from the other. This
virus was partially characterised in vitro and demonstrates the potential for this

approach in the development of multivalent vaccines for small ruminants.
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Chapter 1 General introduction

1.1 Background information

Peste des petits ruminants (PPR) is also known as ‘goat plague’, ‘Kata’, ‘syndrome
of stomatitis-pneumoenteritis’ or ‘ovine rinderpest’. PPR is an important infectious
viral disease of domestic and wild small ruminants that threatens the food security
and sustainable livelihood of farmers across Africa, the Middle East and Asia
(Banyard et al., 2010; Dhar et al., 2002; Libeau et al., 2014; Parida et al., 2007).
PPR is emerging in new regions of the world and is causing great economic losses
(Perry et al., 2002; Singh et al., 2014; Stem, 1993). The causative agent, peste des
petits ruminants virus (PPRV) belongs to the family Paramyxoviridae, genus
Morbillivirus alongside other important viral pathogens such as rinderpest virus
(RPV), measles virus (MV) and canine distemper virus (CDV). The live attenuated
PPRYV vaccine strains Nigeria 75/1 and Sungri 96 have been used successfully in the
field for decades (Diallo et al., 2007; Sen et al., 2010). The commercially available
diagnostic ELISAs are targeted against the nucleoprotein (N) and haemagglutinin
(H) proteins and detect antibodies in vaccinated as well as naturally infected animals.
No tools currently exist that allow serological Differentiation between Infected and
Vaccinated Animals (DIVA). To this end, marker vaccines are a potential solution to
the DIVA concept that may play an important role in the reduction of PPRV in

endemic regions.
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1.2 Taxonomy

PPRYV belongs to the genus Morbillivirus, sub family Paramyxovirinae, family

Paramyxoviridae, and order Mononegavirales. A detailed classification including

other members of the order is provided in Table 1.1.

Table 1.1 Classification of the order Mononegavirales

Order

Family

Subfamily

Genus

Mononegavirales

Bornaviridae

Bornavirus

Filoviridae

Cuevavirus
Ebolavirus
Marburgvirus

Nyamiviridae

Nyavirus

Rhabdoviridae

Cytorhabdovirus
Ephemerovirus
Lyssavirus
Novirhabdovirus
Nucleorhabdovirus
Perhabdovirus
Sigmavirus
Sprivivirus
Tibrovirus
Tupavirus
Vesiculovirus

Paramyxoviridae

Pneumovirinae

Metapneumovirus
Pneumovirus

Paramyxovirinae

Aquaparamyxovirus
Avulavirus
Ferlavirus
Henipavirus
Respirovirus
Rubulavirus
Morbillivirus

The morbillivirus genus contains seven species including PPRV (Figure 1.1) with

classification being based on the requirements of the International Classification and

Taxonomy of Viruses (ICTV).
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Figure 1.1 Un-rooted neighbour-joining tree showing the relationships between
the different morbilliviruses. The phylogenetic tree was constructed using partial
nucleoprotein gene sequences of 230 nucleotides (accession no NC 006383, peste
des petits ruminants virus; NC 001498, measles virus; AB547189, rinderpest virus;
NC 001921, canine distemper virus; KC802221, phocine distemper virus;
JQ411016, Feline morbillivirus; AY949833, porpoise morbillivirus; NC 005283,
dolphin morbillivirus and AF200818, pilot whale morbillivirus) with 1000 bootstrap
replicates and the Kimura 2-parameter model in MEGA 5.2. The scale bar indicates
nucleotide substitutions per site. Three virus strains, porpoise morbillivirus, dolphin
morbillivirus, and pilot whale morbillivirus have been isolated from cetaceans are

considered part of the species cetacean morbillivirus.
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Three well characterised strains porpoise morbillivirus (PMV), dolphin morbillivirus
(DMYV) and pilot whale morbillivirus (PWMYV) are considered part of the species
cetacean morbillivirus (CMV) were isolated from different marine mammals.
(Barrett et al., 1993b; Taubenberger et al., 2000). Historically measles virus (MV)
and rinderpest (RPV) have been recorded for centuries as the cause of severe
epidemics in humans or cattle, respectively, although the latter has been successfully
controlled and globally eradicated. Canine distemper virus (CDV) was initially
thought to be restricted to the infection of dogs although the virus has since been
recorded in a number of terrestrial carnivore species including tigers, lions, hyena
and non-human primates alongside infection of aquatic mammals (Buczkowski et
al., 2014). Recently, a completely new morbillivirus, feline morbillivirus (FmoPV),

has been reported in domestic cats (Woo et al., 2012).

Morbilliviruses are largely characterised at the molecular level through studies with
the prototype virus, MV and to some extent CDV and RPV. PPRYV is largely
unexplored for virus replication and transcription. However, the morbilliviruses are
known to be conserved across genus and family sharing similar characteristics. The
description of PPRYV in the sections below are generalised for morbilliviruses or

paramyxoviruses with the inclusion of specific literature available to PPRV.

1.3 Virology

1.3.1 Virus structure

The viral genome for all members of the Mononegavirales consists of a single-strand

of non-segmented negative-sense RNA encapsidated by N as a helical nucleocapsid.
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The N-RNA complex, along with the RNA-dependent RNA polymerase (RdRP,
large polymerase; L) and the co-factor phosphoprotein (P) forms a complex as
ribonucleoprotein (RNP) complex (Figure 1.2). RNPs are contained within the virus
envelope and appear as helical structures with a ‘herring-bone’ appearance. During
the viral budding process, the viral envelope is derived from the infected cell
membrane and is embedded with protruding viral fusion (F) and H glycoproteins
(Figure 1.2). The matrix (M) protein is located on the inner surface of the envelope
and bridges the RNPs and cytoplasmic tails of the membrane glycoproteins.
Structurally, the morbilliviruses are pleomorphic (200-700 nm) enveloped particles
as determined using negative-stain electron microscopy (EM) (Plowright et al.,
1962). No good EM structure for PPR virion is available to determine its structure
and size. Morbillivirus particles contain more than one RNP and are therefore

functionally polyploid in nature (Rager et al., 2002).

25
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Figure 1.2 A schematic diagram of the PPR virion structure. The PPRV
glycoproteins (F and H proteins) are embedded within the viral envelope. The M
protein lines the inner surface of virus envelope. The ribonucleoprotein complex is

composed of N, P and L proteins in association with the RNA genome.
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1.3.2 PPRYV genome organisation

The PPRV genome is a non-segmented, single-stranded, negative-sense RNA
molecule of 15,948 nucleotides in length (Bailey et al., 2005). The genome length of
PPRYV conforms to the ‘rule of six’ (multiple of six) like several other
paramyxoviruses (Calain and Roux, 1993), as required for efficient genome
replication and virus propagation (Bailey ef al., 2007) assuming that each N protein
is bound to six nucleotides of genome or anti-genome RNA to form the RNP

complex. The genome organisation of PPRV is presented in Figure 1.3.

The PPRV genome consists of six transcriptional units located in the order 3’ N, P,
M, F, H and L 5’ that encode for the corresponding six structural proteins, N, P, M,
F, Hand L (Bailey et al., 2005; Chard et al., 2008) and two additional non-structural
proteins, C and V that are translated via alternative mechanisms from the P mRNA
(Mahapatra et al., 2003). A breakdown of the PPRV genome sequence and its
component parts, including their position and length, is presented in Table 1.2.
Transcriptional units are separated from each other by an intergenic (IG)
trinucleotide sequence that for the morbilliviruses consist of the sequence, CTT. The
region upstream of the IG region includes a polyadenylation signal for the upstream
gene and the sequence after the IG region marks the 5’ transcriptional start site of the
next transcriptional unit. The IG trinucleotides are not transcribed during the
transcription of individual genes but are incorporated by the RARP into the positive

strand replicative intermediate during the replicative stage of the viral life cycle.
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Figure 1.3 A schematic representation of the PPRV genome organisation. The
PPRYV genome is a non-segmented, single-stranded negative sense RNA molecule.
The genome consists of six transcriptional units (encoding the nucleoprotein (N),
phosphoprotein (P), matrix (M), fusion (F), hemagglutinin (H) and large/ polymerase
(L) proteins) that are flanked by a 3’ genome promoter (GP) and a 5’ anti-genome
promoter (AGP). The P transcriptional unit also encodes for additional C and V non-
structural proteins. The V protein is produced by co-transcriptional P mRNA editing
by insertion of a non-template G residue and the C protein is produced from the

alternative reading frame in P mRNA by leaky scanning during translation.
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A 3’ leader and a 5’ trailer terminal sequence are present at the genome termini.
These are largely complementary over the first 20 nucleotides and contain conserved
binding sites for the RARP. As such these short untranslated regions play an
important role as regulatory elements in replication, transcription and packaging of
RNA genome during virus propagation (Bailey et al., 2007). For RPV, mutations
introduced into the 3’ genome promoter region greatly affected the promoter activity
in a minigenome assay (Mioulet et al., 2001) and exchange of the genome promoter
(GP) and anti-genome promoter (AGP) regions between virulent and avirulent
strains of recombinant RPV affected the replicative ability of the virus with a
virulent strain of RPV containing vaccine GP and AGP being strongly attenuated

(Banyard et al., 2005).

Untranslated regions between transcriptional units can be of a variable length. In
particular the 3’ untranslated region (UTR) of the M gene (444 nucleotides) and 5’
UTR of the F gene (633 nucleotides) are considerably longer in length than the other
UTRs in the viral genome. The UTR between the M and F genes is rich in GC
nucleotides (68 - 72%). Generally, between isolates the PPRV genome is relatively
conserved with a maximum divergence reported of 12% at the nucleotide level and

7% at the amino acid sequence level.
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Table 1.2 The genome organisation of PPRV

Sequence Nucleotide | Total 5UTR | CDS | 3UTR | Intergenic | Protein | Deduced

components | Position length region, Size, MW,
on nucleotide | amino KDa
genome acid

Leader 1-52 52 NA NA NA (CTT) NA NA

N mRNA 55-1744 1689 52 1578 | 59 CTT 525 58

P mRNA 1748-3402 | 1655 59 1530 | 66 CTT 509 55

V (P) mRNA | 1748-3402 | 1656 59 897 700 CTT 298 31

C (P) mRNA | 1748-3402 | 1655 81 534 1040 CTT 177 20

M mRNA 3406-4888 | 1484 32 1008 | 444 CTT 335 38

F mRNA 4892-7302 | 2410 633 1641 | 136 CTT 546 59

H mRNA 7306-9262 | 1957 20 1830 | 107 CTT 609 69

L mRNA 9266- 6643 22 6552 | 69 (CTA) 2183 247
15908

Trailer 15912- 37 NA NA NA NA NA NA
15948

* CDS, coding sequence; UTR, untranslated region; ORF, open reading frame; NA, not applicable.

1.3.3 PPRYV entry, replication cycle and packaging

The replication cycles of all paramyxoviruses are similar and the first step is the
attachment of the virus to a cell surface and membrane fusion to release a genome
into a cell cytoplasm in a pH-independent manner (Figure 1.4). Like other
morbilliviruses, PPRV has an established lymphatic and epithelial tropism (Birch et
al., 2013; Couacy-Hymann et al., 2007b). The H protein is responsible for the
attachment of a virus to the cell surface through the recognition of host cell receptor
molecules such as sialic acid, immune cell marker signalling lymphocyte activation
molecule (SLAM)/ CD150 (Adombi ef al., 2011; Seki et al., 2003) or the recently

reported epithelial cell receptor Nectin-4 (Birch et al., 2013).
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Figure 1.4 A schematic replication of life cycle of a morbillivirus. Adapted from
(Moss and Griffin, 2006). The first step in virus infection is the attachment of a
virion to a host cell surface receptor which leads to the fusion of viral and cellular
membrane. The negative sense RNA genome is released into the cell cytoplasm and
transcription initiates to produce viral gene transcripts. Later, following the
production of viral proteins a switch to a replicative mode occurs that results in the
production of a positive sense anti-genome RNA, a replicative intermediate which as
a template for the generation of nascent genome RNA. The viral transcripts are
translated using host cell translational machinery and later viral components are

assembled and budded in to new virion.
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For binding to SLAM, an interaction between the V domain of SLAM and the -
sheet 5 quartet of the H protein leads to conformational changes in the H protein
(Navaratnarajah et al., 2008). The H protein conformational change upon receptor
binding triggers the F protein to initiate membrane fusion. It has been postulated that
the morbillivirus H and F proteins are associated (the H dimer with the Fi-F> trimer)
prior to receptor attachment thus preventing premature fusion by the F protein.
Attachment of the H protein to receptors creates a scaffold and later activates the F
protein to function and drive fusion of the viral envelope with the host cell
membrane and release the RNP complex into the cell cytoplasm (Ludwig et al.,
2008; Plemper et al., 2002). Morbilliviruses replicate exclusively in the cytoplasm of
host cells although it is not clear whether replication occurs diffusely throughout the
cell cytoplasm or whether there are dedicated intracellular sites within cytoplasm
where replication occurs (Duprex et al., 1999). The genomes of morbilliviruses are
never found as naked RNA and are always bound to N protein to form helical RNP
complex, an interaction that confers resistance to host cell RNases. The RNP consists
of the negative sense (—) genome or a positive sense anti-genome (+) RNA. The RNP
complex containing the RNA, with the N, P and L proteins makes up the minimal
replicative unit of these viruses that is required for the initiation of the transcription
and replication processes. The L protein contains RARP activity and with the co-
factor P protein, functions in both transcription and replication of the genome. The
RdRP uses the RNP as a template and cannot act on naked RNA (Rozenblatt et al.,
1979). The interaction of the RARP with RNA is mediated by the P protein which
has both L and P binding sites (Kingston et al., 2004; Longhi ef al., 2003). A viral
genome as a negative sense RNP is released into the cell cytoplasm following fusion

of the viral and cellular membrane and is acted upon by viral polymerase complex
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that enters at GP and transcribes the viral genes (Horikami and Moyer, 1991).
During the transcriptional mode, it is not clear whether the RARP always produces a
3’ leader (52 nucleotide) sequence or whether it directly transcribes the capped
mRNA of the N gene. As the polymerase reaches the IG regions it may fall off the
template or continue to transcribe the next gene. If the polymerase detaches from the
template it can only reinitiate at the GP and as such a transcriptional gradient is
produced whereby the 3° proximal genes are produced in abundance with a reduction
in gene expression along the genome (Rennick et al., 2007). Thus, the fine control in
producing required relative amounts of each viral protein is achieved through the
transcriptional gradient. The viral mRNAs produced are 5° methylated and 3’ poly-
adenylated by the viral polymerase and are translated by host cell translation

machinery (Banerjee, 1987).

Post-translational modification of the viral glycoproteins (H and F) is carried out on
the endoplasmic reticulum (ER) as proteins are transported to the cell membrane via
the Golgi apparatus. At a later stage following infection, the polymerase switches
from a transcriptive to replicative state and its been hypothesised that the switch is
mainly due to the accumulation of a sufficient intracellular concentration of the N
and P proteins required for encapsidation of genomic RNA (Banerjee, 1987; Lamb
and Kolakofsky, 2001). During the replication mode the signals of the gene start, IG
and gene stop regions are ignored and a full-length anti-genome RNA is produced
including a leader sequence. Later, to generate a nascent genome strand RNA, the
polymerase enters the AGP in the newly synthesised positive sense anti-genome

RNA template to produce genome RNA. Unlike the mRNA, the nascent genome or
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anti-genome RNA molecules produced are not capped or polyadenylated and are

immediately encapsidated by the N protein.

Synthesis of nascent genomes and viral components to a sufficient amount in the
host cell leads to the assembly and budding of virus particles. The interaction
between the various viral components during transportation to the cell membrane for
assembly and packaging into new virus particles is not well understood. The M
protein is believed to play a role in the assembly of the viral RNA and protein
components into a host cell membrane, and packaging, budding and release of new
virion particles (Takimoto and Portner, 2004). The M protein interacts with both
RNPs and the cytoplasmic domains of the glycoproteins at the plasma membrane
and thus forms the bridge between them. The interaction between the M protein and
glycoproteins is specific to each virus. Where studies have attempted to examine
these interactions are requirement for homologous interactions have been reported.
For example, a chimeric RPV with the glycoproteins replaced from PPRV was
viable but grew to a low titre (Das et al., 2000) and it was found that the addition of
the homologous M protein from PPRV improved the titre of the rescued virus
(Mabhapatra et al., 2006). Functionally, the M protein has been shown to inhibit RNA
transcription and interact with the N protein to assemble into RNPs and transport to

the cell membrane (Iwasaki et al., 2009; Runkler et al., 2007).

1.3.4 PPRYV proteins

1.3.4.1 Nucleoprotein (N)

The N gene is the first to be transcribed and being located at 3° proximal end of the

genome expresses the most abundantly produced mRNA. The N protein of PPRV is
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525 amino acids in length (58 KDa) and consists of a conserved N-terminal
structural core domain (Ncorg) and a highly variable C-terminal domain (Ntar)
(Bodjo et al., 2008; Diallo et al., 1994). The primary function of the N protein is to
encapsidate the genomic RNA to form a helical nucleocapsid structure, resistant to
RNase degradation (Lamb and Kolakofsky, 2001). The nucleocapsid structure
appears to be a ‘herringbone’ structure by negative-stain EM (Barrett ef al., 1993a;

Bodjo et al., 2008).

Each N protein binds and encapsidates exactly six nucleotides of RNA (Calain and
Roux, 1993; Kolakofsky et al., 1998) and therefore 2658 (=15948/6) N proteins are
required per genome of PPRV for complete encapsidation. The large amount of N
protein required for encapsidation is likely the reason for its 3’ terminal genome
location. N protein monomers, aided by P (serving as a molecular chaperone)
prevent N-N aggregates from self-assembling and this soluble form of N-P is the
substrate for encapsidation of nascent RNA. The encapsidated RNA retains
considerable conformational flexibility to allow transcription and replication (Figure
1.5). The association of N and P is also essential for the functioning of the L protein
in RNA synthesis in MV (Buchholz et al., 1994; Ryan and Portner, 1990).

The N protein of the morbilliviruses is also highly antigenic in nature and induces an
N protein specific immunity that does not confer protection (Lamb and Kolakofsky,

2001).
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Figure 1.5 The structural proteins of paramyxoviruses. Crystal structures of

Ribonucleoprotein

measles virus H (Hashiguchi et al., 2007) and parainfluenza virus 5 F (Yin ef al,
2006) proteins attached to cell membrane are shown as a space-filled model. The
ribbon plot model (left side of H dimer) of a six-bladed B-propeller sheet H-protein
head structure and location in the H protein of measles virus is shown at the top
(Navaratnarajah et al., 2011). The M protein, located on the inner side of virus
envelope, bridges with ribonucleoprotein complex containing the N, P and L proteins
with the polymerase activity being shown below (Griffin and Oldstone, 2009). The
figure has been generated with elements adapted from the various sources as cited

within the caption.
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1.3.4.2 Phosphoprotein (P)

The P protein is encoded by the second gene and consists of 509 amino acids with a
predicted size of 55 KDa. It is genetically the least conserved protein with short
interspersed conserved domains (Barrett and Underwood, 1985). The P protein is
heavily phosphorylated, in a process mediated by cellular kinases. The active form of
P protein is a tetramer and it is a multi-functional protein which interacts with both
the N and L protein as N-P and P-L complexes (Longhi et al. 2003; Kingston et al.
2004). As described, P protein plays a chaperone role preventing excessive N protein
self-assembly, maintaining its soluble state and helping in the formation of the
nucleocapsid structure. The P protein acts as co-factor for the L protein in the

progression of the RARP complex on the RNA template during replication.

1.3.4.3 Matrix (M) protein

The M protein is 335 amino acids (38 KDa) in length and is the most conserved
protein among PPRV isolates. The M protein is believed to be involved in assembly
and transport of viral components to the apical surface of host cell membrane and
budding of virions (Takimoto and Portner, 2004). Within the virion it is located on
the inner surface of the virus envelope, where it interacts with the RNP and the
cytoplasmic domains of H and F glycoproteins embedded in the envelope (Baron et
al., 1994) (Figure 1.5). Recombinant viruses lacking the M protein are unable to
assemble and bud efficiently reiterating its role in these elements of the viral life
cycle (Pantua et al., 2006). Recently, the co-expression of the PPRV M, H and N
proteins in Sf9 insect cells has been reported to enable generation of PPRV virus-like

particles (Liu et al., 2014a; Liu et al., 2014b).
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The extended UTR between the M and subsequent F gene described earlier is
proposed to play a role in regulating translation by forming secondary structures in
M and F mRNAs (Bailey et al., 2005; Dhar et al., 2006; Meyer and Diallo, 1995). A
recombinant MV lacking the long M/F UTR demonstrated that the deleted region
was not essential for viral replication, although its absence altered the viral
phenotype (Takeda ez al., 2005). In addition, the nine-nucleotide sequence in the 5’
UTR of PPRV F gene was found to be complementary to the 18S ribosomal RNA

(Chulakasian et al., 2013).

1.3.4.4 Fusion (F) protein

The F protein consists of 456 amino acids and is a type | transmembrane
glycoprotein/ fusion protein, and is responsible for virus-host cell fusion and infected
cell-cell fusion. Fusion activation needs the synergistic effect of the H protein
(Figure 1.5) (Lamb, 1993; Morrison, 2003). The F protein is synthesised as an
inactive precursor polypeptide (Fo) with a cleavable N-terminal 28 amino acid signal
peptide. The signal peptide directs the transport of protein to the endoplasmic
reticulum for trimerisation (Plemper at al., 2001). The Fo trimers are cleaved by
cellular furin in the trans-Golgi at a conserved R-X-R/ K-R site (Chard et al., 2008).
Cleavage results in the generation of large (F1) and small (F2) protein components
that form an active heterodimer a linked by disulphide bonds. The un-cleaved Fo
trimers transported to the virus envelope may also be cleaved by extracellular host
cell enzymes. The new N-terminus of the F; protein (20-25 amino acids) is
hydrophobic, and acts as a fusion peptide. This peptide is inserted into the target

membrane during the fusion process. The C-terminal ends of the F; and F> peptides
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have transmembrane domain functions in membrane anchoring (Meyer and Diallo,

1995; Rahaman et al., 2003).

1.3.4.5 Haemagglutinin (H) protein

The H protein consists of 609 amino acids and is a type II glycoprotein, where the C-
terminus of the H protein extends outside the cell membrane and the N-terminal
transmembrane domain extends towards the cytoplasmic milieu. Unlike other
morbillivirus H proteins, the PPRV H displays both haemagglutination activity
(agglutination of erythrocytes) and neuraminidase activity (cleaves sialic acid
residues from the carbohydrate moieties of glycoproteins) (Dhar et al., 2006; Seth
and Shaila, 2001) and as such is often termed the HN protein. The MV H protein
shows haemagglutination activity but lacks neuraminidase activity (Varsanyi et al.,
1984) whilst the RPV H protein lacks both haemagglutination and neuraminidase

activity (Langedijk et al., 1997).

The H protein displays a high degree of antigenic variability among the
morbilliviruses due to immunological pressure as it carries B cell epitopes that
generate neutralising antibodies (Renukaradhya et al., 2002). The cell surface
receptor, SLAM (CD150), binding site was mapped for the H protein of PPRV
(Vongpunsawad et al., 2004). The crystal structure of the MV H protein has been
determined (Hashiguchi et al., 2007) and has shown that each monomer of a dimer
of H protein exhibits a six-bladed B-propeller head structure and a connecting

membrane stalk (Figure 1.5). The H protein binding to the receptor molecule
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transmits the fusion-triggering signal to the F protein to initiate membrane fusion for

MYV entry (Navaratnarajah et al., 2011).

1.3.4.6 Large (L) / polymerase protein

The L protein is the largest PPRV protein (247 KDa) and is encoded by a gene
(2,183 amino acids) located at the 5’ proximal end of the genome. The L gene
accounts for 40% of the total genome length. The L protein is the least abundant
protein produced as it is required in catalytic amounts due to its polymerase
enzymatic activity. The L protein, and its RARP activity, is essential in both the
replication and transcription of genes including the capping and polyadenylation of
viral mRNAs (Hammond et al., 1992; Hercyk et al., 1988; Horikami et al., 1992).
The P protein is an essential co-factor of the L protein during polymerase activity. L
protein sequences and their different functions are highly conserved across the
paramyxoviruses with clearly identified protein domains (Mcllhatton et al., 1997).
The L protein consists of three large conserved domains connected by variable hinge
regions (Mcllhatton et al., 1997). The first N-terminal domain is involved in
interactions with both the N and P proteins whilst the second domain carries out
phosphodiester bond formation during polymerase activity. Finally the third domain
has an ATP binding function facilitating kinase activity (Blumberg ef al., 1988).
Studies have shown that the green fluorescent protein (GFP) ORF can be inserted
into the second variable hinge region of the L protein of recombinant MV, CDV and
RPV without significantly disrupting the function of the L protein (Brown et al.,
2005; Duprex et al., 2002). These recombinant viruses were used to study virus

pathogenesis and suggested inclusion of a heterologous protein into the L ORF as a
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means of functional attenuation of these viruses (Brown et al., 2005; Duprex et al.,

2002; Silin et al., 2007).

1.3.4.7 Non-structural V and C proteins

The C and V proteins are non-structural or accessory proteins produced from the P
OREF by alternative translational and transcriptional mechanisms (Figure 1.3). The V
protein is encoded from an overlapping ORF within the P mRNA. The P mRNA
transcription initiates normally and at position 751, a pseudo-template addition of
one G nucleotide residue occurs due to viral RARP slippage at the editing site
complex. During translation, this leads to frame shift downstream of the mRNA
editing site to produce the V protein of 298 amino acids (Mahapatra et al., 2003). An
identical RNA editing mechanism has been reported in other morbilliviruses (Barrett
et al., 1993a; Cattaneo et al., 1989) and although less frequent, the generation of V
transcripts accounts for one third of the total mRNA generated from the P gene start
codon in MV (Cattaneo et al., 1989). The V/ P proteins share identical amino-
terminus sequences but have a different C-terminal region due to the frame shift.
Surprisingly, the common V/ P N-terminus is poorly conserved whereas the
carboxyl-terminal region of V protein is highly conserved and rich in cysteine

residues with zinc binding motifs (Mahapatra et al., 2003).

The C protein is encoded by the P mRNA through utilisation of an alternative
reading frame (+1); beginning 23 nucleotides downstream of the P protein start
codon (Figure 1.3). The C protein is produced by leaky ribosomal scanning of P

mRNA during the translational process. The C protein of PPRV consists of 177
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amino acids and has a molecular weight of 20 KDa (smaller than V protein). C is the

least conserved protein across all of the morbilliviruses.

The V and C proteins of morbillivirus have been reported to act as virulence factors
modulating the host cell innate immune response (Patterson et al., 2000). The V and
C proteins are also required for normal virus propagation as they regulate
transcription and replication during virus infection. The V protein of RPV has been
reported to interact with both the N and L proteins, and is therefore involved in both
transcription and replication (Sweetman et al., 2001). A recombinant knockout RPV
that lacked the expression of either V or C proteins individually or in tandem had
impaired growth in vitro in B95a cells (Baron and Barrett, 2000). The V knockout
RPV had an increased level of genome and anti-genome synthesis that led to change
in cytopathic effect (CPE) to a more syncytium-forming phenotype (Baron and
Barrett, 2000). The C knockout RPV was attenuated with a measurable reduction in
viral mRNA synthesis. RPV lacking both V and C protein expression had a
cumulative effect with severe growth defects (Baron and Barrett, 2000). Similarly, a
C and V deficient wild-type MV was found to be attenuated in monkeys (Devaux et
al., 2008). Overall, paramyxovirus accessory proteins are involved in the modulation
of the host cell mediated immune response generally through limiting the cellular
interferon (IFN) response (section 1.7). A recent study with PPRV demonstrated that
the V protein blocks type I IFN action and partially blocks type II INF action

(Chinnakannan et al., 2013).
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1.4 Disease

1.4.1 Clinical signs

Goats and sheep are the primary host for PPRV. Goats are more susceptible to
disease than sheep (Nanda et al., 1996). As described in the OIE (world organisation
for animal health/ Office International des Epizooties) manual (OIE, 2012), the
incubation period is typically 4 to 6 days although it may range between 3 and 10
days. At the acute stage of disease, animals show pyrexia up to 41°C lasting for 3 to
5 days, depression, anorexia and dryness in the muzzle. Watery nasal and lachrymal
discharges gradually become mucopurulent with excessive salivation. Erosive
lesions formed in the oral cavity may become necrotic. In the later stage of infection,
animals develop diarrhoea, coughing with laboured abdominal breathing. The
disease condition may last for 14 days before recovery from infection or leads to
death during the acute stage of infection. The morbidity rate can reach 100% with a
high case fatality with the acute form of disease. The above described clinical signs

and mortality can vary considerably depending on the virulence of virus (OIE, 2012).

1.4.2 Pathogenesis

PPRYV pathogenesis is poorly understood and knowledge has been gained mainly by
comparison with closely related RPV (Brown and Torres, 1994; Wohlsein et al.,
1993). The study of pathogenesis of PPRV has mainly been described through the
experimental infection of small ruminants with a virulent virus to develop a reliable
and reproducible animal model (Alcigir et al., 1996; Baron et al., 2014a; Bundza et
al., 1988; El Harrak et al., 2012; Hammouchi ef al., 2012; Pawaiya et al., 2004; Pope
et al., 2013; Truong et al., 2014). Histological investigation during early infection
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showed immune cell driven spread of PPRV similar to that seen with other
morbilliviruses (Pope et al., 2013). The initial site for virus replication was observed
within the tonsillar tissue and lymph nodes draining the site of inoculation. It has
been proposed that the virus infected immune cells within the respiratory mucosa
migrate to the local lymphoid tissue where primary virus amplification occurs and
from which virus enters the general circulation. Clinical signs usually develop at 3-4
days post infection (dpi) with pyrexia and anorexia. Anorexia results from the
presence of lesions in the buccal cavity, tongue and dental jaws which make
mastication uncomfortable. Leucopoenia is often observed from 4 dpi with a
considerable reduction of CD4" T cells (Baron et al., 2014a; Herbert et al., 2014).
Disease progresses with lacrimal, nasal and mucosal discharges with live virus being
detected in those excretions as early as 4 dpi. Viral antigens were also observed by
histochemical staining in lymphoid organs, the respiratory and the gastrointestinal
tracts (Kumar et al., 2004; Pope et al., 2013). Histopathological assessment of
infected tissues observed a large number of syncytia in lymphoid tissue between 5
and 7 dpi that later become necrotic. In the later stage of infection, erosive lesions
that become necrotic are seen in the oral cavity. The severity of clinical signs peaks
between 6 and 8 dpi and signs continue for a maximum of 14 days before death or
recovery from infection. Three visible forms (severe, mild and subclinical) of PPR
are seen depending on the virulence of the infecting virus and several other
predisposing factors such as nutritional state of the animal and the presence of
secondary infections. However, despite the differentiation of PPRV isolates into
genetically distinct lineages, no lineage specific differences in the pathogenicity of
the virus were observed following experimental infection (Baron ef al., 2014a).

Goats are considered to be more susceptible to disease with similar pattern of
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pathological signs compared to sheep (Truong et al., 2014) and even specific breeds

of goats may be more susceptible than others (Couacy-Hymann ef al., 2007a).

1.5 Epidemiology

1.5.1 Origin and distribution

The first report of PPR was made in 1942 in the Ivory Coast (Gargadennec and
Lalanne, 1942) based on the observation that a disease of small ruminants was not
transmissible to in-contact cattle. After three decades, the causative agent of PPR
disease was defined as a distinct viral entity (Gibbs et al., 1979). Before 1942, it is
likely that PPR would had been confused with rinderpest as they show similar
clinical symptoms and several reports of epidemic rinderpest-like disease in small-
ruminants in Senegal and French Guinea were published between 1871 and 1927
(Diallo, 1988). Contrastingly, infections of rinderpest with an absence of clinical
disease in sheep and goats are well documented in the same regions of Africa
(Rossiter et al., 1983). The evolution of PPRV and its relationship with RPV has
been dissected out recently using molecular phylogenetic analysis of virus genome
sequence data. Bayesian phylogenetic studies found that the RPV is more closely
related to MV than to PPRV (Furuse et al., 2010; Pomeroy et al., 2008). The origin
of ancestral PPRV and its relation to other morbilliviruses and evolutionary changes

are investigated further in this PhD study.

After the first recognition of PPR in Ivory Coast increased awareness led to further

reports in neighbouring countries in the order, Senegal, Chad, Togo, Benin, Ghana,
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Nigeria, Oman, Sudan, Saudi Arabia, India, Jordan, Israel, Ethiopia, Kenya, Uganda
and Pakistan (Sen et al., 2010). This appears to be the geographic spread of disease
from West Africa to East Africa, and then to the Middle East and Asia. PPRV is
considered to be endemic across Africa, the Middle East and Asia (Banyard et al.,

2010; Dhar et al., 2002; Kwiatek et al., 2011).

In recent years PPRV has extended its boundaries southwards in Africa as far as
southern Tanzania (2008) and the Democratic Republic of Congo and Angola
(2012). PPR outbreaks have also been reported across North Africa including within
Tunisia (2006), Morocco (2008) and Algeria (2011). Alongside this, within Europe,
Turkey reported approximately twenty laboratory confirmed PPR outbreaks in sheep
and goats during 2011-2012. In southwest Asia, the virus spread to Tibet (2007) and

has recently been reported all over China (2013-2014) (FAO, 2013).

The molecular epidemiology of PPR, based on the sequence comparison of a small
322 nucleotide (nt) region of the F gene (Forsyth and Barrett, 1995), 255 nt of the N
gene (Couacy-Hymann et al., 2002) or 298 nt of the H gene (Senthil Kumar ez al.,
2014) has defined the existence of four distinct lineages (I-IV) of PPRV (Banyard et
al., 2010; Dhar et al., 2002; Kwiatek et al., 2011; Shaila et al., 1996). The
nomenclature of lineages I and II are slightly different for the N and F gene and is
historically reversed depending on the assay used (lineage II of F gene named as
lineage I of N gene). However, recently a comparison has been made between the F,
N and H gene phylogenetic analyses and the partial N gene sequence was shown to
be a more accurate predictor of viral diversity due to sequence variability across the

region examined (Senthil Kumar et al., 2014).

46



Historically, lineages I-1II were found in Africa and numbered according to apparent
spread of virus from West Africa (I and II) to East Africa (III). Lineage IV was
mainly restricted to the Middle East and Asia with a few exceptions of Lineage III in
Yemen and Oman and mixed lineages of III and IV in UAE and Qatar. However,
lineage IV has now established its presence all across the PPR endemic areas with
frequent outbreaks in Africa (Kwiatek et al., 2011). PPRV lineages circulating in

Africa (Table 1.3) and the Middle East and Asia (Table 1.4) are shown in Figure 1.6.
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Table 1.3 Lineages of PPRYV circulating in different countries of Africa, based

on partial N/F gene sequence analysis (taken from Parida et al., 2015).

) Year of confirmation of
Country Year of first Lineage outbreak through NCBI. .
report . submission
sequencing
Algeria 2010 [\ 2010 Yes
Angola 2012 \Y% 2012 No
Benin 1972 NA NA No
. | 1988 Yes
Burkina Faso NA T 1999 No
Cameroon NA [\ 1997 Yes
CentraI.Afrlcan NA v 2004 Yes
Republic
Chad 1971 1] 1993 No
Comoros 2010 NA NA No
Congo NA W 2006 No
Democratic
Republic of the 2012 \ 2012 No
Congo
Egypt 1987 \Y% 2009, 2010, 2012 Yes
Eritrea NA \Y% 2002, 2003, 2005, 2011 Yes
- I 1994, 1996 Yes
Ethiopia 1994 I 2010 Yes
Gabon NA [\ 2011 Yes
Ghana NA 1] 1976, 1978, 2010 Yes
Guinea NA | 1988, 1991 Yes
Guinea Bissau NA | 1989 Yes
Ivory Coast 1942 | 1989 Yes
Kenya 2006 Ml 2006 Yes
Libya NA NA NA No
Mali NA 1] 1999 Yes
Mauritania NA 1l 2012 Yes
Morocco 2008 [\ 2008 Yes
Niger NA 1] 2012 No
1975, 1976, 2010, 2012,
1 Yes
Nigeria 1967 2013
v 2008, 2009, 2010, 2012, Yes
2013
| 1964, 1994 Yes
Senegal 1955 I 2010, 2013 Yes
Sierra Leone 2008 1l 2009 Yes
Somalia 2006 1] NA No
I 1971, 1972, 2000 Yes
Sudan 1971 IV 2000, 2005, 2008, 2009 | Yes
Tanzania 2008 Il 2010, 2011, 2013 Yes
Togo 1972 NA NA No
Tunisia NA \ 2012, 2013 Yes
11} 2007 No
Uganda 1995 IV 2007, 2008 Yes
Western Sahara | NA [\ 2010 No

*Lineages of isolates of PPRV were named by following the classification of lineages based on partial N
gene sequence phylogenetic analysis; NA, not available.
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Table 1.4 Lineages of PPRYV circulating in different countries of the Middle East and

Asia, based on partial N/F gene sequence analysis (taken from Parida ef al., 2015).

Year of first . . Year of confirmation of PPR NCBI
Country Lineage . o
report outbreak through sequencing submission
Turkey 1996 \ 1996,2000, 2006, 2007, 2008, | Yes
2009, 2010, 2011
Iraq 1998 IV 2011, 2012, 2013 Yes
Iran 1995 W 1998, 2010, 2011, 2012 Yes
Saudi Arabia | 1980 IV 1999, 2004 Yes
Israel 1993 \% 1993, 1995,1998, Yes
Jordan NA v NA No
Kuwait 1999 \% 1999 No
Oman 1978 i 1983, 1987 Yes
Yemen 2002 1l 2001, 2009 No
Qatar NA 1 2010 Yes
\% 2010 Yes
UAE 1983 1l 1986 Yes
W NA No
Lebanon 2006 NA NA No
Afghanistan 1995 NA NA No
Kazakhstan 1997 NA NA No
Tajikistan 2004 NA 2004 Yes
India 1987 \ 1994, 1995, 1996, 1998, 1999, | Yes
2004, 2002, 2001, 2003, 2005,
2007, 2008, 2012
Pakistan 1991 \% 1994, 2005, 2006, 2007, 2008, | Yes
2009, 2010, 2012,
Bangladesh | 1993 \ 2000, 2008, 2009, 2010, 2011, | Yes
2012
Nepal 1995 \% 1995, 2009 Yes
China 2007 \% 2007, 2008, 2014 Yes
Bhutan 2010 \ 2010 Yes
Vietnam 2007 Serology NA No

* Lineages of isolates of PPRV were named by following the classification of lineages based on partial
N gene sequence phylogenetic analysis; NA, not available.
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Figure 1.6 The global spread of PPRYV from its first detection in 1942 to 2014.
(a) depicts global distribution of PPRV from 1942 to 2009, taken from (FAO, 2009)
and (b) depicts recent circulations of PPRV including lineage distribution in Africa

and was drawn using smart draw software (USA).
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1.5.2 Host range

Sheep and goats are the primary hosts for PPRV with a few reports of disease
outbreaks in camels (Khalafalla et al., 2010; Kwiatek et al., 2011; Roger et al., 2001;
Saeed et al., 2004) . Cattle (Anderson and McKay, 1994; Lembo et al., 2013; Sen et
al., 2014), buffalo (Govindarajan et al., 1997) and pigs (Nawathe and Taylor, 1979)
develop subclinical infection with PPRV and are not thought to be capable of
excreting virus and contributing to the disease epidemiology. The infection of
wildlife, mainly living under semi-free range conditions, has also been reported
(detailed in Table 1.5). The exact role of wildlife animals in the epidemiology of

PPR disease remains to be clarified.

