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Abstract: 

 

This paper presents two new methods for the maximum power point tracking (MPPT) control of a 

pressure retarded osmosis (PRO) salinity power plant, including mass feedback control (MFC) and 

fuzzy logic control (FLC). First, a brief overview of perturb & observe (P&O) and incremental mass 

resistance (IMR) control is given as those two methods have already demonstrated their merit in 

good control performance. Then, two new methods employing variable-step strategy, MFC and FLC, 

are proposed to address the trade-off relationship between rise-time and oscillation of P&O and IMR. 

Genetic Algorithm (GA) is used for finding the optimum parameters of membership functions of FLC. 

From the case-study of start-up of the PRO adopting MPPT control, MFC and FLC have shown faster 

convergence to the target performance without oscillation compared with P&O and IMR. These four 

MPPT techniques are further evaluated in case-studies of state transitions of the PRO due to 

operational fluctuations. It is proven that the MPPT using FLC and modified MFC has better 

performance than the other two methods. Finally, the paper reports a comparison of major 

characteristics of the four MPPT methods, which could be considered as guidance for selecting a 

MPPT technique for the PRO in practice.  

 

Keywords: Pressure retarded osmosis, Maximum power point tracking, Mass feedback control, Fuzzy 
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1. Introduction 

Pressure retarded osmosis (PRO) is a promising method which is potentially capable of producing 

power and processing water simultaneously because of its nature of combination of the water 

treatment and renewable energy generation. In other words, it can be used as not only a clean 

energy generator, but also a water treatment to recycle water. In a PRO plant, chemical potential 

between the two salinities is converted to hydraulic potential which is harvested using hydro-

turbines. The energy conversion and the water recycle are based on the transportation of the pure 

water from the low concentration side to the high concentration side, due to the higher osmotic 

pressure difference across the membrane than the hydraulic pressure applied on the draw solution.  

Generation of salinity power, or osmotic power, using PRO has been widely investigated in the 

last five years. It is reported that the economic viability can be achieved if the power density is 

higher than 5 W/m2 [1]. The commercial reverse osmosis (RO) membranes and forward osmosis (FO) 

membranes are inappropriate for the PRO applications because of different operational conditions. 

The bulky support layers of the RO membranes cause severe internal concentration polarization (ICP) 

and significant decrease in water flux. In contrast, the highly open substrate of the FO membranes 

does not possess the sufficient mechanical strength to withstand the pressure applied in the PRO 

process. Therefore, in order to realise the PRO process in practice, first, specific high performance 

membranes for the PRO process have been investigated. Recently, Li et al. developed a TFC 

polyetherimide PRO flat–sheet membrane which is able to maintain almost unchanged water flux 

and power density of 12.8 W/m2 at 17.2 bar over 10 hours [2]. While maintaining a relatively small 

structural parameter to minimize ICP, enhancing membrane water permeability during the 

formation of polyamide layers and/or novel post-treatment is also important [3]. Cui et al. optimized 

the interfacial polymerization reaction and alternative post-treatments, and fabricated a membrane 

with power density of 18.09 W/m2 at 22 bar when using 1 M NaCl as draw solution and DI water as 

feed [4]. A comprehensive review of the development of the high performance PRO membranes can 

be found in [3].  

The process characteristics of the PRO and the optimization of the configuration and operation 

are the second step to develop practical applications taking advantages of the fabricated high 

performance membranes. Compared to the lab-scale PRO process, mass transfer of the water and 

salts across the membrane is highly affected by the increasing membrane usage and the 

hydrodynamic flows of the salinities. It is reported that although the total extractable energy 

capacity of the PRO is enhanced with the increase of the membrane area, the average membrane 

power density is significantly decreased due to the rapidly vanishing net driving force [5]. Sivertsen 

et al. constructed an iso-watt diagram of PRO as a map to link the membrane properties and the lab-

scale membrane performance [6]. Furthermore, He et al. constructed an operation map of the scale-

up PRO process to identify the coupled effects of the increased process scale with the membrane 

properties [7]. These operation maps nicely illustrated the characteristics of the PRO from lab-scale 

to the scale of practical applications. Moreover, to mitigate the detrimental effects of ICP, external 

concentration polarization (ECP) and reverse solute permeation (RSP), different configurations have 

been studied to enhance the overall performance of the system. Hybrid RO-PRO is one of the widely 

investigated configuration due to the inherently benefiting performance of the two processes [8]. 

Achilli et al. carried out both numerical and experimental investigations on the hybrid RO-PRO plant 

[9, 10]. The maximum power density of PRO can be approximately achieved up to 10 W/m2 in the 

simulations of hybrid system by using virtual membrane [9]. While in the pilot system, average 

experimental power densities for the RO-PRO process ranged from 1.1 to 2.3 W/m2 [10]. Altaee et al. 



carried out systematic modelling and optimization of dual-stage PRO process [11-14] and hybrid 

FO/RO/PRO process [15, 16]. PRO also shows promising performance in other hybrid processes. In a 

novel PRO-MD (membrane distillation) hybrid process, the maximum power densities of 31.0 W/m2 

and 9.3 W/m2 by the PRO using DI water and real wastewater mixing with 2M NaCl concentrate [17]. 

