
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=utch20

Download by: [Royal Hallamshire Hospital] Date: 10 May 2016, At: 07:45

Technometrics

ISSN: 0040-1706 (Print) 1537-2723 (Online) Journal homepage: http://www.tandfonline.com/loi/utch20

Calibration of stochastic computer simulators
using likelihood emulation

Jeremy E. Oakley & Benjamin D. Youngman

To cite this article: Jeremy E. Oakley & Benjamin D. Youngman (2015): Calibration
of stochastic computer simulators using likelihood emulation, Technometrics, DOI:
10.1080/00401706.2015.1125391

To link to this article:  http://dx.doi.org/10.1080/00401706.2015.1125391

© 2016 The Author(s). Published by Taylor &
Francis.

View supplementary material 

Accepted author version posted online: 10
Dec 2015.

Submit your article to this journal 

Article views: 98

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=utch20
http://www.tandfonline.com/loi/utch20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00401706.2015.1125391
http://dx.doi.org/10.1080/00401706.2015.1125391
http://www.tandfonline.com/doi/suppl/10.1080/00401706.2015.1125391
http://www.tandfonline.com/doi/suppl/10.1080/00401706.2015.1125391
http://www.tandfonline.com/action/authorSubmission?journalCode=utch20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=utch20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/00401706.2015.1125391
http://www.tandfonline.com/doi/mlt/10.1080/00401706.2015.1125391
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2015.1125391&domain=pdf&date_stamp=2015-12-10
http://crossmark.crossref.org/dialog/?doi=10.1080/00401706.2015.1125391&domain=pdf&date_stamp=2015-12-10


ACCEPTED MANUSCRIPT

Calibration of stochastic computer simulators using
likelihood emulation

Jeremy E. Oakley
School of Mathematics and Statistics, University of Sheffield

and
Benjamin D. Youngman

Department of Mathematics and Computer Science, University of Exeter

Abstract

We calibrate a stochastic computer simulation model of ‘moderate’ computational expense.
The simulator is an imperfect representation of reality, and we recognise this discrepancy to
ensure a reliable calibration. The calibration model combines a Gaussian process emulator
of the likelihood surface with importance sampling. Changing the discrepancy specification
changes only the importance weights, which lets us investigate sensitivity to different discrep-
ancy specifications at little computational cost. We present a case study of a natural history
model that has been used to characterise UK bowel cancer incidence. Data sets and computer
code are provided as supplementary material.

Keywords: Bayesian inference; computer experiments; natural history model; importance sam-
pling; Gaussian process emulator
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ACCEPTED MANUSCRIPT

1 Introduction

We consider the problem of calibrating a computer model of a physical process to observations

from the process: finding model input values such that the model outputs match the observed

data as closely as possible. Our approach is inspired by the framework for Bayesian calibration

proposed by Kennedy and O’Hagan (2001) and developed in Higdon et al. (2004), Bayarri et al.

(2007b), Bayarri et al. (2007a) and Higdon et al. (2008), and by Bayes linear history matching

developed in Craig et al. (2001), Goldstein and Rougier (2006) and Vernon et al. (2010). We

refer to a computer model as a “simulator” and focus on three issues: computationally expensive

simulators; “discrepancy”, which is the error in a simulator prediction due to the simulator being an

imperfect model of reality; and stochastic simulators, which are simulators that can return different

output values from the same input values.

Any calibration method will involve running the simulator at different input values. Methods

that require many simulator runs become impractical if a single simulator run at one input value

takes a long time. A well-established technique for handling expensive simulators, proposed in

Sacks et al. (1989), is to construct a cheap surrogate model or “emulator” of the simulator using

Gaussian process regression, based on relatively few simulator runs. Variations of this method are

used in the above references. We consider a simulator of ‘moderate’ computational cost, in which

runs take one to two minutes, depending on input values. We argue that this changes the nature

of the surrogate modelling problem. Rather than attempting to construct a very precise emulator

of the simulator, we propose to use a cruder emulator to guide us to the appropriate regions of the

input space, and then do direct simulator evaluations in those regions. In particular, we propose

using importance sampling (Ripley, 1987, Section 5.2), where the emulator is used to construct the

importance density.

When calibrating a simulator, it is important to account for simulator discrepancy for two

reasons. Firstly, if the inputs are physically meaningful quantities that could, in principle, be

observed directly, calibrating a simulator without accounting for discrepancy may result in biased

estimates with severe over-confidence, as demonstrated in Brynjarsdóttir and O’Hagan (2014). If

the simulator inputs are ‘tuning’ parameters that are not physically observable, discrepancy plays

an important role when calibrating to multiple outputs, or when predicting unobserved output
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quantities using a calibrated simulator. Suppose that we have a physical observation for an output

quantityZ1, and wish to predict an unobserved output quantityZ2. A simulator input value may

give a poor fit to outputZ1, but a good prediction ofZ2. If we do not believe the simulator models

Z1 perfectly, we would not necessarily want to rule out such an input value and corresponding

prediction ofZ2. Accounting for the simulator error in modellingZ1 would prevent this.