Infected animals can transmit PPRV to close in-contact susceptible animals through
exhaled aerosols, particularly during coughing, or through clinical excretions
(lachrymal, nasal, saliva and faeces). PPRV is temperature labile and readily
inactivated outside its host in a dry environment (Rossiter and Taylor, 1994).
Infected and recovered animals develop life-long protective immunity with no carrier
state (Hamdy et al., 1976). However, virus can spread in animals as a mild virulent
form that can later lead to severe disease where transmission occurs to naive
susceptible populations of small ruminants (Couacy-Hymann et al., 2007a).Other
host factors like age, sex, breed and season may also play a role in disease outbreaks.
Sheep and goats are the natural host for PPRV. More frequent outbreaks have been
reported in goats than in sheep populations suggests that goats are more susceptible
than sheep to an acute form of the disease (Lefevre and Diallo, 1990). The greater

susceptibility to infection seen in goat breeds needs to be further investigated.
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Table 1.5 Reported PPR infections in wildlife species

Common name Latin name gllode .Of Country Reference
etection
W Odocoileus - USA (experimental | (Hamdy and
White-tailed deer virginianus Clinical infection) Dardiri, 1976)
. . - - Al Ain , Arabian (Furley et al.,
Laristan sheep Ovis gmelini Clinical Gulf 1987)
- Al Ain , Arabian (Furley et al.,
Gemsbok Oryx gazella Clinical Gulf 1987)
- Al Ain , Arabian (Furley et al.,
Dorcas gazelles Gazella dorcas Clinical Gulf 1987)
. . - Al Ain , Arabian (Furley et al.,
Nubian Ibex Capra nubiana Clinical Gulf 1987)
African Grey dukier | Sylvicapra grimma Serology Nigeria g?gggggym' et
Thompson’s gazelle | Eudorcas thomsonii | Clinical Saudi Arabia (zgl(-)ﬁ;aleq etal,
. Saudi Arabia and (Frolich et al.,
Arabian oryx Oryx leukoryx Serology UAE 2005)
Alcelaphus (Couacy-Hymann
Bubal hartebeests buselaphus Serology Ivory Coast et al., 2005)
(Couacy-Hymann
Buffaloes Syncerus caffer Serology Ivory Coast et al., 2005)
(Couacy-Hymann
Defassa waterbuck | Kobus defassa Serology Ivory Coast et al., 2005)
(Couacy-Hymann
Kobs Kobus kob Serology Ivory Coast et al., 2005)
. . Clinical, .
Arabian mountain Gazella gazella cora | serology and | UAE (Kinne et al.,
gazelles 2010)
genome
) Clinical .
. Antidorcas ’ (Kinne et al.,
Springbuck marsupialis serology and | UAE 2010)
genome
. Clinical, (Kinne et al.,
Arabian gazelles Gazella gazelle serology and | UAE 2010)
genome
. Clinical, (Kinne et al.,
Barbary sheep Ammotragus lervia serology and | UAE 2010)
genome
. Clinical, )
Bushbucks T_ragelaphus scriptus serology and | UAE (Kinne et al.,
kinne 2010)
genome
Clinical .
Aepyceros ’ (Kinne et al.,
Impala melampus serology and | UAE 2010)
genome
Clinical .
Gazella ’ (Kinne et al.,
Rheem gazelles subguttorosa marica serology and | UAE 2010)
genome
Clinical, .
Afghan Markhor Capra falconeri serology and | UAE (Kinne et al.,
goat 2010)
genome
. Gazella (Albayrak and
Persian gazelle subgutturosa Serology Turkey Gur, 2010)
Clinical,
Bharal Pseudois nayaur serology and | China (Bao et al., 2011)
genome
. Capra aegagrus Clinical, and . (Abubakar et al.,
Sindh Ibex blythi serology Pakistan 2011)
. Clinical and . (Hoffmann et al.,
Wild goat Capra aegagrus serology Kurdistan 2012)
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1.6 Disease diagnosis

PPR can be confused with other diseases such as rinderpest, bluetongue and
contagious caprine pleuropneumonia (CCPP) due to similarities in clinical signs.
PPR identification also becomes complicated by secondary infection specifically due
to pasteurella infection. Therefore, in addition to clinical observations in the field,
PPR requires a laboratory based confirmatory test. The laboratory tests currently
available for PPR diagnosis are grouped into three categories; i) those that detect
antigen (virus isolation, antigen capture ELISA, lateral flow devices), ii) those that
detect genetic material (RT-PCR, real-time PCR, LAMP PCR); and iii) those that
detect antibodies (virus neutralisation test [ VNT], competitive ELISA and indirect
ELISAs). Laboratory test methods for the diagnosis of PPR that are recommended
by OIE in the manual of diagnostic tests and vaccines for terrestrial animals are
listed in Table 1.6. Regardless of the test applied, the efficiency of laboratory
diagnosis is greatly influenced by the integrity of the sample received, with a number

of factors affecting this during collection and transportation.

The VNT is the OIE gold standard test for PPR diagnosis and is a time-consuming
method. Competitive ELISA based on H and N proteins of PPRV for detection of
antibodies and RT-PCR including real-time RT-PCR, are generally used in PPR
diagnosis. Recently, immunochromatographic lateral flow devices have been
developed as a pen-side test using a monoclonal antibody (mAb) C77, specific to the
PPRV H protein (Bruning-Richardson et al., 2011) and validated in field conditions
that could detect cases as early as 4 dpi, before onset of severe clinical signs (Baron

etal.,2014b).
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Table 1.6 OIE listed laboratory test methods available for the diagnosis of PPR

Purpose
Populati | Individual Confirmation Prevalence Immune
on animal of clinical of infection- status in
Method freedom | freedom cases surveillance indjvidual Reference
from from animals or
infection | infection populations
post-
vaccination
Competitive ++ ++ - +++ +++ c-H ELISA | (Anderson
ELISA and
McKay,
1994;
Saliki et
al., 1993)
c-N ELISA | (Libeau et
al., 1995)
Virus +++ +++ - +++ +++
neutralisation
PCR - - +++ - - RT-PCR (Forsyth
based on and
F gene Barrett,
1995)
RT-PCR (Couacy-
based on Hymann et
N gene al., 2002)
Multiplex (Balamuru
RT-PCR gan et al.,
2006;
George et
al., 2006)
LAMP (Li et al.,
2010)
Real-time (Bao et al.,
RT-PCR 2008;
(qRT- Batten et
PCR) al., 2011;
Kwiatek et
al., 2010)
Virus isolationin | - - ++ - - Cells- (Adombi et
cell culture Vero, al., 2011)
B95a and
the Vero
expressing
dog
SLAM,
CV1
expressing
goat
SLAM
Immuno-capture | - - +++ - - (Libeau et
ELISA al., 1994)
Agar gel - - + - + (Durojaiye,
immune- 1987)
diffusion
Counter - - + - - (Majiyagb
immune- eetal.,
electrophoresis 1984)

+++, recommended method; ++, suitable method; +, may be used in some situations, but cost, reliability, or other factors
severely limits its application; -, not appropriate for the purpose. The table adapted from OIE manual (2012) by including

references.
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1.7 Immunology

The immune response to morbillivirus infection involves both the innate and
adaptive host immune system. Due to the lymphotropic nature of morbilliviruses, a
profound immunosuppression is often seen following virus infection that allows
opportunistic secondary infections to develop. The humoral immune response has
been clearly defined following morbillivirus infection and more recent reports have
detailed the role of cell-mediated immunity in response to infection. Host innate
immune responses to virus infection are induced by the detection of pathogen-
associated molecular patterns (PAMPs) by cellular pattern recognition receptors
(PRRs). A complex network of intracellular signalling pathways are activated and
resulting in transcription of host defence genes, predominantly pro-inflammatory
cytokines including IFNs. Several classes of viral PAMP have been identified and
include dsRNA, uncapped ssRNA and viral proteins (Akira et al., 2006). The PRRs
include toll-like receptor (TLRs) located at the plasma membrane and endosomal
compartments. The PRRs located within the cytoplasm of infected cells include the
retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) family, melanoma
differentiation-associated protein 5 (MDAS) and dsRNA-dependent protein kinase R
(PKR). The IFNs elicit distinct antiviral effects and are grouped into three types (I, II

and III) according to their amino acid sequence (Randall and Goodbourn, 2008).

PPRYV is highly lymphotropic, a factor that may leads to severe immunosuppression
as described for other morbilliviruses (Pope et al., 2013; Rajak et al., 2005b).
Virulent PPRYV isolates cause marked immunosuppression, whereas the PPR vaccine

induces only transient leukopenia without significantly affecting the immune
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response (Rajak et al., 2005b). Due to the highly lymphotrophic nature of
morbilliviruses, dendritic cells (DCs) and/or macrophages are the immune cells most
commonly targeted by morbillivirus infection. DCs play a role in the transport of
virus to bronchus-associated lymphoid tissue or local lymph nodes where the virus is
amplified and subsequently disseminated following an increase in viral load that
leads to viremia (Lemon et al., 2011). DCs express RIG-1 and MDAS, which
recognise virus and induce type I IFN production (Servet-Delprat et al., 2003).
Paramyxovirus accessory proteins are involved in limiting IFN production by
interfering with induction and signalling pathways. The paramyxovirus C protein has
been shown to inhibit the synthesis of viral mRNA and dsRNA interacting with the
L protein during the formation of polymerase complex (Curran et al., 1992), thereby
preventing PKR mediated shut down of host cell protein synthesis (Gainey et al.,
2008). The paramyxovirus V protein has been found to interact with MDA-5 to
block IFN induction pathway (Childs et al., 2007; Goodbourn and Randall, 2009).
Morbilliviruses have adapted distinct mechanisms to block the IFN signalling
pathways, reportedly targeting multiple components. All the morbillivirus V proteins
can block type I IFN action and to varying abilities can block type II IFN action
(Chinnakannan et al., 2013). The V protein of PPRV has been shown to inhibit the
phosphorylation of STAT-1, STAT-2 and interferon-receptor-associated kinase Tyk2
that are involved in IFN signalling pathways (Chinnakannan et al., 2013). Studies
with the V protein of RPV showed that the N-terminal domain interacts with STAT-
1, whilst the C-terminal V-specific domain interacts with the IFN receptor associated
kinase Jak1 and Tyk2 (Chinnakannan et al., 2014). A recombinant MV knockout for
V protein that was unable to antagonise STAT-1 function and found to be attenuated

in vivo (Devaux et al., 2011).
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Virus transfer to T cells is also mediated by the DCs and leads to the induction of T
cell silencing mechanisms. The H and F proteins of MV have been shown to
interfere with the proliferation of T cells, causing cell cycle arrest by interfering with
progression in the S-phase of the cell cycle without inducing apoptosis (Avota et al.,
2010; Engelking et al., 1999; Schlender et al., 1996). Blood from PPRV infected
goats was analysed for specific immune cell sub-set count and it has been shown that
no change in the proportion of WC1* y/3 T cells and CD14* monocyte/ macrophage
cells is seen. However, the CD4" cells were found to decrease from 4 dpi and the
CD8" cells remained unchanged during the initial days and by 7 dpi the proportion of
CD8" had slightly increased, although the exact reason for this observation remains

undefined (Herbert et al., 2014).

The immunosuppressive effect of PPRV infection can have severe outcomes in the
field depending on the nutritional status of the host and the presence of existing
infections. In natural infection, immunocompromised animals are prone to secondary
infections. Leukopenia is often observed from 4 dpi although depending on
numerous factors the overall outcome of infection may not be sever and recovery

may occur (Baron et al., 2014a; Herbert et al., 2014; Pope et al., 2013).

From a vaccination perspective, the presence of maternal antibodies that neutralise
PPRYV have been detected in young animals for up to 3-4 months after birth (Libeau
et al., 1992). Therefore, vaccination in new-borns is not necessary until 3-4 months
of age (Bodjo et al., 2006). Animals vaccinated with attenuated strains or animals
infected and recovered will develop protective immunity for life (Boer et al., 1975;
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Diallo et al., 2007). Cell-mediated and humoral immune responses against PPRV are
mainly directed against the H, F and N proteins (Sinnathamby ef al., 2001).
However, immunisation with PPRV glycoproteins (H and/or F) induces protective
humoral immunity whilst anti-N antibodies are not able to neutralise virus (Diallo,
2003; Sinnathamby et al., 2001). Interestingly, both B cell and T cell epitopes have
been mapped to the N protein of PPRV (Choi ef al., 2005; Mitra-Kaushik et al.,
2001) and a further study verified a B cell epitope at the C-terminus of the N protein
(Dechamma et al., 2006). A B-cell epitope has also been mapped to the H protein of
PPRV (Renukaradhya ef al., 2002). The CD8" T and not CD4" cells were shown to
be primed upon challenge with virulent PPRV in animals vaccinated with PPRV H

protein (Herbert et al., 2014).

1.8 Disease control

Preventive measures employed in an uninfected area include the restriction of animal
importation from disease-infected regions. Disease can be efficiently controlled by
the isolation and slaughtering of infected animals, disinfection of the environment
and the quarantine of infected animals. Prophylactic immunisation in suspected
animal populations or areas is also recommended. Immunisation is carried out with
the availability of excellent live attenuated vaccines that elicit protective immunity
that is maintained for at least three years (Diallo ef al., 2007). These vaccines are
thermolabile and require maintenance of a cold storage chain in the hot tropical
climate where PPR is endemic. The major obstacle to PPRV control is the

requirement for frequent immunizations, at least every 3 years, due to the high
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turnover of small ruminant populations. Vaccination in younger animals of 4 to 6

months old is recommended (Balamurugan ef al., 2012b).

1.8.1 Live attenuated PPRYV vaccine

For many years, in the absence of a homologous vaccine, the ‘Tissue Culture
Rinderpest Vaccine’ (TCRV) was used as a heterologous PPR vaccine. Its success
was based on the cross reactivity of neutralising antibodies to the disease (Mariner et
al., 1993). However the use of the TCRV was prohibited in 1996 by the Food and
Agriculture Organization (FAO) to enable post-eradication sero-surveillance of any
remaining circulating RPV. To attempt PPRV vaccine isolation, PPRV was initially
grown on primary cultures of sheep liver cells (Gilbert and Monnier, 1962). Serial
passage of PPRV in primary cell culture for attenuation was unsuccessful even after
65 passages (Benazet, 1984). Later in 1989, Diallo et al. successfully obtained a
highly attenuated PPRYV isolate (Nigeria 75/1) following serial passage in Vero cells
for 63 passages. The virus was found to have lost its pathogenicity and elicited
protective immunity (Adu et al., 1990; Diallo ef al., 1989). Similarly, at least three
more vaccine strains Sungri 96, Arasur 87 and Coimbatore 97, were developed in
India by 75 serial passages of PPRV in Vero cells (Sen et al., 2010; Singh et al.,
2010). Currently, Nigeria 75/1 (lineage II) and Sungri 96 (Lineage IV) are widely
used in endemic areas for the vaccination of small ruminant populations. whereas
Arasur 87 is only used regionally in India. Details of these three vaccines are
provided in Table 1.7. Following further development the PPRV live attenuated
vaccines were demonstrated to be potent, safe and efficient in inducing a protective

immunity that is maintained for at least three years in goats and sheep following

59



inoculation of a single dose of vaccine (Diallo et al., 2007; Saravanan et al., 2010).

The PPRV Nigeria 75/1 vaccine has also been found to protect against challenge by

virulent virus by providing sterile immunity and thus prevents further spread of

disease (Couacy-Hymann et al., 1995). These vaccines are manufactured in freeze-

dried form with various chemical stabilizers to make a thermostable product

(Mariner et al., 1993; Worrall et al., 2000), a critical factor in Africa and Asia.

Table 1.7 Characteristics of the live attenuated PPR vaccines.

Parameters

PPRV Nigeria 75/1

PPRYV Sungri 96

PPRYV Arasur 87

Passage and origin

LK-6, BK-2, Vero-63

Nigeria. sheep

B95a-10, Vero-59

North India, Goat

Vero 75

South India, Sheep

several countries

India (> 20million
doses)

Complete CPE 3-6 days 3-6 days 2-3 d.ays, rapid
growing

Safety in pregnancy Safe in pregnancy

Lineage Il \ v

Usage Extensively used in Extensively used in Used in some states

of India

Virus sequence

Full genome
sequenced

Full genome
sequenced

Not available

1.8.2 Recombinant subunit vaccines

Initial work carried out with a bivalent capripox virus (CPV) vaccine expressing the
F and H proteins of RPV has been shown to protect goats against PPRV (Romero et
al., 1995). CPV expressing the homologous PPRV proteins H (Diallo et al., 2002b)
or F (Berhe et al., 2003b) were also shown to protect goats against PPRV infection
and later this was confirmed in both goats and sheep (Chen et al., 2010). The
concern about the effectiveness of CPV expressing PPRV F and H vaccine in sheep
and goats with pre-existing immunity against either of the capripox or PPR viruses

was addressed recently (Caufour ef al., 2014). In this experiment, animals were
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immunised with either with a capripox or a conventional PPR vaccine. These
animals with pre-existing immunity were inoculated with a recombinant bivalent
CPV expressing the PPRV F and H glycoproteins. After four weeks of immunisation
with CPV expressing the F and H proteins, the animals were challenged with a
virulent CPV strain followed by virulent PPRV three weeks later. Complete
protection against CPV challenge in animals pre-immunised either with PPRV or the
CPV vaccine was observed. Unfortunately, only partial protection was obtained
against PPRV challenge in animals pre-immunised with the CPV expressing PPRV
glycoproteins. This suggested a limited replication of CPV expressing PPRV F and
H proteins in the presence of pre-existing antibodies against CPV. The low
replication led to the poor expression of PPRV F and H proteins and eventually low

level of antibody response produced against PPRV F and H proteins.

A further subunit vaccine, a vaccinia virus vector (modified vaccinia Ankara)
expressing PPRV F and H proteins, was also shown to protect goats against PPRV
infection (Chandran et al., 2010). However, this vaccine required two doses to
stimulate sufficient neutralising antibodies to protect against PPR, a regimen that is
not feasible in a PPR disease control programme due to the increase in cost with the
requirement for multiple vaccinations. Goats immunised with recombinant fowl pox
(rFP) expressing H or F proteins of PPRV were shown to induce poor antibody
responses (Herbert et al., 2014). Recombinant adenovirus vectors expressing PPRV
glycoproteins were developed recently (Herbert et al., 2014; Qin et al., 2012; Rojas
etal.,2014; Wang et al., 2013a). A recombinant replication-defective human

adenoviruses serotype 5 incorporating H or F proteins of PPRV was shown to protect
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goats (Herbert et al., 2014) and sheep (Rojas et al., 2014) against challenge with

virulent PPRV and induced both humoral and cell mediated immunity.

Subunit vaccines developed based on a baculovirus expression system producing H
(Sinnathamby et al., 2001) and F proteins (Rahman et al., 2003) or the H protein
expressed in transgenic peanut plants (Khandelwal et al., 2011) need to be assessed
further for safety and vaccine potency. Similar assessments are lacking for the
recently developed suicidal DNA vaccine (based on the Semliki forest virus
replicon-based expression systems) utilizing the H gene of PPRV (Wang et al.,
2013b) and a virus like particle (VLP) preparation composed of M and H or N

proteins (Liu ef al., 2014a; Liu et al., 2014b).

1.8.3 Reverse genetics techniques to make DIVA and multivalent vaccines
Reverse genetics is defined as a method in which a live virus is recovered in cell
culture via a cDNA copy of the RNA genome. In other words, it provides a means to
manipulate RNA virus genomes through cDNA copies of the RNA genome. This
technique has been utilised extensively to further the basic understanding of virus

gene function, virus-cell interaction, and pathogenesis.

The establishment of these techniques for positive strand RNA viruses was rapid as
it was quickly shown that their genomes acted as mRNA. To recover positive strand
virus, the cDNA plasmids of virus genome or the RNA transcripts obtained from
those plasmids are transfected into susceptible cells to recover the virus. Poliovirus

was the first positive strand RNA virus to be rescued from a cDNA genome plasmid
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(Racaniello and Baltimore, 1981) and the rescue of other positive stranded RNA

viruses quickly followed.

Establishment of reverse genetics system for negative stranded RNA viruses took
longer to develop due to several biological challenges identified when working with
them. Primarily, the genomes and anti-genomes of negative stranded RNA viruses
cannot function as mRNA. The realisation that the genome and anti-genome RNA
must be entirely encapsidated with N protein to form an RNPs that acts as the
substrate for the RARP was a breakthrough in our understanding of these viruses. To
enable virus rescue, a full length genome plasmid cDNA is co-transfected with
helper plasmids encoding the proteins necessary for the formation of RNPs to initiate
virus replication. The genome and helper plasmids are often cloned under the
transcriptional control of a T7 polymerase promoter. The genome and helper
plasmids are then transfected into a suitable cell line that contain T7 polymerase,
supplied by either a rFP expressing T7 or through endogenous expression of T7
polymerase within the cell line used. A further realisation was that the primary
transcript produced from the full-length genome plasmid should be of positive sense
(antigenome) otherwise the mRNA generated from the helper plasmids will
hybridize with negative sense genome transcripts, inhibiting the RNP complex

formation.

Rabies virus was the first negative-strand RNA virus recovered completely from
cDNA in 1994 (Schnell et al., 1994). The approach was soon adapted to rescue
paramyxoviruses including MV (Radecke et al., 1995), RPV (Baron and Barrett,

1997), Newcastle disease virus (NDV) (Peeters et al., 1999), CDV (Gassen et al.,
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2000), Mumps (Clarke et al., 2000), respiratory syncytial (Collins and Murphy,
2005), Nipah (Yoneda et al., 2006) and Hendra (Marsh et al., 2013) viruses. A
reverse genetics system for RPV, a closely related morbillivirus to PPRV, was first
established in 1997 (Baron and Barrett, 1997) by transfecting the full-length cDNA
of RPV and helper plasmids (N, P and L) of RPV into B95a cells that were pre-
infected with a recombinant vaccinia virus expressing T7 RNA polymerase (Figure
1.7). Further, this RPV reverse genetics system with some modifications (using Vero
cells and rFP expressing T7 polymerase) was used to develop a chimeric RPV-PPRV
(F/H) virus from a modified cDNA clone. The modified RPV-PPRV (F/H) clone was
constructed by replacing the F and H genes of RPV with the heterologous PPRV F
and H genes. However the rescued chimeric virus was severely debilitated in cell
culture achieving only very low titres (Das et al., 2000). To increase the titre of the
recombinant virus it was necessary to include the homologous F and H proteins
alongside the homologous M protein from PPRV (Mahapatra et al., 2006). The new
RP-PPRV (M/F/H) rescued chimeric virus grew efficiently in cell culture and
protected goats from challenge with virulent PPRV (Mahapatra et al., 20006).
Similarly, the N gene of PPRV was swapped into the RPV ¢cDNA clone with the
objective of developing a marker vaccine for RPV (Parida et al., 2007). This
chimeric virus protected cattle challenged with virulent RPV. Further, using this
chimeric virus serological differentiation of vaccinated animals from non-vaccinated
infected animals was possible using a newly developed ELISA based on variable
part of RPV N gene (Parida et al., 2007). However, this RPV-PPRV (N) chimeric
virus was not utilised in field conditions during the final stages of eradication. To
attempt to develop a positive marker vaccine for RPV, the GFP gene was inserted as

a separate transcriptional unit in the RPV ¢cDNA clone and was rescued (Walsh et

64



al., 2000a; Walsh et al., 2000b). Using this established reverse genetics method a
recombinant RPV was rescued that lack C and V proteins of RPV that helped to
reduce the pathogenicity of the virus (Baron and Barrett, 2000). Similarly, the
promoter regions of RPV were swapped between vaccine and wild type strain of the

RP viruses to determine the pathogenicity in cattle (Banyard ef al., 2005).

65



RPV
rviT? O genome @ @

B95a cell

Cytoplasmlc 7

/ transcription \

. . MWy
Virus anti- N, P and L mRNA
genome l
(+ve sense)

N, P and L protein

/

Encapsidation

v

Virus N, P and L-dependent

replication
¥ Qoaretinee® ¥
Virus genome
(-ve sense) as RNP l

Virion

Figure 1.7 Schematic representation of the reverse genetics method to generate
infectious recombinant RPV. The full-length genome (cDNA) plasmid and the
helper plasmids (N, P and L) were constructed under T7 polymerase promoter. The
B95a cells were infected with recombinant vaccinia expressing T7 polymerase
(rV/T7). The genome and helper plasmids were transfected into B95a cells and were
transcribed by the T7 polymerase. The N, P and L proteins bound to the viral RNA
anti-genome strand to form the ribonucleocapsid protein (RNP) complex, a

minimum necessary component required to initiate the replication cycle and produce

complete virus.
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Establishment of reverse genetics system for PPRV was unsuccessful despite several
attempts (Bailey, 2006), although the PPRV mini-genome rescue system was
successfully developed (Bailey et al., 2007). The reason for being unable to rescue
PPRYV from a full-length PPRV ¢DNA described were proposed to be associated
with sequence errors in the final full length cDNA, specifically the presence of
potentially lethal mutations in the UTR at the M and F gene junction (Bailey, 2006).
Therefore the main aim of this PhD project was to establish a reverse genetics
system for PPRV after re-sequencing and confirming the correct sequence in the full

length genome of PPRV.

Vaccination of small ruminants with the current live attenuated PPRV vaccine
strains and natural virus infection induces an antibody profile that is
indistinguishable. Because of this, the development of a marker vaccine with
companion diagnostic tests is required to fulfil the ‘DIVA’ strategy and enable the
differentiation between naturally infected and vaccinated animals within a
population. The availability of a DIVA vaccine would greatly enhance serological
surveillance during any eradication initiative for PPRV in future (Baron et al., 2011;

Buczkowski et al., 2014).

Existing DIVA strategies for PPRV have focussed on developing subunit vaccines
expressing the PPRV F and/or H gene in viral vectors such as poxviruses (vaccinia,
Capripox and fowl pox) and adenoviruses (canine or human types) as explained in
Section 1.8.2. The absence of the PPRV N protein in these subunit vaccine
preparations facilitates serological identification of infected animals using an ELISA

based on the N protein. However, such subunit vaccines often require multiple doses

67



and may have reduced efficacy due to potential pre-existing immunity to the viral
vector, reduced antibody induction through an inability to replicate, the potential for
short lived antibody responses and/or potentially high costs of recombinant vaccine
production. An alternative strategy is to use the existing live attenuated PPRV
vaccine by manipulating in a specific region or epitope of a viral protein sequence of
a cDNA clone using reverse genetics system to obtain positively and or negatively
marked vaccines. Therefore this PhD study aimed to rescue the widely used vaccine
strain (Nigeria 75/1) from a cDNA clone. To make it a positive marker vaccine,
similar to RPV, an extraneous transcriptional unit of GFP was inserted and
expressed. Alongside this, attempts have been made to negatively mark the vaccine
by creating a recombinant that is epitope deleted for part of the anti-PPRV H C77
monoclonal antibody (mAb) binding site, a key component of the current diagnostic
competitive H ELISA (c-H ELISA). The C77 mAb and the antibody present in the
test sera compete with each other to bind to the specific epitope on the H protein of
coated antigen. The assay works on the principle that antibodies to PPRV in the test
sera can block the binding of the mAb to the antigen. The C77 mAb is detected using
rabbit anti-mouse IgG conjugated to horseradish peroxidase. Therefore, it is
hypothesised that the negatively marked vaccine virus with a mutated C77 mAb
binding epitope would facilitate the c-H ELISA to distinguish serologically
vaccinated animals from those naturally infected with circulating viruses. Antibodies
in naturally infected animals could be detected using c-H ELISA whereas the

protected vaccinated animals will not be detected.

As many diseases in small-ruminants overlap geographically with PPRV (e.g. CPV,
bluetongue virus [BTV], Rift valley fever virus [RVFV], contagious ecthyma and

border disease virus) (Malik ef al., 2011; Mondal et al., 2009; Ozmen et al., 2009;
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Saravanan et al., 2007; Toplu et al., 2012) the idea of increased valency was
investigated using a PPRV vaccine as a vehicle for the expression of heterologous
proteins. A single vaccination programme covering multiple diseases would greatly
improve the efficiency of control programmes by increasing productivity of human
resources through the reduction in the overall cost of vaccine administration.
Therefore, the final aim of this PhD study was to make a multivalent vaccine using
PPRYV as a viral vector. As the PPRV live attenuated vaccines provide lifelong
immunity in small ruminants (Diallo et al., 2007; Hamdy ef al., 1975; Sen et al.,
2010), using reverse genetics technique immunogens from co-circulating viruses
(stated above) may be inserted into PPRV genome to make a multivalent vaccine.
However, insertion of multiple larger insertions as separate transcriptional units in
full length genome of virus could reduce growth of recombinant virus due to effects
on the transcriptional gradient. To overcome this polar attenuation recombinant MV
(Takeda et al., 2006) and NDV (Gao et al., 2008) with genomes divided into two or
three segments were generated using reverse genetics systems. These tolerated
multiple larger insertions as separate transcriptional units. A two-segment MV
genome was obtained by constructing the first plasmid containing N, P, M and F
genes and second plasmid containing H and L genes. Each gene cassette was
flanking with the GP and AGP. The transcriptional gradient of expression of genes
in the segmented virus was not hampered due to a reduction in the total length in
comparison to the non-segmented genome. The segmented MV and NDV were
shown to be efficient vectors expressing long and multiple (up to six) transgenes
(Gao et al., 2008; Takeda et al., 2006). The coding capacity in segmented NDV was
extended by 30%. A similar strategy could be applied to PPRV in developing

multivalent vaccines for regionally relevant diseases.
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1.9 Aims of the project

In the context of the background literature, the main objectives of this PhD studies

WEre:

1. To re-sequence the whole genome of PPRV Nigeria 75/1 vaccine strain to
confirm the correctness of existing sequences needed for cDNA synthesis and
to eradicate any sequence error identified in the Turkey 2000 PPRV sequence
determined previously.

2. To establish the reverse genetics technique to rescue PPRV Nigeria75/1
vaccine strain.

3. To investigate both positive and negatively marked forms of the vaccine as
potential DIVA vaccines.

4. To attempt to increase vaccine valency through inclusion of a heterologous

gene in the PPRV genome in either segmented or non-segmented forms.
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Chapter 2 Materials and methods

2.1 Cells and viruses

2.1.1 Cells lines

Vero.DogSLAMtag (VDS) cells were used in this study. The Vero cell lincage
(ATCC CCL-81) is an epithelial cell that was isolated from the kidney of the African
green monkey (Cercopithecus aethiops). VDS cells are the Vero cells constitutively
expressing the canine morbillivirus receptor SLAM under the selection pressure of

zeocin (Seki et al., 2003).

2.1.2 Culturing and maintenance of the cell lines

The cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 5% (v/v) foetal calf serum (FCS, Gibco), penicillin (100 U/ml,
Sigma) and streptomycin sulphate (100 pg/ml, Sigma) at 37°C/ 5% COx. Tissue
culture flask (175 cm?) with confluent monolayer of cells were washed with 15 ml of
calcium and magnesium (Ca/Mg) free phosphate buffered saline (PBS, Gibco) and
overlaid with 5 ml of trypsin (0.25% solution, Gibco), incubated at 37°C for 5
minutes. DMEM containing FCS (15 ml) was added to the detached cells to stop
further trypsinisation and centrifuged at 290 g for 5 minutes. The cell pellet was re-
suspended in DMEM and the cells counted using a haemocytometer and passaged in

a new tissue culture flask/ plate.
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2.1.3 Virus stocks

PPRYV Nigeria 75/1 recombinant viruses were generated through reverse genetics in
this study and its parental virus, Nigeria 75/1 vaccine strain, was obtained from the
OIE-FAO Reference Laboratory for PPR at The Pirbright Institute, Pirbright, UK.
PPRV was grown on VDS cells to prepare high titres of virus stock. VDS cells of ~
70% confluency were infected with virus at an multiplicity of infection (MOI) of 0.1
and incubated at 37°C/ 5% CO: for few days (usually 4-5 days) until the CPE and
syncytia extended to 70-80% of total cell surface. Virus was harvested by one cycle
of freezing and thawing followed by centrifugation at 290 g for 10 minutes to
remove cell debris and the supernatant containing virus was stored at -80°C until

further use.

2.1.4 Virus isolation

PPRYV was isolated on VDS cells from the clinical samples. Cotton swabs were used
to collect viral excretions in 1 ml of PBS. The liquid containing virus was used to
infect the VDS cells in 25 cm? tissue culture flasks and incubated at 37°C for one
hour with intermittent shaking rocking. The cells were washed once with 2 ml of
PBS followed by addition of 5 ml of media (containing 2.5% FCS) and incubated at
37°C for a week. Cells were observed for the appearance of CPE and syncytia and
were blindly passaged for at least two more times if no PPRV-specific CPE was

observed.
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2.1.5 Virus passage

The stable maintenance of introduced mutations or inserted gene expression in the
recombinant viruses was assessed by serial passage in VDS cells. VDS cells of 70%
confluent in 25 cm? tissue culture flask was infected with PPRV (at 1:200 dilution)
and incubated at 37°C for few days until at least 80% CPE was observed. The virus
was harvested by freeze-thawing once and clarified by centrifugation at 290 g for 10

minutes. The supernatant containing the viruses was used for successive passage.

2.1.6 Multi-step growth curves

VDS cells were plated at 2.5x10° cells/ well in a six-well plate (BD falcon) and
incubated overnight to reach ~70% confluency. Cell monolayers were washed once
with DMEM and were infected (in duplicates) with 1 ml of virus inoculum diluted to
0.01 MOI in DMEM and incubated at 37°C for an hour with intermittent shaking for
even distribution of the inoculum. The excess of the virus inoculum was removed
and the cells were washed twice with DMEM. For each well 2 ml of DMEM
containing 5% FCS was added and incubated at 37°C. The plates were frozen at 0,
12, 24, 36, 48, 60, 72, 84 and 96 hour post-infection (hpi). The virus was harvested
by freeze-thawing and cell debris clarified by centrifuging at 290 g for 10 minutes.

The supernatant containing the virus was stored at -80° C until use.

2.1.7 Determination of virus titre

Virus titre was determined by 50% tissue culture infectious dose (TCIDso) in 96-well
plates. Virus stock was serially diluted 10 fold outside the microtiter plate using
serum free DMEM from neat, 10!, 102, 103, 104, 105, 10, 107, 108, 10, 10710

and 10!, Aliquots of 50 pl virus each was added into 8 wells in a 96 well plate, one
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column for each dilution of virus, where the first column is for neat virus and last
column is for cell control. VDS cell suspension of 5x10*/ml was prepared in DMEM.
VDS cell suspensions of 100 ul was added to all the wells and incubated for 5 days
at 37°C/ 5% CO,. The CPE was observed under microscope and scored. The virus
titre was calculated according to Read and Muench and expressed in logio values
(Reed and Muench, 1938). All assays using plaques have a lower limit of detection

and the detection limit of this assay is more than 1 logio.

2.1.8 Bacterial cells

The JIM109 strain of Escherichia coli was used for the transformation and cloning of
plasmid DNA. The bacterial cells were plated on Luria Bertani (LB) agar and
incubated overnight at 37°C. A single colony of bacteria was picked and grown
overnight in LB broth and used for the preparation of competent cells for
transformation. Glycerol stocks of the bacteria (15%) prepared and stored at -80°C

for future use.

2.2 RNA and DNA techniques

2.2.1 RNA extraction

Viral RNA was extracted either using robotic extraction methods (MagNA Pure LC
Total Nucleic Acid Isolation Kit, Roche, UK) or Qiagen viral RNA mini kit. Robotic
RNA extraction method was followed for a large number of animal experimental
samples, to maintain uniformity by reducing bias in extraction method for the precise
comparison of viral RNA amount between samples. Otherwise, in all other

experiments Qiagen Viral RNA mini kit was routinely used following the
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manufacturer’s protocol. Briefly, 140 ul of virus infected cell supernatant was mixed
with 560 pl of kit supplied lysis buffer and left at room temperature for 10 minutes.
To this mixture 560 pl of absolute ethanol was added and vortexed. This solution
was passed through QIAamp mini spin column by centrifuge at 8000 g for 1 minute.
The flow through was discarded and column filter was washed with 500 pl of wash
buffer-1 (spun at 8000 g for 1 minute) and 500 pl wash buffer-2 (spun at 8000 g for
3 minutes). The column was transferred to another clean and sterile tube and 50 pl of
nuclease-free water was added and incubated for a minimum of one minute at room
temperature. The column was centrifuged at 8000 g for 1 minute to elute RNA from

the column and the RNA was stored at -80°C until further use.

2.2.2 Quantification of nucleic acids

The concentration and purity of DNA/ RNA was assessed by using
spectrophotometer (NanoDrop 1000 Thermo Scientific) according to the
manufacturer’s protocol. Briefly, RNA or DNA samples (1.5 pl) were loaded on
pedestal of the spectrophotometer and absorbance reading taken at 260 and 280 nm.
The reading at 260 nm gives the concentration of nucleic acid in the sample and the
ratio between the readings at 260 and 280 nm estimates the purity of the DNA (1.8)

and RNA (2.0).

2.2.3 Reverse-transcription polymerase chain reaction (RT-PCR)
The SuperScript III One-Step RT-PCR System with Platinum Taq High Fidelity
polymerase kit (Life technologies) was used for reverse transcription of viral RNA

into cDNA and further amplification in a single step. The RT-PCR mixture
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contained 25 pl of 2x Reaction mix, 1 pl (10 pmol/ul) of each forward and reverse
primer, approximately 50-100 ng of template RNA and 1 pl (1 U) of SuperScript III
RT/ Platinum Taq High Fidelity Enzyme Mix. The final reaction volume of 50 pl
was made up with nuclease-free water and subjected to the following amplification
cycles.

Step 1: Reverse transcription 50°C 30 minutes

Step 2: Initial denaturation  94°C 2 minutes

Step 3: Denaturation 94°C 15 seconds

Step 4: Primer annealing 55°C 30 seconds

Step 5: Elongation 72°C 1 minutes/Kb length of amplicon

Step 6: Steps 3 — 5 repeated for 36 cycles

Step 7: Final elongation 72°C 7 minutes

Step 8: Holding 4°C

PCR products were stored at -20°C until further use.

2.2.4 Polymerase chain reaction

The PCR mix was prepared using KOD High-Fidelity PCR polymerase (Novagen)
kit following the manufacturer’s protocol. Briefly, reaction mix contain 5 pl of 10x
buffer, 5 pul of ANTP mix (2 mM each), 3 pl of MgS04 (25 mM), 1.5 pl each of
forward and reverse primers (10 pmol), 1 pl of KOD polymerase (1 U/ul), template
DNA 50 to 100 ng and final volume made up to 50 pl with water. The following

amplification cycles was followed
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Step 1: Initial denaturation  94°C 2 minutes

Step 2: Denaturation 94°C 15 seconds

Step 3: Primer annealing 55°C 30 seconds

Step 4: Elongation 72°C 15 seconds /Kb length of amplicon
Step 5: Steps 3 — 5 repeated for 36 cycles

Step 7: Final elongation 72°C 7 minutes

Step 8: Holding 4°C

PCR products were stored at -20°C until further use.

2.2.5 Random amplification of cDNA ends (RACE)

The genome termini, leader and trailer sequence regions were amplified using 5 and
3’ rapid amplification of cDNA ends as described by Li et al, and Tillett et a/ (Li et
al., 2005; Tillett et al., 2000) using PPR virus specific primers (VSP). The primers
sets used in RACE are provided in Appendix III. The Schematic diagram of steps
involved in 5’ and 3’ RACE is shown in Figure 2.1. The cDNA synthesis was carried
out using ThermoScript RT-PCR Systems (Life technologies) and RNA ligation
using T4 RNA Ligase 1 (NEB). For 5* RACE, initially the cDNA was synthesised
using virus specific primer P5-1 (Appendix III), template RNA digested by RNaseH
treatment and the synthesised cDNA was ligated with adaptor (DT88). Adaptor
constitutes modifications with ‘5'-phosphorylated, 3'-end inverted dA’ to ensures
ligation occurs between 5’ end of adopter and 3’ end of target DNA/RNA. For 3’
RACE, first the adapter was ligated with viral RNA and followed by cDNA
synthesis using DT89 primer that is unmodified and complementary to DT88

adopter. The cDNA obtained from both 5’ and 3° RACE were further amplified
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through primary and hemi-nested PCRs using virus specific primers (Appendix III).
For primary PCR, DT89 was used with either P5-2 in 5 RACE or P3-1 in 3’ RACE.
For hemi-nested PCR DT89 was used with either P5-3 in 5 RACE or P3-2 in 3’

RACE.
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Figure 2.1 Schematic diagram depicting methods to establish the genome
termini for PPRYV. The dotted lines represent the RNA genome in 3’ to 5’ direction,
the solid lines represent cDNA, DT88 is an adapter, DT89 primer is complementary
to DT88 and the virus specific primers (VSPs). Figure taken from Li ef al., 2005.
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2.2.6 Purification of DNA

DNA in PCR or restriction enzyme reactions was column purified using illustra GFX
PCR DNA and Gel Band Purification Kit following the manufacturer’s protocol and
the final purified product was eluted in a final volume of 40 pul of DNase and RNase

free water.