In another hybrid multi-stage vacuum MD and PRO process, maximum power density of 9.7 W/m2 is 

achieved when river water is used as feed solution [18]. Recently, a preliminary investigation of 

hybrid photovoltaic (PV) solar and PRO osmotic energy has been proposed and studied. The 

demonstrated benefiting improvements of both renewable energy generation and water 

desalination especially push the osmotic power to the market [19]. 

Accordingly, based on the significantly improved membrane performance and the increasingly 

clear understanding of the process characteristics of the scale-up PRO, another key step to push the 

technology realisation in practical applications is control of input variables of the PRO, such as 

hydraulic pressure applied on the draw solution, to ensure the optimized performance. In fact, 

studies focusing on optimal control have been important topics of research in solar, wind, wave, 

tidal, and other renewable energy generations. But due to the difficulty of deriving the analytical 

solutions for complex systems, the stable, robust and efficient maximum power point tracking 

(MPPT) systems represent a challenge for renewable energy designers. MPPT is used to operate the 

renewable energy generators in a manner to maximize the output power, irrespective of the 

operational fluctuations and variations. According to the significant development in last decades, 

several algorithms have been developed in tracking the maximum power point (MPP) for not only 

solar PV arrays [20-26] but also for fuel cell power plant [27, 28]. In this context, in order to 

maximize the performance of PRO in practice, MPPT controller is essential to ensure the design 

operation and performance of a PRO power plant. However, at the early stage of studying the MPPT 

in PRO, there is very limited work reported in the literatures. In our previous study, two algorithms 

for MPPT in a PRO are proposed and investigated, including perturb & observe (P&O) algorithm and 

incremental mass resistance (IMR) algorithm [29]. It is demonstrated by simulations that both P&O 

and IMR algorithms can be used to track the MPP of a PRO process at the steady-state operations 

and the transiting operations due to the operational fluctuations. But the trade-off between the rise 

time and the oscillation by selecting the step-size of the perturbation pressure or incremental 

pressure exists in both algorithms. Larger step-size results in fast response as well as larger 

oscillation, and vice versa.  

Therefore, in this study, in order to balance the trade-off relationship between the rise-time and 

oscillation, two new MPPT controllers, mass feedback control (MFC) and fuzzy logic control (FLC), are 

developed and compared with P&O and IMR methods. First, the four methods are introduced, in 

which algorithms of MFC and FLC are described in details. For the MPPT using FLC, genetic algorithm 

(GA) is used to search for the optimum parameters for the settings of the membership functions. 

Then, two case studies are carried out to evaluate the two new MPPT controllers and compare the 

four algorithms. Finally, as guidance for the designers and users to select a MPPT algorithm for a 

particular PRO application, a table that summaries the major characteristics of the methods is also 

provided.  

2. Process characteristics of a PRO salinity power plant 

Fig. 1 shows the characteristic power curve for a scale-up PRO plant. The problem considered by 

MPPT techniques is to automatically find the applied pressure ( MPPP ) at which a PRO power plant 

should operate to achieve the MPP ( MPPW ) under the given operational condition. Furthermore, due 



to the fluctuations of the operations, such as temperature, pressure and flow conditions, the MPP 

also varies. Therefore, the MPPT controller is required not only to fast reach the MPP at the start-up 

process but also automatically respond to changes in the process due to operation fluctuations. 

Moreover, once the MPP is found, a smooth operation with insignificant oscillation needs to be 

maintained by the MPPT controller. 

 

 

Figure 1 Characteristic PRO power curve.  

3. MPPT control 

The four MPPT control algorithms considered in this study are introduced in this section, 

including two previously developed methods in [29], P&O and IMR, and two new methods, MFC and 

FLC. P&O and IMR are briefly introduced below and details of the two algorithms can be found in 

[29].  

3.1. Perturb & observe  

P&O involves a perturbation in the applied pressure on the draw solution to search for the MPP 

of the PRO salinity power generator. Incrementing (decrementing) the applied pressure increases 

(decreases) the power when operating on the left of the MPP and decreases (increases) the power 

when on the right of the MPP. Therefore, if the measured power is increasing at the sample instant, 

the subsequent perturbation should be kept the same to reach the MPP and if the measured power 

is decreasing, the perturbation should be reversed. The P&O based MPPT method is summarised in 

Table 1. The P&O process is repeated based on the algorithm until the MPP is reached. Due to the 

perturbation size, an oscillation is always accompanied. A larger perturbation pressure leads to fast 

convergence but a larger oscillation as well. In contrast, a smaller perturbation pressure slows down 

the MPPT.  

 

Table 1 Direction of pressure perturbation of P&O.  