As argued in Brynjarsd́ottir and O’Hagan (2014), it is important to specify meaningful proper

prior distributions for simulator discrepancy, but to do this may be difficult. In Vernon and Gold-

stein (2010), within a Bayes linear framework, the simulator expert only provided aninterval for

the variance of a discrepancy parameter. Strong et al. (2012) suggest ‘opening the black box’

and incorporating discrepancy terms within the simulator, so that the expert considers sources of

simulator discrepancy explicitly, rather than attempting to make judgements about the overall dis-

crepancy. We argue that it is desirable to be able to investigate, without too much difficulty, a

range of different discrepancy distributions, within any calibration methodology. Within our pro-

posed importance sampling framework, we suggest an initial, conservative specification of simu-

lator discrepancy, which can then be varied with little extra computational effort via re-calculation

of importance weights corresponding to different discrepancy distributions.

The third issue that we consider is that of a stochastic simulator. Traditionally the interest

in statistical methods for computer experiments has focussed on deterministic models, but the

methodology can be readily extended to stochastic models (see for example Kleijnen (2007, Chap-

ter 5)). In our case study, the stochasticity results from the use of discrete event simulation to

simulate (amongst other things) transition times between cancer states. The use of simulation will

typically result in at least moderate computational expense, in an attempt to eliminate or reduce

simulation error. There is a broad range of examples of stochastic simulation models to which

the proposed calibration method can contribute. Ghani et al. (2012) coupled virtual engineering

and simulation models to efficiently minimise energy costs for a manufacturing process; here cal-

ibration can ensure that various worker and shift pattern constraints are met, allowing so-called

‘what-if’ scenarios to be explored for further energy savings. Gillespie (2007) simulated chemi-

cal interactions of molecules over time; calibrating inputs ensures that numbers of molecules for

different species match target data at given times and, given the simulation model’s structure, al-
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ACCEPTED MANUSCRIPT

lows molecules’ positions and velocities at intermediate times to be understood. Simulations of

fluid transport through karstic aquifiers in Jaquet et al. (2004) relied on a discrete representation of

spatially variable geometric and hydraulic properties; here calibration ensures that the inputs give

reliable simulations.

Studying a stochastic simulator raises the question of what it is we should try to emulate, as-

suming that an emulator is necessary. The simulator in our case study produces random count data.

In a similar scenario, Henderson et al. (2009) constructed emulators for probabilities from which

the count data were assumed to have been generated, which links to the geostatistical modelling

of probabilities proposed in Diggle et al. (1998). We propose constructing an emulator for the

likelihood function given the observed data. Our simulator produces 30 count data outputs (with

various dependencies between the outputs), and so emulating the likelihood reduces the computa-

tional effort to emulating a univariate output, and enables us to implement an importance sampling

approach for the calibration. This is achieved by reducing the input region sequentially: ruling out

inputs from regions where the likelihood is relatively low. This relates to the history matching of

Vernon et al. (2010), in which parts of input space measured to have large implausibility are ruled

out.

This paper has the following structure. The next section introduces the natural history model

that we will calibrate. Section 3 then outlines the calibration method. Section 4 presents the results

of calibration for the natural history model and Section 5 offers conclusions and discussion of the

calibration method.

2 Motivating application: calibrating a natural history model

of bowel cancer

We present a case study based on a natural history model (NHM). This is a stochastic computer

simulation model that produces count data as output. The output stratifies UK bowel cancer inci-

dence by age and various categories for bowel cancer type. We present only the basic set-up of

the NHM; for a fuller description see Tappenden (2011). The NHM represents abirth cohort: a

fixed-size sample of people followed from birth to death. A person in the cohort is deemed to have
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developed bowel cancer when they have reached the first cancer state, Duke’s A, having begun in

a non-cancer state, and progressed through three, ordered pre-cancer states: low-, medium- and

high-risk adenomas. A person may continue to progress through three more increasingly severe

cancer states, Duke’s B, C and Stage D. Progression between states is governed by time. When in a

given state, a progression time to the next state is simulated, together with a presentation time (the

most common form of presentation being to visit a doctor), and a time until death. Out of these

three actions, the one that occurs is the one with the shortest simulated time. Times are assumed

to follow state-dependent Weibull distributions, the parameters of which form the majority of the

NHM’s unknown parameters that we calibrate.