2.2.7 Agarose gel electrophoresis

Appropriate agarose gel (1 to 2 % based on DNA size) was prepared using
electrophoresis grade agarose powder (Invitrogen) in Tris-acetate EDTA (TAE)
buffer. GelRed (Biotium) was added to the molten agarose to obtain a final
concentration of 1x and the gel was allowed to solidify for at least 30 minutes at
room temperature. DNA samples were mixed with the sample loading dye
(Invitrogen) before loading into the wells. 1Kb plus marker (Invitrogen) was used for
the comparison of the DNA bands. Electrophoresis was performed using TAE buffer
and at 100 V for an hour (5 V per centimetre). DNA bands were visualized on a gel

documentation system (Biorad).

2.2.8 Extraction of DNA from agarose gels

The desired DNA fragment and non-specific or unwanted DNA present within a
PCR or restriction enzyme digestion reaction was purified on agarose gel for use in
the ligation or sequencing. Agarose gel (1%) was prepared using low melting point
agarose powder (Invitrogen) and the electrophoresis was performed at ~ 20 V for 16
-20 hours for better separation of DNA fragments. The expected specific DNA

fragment was excised using sterile scalpel and purified using Illustra GFX PCR
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DNA and Gel Band Purification Kit (GE healthcare). The purified DNA fragments

were quantified using Nanodrop 1000 spectrophotometer (Thermo Scientific).

2.2.9 Restriction enzyme digestion

Approximately 100-200 ng of plasmid DNA was digested with an appropriate
restriction enzyme(s) and 1x buffer (NEB) in a reaction volume of 10 pl and
incubated at the recommended temperature for 2 hours. The digested product was
analysed by electrophoresis. However, for the preparation of DNA fragments for
ligation experiments, about 5 pg of plasmid DNA was digested with 5 U of enzyme
in a reaction volume of 50 pl and incubated at the recommended temperatures

overnight.

2.2.10 Phosphatase treatment

Antarctic phosphatase enzyme was used for the removal of 5 phosphate group from
the linear vector DNA fragments and, thus prevents the self-ligation during ligation
reaction. It also decreases the vector background during cloning steps. Five ul of 10x
Antarctic phosphatase buffer (NEB) and 1 pl (1 U/ul) of Antarctic phosphatase
enzyme (NEB) was added to the restriction enzyme-digested vector and the mixture
was incubated for 30 minutes at 37°C. The enzyme was heat inactivated at 70°C for

5 minutes followed by gel purification.

2.2.11 Ligation reactions
Ligation reactions in cloning was carried out using T4 DNA Ligase which catalyzes

the joining of two strands of DNA between the 5’-phosphate and the 3’ -hydroxyl
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groups of adjacent nucleotides in either a cohesive-ended or blunt-ended
configuration. In a reaction volume of 10 pl, vector (30-40 ng) and insert DNA at a

molar ratio of 1:3 and 1 pl of 10x T4 DNA ligase buffer (Promega) and 1U of T4

DNA ligase enzyme (Promega) were added and incubated at 4°C overnight.

2.2.12 Preparation of competent cells and transformation

Competent E. coli IM109 cells were prepared fresh on the day of use by TSS-TCM
method and transformed by ligation reaction or plasmid DNA as described below.
An overnight culture of bacterial cells was diluted 1 in 200 in LB-broth medium and
cultured at 37°C until the ODgoo reaches 0.25-0.35 (usually ~2 hours). The cells were
centrifuged at 290 g for 10 minutes and re-suspended in 1/10" volume of TSS
(Appendix I) and left on ice for an hour. At the same time, the ligation reaction or
plasmid DNA was diluted to 200 pl in TCM (Appendix I) and left on ice for an hour.
The TCM DNA mix was added to ~ 200 pl of competent cells and left on ice for an
hour. Heat shock treatment was given to the mixture at 42°C for 5 minutes and
immediately cooled on ice for 5 minutes. SOC media (Appendix I) of 600 pl was
added to the sample and incubated at 37°C in a shaker for an hour. The cells were
plated onto LB-agar plates containing selective antibiotics (ampicillin or kanamycin)

and/or IPTG/X-gal and incubated overnight at 37°C.

2.2.13 Plasmid mini and maxi preparations
Bacterial culture of approximately 1 ml (miniprep) or 500 ml (maxiprep) was used in
plasmid DNA preparations. The Qiagen Miniprep Kit for purification of small scale

(up to 20 pg) molecular biology grade plasmid DNA or the Qiagen Plasmid Maxi Kit
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for purification of large scale (up to 500 pg) transfection-grade plasmid DNA were
used following manufacturer’s protocol. The kit procedure is based on alkaline lysis
of bacterial cells followed by adsorption of DNA onto silica membrane in the
presence of an appropriate salt concentration. The membrane columns are washed to
remove impurities and the eluted DNA is concentrated and desalted by isopropanol

precipitation.

2.2.14 DNA sequencing
BigDye Terminator v3.1 Cycle Sequencing Kits (Applied Biosystems) based on
Sanger sequencing was used where each of the four dideoxy terminators (ddNTPs)
were tagged with different florescent dye. The cycle sequenced products were then
cleaned to remove excess dye terminators and analysed through ABI-3730
automated sequencer.
The sequencing reaction mix was prepared as follows:

Primer (10 pmol/pl) 1 pl

BigDye reaction buffer (2x) 2 pul

BigDye enzyme mix 0.25 pl

DNA template (50-100g) 1 pl

Nuclease-free water 5.75 ul
The cycle sequencing reaction was carried out using a thermal cycler under the
following conditions with the initial denaturation of template DNA at 96°C for one

minute.

&3



Step 1. Denaturation at 96°C for 20 seconds

Step 2. Annealing at 50°C for 10 seconds

Step 3. Extension at 60°C for 4 minutes

The above steps were repeated for 30 cycles.

Removal of unincorporated dye terminators was carried out using EDTA/ethanol
precipitation method. To the sequencing product 5 pl of 125 mM EDTA followed by
60 pl of absolute ethanol was added and the precipitated DNA was pelleted by
centrifugation at 600 g for 30 minutes. The pellet was washed once with 60 pl of 70
% ethanol in water and vacuum dried. The pellet was re-suspended in 20 pl of Hi-Di
Formamide (ABI) and loaded into a capillary and analysed through ABI-3730

automated sequencer.

2.2.15 Site-directed mutagenesis (SDM)

SDM was carried out to introduce the desired nucleotide changes in the plasmid
DNA. Two complementary primers incorporating the nucleotide sequence changes
intended in the target nucleotide sequence in the middle of the primers were
designed. The denatured and circular single-stranded plasmid DNA acts as template
during the PCR and the annealed mutagenesis primer were extended by polymerase
incorporating the desired mutations in both the strands of the plasmid DNA.

The PCR mixture containing high fidelity enzyme KOD Hot Start DNA Polymerase

(Novagen) was prepared as detailed below
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10x KOD polymerase buffer (Novagen) Sul

25 mM Magnesium sulphate 3ul

dNTPs (2 mM each) Sul

Sense primer 15 pM
Antisense primer 15 pM
Template DNA ~50ng

KOD Hot start DNA polymerase 1 ul (0.02 U/pl)

The thermal cycle reaction conditions were:

Step 1: 95°C for 2 minutes

Step 2: 95°C for 30 seconds

Step 3: 55°C for 30 seconds

Step 4: 70°C for 20 seconds per kbp of target amplification

Steps 2 to 4 were repeated for 25 cycles.

The resultant PCR product contained both the template plasmid DNA and the newly
synthesized plasmid with introduced mutations. Since the template DNA was
produced in JM109 strain of E. coli, it was DAM (DNA adenine methylase)
methylated and therefore susceptible to Dpnl digestion unlike the newly synthesized
plasmid DNA. The parental DNA (methylated) was digested by treating the PCR
product with 1 ul (10 U/ul) Dprl endonuclease (Promega) at 37 °C overnight. The
Dpnl enzyme digested product (5 pl) was transformed into bacterial cells for further

amplification and checked for the desired mutations by sequencing.
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2.3 Data analysis

2.3.1 Nucleotide sequence analysis
The sequences generated by different PPRV specific primers were assembled using
the Seqman program in DNAstar (DNAstar, USA). The assembled sequences were

aligned using Clustal W implemented in BioEdit software v7.2.0 (Hall, 1999).

2.3.2 Statistical analysis
Statistical analysis was performed either in Microscoft Excel 2010 or GraphPad

Prism vé6.
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Chapter 3 PPRV complete genome sequencing and analysis

3.1 Introduction

Following the successful eradication of RPV, PPR has been targeted by the OIE and
FAO as the next viral pathogen to be eradicated (FAO, 2014). Currently, the disease
is controlled by vaccinating small ruminants against disease using live attenuated
vaccines. However, the inability of laboratory tests to distinguish between vaccinated
and naturally infected animals means that serological surveillance following a mass
vaccination campaign would be very inefficient, as seen during the RPV eradication
programme. In order to understand the epidemiology of PPRV, sequence data are
required. Currently only partial gene sequences exist for the majority of
characterised PPRV isolates. To enhance our understanding of the variation of PPRV
at the genome level we set about generating full genome data for PPRV isolates in

our repository.

PPRYV exists as a single serotype but at the genetic level four distinct lineages exist.
This lineage differentiation is based on partial genome sequence of either N or F
genes (Couacy-Hymann et al., 2002; Forsyth and Barrett, 1995). Full genome data
for PPRV is scarce with no full genome sequence for lineage III isolates being
available and only seven complete genome sequences available representing the
other lineages. At the start of this project only one lineage I isolate full genome was
available, two lineage Il genome sequences and four lineage IV genome sequences.
Current control methods across PPRV endemic areas have often relied on the
application of vaccine strains generated from heterologous PPRV lineages. For

example, across West Africa, where lineage I and II have predominated and across
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North Africa and China where lineage IV is present vaccination using the lineage 11
Nigeria 75/1 vaccine strain has been used. Therefore it is expected that PPR
outbreaks caused by lineage III would be readily controlled by using heterologous
lineage II (Nigeria 75/1) or lineage IV (Sungri/96) vaccines. However from a genetic
standpoint it is important to determine the full genome sequence from circulating
isolates. More importantly, studying the genetic evolution of PPRV enables an
understanding of the epidemiology of the virus, knowledge that may impact on the
use of vaccines to control the disease. Finally, the requirement for a DIVA vaccine
requires that a suitable reverse genetics system for PPRV is available and as such we
aimed to establish sequences from different isolates and vaccines strains to ensure
that the genome sequence was correct, a pre-requisite for the generation of a
functional reverse genetics system. As discussed in chapter 1, previous attempts to
establish a reverse genetics system for PPRV were unsuccessful (Bailey, 2006).
Although essentially undefined, potential reasons for this failure were hypothesised
to include problems surrounding the sequence of the constructed full length clone.
To this end, the first step in this study was to ascertain a complete correct genome
sequence for the Nigeria 75/1 vaccine strain and compare it with the existing
available sequence before ordering/ assembling a full-length cDNA clone. As a
backup study, it was planned to rescue another widely used vaccine strain
(Sungri/96) whose whole genome sequence was available without the genomic
promoter region. Therefore, the sequencing of the whole genome sequence of the
Sungri/96 strain was also planned. In a further attempt to generate useful
epidemiological data, full genome sequencing of a lineage III PPRYV isolate was also

performed.
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The molecular evolution of PPRV and its role in disease epidemiology has not been
explored in detail. The current molecular epidemiology of PPRV, which is based on
sequence comparison of a small region of the F gene (322 nt) or the N gene (255 nt),
has identified 4 distinct lineages (I-1V) of PPRV (Banyard et al., 2010). However,
this analysis has not generated much information on the evolution and dispersal of
each of the PPRV lineages. Many aspects of PPRV evolution, such as the origin of
an ancestral virus, divergence and time of origin, and the historical and geographic
patterns of spread, are poorly understood (Libeau et al., 2014). A better
understanding of the evolution of PPRV would enable the prediction of how these
viruses will lead to further outbreaks and epidemics and provide data for control

strategies including application of vaccines.

This Chapter describes the standardisation of PPRV complete genome sequencing
techniques and the sequencing of both PPRV vaccine and field isolates. Further, a
Bayesian analysis was carried out to study the evolutionary and epidemiological
dynamics of PPRV using both complete and partial genome sequences of viruses

from all the 4 lineages.

3.2 Materials and methods

3.2.1 PPR virus isolates

For complete genome sequencing of PPRV, seven isolates Nigeria 75/1, Sungri
1996, Uganda 2012, Ethiopia 2010, Morocco 2008, UAE 1986 and Oman 1983 were
utilised in this study with the following passage history. PPRV Nigeria 75/1, UAE

1986 and Oman 1983 isolates stock were obtained from the OIE-FAO Reference
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Laboratory for PPR at The Pirbright Institute, UK. PPRV Nigeria 75/1 is a live
attenuated vaccine strain widely used in disease control (Diallo et al., 1989). PPRV
UAE 1986 virus was isolated from a Dorcas gazelle (Furley et al., 1987). PPRV
Oman 1983 virus was isolated from the caecal tissue of a goat from Ibri, Oman
(Taylor et al., 1990). PPRV Sungri 96, a commercially available vaccine strain
generated by serial passage in cell culture (Sen et al., 2010) was provided by Intervet
International B.V, Boxmeer, The Netherlands. The PPRV Uganda 2012 isolate was
derived from an infected goat, received as swab sample from Uganda. The PPRV
Ethiopia 2010 virus was isolated from the intestinal suspension of an infected goat at
National Veterinary Institute, Addis Ababa, Ethiopia. This PPRV Ethiopia 2010
isolate received as tissue suspension from Ethiopia. The PPRV Morocco 2008 isolate
was derived from the mesenteric lymph node of an infected goat, following a single

passage on VDS cells (Hammouchi et al., 2012).

3.2.2 Complete genome sequencing of PPRV

Viral RNA was extracted from PPRV Nigeria 75/1, Sungri 1996, Uganda 2012,
Ethiopia 2010, Morocco 2008, UAE 1986 and Oman 1983 isolates. Oligonucleotide
primer sets designed based on highly conserved regions of PPRV genome sequences
previously available in the GenBank (accession number NC006383, X74443,
EU267273 and AY560591). All primer sequences including 46 forward and 32
reverse primers are provided in Appendix III. Seven to nine overlapping PCR
fragments covering the entire PPRV genome were amplified using RT-PCR. The

amplified PCR products were column purified and sequenced.
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3.2.3 Sequence datasets

Six complete genome sequences were available in GenBank with the Sungri/96
sequence being complete with the exception of the GP. Seven complete genomes
sequences of PPRV were generated in this study including re-sequencing of two
vaccine strains (Nigeria 75/1 and Sungri 96) and an additional complete genome
sequence (Ethiopia 1994 isolate) was obtained from the National Veterinary
Institute, Sweden by Dr. M Munir (Table 3.1). However, of these 14 full genome
sequences, Nigeria 1975/1 and Sungri 1996 represent vaccine strains generated after
extensive serial passage of virus. Therefore, the evolutionary rate and time to most
recent common ancestor (TMRCA) were compared with and without inclusion of the
vaccine strains. The complete genome sequences of two clinical isolate each for
RPV (GenBank accession nos. AB547189 and X98291) and MV (accession nos.
AF266288 and JF791787) and 12 PPRYV isolates, excluding vaccine strains, (Table
3.1) were used for estimation of evolutionary rate and TMRCA. Furthermore, the
coding and noncoding sequences of individual structural genes of PPRV (excluding

vaccine strains) were used in this study.
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Table 3.1 PPR isolates used for complete genome analysis

Virus isolates GenBank accession Lineage Source (reference)
no.

Ivory Coast/1989 EU267273 | Goat (Chard et al.,
2008)

Nigeria/1976 EU267274 Il Sheep (Chard et al.,
2008)

Nigeria/1975/1 X74443 Il Goat (Diallo et al.,
1994), vaccine strain

Uganda/2012* KJ867543 I Goat

UAE/1986* KJ867545 11 Dorcas gazelle
(Furley et al., 1987)

Oman/1983* KJ867544 11 Goat (Taylor et al.,
1990)

Ethiopia/1994 KJ867540 11 Goat (Roeder et al.,
1994)

Ethiopia/2010* KJ867541 v Goat

India/Sungri/1996* KJ867542 v Goat (provided by

Intervet International
B.V, Boxmeer, the

Netherlands) ,
vaccine strain
Morocco/2008* KC594074 v Goat (Muniraju et al.,
2013)
Chinal/Tibet JX217850 \Y) Bharal, Pseudois
Bharal/2008 nayaur (Bao et al.,
2012)
China/Tibet33/2007 JF939201 v Goat (Wang et al.,
2009)
China/TibetGeg30/20 | FJ905304 v Goat (Wang et al.,
07 2009)
Turkey/2000 NC006383 v Sheep (Bailey et al.,
2005)

*Whole genome sequencing was conducted.

Partial N gene sequences of PPRYV isolates (nt positions 1253—1507) that have a
detailed history of collection date and place were obtained from GenBank (available
up to August 2013). These partial sequences were aligned by using the ClustalW
algorithm in BioEdit software v7.2.0. (Hall, 1999) and edited to remove unreliable
sequences and/ or regions. Furthermore, identical sequences originating from the
same geographic location, host, and year were excluded to avoid redundancy in any
subsequent analysis. The final dataset (partial N gene) contained 159 sequences

sampled over a period of 45 years (1968-2012).
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3.2.4 Selection analysis

The nucleotide and amino acid sequence differences between the PPRV lineages for
12 complete genome sequences were estimated by using BioEdit software v7.2.0.
Analyses of selection pressures in individual PPRV genes was performed by
obtaining mean ratios of nonsynonymous (dN) to synonymous (dS) substitutions per
site. The dN/dS was calculated by using codon-based maximum likelihood
approaches with the single-likelihood ancestor method implemented in hypothesis
testing using the phylogenies package (Pond et al., 2005)
(http://www.datamonkey.org). The proportion of dS substitutions per potential dS
site and proportion of dN substitutions per potential dN site were calculated by using
the method of Nei and Gojobori (Nei and Gojobori, 1986) and the suite of nucleotide

analysis program (www.hiv.lanl.gov).

3.2.5 Bayesian time-scaled phylogenetic analysis

Molecular evolutionary rate and divergence times were co-estimated. A Bayesian
maximum clade credibility (MCC) phylogenetic tree was constructed by using
Bayesian Markov chain Monte Carlo (MCMC) analysis and Bayesian evolutionary
analysis sampling trees (BEAST) software package v1.8.0 (Drummond et al., 2012),
and BEAST runs were performed by using the CIPRES Science Gateway (Miller et
al., 2010). For each sequence dataset, the best-fit nucleotide substitution model was
determined on the basis of Akaike information criterion scores using JModel Test
software v2.1.4 (Posada, 2008). An input file for BEAST analysis was obtained by
using Bayesian evolutionary analysis utility software v1.8.0, in which sequences

were tip dated according to the year of collection. Four molecular clock models
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(strict, uncorrelated lognormal distribution [UCLD], uncorrelated exponential
distribution [UCED], and random) were tested alongside different demographic
models (nonparametric Bayesian skyline plot [BSP] and the parametric constant and
exponential growth), and the best models were selected by means of a Bayes factor
(BF) test (Kass and Raftery, 1995) using marginal likelihoods values (2InBF>2)

obtained from Tracer v1.5 software (http://beast.bio.ed.ac.uk/tracer).

For each analysis, 2 independent MCMC chains were run to get a final output of
10,000 trees (ESS >200 for all the parameters estimated) and were assessed for their
proper mixing, convergence, and consistency by Tracer v1.5 with 10% burn in. The
2 individual runs were combined by using LogCombiner v1.8.0 in the BEAST
software package. The nucleotide substitution rate (substitutions/site/year) and the
TMRCA (year) values were obtained from Tracer v1.5. The posterior tree
distributions were summarized by using Tree Annotator
(http://beast.bio.ed.ac.uk/treeannotator) and exclusion of the first 10% of the trees as
burn in. Phylogenetic MCC tree with median node heights were visualized in
FigTree software v1.4.0
(http://www.molecularevolution.org/software/phylogenetics/figtree). Furthermore,
the demographic history of PPRV was studied by using the partial N gene dataset
and less restrictive BSP models in which the changing profile of genetic diversity is

plotted against time.

3.2.6 Phylogeographic reconstruction
Bayesian phylogeographic analysis was performed by using complete PPRV genome

sequence and partial N gene sequence datasets, and isolates were annotated
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according to their location (longitude and latitude). Partial N gene data were chosen
instead of F gene data because of increased divergence reported for the N gene
(Banyard et al., 2010). For complete genome datasets, sequences from 14 viruses
were considered, including 2 vaccine strains (Nigeria 1975/1 and Sungri 1996) to
represent all PPRV-endemic areas. Phylogeographic diffusion along the posterior
sets of trees and relationships between these locations were identified by using the
Bayesian stochastic search variable selection procedure in BEAST v1.8.0 (Lemey et
al., 2009). Discrete phylogeographic analysis was performed by using the continuous

time Markov chain model and the flexible Bayesian skyride tree.

3.3 Results

3.3.1 Sequence analysis

All 7 PPRV complete genomes (Sungri 1996, Nigeria 75/1, Uganda 2012, Ethiopia
2010, Morocco 2008, UAE 1986 and Oman 1983) were found to be 15,948 nt and so
conformed to the rule of 6 as described for all other morbillivirus genomes (Radecke
et al., 1995). Resequencing of the Nigeria 75/1 vaccine strain confirmed the
sequence for this vaccine and was 100% identical to the previously published
sequence (accession no. X7443). The Sungri/96 vaccine strain sequence was also
confirmed and completed although 123 nucleotide differences were identified at
different locations across the genome when compared to the previously available
sequence (accession no. AY560591). The genome organization of all isolates was
the same as that for other PPRYV strains (as shown in Figure 1.3 and Table 1.2
Chapter 1). The 3’ ends of the genomes start with a GP (1 - 107 nt), followed by six
transcriptional units of the structural protein genes, N, P, M, F, H and L and end with
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the 5 AGP (nucleotide position 15840-15948). The ORF of the P gene also encodes
the non-structural proteins C and V. The 5> UTR of M gene and 3°’UTR of F gene
together was 1080 nt long and extremely GC rich (66-68%). The untranslated
regions typically contain the gene end signal of the previous gene followed by an IG
tri-nucleotide sequence (CTT) and the gene start signal of the subsequent gene. The
sequences flanking the IG tri-nucleotide (10 nt) are conserved between the N/ P and

P/ M junctions among all the PPRV isolates.

Phylogenetic analysis of the complete genome sequences of PPRV clustered the
sequences into 4 lineages. The complete genomes of PPRYV isolates from Ethiopia
1994, Oman 1983, UAE 1986, and Uganda 2012 sequenced in this study belonged to
lineage I1I and the isolates Sungri 1996, Morocco 2008, and Ethiopia 2010 belong to
lineage IV. Comparison of the 12 (excluding Nigeria 1975/1 and Sungri 1996
vaccine strains) aligned complete genome sequences showed that nucleotide
differences ranged from 0.1% to 11.9%, and amino acid differences ranged from

0.1% to 7.2% (Table 3.2).

Further, the selection analysis was performed on PPRV genes. The dN/dS for coding
regions of the various genes of PPRV (n = 12) for all 4 lineages ranged from 0.06 to
0.45 (Table 3.3). The dN/dS per site across the coding region of different genes of
PPRYV genome obtained by Nei and Gojobori method are shown in Figure 3.1. The
highest dN/dS ratio was observed in the P gene, followed by the H, N, F, L, and M
genes. The relative nucleotide substitution rates at all 3 codon positions of the
structural genes of PPRV showed that substitutions were more frequent at the third

codon position (Table 3.3) as expected.
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Table 3.2 Nucleotide and amino acid sequence differences in complete genomes

of PPRYV lineages

PPRYV lineages | Il 1] v
5.1 6.1-7.0 5.7-6.1
I 9.0 5.7-6.3 4.0-42
I 10.9-11-9 9.9-10.8 0262 0200 6.1-7.2
v 10.3-10.7 7.2:7.6 0718 | g5 20

*Values are percentage nucleotide (bold) and amino acid sequences differences.

Table 3.3 Nucleotide substitution rates at codon positions of PPRYV genes by
BEAST analysis and dN/dS by single-likelihood ancestor counting (SLAC)

) Codon position
Gene Total amino Mean dN/dS
acids
CP1.mu CP2.mu CP3.mu
N 526 0.44 0.33 2.23 0.13
P 510 0.81 0.69 1.49 0.45
M 336 0.48 0.15 2.36 0.06
F 547 0.46 0.26 2.29 0.10
H 610 0.57 0.37 2.06 0.19
L 2184 0.42 0.18 2.40 0.08

*BEAST, Bayesian evolutionary analysis sampling trees; dN/dS, nonsynonymous/ synonymous
substitutions per site; CP, codon position.
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Coding region

Figure 3.1 Mean ratios of nonsynonymous (dN) to synonymous (dS)
substitutions per site of concatenated coding regions of PPRV genome. Vertical
dashed lines indicate gene junctions with sliding windows of size = 5 codons. dN/dS
values > 10 are shown as 10. Numbers along baseline indicate coding regions (base

pairs) of individual genes.
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3.3.2 Evolutionary rate estimates

Complete genome sequences of 12 PPRV and partial N gene dataset (n = 159) were
analyzed by using the coalescent-based Bayesian MCMC approach. The general
time-reversible (GTR) nucleotide substitution model with a gamma distribution for
rate variation was selected on the basis of Akaike information criterion scores. Bayes
factor tests with marginal likelihood comparisons showed that the relaxed UCED
clock model best fitted the PPRV complete genome and partial N gene datasets
(Table 3.4). The 2InBF value was >78 between UCED and strict clocks and 2—6
between UCED/ UCLD and UCED/ random clocks, which provided strong evidence
for the UCED clock model. There was no difference between different demographic
models compared within the UCED clock model (2InBF <2). However, the
exponential demographic model was chosen because it provided a narrow margin of

95% highest posterior density (HPD) estimates.
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Table 3.4 Bayesian Markov chain Monte Carlo analysis for genomes of PPRV.

Sequence Models, Substitution/ Mean nucleotide substitution rate, TMRCA, y (95% Bayes 2InBF

dataset clock/ demographic substitutions/site/y (95% HPD) HPD) factor, -log

(no.) likelihood

PPRV GTR+G/ strict/ BSP 3.2x10%(2.02x 10*- 4.31 x 10%) 1763 (1653-1832) -46972.98 | -93945.96

Complete GTR+G/ strict/ CS 3.21x 10%(2.12x 10*-4.38 x 10%) | 1763 (1659-1834) -46973.06 | -93946.12

genome GTR+G/ strict/ EG 3.24x10%(2.12x 10*-4.33 x 10*) | 1765 (1668-1836) -46973.06 | -93946.12

(12) GTR+G/ UCLD/ BSP 2.89x10%(3.21x 108-6.92x 10*) | 1691 (123gce- -46935.66 | -93871.32

1944¢¢)

GTR+G/ UCLD/ CS 3.03x 10%(8.99x 10°- 7.07 x 10*) | 1705 (123-1961) -46935.86 | -93871.72
GTR+G/ UCLD/ EG 3.72x10%4(3.01 x 10°-7.93 x 10*) | 1767 (1222-1948) -46935.89 | -93871.78
GTR+G/ UCED/ BSP 7.91x10%(7.46 x 10°- 1.53 x 10%) | 1889 (1586-1968) -46933.82 | -93867.64
GTR+G/ UCED/ CS 7.98 x 10#(8.03 x 10°- 1.54 x 103) | 1887 (1569-1968) -46933.98 | -93867.96
GTR+G/ UCED/ EG 9.09 x 10%4(2.13 x 10“-1.64 x 10°) | 1904 (1730-1966) -46933.96 | -93867.92
GTR+G/ random/BSP | 7.01 x 10#(5.55 x 10“-8.50 x 10%) | 1888 (1862-1908) -46934.75 | -93869.5
GTR+G/ random/ CS 6.97 x 10%#(5.38 x 10*- 8.41 x 10*) | 1887 (1860-1908) -46934.64 | -93869.28
GTR+G/ random/ EG 7.04 x 104(5.57 x 10*- 8.57 x 10*) | 1888 (1861-1908) -46934.89 | -93869.78

N partial GTR+G/ strict/ BSP 1.22x10%(9.39x 10“- 1.51 x 10%) | 1890 (1857-1917) -2884.524 | -5769.048

(159) GTR+G/ strict/ CS 1.23x10°(9.49x 104-1.52 x 10®) | 1886 (1853-1913) -2887.723 | -5775.446
GTR+G/ strict/ EG 1.24x103(9.71x 10*- 1.56 x 10%) | 1893 (1863-1919) -2885.44 -5770.88
GTR+G/ UCLD/ BSP 1.45x 103 (1.06 x 103~ 1.87 x 10%) | 1896 (1815-1943) -2806.535 | -5613.07
GTR+G/ UCLD/ CS 1.41x 103 (1.05x 103- 1.80 x 107%) | 1882 (1793-1935) -2805.535 | -5611.07
GTR+G/ UCLD/ EG 1.49x 103 (1.10x 103- 1.89 x 10%) | 1904 (1838-1943) -2805.921 | -5611.842
GTR+G/ UCED/ BSP 1.52x10% (1.11x 10°- 1.98 x 10%) | 1904 (1817-1949) -2799.572 | -5599.144
GTR+G/ UCED/ CS 1.46 x 102 (1.05x 10°- 1.88 x 10°) | 1886 (1785-1940) -2799.512 | -5599.024
GTR+G/ UCED/ EG 1.56 x 103 (1.16 x 10°-1.99 x 10%) | 1910 (1846-1947) -2799.444 | -5598.888
GTR+G/ random/BSP | 1.26 x 103 (9.44 x 10*- 1.58 x 107) | 1881 (1837-1915) -2865.846 | -5731.692
GTR+G/ random/ CS 1.24x103(9.38 x 10*- 1.57 x 10%) | 1875 (1831-1910) -2866.111 | -5732.222
GTR+G/ random/ EG 1.27 x 103 (9.62x 10*- 1.60 x 10%) | 1880 (1841-1914) -2866.929 | -5733.858

NCDS (12) | GTR+G/ UCED/ EG 1.01x10% (2.79x 10*- 1.83 x 10%) | 1924 (1799-1970) NA NA

N gene (12) | GTR+G/ UCED/ EG 1.08 x 102 (3.19x 10*- 1.93x 10°) | 1923 (1804-1970) NA NA

P CDS (12) | GTR+l/ UCED/ EG 1.11x10° (3.46 x 10*- 1.29 x 10°) | 1931 (1833-1972) NA NA

P gene (12) | GTR+I/ UCED/ EG 1.19x 103 (3.46 x 10*-2.03 x 10°) | 1930 (1828-1971) NA NA

M CDS (12) | GTR+G/ UCED/ EG 6.52x 10%#(1.20 x 10*- 1.20 x 103) | 1897 (1695-1964) NA NA

M gene (12) | GTR+I/ UCED/ EG 2.49x10%(9.96 x 10*-4.14 x 10°) | 1944 (1879-1973) NA NA

FCDS (12) GTR+l/ UCED/ EG 8.95x 10%#(2.43x 10*- 1.58 x 103) | 1914 (1766-1968) NA NA

F gene (12) | GTR+G/ UCED/ EG 1.33x10% (3.26 x 10%-2.36 x 10%) | 1912 (1754-1967) NA NA

H CDS (12) | GTR+G/ UCED/ EG 1.21x10° (3.96 x 10“-2.04 x 10°) | 1926 (1826-1969) NA NA

H gene (12) | GTR+G/ UCED/ EG 1.25x 103 (4.34 x 10*-2.14 x 107) | 1925 (1821-1968) NA NA

L CDS (12) | GTR+l/UCED/ EG 9.82x 10%#(3.76 x 10*- 1.67 x 107) | 1929 (1834-1969) NA NA

L gene (12) | GTR+I/ UCED/ EG 9.69 x 10%#(3.36 x 10*- 1.64 x 103) | 1927 (1820-1969) NA NA

PPRV/RPV/ | GTR+G+l/ UCED/ EG 1.89x 103 (5.55x 10*-3.31x 10%) | 1616 (1072-1859) NA NA

MV (16)

Bold indicates best-fit models. HPD, highest posterior density; TMRCA, time to most recent common ancestor;

GTR+G, general time-reversible with gamma distribution rates; BSP, Bayesian skyline plot; CS, constant size; EG,

exponential growth; UCLD, uncorrelated lognormal distribution; UCED, uncorrelated exponential distribution; NA, not

applicable; GTR + |, general time-reversible with invariant sites.
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Accordingly, the UCED and exponential growth model have been directly used for
the individual PPRV gene dataset and the PPRV/RPV/MV complete genome dataset
to estimate the TMRCA and substitution rate per site per year. When we used the
UCED and exponential growth models, we found that the mean evolutionary
substitution rate of the PPRV complete genome was estimated to be 9.09 x

1074 (95% HPD 2.13 x 107%-1.64 x107%). When 2 complete genome sequences of
vaccine strains were added into this analysis, the same models (GTR nucleotide
substitution model with a gamma distribution, UCED, and the exponential growth
demographic models) were best fitted, and the mean substitution rate/site/year was
reduced to 7.86 x 107* (95% HPD 2.17 x 1074-1.4 x 107%). Furthermore, the
evolutionary nucleotide substitution rate for combined PPRV/RPV/MYV complete
genomes was 1.89 x 1073 (95% HPD 5.55 x 1074-3.31 x 107%). Analysis of
individual genes of the PPRV coding region dataset, coding and noncoding region

datasets, and partial N gene dataset are shown in Table 3. 4.

3.3.3 Temporal dynamics

A Bayesian time-scaled MCC tree based on complete PPRV genomes was
constructed (Figure 3.2) by using the UCED model with exponential growth
demography. The estimated median TMRCA of PPRV for all 4 lineages and
divergence of lineage III PPRV were found to be approximately 1904 (95% HPD
1730-1966). Lineage I diverged in around 1939 (95% HPD 1843-1970). Lineages II
and IV diverged from each other in around 1956 (95% HPD 1885-1973). The
TMRCA for lineage I1I viruses (n = 4) used in this study was estimated to be
around1956 (95% HPD 1887-1978). TMRCA for lineages I and II PPRV were not

predicted because only 1 virus from each lineage was used. The TMRCA for lineage
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IV viruses (n = 6) used in this study was estimated to be around 1987 (95% HPD
1957-1998). When both Nigeria 1975/1 and Sungri 1996 vaccine strains were
included in the study, the TMRCA for all lineages of PPRV shifted from 1904 (95%
HPD 1730-1966) to 1891 (95% HPD 1705-1960). Analysis of the partial N gene
dataset showed the TMRCA as 1910 (95% HPD 1846—1947) for all lineages of
PPRV, 1960 (95% HPD 1941-1971) for lineage III, 1958 (95% HPD 1946-1971)
for lineage I, 1961 (95% HPD 1941-1967) for lineage II, and 1987 (95% HPD

1969-1988) for lineage 1V.

Results of TMRCA analysis using complete coding and coding and noncoding
regions of individual PPRV genes are shown in Table 3.4. If one compares the
difference in TMRCA between coding and noncoding sequences of individual genes
in the analysis, the large change in TMRCA was found only for the M gene (i.e.,
1944, 95% HPD 1879-1973). The TMRCA of PPRV/RPV/MV was estimated to be
around 1616 (95% HPD 1072—1859), and the TMRCA for PPRV was estimated to

be 1931 (95% HPD 1858-1956) (Figure 3.3).
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Figure 3.2 Time-scaled Bayesian maximum clade credibility phylogeny tree
based on PPRV complete genome sequences. The tree was constructed by using
the uncorrelated exponential distribution model and exponential tree prior. Branch
tips correspond to the date of collection and branch lengths reflect elapsed time. Tree
nodes were annotated with posterior probability values and estimated median dates
of time to most recent common ancestor (TMRCA). Corresponding 95% highest
posterior density (HPD) interval values of TMRCA are indicated as blue bars.

Horizontal axis indicates time in years. UAE, United Arab Emirates.
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Figure 3.3 Time-scaled Bayesian maximum clade credibility phylogeny tree
based on PPRV, RPV and MV complete genome sequences. The tree was
constructed by using the uncorrelated exponential distribution model and exponential
tree prior. Branch tips correspond to the date of collection and branch lengths reflect
elapsed time. Tree nodes were annotated with posterior probability values, estimated
median dates of time to most recent common ancestor (TMRCA). Corresponding
95% highest posterior density (HPD) values of TMRCA are indicated as blue bars.

Horizontal axis indicates time in years. UAE, United Arab Emirates.
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3.3.4 Population demography of PPRV

The demographic history of PPRV was investigated by using the partial N gene
sequence dataset according to the BSP method implemented in BEAST. The BSP
with an assumed piecewise-constant model has facilitated estimation of effective
population size through time. The BSP showed that the population did not show
much genetic diversity (effective number of infections) until the mid-1990s when the
diversity started to increase. Toward the first decade of the 21st century, the
population size appeared to reach a peak and then showed a small decrease until the
most recent sampling in 2012 (Figure 3.4). The HPD interval size for the plot is
narrow (closer to median genetic diversity), which indicates strong support for this

population trend.
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Figure 3.4 Bayesian skyline plot showing demographic history of global PPRVs
sampled during 1968-2012. Genetic diversity was estimated by using a partial
nucleoprotein gene dataset (n = 159). The thick black line represents median genetic

diversity and the blue shaded areas show 95% highest posterior density estimate.
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3.3.5 Phylogeographic analysis

To estimate the geographic origin of PPRYV, the results of Bayesian phylogeographic
analyses was summarised and visualised using annotated MCC tree (Figure 3.5). The
complete genome sequence data used in this analysis incorporated all 14 isolates,
including the vaccine strains, from 10 discrete locations so as not to leave out any
reported virus-endemic area. The root state posterior probabilities for all the
locations ranged between 9.02% and 12.69%; Nigeria and the Ivory Coast receiving
marginally higher support, 12.69% and 10.53%, respectively, than the rest of the

locations (Figure 3.5).

Because the geographic origin of PPRV could not be localized to a single country by
using 14 complete genome sequences, further phylogeographic analysis was
performed by using 159 partial N gene sequences collected from 30 locations during
1968-2012. The root state posterior probabilities of PPRV ranged from 0.11% to
17.20%, and Nigeria (17.20%), Ghana (14.28%), and Sierra Leone (11.68%) showed
the highest marginal support (Figure 3.6). The highest marginal support of root state
posterior probabilities indicated that the geographic origin of lineage I PPRV was
Senegal (27.44%), that of lineage Il PPRV was Nigeria (27.00%), that of lineage 111

PPRV was Sudan (30.73%), and that of lineage IV PPRV was India (36.00%).
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Figure 3.5 Maximum clade credibility tree constructed for the geospatial
analysis of PPRVs by using complete genome data. Nodes are coloured according
to the most probable location of their ascendant locations. Posterior probability
values are shown along tree nodes. Posterior probability distribution (PPD) values of
root location states of the ancestral node are shown along the x-axis at the top left.