           Change in   
                   power 
 
Perturbation 
Pressure 

 
 

Positive 

 
 

Negative 

Positive  Positive  Negative  

Negative  Negative  Positive  

 



3.2. Incremental mass resistance  

IMR is based on the fact that the slope of the PRO power curve is zero at the MPP, positive on 

the left of the MPP, and negative on the right, as given by  

 

/ 0,               at MPP

/ 0,               left of MPP

/ 0,               right of MPP

dW dP

dW dP

dW dP







  (1) 

Because of the slope of the PRO power curve can be also approximated by the incremental pressure, 

pressure, flow rate and the flow rate change, which is presented as,  
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where V  presents the volumetric flow rate. With a fixed membrane area, equation (1) can be 

rewritten as 
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  (3) 

where /P V  and /P V   are defined as the instantaneous mass resistance and the incremental 

mass resistance, respectively. Mass resistance refers to the difficulty to pass a particular flow rate of 

the permeation through the membrane in a PRO. The inverse quantity of the resistance is mass 

conductance, describing the ease with which a current of the permeation passes. Therefore, the 

MPP can be tracked by either comparing the instantaneous mass resistance ( / VP ) to the 

incremental mass resistance ( /P V  ) or comparing the instantaneous mass conductance ( /V P ) 

to the incremental mass conductance ( /V P  ), as shown in equation (3). In fact, the two 

comparisons are equivalent in mathematics and mass resistance, namely IMR, is selected in this 

study to calculate the slope of the PRO power curve. A flowchart of the algorithm is shown in Fig. 2. 

On one hand, similar to the P&O algorithm, the incremental pressure determines the convergence of 

the MPPT. Fast tracking can be achieved with larger increments but accompanying with an 

oscillation. Therefore, how to select the incremental pressure is a trade-off to balance the 

convergence and oscillation. On the other hand, control parameter in IMR, IMR , can be used to 

decrease or eliminate the oscillation at certain levels without the sacrifice of the convergence. 

Therefore, compared to P&O algorithm, IMR is more flexible in MPPT. If a particular deviation of the 

MPP is acceptable, the stability of the MPPT can be significantly improved.       

 



 

Figure 2 Flowchart of IMR algorithm. C is value of the step pressure.  

 

3.3. Mass feedback controller 

With DSP and microcontroller which are capable to handle complex computation, an obvious 

way of performing MPPT is to compute the slope of PRO power curve ( /dW dP ) and feed it back to 

the step-pressure at the next sample instant to drive it to zero. The way to compute the slope and 

feedback is determined by the user. Inspired by the conventional PI control which attempts to 

minimize the error over time by adjustment of a control variable, a PI-like mass feedback control 

(MFC) is also proposed in this section. The aim of MFC is to minimize the slope of the PRO power 

curve over time by adjusting the step-pressure. Therefore, the algorithm below is used for MFC, 

 1( ) [( ) ( ) ] ( )p n n i n

dW dW dW
P n k k

dP dP dP
      (4) 

where pk , and ik  both non-negative, denote the coefficients for the proportional and integral gains, 

respectively. Unlike IMR algorithm that use only the sign of the slope, MFC effectuates an adaptive 

gain that the fast convergence achieves, the further the position of the actual operation point is 

from the MPP. In the proposed MFC, the step-pressure is the sum of two terms: the first term is 

proportional to the change of the slope and the second term is proportional to the slope. 

 

3.4. Fuzzy logic control 

A new MPPT controller for a PRO salinity power plant based on fuzzy logic is proposed in this 

section. Fuzzy logic control (FLC) is a non-model based control method, which attempts to employ 

the expert knowledge of the experienced operators to derive the control rules. FLC has the 

advantages of allowable imprecise inputs, free of accurate mathematical models, and handling non-



linearity. Generally, as depicted in Fig. 3, a FLC normally consists of four main steps/components: 1) 

Fuzzification. A fuzzifier is designed to map crisp values of the inputs into fuzzy sets to activate rules; 

2) FLC rules. The rules are defined to design the FLC behaviour by using a set of IF-THEN statements 

of the FLC rules; 3) Inference. Based on the rules, the inference engine maps the input fuzzy sets into 

output fuzzy sets; 4) Defuzzification. A defuzzifier is applied to map output fuzzy sets into crisp 

values.   

 

 

Figure 3 Block diagram of the fuzzy logic control 

 

The rules are the key components to determine the FLC operation, which is expressed as 

linguistic variables in terms of fuzzy sets. The output is obtained by applying an inference mechanism, 

which includes [30]: membership functions, connections linking the rules antecedents, implication 

function and rule aggregation operator. The membership functions are usually piece-wise linear 

function associated to the FLC linguistic variables, such as triangular or trapezoidal functions. The 

number and the shape of the membership functions of each fuzzy set as well as fuzzy logic inference 

mechanism are selected by the operators and thus the performance of the FLC depends on the 

experiences of the designers. The searching rules formulation in this work is based on the PRO 

power curve as shown in Fig. 1. If the last change in the applied pressure causes the power to rise, 

keep searching in the same direction; otherwise, if the last change causes the power to drop, move 

to the opposite direction.   

The FLC control is achieved based on satisfaction of two criteria relating two input variables, 

namely slope and change of slope, at a particular sampling instant. Similar to the error and the 

change of the error in the conventional FLC, the controller drives these two variables to zeros when 

the steady-state MPP is reached. Therefore, at the sampling instant n , the two variables, slope ( E ) 

and change of slope ( E ) are expressed as 

 
( ) ( 1)

( )
( ) ( 1)

W n W n
E n

P n P n

 


 
  (5) 

 ( ) ( ) ( 1)E n E n E n      (6) 

The slope in the FLC is expressed by an approximation of the slope of the PRO power curve, as 

shown in equation (5). And the change of the slope can obtained by equation (6) accordingly. 