The NHM’s output is four sets of count data, which are calibrated against various comparable

target data; Section 4.1 gives further details. The data broadly cover the distribution of cancer

cases by age and by type, which are two important measures for assessing whether the NHM’s

output matches reality. We can calibrate against such data because the NHM’s framework lets a

person’s age be known whenever they change state. It also lets a person progress straight from birth

to death (without ever contracting bowel cancer), or progress through some or all pre-cancer and

cancer states. Once a patient makes aware their symptoms, they enter the health system and receive

a bowel cancer diagnosis. The age-based data that form part of the NHM’s output result from these

diagnoses and the tracking of ages. Having left the health system, a person returns to a non-cancer

state and is still represented by the NHM, but their progression rates between states are elevated.

While designed to mimic bowel cancer treatment within the health system, not all processes are

necessarily well understood, or can be incorporated in the model. Simplifying assumptions used,

such as times following Weilbull distributions, give examples of where discrepancy may arise.

The motivation for calibrating such a model is to support decision making. In the UK, the

National Institute for Health and Care Excellence (NICE) regularly makes such healthcare resource

allocation decisions on the basis of cost-effectiveness, with the decisions typically informed by

simulator predictions (for example scenarios see Tappenden et al. (2012)). Furthermore, NICE

expects analysts to account for simulator input uncertainty, preferably by assigning probability

distributions to the inputs and deriving the simulator output distributions (National Institute for

Health and Care Excellence, 2013, Section 5.8.7). The calibrated input distributions can be used
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for this purpose.

3 The calibration method

3.1 The calibration problem

We have target dataZ, observed in the real world, with which we can calibrate the simulator. The

data comprise observations of various binomial and multinomial random variables; for simplicity

suppose thatZ is a single binomial random variable, withZ|θ∗ ∼ Bin(N, θ∗). The computer simula-

tor encodes a functionθ(x) that describes the relationship between some input parametersx and a

binomial distribution probability parameterθ(x). We suppose that there is a true, observable input

valueX, observable in the sense that, in theory data could be obtained to estimateX directly, inde-

pendently of the simulator. (To clarify, we havex as an arbitrary choice of input value, andX as the

true, unknown values of the input quantities in reality.) For example, inputs 7 and 8 characterise the

shape and scale of the Weibull distribution that represents transition times between cancer states

Duke’s A and B. In theory, these values could be estimated directly by observing transition times

in patients, but it would be unethical to allow such transitions to occur without intervening.

Relating the simulator to reality, we recognise that the simulator is not perfect, and we write

θ∗ = θ(X) + δ, whereδ represents the simulator error or discrepancy, as in Kennedy and O’Hagan

(2001) and Vernon et al. (2010). Note that in Kennedy and O’Hagan (2001), the simulator had

both non-random ‘control’ inputsxcont that the user could simply choose, and uncertain calibration

inputsXcalib to be inferred. This would correspond to writingθ∗(xcont) = θ(xcont,Xcalib) + δ(xcont),

so that the discrepancy depends on the settings of the control inputs. In our scenario, the simulator

has calibration inputs only.

3.2 Calibrating a stochastic computer simulator

The computer simulator does not actually calculateθ(x) for a given inputx. Instead, the simulator

outputs a random variableY(x) with Y(x)|θ(x),n(x) ∼ Bin(n(x), θ(x)). The value ofn(x) is expected

to increase with the patient cohort size, the original patient sample size chosen for the simulator,
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but is subject to some random variation. Hence, for any simulator run at inputx, we will have to

infer the value ofθ(x) based on the observations forY(x) andn(x). During the calibration process,

we run the simulator at inputsx1, . . . , xm, to obtain simulator dataD = {xi ,Y(xi),n(xi)}mi=1, and use

the calibration to derive the posterior distributionπ(X|Z,D); we inferX givenZ and D.

We can evaluate the likelihoodπ(Z |X = x,D) for X at the value ofx via

π(Z |X = x,D) =
"
π(Z|θ(x), δ, x,D)π(θ(x)|x,D)π(δ|θ(x), x,D)dθ(x)dδ,

which we assume can be simplified as

π(Z |X = x,D) =
"
π(Z|θ(x), δ)π(θ(x)|D)π(δ)dθ(x)dδ.

We make a further simplification: we suppose that we have run the simulator atx to observeY(x)

andn(x), so that{x,Y(x),n(x)} ∈ D and then we set

π(θ(x)|D) = π(θ(x)|Y(x),n(x)),

so that we only use the run atx to infer the correspondingθ(x). The resulting likelihood is

π(Z |X = x,D) =
"
π(Z|θ∗)π(θ∗|Y(x),n(x))π(δ)dθ(x)dδ. (1)

3.3 Incorporating simulator discrepancy

We need to specify a prior distributionπ(δ). Assuming we are not expecting bias in any particular

direction, we setE(δ) = 0. We might then specifyδ ∼ N(0, τ) for some appropriateτ, but this

would give an intractable likelihood (1), as would any other standard choice of distribution.