UAE, United Arab Emirates.
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Figure 3.6 Probability of root locations of the most recent common ancestral

PPRYV. MCC trees were obtained by using the continuous time Markov chain and

Bayesian stochastic search variable selection procedures. Root location probabilities

of the most recent common ancestor using global PPRV isolates (panel A) are shown

graphically alongside lineages -1V (panels B-E) and were estimated by using a

complete dataset of PPRV partial nucleoprotein gene data and individual lineages

separately. Probabilities of root locations are shown as percentages along the x-axes.
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3.4 Discussion

The complete genomes of 3 lineage 11l (Uganda 2012, UAE 1986 and Oman 1983)
and 3 lineage IV (Ethiopia 2010, Morocco 2008, and Sungri 1996) isolates and 1
lineage II (Nigeria 1975/1) of PPRV were sequenced in this study. Partial genome
sequence of PPRV Sungri 96 isolate was available at the time of study in GenBank
(accession no AY560591), that lacked genome promoter sequence and with
interspersed nucleotide deletions in M/F gene junction. PPRV genome termini
determined by tailing of cDNA with cytosine residues using terminal deoxy-
nucleotidyl transferase (Bailey et al., 2005; Chard et al., 2008) was not found
efficient to generate the sequences of 3’ and 5’ termini. An improved method was
adopted here to determine PPRV genome 3’ and 5’ termini as described for closely
related paramyxovirus genome (Li et al., 2005; Tillett et al., 2000) and this had been
proved to be efficient as the seven PPRV genome termini were successfully
determined. Recently, this novel method was also adapted by other researchers to
determine PPRV genome termini (Dundon et al., 2014). Another difficult region to
sequence in PPRV genome is the M/F gene junction, which is rich in GC content and
not easily amplifiable and as such clean and acceptable chromatograph peaks are
difficult to achieve using Sanger sequencing. During this study, it was found that the
designing of primer sets at appropriate locations is the critical factor that determines

the amplification followed by sequencing.

Newly sequenced genomes and other available genomes in GenBank were utilised to
assess the evolutionary substitution rate, TMRCA, and divergence of PPRV lineages

and the geographic origin of PPRV. To the best of my knowledge, this is the first
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study on the molecular evolutionary dynamics of PPRV using full genome sequences

from all four lineages of PPRV.

The measure of selective pressures acting across the PPRV genome showed only
purifying (stabilizing) selection occurring across the genome and no evidence of
positive selection. The conservation of amino acid residues was further confirmed by
the fact that the relative substitution rates at the third codon position of all the genes
were higher than those for the first and second codon positions. The observed upper
limit of 11.9% nt divergence (7.2% aa divergence) among PPRVs is consistent with
the low level of antigenic divergence observed because despite lincage
differentiation, only a single serotype exists for PPRV. Homologous recombination
events are generally rare or absent in negative-sense RNA viruses (Han and

Worobey, 2011) and thus could not have been evaluated in this study.

From a genetic perspective, substitution rates are critical parameters for
understanding virus evolution, given that restrictions in genetic variation within a
population of viruses can lead to lower adaptability and pathogenicity (Denison et
al., 2011). Our analyses estimated a range of PPRV nucleotide substitution rates
throughout the complete genome of 1.64 x 1073-2.13 x 10~ substitutions/site/year,
which is similar to that predicted for other paramyxoviruses (1073~

10™* substitutions/site/year) (Furuse ef al., 2010; Jenkins et al., 2002; Pomeroy et al.,
2008; Wertheim and Pond, 2011). Despite low levels of antigenic divergence, as
shown by the existence of a single serotype, the genome plasticity of PPRV might
explain its ability to emerge and adapt in new geographic regions and hosts, as

reported extensively across vast areas in recent years. The TMRCA of PPRV
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obtained from complete genome sequence was estimated to be during 1904 (95%
HPD 1730-1966). Similarly, the estimated TMRCA obtained from individual gene
sequence, partial N gene sequence of PPRV, and combined PPRV/RPV/MV

complete genome sequences was during 1910-1944.

That the predicted TMRCA for PPRV was during the early 20th century is
reasonable because the first recorded description of PPRV was made in 1942
(Gargadennec and Lalanne, 1942). The delay of a few decades before identification
of PPRYV as a distinct viral entity after its initial detection can likely be attributed to
confusion in differentiation between PPRV and RPV, a virus for which extensive
cross-neutralization is observed after vaccination and natural infection, and lack of
differentiating diagnostic tools. Substitution rates were consistent across each gene
for PPRV. However, greater substitution rates were observed in the GC rich regions
of the F and M genes. Similarly, the substitution rate was greater, as predicted
because of the variability seen at the nucleotide level, in the highly variable region of
the N gene sequence (255 nt) for PPRV. The TMRCA estimation was not possible
for lineage I and II viruses (the lineage II Nigeria 75/1 vaccine strain was omitted
due to its passage attenuation) because only 1 complete genome sequence was
available for each lineage. Therefore, more complete genome sequences are required

to study evolutionary and phylogenetic relationships for these lineages.

Biased estimates in substitution rate and TMRCA were observed by using datasets
that included tissue culture—passaged, attenuated vaccine strain complete genome
sequences, in which slower evolutionary substitution rates and earlier TMRCA were

predicted. Similar observations were reported for PPRV/RPV/MV N gene sequence
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analyses, in which a slower and biased nucleotide substitution rate was observed
when vaccine strain sequences (Furuse et al., 2010) were included in the analysis
and faster substitution rates and later TMRCA predictions were suggested when

vaccine strain sequence data were excluded (Wertheim and Pond, 2011).

Spatial and temporal dynamics of RNA viruses are often reflected by their
phylogenetic structure (Biek et al., 2006). Potential divergence events for different
PPRYV lineages were inferred by using rooted, time-measured phylogenetic trees with
higher confidence from the PPRV complete genome sequence dataset. The inferred
phylogeny supports the initial divergence of lineage III isolates, followed by lineage
I isolates; lineage I and IV isolates were predicted to have diverged from each other
at a later time. The inference of divergence events presented facilitated a better
understanding of historical divergence of PPRV and oftered further opportunities to

study viral demographic history and dispersal events.

The demographic analysis of PPRV with the BSP indicated historically constant
genetic variability of PPRV over time. This finding could be a reflection of the use
of RPV vaccine in small ruminants to protect animals against PPRV through the
1990s, which might have affected the evolution and spread of PPRV. In the early
21st century, genetic diversity of PPRV has gradually increased, which reflects
frequent outbreak reports. The increased genetic diversity may be a driver for
selection pressures within individual lineages and might result in extinction events,

as suggested by an absence of lineage I virus. In recent years, as efforts have
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increased to actively control and eradicate PPRV, a decrease in genetic diversity has

been observed.

Phylogeographic reconstruction with spatial and temporal information of virus
isolates has enabled an understanding of the historic emergence and dispersal
patterns involved in virus evolution (Lemey et al., 2009). Although PPRV existed
earlier than its first description in Ivory Coast in 1942 (Diallo, 1988), PPRV was
later reported in Senegal, Chad, Togo, Benin, Ghana, Nigeria, Oman, Sudan, Saudi
Arabia, India, Jordan, Israel, Ethiopia, Kenya, Uganda, and Pakistan (Sen et al.,
2010). Our phylogeographic analysis indicated that Nigeria was the geographic
origin of the most recent common ancestor of PPRV because of the highest root
location state probability. Furthermore, geographic origins of the most recent
common ancestor of PPRV lineages I, 11, and III were predicted to be across Africa;
lineage IV likely emerged in India. In conclusion, these findings suggest that the
origin of PPRV was in western Africa, which then spread to eastern Africa, the
Middle East, and Asia. However, although these predictions are suggestive of a
potential origin for PPRV, caution must be exercised in their interpretation because
estimates of geographic origin rely on available datasets, and these datasets need
enhancing to provide greater confidence for phylogenetic assessment. As more
sequence data become available for PPRV and the other morbilliviruses, ancestral

origins of each virus and intraspecies differentiation might become clearer.
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Chapter 4 Establishment of reverse genetics system to rescue the Nigeria 75/1

PPR vaccine strain for the development of marker vaccines

4.1 Introduction

Across the developing world, PPRV places a huge disease burden on agriculture,
primarily affecting the production and sustainability of small ruminant farming. The
disease is most effectively controlled by vaccinating sheep and goats with live
attenuated vaccines that provide lifelong immunity. However, the current vaccines
and serological tests are unable to enable DIVA. This factor precludes the
meaningful assessment of vaccine coverage and epidemiological surveillance based
on serology, in turn reducing the efficiency of control programs. The availability of a
recombinant PPRV vaccine with a proven functionality is a prerequisite for the
development of novel vaccines that may enable the development of DIVA tools for
PPRYV diagnostics. This Chapter describes the establishment of reverse genetics
technique for PPRV that provides a means to manipulate RNA virus genomes
through DNA copies (cDNA) of the RNA genome. Further, the rescue of the
positively marked recombinant virus by insertion of eGFP and the negatively marked

recombinant virus by mutation of C77 mAb binding epitope on H gene of PPRV.

4.2 Materials and methods

4.2.1 Design and synthesis of PPRV Nigeria 75/1 full-genome cDNA

incorporating eGFP

The full-length PPRV c¢cDNA plasmids generated were based on the PPRV Nigeria

75/1 vaccine strain (GenBank accession no X74443). The plasmid containing the
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complete PPRV antigenome (positive sense strand) sequence (15948 nt) with the
insertion of eGFP gene was designed and synthesised commercially (DNA2.0, USA)
(Figure 4.1a and Appendix VII). The eGFP reporter gene (822 nt) was introduced to
enable rapid evaluation of rescue events, as a separate transcriptional unit between
the P and M gene with the authentic 5> UTR of the M gene and the 3° UTR of the P
gene. Unique restriction enzyme sites were inserted by nucleotide substitution into
the UTRs of each gene and as such did not affect the total genome length or viral
protein sequences. The full length clone was under the expression control of the T7
RNA polymerase promoter and the primary transcript was cleaved at the AGP by the
hepatitis delta ribozyme (Figure 4.1a). The synthesised plasmid, pPPRV+GFP
Nigeria 75/1 was sequenced in its entirety to ensure the sequence was 100% identical

to the wild type vaccine strain.
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Figure 4.1 Schematic representation of the PPRYV recombinant plasmids. (a) the
synthetic plasmid, pPPPRV+GFP Nigeria 75/1, incorporating eGFP as a reporter gene
between the P and M genes and restriction enzyme sequences. (b) plasmid pPPRV

Nigeria 75/1 without the eGFP gene incorporating restriction enzyme sequences. GP

represents genome promoter and AGP represents anti-genome promoter.
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4.2.2 Construction of full-length PPRYV Nigeria 75/1 ¢cDNA plasmid with
mutations at C77 monoclonal antibody binding site

Initially, the eGFP gene in the plasmid pPPRV+GFP Nigeria 75/1 was removed
using Mlul to obtain pPPRV Nigeria 75/1 (Figure 4.1b). The C77 mAb binding site
mapped previously through phage display peptide library screening (Buczkowski,
2010) was altered in the plasmid pPPRV Nigeria 75/1 by SDM to obtain three
mutated plasmids ( pPPRV-C77a, pPPRV-C77b and pPPRV-C77c¢). The C77
epitope mapped on the H protein of PPRV by phage display peptide library
screening is depicted in Figure 4.2. Further, the 3-dimensional (3D) structure of H
protein of PPRV Nigeria 75/1 highlighting critical residues in the C77 mAb binding
epitope are shown in Figure 4.3. The amino acid residues critical for C77 mAb
binding were mutated (6 amino acids in the pPPRV-C77a Nigeria 75/1, 3 amino
acids in the pPPRV-C77b Nigeria 75/1 and 3 amino acids in the pPPRV-C77¢
Nigeria 75/1) into alanine (A) residues on the H gene of the pPPRV Nigeria 75/1
full-length cDNA plasmid through SDM using overlapping primer sets (Appendix
III). An intermediate cloning vector pT7 Blue (Promega) containing the H gene from
pPPRYV Nigeria 75/1 was constructed and used to substitute either three or six amino
acids as shown in the Figure 4.2. The H gene of the PPRV full-length plasmid was
replaced with the mutated H genes using Notl and Swal restriction enzyme sites.
This resulted in the generation of 3 different full-length plasmids of PPRV Nigeria

75/1:

1. pPPRV-C77a Nigeria 75/1 Y540A 1542A Y543A R547A S549A S550A
2. pPPRV-C77b Nigeria 75/1 Y540A 1542A Y543A

3. pPPRV-C77¢ Nigeria 75/1 R547A S549A S550A
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535 X kK ok kk 555
PPRV Nig75/1 H EHATVYYIYDTGRSSSYFYPV
pPPRV-C77a Nig75/1 Y540A I542A Y543A R547A S549A S550A EHATVAYAADTGASAAYFYPV
pPPRV-C77b Nig75/1 Y540A I1542A Y543A EHATVAYAADTGRSSSYFYPV
pPPRV-C77¢ Nig75/1 R547A $549A S550A EHATVYYIYDTGASAAYFYPV

Figure 4.2 Schematic representation of predicted epitope for C77 mAb binding.
The proposed epitope (upper strand) for the C77 mAb binding site on H protein of
PPRYV Nigeria 75/1 as determined by phage display, and the mutated H (lower
strands). Residues critical for C77 mAb binding are indicated by the star symbols
and the amino acids position on H protein are indicated by number. Amino acid

residues mutated to alanine (A) in full-length plasmids are coloured red and

underlined in lower strands.

Figure 4.3 The 3D structure of H protein of PPRV Nigeria 75/1 highlighting the
C77 mAbD binding epitope. The 3D structure was obtained from SWISS-MODEL
(homology-modelling server), accessible via the EXPASy web server. The H protein
of PPRV Nigeria 75/1 as a homo-dimer structure was constructed utilising the
template crystal structure of measles virus H protein (Hashiguchi et al., 2007),
Protein Data Bank identification code is 2zb5.1.A. Critical amino acid residues for
C77 mAD binding site Y540 1542 Y543 are coloured in red and R547 S549 S550 in
blue on the 3D surface of the H protein of PPRV Nigeria 75/1.
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4.2.3 Construction of helper plasmids of PPRV Nigeria 75/1

The helper plasmids required for rescue of recombinant viruses, PPRV Nigeria 75/1
N (pGEM-N), P (pGEM-P) and L (pGEM-L), were cloned under the control of the
T7 RNA polymerase promoter in the pPGEM3z vector (Promega). The N, P and L
coding sequences of PPRV Nigeria 75/1 were amplified (Figure 4.4) using gene
specific primer sets (Appendix III) and pPPRV+GFP Nigeria 75/1 as the template.
The amplicons were gel purified and digested with unique restriction enzymes
compatible with the multiple cloning site in the pGEM 3z vector. The amplified N
fragment was digested with EcoRI and Sa/l enzymes, the P fragment was digested
with Sa/l and Pstl and the L fragment was digested with Sa/l. The digested products
were gel purified and ligated with the pGEM 3z vector separately that was prepared
by digesting the vector with the corresponding enzymes. JIM109 cells were
transformed with the ligated products and any resulting colonies were screened by
miniprep and restriction enzyme digestion. The plasmids (Figure 4.4) were
sequenced on both the strands to ensure no unwanted nucleotide changes were

present.
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Figure 4.4 Construction of helper plasmids containing the N, P and L coding
sequences of PPRV Nigeria 75/1. (a) amplification of N, P and L coding sequence
of PPRV Nigeria 75/1 with fragment size indicated in parenthesis, M indicates 1Kb
plus DNA ladder (Appendix II). (b to d) plasmids pGEM-N, pGEM-P and pGEM-L
containing the N, P and L coding sequences of PPRV Nigeria 75/1, respectively. The
N, P and L genes were cloned under the control of the T7 promoter using unique

restriction enzyme sites as indicated.
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4.2.4 Transfection and recovery of recombinant PPRYV from full length genome
plasmids

VDS cells were plated at 2.5x10° cells per well in 6-well cell culture plate (BD
Falcon) and incubated at 37°C and 5% CO; overnight. Cells (70% confluent) were
washed with 1 ml of OPTI-MEM I reduced serum medium (Gibco) and infected with
T7-polymerase expressing rFP virus at a MOI of 0.2 in 500 pl volume as described
previously (Das et al., 2000). The plates were incubated at 37°C and 5% CO; for an
hour and rocked every 10 minutes for uniform distribution of the virus inoculum.
During this period, the plasmid DNAs, TransFast Transfection Reagent (Promega)
and OPTI-MEM I mix was prepared in order. Cells were washed and transfected
with 1 pg of full-length PPRV ¢DNA plasmid and 1 pg pGEM-N, 1 ug pGEM-P and
0.05 pg pGEM-L using TransFast transfection reagent (Promega) at a ratio of 6:1
(wt/wt) in a total volume of 0.75 ml of OPTI-MEM I reduced serum medium/well
(Gibco). Media was changed on cells at 24 hour post-transfection and observed for
CPE for 3 days. Rescued viruses were harvested by freeze-thawing and further

passaged in VDS cells.

4.2.5 Immunofluorescence and confocal microscopy

Immunofluorescences for the expression of N, H and or eGFP by the rescued viruses
was carried out by labelling the N protein with an anti-PPRV-N C11 mAb and the H
protein with anti-PPRV-H C77 mAb (BDSL, UK) and GFP autofluorescence
(Mahapatra et al., 2006; Parida et al., 2007). Briefly, VDS cells were cultured on
sterile glass coverslips in a 12-well plate to reach 60- 70% confluence and were
infected with recombinant or wild PPRV Nigeria 75/1 viruses at an MOI of 0.01.

Cells were fixed at 24 hours post-infection using 4% paraformaldehyde (PFA)
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solution. The residual PFA was removed by washing the fixed cells twice with
Ca/Mg free PBS. The cells were permeabilized using 0.1% Triton-X100 solution
(Sigma) for 15 minutes and washed once with Ca/Mg free PBS. To block non-
specific binding of antibodies in the downstream steps, permeabilized cells were
treated with 0.5% bovine serum albumin solution prepared in Ca/Mg free PBS
(BSA-PBS, Sigma) for 30 minutes. The blocked cells were treated with primary
mADbs anti-PPRV-N C11 (1 in 10) or anti-PPRV-H C77 (1 in 40) for an hour. The
C11 mAD was raised in mice at Indian Immunologicals, Hyderabad, India and the
C77 was generated from a hybridoma at the Pirbright Institute and is commercially
available (BDSL, UK). The cells were washed thrice with Ca/Mg free PBS to
remove any excess unbound primary antibodies. The conjugated secondary antibody
IgG Alexa Fluor 568 (Molecular probes) (diluted 1 in 200) was incubated on cells
for one hour. The cells were washed trice with Ca/Mg free PBS and treated with 4°,6
diamidino-2-phenylindole (DAPI) for 10 minutes to stain the cell nuclear DNA. The
coverslips were washed with deionised water and mounted on glass slides using
aqueous mounting medium (Vectasheild H1000). Any excess of mounting media
was removed and the edges of the coverslips were sealed using a transparent nail
varnish. The slides were viewed under the Leica TCS SP2 Acousto-Optical Beam
Splitter confocal scanning laser microscope at an appropriate excitation wavelength
of 405 nm (Blue) 488nm (Green) or 568nm (Red). Expression of GFP was
visualised by autofluorescence. Images were captured and processed with the Leica

Confocal Software (Leica Microsystems).
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4.3 Results

4.3.1 Rescue of recombinant PPRVs from ¢cDNA clones

Infectious recombinant viruses of PPRV Nigeria 75/1, with and without the eGFP
(rPPRV+GFP Nigeria 75/1 and rPPRV Nigeria 75/1, respectively) and rPPRV-C77c
Nigeria 75/1 were rescued from respective cDNAs. In contrast, despite several
attempts at virus rescue of live virus from pPPRV-C77a Nigeria 75/1 and pPPRV-
C77b Nigeria 75/1 was unsuccessful. The CPE characteristic of PPRV infection was
observed in the rescued viruses from three days post transfection with 100%
efficiency. The CPE observed under light microscope for all the three recombinant
viruses appeared to be identical to that of produced by the parental PPRV Nigeria

75/1 vaccine strain.

4.3.2 Confirmation of the identity of the rescued viruses

Total RNA isolated from the recovered PPRV recombinants (rPPRV+GFP Nigeria
75/1, rPPRV Nigeria 75/1 and rPPRV-C77c Nigeria 75/1) at passage 3 were
subjected to RT-PCR using PPRV genome specific primers using a —RT as a control
for carry over DNA. The expected amplicon sizes were observed on an agarose gel
(Figure 4.5) and sequences were 100% identical to each respective plasmid (data not

shown).
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Figure 4.5 Confirmation of identity of rescued recombinant PPRVs. (a) RNA
extracted from VDS cells infected with rPPRV+GFP Nigeria 75/1 or rPPRV Nigeria
75/1 were subjected to RT-PCR using specific primers sets (PPR-F7 and PPR-R10)
located on the P and M gene of PPRV. Lane 1; Marker 1Kb plus (Appendix II), lane
2; PCR without RT enzyme with rPPRV+GFP Nigeria 75/1 RNA, lane 3; RT-PCR
for rPPRV+GFP Nigeria 75/1 RNA, lane 4; PCR without RT enzyme with rPPRV
Nigeria 75/1 RNA, lane 5; RT-PCR for rPPRV Nigeria 75/1 RNA and lane 6 (PCR)
and 7 (RT-PCR) from VDS cell control RNA. (b) RNA extracted from VDS cells
infected with rPPRV-C77c¢ Nigeria 75/1 was subjected to RT-PCR using specific
primers sets (PPR-F-15 and PPR-R-19) located on H and L gene of PPRV.
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4.3.3 Immunofluorescence analysis for the assessment of eGFP expression and
C77 mADb binding activity

Immunofluorescence imaging demonstrated the expression of the N and H proteins
of PPRYV in infected cells following labelling with specific mAbs and their
expression was comparable to that observed with the commercially available vaccine
virus (Figure 4.6). The rPPRV-C77c Nigeria 75/1 could not be detected by the anti-
PPRV H mAb, but the viral N protein could be visualised using the anti-PPRV N
mAD (Figure 4.6). The successful expression of eGFP from an additional
transcriptional unit inserted within the PPRV genome was observed through its

autofluorescence.

126



anti-PPRV N mAb (C11)

anti-PPRV H mAb (C77)

LIGL eLIRBIN Addd LISLRUABIN d4D+A¥dd! /57 elabIN ANdd! LIGL el3BIN 92.0-Addd!

127



Figure 4.6 Characterisation of rescued PPR viruses using confocal microscopy.
Expression of PPRV N, and H proteins and/or GFP with C77 mAb binding activity
in the recombinants and parental PPR viruses in infected cells. VDS cells were
infected with viruses at an MOI of 0.01 and fixed 24 hours post-infection using 4%
PFA. Cells were stained separately with primary antibodies of mouse anti-PPRV H
(C77) and mouse anti-PPRV N (C11) followed by a secondary Alexa Fluor 568 goat
anti-mouse antibody. Cell nuclei were stained with DAPI. Confocal laser scanning
overlay of recombinant or parental PPRV infected VDS cells using three different
wavelengths — blue (405 nm) for cell nucleus, red (568 nm) for H or N protein of
PPRYV and green (488 nm) for GFP are shown. The expression pattern of PPRV N
and H proteins were comparable between the recombinant and parental viruses.
Wild-type H protein in PPRV Nigeria 75/1, tPPRV+GFP Nigeria 75/1 and rPPRV
Nigeria 75/1 were detected using the C77 mAb whilst H protein was not detected
using this antibody in cells infected with rPPRV-C77¢ Nigeria 75/1. The
autofluorescence of GFP was detected in the green channel for the -PPRV+GFP
Nigeria 75/1 virus labelled with anti-PPRV H mAbD. Fluorescence at 488 nm was not
visualised for the image showing the rPPRV+GFP Nigeria 75/1 virus labelled with

anti-PPRV N mAb.
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4.3.4 In vitro growth characterization of recombinant PPRVs

The in vitro growth kinetics of the recombinant PPRVs and the parental virus was
assessed in a multiple-step growth cycle as described (chapter 2). Multi-step growth
curves were carried out to compare the growth of the recombinant viruses
(rPPRV+GFP Nigeria 75/1, rPPRV Nigeria 75/1 and rPPRV-C77¢ Nigeria 75/1)
with that of the parental vaccine strain (Nigeria 75/1) (Figure 4.7). The recombinant
PPRVs grew to a similar titre and rate to that of the parental PPRV Nigeria 75/1

Virus.

4.3.5 Assessing the stability of the heterologous protein and mutations to the
C77 binding epitope

To determine the stability of the inserted eGFP transcriptional unit and the mutations
made to the proposed C77 mAb binding epitope in the recombinant virus genome,
viruses were serially passaged in VDS cells for up to 9 passages and assessed for the
expression of GFP and maintenance of the C77 binding site associated mutations
using RT-PCR followed by sequencing and confocal microscopy. No changes were

found in the passaged viruses compared to the originally rescued viruses.
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Figure 4.7 The growth kinetics of recombinant and parental PPRVs in cell
culture. A multi-step growth curve was obtained by infecting VDS cells with virus
at an MOI of 0.01 and assessing viral growth at different time points by virus

titration (TCIDso).
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4.4 Discussion

Despite the availability of reverse genetics techniques for other morbilliviruses, a
rescue system for PPRV was lacking until successful rescue was reported almost
simultaneously by Hu ef a/ and Muniraju et a/ (Hu et al., 2012a; Muniraju et al.,
2012; Muniraju et al., 2015). Initial attempts to rescue a field isolate of PPRV were
unsuccessful and following extensive investigation, the high GC rich region of the
genome (between M and F ORF) was believed to be a potential bottleneck for viable
virus rescue (Bailey, 2006). To overcome potential sequence errors introduced by the
techniques involved in stitching together a full-length DNA copy of the viral
genome, a synthetic DNA approach was applied to generate error free plasmids for

Virus rescue.

The insertion of unique restriction sites across the genome facilitates easy swapping
of genes between PPRYV isolates or from related viruses. The presence of unique
restriction sites in RPV ¢cDNA clone (Baron and Barrett, 1997) had facilitated
swapping of M, F, H and N genes of PPRV efficiently (Das et al., 2000; Mahapatra
et al., 2006; Parida et al., 2007). The presence of unique non-viral restriction sites in
RPYV has not affected the potency of the rinderpest vaccine as they are located in the
non-conserved parts of the UTRs of genome and did not alter the protein coding
sequence of the ORFs (Das et al., 2000; Mahapatra et al., 2006; Parida et al., 2007).
The insertion of a novel transcription cassette within the genome facilitated ease of
virus rescue and potential future evaluation of positive marker genes for DIVA
activity. The new transcriptional unit was positioned between the P and the M genes
of PPRYV to ensure maintenance in the ratios of N and P protein required for efficient

encapsidation, transcription and replication of the genomic RNA. In this study, the
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insertion of eGFP within this transcription cassette is shown to be tolerated and
facilitates potential future evaluation of positive marker genes for DIVA activity.
Similar approaches had been investigated previously for RPV where in vitro
development of positively and negatively marked vaccines has been assessed
(Brown et al., 2005; Buczkowski et al., 2012; Das et al., 2000; Mahapatra et al.,
2006; Parida et al., 2007; Walsh et al., 2000a; Walsh et al., 2000b). Following the
rescue and passage of the recombinant PPRV, CPE and growth characteristics
observed with the recombinant virus was similar to that of the parental virus as seen
by Hu et al (Hu et al., 2012a). The cellular distribution of N and H proteins in the
recombinant virus was the same as in cells infected with the parental virus and was

as expected for PPRV.

Out of the three H mutated full-length c-DNAs (pPPRV-C77a, pPPRV-C77b and
pPPRV-C77c¢), only the pPPRV-C77¢c was successfully rescued. The mutation of
residues (R547 S549 S550) in pPPRV-C77¢ within H demonstrated the potential for
a negative marker vaccine and H gene functionality and stability of the introduced
mutations. A predicted 3D structure of the H protein of PPRV modelled using the
crystal structure of measles virus H protein indicated that the amino acids Y540 1542
Y543 were buried in the C77 mAb binding site and residues R547, S549, and S550
of H protein are present on the outer surface. Live infectious virus could not be
rescued from plasmids (pPPRV-C77a and pPPRV-C77b) containing substitutions at
Y540 542 Y543. Mutation of the pPPRV Nigeria 75/1 plasmid at residues R547
S549 S550 allowed virus to be rescued suggesting that the Y540 1542 Y543 amino
acids could be involved in important biological functions necessary for H protein

function. These amino acids Y540 [542 Y543 region are highly conserved among all
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the known PPRYV isolates, but not the R547 S549 S550 region (Sungri 1996 vaccine
strain has a leucine at position 547). However, it is possible that one or more amino
acid in this region could be critical for the viability of the virus. Therefore, it would
be interesting to find out whether single or combination of two amino acids

substitution in this region (Y540 [542 Y543) would lead to a successful recovery of

viable virus.

The reverse genetics system developed in this study could be utilised for the
investigation of the basic molecular biology of PPRV including protein-protein
interactions, host-pathogen interactions or as a potential vaccine vector to express
foreign immunogens to make a multivalent vaccine. The rPPRV-C77c¢ Nigeria 75/1
virus has been further assessed in vivo (Muniraju et al., 2015) (Chapter 5) for its
vaccine potency, safety and DIV A strategy for use in the field that has the potential
for serological differentiation between vaccinated and infected animals during a

disease control programme.
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Chapter 5 In vivo evaluation of the rPPRV-C77¢ Nigeria 75/1 rescued vaccine

virus and its comparison with the parent PPRYV Nigeria 75/1 vaccine strain

5.1 Introduction

In Chapter 4, the construction and rescue of various recombinant full-length PPRVs
(rPPRV+GFP Nigeria 75/1, rPPRV Nigeria 75/1 and rPPRV-C77¢ Nigeria 75/1) and
their in vitro characterisation was described. All the recombinant viruses were shown
to be similar to their parental virus (PPRV Nigeria 75/1) in terms of CPE and
syncytia formation and had comparable growth characteristics (rate and titre). The
mutated H protein of rPPRV-C77c Nigeria 75/1 virus did not bind to the C77 mAb
in VDS cells in an immunofluorescence study. Therefore, the next aim was to
evaluate the rPPRV-C77c¢ Nigeria 75/1 virus in vivo to determine its safety and
potency and its fitness as a DIVA vaccine to differentiate between infected and
vaccinated animals. As the mutation to the H protein had rendered the C77 mAb
unable to bind to H protein in vitro we hypothesised that the serological response to
the mutated H protein in vaccinated goats would be unable to bind to the H protein
antigen present coated on the plates in the c-H ELISA (BDSL, UK). We also
hypothesised that the serological response to the mutated H protein would enable

differentiation between sera from vaccinated and naturally infected animals.

5.2 Materials and methods

5.2.1 Viruses
The recombinant virus rPPRV-C77¢ Nigeria 75/1 and the parental PPRV Nigeria

75/1 vaccine viruses were used for vaccination. The virulent PPRV Ivory Coast 89/1
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was used as challenge virus. The rescued rPPRV-C77¢ Nigeria 75/1 (passage 3) and
PPRYV Nigeria 75/1 were grown in VDS cells to attain higher titres of TCIDso
(assessed in VDS cells). The PPRV Ivory Coast 89/1 strain, a virulent field strain,
was passaged once in lamb kidney cells, before storage at -80 °C (Herbert et al.,

2014; Mahapatra et al., 2006).

5.2.2 Animal experiment design

Animal experimentation was conducted according to UK Home Office regulations
(Project licence number: 70/6907) and following ethical approval from The Pirbright
Institute, UK. European mixed breeds of 12 male goats, aged 6 to 9 months were
randomly split into three groups (n= 4/ group) as shown in Table 5.1. Goats were
kept under observation for a week for acclimatisation in the isolation unit at the
Pirbright Institute. Animals in group one (G1, G2, G3 and G4) were immunised with
10* TCIDso rPPRV-C77¢ Nigeria 75/1 virus whilst animals in group two (G7, G8,
G9 and G10) received the PPRV Nigeria 75/1 conventional vaccine virus (10*
TCIDso) via the sub-cutaneous route in a total volume of 1 ml (diluted in PBS).
Groups one and two were housed in separate rooms along with two unvaccinated
control animals per room (G5 and G6 with group one and G11 and G12 with group
two). Animals were monitored daily for 28 days post vaccination (dpv). At 4 weeks
post vaccination, all 4 control goats were segregated into a separate room and the
animals from all 3 treatment groups were challenged with a pathogenic PPRV Ivory
Coast 89/1 isolate (10° TCID*’) by the intranasal route using a LMA® MAD
Nasal™ Intranasal Mucosal Atomization Device (LMA, San Diego, USA). Animals
which developed severe clinical signs were humanely terminated according to an

established clinical score-card (Pope et al., 2013). Killing of animals was performed
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by intravenous administration of a lethal dose of pentobarbitone (Vetoquinol,

France).

Table 5.1 Animal experiment design and treatments

Animal group Animal number Vaccine treatment
Goat 1 (G1)

Group 1 Goat 2 (G2) \r/l:l:(lfir\]/éCﬁc Nigeria 75/1
Goat 3 (G3)
Goat 4 (G4)
Goat 7 (G7)

Group 2 Goat 8 (G8) PPRV Nigeria 75/1
Goat 9 (G9) vaccine
Goat 10 (G10)
Goat 5 (G5)

Group 3 Goat 6 (G6) Unvaccinated control
Goat 11 (G11)
Goat 12 (G12)

5.2.3 Collection of clinical samples

For all animals, rectal temperatures and clinical assessments were conducted twice
daily. Ocular, nasal and saliva swabs (Table 5.2) were taken in 0.5 ml lysis buffer
(MagNA Pure Roche, UK) on every alternate day for the first 2 weeks of both the
vaccination and challenge period and then at weekly intervals to analyse the presence
of PPRV nucleic acid by real-time RT-PCR using PPRV N gene specific primers
(Batten et al., 2011). For virus isolation, samples were collected in 1 ml of PBS and
used to infect VDS cells in a 25¢m? flask. Heparinised blood samples (Table 5.2)
were collected for virus isolation from peripheral blood mononuclear cells (PBMCs)
by co-cultivation with VDS cells. Clotted blood samples were collected for the
evaluation of serum antibody responses specific to the PPRV H protein using a PPR
Antibody ELISA kit (BDSL, UK) and the presence of PPRV neutralising antibodies

were assessed using a virus neutralisation test (VNT).
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Table 5.2 Clinical sample collection schedule

Vaccination / challenge Days post-vaccination Sample name
. (dpv)/ post-challenge

period (dpc)

Vaccination 0 dpv Heparinised blood
2 dpv Clotted blood
4 dpv Ocular swab
6 dpv Nasal swab
8 dpv Saliva swab
10 dpv
12 dpv
15 dpv
22 dpv

Challenge 28 dpv / 0 dpc Heparinised blood
2 dpc Clotted blood
4 dpc Ocular swab
6 dpc Nasal swab
8 dpc Saliva swab
10 dpc
12 dpc
14 dpc

5.2.4 White blood cells (WBCs) counts

Heparinised blood was diluted 1:20 with 0.174 M acetic acid (10 pl blood + 190 ul
glacial acetic acid) to lyse the red blood cells (RBC). Leucocytes were then counted
using a modified Fuch's- Rosenthal haemocytometer and the cell count was

expressed as the total number of leucocytes per mm? of blood.

5.2.5 Whole blood FACS analysis of lymphocytes

The change in the proportion of live lymphocyte subsets (CD4*, CD8*, CD14" and
WC1/ v T cells) in peripheral blood samples collected from goats during both the
vaccination and challenge period was analysed by antibody staining and flow
cytometry as described by Herbert et al (Herbert et al., 2014). Monoclonal
antibodies against cell surface markers used included CD4" (647 clone 44.38,
MCA2213A647 from Serotec), CD8 (575 clone CC63, MCAR37 from Serotec),

CD14" (405 clone CCG33 from Serotec) and WC1 (405 clone 197 from Serotec).
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Appropriately diluted antibodies in a 25 pl volume along with 0.5 pl of live/dead
aqua (495 life technologies) per sample was prepared and added in 200 pl of
heparinised blood, vortexed and incubated for 20 minutes at room temperature.
RBCs were lysed by adding 1 ml of RBC lysis buffer (Appendix I) and vortexed for
1 minute. The mixture was diluted with 5 ml of PBS and centrifuged at 280 g for 5
minutes. Cells were fixed in 200 pl of 4% PFA for 20 minutes. PFA was removed by
diluting with 5 ml of PBS and centrifuged at 280 g for 5 minutes. Centrifuged cell
pellets were re-suspended in 400 pl of PBS and read using the LSR Fortessa (BD
Biosciences) with data acquired using the DIVA software (BD Biosciences) and
analysed using FlowJo software (Tree Star Inc). Simultaneously, sample controls for
live/ dead only and the single stain control with CD4*, CD8", CD14" and WCl1
containing live/dead aqua were prepared for compensation to correct the spectral

overlap required in multicolour flow cytometry.

5.2.6 Separation of goat peripheral blood mononuclear cells

PBMCs were isolated from the heparinised peripheral blood samples using
histopaque (Sigma 1083) density gradient centrifugation. 15 ml blood was diluted
with an equal volume of PBS and 15 ml of histopaque (1.083 g/ml) was under-laid
using a pipette. The samples were centrifuged for 45 minutes at 280 g at 20°C with
the brake off. The buffy coat was carefully aspirated and residual RBCs were lysed
using an ammonium chloride RBC lysis buffer (Appendix I). Cells were washed
twice with 30 ml of ice-cold PBS and centrifuged for 10 minutes at 280 g at 4°C.
The final cell pellet was re-suspended in 2 ml of complete media and cells were
counted under the light microscope by staining the cells with a solution of trypan
blue (0.4%, Gibco).
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5.2.7 Virus isolation from the eye swabs and PBMCs

Ocular swabs collected in PBS were squeezed on the wall of the tube and the
released fluid was added to VDS cells (60-70% confluent) in 25 ¢m? flask. The
flasks were incubated at 37°C for an hour to allow virus adsorption with intermittent
rocking of each flask every 15 minutes to ensure a uniform distribution of the
inoculum. To the flasks, 4 ml of media (DMEM with 2.5% FCS and penicillin [ 100
U/ml, Sigma]/ streptomycin sulphate [100 pg/ml, Sigma] and amphotericin B [2.5
pg/ml, Sigma]) was added and incubated at 37°C for 5 days and observed under light
microscope for assessment of CPE formation. Three blind passages were performed

to ensure detection of low levels of virus.

For virus isolation from PMBCs, fresh goat PBMCs (~1 x 10° cells in 1 ml total
volume) were added to VDS cells (60-70% confluent) in a 25 ¢m? flask containing 5
ml of DMEM (2.5% FCS and penicillin / streptomycin sulphate and amphotericin)
and incubated at 37°C overnight. The following day the PBMC were removed by
washing the cell layer twice with PBS, the media was replaced and the cells were
incubated at 37°C for another 4 days and observed under light microscope for
assessment of CPE formation. As with attempts at virus isolation from ocular swabs,

three blind passages were performed to maximise the potential for isolation.

5.2.8 Virus neutralisation test

The VNT was performed using VDS cells by following the method as described
previously (OIE, 2012). Briefly, in 96-well microtitre cell culture plates, heat
inactivated sera (at 56 °C for 30 minutes) was serially diluted two-fold in DMEM
across the plate (100 pl per well and 8 replicates per dilution). An aliquot of PPRV
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(100 pl containing 100 TCIDso) was added to all wells including the virus control
wells (no serum), with the exception of the cell control. The plates were incubated
for an hour at 37 °C to allow serum virus reaction before being to 50 pl of VDS cells
(1 x 10° cells per ml). The plates were incubated at 37 °C/ 5% CO; for 7 days and
read under light microscope to evaluate the presence/absence of CPE. In parallel, the
virus used for the assay was titrated to re-confirm the anticipated titre (2000 to 2500
TCIDso per ml). The virus titre was calculated according to the methods of Reed &
Muench (1938) and the virus serum neutralisation titres were expressed as logio with

titres greater than 3 being considered positive.

5.2.9 Competitive H protein ELISA

The PPRV H protein-specific antibody response in the serum of vaccinated and
challenged animals was assessed using the c-H ELISA (BDSL, UK). The assay
works on the principle that antibodies to the PPRV H protein in test sera compete
with the mAb (C77) in the test kit for binding to PPRV antigen. The binding of the
C77 mAbD is then detected using a secondary anti-mouse IgG conjugated to
horseradish peroxidase and ortho-phenylene diamine (OPD) as substrate/chromogen.
Briefly, the 96-well microtitre plate was coated with 50 pl of inactivated whole virus
antigen appropriately diluted in PBS and incubated for an hour at 37°C on an orbital
shaker. Following antigen adsorption, the plates were washed 3 times using PBS.
Test sera were added at a dilution of 1/5 in a total volume of 50 pl blocking buffer
(0.1% [v/v] Tween-20 and 0.3% [v/v] normal bovine serum) followed immediately
by the addition of the C77 mAb at a dilution recommended by the manufacturer.
Serum, antigen and mAb controls were included as recommended by the

manufacturer. Following incubation for an hour at 37°C on an orbital shaker, plates
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were washed thrice and incubated with secondary anti-mouse IgG conjugated to
horseradish peroxidase for an hour at 37°C on an orbital shaker. Plates were washed
thrice and the OPD substrate was added for 10 minutes and the plates were read
using a VMax Kinetic ELISA microplate reader (Molecular devices) at an
absorbance of 492 nm. The optical density (OD) values were converted to percent

inhibition (PI) values using the formula below:

PI=100-(JOD in test well/OD in mAb control well] x 100)

Percentage inhibition values greater than 50% were considered positive as per the

manufacturer’s instructions.