Through the process of fuzzification, these input variables are expressed in terms of linguistic 

variables which are PB (positive big), PS (positive small), ZE (zero error), NS (negative small), and NB 

(negative big) using basic fuzzy subset. Fig. 4 illustrates the membership functions associated to the 

five linguistic variables for two inputs and one output. In the defined membership functions, 



trapezoidal-shaped membership function is selected for fuzzy sets of NB and PB, and triangular-

shaped membership function is selected for fuzzy sets of NS, ZE and PS. The parameters of these 

membership functions are based on the range of values of the numerical variables.  

 

 

Figure 4 Illustrated membership functions of the input variables, E and ΔE, and the output variable, ΔP.  

The pre-defined rules are important to determine the output step-pressure subject to different 

operations. The look up table of the rules used in this study is shown in Table 2, in which the 

linguistic variables assigned to step-pressure for the different combinations of the slope and the 

change of the slope are based on the knowledge and experiences of the users. As shown in the table, 

for example, the operating point is far to the left of the MPP, that the slope is PB, and the change of 

the slope is ZE, then a relatively large positive perturbation pressure should be added that is 

perturbation pressure should be PB to reach the MPP.   

 

Table 2 Fuzzy rule based look up table.  

        Change of  
               slope 
Slope  
 

 
 

NB 

 
 

NS 

 
 

ZE 

 
 

PS 

 
 

PB 

NB ZE ZE NB NB NB 

NS ZE ZE NS NS NS 

ZE NS ZE ZE ZE PS 

PS PS PS PS ZE ZE 

PB PB PB PB ZE ZE 

 

For a FLC based MPPT, despite the operator expertise and knowledge at the level of rule-based 

inference and the membership functions, the settings of parameters are still very tedious. To 

improve the performance, one method is trial and error, which needs a large number of tests and 

simulations. The time to get optimum parameters depends on the experiences of the designers. 

Another method is to use the optimization method which generates and evaluates a series of tests 

automatically and search for the optimum parameters. In this study, genetic algorithm (GA) is used 

to find the optimum parameters [31]. The criterion of the optimization is to minimize the error at a 

selected operation condition, 



 
2

2 2

1
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MPP MPP

n
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where W  is the average power output, MPPW  is the MPP at the selected operation condition, and 

N  is number of selected sample instants in optimization. In the future applications, the reference 

operation should be the design operation or the standard operation of a particular PRO power plant. 

In this study, the reference MPP is selected the steady-state MPP found by the MPPT using P&O. 

Number of sample instants to reach the MPP using P&O and IMR at the start-up process is varied 

with different perturbation pressure or incremental pressure [29]. The number of sample instants to 

reach the MPP using P&O is approximately between 5 to 20 in the start-up process using 

perturbation pressure of 5, 1, 0.5 bar from the initial pressure 1 bar [29]. Therefore, 20 sample 

instants are considered in the fitness function.  

In order to improve the FLC performance, parameters of all the variables are optimized using GA. 

GA optimization employs the concepts of evolutionary theory, and provide an effective search in a 

large and complex solution space to obtain the optimum solutions. The algorithm is also known for 

avoiding local minima than gradient based algorithm. To use GA, parameters to be optimized need 

to be translated into chromosomes of an individual. Then a population of individuals which 

represent different possible parameters of variables to the minimization of the fitness function is 

evolved toward better design of FLC. Therefore, the population of GA optimization consists of a set 

of individuals, each of which has three chromosomes representing E , E  and P . Because the 

same structure of membership functions are selected for inputs and output as shown in Fig. 4 in this 

study, chromosome uses the same presentation for all the three variables. Generally, the 

chromosome can be different to represent different designs of the membership functions of a 

variable to be optimized.  

The five membership functions as shown in Fig. 4 can be expressed by six parameters including 

four parameters presenting the distances ( 1i
kC , 2i

kC  and o
kC ), the minimum ( min

jl ) and the maximum 

( max
jl ). Therefore, an individual is composed of eighteen parameters which are illustrated in Fig. 5. 

The relation between 1i
kC , 2i

kC  and o
kC  ( 1,2,3,4k  ) and coordinates of the membership functions of 

the three variables, 1i
kx , 2i

kx  and o
kx  are respectively given [30],  
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where j  presents the first input variables (i1) E , the second input variable (i2) E  and the output 

variable (o) P . The parameters of 1i
kC , 2i

kC  and o
kC  ( 1,2,3,4k  ) are restricted and the minimums 

and maximums are determined by the users [30]. In this study, they are:  
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Figure 5 An illustrated individual used in GA optimization. 

 

Therefore, based on equations (8), membership functions of the three variables can be 

represented by an individual in the population.  

Moreover, with the defined individuals and fitness function, the optimization can be carried out. 

In GA, first an initial population is generated. A set of chromosomes should be randomly chosen to 

ensure the diversity of the solution candidates at the beginning. Then, GA uses the operations of 

selection, crossover and mutation to generate next generation. When the maximum value of the 

fitness functions is achieved with respect to a pre-defined value, the optimization is terminated. 