5.2.10 RNA extraction and quantitative real-time polymerase chain reaction
(qPCR)

For viral RNA isolation swabs were collected in 0.5 ml of lysis buffer (MagNA Pure
kit) and stored at -20° C until required for processing. RNA extraction was achieved
using robotic extraction methods (MagNA Pure LC Total Nucleic Acid Isolation Kit,

Roche, UK) following the manufacturer's protocols.

The qPCR was performed following the method as described by Batten et a/ (Batten
et al., 2011). Briefly, the RT-PCR reaction was performed using the Superscript
[II/Platinum Taq one-step RT-PCR kit (Invitrogen, Paisley, UK) using the
Stratagene Mx3005p real-time PCR machine. Primers, probe and reaction condition
were considered as described by Batten et al (Batten et al., 2011) with minor

modifications. Briefly, 6 ul of test sample positive and negative control RNA were
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loaded in duplicate onto 96-well optical reaction plates (Stratagene, UK). The PCR
reaction mix of 19 ul was loaded into each well and contained 12.5ul Superscript 111/
Platinum Taq One-step RT-PCR reaction mix, 0.5 pl Superscript I1I/ Platinum Taq
One-step RT-PCR enzyme mix, 0.5 ul ROX reference dye, 0.5 pl probe (5 pmol/ ul),
1 pl each of the forward and reverse primers (10 pmol/ ul) and 3ul nuclease free

water.

The thermal cycling conditions were as follows:
Step 1: Reverse transcription (RT) 50°C 30 minutes
Step 2: RT inactivation and DNA polymerase activation 95°C 10 minutes
Step 3: Denaturation 95°C 15 seconds
Step 4: annealing and elongation 60°C 1 minutes

Step 5: Steps 3 and 4 repeated for 45 cycles

Stratagene MxPro software (Stratagene, USA) was used for the data analysis. The
threshold fluorescence was set using the software algorithm amplification-based
threshold method. Samples with no detectable fluorescence above the threshold after

40 cycles were considered negative (Batten ef al., 2011).

5.2.11 Sequencing of the C77 mAb binding epitope
The viruses isolated from the PBMCs of vaccinated animals were sequenced using a
specific primer set PPR-F-P18 and PPR-R-P18 (Appendix III) based on the H gene

of PPRV Nigeria 75/1.
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5.3 Results

5.3.1 Clinical protection of goats vaccinated with either the rPPRV-C77¢ or the
conventional PPR vaccine following challenge with a virulent strain of PPRV
Following vaccination, all animals remained healthy and did not show any
vaccination-related adverse effects. Similarly, 28 dpv when the goats were
challenged with virulent PPRV (Ivory Coast 89/1 strain), no clinical signs or high
rectal temperatures (Figure 5.1) were observed in either the recombinant or
conventional vaccinated groups. In contrast, the control unvaccinated animals
developed severe clinical disease (pyrexia, mucopurulent nasal discharge, severe
conjunctivitis, congested oro-nasal mucosa, lose motion and anorexic) and were
humanely terminated at 8 days post challenge (dpc). The disease onset in control
animals was observed from 3 dpc with an increase in rectal body temperatures to
greater than 40°C. The increased temperatures remained high up to 8 dpc with the
peak temperatures observed on 5 and 6 dpc. Animals in the vaccinated groups
maintained their rectal body temperatures within the normal temperature range
throughout the vaccination and challenge period of the experiment, displaying no

clinical symptoms.
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Figure 5.1 Rectal temperatures of vaccinated (rPPRV-C77¢ Nigeria 75/1 and
PPRYV Nigeria 75/1 parent vaccine virus) and unvaccinated goats upon
challenge with virulent PPRV. Temperatures were measured twice per day, every
alternate day during the vaccination period and every day during challenge period,
and are presented as the mean values of the four animals in each group with the

standard error. The threshold for pyrexic temperatures is indicated by the dashed

line.
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5.3.2 The immunosuppressive effect of PPRV on rPPRV-C77¢ Nigeria 75/1 and
PPRYV Nigeria 75/1 vaccinated animals upon challenge with virulent PPRV
Suppression of the immune system during PPRV infection is due to the
lymphotropic nature of PPRV and the diseased animal often develops a pronounced
leukopenia, facilitating secondary infection. Vaccination with rPPRV-C77¢ Nigeria
75/1 or the conventional live attenuated PPRV vaccine overcomes this
immunosuppressive following natural infection with virulent PPRV and thus
prevents exacerbation of opportunistic infection by secondary pathogens. No change
in WBCs count was observed during the post-vaccination period in either of the
vaccinated groups (Figure 5.2 and Appendix V) except a transient reduction of
WBC counts at 4 to 6 dpv. A significant (P<0.0001) reduction in live WBC counts
was observed from 4 dpc to 8 dpc (the day of sacrifice of control goats on ethical
grounds) in unvaccinated control animals in comparison to the WBC counts for both
groups of vaccinated animals (Figure 5.2). No significant reduction (p<0.0001) in
WBC counts was observed in either of the vaccinated groups during the challenge
period. However, the leukocyte counts for both of the vaccinated groups went
slightly down on 6 dpc and this transient reduction of leucocyte counts started

increasing by 8 dpc.

Further, analyses of whole blood samples using FACS staining of samples taken
during the post-vaccination and post-challenge periods demonstrated, a specific and
significant (2way ANOVA p<0.0001) decrease in CD4" cells from day 4 post-
challenge in the non-vaccinated control animals (Figure 5.3a). The CD8", CD14" and
WCI1 cell counts in both vaccinated and unvaccinated animals were not altered

significantly (P>0.05) in comparison with the normal cell counts (Figure 5.3b to d).
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Figure 5.2 Leukocytes (WBC) counts for both vaccinated and unvaccinated
goats following a virulent PPRYV challenge. The total leukocytes were counted
using a Neubauer haemocytometer and expressed as the total number of WBCs per
ml of blood. The mean values of the four animals in each group =+ the standard error
of the mean are shown for both vaccination (a) and challenge periods (b).Significant
differences in WBC counts between vaccinated and unvaccinated control groups

(2way ANOVA p<0.0001) were observed from 4 days post-challenge.
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Figure 5.3 CD4*, CD8*, WC1 T-cell and CD14" monocyte/macrophage cell
counts in vaccinated and control goats by whole blood FACS analysis. Blood
was stained with anti-CD4", anti-CD8", anti-WC]1 and anti-CD 14" monoclonal
antibodies directly conjugated to flurochromes. Results were expressed as the mean
percentage + standard error of CD4" lymphocytes (a), CD8" lymphocytes (b), WC1
lymphocytes (¢) and CD14" monocytes/macrophages (d) in peripheral blood.
Significant differences in CD4" cells between vaccinated and unvaccinated control
groups (2way ANOVA p<0.0001) were observed from 4 days post-challenge. Whole
blood FACS analysis for 6 day post-vaccination had not been conducted.
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5.3.3 Vaccination prevents the replication of challenge virus in vaccinated goats
Detection of virus specific RNA and live virus was observed in the eye swabs of
control animals during the post-challenge period whereas no virus/ viral genome was
detected from either of the vaccinated groups throughout the post-challenge period.
To determine the level of virus replication and excretion in vaccinated and
unvaccinated goats during the post-challenge period, clinical samples that had been
collected from the eyes, nasal turbinates and saliva on each alternate day were
subjected to extraction of RNA and qPCR. The actual Ct-values were subtracted
from 40 (accepted maximum Ct value) and expressed as 40-Ct values. As shown in
Figure 5.4, no Ct values were observed in vaccinated groups (rPPRV-C77c Nigeria
75/1 and PPRV Nigeria 75/1) throughout the challenge period with few exceptions
in both the vaccinated groups, specifically in nasal and saliva samples of animals at 6
to 10 dpc (Appendix V). The unvaccinated control animals were positive by gPCR
from 2 dpc in nasal and 4 dpc in ocular swabs and 6 dpc in all 3 samples (saliva,
nasal and ocular). The Ct values in the unvaccinated control animals were high at 6
dpc for all clinical samples and reached peak values at 8 dpc. Although the viral
genome was detected late in saliva samples (6 dpc), the highest copy number was

obtained in saliva samples from 6 to 8§ dpc.

Similarly, the ocular swab samples collected during the post-challenge period were
used to isolate virus in VDS cells. It was not possible to recover virus from swabs
taken from animals vaccinated with either rPPRV-C77¢ Nigeria 75/1 or PPRV
Nigeria 75/1 following vaccination or challenge, even after three blind passages.
However, it was possible to isolate PPRV successfully from the eye swabs of the
unvaccinated control animals between 4 dpc and 8 dpc, the day of sacrifice (Table

5.3).
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Figure 5.4 Real time RT-PCR analyses for PPRYV in lachrymal, nasal and
salivary excretions during the post-challenge period. RNA extracted from clinical
swab samples collected every alternative day post-challenge from each of the
vaccinated and control goats were subjected to real-time PCR using specific N gene
primers of PPRV. The mean 40-Ct value of each group was presented with +
standard error mean. The mean 40-Ct values ranging from 1 - 3 are considered as

weak positive, 3 - 12 are positive and more than 12 are strong positive.
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Table 5.3 PPRYV isolation from clinical eye swab sample during post-challenge

period.
Treatment Animal Virus isolation”
group number
Odpc | 2dpc | 4dpc | 6dpc | 8dpc | 10dpc | 12dpc | 14dpc
PPRV- G1 N N N N N N N N
C77c G2 N
Nigeria 75/1
vaccine G3 N N N N N N N N
G4 N N N N N N N N
G7 N N N N N N N N
PPRV
Nig75/1 G8 N N N N N N N N
vaccine G9 N N N N N N N N
G10 N N N N N N N N
G5 N N Y Y Y NA NA NA
Control un- | G6 N N Y Y Y NA NA NA
vaccinated | 544 N N Y Y Y NA | NA | NA
G12 N N Y Y Y NA NA NA

* ‘N’ represents no virus isolation, ‘Y’ represents virus isolation, ‘NA’ represents not applicable, dpc
represents day post-challenge.

5.3.4 The mutations introduced to rPPRV-C77¢ Nigeria 75/1 were stably
maintained in vaccinated animals

The recombinant virus isolated from the PBMCs of with rPPRV-C77¢ Nigeria 75/1
virus vaccinated goats at 4 dpv (Goat 1 and Goat 3) and 8 dpv (Goat 2 and Goat 4)
confirmed that the mutated C77 mAb binding site on H protein of rPPRV-C77¢ had

not been altered (Figure 5.5) or reverted back to its native sequence.
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Figure 5.5 Sequence analysis of the rPPRV-C77¢ Nigeria 75/1 virus H protein
following in vivo analysis. The mutations to the modified C77 mAb binding region
were maintained following a passage of the mutated virus in goats. The RNA was
extracted from virus isolated from PBMCs on 4 (from G1 and G3) and 8 (from G2
and G4) days post-vaccination. An alignment of nucleotide sequences of the C77
mADb binding region on the rPPRV-C77¢ Nigeria 75/1 virus with that of parental
PPRV Nigeria 75/1 is shown. * indicates the residues mutated in at the proposed C77
binding site in the rPPRV-C77¢ Nigeria 75/1 virus.

152



5.3.5 rPPRV-C77c¢ Nigeria 75/1 virus induces a similar level of PPRYV specific
neutralizing antibodies to that induced by the parent Nigeria 75/1 vaccine strain
Sera collected during both the vaccination and challenge periods were subjected to
VNT using homologous PPRV vaccine strains. On the day of vaccination, animals
were found to be negative for PPR specific antibodies whilst high titre virus
neutralising antibodies were detected by second week of vaccination and reached at
peak (4.76-5.31 logio) on 28 dpv, the day the animals were challenged, in both
groups of vaccinated animals (Figure 5.6 and Appendix VI). All unvaccinated
control animals remained negative during this vaccination period. Following
challenge, titres of antibodies in both the vaccinated groups remained constant at two
weeks post challenge. No statistically significant difference in neutralising antibody
titre was seen between the recombinant and conventional vaccine groups. The
unvaccinated animals developed PPRV specific neutralising antibodies by the 8 dpc,
the day they were humanely terminated. Significant differences in the titer of
neutralizing antibody was seen (2way ANOVA at p<0.0001) between the vaccinated
groups (rPPRV-C77¢ Nigeria 75/1 and PPRV Nigeria 75/1) and the control groups at
all days of sample analysis except on 0 dpv. However, no significant differences of
neutralising titre were observed (P > 0.05) between both the vaccinated groups at all

the sampling time points.
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Figure 5.6 Detection of PPR specific neutralising antibodies in vaccinated and

challenged goats. Mean virus neutralising titres (expressed as Logio) in vaccinated

and challenged goats as assessed by virus neutralisation test. Serum samples were

analysed at 0, 8, 15 and 28 days post-vaccination and 8 and 14 days post-challenge. *

Represents a sample omission from the control unvaccinated animals due to their

sacrifice on day 8 post-challenge.
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5.3.6 rPPRV-C77c¢ Nigeria 75/1 vaccination has precluded serological
differentiation from the conventional vaccinated and challenged goats

The PPRV H protein-specific antibody response in serum collected from vaccinated
and challenged animals was assessed using the commercially available c-H ELISA
kit (BDSL, UK). All animals were sero-negative for PPRV specific antibodies on the
day of vaccination (Figure 5.7). Unexpectedly, both the recombinant and
conventional vaccinated animals were positive for PPRV H protein-specific
antibodies starting from 8 dpv and the antibody levels reached a peak by 2 weeks
post-vaccination, after which the level was maintained. Two unvaccinated control
goats (G 2 and G 3) became seropositive by 8 dpc with the remaining two goats
being border-line for serological positivity on the day they were terminated with
severe clinical disease. Significant differences in the PI values were seen (2way
ANOVA at p<0.0001) among the vaccinated (rPPRV-C77c Nigeria 75/1 and PPRV
Nigeria 75/1) and control groups from 8 dpv throughout all of the sampling points.
However, no significant difference (P > 0.05) in the proportion of PI values was
observed between the two vaccinated groups for any sampling day during the

vaccination and challenge periods.
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Figure 5.7 Detection of PPRV H specific antibodies in vaccinated and
challenged goats. Mean percent inhibition values of PPRV H-specific antibody
responses in animals vaccinated with the wild type vaccine, rPPRV-C77¢ Nigeria
75/1 and unvaccinated animals as determined by c-H ELISA. Serum was collected
on days 0, 6, 8, 10, 12, 15, 22 and 28 days post vaccination as well as on day 8 post-
challenge. The 50% inhibition value is considered as the cut-off titre and is indicated
by a dotted line. The mean percent inhibition values with + standard errors of mean

are presented.
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5.4 Discussion

Recent studies reporting the rescue of PPRV expressing GFP or FMDV VP1
proteins have been limited to in vitro data in their assessment of the protective
efficacy of vaccines against challenge (Hu et al., 2012b; Yin et al., 2014). In the
present study in vivo data has been generated to demonstrate that the rPPRV-C77c
Nigeria 75/1 virus is able to generate adequate protection from virulent challenge in
the natural host for PPRV, small ruminants. /n vivo assessment is a necessary
prerequisite to determine the utility of recombinant versions of vaccines prior to
further development and licencing in the field. Both the parental (PPRV Nigeria
75/1) and mutated (rPPRV-C77¢ Nigeria 75/1) vaccines provided complete
protection against a lethal dose of PPRV challenge. None of the animals in either
vaccinated group showed any evidence of PPR disease and survived the challenge
with pathogenic PPRV without any systemic replication of the virus. Furthermore,
there was no transmission of vaccine virus to in-contact unvaccinated control
animals housed with the vaccinated animals during the 4 week period post-
vaccination demonstrating that both the parent and mutated (rPPRV-C77c Nigeria
75/1) vaccines are highly unlikely to transmit between animals and potentially revert
to virulence in the field. Indeed, none of the control animals seroconverted and all
developed clinical disease following challenge. High titre PPRV specific serological
responses were demonstrated at 28 dpv by both VNT and ELISA for all vaccinated
animals and the antibody levels in vaccinated goats was not increased even after
challenge. This maintained antibody level without any virus replication in the
vaccinated animals after challenge suggests the provision of sterile immunity by both
of the vaccines. Further analysis of whole blood samples in FACS staining and total

leucocyte counts enabled the demonstration of leukopenia in the control animals
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from 4 dpc and suggested that this response may be linked to the reduction in CD4*
cells as determined FACS analysis of samples from the post-challenge period.
However the huge loss of leucocytes in the non-vaccinated, challenged control
animals might be due to the death of granulocytes (neutrophils) alongside the death
of the CD4" cells. Total leucocyte counts demonstrated a transient leukopenia in

both the vaccinated groups similar to Rajak et a/ (Rajak et al., 2005a).

Although the rPPRV-C77¢ Nigeria 75/1 vaccine virus was indistinguishable from
the parent vaccine strain in its ability to protect animals, DIVA potential was not
fulfilled with the mutations applied to the residues within the H protein using the
current c-H ELISA. Previous studies with other viral vaccines such as RPV
(Buczkowski et al., 2012), NDV (Peeters et al., 2001) and classical swine fever virus
(Wehrle et al., 2007) vaccines have postulated that epitope deletion may represent an
efficient mechanism to generate DIVA vaccines. However, in the current study
although the epitope mutation prevented binding of the C77 mAb in vitro it was not
sufficient to enable DIVA in vivo. As mapped by phage display screening
techniques, 6 critical residues were implicated for C77 binding. Mutation of 3 critical
residues from wild type to alanine (R547, S549 and S550) prevented the binding of
mAD to the H protein of the virus infected cells in immunofluorescence studies.
These mutations were seen to be stable after several passages of rescued virus in cell
culture. As it was not possible to rescue the virus after mutating the additional 3
critical residues (Y540, 1542 and Y543), the animal experiment was carried out by
vaccinating goats with the rPPRV-C77¢ virus containing just 3 mutated residues
(R547A, S549A and S550A) (Muniraju et al., 2015). It is likely that further

mutations to the PPRV C77 mAb binding region are required to enable a serological
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DIVA response to be generated following vaccination with a vaccine containing
mutated H protein. Investigations to further explore mutation to the C77 binding
region are planned. Another approach is currently underway to further develop a
PPRV DIVA test using synthetic peptides specific to the C77 epitope region. The
linear epitope present in the peptide may prevent the binding of the antibodies

present in the serum.

Additional approaches to generate a DIVA vaccine could focus on the generation of
a recombinant vaccine strain containing a chimeric N protein gene whereby the
variable C-terminus of N could be swapped with that of RP. In this, the RP specific
variable part of N gene could be detected by a specific ELISA (Parida ef al., 2007)
whilst an ELISA specific for the PPRV C-terminus of the N protein (unpublished)
would detect serological responses to naturally infected animals. If successful, the
development of a DIVA test would be a great boon in the less developed regions of
the world where PPRV represents a major obstacle to the development and

maintenance of subsistence farming.
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Chapter 6 Segmentation of PPRYV to generate multivalent vaccines

6.1 Introduction

Several of the viral diseases that share common hosts (sheep and goat) with PPRV,
including BTV, CPV, RVFV and pestiviruses, are under-reported (Kul et al., 2008;
Mondal et al., 2009; Saravanan et al., 2007). In many cases, these diseases are
endemic in areas where PPRYV is also endemic and as such their epidemiological
distribution overlap. Importantly, current vaccination strategies are lacking for
several of these diseases and where vaccines exist they often require multiple
administrations which is not cost effective in resource-limited settings. The
development and application of multivalent vaccines in endemic regions would
therefore greatly reduce the cost, and give more efficient use of resources leading to
the successful control of multiple diseases including those with no effective vaccines
currently available. BTV, an orbivirus with a ten-segmented genome, exists in 26
serotypes and the inactivated vaccines employed in disease control programmes are
expensive to produce (Calvo-Pinilla ef al., 2014). RVFV with a three-segmented
genome (bunyavirus) is a zoonotic disease and an expensive inactivated vaccine is
used to control the disease with a safe live attenuated vaccine also available (Indran,
2012). With the existence of effective live attenuated CPV vaccines, glycoproteins of
PPRYV have been added to CPV based recombinant thermostable bivalent vaccines,
and protection against PPRV has been demonstrated (Berhe et al., 2003a; Chen et
al., 2010; Diallo et al., 2002a). However, recombinant CPV vaccines expressing the
F and H proteins of PPRV require multiple administrations and do not wholly protect
against virulent PPRV challenge due to the presence of pre-existing immunity to

CPV (Caufour et al., 2014).
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Paramyxoviruses such as MV and NDV (NDV belonging to the genus Avulavirus)
were developed as viral vectors expressing transgenes and have been proven to be
safe and efficient (Brandler et al., 2013; Bukreyev et al., 2005; Nakaya et al., 2001;
Singh et al., 1999). Further, a novel genome segmentation strategy (Figure 6.1) was
adopted to overcome the genome length constraint for insertion of multiple and long
transgenes, as demonstrated in pioneering work with MV (Takeda et a/., 2006) and

independently with NDV (Gao et al., 2008).

This chapter describes the generation of two-segmented recombinant PPRV using
reverse genetics techniques. The first segment incorporated eGFP as a heterologous
protein whilst the second segment incorporated the VP2 outer capsid protein of BTV
(serotype 1). The rescue of a segmented version of PPRV expressing heterologous

proteins and their in vitro characterisation is described in this chapter.
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Figure 6.1 Schematic representation of a two segment strategy to generate
infectious morbilliviruses with a two-segment genome. The first segment consists
of the N, P, M and F genes whilst the second segment consists of the H and L genes.
Recombinant viruses were rescued by transfecting both segments of the genome and
the N, P and L helper plasmids into susceptible cells. The new infectious virus
particle recovered contains both the genome segments. The potential for generation

of non-infectious defective particles containing only a single segment exists.
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6.2 Materials and methods

6.2.1 Construction of two-segmented PPRV cDNAs

Two-segment PPRV genome plasmids were constructed from the full-length cDNA
plasmids of the pPPRV+GFP Nigeria 75/1 vaccine strain that already contained the
eGFP gene as a heterologous transcription unit (Chapter 4). A schematic diagram
showing the segmentation strategy for the PPRV genome and the steps involved in
generating the segmented plasmids are shown in Figures 6.2 and 6.3. The first
segment consists of the N, P, GFP, M and F genes and the second segment consists
of the BTV VP2 gene alongside the H and L genes of PPRV. At the termini of each
segment the authentic 3’ GP and 5° AGP sequences of PPRV were retained. The
presence of unique restriction enzyme sites in the PPRV full-length clone
(pPPRV+GFP Nigeria 75/1) were kept intact. The segmented gene constructs were
under the transcriptional control of the T7 RNA polymerase promoter in a eukaryotic
expression vector backbone (pJ711) as in the parental pPPRV-+GFP Nigeria 75/1.
The ‘rule of six’ was followed in each segment to achieve efficient genome
replication. Newly constructed PPRV plasmid sequences were confirmed by

sequencing the modified regions on both strands.
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Figure 6.2 Schematic representation of the segmentation strategy and
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genomic plasmids.
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6.2.1.1 Construction of the PPRV genome segment one plasmid,
pPPRVsegl GFP

The plasmid pPPRVseg1 GFP consisted of the ‘GP-N-P-GFP-M-F-AGP’ sequence
of pPPPRV+GFP Nigeria 75/1 (Figure 6.2 and Appendix VII). The following steps

were followed to construct pPPRVsegl GFP.

1. pPPRV+GFP Nigeria 75/1 was digested with AcIl and BsiW1 to obtain a 7,873
nucleotide long fragment containing ‘N-P-GFP-M-F’.

2. Amplicons containing the ‘AGP-vector backbone-GP’ (3,971 nucleotides long)
were amplified using primer set SeglF BsiWW1 +3 and SeglR Acll (Appendix I1I) and
digested with the BsiW1 and Acll enzymes. Additional nucleotides ‘“TGA’ were
inserted immediately after F gene stop codon through primer SeglF BsiW1 +3 to
adjust the segmented genome length to make it multiple of six.

3. Fragments obtained from steps 1 and 2 were gel purified, ligated and transformed
into bacterial cells, to obtain pPPRVsegl GFP. The size of the pPPRVsegl GFP
plasmid was 11,826 nucleotides (Figure 6.2). The pPPRVsegl GFP was sequenced to
confirm the presence of the correct nucleotide sequences and organisation of the

genes.

6.2.1.2 Construction of PPRV genome segment two plasmid, pPPRVseg2a
The plasmid, pPPRVseg2a consisting of the ‘GP-H-L-AGP’ sequence of PPRV
(Figure 6.2 and Appendix VII) was constructed following the steps as described

below.
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1. pPPRV+GFP Nigeria 75/1 was digested with AclIl and Notl to obtain a 10,590
nucleotide long fragment containing the ‘L-AGP-vector backbone-GP’.

2. Amplicons of the ‘H gene’ (1873 nucleotides) were obtained using the primer set
Seg2F Acll and Seg2R Notl (Appendix III) and digested with both AcIl and Notl
enzymes.

3. Fragments obtained from step 1 and 2 were gel purified, ligated and transformed
into bacterial cells, to obtain pPPPRVseg2a. The size of the pPPRVseg2a plasmid was
12,456 nucleotides (Figure 6.2). The plasmid, pPPRVseg2a was sequenced to

confirm the presence of correct nucleotide sequences and organisation of the genes.

6.2.1.3 Insertion of the VP2 segment of BTV into pPPRVseg2a

The pPPRVseg2a construct was used to insert and express the VP2 outer capsid
protein sequence of BTV (serotype 1). The VP2 CDS (2,886 nucleotide) long with 5’
and 3’ UTR sequences of the N gene of PPRV was inserted as a separate
transcriptional unit preceding the H gene to generate pPPRVseg2bVP2 (Figure 6.3

and Appendix VII). Steps followed in the plasmid construction are described below.

1. pPPRVseg2a was digested with Acll and Nofl to obtain a 10,590 nucleotide long
fragment containing the ‘L-AGP-vector backbone-GP .

2. The amplicon containing the H gene (1,925 nucleotides) was amplified using the
primer set Seg2F Pacl and Seg2R Nofl (Appendix III) and digested with Pacl and
Notl enzymes. The H gene was removed from pPPRVseg2a and re-introduced to
include the compatible UTR sequence with the preceding BTV VP2 gene. The 5°
and 3’ UTR sequence of the N gene were introduced between the H and the VP2

genes through PCR primers.
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3. The amplicon of the “VP2’ CDS from BTV serotype 1 (2,886 nucleotides) was
amplified using the primer set Seg2VP2F Acll and Seg2VP2R Pacl and digested
with AcIl and Pacl enzymes.

4. The three fragments obtained from the above steps 1, 2 and 3 were gel purified,
ligated and transformed into bacterial cells, to generate pPPRVseg2bVP2 with the a
total plasmid size of 12,456 nucleotides (Figure 6.3). The recombinant plasmid
construct was sequenced to confirm the presence of the exact nucleotide sequences,

gene orientation and organisation.

167



pPPRVseg, VP2 of BTV1
GP AGP

H L VP2

pPPRVseg,BTV \ /

L : AcF

1) Frgment ‘GP-vector backbone-
AGP-L’ was obtained by digesting
pPPRVseg, with Acll and Notl.

Vector backbone

2) PCR amplicon of ‘H gene’
obtained using primers Seg2F Pacl
pPPRVseg2a and Seg2R Notl and digested with
12456bp Pacl and Notl.

3) PCR amplicon of VP2 was
obtained using primers Seg2VP2F
Acll and Seg2VP2R Pacl and
digested with Acll and Pacl.

Notl 4) Fragments obtained from steps
1, 2 and 3 were ligated and
transformed into bacterial cells.

Vector backbone

AGP

Apall pPPRVseg2bVP2

15426 bp e

Figure 6.3 Schematic representation for the construction of a

(pPPRVseg2bVP2) segmented PPRV genome with the VP2 gene of BTV.
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6.2.2 Transfection and recovery of recombinant PPRVs from two-segmented
genome plasmids

The two-segmented PPRV genome plasmids (pPPRVseg1 GFP and pPPRVseg2a or
pPPRVsegl GFP and pPPRVseg2bVP2) were transfected into VDS cells (pre-
infected with rFP-T7) using TransFast transfection reagent along with the helper
plasmids to generate N, P and L as described in Chapter 4 (section 4.2.4). The total
amount of genomic plasmid DNA (1pg/well) needed for the transfection procedure
to rescue the non-segmented PPRV, was split into two equal proportions (i.e., 0.5

pg/well) for each of the two segmented genome plasmids.

6.2.3 RT-PCR and sequencing to confirm the identity of rescued segmented
viruses

RT-PCR was performed on total RNA extracted from passage 3 and passage 9
segmented viruses using following primer sets. For identification of genome segment
one, forward primer PPR-F-18 (Appendix III) located on the F gene and reverse
primer PPR-R-32 (Appendix III) located on the AGP were utilised to amplify the F
and AGP regions. The eGFP gene from genome segment one was also amplified
using primer sets PPR-F-7 and PPR-R-12 (Appendix III) located on the P and F
genes, respectively. For identification of PPRV genome segment PPRVseg2a,
forward primer PPR-F-1 (Appendix III) located on the GP and reverse primer PPR-
R-18 (Appendix III) located on the H gene of PPRV were used to amplify GP and H
regions. Amplification with primer sets PPR-F-1 and PPR-R-18 also encompassed

the VP2 gene in genome segment PPRVseg2b.
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6.2.4 Immunofluorescence investigations to confirm the identity of the rescued
segmented viruses

To identify the segmented viruses, an immunofluorescence investigation was carried
out using the anti-PPRVH mAb (C77) and an anti-BTV polyclonal antibody.
Expression of GFP was observed by autofluorescence using a confocal microscope

as described in chapter 4 (section 4.2.5).

6.2.5 Multi-step growth curve
Rescued segmented PPRVs and the parental un-segmented wild-type PPRV Nigeria
75/1 were grown in VDS cells to compare growth kinetics as described in chapter 2

(section 2.1.6).

6.3 Results

6.3.1 Rescue of recombinant segmented PPRVs using two-segmented genome
approach

Infectious recombinant PPRV with a two-segmented genome, rPPRVsegGFP was
rescued from the plasmids pPPRVsegl GFP and pPPRVseg2a using reverse genetics
techniques. Further, infectious segmented PPRV containing the VP2 gene of BTV,
rPPRVsegGFP+BTYV was rescued from the plasmids, pPPRVsegl GFP and
pPPRVseg2bVP2. The recombinant viruses showed CPE and syncytia formation
from day three post-transfection in VDS cells and CPE was similar when compared
to the positive control wells containing rescue of the non-segmented rPPRV Nigeria
75/1 (Figure 6.4). The rescued viruses were freeze-thawed once, clarified to remove
cell debris and serially passaged in VDS cells up to passage 9.
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Figure 6.4 Cytopathic effect and syncytia formation of the rescued
rPPRVsegGFP and rPPRVsegGFP+BTYV viruses in VDS cells. Segmented or
non-segmented PPRV genome plasmids were transfected into VDS cells and the
rescued recombinant segmented viruses (a) rPPRVsegGFP and (b)
rPPRVsegGFP+BTYV showed similar syncytia formation compared with the positive
control well of (c) rPPRV Nigeria 75/1. Uninfected VDS cells are shown in Figure
6.4d. Images were captured using a Nikon D7000 camera observed under light

microscope (10x objective). Syncytia are indicated by arrows.
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6.3.2 Confirmation of the identity of the rescued viruses

The identity of rescued viruses rPPRVsegGFP and rPPRVsegGFP+BTV at passage
3 was confirmed by RT-PCR followed by sequencing of amplified products. The
PPRYV genome segment specific primer sets were used in the amplification of
fragments. From the genome segment one of both recombinant viruses, the ‘partial
F-AGP’ fragment was amplified using primer sets PPR-F-18 and PPR-R-32 and also
the GFP gene was amplified using the primer set PPR-F-7 and PPR-R-12.
Simultaneously, using common primer sets, PPR-F-1 and PPR-R-18, the smaller
‘GP-H fragment’ was amplified from the rPPRVsegGFP and the larger ‘GP-VP2-H
fragment’ was amplified from rPPRVsegGFP+BTV (Figure 6.5 and Figure 6.6). A
single amplified fragment from each primer set was clearly identified with an
expected fragment size as observed by agarose gel electrophoresis. The amplicons
were sequenced on both the strands and no mutations were observed (Figure 6.7 and
6.8). The expected nucleotide sequences in the rescued viruses were confirmed.
Similarly, the presence of the eGFP gene in segment one of both recombinant viruses

was also determined by RT-PCR and sequence analysis (data not shown).
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P/GFP/M
(1557 nt)

GP/H

(703 nt)

F/AGP
(238 nt)

Figure 6.5 Confirmation of the identity of rescued rPPRVsegGFP virus by RT-
PCR. RNA extracted from passage 3 rPPRVsegGFP was subjected to RT-PCR
using genome segment specific primers. Parallel PCR without reverse transcriptase
enzyme was performed to confirm that the fragments were not amplified from carry-
over of genomic plasmid DNAs. Lanes 1 and 8 show the 1Kb plus marker
(Appendix II). Lane 2 is a minus RT enzyme control for amplicons in lane 3 that
shows the amplification of ‘partial F and AGP’ fragment from genome segment one
using primer sets PPR-F-18 and PPR-R-32. Lane 4 is a minus RT control for the lane
5 amplification of the ‘partial P, GFP and partial M’ fragment from genome segment
one using primer sets PPR-F-7 and PPR-R-12. Finally lane 6 is a minus RT control
for the lane 7 amplification of the ‘GP and partial H’ fragment from genome segment
two using primer sets PPR-F-1 and PPR-R-18. All primers are listed in the Appendix

II1. The sizes of the expected fragments are shown in parenthesis.
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GP/VP2/H
(3673 nt)

P/GFP/M
(1557 nt)

F/AGP
(238 nt)

Figure 6.6 Confirmation of the identity of rescued rPPRVsegGFP+BTYV virus
by RT-PCR. RNA extracted from passage 3 rPPRVsegGFP+BTV was subjected to
RT-PCR using genome segment specific primers. Amplifications are as detailed in
Figure 6.5 with primers specific for the ‘partial F-AGP’ (Lane 3); ‘partial P, GFP
and partial M’ (lane 5); and ‘GP, VP2 and partial H’ (lane 7). Lanes 1 and 8
represent the 1Kb marker (Appendix II). Lanes 2, 4 and 6 are RT minus controls for

each amplification.
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Figure 6.7 Nucleotide sequence alignments to confirm the identity of the rescued rPPRVsegGFP virus. The RT-PCR product obtained
using PPRV genome segment specific primers with passage 3 and 9 of rPPRVSegGFP were sequenced and aligned with the plasmid sequence
used in the transfection experiments. The alignment in panel (a) represents the PPRV genome segment one ‘partial F -AGP’ sequence in the
plasmid pPPRVsegl GFP and those found in passage 3 and 9 of rPPRVsegGFP. Similarly, the alignment in panel (b) represents the PPRV
genome segment two ‘GP- partial H’ sequence in the plasmid pPPRVs175eg2a and those found in passage three and nine of rPPRVsegGFP.
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Figure 6.8 Nucleotide sequence alignments to confirm the identity of the rescued rPPRVsegGFP+BTYV virus. The RT-PCR product
obtained using the PPRV genome segment specific primers with passage 3 and 9 of rPPRVSegGFP+BTV were sequenced and aligned with the
plasmid sequences used in the transfection and rescue of recombinant virus. The alignment in panel (a) represents the PPRV genome segment
one ‘partial F -AGP’ sequence in the plasmid pPPRVsegl GFP and those found in passage 3 and 9 of rPPRVsegGFP+BTV. Similarly, the
alignment in panel (b) represents the PPRV genome segment two ‘GP- partial VP2’ sequence in the plasmid pPPRVseg2aVP2 and those found
in passage 3 and 9 of rPPRVsegGFP+BTV.
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6.3.3 Immunofluorescence investigation into the expression of both homologous
and heterologous protein expression from segmented PPR viruses
Immunofluorescence imaging demonstrated the expression of the H protein of PPRV
and GFP in the VDS cells infected with the rPPRVsegGFP and rPPRVsegGFP+BTV
viruses (Figure 6.9). The successful expression of eGFP from an additional
transcriptional unit inserted into the genome segment one of rPPRVsegGFP and
rPPRVsegGFP+BTYV viruses was observed through its autofluorescence. Polyclonal
serum raised against BTV (whole virus) was used in Western blotting and confocal
microscopic studies but was unable to detect VP2 protein expression either in the
recombinant segmented PPRV or wild-type serotype 1 of BTV due to nonspecific

background staining in the negative control uninfected cells (data not shown).
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Figure 6.9 Expression of the PPRV H protein and GFP in the recombinant PPR
viruses with a two-segmented genome. VDS cells were infected with (a)
rPPRVsegGFP, (b) rPPRVsegGFP+BTV and (c) rPPRV Nigeria 75/1 at an MOI of
0.01 and fixed at 24 hours post-infection using 4% PFA. The uninfected cells (d)
were used as a negative control. Cells were stained with mouse anti PPRV H (C77)
primary mAb followed by Alexa Fluor 568 secondary antibody. Cell nuclei were
stained with DAPI. Autofluorescence of GFP was visualised. Confocal laser
scanning overlay of three different wavelengths — blue (405 nm) for the cell nucleus,
red (568 nm) for the H protein of PPRV and green (488 nm) for GFP are shown. The
H proteins of IPPRVsegGFP, rPPRVsegGFP+BTV and rPPRV Nigeria 75/1 viruses
were detected using the C77 mAb. The autofluorescence of GFP was detected only
for the rPPRVsegGFP and rPPRVsegGFP+BTV viruses.
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6.3.4 In vitro growth characteristics of recombinant viruses

The replication efficiency of the recombinant PPR viruses with two-segmented
genomes, rPPRVsegGFP and rPPRVsegGFP+BTV, were assessed by multistep
growth curve in VDS cells and compared with the non-segmented wild-type PPRV
Nigeria 75/1 vaccine strain. The rPPRVsegGFP virus exhibited a similar growth rate
compared to PPRV Nigeria 75/1 with peak titres achieved at 84 hpi (Figure 6.10).
The rPPRVsegGFP+BTV virus showed similar initial growth rate although the peak

titre attained was approximately one logio less than that of the parent rPPRVsegGFP.

6.3.5 Stability of the genome segments and maintenance of transgenes

RNAs isolated from passage nine viruses (tPPRVsegGFP and rPPRVsegGFP+BTV)
were subjected to RT-PCR followed by sequencing. The PPRV genome segment
specific primer sets were used in the amplification of fragments as described earlier
for the passage three recombinant virus identification (Section 6.3.2). A single
amplified fragment from each primer set was clearly identified with an expected
fragment size (data not shown). The sequences obtained from segment one and two
amplicons were aligned with passage three virus sequences and plasmid sequences
as shown in Figure 6.7 and 6.8. The RT-PCR and sequence analysis confirmed the
presence of GFP in rPPRVsegGFP virus and GFP and VP2 of BTV in

rPPRVsegGFP+BTYV virus after nine passages.
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Figure 6.10 Growth kinetics of the segmented and non-segmented PPRVs in cell
culture. A multi-step growth curve was carried out by infecting VDS cells with
segmented rPPRVsegGFP and rPPRVsegGFP+BTYV viruses and non-segmented
wild-type PPRV Nigeria 75/1 at an MOI of 0.01. Viruses were grown for different
time periods and samples taken at timepoints were titrated to determine viral titre at

each timepoint (TCIDs).
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6.4 Discussion

Establishment of a reverse genetics system for PPRV facilitates the manipulation of
the virus genome to make it either positively or negatively marked (as discussed in
Chapter 4). Further, this study has investigated the use of this full-length cDNA
clone as a viral vector to develop multivalent vaccines expressing foreign
immunogens of other viruses of relevance to small ruminant agriculture in PPRV
endemic regions. It is known from previous studies that altering the transcriptional
gradient in negative strand viruses, including that for PPRV, through the insertion of
multiple transgenes can lead to the further polar-attenuation of genes. Insertion of a
transgene at the 3’ proximal end of paramyxovirus genomes provides a high level
expression at the cost of virus propagation. In contrast, whilst gene insertion at 5’
end has less effect on viral fitness, it can result in inadequate expression of the
heterologous gene (Walsh et al., 2000a; Zhao and Peeters, 2003). In addition, where
expressing extra genes from a non-segmented genome, the overall genome length,
following extension, can have a detrimental impact on ability of a virus to function,
often through the increased likelihood of internal deletion (Rima et al., 1997).
Therefore, a segmented genome approach was chosen for this study PPRV to

develop a multivalent vaccine.