Otherwise, the optimization is working from generation to generation. In this study, the GA 

optimization is achieved using GA optimization toolbox of MATLAB. A population with 100 

individuals has been taken to search for the optimum parameters. For the selection, the fitness 

function is set as equation (7). Selection function is stochastic uniform (selectionstochunif), in which 

each parent is chosen depending on a section of the line of length proportional to its scaled fitness 

value. Crossover fraction (CrossoverFraction) is used, which specifies the fraction of the next 

generation other than elite scheme. In order to make sure the coordinates 1
jx  and 4

jx  within the 

predefined range, a set of linear constraints are used for all variables, which are 1 2 1j jC C   and 

3 4 1j jC C  . And the upper and lower bounds for the parameters are set based on equation (9). 

According to the optimization toolbox, when the problem has linear/bound constraints, the 

mutation function mutationadaptfeasible is used. The settings of the toolbox are: Crossover fraction 

of each population 0.7, mutation fraction 0.3, and TolFun (tolerance of function), which is the 

average change of fitness function between two consecutive iterations and used as the stop 

criterion, 1×10-10. 

 

4. Evaluation and comparison of MPPT controllers 

4.1. MPPT of a PRO salinity power generator 

The aim of employing MPPT is to ensure that at any operational condition, maximum power is 

extracted from the PRO plant. Four algorithms aim to be evaluated and compared in this section. An 

illustrated diagram of a general MPPT controller used in the PRO is shown in Fig. 6. The MPPT 

evaluates the osmotic power generated by the hydro-turbine (HT) and adjust the applied hydraulic 

pressure on the draw solution. The pressure transition can be achieved by changing the 

displacement of the valves or/and using the variable frequency drive to change the speed of the 

high-pressure pump (HP) [32]. Based on the different algorithms of the MPPT controller, four 

different MPPT controllers introduced earlier, P&O, IMR, FLC and MFC, are used and studied to 

search the MPP. Two case studies are used to compare the performance of these MPPT controllers. 

This work aims to investigate the performance of the different MPPT algorithms by simulations. 

Therefore, at the early stage, all the algorithms of the MPPT are considered with the available 

measured pressures and flow rates. And the targeted pressure can be actuated on the draw solution 



by a fast and stable controller. Current literatures suggested that the transition from one steady 

state to another steady state for RO process changes in different applications. Bartman et al. altered 

the flow rate less than ~1 min within a wide range of operation in UCLA experimental RO membrane 

water desalination system [33]. Sassi et al. reported that pseudo steady-state model of RO can be 

considered for time-step more than 0.25 h [34]. For PRO, currently there is no reported literature 

studying the transition between the operations. But due to the inherent similarity to RO desalination 

plant, the range of the transition time can be estimated. In this study, a general sample instant is 

used for representing the sensing period [29]. The sample instant is assumed to be larger than the 

transition time caused by applying the step pressure.  

 

Figure 6 An illustrated PRO power plant using MPPT. 

4.2. Case study of MPPT: start-up of a PRO salinity power generator  

The parameters used in this section are shown in Table 3. The performance of the PRO 

salinity power generator is obtained based on the models and modelling framework developed 

in our previous work [35], which are described in Appendix A.1. The simulations in this study are 

under the following assumptions: i) osmotic pressure is considered to be linearly proportional to 

the concentration difference based on the modified van’t Hoff law [36]. In the salinity range of 0-

70 g/kg, the modified linear osmotic pressure approximation is validated and the maximum 

deviation is 6.8% [36, 37]; ii) constant hydraulic pressure difference in the membrane channel 

due to the negligible pressure loss; iii) significant membrane fouling and deformation do not 

occur; iv) For simplicity, a constant density of the water is used for both draw and feed solutions 

[38]. 

Table 3 Parameters used in the simulations of start-up of the PRO using MPPT controllers. 

Parameter Value 

Concentration of the draw solution 35 g/kg 

Concentration of the feed solution 0.1 g/kg 

Dimensionless flow rate  0.5 

Temperature 298 K 

Membrane water permeability coefficient 1.06×10-7 m·bar-1·s-1 [39] 

Membrane salt permeability coefficient 2.62×10-8 m·s-1 [39] 

Membrane structural parameter 4.62×10-3 m [39] 

Mass transfer coefficient  4.27×10-4 m s-1 [39] 



Diffusion coefficient  3.5×10-9 m2 s-1 [39] 

Density of the solutions 1,000 kg m-3 

Modified van’t Hoff coefficient  0.7307 bar kg g-1 [36] 

Specific membrane area  0.1 m2 per 1 L/h feed solution 

Efficiency of the HP, ERD and HT 70%, 95% and 90% 

 

The MPPT with the four algorithms are studied in the start-up of a PRO plant. The 

parameters used in P&O, IMR and MFC are listed in Table 4. For the FLC based MPPT, the 

parameters of the membership functions of both the inputs and output are optimized by GA. 

The optimized membership functions are shown in Fig. 7. FLC is implemented using MATLAB 

fuzzy logic toolbox. The results of the power outputs using the four MPPT controllers are shown 

in Fig. 8. For all the MPPT controllers, the initial pressure applied on the draw solution is 1 bar 

and the step-pressure (including both perturbation pressure and incremental pressure) are set 

to be 1 bar at the first sample instant.  

Table 4 Parameters of P&O, IMR and MFC.  