As both PPRV and BTV circulate with a similar epidemiological distribution and a
bivalent vaccine for both viruses would be of great use, a segmented PPRV
expressing a BTV outer capsid protein (VP2) was generated and characterised in
vitro. Following from the published MV and NDV genome segmentation
approaches, a two-segmented PPRV rescued was attempted (pPPRVsegl GFP and

pPPRVseg2bVP2) incorporating both eGFP and the VP2 protein of BTV. The
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heterologous genes were expressed from different plasmids with pPPRVseg1 GFP
consisting of ‘GP-N-P-GFP-M-F-AGP’ and pPPRVseg2bVP2 consisting of ‘GP-
VP2-H-L-AGP’. In this way the genes, and subsequently translated proteins,
required for viable virus production were present across the two segments meaning
that both segments were required for true functionality. For MV whilst a two-
segmented version was efficiently rescued, a three-segment strategy (N-P, M-F and
H-L) led to the production of unwanted satellite bodies (Takeda et al., 2006). For
NDV, a two-segment strategy (N-P-L and P-M-F) that contrasts slightly with the
approach taken in the present study led to a loss of virus yield following extensive
passage (Gao et al., 2008). As indicated, in this study the essential viral proteins (N,
P and L) required for the formation of the RNP complex and efficient viral growth
are located on two different segments. Though each RNA genome segment will be
replicated and transcribed independently, the proteins from each segments produced
in a single infected cell should complete the virus life cycle and will produce
infectious particles. However, for the production of infectious virus during limit
dilution passage the virions should contain both genome segments to enable viable
virus production. Where genetic material for only one segment becomes packaged
the defective particles may be capable of infecting new cells following fusion due to
the presence of both glycoproteins on the envelope of budded virion although the

incoming genetic material will not be sufficient to establish viral replication.

The rescued segmented viruses (rPPRVsegGFP and rPPRVsegGFP+BTV) were
phenotypically similar to the non-segmented wild-type PPRV Nigeria 75/1 in vitro.
The growth characteristics of IPPRVsegGFP were similar to the non-segmented

PPRYV Nigeria 75/1 and to that reported for the recombinant MV and NDV
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segmented viruses (Gao et al., 2008; Takeda et al., 2006). However, the
rPPRVsegGFP+BTV with an additional VP2 transgene of around 3Kbp had a
slightly reduced final yield. The conservation of both the genome segments and
inserted transgenes in the recombinant segmented PPRV over multiple passages
reflects its stability and effectiveness for use as a viral vector. Although the presence
of VP2 of BTV was confirmed in the rescued segmented virus and the expression of
GFP was confirmed by autofluorescence, the expression of VP2 of BTV has not
been confirmed in this study due to the lack of of VP2-specific antibodies for BTV
serotype 1. A polyclonal serum raised against BTV (whole virus) was used in
Western blotting and confocal microscopy but did not detect the expression of VP2
protein either in the rescued segmented PPRV or in the wild-type serotype 1 BTV
infected cells. After confirming the expression of VP2 protein of BTV, the
segmented PPRV needs to be assessed further for in vivo safety, compatibility and
vaccine potency, at least for BTV as recombinant non-segmented PPRV can
provided full protection in goats. This approach could be further extended to express
multiple transgenes from BTV, RVFV and CPV, to generate multivalent vaccines for

the control diseases of small ruminants in PPRV endemic areas.
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Chapter 7 General discussion and further perspectives

PPR is a highly contagious disease, widely distributed in Africa, the Middle East and
Asia where the small scale and marginal farmers are mainly dependent on goat and
sheep rearing for their livelihoods. Outbreaks of PPRV can cause 100% mortality
and morbidity, and as such can severely affect small ruminant production and

sustainability.

PPRYV has caused several serious epidemics over the last 3 decades and since 1993,
sub-Saharan Africa, the Middle East and major parts of the Indian subcontinent have
been considered as endemic, reporting frequent disease outbreaks and huge
economic losses (Dhar et al., 2002). The detection of PPRV or antibodies against
PPRYV has been reported from almost all African countries with the exception of vast
territories across Southern Africa (Libeau et al., 2014). It is unclear what factors
have favoured the emergence and spread of the disease, but millions of small
ruminants in southern Africa, central Asia, Southeast Asia, China, the European part
of Turkey and Southern Europe must now be considered at high risk from PPRV
incursion (FAQO, 2013). The molecular epidemiology of PPRV based on the partial F
and N gene sequence has been routinely used for the detection of virus lineage.
However, these studies are not enough for understanding PPRV evolution and
spread. With the development of advanced sequencing technologies, molecular
epidemiological studies of viruses have started to utilise whole gene, and even
complete genome data. Historically, full sequence data was only available for three
lineages of PPRV (lineage-I, II and V). In this study, full genome data was
generated for all four lineages and was utilised to investigate the evolutionary

dynamics of PPRV through time and space (Muniraju et al., 2014). The increased
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data has enabled a more precise evolutionary and phylogenetic assessment of the
relationships between lineages by reducing the associated estimation errors resulting
in increased confidence in estimates. A Bayesian phylogenetic analysis of all PPRV
lineages mapped the time to most recent common ancestor and initial divergence of
PPRYV to a lineage III isolate at the beginning of 20th century. Substitution rates are
critical parameters for understanding virus evolution because restrictions in genetic
variation can lead to lower adaptability and pathogenicity. The nucleotide
substitution rate throughout the complete genome for PPRV was found to be similar
to that predicted for other paramyxoviruses (10~ to 10 substitution/site/year)
(Furuse et al., 2010; Jenkins et al., 2002; Pomeroy et al., 2008; Wertheim and Pond,
2011). The demographic analysis of PPRV indicated an increased divergence during
the post-rinderpest eradication era, however the recent decline observed in viral
genetic diversity could be due to active efforts in the control and eradication of
PPRV. A phylogeographic approach estimated the probability for the root location of
an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for
lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lincage
IV. This suggests that the origin of PPRV was in western Africa with subsequent
spread to eastern Africa, the Middle East, and Asia. However, the PPRV genome
sequence data representing the entire geographic region needs to be enhanced further

to provide greater confidence in such phylogenetic assessments.

From the perspective of all lineages across endemic areas PPRV has been controlled
using two existing commercially available live attenuated PPRV (Nigeria 75/1,
Sungri 96) vaccine strains. Although these are safe and efficacious vaccines, due to

generally inconsistent vaccination strategies in endemic countries PPR has continued
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to emerge. No tools currently exist that allow serological differentiation between
vaccinated and naturally infected animals. Marker vaccines are a potential solution to
the DIVA concept that may help in PPR control programmes, especially if
eradication efforts increase. Marker vaccines along with companion DIVA tests are
especially required for sero-surveillance during the final stage of any eradication
programme to enable declarations of freedom from disease to be made. Without a
marker vaccine and DIVA test, the time taken and costs incurred in ensuring
serological freedom from natural infection following the cessation of vaccination are
increased significantly. This was exemplified by the rinderpest eradication
programme where serological surveillance in the absence of vaccination was costly
and took many years. The current commercially available PPRV diagnostic ELISAs
target the N and H proteins and detect antibodies in vaccinated as well as naturally
infected animals. However more recently, some DIVA strategies for PPRV have
focussed on developing protein subunit vaccines expressing the PPRV F and or H
gene in viral vectors like pox viruses (vaccinia, Capri pox and fowl pox) and
adenoviruses (canine or human type) (Chandran et al., 2010; Chen et al., 2010;
Diallo et al., 2002a; Herbert et al., 2014; Rojas et al., 2014). Here the absence of the
PPRYV N protein in the vaccine preparation facilitates positive serological
identification of naturally infected animals. However, such subunit vaccines often
require multiple doses and may have reduced efficacy due to: (i) potential pre-
existing immunity to the viral vector (Caufour et al., 2014); (ii) the potential for
short lived antibody responses; (iii) potentially high costs of recombinant vaccine
production. An alternative strategy is to use the existing live attenuated PPRV
vaccine and manipulate a specific region or epitope of a viral protein to obtain

positively and/or negatively marked vaccines.
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Using reverse genetics techniques RNA virus genomes can be modified through
cDNA copies of their genome. Using this technique, a RPV vector based chimeric
marker vaccine was developed for PPRV by replacing the F and H or F, H and M
genes of RPV with those from PPRV. Both chimeric vaccines elicited protective
immune responses in goats challenged with virulent PPRV (Das et al., 2000;
Mahapatra et al., 2006). Despite in vitro and in vivo characterisation, the abrogation
of vaccination during the final stages of the RPV eradication campaign precluded the
use of these chimeric vaccines. However, the establishment of reverse genetics for
PPRYV had been unsuccessful until recently (Hu et al., 2012a; Muniraju et al., 2012).
Previously, only minigenome systems and the transient expression of different viral
proteins had been reported (Bailey et al., 2007). Previous attempts to generate a
reverse genetics system for PPRV had failed, most likely due to errors in the
sequence of the cDNA clone (Bailey, 2006). Certainly, the availability of a correct
complete genome sequence is critical for successful establishment of PPRV reverse
genetics system and recent technological advances have enabled the generation of
full genome sequence with relative ease, as described in chapter 4. Alongside this the
advances in DNA synthesis have enabled the synthesis of full length genomes in a
more efficient manner. Further, commercial genome synthesis has avoided the
introduction of unintentional mutations during cloning and ligation procedures that

may affect the rescue of virus.

As a proof of principle, the full genome cDNA of PPRV of one of the most widely
used vaccine strains (Nigeria 75/1) was synthesised and rescued using helper
plasmids (Muniraju et al., 2015). Three recombinant viruses (rPPRV Nigeria 75/1,

rPPRV+GFP Nigeria 75/1 and rPPRV-C77c¢ Nigeria 75/1) were recovered from the
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cDNA clones. Of these rPPRV+GFP Nigeria 75/1 has attributes that may enable its
use as a positively marked vaccine. The recombinant PPRV Nigeria 75/1 vaccine
strain expressing GFP rescued by Hu et al (Hu et al., 2012a) was reported as an aid
to the detection of CPE through the expression of GFP in infected cells to optimise
the OIE accredited VNT. The expression of a GFP maker will enable greater
confidence in the evidence for virus infection without the need to test for neutralising
antibodies in sera. Further, the creation of GFP tagged virulent PPRV was proposed
as a research tool for the evaluation of host-pathogen interactions as described

previously for measles virus (de Vries ef al., 2010).

It was hypothesised that the approach taken with rPPRV-C77¢ Nigeria 75/1 would
enable the generation of a negatively marked vaccine that would allow
differentiation between vaccinated and naturally infected animals through the
response to the mutated H protein. As the C77 mAb binding site had been mutated, it
was anticipated that only sera from naturally infected animals would compete with
the C77 mAb to bind whole virus antigen whilst sera from animals vaccinated with
the recombinant virus containing the mutated H protein would be less able to
compete and bind. However, whilst this hypothesis worked in an in vitro
immunofluorescence study, the in vivo study demonstrated that although the
vaccinated animals were fully protected against virulent virus challenge, the
antibodies raised against rPPRV- C77¢ Nigeria 75/1 virus in goats were able to bind
to the antigen used in the c-H ELISA indicating incomplete abrogation of the
binding site of the C77 antibody. Alternatively it is possible that the polyclonal
antibodies elicited against alternative, potentially overlapping epitopes present in this

region of the mature protein bound to the H protein present in the whole virus
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antigen preparation used in the ELISA. This could still prevent the binding of the
C77 mAb through steric hindrance. As only three residues were mutated to generate
rPPRV- C77c Nigeria 75/1 it is plausible that further mutations in this area may

enable the fulfilment of DIV A requisites with this approach.

Should this strategy fail, other approaches may be possible to enable generation of a
DIVA vaccine. Such strategies include generation of a virus containing a chimeric N
gene such that the hyper-variable region at the C-terminus of the N protein is not
recognised in an ELISA developed against the PPRV C-terminus of the N protein.
By exchanging this region with that of RPV this could enable the use of an existing
rinderpest recombinant N protein-based indirect ELISA (Parida et al., 2007) to
detect PPRV vaccinated animals whilst the PPR recombinant N protein ELISA
(unpublished data) would detect only naturally infected animals. Although PPRV
and RPV are antigenically closely related, the two ELISAs based on the highly
variable region of the C-terminal of the N proteins of PPRV and RPV have been
shown to be specific and not cross-reactive. In the absence of DIVA, another
approach would be to use large ruminant serosurveillance as an indicator for the
circulation of wildtype virus in areas where small ruminants are regularly vaccinated.
Large ruminants can be subclinically infected and develop antibodies against PPRV
(Balamurugan et al., 2014; Balamurugan et al., 2012a; Khan et al., 2008; Sen et al.,
2014). Sen et al (2014) recently reported the transmission of PPRV from clinically
infected goats to cattle with the recovery of PPRV from these sub-clinically infected
cattle after 3 weeks of direct contact challenge. In developing countries, both large
and small ruminants are generally farmed together within close contact, often sharing

enclosed habitations as well as pasture and drinking areas. Such scenarios provide
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ideal opportunities for the transmission of wild type virus between these animal
populations. A recent study assessing cattle and buffalo populations in an endemic
area of Pakistan (unpublished data) and Tanzania (Lembo et al., 2013) demonstrated
serological detection of PPRV antibodies in cattle and buffalo that may help to
identify PPR virus circulation in such localities in the absence of clinical disease

indicators in small ruminant populations.

A further aspect of this study sought to increase the valency of the current live
attenuated PPRV vaccines by generating segmented versions of PPRV expressing
heterologous proteins from other small ruminant pathogens of importance in PPRV
endemic areas. This was used to evaluate the potential for the utilisation of a single
dose live attenuated vaccine against more than one disease to reduce the cost and
improve the efficiency of vaccination programmes. Paramyxoviruses such as MV
and NDV have been proven to be safe and efficient vaccine vectors and have been
used to develop multivalent vaccines expressing foreign antigen from a wide range
of related viruses (Brandler ef al., 2013; Bukreyev et al., 2005; Nakaya et al., 2001;
Singh et al., 1999). In this study, a recombinant two-segmented PPRV was created,
with one segment carrying the VP2 outer capsid protein of BTV and the other GFP.
The recombinant rPPRVsegGFP+BTV was successfully recovered from the cDNA
clone. This virus needs to be characterised further in vitro for assessment of
transgene expression and in vivo for vaccine safety and potency for PPRV and BTV.
Further, in two additional recombinant viruses the GFP gene on segment one was

replaced with GecGn gene of RVFV and the P32 gene of CPV (Figure 7.1).
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Figure 7.1 A schematic representation of approaches to develop PPRYV vector based (a) bivalent or (b) trivalent vaccines expressing

antigens of GeGn from RVFV, P32 from CPV and VP2 from BTV.
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However transfection experiments to recover virus from the cDNA clones were not
completed due to time constraints. Utilising a combination of PPRV segments
harbouring either the RVFV or CPV antigen on segment one and the BTV antigen
on segment two paves the way for potential bivalent or even trivalent vaccines to be
developed (Figure 7.1). Alternatively, by mixing these rescued viruses a tetravalent
vaccine could be produced for PPRV, BTV, CPV and RVFV and the multivalent
vaccines could be used according to the circulation of viruses in a particular
geographical location. Further work is planned to evaluate this area of study that
could have important future ramifications on the small ruminant sector in PPRV

endemic regions.
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Appendix

I. Solutions and reagents

TAE (Tris-acetate EDTA) buffer (50X)

242¢g Tris
18.61g EDTA
57ml Glacial acetic acid

Make up to 1L with water
TSS solution

12 ml LB (2X) medium

8ml 10% PEG + 60mM MgSO4 (3X)

1.2ml DMSO

2.8ml water
10% PEG+60mM MgSO4 (3X)

90g PEGS8000

192ml water

18ml IM MgSO4
TCM solution

0.25ml IM CaCl»

0.25ml IM MgCl,

0.25ml IM Tris/Cl

Make up to 25ml with water
SOC media

50ul IM Glucose

25 ul IMMgCl»

25 ul IMMgS04

24ml LB (1X) medium
Growth medium

450ml DMEM

50ml Fetal calf serum

Sml Penstrep (Sigma 100,000 IU/ml)
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RBC lysis buffer (10x)

8.02gm NH4Cl1 (ammonium chloride)
0.84gm NaHCO3 (sodium bicarbonate)
0.37gm EDTA (disodium)

Make up to 1L with water.

II. DNA marker 1 kb plus (Invitrogen)

1 Kb Plus DNA Ladder
bp
-12,000

- 5,000

0.9 pg/lane
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III. Primer sequences

List of PPRV genome specific primers used for amplification and sequencing

Name Sequence Name Sequence
PPR-F-P1 accaaacaaagttgggtaagga PPR-R-P1 cgaacaaagataacatgctgatc
PPR-F-P2 gaagagttcaatatgtt(g/a)ttag PPR-R-P2 agtatgagagataccatgaac
PPR-F-P3 tcctetggagctatge(g/c)at PPR-R-P3 gcgatttccgagactagtt
PPR-F-P4 aagattctggagg(a/g)ccagg PPR-R-P4 ttgagagacttgatacattcc
PPR-F-P5 aactctcaagtacagcgttac PPR-R-P5 ggagttaagaacttcttgaat
PPR-F-P6 aggagtgcaaagacgatcc PPR-R-P6 ggagtcattctctttaggct
PPR-F-P7 tccagctaaaacctgt(c/t)ga PPR-R-P7 ttagcatcttgtggaattcc
PPR-F-P8 agtgattgaggataacgac PPR-R-P8 ttagcgctaaacacacttce
PPR-F-P9 tacacgtgggcaactttag PPR-R-P9 agatatcggttaagatcctc
PPR-F-P10 gtcatcatcaacgatga(t/c)caa PPR-R-P10 cctaagttttgtttgatgatg
PPR-F-P11 cgcagaaaggaag(g/c)ag(a/g)ca | PPR-R-P11 ttgcgacccgtgtcatgatg
PPR-F-P12 catcatgacacgg(g/a)tc(g/c)caa | PPR-R-P12 tggtcttacattcttggttatc
PPR-F-P13 ctatatcaacaatga(g/a)cttgtc PPR-R-P13 aatctcttgtgtccacatatgt
PPR-F-P14 tgagcccattgct(t/c)cagga PPR-R-P14 actgccgacctgtattgtc
PPR-F-P15 gggcttgtcacattaatatgct PPR-R-P15 | atggtgattgacctttcgtc
PPR-F-P16 tccagagtcggct(g/t)aatac PPR-R-P16 gagaaatgagctcttgttac
PPR-F-P17 gggattattcggaagaacata PPR-R-P17 aaaatgaaggaggtcgagtc
PPR-F-P18 cattttgcaatggcac(a/g)gga PPR-R-P18 tggaaacatcataagtggcty
PPR-F-P19 tctctgaggatagagtgttt PPR-R-P19 ggtctggtcttcaag(a/g)acat
PPR-F-P20 tatcaaagatagctgcatatct PPR-R-P20 aattatcacaacgaggtctc
PPR-F-P21 tcttattgatgggttcttcc PPR-R-P21 ctgcatgccctttcatcata
PPR-F-P22 ctgtgtatagacaa(c/t)tggaa PPR-R-P22 ttacctgacaggcccgca
PPR-F-P23 aagataaccaccgaggtg PPR-R-P23 | attagggacactgtccag(a/g)g
PPR-F-P24 gaatcgcctcactagtgca PPR-R-P24 gatataaggatctgttggaaa
PPR-F-P25 gggtctcaattatcttaacatg PPR-R-P25 | tggtctaagatttcatgtgc
PPR-F-P26 ttgacaaagaaaggg(c/a)agtgt PPR-R-P26 taggcccatgagtaaactg
PPR-F-P27 agtctctacatccaccaac PPR-R-P27 tccaccaaatgtctcctgtg
PPR-F-P28 gagaaagatcacatgaatgaa PPR-R-P28 acagagatgtttggcttgaat
PPR-F-P29 ctcacacattacatcaagg PPR-R-P29 cagcattgaaccggaacc
PPR-F-P30 caacagcggggt(a/g)acagc PPR-R-P30 ggcctttaatcctatcataataag
PPR-F-P31 ccattaagcaaagcataat(c/tjaga | PPR-R-P31 aagctgggaatagatacttatcc
PPR-F-P32 ggagggaatggttgttcac PPR-R-32 accagacaaagctgggaata
PPR-F-P12b | agggacccgcccgagaacgt PPR-R-P21B | gaatcccactcattctticagtgca
PPR-F-P20B | caagacagagatgagatcaatga PPR-R-P11b | catgatgtttacacatggatgtgccg
PPR-F-P11b | ccgaggccaggegec(g/a)ggea PPR-R-P10b | ggaggtggtccte(c/t)cteggt
PPR-F-P5B ggcacagacgggaactcagt PPR-R-P9B | cttgggtcgggt(c/t)tgtgct
PPR-F-11C | tTgccctcgaccaccggga PPR-R-P20B | tcgtgggtgat(a/g)aatacg
PPR-F-15B tcaccatgtccgcacaaag PPR-F-25B attatgattatgaacaattc
PPR-F-P21B | acctacaattccatcactgaagga PPR-F-29B | ctggctgcgta(c/t)aaggaagttc
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List of RACE primers used to determine the 3’ and 5’ end of PPRV

Name Sequence

P5-1 (5'-RACE) caacagcaggcagcgtgaat

P5-2 (5' nest 1) cggcactaatcagacaaacaat

P5-3 (5' nest 2) atccaaagctgagaaactgctg

P3-1 (3'-RACE) aacgggtaatgatggacgagtc

P3-2 (3' nested) cgctttgtcttigttcctcttg
gaagagaaggtggaaatggcgttttgg

DT88 (adaptor) (5'-phosphorylated, 3'-end inverted dA)

DT89 (anti-adaptor) ccaaaacgccatttccaccttctcttc

List of primers used for helper plasmids (N, P and L) cloning

Name Sequence

N-ORF-For-Nig75 gaccatggctactctcc
N-ORF-Rev-Nig75 gtcttatcagctgaggagatcc
P-ORF-For-Nig75 accaccgatggcagaagaac
P-ORF-Rev-Nig75 ggattgttacgctgcettgg
L-ORF-Sall-For-Nig75 aggttgtagtcgacatggactcactatcagtc
L-ORF-Sall-Rev-Nig75 | agatgtatgtcgacttaacctctgacgagtgc

List of primers used for C77 monoclonal antibody binding site directed
mutagenesis

Name | Sequence

i) PPRV Ng75/1 H Y540A 1542A Y543A

Forward primer gagcatgcaatcgtggcctatgccgcetgacacgggt

Reverse primer acccgtgtcagcggcataggccacgattgcatgctc

i) PPRV Ng75/1 H R547A S549A S550A

Forward primer gacacgggtgcctcagcagcttacttctacccagtc

Reverse primer gactgggtagaagtaagctgctgaggcacccgtgtc

i) PPRV Ng75/1 H Y540A 1542A Y543A R547A S549A S550A

Forward primer gagcatgcaatcgtggcctatgccgctgacacgggtgcctcagcagcttacttctacccagte

Reverse primer gagcatgcaatcgtggcctatgccgetgacacgggtgcectcagcagcttacttctacccagte

List of primers used for PPRV genome segmentation and insertion of VP2-BTV

Name Sequence

Seg1F BsiWI +3 gcgcgtacgtgagatcactgtagtaaatcgatatacatctge

Seg1R Acll Cataacgttagatcttgctcctect

Seg2F Acll Acgaacgttatgtccgcacaaaggga

Seg2R Notl accatcgctcgaggeggecgccgagcecat

Seg2VP2F Acll gagcaagatctaacgttatggatgaactaggcatcc

Seg2VP2R Pacl atgtttaattaatgatttggacggagggtgcgtctgcgctcatacgttgagaagttttgt
Seg2F Pacl tcattaattaaacatcgcccgccagtattataaaaaacttaggacgaaaggtcaatcacc
Seg2R Notl gatggctcggcggcecgcectcgagegat
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IV. White blood cells count (per mm? blood) in goats during post vaccination

and post challenge period

rPPRV-C77 Nigeria 75/1

rPPRV Nigeria 75/1

Unvaccinated control

Period " Goat1 | Goat2 | Goat 3 | Goat4 | Goat7 | Goat 8 | Goat 9 | Goat 10 |Goat 5|Goat 6/Goat 11] Goat 12
0dpv 13600] 11800] 14800] 10340] 15400 12040] 15800  9240| 14640 14900] 11400 11880
2dpv 12900] 11885] 12000] 10200] 13180 11100] 16260] 9220 12900 14000] 11550 12000
4dpv 11780] 10040] 11680] 8160] 10080 9510] 10940]  8160| 13000 14200] 13960 10080
6dpv 10560]  9260] 11680]  7480] 8080| 8520] 11880  7880| 13740 15380 10680 10800
8dpv 12250] 12960] 10860]  9240] 12560 9620] 12820  7720| 14080 14420] 12040 12140
10dpv | 13600] 12820] 10520] 9400] 12060] 10380] 16500|  8680| 14780 16460] 11860 11060
12dpv | 12260] 11440] 11940] 10180] 14640 8800] 16020]  9780| 15360 14980 12440 12420
15dpv | 13040] 12340] 12100] 10580] 14540 9940| 16100]  9400| 14140 14340] 13420 12200
22dpv | 14060 12760 13460 10080] 14380 11000] 15540]  8700| 13600 14540 12460 12200
28dpv/

odpc 14880 13240 11400] 10420 14440 11680 17500|  8200| 13900 14660| 11860 11980
0dpc | 12880 | 13240 | 11400 | 10420 | 14440 | 11680 | 17500 | 8200 |13900 14660 11860 | 11980
2dpo | 10540 | 12380 | 12920 | 10320 | 14820 | 12280 | 13160 | 8280 |13500| 14620 12520 | 11780
4gpe | 12900 | 11580 | 12180 | 11020 | 14220 | 11240 | 17000 | 9780 | 5900 | 6820 | 5600 | 6060
6dpc | 930 | 8980 | 8640 | 8100 | 9040 | 7580 | 12820 | 5780 | 4020 | 4340 | 3080 | 3380
6dpc | 10780 | 10480 | 9200 | 8560 | 12340 | 8900 | 11720 | 7680 | 2640 | 4640 | 3920 | 3900
10dpc | 10560 | 9900 | 10060 | 9100 | 11800 | 8400 | 11080 | 5940 | \u | Na | na | NA
12dpe | 11280 | 10480 | 10260 | 9360 | 11300 | 8520 | 11860 | 6920 | \u | Na | nA | NA

* dpv, days post vaccination; dpc, days post challenge; NA, not applicable.
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V. Ct-values from reverse-transcription real-time PCR in the clinical samples of vaccine-challenge experimental animals during

challenge
Ct-values*
Treatment | Animal
group no 0dpc 2dpc 4dpc 6dpc 8dpc 10dpc 12dpc 14dpc
N N E N E N S E N S E N S E N S E N S
rPPRV- G2 - - - - - - - - - - - - - - - - - - -
C77 virus G3 . _ _ - - . - . . - - - - - - - - - -
G4 - - - = = 37.7 = = = . = = . . = = = =
G7 - - - - - = - = = 327 - = = - - = - = =
PPRV G8 - - - - - - - - 38.9 - . 39.7 = . . = = = =
Nig75/1
vaccine G9 - - - - - - 33.2 - - - - - - - - - - - -
G10 - . . . . - . - - . . - - . . - - - -
G5 = - 375 - 292 | 300 | 252 | 242 | 219 | 192 | NA NA NA | NA [ NA| NA | NA | NA | NA
Control un- G6 - - 35.8 - 269 | 295 | 233 | 251 | 215 | 194 | NA NA NA | NA [ NA| NA | NA | NA [ NA
vaccinated G11 - . - | 405 304 | 31.8 | 281 | 255 | 270 | 235 | NA | NA NA | NA [ NA| NA [ NA | NA | NA
G12 - 37.2 386 | 37.3 285 | 288 | 265 | 276 | 251 | 206 | NA NA NA | NA [ NA| NA | NA | NA | NA

*Ct-value more than 40 are not considered and represented as

-'; Eye sample (E); Nasal Sample (N); Saliva sample (S); Days post-challenge (dpc); Not applicable (NA).
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VL. PPRY specific neutralising antibody titres detected in serum of individual

vaccinated and unvaccinated challenged goats.

Treatment Animal Neutralisation titre (log1o)
group no
O0dpv 8dpv 15dpv | 28dpv 8dpc 14dpc
G1 0 2.8 416 | 531 5.31 5.31
rPPRV- 1 G2 0 283 | 436 | 476 | 4.36 5.31
C77c
Nigeria 75/1 | G3 0 291 | 561 5.01 5.01 5.01
G4 0 266 | 436 | 531 5.01 5.36
G7 0 283 | 416 | 506 | 527 5.27
PPRV | G8 0 266 | 416 | 531 5.01 5.31
Nigeria 75/1 | 9 0 291 | 436 | 476 | 5.36 5.01
G10 0 251 | 4.31 516 | 5.31 5.31
G5 0 0 0 0 3.31 NA
control | |-G8 0 0 0 0 3.06 NA
G11 0 0 0 0 3.11 NA
G12 0 0 0 0 3.06 NA

Days post-vaccination (dpc); Days post-challenge (dpc); Not applicable (NA).

VII. Plasmid sequences of un-segmented and segmented PPRV genome

pPPV+GFP Nigeria75/1

aataagatgatcttcttgagatcgttttggtctgcgecgtaatctcttgectctgaaaacgaaaaaaccgecttgcagggeggtttt
tcgaaggttctctgagctaccaactctttgaaccgaggtaactggcttggaggagcgcagtcaccaaaacttgtecctttcagttt
agccttaaccggcgcatgacttcaagactaactcctctaaatcaattaccagtggectgctgeccagtggtgettttgecatgtettt
ccgggttggactcaagacgatagttaccggataaggcgcagcggtcggactgaacggggggttcgtgcatacagteccagettgga
gcgaactgcctacccggaactgagtgtcaggcgtggaatgagacaaacgcggccataacagcggaatgacaccggtaaaccgaaa
ggcaggaacaggagagcgcacgagggagccgccagggggaaacgectggtatctttatagtecctgtegggtttegecaccactga
tttgagcgtcagatttcgtgatgcttgtcaggggggcggagecctatggaaaaacggectttgeccgeggecctctcactteecectgtt
aagtatcttcctggcatcttccaggaaatctccgecececgttecgtaagecattteccgetecgecgecagtcgaacgaccgagegtage
gagtcagtgagcgaggaagcggaatatatcctgtatcacatattctgectgacgcaccggtgcagecttttttectectgecacatg
aagcacttcactgacaccctcatcagtgccaacatagtaagccagtatacactccgctagecgectgaggtcccgcageccgaacgac
cgagcgcagcggcgagagtagggaactgccaggcatcecctgggeggttctgataacgagtaatcgttaatccgcaaataacgtaaa

aacccgattcgg gt atgggg gtttagggaaadagcattt ag atttaagggcgcctgtcactttgett
gatatat aé aac tt agaaaaa @ nacdgcagtttadataagatacgttgctttttcgattgatgaaca
cctataat®aaa t C 3 tatgatttttbgta acaata t tgttaaagagaattaagaaaataaa

tctcgaaaataataaagggaaaatcagtttttgatatcaaaattatacatgtcaacgataatacaaaatataatacaaactataa
gatgttatcagtatttattatgcatttagaataccttttgtgtcgcccttattcgactccctatagaagttecctattctctagece
taccgttgctccggtgatcctgcaccgecgeccaattctaatctaggecgaggatcttcagegtacgecggagtacacgegcaaagg
ccggacatcagcttaacgcgccaattgecgegtegectatgcatggggecgectagecatgtaaacgtggtecctgtectaactggte
cggccctagtggggtaattccttcgageccgggttcgagcaatttgatattctgtgtaaaactccgectaaggtgetggttegeca
atttgtggagcgctttgaacgtccgtcgggcgagaagattgecgagetgtgeggectgagttgacgtatctgtgectggatgattact
cataacggcaccgctatcaaacgtgccacgttcatgtcctacaatttttaatacgactcactataaccagacaaagctgggtaag
gatagttcttataatgactatagactggcaaacttaggagtaaagatcctactgtcggggagaggaggaggagcaagatctaacg




tcttagcacaagtttggatcctcctggeccaaggecggttacggcaccggatacggcagectgactcagaactgagaaggtgggttaa
atacacacaacaaaggagagtgattggggaatttcgccttgacaaagggtggctggacgcagtccgcaacaggattgcagaagat
ctatcacttcggcggttcatggtatctctcatacttgacatcaaaaggacccccggcaacaagccaaggattgcagaaatgatct
gcgacattgacaactatattgtagaagccggactcgccagtttcattcttactatcaaatttggtattgaaaccatgtatcecctge
attaggccttcacgagttcgeccggggaattgtccactgatgagtccttgatgaacttgtatcaacagectaggagaggttgecacce
tacatggtgattctagagaactcaattcagaacaagt tfcaggagcctatcctctcecctctggagectatgecgatgggtgtecg
gagtcgagttggagaactcaatggggggcctgaactti@g gtcatattttgacccggecctattteccgtctcggacaggagat
ggtcagaagatctgcaggaaaggtcagctctgtaatcdEgg®@gagcttggtatcacagcagaggaagccaaactagteteggaa
atcgcctcacagactggggatgaacgaaccgtcagagggactgggcctcgacaggcecgcaggtctccttectecagecataaaacag
atgagggagagtcgcctacaccagcgaccagagaagaagtcaaagctgcgatcccaaatgggtccgaaggaagggacacaaageg
aacacgctcaggaaagcccagaggagaaactcccggccaactgcttececggagatcatgcaagaggatgaactctegegagagtet
agtcaaaaccctcgtgaggctcaaagatcggctgaggcactcttcaggectgcaggeccatggccaagattctggaggaccaggagg
agggagaagacaacagtcagatctacaacgacaaggatctcctcagctgagcagacgcacccteccgtccaaatcattaattaaac
atcgcccgccagtattataaaaaacttaggacccaggtccaagcaaccacacatcgacaccccagceccaatcgagtagagaccacce
gatggcagaagaacaagcataccatgtcaacaagggactggaatgtatcaagtctctcaaagecctctcccececggatctatceccacce
atcaaagatgcccttgagagctggagagaggggcttagcecccctcaggecgtgcaacaccgaaccctgatacgtccgagggagacce
atcagaatatcaaccaatcatgctcaccagcaatcggatcagacaaagtcgacatgtctcctgaagataatctcggatttagaga
gatcacttgtaatgacagtgaggctgggctcggaggagttctggataaaggatccaactctcaagtacagecgttactatgtttat
agccacgggggtgaagagattgaaggactcgaggatgctgactctctecgtggttcaagcaaatccteccagttactgacaccttca
atggaggagaggatggatctgacgacagcgatgtggactctggcccagatgatcccggcagagatecctectatatgaccggggate

tgctgccggcaatgatgtctctaggtcaacagatgtcg ttagaaggtgatgacattcaagaagttcttaactcccagaag
agtaaaggaggaagattccaaggcgggaaaatcttgcg cggaaatacccgatgtcaagaactctagaccatcagcccaat
caattaaaaagggcacagacgggaactcagtcttatct cggtgacagagtgttcatcgataagtggtgcaacccaagctgt

gccagagtccagatgggagtcatcagagcgaaatgecgt@gtggggagtgtccccaaatctgecgaggagtgcaaagacgatccag
gggttgacacaagaatctggtaccatagcatcactgactcagcctaaagagaatgactccgagtttgagtatgaggatgatctat
tcacagagatgcaggagattcgtgcaagcattgctaagatccatgatgacaacaaaactatcctctcaaaacttgattctctact
gttattgaaaggagaaatcgatactatcaagaaacaaatcagcaaacaaaatataagtatatctaccattgagggccatctatcc
agtataatgatagccatcccgggctttgggaaggacatcaaggacccaacatctgaggttgagttgaacccggatttgagaccta
taatcagccgtgattctggcagggctcttgecggaggtcctcaagaaaccecgectgttgataggtctcagaaaagcggaatcaaagt
caactccggttcaaagggtcagctccttaaggatctccagctaaaacctgtcgacaaacaggcaagctctgcaatecgagtttgtt
ccatctgaccatgaatcatccaggagtgtcatccgctccataatcaagtcgagcaagecttaacattgatcacaaggactatctte
tagatttactgaatgatgtgaaaggctccaaggatcttaaggaattccacaagatgctaacagccattcttgeccaagcagecgta
acacatcctataatcaacatctcatactcggttgaaaacatcctctacgcgtggctattacaaaaaacttaggagcaagggcaac
tgagcttcacagacaagatggtgagcaagggcgaggagctgttcaccggggtggtgeccatecctggtecgagectggacggecgacgt
aaacggccacaagttcagcgtgtccggcgagggcgagggcgatgccacctacggcaagctgaccctgaagttcatcectgecaccacce
ggcaagctgcccgtgccctggecccaccctegtgaccaccctgacctacggegtgcagtgettcagecgectacceccgaccacatga

agcagcacgacttcttcaagtccgccatgeccgfaaggcgacyg gagcgcaccatcttcttcaaggacgacggcaactacaa
gacccgcgccgaggtgaagttcgagggecgacdec g a atcgagctgaagggcatcgacttcaaggaggacggcaac
atcctggggcacaagctggagtacaactacaa a@aacdtctatatcatggccgacaagcagaagaacggcatcaaggtga

acttcaagatccgccacaacatcgaggacggcagcgtgcagctcgecgaccactaccagcagaacacccccatcggecgacggecce
cgtgctgctgcccgacaaccactacctgagcacccagtccgeccctgagcaaagaccccaacgagaagcgcgatcacatggtectg
ctggagttcgtgaccgccgecgggatcactctcecggcatggacgagetgtacaagtgatgacatecctataatcaacatctcatact
cggttgaaaacatcctctacgcgtggctattacaaaaaacttaggagcaagggcaactgagcttcacagacaagatgaccgagat

gaaactggtattttacaacaacact

ctae

ccaggtttgcaatgcagtcaacc

agataatggttattatagtgtccc
gagaa
aactttagaagaaagaagaacaagg
gaggae
tcctatgcet écccctaa'gga att

“ggcacaaaccct

ggtggaacaagtctcca

F'ccatgcacagctgqqgt:
g tctggcgggcagagtgccgaatag
aattccgtgtctacgacgacgtcatcatcaacgacgatcaaggcctgttcaaga

gggaaaatgagcaaga

accgatat

aaaa gtcttacagccatcagtaccccaag
,~t11ttggccggccgggccacggaccc
acccccagggagaggccttcctccctcccgtccaaaacacacaccccaaggttccccgaaacagcgccgacacagccacccctct
ggcggaacgaggccgaacccceccaacaaactcecgectccaggggggggeccccecccacgacccgecgggegecgaccgegegageeyg
gcgagacacccccaagaggccccgacgaagaccgggcaaccctececcccagaaaacggeccaccaacacacccgaggccaggcgec
gggcacccccagccccgcecaccggcgggacaggaggacaagacggggtcececcccaaccaaagggaccaccagggaagggtecgece
gacccagcacagacccggcccaaacaaagcagacccccaagacgaaatecgeccggecggecccattcatcatcaaacaaaactta
ggggtcaagtccagacgacagcgcgcggtccgeccaggcagcaagccgcagaaaggaaggagacaagaccggcceccggaaggaggac
acccaaccacagaaacccccaacaccaggggaggagccccccctceccacacggcggaggaacgggcgagggacaccgaggagaacce
cgatcgggagccaggagccggagacgccagcggtaaacaggcecgggcacacatccgacaccaccggaggaccagagaagggcceg
accccgcgtggacccgacggcaggggatctaaccccgecacaaagagaggcgagaaccctcecccececccgecacacaaccggcagaca
gaccgagggaggaccacctcccaaccagacaggcggctctecccgcagecgagecgcaggtcccaagaagaggacacccccgaaac
ctcccagaaccccecteecgectcececggecgecgggacaggagectcecgecgeccaaaaaccagagtcaccgagageccaaccaggggteece
ccccaatcecctecececggegeccteccacagaggctccagcaaagtececctecggeccgacgaccecctgcaggcgcgccaagagaaace
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caccaaaggacgtccagtacatccatgtataaacatcatgacacgggtcgecaaccttagtatttctgtttecttttcccaaacact
gtcacgtgccagattcactggggcaatctatccaagatcgggattgtaggaacggggagtgccagctacaaggtgatgactagge
caagccaccaaactctagttataaagttgatgccaaatataacagccatcgacaattgtacgaaatcagagatttcagagtacaa
aagattgctgatcacagtgttaaagcctgtagaggatgccctgtcagtgataaccaagaatgtaagaccaattcaaactctaaca
cctgggcgcaggacccgcecgttttgtecggagetgttectggeccggagtagcacttggagtcgecgacagecgectcaaataactgecg
gagtcgcactccatcagtcattgatgaattcccaagcaattgaaagtttaaaaaccagtcttgagaagtcgaatcaggcaataga
agaaatcagacttgcaaataaggagaccatactggcggtacagggcgtccaagactatatcaacaatgagcttgtccectetgtt
catagaatgtcatgtgagcttgtaggtcacaaactcagtctcaagctccttaggtattataccgagatcctgtctatattcggge
ctagccttcgagacccgatagctgctgaaatatcaatccaggcactcagctatgcattaggecggagacatcaataaaattctgga
caagcttgggtatagcggcggggatttecttgctatcct@oaaagcaaggggataaaggececcgggtcacatatgtggacacaaga
gattactttataattcttagcatagcctacccaacctta agatcaagggggtgatagttcataagatagaagctatatcct
acaatattggggcacaggaatggtatactactatcccta@atatgtagccactcagggatatctgatatcgaatttcgatgagac
gtcatgcgtcttcactccagaggggacagtctgcageccagaatgecgttgtatccaatgageccattgettcaggaatgecttcagg
gggtcgacaaaatcgtgcgccagaaccctagtttcagggaccacaagtaatagatttatcctatcaaaagggaacttgattgcaa
attgtgcgtcagttttgtgcaagtgttacacaacggagacagttatcaaccaagatcctgataaactactaactgttatageccte
cgataagtgtcccgtagtcgaggtggatggagtgacaatacaggtcggcagtcgagagtacccagattctgtatacctacatgaa
atagacttaggcccagccatctccctggagaaactggatgtaggcaccaatttaggcaatgcagtcacaagactggagaatgcaa
aggagctactagatgcatcagaccagatactgaagactgttaaaggggtacctttcagtggcaatatatacatagcactggcagce
ttgcattggggtatccctagggcttgtcacattaatatgctgectgtaaggggagatgtaggaacaaggagattecctgectccaaa
atcaacccagggctcaaacccgacctaaccgggacttcaaagtcgtacgtgagatcactgtagttagaataacccgaatcatcca
gcatcacacatttaaatgtgcgacacaagcagtcagaggacgcagaagattcaacttccgatcaccgaccagaccccactctacg
ccctattacacattggtcatcaaacaaaacttaggacgaaaggtcaatcaccatgtccgcacaaagggaaaggatcaatgectte
tacaaagacaatcttcataataagacccatagggtaatcctggatagggaacgcttaactattgaaagaccctacatcttacttg
gagtcctactggtaatgtttctgagtctaatcgggctgctggeccattgcagggatcaggecttcaccgageccaccgttgggactge
ggagatccagagtcggctgaataccaacattgagttgaccgaatccattgatcatcaaactaaggatgtcttaactccectgttt
aaaatcattggtgatgaagtcggcatcagaattccacagaagttcagtgatcttgtcaagttcatctccgataagattaagttcce
tcaaccctgacagagaatatgattttagggatctccggtggtgtatgaatccccctgagagagtcaaaattaactttgaccagtt
ttgtgaatacaaagccgcagtcaagtcagttgaacatatatttgagtcatcactcaacaggtcagaaaggttgecgattattgact
cttgggcccggaacaggctgtctcggcaggacagtaacaagagctcagttctcagagecttacgctgaccctgatggacctggatce
tcgagataaagcacaacgtgtcctcagtgtttaccgtagtcgaagagggattattcggaagaacatatactgtctggagatccga
caccggaaaaccgagcaccagtccaggtattggccattttttaagagtcttcgagatcgggectggtgagagatctcgagetgggt
gcccctattttccatatgaccaactacctcacagtaaa@atdagtgatgactatcggagectgtecttttagcagtaggggagttga
agctgacagccctatgcaccccatctgagactgtgac tgagagtggagttccaaagagagagcctcttgtggttgtgat
actcaacctagctgggcctactctagggggcgaactaticagigtattgectaccactgaccccacggtggagaaactctattta
tcctcacatagggggattatcaaagataacgaggccaattgggtagtaccgtcgaccgatgttcecgtgatcttcaaaacaaaggag
aatgtctggtggaagcatgcaagactcgacctccttcattttgcaatggcacaggaataggcccatggtcagaggggagaatccce
tgcctacggggtgatcagggtcagtcttgacttagctagtgacccgggtgtagttatcacttcagtgtttggeccattgatacct
cacctatccggtatggatctttacaacaatccgttttcaagagctgcatggttggectgtaccaccttatgagcagtcatttctag
gaatgataaatacaattggcttcccggacagagcagaggttatgccgcacattttgaccacagagatcagagggecctcgaggtecg
ttgtcatgttcctatagagttgtccagcaggattgatgatgatatcaagatcgggtccaacatggttgtattgeccgacgaaggac
ctgaggtacataacagccacttatgatgtttccaggagcgagcatgcaatcgtgtactatatctatgacacgggtecgctcatcat
cttacttctacccagtccgattgaatttcaggggcaatcctctctctctgaggatagagtgttttcecctggtatcataaggtgtyg
gtgctaccatgattgtcttatatacaacaccataacaaacgaagaagtccacacgagagggctgaccggtatagaggtaacatgt
aatccagtctgagtagagctgcaaccatcgctcgaggecggecgecgagecatcececctagteccaagcagecataccectgggacacte
agcagcacaacccagccaacaatgttataaaaaacttaggagccaaggttgtaggagccatggactcactatcagtcaatcaggt
cttgtaccctgaggtccatctagatageccctattgtcacaaacaaactagttgccatceccttgaatactcggggatcgaccacaac
tatgttcttgaagaccagacccttatcaagaatattagatatagactggggtgcggtttttcaaatcaaatgatcatcaataata
ggggggtaggtgaaacagtcaattccaaacttaaaagttacccccgtaattgtcatatcatatacccagactgcaataaggattt
gttttgtatcaaagatagctgcatatctaggaagctctcggagctattcaagaagggtaattccttgtactctaagataagtcac
aaggtactggattgtcttaagagagtcaacgggaaattaggcctgggcacagatcttactcacggecctgaaggagggtatceccteg
acttggggttgcacatgcatagctctcaatggttcgagacctttctgttctggttcactatcaagacagagatgagatcaatgat
caaagaacagtcccatatatgccacaagaggaggtat@acccaatttttgtgtcgggggatgcattcgaggtgctegtatcacga
gacctcgttgtgataattgataagaacacccagtatg@cttctacctgacatttgagttggtccttatgtattgtgatgtcatag
agggcagacttatgacggagacagccatggctataga@cagagatattcagagctcctaaaccgggtcagatacttgtgggatct
tattgatgggttcttcccaacactgggtaacaccacataccaagttgttgctctgecttgaaccactgtecgttggettatcttcaa
cttcaggatgtcactctagagttaagaggtgcttttttggaccactgcttcaaagaactttatgagatactggagcattgtggceca
ttgacacggaaggtacctacaattccatcactgaaggattggattacgtatttatcacccacgatatacacttaactggggagat
tttttcattttttcggagtttcggacacccccgectecgaageggtcaccgectgcagagaatgtcagaaaacatatgaaccaaccg
aaggtaatcagttatgagactatgatgaaagggcatgcagtattttgcgggataatcataaatggttttagggaccggcacggeg
gcagctggccccecctgttgecattgeccagaacatgecttectgectgegatccggaatgegcaggecatececggtgaaggactgacccatga
cctgtgtatagacaactggaagtcctttgttggattcagatttggctgcttcatgccgectcagectagatagtgatttgaccatyg
tacctcaaagacaaagcactggctgcactgaagaatgagtgggattcagtttacccgaaagaatacctccgttataatccaccta
gagggacagagtcaaggcgactggtagaggtgttcctgaatgactccagectttgatccttataacatgataatgtacgtggtgaa
tggctcctaccttaaagaccctgagtttaatctctcatacagecctaaaggagaaagagataaaagagacagggcgattgtttgece
aaaatgacctacaagatgcgggcctgtcaggtaattgctgaaaatctgatatcaaatggtgttgggaagtatttccgagacaatg
ggatggcaaaagacgagcatgacctaacaaaagcccttcacactctagcagtctcaggtgttecctaagaataacaaagataacca
ccgaggtgggcctcccagaaggaccacaagccgagagatgagatcaagccaagacatcaacacacaaaatagagacaagatccaa
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gggggccctatgtacaactacttgcgatgccaaccgaccggceccctgatcagggtgagtcatacgagactgttagtgecattcatca
ctgctgaccttaagaagtattgcctaaattggagatacgagacaatcagcatatttgcacagagactgaatgaaatatatgggtt
gccatccttctttcaatggttacacagggtattggaaaaatccgtgectctacgtcagtgatccgcattgececctecccgacttagat
gatcatatccctctggacagtgtccctaatgecccaaatattcatcaagtacccaatgggcggagtagaaggttattgtcaaaaac
tatggacaatcagtactataccttacttgtatctggcagcctatgagagcggagtaagaatcgecctcactagtgcaaggtgacaa
tcagacaattgcagtgacaaaaagagttccaagttcttggeccttattcactaaaaaagagggaggcatccaaagcagctcaaaat
tacttcgtggtcctaaggcaaaggttgcacgatgtaggtcatcacttaaaggctaatgagaccatagtatcttctcacttttttyg
tatactctaaagggatttattatgacggcctgttagtctcacaatcactaaagagcatcgccagatgtgtcttctggtccgagac
tattgtggatgaaaccagagcggcctgcagcaatattgcaacaactatcgccaagagtatagagaggggttatgataggtaccte
gcatactctttgaatatcctcaaaattttccaacagatccttatatctcttgacttcacgattaacacaacaatgactcaagatg
tcgtggcaccgatcatcgagaacggtgatttactaataaggatggcactcttgccagcacccattgggggtctcaattatcecttaa
catgagcaggttatttgtgagaaatatcggtgacccggtcacttcctccatageccgacctgaagaggatgatagececgectgggeta
atgcctgaagaaacattgcatcaagtgatgacccagaccccgggagaatcatcctacctcgattgggcaagtgacccttattcetyg
ccaacctaacctgcgtacagagtataactcgccttctcaagaacatcactgcacggtatattttaatcagcagecccaaatccgat
gctgaaaggattgtttcatgaggggagtagagatgaagacgaagagcttgcgagtttcttgatggatcggcatataattgttceccg
agagctgcacatgaaatcttagaccatagcataaccggagcaagagaagctatageccgggatgttggacaccaccaagggtctga
ttagaacaagtatgaagcggggtggcctcacccctcgagtattagecccgectttccaattatgattatgaacaattcagatccgg
aataacattattgacaaagaaagggcagtgttatctcattgacaaggactcgtgctcggtgcagectecgectatageccctgagggac
cacatgtgggccaggttagctcgcgggagacctatctatgggttggaggtgectgatatactggaatcgatgaacggctacctta
tcaaacgccatgagtcctgtgccatctgtgaaacgggctcaagtcactacgggtggtttttecgtccectgecagggtgecagettga
cgatgtctcaagagagacttcggctcttcgtgtaccttatgtcggatcaaccactgaggaaaggacagatatgaaacttgectttce
gttagatctccaagccgagccctcaaatcagcagtcagaattgccacagtttactcatgggecctacggggatgatgagaaatcat
ggagtgaagcttggatgctagctaggcagagagctgatatcaccttagatgaattgagaatgatcactccagtctctacatccac
caacctagcccatcggttgagggatcggagcacccaggtgaaatattcggggacatceccttgtgagggttgcaagatacacaacc
atctccaatgacaatttgtcatttgtgatatctgagaaaaaagtagataccaacttcatttaccagcaagggatgctgctcggtce
ttgggatccttgagaatctcttcagattagaggccaccacaggggtatccaacacagtgctacacctacacgtggaaacagaatg
ttgtgttgtacccatggttgatcacccaaggataccgagtctccgtaatattaaagttacgaatgagctatgcacaaaccctectg
atctacgacaggtcccccatcatagaacacgatgcaactcgattatactcacaaagccacaggagacatttggtggagtttgtta
cctggtcaacaagccagctttatcatatactggccaaatctacagcaatgtccatgattgagttgatcacaagatttgagaaaga
tcacatgaatgaaatagccgccctgattggcgatgacgacatcaacagtttcatcacagaatttttgectagtagagecccagattyg
tttatagtttaccttggccagtgtgctgccatcaattgggecttttgatatacattatcatcggeccctecggggaagtaccagatgg
gggaactcctctactccttactctctcggatgagcaaaggagtatataagatcttcactaatgctctgagtcaccctaaagttta
caagaaattttggcgaagtggtgtaattgagccgattcatggcccatccctagatacacagaatttacatgtcactgtctgtgac
atgatatacggatcatacgtcacctatctggatcttttgctgaatgatgagctagatgattacccgtatttgectctgecgagagtg
atgaggacgtggtcacagacaggttcgacaacattcaagccaaacatctctgtgtactggccgatgtctactgcagectccaagag
atgtccctcgatcatcgggatgtctecctatagaaaaatgcaccatcctcacacattacatcaagggagaatcggtacaatcceccg
tccgggatctcatggaacactgatccecttgtagtagatcattactcatgectctctgacctaccttegecgeggttceccatcaaac
aaatcaggttgagagtggatcctgggtttgtattcgaggcgttgacagacatcgacttcaaacagcctcgcaaggctaagttgga
tgtatcggttgtggggttgactgatttttctccceccttgggataacgtcggtgattttctagggactatcaacacattgaggcac
aatctgcccgtcaccggaaccggggtctcgaactatgaagtccacgecttatcgtagaatcggectgaattcatcagecatgttata
aagctgtagagatctccacgttaatcaagtcatctttagaagtcggagagaatgggttgttcttaggagaaggttccggttctat
gctggctgcgtacaaggaagttcttaaattggcaaactgttattacaacagcggggtaacagcggagggcagagccggacagagyg
gaaatctctccctatccecctcagagatgagectagtagagaatcagatggggatagagaggagtgttaaagtgectgttcaatggea
aacctgaagtaacctgggtagggaccaccgattgctacaagtatataatcagtaacattcagacctctagtctgggtttcataca
ctcggatattgagacactcccaaccaaggatgccgttgagaagttagaagaatttgectctatcctatcecctatcectaattttyg
ggaaaaatcggctctattacagttgtcaaaattatgcccattagcggagattttacccaaggecttcatagectatgeccattcaat
attttagagagagcctgcttgcctacccgagatatagtaacttcatctcgactgagtgttaccttattatgataggattaaagge
caatcggttgataaacccagaagccattaagcaaagcataatcagagtggggactaggactgcaccaggacttgtgagccacata
ttatcagagaaacagaaaggttgtattcaatcttttctgggtgatccttatatccaaggagacttcaataagcaccttaaagcectce
taacccctattgagaaaatcctagtaaattgtggtctctcgatcaatggcacaaaaatctgtagggatctaatccaccatgatat
cgcctccggtccagacggtctgatgagctccacaattattttgtatagggaactggeccatttcaaagacaatataagaagtcag
cacggtatgttccacccctatccagtattggccagtagcaggcaacgtgaattaatccttcgaatagccaagaaattctgggggt
atgtcttgctatattcagatgacccggcactaatcaaacaaacgatcaagaacttgaagcggaatcacctaacctttgacttaca
cagtaatccgtttattaagggcttatccaaagctgagaaactgctagtgcggacaagttcactcagaagggaatggttgttcact
ctcaatacgaaagaagtgaaagagtggttcaaattggtgggttacagtgcactcgtcagaggttaaatcgatatacatctgeccce
cttctcctececgeccatgagactctactggcaatctaaaagattaaagaaaactacatattggataagtatctattcccagetttgt
ctggtggccggcatggtcccagectectegetggegecggetgggcaacattccgaggggaccgteccectecggtaatggecgaatyg
ggacgatgcagcccaagctgatccggctgctaacaaagcccgaaaggaagctgagttggectgetgecaccgetgagcaataacta
gcataaccccttggggcecctctaaacgggtcttgaggggttttttgectgaaaggaggaactatatccggatcgaattgateccgget
gctaacaaagcccgaaaggaagctgagttggctgectgeccaccgectgagcaataactagcataacceccttggggectctaaacggg

tcttgaggggttttttgcccccactgtcattagcaactccttgtecttcgatctc a a cttgcagttcaaatacaag
acccagaaggcgactattctgg e ga @ ig.t&cg ggcaattcaccaticatcccatacaatggccaga
agcatcagtctgacatcaccgacattg c gcgtgcaattag tggatcgce gcgcgcggecgatggege

aagctccatgacgcggctagacatgcacgaccagggctacaatgaactcgaaacgaccggggcecgcecgectcggectagagatceccgta
ctgtactttgttgttcaattggcgcatagecggececgtttgggtecttacggtccccactagaggecccggectagagaataggaactt
ccctatagagtcgaataagggcgacaccccecctaattageccecgggecgaaaggecccagtectttecgactgagectttegttttatttg
atgcctggcagttccctactctecgcatggggagtccccacactaccatcggegectacggegtttcacttectgagttecggecatggg
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gtcaggtgggaccaccgcgctactgccgccaggcaaacaaggggtgttatgageccatattcaggtataaatgggctcgecgataat
gttcagaattggttaattggttgtaacactgacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaga
caataaccctgataaatgcttcaataatattgaaaaaggaagaatatgagccatattcaacgggaaacgtcgaggccgcgattaa
attccaacatggatgctgatttatatgggtataaatgggctcgcgataatgtcgggcaatcaggtgecgacaatctatcgecttgta
tgggaagcccgatgcgccagagttgtttctgaaacatggcaaaggtagecgttgccaatgatgttacagatgagatggtcagacta
aactggctgacggaatttatgccacttccgaccatcaagcattttatccgtactcctgatgatgcatggttactcaccactgega
tccccggaaaaacagcgttccaggtattagaagaatatcctgattcaggtgaaaatattgttgatgegetggcagtgttectgeg
ccggttgcactcgattcctgtttgtaattgteccttttaacagecgatcgegtatttecgectecgetcaggegcaatcacgaatgaat
aacggtttggttgatgcgagtgattttgatgacgagcgtaatggctggecctgttgaacaagtctggaaagaaatgcataaacttt
tgccattctcaccggattcagtcgtcactcatggtgatttctcacttgataaccttatttttgacgaggggaaattaataggttyg
tattgatgttggacgagtcggaatcgcagaccgataccaggatcttgccatcctatggaactgecctecggtgagttttctecttcea
ttacagaaacggctttttcaaaaatatggtattgataatcctgatatgaataaattgcagtttcatttgatgctcgatgagtttt
tctaaaagctt

pPPRVsegl GFP

aataagatgatcttcttgagatcgttttggtctgegegtaatctcttgetctgaaaacgaaaaaaccgecttgcagggeggtttt
tcgaaggttctctgagctaccaactctttgaaccgaggtaactggecttggaggagecgcagtcaccaaaacttgtecctttcagttt
agccttaaccggcgcatgacttcaagactaactcctctaaatcaattaccagtggectgetgecagtggtgettttgecatgtettt
ccgggttggactcaagacgatagttaccggataaggcgcageggtecggactgaacggggggttegtgcatacagteccagettgga
gcgaactgcctacccggaactgagtgtcaggecgtggaatgagacaaacgecggccataacagecggaatgacaccggtaaaccgaaa
ggcaggaacaggagagcgcacgagggagccgccagggggaaacgectggtatectttatagtectgtegggtttegecaccactga
tttgagcgtcagatttcgtgatgecttgtcaggggggecggagectatggaa tttgccgeggeccctectcactteectgtt
aagtatcttcctggcatc g cgeec gecatttccgctcgccgcagtcgaacgaccgagegtage
gagtcagtgagcgagg (] aac@t ctc catatt g gacgcaccggtgcagecttttttctectgecacatg
aagcacttcactgacaccctcatcagtgccaacatagtaagccagtatacactccgctagecgectgaggteccecgecagecgaacgac
cgagcgcagcggcgagagtagggaactgccaggcatcctgggeggttctgataacgagtaatecgttaatccgcaaataacgtaaa
aacccgcttcggegggtttttttatggggggagtttagggaaagagcatttgtcagaatatttaagggegectgtcactttgett
gatatatgagaattatttaaccttataaatgagaaaaaagcaacgcactttaaataagatacgttgctttttcgattgatgaaca
cctataattaaactattcatctattatttatgattttttgtatatacaatatttctagtttgttaaagagaattaagaaaataaa
tctcgaaaataataaagggaaaatcagtttttgatatcaaaattatacatgtcaacgataatacaaaatataatacaaactataa
gatgttatcagtatttattatgcatttagaataccttttgtgtcgceccttattcgactcectatagaagttectattctetagee
taccgttgctccggtgatcctgcaccgegecaattectaatctaggeccgaggatettcagegtacgeecggagtacacgegcaaagg
ccggacatcagcttaacgcgccaattgegegtegectatgecatggggeccgectagecatgtaaacgtggtectgtectaactggte
cggccctagtggggtaattccttecgagececgggttecgagcaatttgatattetgtgtaaaactececgectaaggtgetggttegeca
atttgtggagcgctttgaacgtccgtcgggecgagaagattgegagetgtgeggectgagttgacgtatectgtgetggatgattact
cataacggcaccgctatcaaacgtgccacgttcatgtcctacaatttttaatacgactcactataaccagacaaagctgggtaag
gatagttcttataatgactatagactggcaaacttaggagtaaagatcctactgtcggggagaggaggaggagcaagatctaacg
ttatggctactctccttaaaagecttggcattgttcaagaggaacaaagacaaagcgectactgegtegggttcaggaggggecat
ccgggggattaagaatgttatcatagtccccattccecggggactcateccatcattaccecgttcaagactgetegacaggettgte
agattggccggagatcctgacatcaacgggtcaaagectgaccggecgtgatgatcagcatgttatctttgttegtggagtcaceceg
ggcaattgatacagcggatcacagatgatccagatgttagcatccgecttgttgaggtagttcaaagtactaggtcccagteecgg
gttgacctttgcatcacgtggtgctgatttggacaatgaggcagatatgtatttttcaactgaaggaccctcgagtggaagtaag
aaaaggatcaactggtttgagaacagagaaataatagacatagaggtgcaagatgcagaagagttcaatatgttgttagcctcca
tcttagcacaagtttggatcctcctggeccaaggecggttacggcaccggatacggcagectgactcagaactgagaaggtgggttaa
atacacacaacaaaggagagtgattggggaatttcgcgttgacaaagggtggctggacgcagtccgcaacaggattgcagaagat
ctatcacttcggcggttcatggtatctctcatactt t@aaaaggacccccggcaacaagccaaggattgcagaaatgatcect
gcgacattgacaactatattgtagaagccggactcgcga tcattcttactatcaaatttggtattgaaaccatgtatcctge
attaggccttcacgagttcgccggggaattgtccactttg@atccttgatgaacttgtatcaacagectaggagaggttgcacce
tacatggtgattctagagaactcaattcagaacaagtttagtgcaggagcctatcctctcctectggagectatgegatgggtgtecg
gagtcgagttggagaactcaatggggggcctgaactttggcaggtcatattttgacccggectatttececgteteggacaggagat
ggtcagaagatctgcaggaaaggtcagctctgtaatcgecggectgagecttggtatcacagcagaggaagccaaactagtctcggaa
atcgcctcacagactggggatgaacgaaccgtcagagggactgggcctcgacaggecgcaggtctecttecteccagcataaaacag
atgagggagagtcgcctacaccagcgaccagagaagaagtcaaagctgcgatcccaaatgggtccgaaggaagggacacaaagcg
aacacgctcaggaaagcccagaggagaaactcccggccaactgecttccggagatcatgcaagaggatgaactctecgecgagagtect
agtcaaaaccctcgtgaggctcaaagatcggctgaggcactcttcaggctgcaggeccatggeccaagattectggaggaccaggagg
agggagaagacaacagtcagatctacaacgacaaggatctcctcagctgagcagacgcaccctcecgtccaaatcattaattaaac
atcgcccgeccagtattataaaaaacttaggacccaggtccaagcaaccacacatcgacaccccageccaatcgagtagagaccace
gatggcagaagaacaagcataccatgtcaacaagggactggaatgtatcaagtctctcaaagcctcteccceceggatectatceccace
atcaaagatgcccttgagagctggagagaggggcttageccecctcaggecgtgcaacaccgaaccctgatacgteccgagggagace
atcagaatatcaaccaatcatgctcaccagcaatcggatcagacaaagtcgacatgtctcctgaagataatctcggatttagaga
gatcacttgtaatgacagtgaggctgggctcggaggagttctggataaaggatccaactctcaagtacagegttactatgtttat
agccacgggggtgaagagattgaaggactcgaggatgctgactctctegtggttcaagcaaatcctccagttactgacacctteca
atggaggagaggatggatctgacgacagcgatgtggactctggecccagatgatcccggcagagatecctectatatgaccggggate
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tgctgcecggcaatgatgtectctaggtcaacagatgtcgaaaaattagaaggtgatgacattcaagaagttcttaactcecccagaag
agtaaaggaggaagattccaaggcgggaaaatcttgcgggtcccggaaatacccgatgtcaagaactctagaccatcagecccaat
caattaaaaagggcacagacgggaactcagtcttatctggaacggtgacagagtgttcatcgataagtggtgcaacccaagctgt
gccagagtccagatgggagtcatcagagcgaaatg gtggggagtgtccccaaatctgecgaggagtgcaaagacgatccag
gggttgacacaagaatctggtaccatagcatcact gcctaaagagaatgactccgagtttgagtatgaggatgatctat
tcacagagatgcaggagattcgtgcaagcattgcta@igatccatgatgacaacaaaactatcctctcaaaacttgattctctact
gttattgaaaggagaaatcgatactatcaagaaacadatcagcaaacaaaatataagtatatctaccattgagggccatctatcc
agtataatgatagccatcccgggctttgggaaggacatcaaggacccaacatctgaggttgagttgaacccggatttgagaccta
taatcagccgtgattctggcagggctcttgecggaggtcctcaagaaacccgetgttgataggtctcagaaaagecggaatcaaagt
caactccggttcaaagggtcagctccttaaggatctccagctaaaacctgtcgacaaacaggcaagctctgcaatcgagtttgtt
ccatctgaccatgaatcatccaggagtgtcatccgctccataatcaagtcgagcaagcttaacattgatcacaaggactatctte
tagatttactgaatgatgtgaaaggctccaaggatcttaaggaattccacaagatgctaacagccattcttgeccaagcagececgta
acacatcctataatcaacatctcatactcggttgaaaacatcctctacgegtggctattacaaaaaacttaggagcaagggcaac
tgagcttcacagacaagatggtgagcaagggcgaggagectgttcaccggggtggtgeccatectggtegagetggacggegacgt
aaacggccacaagttcagcgtgtccggegagggecgagggegatgeccacctacggcaagetgaccctgaagttcatetgecaccace
ggcaagctgccegtgecctggeccaccctegtgaccaccectgacctacggegtgecagtgettcagecgetacceccgaccacatga

agcagcacgacttcttcaagtccgeccatgee aggcfacg gagcgcaccatcttcttcaaggacgacggcaactacaa
gacccgcgccgaggtgaagttcgagggcgacaec (°} atcgagctgaagggcatcgacttcaaggaggacggcaac
atcctggggcacaagctggagtacaactacaa a@aacdtctatatcatggccgacaagcagaagaacggcatcaaggtga

acttcaagatccgccacaacatcgaggacggcagecgtgcagetegecgaccactaccagcagaacacccccateggegacggece
cgtgctgctgeccecgacaaccactacctgagcacccagteccgecctgagcaaagaccccaacgagaagegegatcacatggtectg
ctggagttcgtgaccgececgecgggatcacteteggecatggacgagetgtacaagtgatgacatecctataatcaacatectecatact
cggttgaaaacatcctctacgcgtggctattacaaaaaacttaggagcaagggcaactgagcttcacagacaagatgaccgagat
ctacgattttgataaatcagcatgggatgtcaaagggtcaattgctcgcatagaacccaccacctatcacgacggccgactgata
ccccatgtgagagtcatcgatcctggtctgggagacaggaaagatgagtgcttcatgtacctgtttecttctaggagtgattgagg
ataacgaccccctgtctcccccagteggtagaaccttecgggtetttacctectaggggttggtagatcaaccgeccaggeccagaaga
actactaagggaggccacagaactagacatagtggtgaggcgcacggcaggactaaatgagaaactggtattttacaacaacact
ccgctgtectttgttaacaccttggaggaaagtcttgacaaccggaagtgtgtttagecgctaaccaggtttgcaatgcagtcaace

tagtcccacttgatactccccagagattcagggtt jtac gtataactagattgtcagataatggttattatagtgtccc
cagaagaatgttggagttccgctcagccaatgcag c@atatcttggttacactgagaattgaaaatggcacaaaccct
agcagatacatagtcggctcatgggagaatccagag@t. t@tatggtacacgtgggcaactttagaagaaagaagaacaagg

tatactctgctgattattgcaaaatgaagattgaaaagatgggtctagtttttgecttgggaggaataggtggaacaagtctcca
tattcgaagcacagggaaaatgagcaagaccctccatgcacagctggggttcaagaaaatcctatgctacccectaatggatatt
aatgaggatcttaaccgatatctctggcgggcagagtgeccgaatagtcaaaatccaggccgtcttacagccatcagtaccccaag
aattccgtgtetacgacgacgteatecatcaacgacgatecaaggectgttecaagatectgtaattggeecggecgggecacggacee
acccccagggagaggccttectcececteccgtccaaaacacacaccccaaggtteccccgaaacagegeccgacacagecaccectet
ggcggaacgaggccgaaccccccaacaaactegeteccaggggggggeccceccececcacgaccecgecgggegecgaccgegegagecg
gcgagacacccccaagaggccccgacgaagaccgggcaaccctecccccagaaaacggcccaccaacacacccgaggccaggegec
gggcacccccagccccgccaccggcgggacaggaggacaagacggggtceccccccaaccaaagggaccaccagggaagggtecgee
gacccagcacagacccggcccaaacaaagcagacccccaagacgaaatcgececggecggecccattcatcatcaaacaaaactta
ggggtcaagtccagacgacagcgcgcggtccgccaggcagcaageccgcagaaaggaaggagacaagaccggceccggaaggaggac
acccaaccacagaaacccccaacaccaggggaggagccccccctccacacggecggaggaacgggcgagggacaccgaggagaace
cgatcgggagccaggagccggagacgccagcggtaaacaggccgggcacacateccgacaccaccggaggaccagagaagggcceg
accccgcgtggacccgacggcaggggatctaaccccgeccacaaagagaggcgagaaccctececececcecgecacacaaccggcagaca
gaccgagggaggaccacctcccaaccagacaggcggctcectceccgcageccgagecgcaggtcccaagaagaggacacccccgaaac
ctcccagaacccctecgetcececggecgecgggacaggagectcecgecgecaaaaaccagagtcaccgagagccaaccaggggtece
ccccaatccctcececggegecctecccacagaggectccagcaaagtecccteggeccgacgaccectgecaggegegecaagagaaace
caccaaaggacgtccagtacatccatgtataaacatcatgacacgggtcgcaaccttagtatttetgtttecttttecccaaacact
gtcacgtgccagattcactggggcaatctatccaagatcgggattgtaggaacggggagtgeccagectacaaggtgatgactagge
caagccaccaaactctagttataaagttgatgccaaatataacagccatcgacaattgtacgaaatcagagatttcagagtacaa
aagattgctgatcacagtgttaaagcctgtagaggatgccctgtcagtgataaccaagaatgtaagaccaattcaaactctaaca
cctgggcgcaggacccgecgttttgteggagetgttctggeccggagtagcacttggagtegecgacagecgetcaaataactgeecg
gagtcgcactccatcagtcattgatgaattcccaagcaattgaaagtttaaaaaccagtcttgagaagtcgaatcaggcaataga
agaaatcagacttgcaaataaggagaccatactggcggtacagggcgtccaagactatatcaacaatgagecttgteccectetgtt
catagaatgtcatgtgagcttgtaggtcacaaactcagtctcaagctccttaggtattataccgagatcctgtctatatteggge
ctagccttcgagacccgatagectgectgaaatatcaatccaggcactcagetatgecattaggecggagacatcaataaaattcectgga

caagcttgggtatagcggcggggatttceccttgeta gaaagcaaggggataaaggcccgggtcacatatgtggacacaaga
gattactttataattcttagcatagcctacccaac@ttatctgagatcaagggggtgatagttcataagatagaagctatatect
acaatattggggcacaggaatggtatactactatc gatatgtagccactcagggatatctgatatcgaatttcgatgagac

gtcatgcgtcttcactccagaggggacagtctgcadgkecagaatgegttgtatccaatgageccattgettcaggaatgettcagg
gggtcgacaaaatcgtgcgccagaaccctagtttcagggaccacaagtaatagatttatecctatcaaaagggaacttgattgecaa
attgtgcgtcagttttgtgcaagtgttacacaacggagacagttatcaaccaagatcctgataaactactaactgttatageccte
cgataagtgtcccgtagtcgaggtggatggagtgacaatacaggtcggcagtcgagagtacccagattctgtatacctacatgaa
atagacttaggcccagccatctcecctggagaaactggatgtaggcaccaatttaggcaatgcagtcacaagactggagaatgcaa
aggagctactagatgcatcagaccagatactgaagactgttaaaggggtacctttcagtggcaatatatacatagcactggcage
ttgcattggggtatccctagggecttgtcacattaatatgectgectgtaaggggagatgtaggaacaaggagattcctgecteccaaa
atcaacccagggctcaaacccgacctaaccgggacttcaaagtcgtacgtgagatcactgtagtaaatecgatatacatctgecece
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cttctcctecegecatgagactctactggcaatctaaaagattaaagaaaactacatattggataagtatctattcccagetttgt
ctggtggccggcatggtcccagectectegetggegeecggetgggcaacattececgaggggacegteccecteggtaatggegaatg
ggacgatgcagcccaagctgatccggctgectaacaaagcccgaaaggaagectgagttggetgetgecacecgetgagcaataacta
gcataaccccttggggcctctaaacgggtcttgaggggttttttgectgaaaggaggaactatatceggatcgaattgateccgget
gctaacaaagcccgaaaggaagctgagttggcectgectgecacecgetgagcaataactagecataaccecttggggectectaaacggg
tcttgaggggttttttgeccceccactgtcattagcaactecttgtecttecgatctegtcaacaacagettgecagttcaaatacaag
acccagaaggcgactattctggaagcgagcttgaagaaattgattcecggectggcaattcaccatcatcccatacaatggeccaga
agcatcagtctgacatcaccgacattgtttcgtatagecgtgcaattagaattggatcgecttatcecgggegegeggecgatggege
aagctccatgacgcggctagacatgcacgaccagggctacaatgaactcgaaacgaccggggcgcgctecggectagagateccgta
ctgtactttgttgttcaattggcgcatageggecegtttgggtecttacggteccccactagaggecceggectagagaataggaactt
ccctatagagtcgaataagggcgacaccccctaattagecccgggecgaaaggcccagtcectttcgactgagectttegttttatttg

atgcctggcagttccctactctcegeca ggﬁi cccacactaccatcg ctacggcgtttca ctgagttcggcatggg
gtcaggtgggaccaccgcgc !agg a gtgtta gaic tattcaggtataaatgggctcgcgataat
gttcagaattggttaattggtEtgtal c blc tttgtttattt tacatt tatccgctcatgaga

caataaccctgataaatgcttcaataatattgaaaaaggaagaatatgagccatattcaacgggaaacgtcgaggccgcgattaa
attccaacatggatgctgatttatatgggtataaatgggctcgecgataatgtcgggcaatcaggtgecgacaatctategettgta
tgggaagcccgatgecgeccagagttgtttetgaaacatggcaaaggtagegttgeccaatgatgttacagatgagatggtcagacta
aactggctgacggaatttatgccacttccgaccatcaagcattttatcecgtactecctgatgatgcatggttactcaccactgega
tccececggaaaaacagegttccaggtattagaagaatatecctgattcaggtgaaaatattgttgatgegetggcagtgttectgeg
ccggttgcactcgattecctgtttgtaattgtecttttaacagegatcgegtatttegectegetcaggegcaatcacgaatgaat
aacggtttggttgatgcgagtgattttgatgacgagcgtaatggctggectgttgaacaagtctggaaagaaatgcataaacttt
tgccattctcaccggattcagtegtcactcatggtgatttctcacttgataaccttatttttgacgaggggaaattaataggttg
tattgatgttggacgagtcggaatcgcagaccgataccaggatcttgeccatectatggaactgecteggtgagttttcectecttea
ttacagaaacggctttttcaaaaatatggtattgataatcctgatatgaataaattgcagtttcatttgatgctcgatgagtttt
tctaaaagctt

pPPRVseg2a

aataagatgatcttcttgagatcgttttggtctgcgegtaatctcttgectctgaaaacgaaaaaaccgecttgcagggeggtttt
tcgaaggttctctgagctaccaactctttgaaccgaggtaactggcttggaggagcgcagtcaccaaaacttgtcecctttcagttt
agccttaaccggcgcatgacttcaagactaactcctctaaatcaattaccagtggectgectgeccagtggtgettttgecatgtettt
ccgggttggactcaagacgatagttaccggataaggcgcagcggtcggactgaacggggggttcgtgcatacagteccagettgga
gcgaactgcctacccggaactgagtgtcaggcgtggaatgagacaaacgcggccataacagcggaatgacaccggtaaaccgaaa
ggcaggaacaggagagcgcacgagggagccgccagggggaaacgcectggtatctttatagtecctgtegggtttegecaccactga
tttgagcgtcagatttcgtgatgcttgtcaggggggcggagecctatggaaaaacggcectttgececgeggecctctecactteecctgtt
aagtatcttcctggcatcttccaggaaatctccgecececgttecgtaagecatttecgetecgecgecagtcgaacgaccgagegtage
gagtcagtgagcgaggaagcggaatatatcctgtatcacatattctgectgacgcaccggtgcagecttttttectectgecacatg

aagcacttcactgaca@cct€atcagtgccaacatagtaagccagtataca gc ggtcccgcagccgaacgac

cgagcgcagcggcgagagtag ctgcc gg ggcgat atiaacgagtadtcgtiftaatccgcaaataacgtaaa

aacccgcttcggecgggt t gl i gggaaagag cagaat t gcgcctgtcactttgett
c

gatatatgagaattatttaaccttataaatgagaaaaaagcaacgcactttaaataagatacgttgctttttcgattgatgaaca
cctataattaaactattcatctattatttatgattttttgtatatacaatatttctagtttgttaaagagaattaagaaaataaa
tctcgaaaataataaagggaaaatcagtttttgatatcaaaattatacatgtcaacgataatacaaaatataatacaaactataa
gatgttatcagtatttattatgcatttagaataccttttgtgtcgcccttattcgactccctatagaagttecctattctctagece
taccgttgctccggtgatcctgcaccgecgecaattctaatctaggecgaggatcttcagegtacgecggagtacacgegcaaagg
ccggacatcagcttaacgcgccaattgecgegtegectatgcatggggecgectagecatgtaaacgtggtecctgtectaactggte
cggccctagtggggtaattccttcgageccgggttcgagcaatttgatattctgtgtaaaactccgectaaggtgetggttegeca
atttgtggagcgctttgaacgtccgtcgggecgagaagattgcgagetgtgeggectgagttgacgtatctgtgectggatgattact
cataacggcaccgctatcaaacgtgccacgttcatgtcctacaatttttaatacgactcactataaccagacaaagctgggtaag
gatagttcttataatgactatagactggcaaacttaggagtaaagatcctactgtcggggagaggaggaggagcaagatctaacg
ttatgtccgcacaaagggaaaggatcaatgceccttctacaaagacaatcttcataataagacccatagggtaatcctggataggga
acgcttaactattgaaagaccctacatcttacttggagtcctactggtaatgtttctgagtctaatcgggectgectggeccattgea
gggatcaggcttcaccgagccaccgttgggactgcggagatccagagtcggctgaataccaacattgagttgaccgaatccattyg

atcatcaaactaaggatgtcttaactcccctgtttaaaatcattggtgatgaagtcggcatcagaattccacagaagttcagtga

agagaatatgattttagggatctccggtggtgtatgaat

ccccctgagagagtcaaaattaactttgaccagttttgtga “daagccgcagtcaagtcagttgaacatatatttgagtcat