P&O IMR MFC 

Perturbation 
pressure 

1 bar Incremental 
pressure 

1 bar 
pk   140 

2 2bar m /W   

  
IMR   1×10-3 bar or m3/s 

or m3 s-1 bar-1 
ik   20 

2 2bar m /W  



 

Figure 7 Optimized membership functions of the three variables.  

According to the results shown in Fig. 8, obviously the performance of the MPPT is 

significantly improved using MFC and FLC compared to that using P&O and IMR. These two 

controllers, FLC and MFC, are faster to reach the MPP during the start-up, and present also a 

much smoother signal with less fluctuation in the quasi-steady state compared to P&O. 

Furthermore, although IMR has better performance than P&O, using the parameter IMR  to 

control the oscillation may cause the slight decline of the tracked MPP as shown in Fig. 8. Also, 

the trade-off between the oscillation and convergence of these two MPPT controllers are 

determined by the fixed step-pressure which is perturbation pressure in P&O and the 

incremental pressure in IMR. Actually, this trade-off relationship is improved in both MFC and 

FLC algorithms by developing strategy of adaptive step-pressure. The adaptive strategy allows 

the MPPT controller employ a large step-pressure at the beginning of the start-up to achieve the 

fast convergence and a small step-pressure when the signal is approaching the MPP. As shown in 

Fig. 8, the first step-pressure in all the four algorithms is the predefined initial step-pressure (1 

bar). Then, based on the measurements after the first test using the predefined fixed step-

pressure, FLC and MFC adaptively increase their step-pressure which results in the significant 

increase on the APD of the PRO on the next sample instant. Consequently, the APD is 

approaching the MPP in very few steps and then the two controllers instantly reduce the step-

pressure to maintain a smooth power output.   

 



 

Figure 8 Power output with MPPT using P&O, IMR, MFC and FLC. 

 

4.3. Case study of MPPT: operational fluctuations of a PRO salinity power generator  

Furthermore, another case study of the MPPT controllers is presented at the operations subject 

to the fluctuations of the PRO plant. In fact, the PRO operation might be affected by many factors, 

such as temperature and applied pressure. Anastasio et al. reported that the permeability 

coefficients of water and solute increase from 0.589 L/(m2·bar·h) and 0.319 L/(m2·h) to 1.12 

L/(m2·bar·h) and 0.580 L/(m2·h) respectively, when the temperature of the draw solution increases 

from 20 0C to 40 0C [40]. It also has been reported that the high pressure induced the varied 

membrane properties [41]. Accordingly, the MPP of PRO is also varied with respect to the changes of 

the operating conditions. At present, there is no explicit model or theory to address and predict the 

temperature effect or pressure effect on the performance of PRO plant, which makes it difficult to 

study the transitions between the possible MPPs considering the varying operating conditions. 

Because the mechanism of the temperature or pressure effect on the hydrodynamics and 

membrane parameters and the improvement of the membrane performance are beyond the scope 

of this study, all the MPPT controllers are studied and tested using the discrete parameters of the 

solution characteristics, hydrodynamics and membrane properties. In contrast to the operation 

modelling with constant parameters, the simulation uses different parameters corresponding to 

different steady state operation conditions with specific temperatures which are changed discretely 

each MPPT sample time. These tests of the MPPT controllers using the discrete parameters are also 

capable to verify other fluctuated operations, for instance, membrane deformation due to applied 

pressure changes. The parameters are from Ref [39] and shown in Table 5 in which ICP factor 

represents the ICP effect in the support layer. It can be used to estimate the varied structure 

parameter of the membrane using diffusion coefficient, S ICP D  . It should be noted that the 

parameters listed in Table 5 are usually case-dependent, which are determined by many factors, 

such as geometry of the membrane module, membrane properties, concentration, velocity, 

temperature and etc.  

 



Table 5 Varied parameters of solution characteristics and hydrodynamics and membrane properties [39]. The draw 
solution studied is 35 g/kg (0.6 M approximately) NaCl solution.  

Temperature 
(0C) 

A 

(  -1 -1m s bar ) 

B 

( -1m s ) 

D 

( 2 -1m s ) 

km 

( -1m s ) 

ICP factor, 
S/D 

( 1 1m s  ) 

20 1.06×10-7 2.62×10-8 3.50×10-9 4.27×10-4 1.32×106 

30 1.43×10-7 4.25×10-8 4.54×10-9 9.74×10-4 1.00×106 

40 1.74×10-7 5.87×10-8 5.74×10-9 10.88×10-4 0.82×106 

50 1.98×10-7 8.00×10-8 7.09×10-9 11.98×10-4 0.71×106 

 

Based on the parameters as listed in Table 5, a series of tests are carried out to compare the four 

MPPT algorithms. The simulations are performed using a changing temperature profile as shown in 

Fig. 9. Generally, the operating temperature changes gradually in practice. For testing the controllers, 

simulations are carried out considering the operational temperature changes instantly, which is 

more difficult for MPPT to track the suddenly changed MPP. Specifically, we consider a 175 sample 

instants time window in which the temperature is varied. At the end of every 25 sample instants, the 

temperature increases or decreases by o10 C . The parameters and settings are same to those of the 

tuned MPPT controllers in the case study of the start-up. According to the simulations, the tuned 

MFC (tuned parameters listed in Table 3) in the case study of start-up does not have very good 

performance in the studied cases of state transition using parameters as shown in Table 5. A too 

large step pressure resulted from MFC at the 26th sample instant leads to significant decrease of 

process performance from o20 C  to o30 C  at the 26th. A limitation of the step pressure can be added 

in the MFC to avoid a too much step pressure caused by the suddenly changed operation. A simple 

scheme can be used to limit the step pressure, which is 0(n)P P   if (n)P  calculated by 

equation (4) is larger than the limiting step pressure maxP . DP
0

 is the actuated step pressure and  

it can be controlled to change the performance of the MPPT but DP
0
£DP

max
 should be considered. 