Q

actcaacaggtcagaaaggttgcgattattgactcttgggd®cgfaacaggctgtctcggcaggacagtaacaagagctcagtt
ctcagagcttacgctgaccctgatggacctggatctcgagataaagcacaacgtgtcectcagtgtttaccgtagtcgaagaggga
ttattcggaagaacatatactgtctggagatccgacaccggaaaaccgagcaccagtccaggtattggccattttttaagagtcet
tcgagatcgggctggtgagagatctcgagctgggtgeccectattttccatatgaccaactacctcacagtaaacatgagtgatga
ctatcggagctgtcttttagcagtaggggagttgaagctgacagccctatgcaccccatctgagactgtgactctgagtgagagt
ggagttccaaagagagagcctcttgtggttgtgatactcaacctagctgggecctactctagggggecgaactatacagtgtattge
ctaccactgaccccacggtggagaaactctatttatcctcacatagggggattatcaaagataacgaggccaattgggtagtacc
gtcgaccgatgttcgtgatcttcaaaacaaaggagaatgtctggtggaagcatgcaagactcgacctecttcattttgcaatgge
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acaggaataggcccatggtcagaggggagaatccctgecctacggggtgatcagggtcagtcttgacttagectagtgaccecgggtg
tagttatcacttcagtgtttggcccattgatacctcacctatccggtatggatctttacaacaatcecgttttcaagagectgcatyg
gttggctgtaccaccttatgagcagtcatttctaggaatgataaatacaattggcttcccggacagagcagaggttatgececgceac
attttgaccacagagatcagagggcctcgaggtcgttgtcatgttecctatagagttgtccagcaggattgatgatgatatcaaga
tcgggtccaacatggttgtattgeccgacgaaggacctgaggtacataacagccacttatgatgtttccaggagcgagcatgcaat
cgtgtactatatctatgacacgggtcgctcatcatcttacttctacccagtccgattgaatttcaggggcaatcctctetectetg
aggatagagtgttttccctggtatcataaggtgtggtgctaccatgattgtcttatatacaacaccataacaaacgaagaagtcc
acacgagagggctgaccggtatagaggtaacatgtaatccagtctgagtagagctgcaaccatcgectcgaggecggeccgecgagcece
atcccctagtccaagcagcataccctgggacactcagcagcacaacccagccaacaatgttataaaaaacttaggagccaaggtt
gtaggagccatggactcactatcagtcaatcaggtcttgtaccctgaggtccatctagatageccctattgtcacaaacaaactag
ttgccatccttgaatactcggggatcgaccacaactatgttcttgaagaccagacccttatcaagaatattagatatagactggg
gtgcggtttttcaaatcaaatgatcatcaataataggggggtaggtgaaacagtcaattccaaacttaaaagttacccccgtaat
tgtcatatcatatacccagactgcaataaggatttgttttgtatcaaagatagctgcatatctaggaagctctcggagctattca
agaagggtaattccttgtactctaagataagtcacaaggtactggattgtcttaagagagtcaacgggaaattaggcctgggcecac
agatcttactcacggcctgaaggagggtatcctcgacttggggttgcacatgcatagcectctcaatggttcgagacctttcectgtte
tggttcactatcaagacagagatgagatcaatgatcaaagaacagtcccatatatgccacaagaggaggtataacccaatttttg
tgtcgggggatgcattcgaggtgctcgtatcacgagacdEcgttgtgataattgataagaacacccagtatgtcttctacctgac
atttgagttggtccttatgtattgtgatgtcatagaggg€agacttatgacggagacagccatggctatagaccagagatattca
gagctcctaaaccgggtcagatacttgtgggatcttat@®@atgggttcttcccaacactgggtaacaccacataccaagttgttg
ctctgcttgaaccactgtcgttggcttatcttcaactt tgtcactctagagttaagaggtgcttttttggaccactgctt
caaagaactttatgagatactggagcattgtggcattgacacggaaggtacctacaattccatcactgaaggattggattacgta
tttatcacccacgatatacacttaactggggagattttttcattttttcggagtttcggacaccccecgectecgaagecggtcaccg
ctgcagagaatgtcagaaaacatatgaaccaaccgaaggtaatcagttatgagactatgatgaaagggcatgcagtattttgcgg
gataatcataaatggttttagggaccggcacggcggcagctggcccecctgttgecattgccagaacatgecttectgectgegatececgg
aatgcgcaggcatccggtgaaggactgacccatgacctgtgtatagacaactggaagtcctttgttggattcagatttggetget
tcatgccgctcagcctagatagtgatttgaccatgtacctcaaagacaaagcactggctgcactgaagaatgagtgggattcagt
ttacccgaaagaatacctccgttataatccacctagagggacagagtcaaggcgactggtagaggtgttecctgaatgactceccage
tttgatccttataacatgataatgtacgtggtgaatggctcctaccttaaagaccctgagtttaatctctcatacagectaaagg
agaaagagataaaagagacagggcgattgtttgccaaaatgacctacaagatgcgggcctgtcaggtaattgctgaaaatctgat
atcaaatggtgttgggaagtatttccgagacaatgggatggcaaaagacgagcatgacctaacaaaagcccttcacactctagea
gtctcaggtgttcctaagaataacaaagataaccaccgaggtgggcctcccagaaggaccacaageccgagagatgagatcaagece
aagacatcaacacacaaaatagagacaagatccaagggggccctatgtacaactacttgcgatgccaaccgaccggccctgatca
gggtgagtcatacgagactgttagtgcattcatcactgctgaccttaagaagtattgcctaaattggagatacgagacaatcage
atatttgcacagagactgaatgaaatatatgggttgccatccttctttcaatggttacacagggtattggaaaaatccgtgctcect
acgtcagtgatccgcattgccctcccgacttagatgatcatatcecctectggacagtgtccctaatgeccaaatattcatcaagta
cccaatgggcggagtagaaggttattgtcaaaaactatggacaatcagtactataccttacttgtatctggcagectatgagage
ggagtaagaatcgcctcactagtgcaaggtgacaatcagacaattgcagtgacaaaaagagttccaagttcttggeccttattcac
taaaaaagagggaggcatccaaagcagctcaaaattacttcgtggtcctaaggcaaaggttgcacgatgtaggtcatcacttaaa
ggctaatgagaccatagtatcttctcacttttttgtatactctaaagggatttattatgacggcctgttagtctcacaatcacta
aagagcatcgccagatgtgtcttctggtccgagactattgtggatgaaaccagagcggcecctgcagcaatattgcaacaactatcg
ccaagagtatagagaggggttatgataggtacctcgcatactctttgaatatcctcaaaattttccaacagatccttatatctct
tgacttcacgattaacacaacaatgactcaagatgtcgtggcaccgatcatcgagaacggtgatttactaataaggatggcactc
ttgccagcacccattgggggtctcaattatcttaacatgagcaggttatttgtgagaaatatcggtgacccggtcacttcectceca
tagccgacctgaagaggatgatagccgctgggctaatgecctgaagaaacattgcatcaagtgatgacccagaccccgggagaatce
atcctacctcgattgggcaagtgacccttattctgccaacctaacctgecgtacagagtataactcgecttctcaagaacatcact
gcacggtatattttaatcagcagcccaaatccgatgctgaaaggattgtttcatgaggggagtagagatgaagacgaagagecttg
cgagtttcttgatggatcggcatataattgttccgagagctgcacatgaaatcttagaccatagcataaccggagcaagagaagce
tatagccgggatgttggacaccaccaagggtctgattagaacaagtatgaagcggggtggcecctcacccctecgagtattageccge
ctttccaattatgattatgaacaattcagatccggaataacattattgacaaagaaagggcagtgttatctcattgacaaggact
cgtgctcggtgcagctcgctatagceccctgagggaccacatgtgggccaggttagetcgecgggagacctatectatgggttggaggt
gcctgatatactggaatcgatgaacggctaccttatcaaacgccatgagtecctgtgeccatctgtgaaacgggctcaagtcactac
gggtggtttttcgtccctgcagggtgeccagecttgacgatgtctcaagagagacttcggectecttegtgtaccttatgtecggatcaa
ccactgaggaaaggacagatatgaaacttgctttcgttagatctccaageccgagececctcaaatcagcagtcagaattgeccacagt
ttactcatgggcctacggggatgatgagaaatcatggagtgaagcttggatgctagctaggcagagagctgatatcaccttagat
gaattgagaatgatcactccagtctctacatccaccaacctagcccatcggttgagggatcggagcacccaggtgaaatattcgg
ggacatcccttgtgagggttgcaagatacacaaccatctccaatgacaatttgtcatttgtgatatctgagaaaaaagtagatac
caacttcatttaccagcaagggatgctgctcggtcttgggatccttgagaatctcttcagattagaggccaccacaggggtatce
aacacagtgctacacctacacgtggaaacagaatgttgtgttgtacccatggttgatcacccaaggataccgagtctccgtaata
ttaaagttacgaatgagctatgcacaaaccctctgatctacgacaggtcccccatcatagaacacgatgcaactcgattatacte
acaaagccacaggagacatttggtggagtttgttacctggtcaacaagccagctttatcatatactggccaaatctacagcaatg
tccatgattgagttgatcacaagatttgagaaagatcacatgaatgaaatagccgccctgattggecgatgacgacatcaacagtt
tcatcacagaatttttgctagtagagcccagattgtttatagtttaccttggccagtgtgectgeccatcaattgggecttttgatat
acattatcatcggccctcggggaagtaccagatgggggaactcctctactecttactcectctecggatgagcaaaggagtatataag
atcttcactaatgctctgagtcaccctaaagtttacaagaaattttggcgaagtggtgtaattgageccgattcatggecccatcce
tagatacacagaatttacatgtcactgtctgtgacatgatatacggatcatacgtcacctatctggatcttttgctgaatgatga
gctagatgattacccgtatttgctctgcgagagtgatgaggacgtggtcacagacaggttcgacaacattcaagccaaacatcte
tgtgtactggccgatgtctactgcagctccaagagatgtcecctcgatcatcgggatgtctectatagaaaaatgcaccatcectcea
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cacattacatcaagggagaatcggtacaatccccgtccgggatctcatggaacactgatcceccttgtagtagatcattactcatg
ctctctgacctaccttcgeccgecggttccatcaaacaaatcaggttgagagtggatecctgggtttgtattcgaggegttgacagac
atcgacttcaaacagcctcgcaaggctaagttggatgtatcggttgtggggttgactgatttttcecteccecttgggataacgteg
gtgattttctagggactatcaacacattgaggcacaatctgcccgtcaccggaaccggggtctcgaactatgaagtccacgcetta
tcgtagaatcggcctgaattcatcagcatgttataaagctgtagagatctccacgttaatcaagtcatctttagaagtcggagag
aatgggttgttcttaggagaaggttccggttctatgctggectgegtacaaggaagttcttaaattggcaaactgttattacaaca
gcggggtaacagcggagggcagagccggacagagggaaatctctcecectatececctcagagatgagectagtagagaatcagatggg
gatagagaggagtgttaaagtgctgttcaatggcaaacctgaagtaacctgggtagggaccaccgattgctacaagtatataatc
agtaacattcagacctctagtctgggtttcatacactcggatattgagacactcccaaccaaggatgeccgttgagaagttagaag
aatttgcctctatcctatcecctatcecctaattttgggaaaaatcggectctattacagttgtcaaaattatgeccattagecggaga
ttttacccaaggcttcatagcctatgeccattcaatattttagagagagecctgecttgectacccgagatatagtaacttcatecteg
actgagtgttaccttattatgataggattaaaggccaatcggttgataaacccagaagccattaagcaaagcataatcagagtgg
ggactaggactgcaccaggacttgtgagccacatattatcagagaaacagaaaggttgtattcaatcttttctgggtgatcctta
tatccaaggagacttcaataagcaccttaaagctctaacccctattgagaaaatcctagtaaattgtggtctctcgatcaatgge
acaaaaatctgtagggatctaatccaccatgatatcgccteccggtccagacggtctgatgagectccacaattattttgtataggg
aactggcccatttcaaagacaatataagaagtcagcacggtatgttccacccecctatccagtattggeccagtagcaggcaacgtga
attaatccttcgaatagccaagaaattctgggggtatgtcttgctatattcagatgacccggcactaatcaaacaaacgatcaag
aacttgaagcggaatcacctaacctttgacttacacagtaatccgtttattaagggcttatccaaagctgagaaactgctagtge
ggacaagttcactcagaagggaatggttgttcactctcaatacgaaagaagtgaaagagtggttcaaattggtgggttacagtgce
actcgtcagaggttaaatcgatatacatctgccceccttctecteccgecatgagactctactggcaatctaaaagattaaagaaaa
ctacatattggataagtatctattcccagctttgtctggtggeccggecatggtcccagectectecgetggecgecggectgggecaaca
ttccgaggggaccgtccecctcggtaatggecgaatgggacgatgcageccaagectgatccggetgectaacaaagecccgaaaggaag
ctgagttggctgctgccaccgctgagcaataactagcataaccccttggggecctctaaacgggtcttgaggggttttttgetgaa
aggaggaactatatccggatcgaattgatccggctgctaacaaagecccgaaaggaagctgagttggectgectgeccaccgetgagea
ataactagcataaccccttggggcecctctaaacgggtcttgaggggttttttgecccccactgtcattagcaacteccttgtectteg
atctcgtcaacaacagcttgcagttcaaatacaagacccagaaggcgactattctggaagcgagcttgaagaaattgattccgge
ctggcaattcaccatcatcccatacaatggccagaagcatcagtctgacatcaccgacattgtttcecgtatagegtgcaattagaa
ttggatcgcttatccgggcgecgeggeccgatggecgcaagcteccatgacgeggctagacatgcacgaccagggctacaatgaacteg
aaacgaccggggcgcgctcggcecctagagatccgtactgtactttgttgttcaattggegcatageggecgtttgggtettacggt
ccccactagaggcccggcecctagagaataggaacttcecctatagagtcgaataagggcgacaccccecctaattagecccgggcgaaag
gcccagtctttcgactgagecctttegttttatttgatgecctggcagttececctactctecgecatggggagtcececcacactaccateg
gcgctacggegttt@acttc g ggg jagcactgcggtactgc caggcaaacaaggggtgttat
gagccatattcaggtat aggE;E @ taattggttgtaacagtgacccctatttgtttatttt
tctaaatacattcaaatat ¢} t gat tgctt tgaaaaaggaagaatatgag
ccatattcaacgggaaacgtcgaggccgcgattaaattccaacatggatgctgatttatatgggtataaatgggctcgecgataat
gtcgggcaatcaggtgcgacaatctatcgecttgtatgggaagecccgatgecgeccagagttgtttcectgaaacatggcaaaggtageg
ttgccaatgatgttacagatgagatggtcagactaaactggctgacggaatttatgccacttccgaccatcaagcattttatceccg
tactcctgatgatgcatggttactcaccactgcgatccccggaaaaacagecgttccaggtattagaagaatatcctgattcaggt
gaaaatattgttgatgcgctggcagtgttcctgecgeccggttgcactecgattecctgtttgtaattgtecttttaacagegatecgeg
tatttcgcctcgctcaggecgcaatcacgaatgaataacggtttggttgatgecgagtgattttgatgacgagecgtaatggcectggece
tgttgaacaagtctggaaagaaatgcataaacttttgccattctcaccggattcagtcgtcactcatggtgatttctcacttgat
aaccttatttttgacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttgceca
tcctatggaactgcctecggtgagttttctecttcattacagaaacggectttttcaaaaatatggtattgataatcctgatatgaa
taaattgcagtttcatttgatgctcgatgagtttttctaaaagectt

pPPRVseg2bVP2

aataagatgatcttcttgagatcgttttggtctgcgecgtaatctcttgectctgaaaacgaaaaaaccgecttgcagggeggtttt
tcgaaggttctctgagctaccaactctttgaaccgaggtaactggcttggaggagcgcagtcaccaaaacttgtcecctttcagttt
agccttaaccggcgcatgacttcaagactaactcctctaaatcaattaccagtggctgectgeccagtggtgettttgecatgtettt
ccgggttggactcaagacgatagttaccggataaggcgcagecggtcggactgaacggggggttecgtgecatacagtccagettgga
gcgaactgcctacccggaactgagtgtcaggcgtggaatgagacaaacgcggccataacagecggaatgacaccggtaaaccgaaa
ggcaggaacaggagagcgcacgagggagccgccagggggaaacgcecctggtatctttatagtectgtegggtttecgeccaccactga
tttgagcgtcagatttcgtgatgcttgtcaggggggecggagecctatggaaaaacggectttgeccgeggecctctcactteecectgtt
aagtatcttcctggcatcttccaggaaatctccgecececegttecgtaagecattteccgetecgecgecagtcgaacgaccgagegtage
gagtcagtgagcgaggaagcggaatatatcctgtatcacatattctgectgacgcaccggtgcagecttttttectectgecacatg
aagcacttcactgacaccctcatcagtgccaacatagtaagccagtata

cgagcgcagcggcga

c tagcgctgaggtcccgcagcecgaacgac

a g C ggcg gataacgagtaatcgttaatccgcaaataacgtaaa

aacccgcttcggeggg t ggg ga@a ggaaag tfogtcagaatatttaagggcgcctgtcactttgett
act

gatatatgagaattatttaaccttataaatgagaaaaaagcaac aaataagatacgttgctttttcgattgatgaaca
cctataattaaactattcatctattatttatgattttttgtatatacaatatttctagtttgttaaagagaattaagaaaataaa
tctcgaaaataataaagggaaaatcagtttttgatatcaaaattatacatgtcaacgataatacaaaatataatacaaactataa
gatgttatcagtatttattatgcatttagaataccttttgtgtcgcccttattcgactcecctatagaagttecctattctcectagee
taccgttgctccggtgatcctgcaccgecgeccaattctaatctaggecgaggatecttcagegtacgecggagtacacgegcaaagg
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ccggacatcagcttaacgcgccaattgecgecgtcecgectatgcatggggecgectageccatgtaaacgtggtectgtcectaactggte
cggccctagtggggtaattccttcgageccgggttcgagcaatttgatattctgtgtaaaacteccgectaaggtgectggttegeca
atttgtggagcgctttgaacgtccgtcgggcgagaagattgcgagetgtgeggectgagttgacgtatctgtgetggatgattact
cataacggcaccgctatcaaacgtgccacgttcatgtcctacaatttttaatacgactcactataaccagacaaagctgggtaag
gatagttcttataatgactatagactggcaaacttaggagtaaagatcctactgtcggggagaggaggaggagcaagatctaacg
ttatggatgaactaggcatcccagtttataagagaggatttcccgaacacctgcttcgtggttacgagttcataatagatgttgg
aaccaagatagaaagtgttggaggacgtcatgatgtaacgaaaataccagaaatgaatgcatatgacatcaagcaggagagcatc
cgaaccgcattatggtataatccgataagaaatgatggttttgtattgccgecgagtgectggatatcacattgaggggttacgatg
aaagacgggcggttgttgaaagtacgagacacaagagtttccatacgaatgaccagtgggtgcagtggatgatgaaagattcgat
ggacgctcagcctttaaaggttgggttagatgatcaaagtaggaatgtagctcactcgttacataactgecgtagtcaaaatcgat
tcaaagaaggctgatactatgtcttaccatgtagagccgatagaggacgcgtcaaagggatgtttgcatacgagaaccatgatgt
ggaaccacctggtacgaatagaaacatttcatgcggcgcaggaggtggcatatactcttaaacctacttatgacatcgtggtcca
cgctgaaaggagagatcgtagtcaaccgtttaggccaggggatcagacattaattaattttgggagaggtcagaaggtggcaatg
aaccacaattcatatgataagatggttgagggattaaca attagagggaaaactcctgaggtgattagagatgata
ttgcgagcttggatgagatatgtaataggtggdEacadgas ccccggagagataaaagcatatgaattatgtaaaat
attatcaacgattggtcggaaagtcctcgatcg aa gacgaggcgaatctatcgatccgatttcaagaggca
atcgacaataagttccgacaacatgatcctgagc@@ctg gcataggaatcaacgtagagatgaggaccgattct
atattctgttgatgattgcagcctccgatacttttaatacacgagtgtggtggtcgaacccatatccatgtttaagaggaacctt
aatcgcgtcagaaacgaagctaggtgacgtttattcgatgatgcgttcatggtatgattggagtgttcgaccaacctatacgect
tacgagaaaacgagagaacaggaaaaatatatttatggacgggttaacctgtttgactttgtcgcggaacctgggattaaaattg
ttcattgggaatataggctgaatcattccacccgggagataacctatgcgcaagggaacccatgtgatttatacccagaggatga
tgatgtaatagtcacaaagttcgatgatgtcgcgtatggccaaatgatcaatgagatgataaatgggggttggaatcaagaacag
ttcaagatgcataaaattttaaaatcggaaggtaatgttctaacgatagattttgaaaaagatgcaaagctaacaaccaatgaag
gcgtaacgatgccagaatatttcaataagtggataatcgctccgatgttcaacgctaagectgegtataaaacatgaagagattge
gcagcgtcaaagtgatgatccgatggtaaaacgtactttatcacctattaccgcagatccaatcgaattgcaaaggttgactttg
gcgcggttttacgacattcgtccecgetttaagaggacaggecgectttcgeggcaacaggcacagtccacttacgatgaagaaatat
cgaaacagcgggattatgcggaaatattgaaacgtcgtggaattgtgcaaatcccaaagaaaccttgcecccaactgtgacagcectca
gtatacgctggagcgttatgctttgttcattataaacatcttacaacagcatgtagcacgagactgcgacgaggaggcgatatac
gagcatccgaaagcagattatgaacttgaaatatttggcgagagcattgtggatatctctcaagtgatcgttctagtttttgact
tgatatttgagagaagaaggagggtaagagatgtgtatgaatcgcggtacataattgcgcgcattaggaggatgcgaggtaaaga
gagattgaacgtgatcgcggagtttttcccaacctatgggagtcttctaaatggattaaacagcgctaccgtagtacaggatatt
atgtatttgaactttctcccattgtattttttagcaggcgataacatgatatactctcataggcagtggtctattcecctttactte
tatacactcatgaagtgatggtggtcccattagaagttggttcatacaatgatcggtgcggattaattgecgtacctggaatacat
ggttttctttccctccaaggcgattcgacttagcaaactaaatgaagecgcagecccaagattgegegegagatgecttaagtactac
gctaatactgcggtatatgatgggggagtcaactacaacgttgtgacgacgaagcagcttctatatgagacataccttgecttegt
tatgtgggggtatttctgacggtattgtctggtatttgccgatcacacatccgaacaaatgcatcgtagecgatcgaggtatctga
tgaaagagttccggctagcattagagcggggcgtataaggctaagatttceccgectaagegecgecgacatctaaagggggttgtaate
atacaaattgacgaggagggcgaatttacagtgtatagcgagggaattgtgtctcatcgggtgtgtaaaaagaatttactcaagt
atatgtgcgatattatattactgaagttttcggggcacgtttttggtaacgacgagatgctgacaaaacttctcaacgtatgage
gcagacgcaccctccgtccaaatcattaattaaacatcgcccgeccagtattataaaaaacttaggacgaaaggtcaatcaccatyg
tccgcacaaagggaaaggatcaatgeccttctacaaagacaatcttcataataagacccatagggtaatcctggatagggaacget
taactattgaaagaccctacatcttacttggagtcctactggtaatgtttctgagtctaatcgggectgectggeccattgcagggat
caggcttcaccgagccaccgttgggactgcggagatccagagtcggctgaataccaacattgagttgaccgaatccattgatcat
caaactaaggatgtcttaactcccctgtttaaaatcattggtgatgaagtcggcatcagaattccacagaagttcagtgatcecttyg
tcaagttcatctccgataagattaagttcctcaaccctgacagagaatatgattttagggatcteccggtggtgtatgaatcecccece
tgagagagtcaaaattaactttgaccagttttgtgaatacaaagccgcagtcaagtcagttgaacatatatttgagtcatcactce
aacaggtcagaaaggttgcgattattgactcttgggcceggagcaggctgtctcggcaggacagtaacaagagctcagttctcecag
agcttacgctgaccctgatggacctggatctcgagata cdcaacgtgtcctcagtgtttaccgtagtcgaagagggattatt
cggaagaacatatactgtctggagatccgacaccggaaa@cc@agcaccagtccaggtattggeccattttttaagagtcttecgag
atcgggctggtgagagatctcgagctgggtgeccectattttclatatgaccaactacctcacagtaaacatgagtgatgactate
ggagctgtcttttagcagtaggggagttgaagctgacagccctatgcaccccatctgagactgtgactctgagtgagagtggagt
tccaaagagagagcctcttgtggttgtgatactcaacctagectgggecctactctagggggcgaactatacagtgtattgectace
actgaccccacggtggagaaactctatttatcctcacatagggggattatcaaagataacgaggccaattgggtagtaccgtcga
ccgatgttcgtgatcttcaaaacaaaggagaatgtctggtggaagcatgcaagactcgacctecttcattttgcaatggcacagg
aataggcccatggtcagaggggagaatccctgectacggggtgatcagggtcagtecttgacttagectagtgacccgggtgtagtt
atcacttcagtgtttggcccattgatacctcacctatccggtatggatctttacaacaatccgttttcaagagectgecatggttgg
ctgtaccaccttatgagcagtcatttctaggaatgataaatacaattggcttcccggacagagcagaggttatgeccgcacatttt
gaccacagagatcagagggcctcgaggtcgttgtcatgttectatagagttgtccagcaggattgatgatgatatcaagatcggg
tccaacatggttgtattgccgacgaaggacctgaggtacataacagccacttatgatgtttccaggagcgagcatgcaatecgtgt
actatatctatgacacgggtcgctcatcatcttacttctacccagtccgattgaatttcaggggcaatcctectectectectgaggat
agagtgttttccctggtatcataaggtgtggtgctaccatgattgtcttatatacaacaccataacaaacgaagaagtccacacg
agagggctgaccggtatagaggtaacatgtaatccagtctgagtagagctgcaaccatcgectcgaggecggecgecgagecatcece
ctagtccaagcagcataccctgggacactcagcagcacaacccagccaacaatgttataaaaaacttaggagccaaggttgtagg
agccatggactcactatcagtcaatcaggtcttgtaccctgaggtccatctagatagcecctattgtcacaaacaaactagttgece
atccttgaatactcggggatcgaccacaactatgttcttgaagaccagacccttatcaagaatattagatatagactggggtgeg
gtttttcaaatcaaatgatcatcaataataggggggtaggtgaaacagtcaattccaaacttaaaagttacccccgtaattgtca
tatcatatacccagactgcaataaggatttgttttgtatcaaagatagctgcatatctaggaagctctcggagctattcaagaag
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ggtaattccttgtactctaagataagtcacaaggtactggattgtcttaagagagtcaacgggaaattaggcctgggcacagatce
ttactcacggcctgaaggagggtatcctcgacttggggttgcacatgcatagectctcaatggttcgagacctttctgttectggtt
cactatcaagacagagatgagatcaatgatcaaagaacagtcccatatatgccacaagaggaggtataacccaatttttgtgtcg
ggggatgcattcgaggtgctcgtatcacgagacctcgttgtgataattgataagaacacccagtatgtcttctacctgacatttyg
agttggtccttatgtattgtgatgtcatagagggcagacttatgacggagacagccatggctatagaccagagatattcagaget
cctaaaccgggtcagatacttgtgggatcttattgatgggttcttcccaacactgggtaacaccacataccaagttgttgectctg
cttgaaccactgtcgttggcttatcttcaacttcaggatgtcactctagagttaagaggtgcttttttggaccactgcttcaaag
aactttatgagatactggagcattgtggcattgacacgg@laggtacctacaattccatcactgaaggattggattacgtatttat
cacccacgatatacacttaactggggagattttttcattBtttcggagtttcggacacccccgectcgaageggtcaccgetgea
gagaatgtcagaaaacatatgaaccaaccgaaggtaatc atgagactatgatgaaagggcatgcagtattttgcgggataa
tcataaatggttttagggaccggcacggcggcagctggccccctgttgecattgeccagaacatgettetgetgegatececggaatge
gcaggcatccggtgaaggactgacccatgacctgtgtatagacaactggaagtcctttgttggattcagatttggectgecttcatyg
ccgctcagcctagatagtgatttgaccatgtacctcaaagacaaagcactggctgcactgaagaatgagtgggattcagtttace
cgaaagaatacctccgttataatccacctagagggacagagtcaaggcgactggtagaggtgttcctgaatgactccagetttga
tccttataacatgataatgtacgtggtgaatggctcctaccttaaagaccctgagtttaatctctcatacagecctaaaggagaaa
gagataaaagagacagggcgattgtttgccaaaatgacctacaagatgcgggecctgtcaggtaattgctgaaaatctgatatcaa
atggtgttgggaagtatttccgagacaatgggatggcaaaagacgagcatgacctaacaaaagcccttcacactctagcagtcte
aggtgttcctaagaataacaaagataaccaccgaggtgggcctcccagaaggaccacaagccgagagatgagatcaagccaagac
atcaacacacaaaatagagacaagatccaagggggccctatgtacaactacttgcgatgccaaccgaccggceccctgatcagggtg
agtcatacgagactgttagtgcattcatcactgctgaccttaagaagtattgcctaaattggagatacgagacaatcagcatatt
tgcacagagactgaatgaaatatatgggttgccatccttctttcaatggttacacagggtattggaaaaatccgtgctctacgte
agtgatccgcattgccctcccgacttagatgatcatatccctectggacagtgtccctaatgecccaaatattcatcaagtacccaa
tgggcggagtagaaggttattgtcaaaaactatggacaatcagtactataccttacttgtatctggcagectatgagagcggagt
aagaatcgcctcactagtgcaaggtgacaatcagacaattgcagtgacaaaaagagttccaagttcttggecttattcactaaaa
aagagggaggcatccaaagcagctcaaaattacttcgtggtcctaaggcaaaggttgcacgatgtaggtcatcacttaaaggcta
atgagaccatagtatcttctcacttttttgtatactctaaagggatttattatgacggcctgttagtctcacaatcactaaagag
catcgccagatgtgtcttctggtccgagactattgtggatgaaaccagagcggecctgcagcaatattgcaacaactatcgeccaag
agtatagagaggggttatgataggtacctcgcatactctttgaatatcctcaaaattttccaacagatccttatatctcecttgact
tcacgattaacacaacaatgactcaagatgtcgtggcaccgatcatcgagaacggtgatttactaataaggatggcactcttgece
agcacccattgggggtctcaattatcttaacatgagcaggttatttgtgagaaatatcggtgacccggtcacttccteccatagece
gacctgaagaggatgatagccgctgggctaatgcctgaagaaacattgcatcaagtgatgacccagaccccgggagaatcatect
acctcgattgggcaagtgacccttattctgccaacctaacctgecgtacagagtataactcgecttctcaagaacatcactgcacg
gtatattttaatcagcagcccaaatccgatgctgaaaggattgtttcatgaggggagtagagatgaagacgaagagcttgecgagt
ttcttgatggatcggcatataattgttccgagagctgcacatgaaatcttagaccatagcataaccggagcaagagaagctatag
ccgggatgttggacaccaccaagggtctgattagaacaagtatgaagcggggtggectcaccecctcgagtattageccgecttte
caattatgattatgaacaattcagatccggaataacattattgacaaagaaagggcagtgttatctcattgacaaggactcgtgce
tcggtgcagctcgctatageccctgagggaccacatgtgggeccaggttagectcgecgggagacctatectatgggttggaggtgectyg
atatactggaatcgatgaacggctaccttatcaaacgccatgagtcctgtgccatctgtgaaacgggctcaagtcactacgggtg
gtttttcgtccctgcagggtgccagettgacgatgtctcaagagagacttcggectecttegtgtaccttatgtcggatcaaccact
gaggaaaggacagatatgaaacttgctttcgttagatctccaageccgagecctcaaatcagcagtcagaattgeccacagtttact
catgggcctacggggatgatgagaaatcatggagtgaagcttggatgctagctaggcagagagctgatatcaccttagatgaatt
gagaatgatcactccagtctctacatccaccaacctagcccatcggttgagggatcggagcacccaggtgaaatattcggggaca
tcccttgtgagggttgcaagatacacaaccatctccaatgacaatttgtcatttgtgatatctgagaaaaaagtagataccaact
tcatttaccagcaagggatgctgctcggtcttgggatccttgagaatctecttcagattagaggccaccacaggggtatccaacac
agtgctacacctacacgtggaaacagaatgttgtgttgtacccatggttgatcacccaaggataccgagtctccgtaatattaaa
gttacgaatgagctatgcacaaaccctctgatctacgacaggtcccccatcatagaacacgatgcaactcgattatactcacaaa
gccacaggagacatttggtggagtttgttacctggtcaacaagccagctttatcatatactggccaaatctacagcaatgtccat
gattgagttgatcacaagatttgagaaagatcacatgaatgaaatagccgccctgattggcgatgacgacatcaacagtttcatce
acagaatttttgctagtagagcccagattgtttatagtttaccttggccagtgtgctgccatcaattgggecttttgatatacatt
atcatcggccctcggggaagtaccagatgggggaactcctctacteccttactcectctecggatgagcaaaggagtatataagatett
cactaatgctctgagtcaccctaaagtttacaagaaattttggcgaagtggtgtaattgagccgattcatggeccatcectagat
acacagaatttacatgtcactgtctgtgacatgatatacggatcatacgtcacctatctggatcttttgectgaatgatgagctag
atgattacccgtatttgctctgcgagagtgatgaggacgtggtcacagacaggttcgacaacattcaagccaaacatctctgtgt
actggccgatgtctactgcagctccaagagatgtccctcgatcatcgggatgtctecctatagaaaaatgcaccatcctcacacat
tacatcaagggagaatcggtacaatccccgtccgggatctcatggaacactgatccccttgtagtagatcattactcatgetcete
tgacctaccttcgccgecggttccatcaaacaaatcaggttgagagtggatcecctgggtttgtattcgaggecgttgacagacatcga
cttcaaacagcctcgcaaggctaagttggatgtatcggttgtggggttgactgatttttctcccecttgggataacgtcggtgat
tttctagggactatcaacacattgaggcacaatctgcccgtcaccggaaccggggtctcgaactatgaagtccacgettatecgta
gaatcggcctgaattcatcagcatgttataaagctgtagagatctccacgttaatcaagtcatctttagaagtcggagagaatgg
gttgttcttaggagaaggttccggttctatgctggctgecgtacaaggaagttcttaaattggcaaactgttattacaacagecggg
gtaacagcggagggcagagccggacagagggaaatctctcecctatcecctcagagatgagectagtagagaatcagatggggatag
agaggagtgttaaagtgctgttcaatggcaaacctgaagtaacctgggtagggaccaccgattgctacaagtatataatcagtaa
cattcagacctctagtctgggtttcatacactcggatattgagacactcccaaccaaggatgccgttgagaagttagaagaattt
gcctctatcctatccctatcecctaattttgggaaaaatcggctctattacagttgtcaaaattatgeccattagecggagatttta
cccaaggcttcatagcctatgccattcaatattttagagagagcctgecttgectacccgagatatagtaacttcatctecgactga
gtgttaccttattatgataggattaaaggccaatcggttgataaacccagaagccattaagcaaagcataatcagagtggggact
aggactgcaccaggacttgtgagccacatattatcagagaaacagaaaggttgtattcaatcttttctgggtgatccttatatce
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aaggagacttcaataagcaccttaaagctctaacccctattgagaaaatcctagtaaattgtggtctctecgatcaatggcacaaa
aatctgtagggatctaatccaccatgatatcgcctccggtccagacggtctgatgagectccacaattattttgtatagggaactyg
gcccatttcaaagacaatataagaagtcagcacggtatgttccaccecctatccagtattggccagtagcaggcaacgtgaattaa
tccttcgaatagccaagaaattctgggggtatgtcttgectatattcagatgacccggcactaatcaaacaaacgatcaagaactt
gaagcggaatcacctaacctttgacttacacagtaatccgtttattaagggcttatccaaagectgagaaactgctagtgcggaca
agttcactcagaagggaatggttgttcactctcaatacgaaagaagtgaaagagtggttcaaattggtgggttacagtgcactcg
tcagaggttaaatcgatatacatctgcccecttctecctececgeccatgagactctactggcaatctaaaagattaaagaaaactaca
tattggataagtatctattcccagctttgtctggtggccggcatggtecccagectecctecgetggegecggectgggcaacattecg
aggggaccgtcccctcecggtaatggcgaatgggacgatgcagcecccaagctgatccggectgctaacaaagecccgaaaggaagectgag
ttggctgctgccaccgctgagcaataactagcataaccccttggggectctaaacgggtcttgaggggttttttgectgaaaggag
gaactatatccggatcgaattgatccggctgctaacaaagcccgaaaggaagctgagttggectgectgeccaccgectgagcaataac
tagcataaccccttggggecctctaaacgggtcttgaggggttttttgecececcactgtcattagcaactecttgtecttecgatcete
gtcaacaacagcttgcagttcaaatacaagacccagaaggcgactattctggaagcgagcttgaagaaattgattccggectgge
aattcaccatcatcccatacaatggccagaagcatcagtctgacatcaccgacattgtttecgtatagecgtgcaattagaattgga
tcgcttatccgggecgegeggeccgatggecgcaagecteccatgacgeggectagacatgecacgaccagggectacaatgaactcgaaacg
accggggcgcgctcggectagagatccgtactgtactttgttgttcaattggecgecatageggecgtttgggtettacggteccca
ctagaggcccggcctagagaataggaacttccctatagagtcgaataagggcgacaccccecctaattagecccgggcgaaaggecca
gtctttcgactgagcctttecgttttatttgatgcctggcagttcecctactectecgecatggggagtecececcacactaccatcggeget
acggcgtttcacttctgagttcggcatggggtcaggtgggaccaccgegectactgeccgeccaggcaaacaaggggtgttatgagece

atattcaggtataaatgggctcgcgataatgtticagaattggttaattggttgtaacactgéaccc tttgtttatttttctaa
atacattcaaatatgtatc@ggét a!aca a@t taaatg aataatiattgaaaaaggaagaatatgagccata
ttcaacgggaaacgtcgag g t tggatgctyg tgggta ctcgcgataatgtcgg

gcaatcaggtgcgacaatctatcgcttgtatgggaagecccgatgecgecdgagttgtttctgaaacatggcaaaggtagegttgece
aatgatgttacagatgagatggtcagactaaactggctgacggaatttatgccacttccgaccatcaagcattttatccgtacte
ctgatgatgcatggttactcaccactgcgatccccggaaaaacagegttccaggtattagaagaatatcctgattcaggtgaaaa
tattgttgatgcgctggcagtgttcctgecgecggttgecactecgattecctgtttgtaattgtecttttaacagegatcgegtattt
cgcctcgctcaggcgcaatcacgaatgaataacggtttggttgatgecgagtgattttgatgacgagecgtaatggectggectgttyg
aacaagtctggaaagaaatgcataaacttttgccattctcaccggattcagtcgtcactcatggtgatttctcacttgataacct
tatttttgacgaggggaaattaataggttgtattgatgttggacgagtcggaatcgcagaccgataccaggatcttgccatccta
tggaactgcctcggtgagttttctecttcattacagaaacggectttttcaaaaatatggtattgataatcctgatatgaataaat
tgcagtttcatttgatgctcgatgagtttttctaaaagcett
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