The results of MPPT using the modified MFC are shown in Fig. 9 and high performance can be found 

using the modified MFC with the selected 0P  and maxP  to be 1 and 5 bar, respectively. Moreover, 

as shown in Fig. 9, P&O, IMR and FLC successfully tracks the varied MPP due to the changing 

operational temperature. The results clearly indicate the better performance of FLC than P&O and 

IMR. On one hand, MPPT using FLC has fast convergence at the start-up of the PRO that it reaches 

the MPP at the first five sample instants. On the other hand, using FLC high power outputs are 

tracked and low oscillation is maintained in all seven operations with different temperatures.  

 



 

Figure 9 Power output of the PRO power plant using MPPT controllers of different algorithms subject to fluctuating 
operational temperatures. 

 

Moreover, another test of these four algorithms is carried out in the case study of the PRO 

power plant subject to fluctuating operational concentrations and flow rates, in which both the draw 

solution and the feed solution are considered. Specifically, we consider a 60 sample instants time 

window in which the concentrations of draw and feed, and the dimensionless flow rates are changed 

as shown in Fig. 10 (a), 10(b) and 10(c), respectively. The dimensionless flow rate is the ratio of the 

flow rate of the feed to the sum of the both flow rates, which is 0 0 0/ ( )F D Fq q q . As shown in Fig. (10), 

both the concentrations and the flow rates jumped suddenly to another value at particular time 

instants and make the operation fluctuated in the selected operation window. Tests of these four 

algorithms are carried out considering all the varied concentrations and dimensionless flow rates. It 

is important to point out that the selected fluctuated operation window is a case study and the four 

algorithms can be readily extended to deal with other complex fluctuation profiles. In the 

simulations, the membrane properties listed in Table 3 are used. 

 



 

Figure 10 Variations of salinities including concentrations of the draw shown in (a) and the feed shown in (b), and the 
dimensionless flow rate shown in (c).  

 

According to the fluctuating operations including both the draw and feed concentrations and 

dimensionless flow rate as shown in Fig. 10, the four MPPT algorithms are tested and the results are 

plotted in Fig. 11. Similarly to the results of MPPT dealing with fluctuated temperature, the four 

algorithms are capable to detect the changed operations and track the new MPPs. But it is clearly 

that the MPPT using FLC and modified MFC has better performance than that using P&O and IMR 

when the operational concentrations and flow rates of the salinities are varied. As shown in Fig. 11, 

both fast response to the fluctuations and smoothly tracked MPPs are found using algorithms of FLC 

and modified MFC.  

 



 

Figure 11 Power output of the PRO power plant using MPPT controllers of different algorithms subject to fluctuating 
operational concentrations and flow rates. 

 

4.4. Comparisons and discussions of MPPT controllers 

A general comparison between the four MPPT algorithms considered and investigated in this 

study is listed in Table 6. Although the trade-off relation between the convergence and oscillation 

restricts the performance of the MPPT using constant step-pressure, namely P&O and IMR, both 

methods have advantages of low cost, independence of the PRO plant, easy implementation, stable 

and robust performance. In addition, MFC shows fast convergence of the MPPT at the start-up.  It 

successfully tracks the changed MPPs under condition of the maximum step pressure restriction. 

Implementation of MFC controllers is relatively cheap but it needs consistent tuning for high 

performance. FLC algorithm has potential to balance the trade-off relation between the convergence 

and oscillation, and to deal with the operational fluctuations. The obtained optimized FLC 

demonstrates the high performance and the robustness. It has not only improved the response time 

in the start-up and transitional state but also reduced considerably the oscillation in the steady-state. 

However, the adaptive strategy behind the FLC is achieved by a series of steps and settings. The 

performance is determined by the experiences and knowledge of the users and designers. 

Compared to P&O and IMR, a better FLC-MPPT is not easy to design, parameter tuning and 

implement.   

 



Table 6 Major characteristics of the four MPPT controllers.  

MPPT algorithm P&O IMR MFC FLC 

PRO dependent? No No No No 

Analog or Digital? Both Digital Digital Digital 

Periodic tuning? No Varies Yes Yes 

Convergence speed Varies  Varies Fast Fast 

Oscillation? Yes No No No 

Implementation complexity Low Medium Medium High  

Vulnerable to variable operations Low Low Medium Medium 

 

 

5. Conclusion  

In this study, two new MPPT controllers used in the PRO power plant are proposed and 

evaluated, including MFC and FLC. To optimize the performance of the MPPT using FLC algorithm, 

GA optimization is used to find the optimum parameters for the membership functions of both the 

input and output variables in FLC. Then, the four MPPT controllers are compared in selected case 

studies. One is the start-up of the PRO and the other is the fluctuating operated PRO due to the 

varied temperature and salinities. Finally, based on the comparisons, the major characteristics of 

these four methods are presented. Therefore, according to the results, some conclusions can be 

drawn: 1) using MPPT at the start-up of the PRO, compared to P&O and IMR algorithms, both MFC 

and FLC are capable to adaptively change the step-pressure to balance the trade-off relationship 

between the rise-time and the steady-state oscillation; 2) optimized FLC and modified MFC 

algorithm are capable to deal with the operational fluctuations. MPPTs using FLC and modified MFC 

have the better performance than the MPPTs using P&O and IMR algorithms, meaning faster 

convergence and lower oscillation during all the tested start-up and steady-state transitions; 3) the 

comparable table can be served as a useful guide in choosing the right MPPT algorithm for a specific 

PRO application.  

 

Nomenclature  

A     Membrane water permeability [   -2 -1 -1L m s bar ] 

mA    Membrane area [ 2m ]   

B    Membrane solute permeability [ -2 -1L m h  ] 

c    Concentration of solution [ -1kg kg ] 

kC     Generic parameters used for designing membership functions  

OSC    Modified van’t Hoff law coefficient [   1bar kg g ] 

D     Diffusion coefficient [ 2 -1m s ] 

mk     Mass transfer coefficient [ -1m s ] 

WJ    Water permeation flow rate [ -2 -1L m h  ] 

SJ     Reverse solute permeation flow rate [ -2 -1L m h  ] 

min max,l l   Generic parameters presenting the minimum and the maximum of a 

membership function 
P     Pressure [bar ] 



q     Mass flow rate of solution [ -1kg h ] 

S     Membrane structure parameter [m ] 

V     Volumetric flow rate of solution [ 3 -1m h ]  

W    Average power density [ -2W m ] 
x     Generic parameters used for designing membership functions 

     Osmotic pressure [bar ] 
     Dimensionless flow rate 

     Efficiency 

     Density of solution [ -3kg m ] 

 
 

Abbreviations  

APD  Average power density 
BP   Boost pump  
ECP  External concentration polarization 
FLC   Fuzzy logic control 
HP   High-pressure pump  
HT    Hydro-turbine  
ICP   Internal concentration polarization 
IMR  Incremental mass resistance 
INC   Incremental conductance  
MFC  Mass feedback control 
MPP  Maximum power point 
MPPT  Maximum power point tracking 
NB   Negative big 
NS   Negative small 
PB   Positive big 
P&O  Perturb & observe  
PRO  Pressure retarded osmosis  
PS   Positive small 
PV   Photovoltaic  
RO   Reverse osmosis 
RSP  Reverse solute permeation 
TFC  Thin-film composite 
ZE   Zero 
 

 

Appendix: Mathematical model of a scale-up PRO salinity power generator  

In a PRO plant, the membrane power density is the product of the trans-membrane hydraulic 

pressure and the water permeation flux across the membrane [1]. With the scale increases, the 

overall performance is evaluated by integrating the water flux and power density over the entire 

membrane used. The modelling framework of the scale-up PRO can be found in our previous work 

[35]. For a clear understanding, key equations describing a PRO process are listed in Table A.1. At a 

particular position along the membrane channel, the water flux (equation A.1) and reverse solute 

flux (equation A.2) are determined by the local concentration difference between the membrane 

surfaces and the membrane permeability-selectivity. Based on equations (A.4) and (A.5), flow rates 

of the accumulative water permeation and reverse solution permeation can be obtained by 



integrating the water flux and reverse salt flux. Then, update of salinities’ concentration and flow 

rate at each position in the flow channel can be done by equations (A.6), (A.7), (A.8) and (A.9). In 

order to evaluate the overall efficiency of the osmotic power extraction, average power density (APD) 

of a scale-up PRO is expressed by equation (A.11).  

 

Table A.1 Mathematical model of a scale-up PRO plant.  

Physical quantity Equation NO# 

Water Flux exp( / ) exp( / )
( ( ) )

1 (exp( / ) exp( / ))

D W m F W
W os PRO

W W m

W

c J k c J S D
J A C P

B
J S D J k

J

 
 

  

 
(A.1) 

Reverse salt flux 
Fexp( / ) exp( / )

B( )

1 (exp( / ) exp( / ))

D W m W
S

W W m

W

c J k c J S D
J

B
J S D J k

J

 


  

 
(A.2) 

Power Density 
W PROW J P   (A.3) 

Water Permeation ( ) ( );P w m P P Pd V J d A q V      (A.4) 

Reverse salt permeation ( ) ( );S S m S S Sd V J d A m V      (A.5) 

Concentration of the draw 0 0

0

cD D S
D

D P

q m
c

q q





 

(A.6) 

Flow rate of the draw 0
D D Pq q q   (A.7) 

Concentration of the feed 0 0
F

0

c F S
F

F P

q m
c

q q





 

(A.8) 

Flow rate of the feed 0
F F Pq q q   (A.9) 

Average power density (APD) 
0

PRO P

F m

P V
W

V A

 
  

(A.10) 
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