As the effect ofVar(δ) is to introduce extra ‘noise’ into the system, we can instead incorporate

discrepancy and obtain a closed form expression for the likelihood by inflating uncertainty about

θ(x), instead of explicitly specifyingπ(δ). We choose aU[0,1] prior distribution forθ(x) and

suppose that

θ(x)|Y(x),n(x) ∼ Beta(1+ λY(x),1+ λ(n(x) − Y(x))),

with λ ∈ (0,1]. In other words, the posterior forθ(x) is what we would have derived, had the sim-

ulator been run with a smaller cohort of patients. The prior distributionπ(δ) is specified implicitly,

7
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

R
oy

al
 H

al
la

m
sh

ir
e 

H
os

pi
ta

l]
 a

t 0
7:

46
 1

0 
M

ay
 2

01
6 



ACCEPTED MANUSCRIPT

with λ corresponding toVar(δ); the ‘extra noise’ is introduced viaλ instead ofVar(δ). We now

re-write the likelihood as

π(Z |X = x,D) =
∫
π(Z|θ(x))π(θ(x)|Y(x),n(x))dθ(x)

=
NCZB(1+ λY(x) + Z,1+ λ(n(x) − Y(x)) + N − Z)

B(1+ λY(x),1+ λ(n(x) − Y(x)))
, (2)

whereB(., .) is the Beta function.

Two apparent drawbacks of this approach are that prior beliefs about the discrepancy are no

longer stated clearly, and that we would not be able to make posterior inferences about the discrep-

ancy. However, we show in Section 4.2 that we can still visualise the prior discrepancy variance. It

would also be possible to obtain a draw from the posterior distribution of the discrepancyπ(δ|Z,D),

by samplingx from the posteriorπ(X|Z,D), an observation errorε, a model outputθ(x), and then

calculatingδ = Z−ε−θ(x). Though we don’t actually perform this step, we present plots that com-

pare model runs with calibration data, and hence give an impression of the posterior distribution

of the discrepancy (see for example Figure 4).

We discuss the choice ofλ in Section 4.2 and investigate sensitivity in Section 4.8. In general,

we propose an initial conservative specification. We can then obtain a sample from the posterior

distributionπ(X|Z,D) and use importance sampling to explore the effect of changingλ by changing

the importance weights. For example, in the case whereλ is multivariate, corresponding to a

multiple output simulator, we can investigate scenarios where some outputs are believed to be

better modelled than others. By starting with conservative values ofλwe are, in effect, ‘broadening

the search’ for inputs that give simulator outputs that are close to the observed data. Without

discrepancy, it is possible that no input value will give a good fit to all the output data.

3.4 Sampling from the posterior distribution of the inputs

ObtainingY(x) andn(x) is computationally expensive, so we need to be selective in where we

choose to run the simulator and evaluate the likelihood. We use importance sampling, where we

construct a cheap-to-evaluate importance density using a Gaussian process emulator (Sacks et al.,

1989). Rasmussen (2003) used a Gaussian process approximation to a (log) posterior density
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function to improve the efficiency of Bayesian integration, which Fielding et al. (2011) extended to

include parallel tempering to accommodate multi-modality. Bliznyuk et al. (2008) used radial basis

functions to provide a cheap-to-evaluate density function approximation. Overstall and Woods

(2013) adopted similar sampling approaches to Rasmussen (2003) and Fielding et al. (2011), but

differed by emulating multivariate simulator output directly, which reduces the dimension of the

input space and allows fewer simulator runs to be used to build the emulator.

3.4.1 Emulator construction

We build an emulator for the the log-likelihood for input vectorx, x = (x(1), . . . , x(p))T , that is, for

the functionf (x), where

f (x) := log{π(z|X = x, y(x))}. (3)

Thus we modelf (x) as a Gaussian process (Sacks et al., 1989), which is written

f (x) |σ2, β, φ, ν2 ∼ GP(hT(x)β, σ2c(x, ))

whereh( ) andβ compriseq basis functions and regression coefficients, respectively;hT(x)β is

therefore the GP mean function,σ2 is its variance andc( , ) is its correlation function.

We choose the correlation function to have the Gaussian form

c(xi , xj) =





exp{−
∑p

d=1((x
(d)
i − x(d)

j )/φd)2} if xi , xj ,

(1+ ν2/σ2)−1 if xi = xj ,

for roughness parametersφ = {φ1, . . . , φp}, whereφd > 0, d = 1, . . . , p. The parameterν2 > 0

introduces anuggeteffect into the emulator, which has been shown to improve the predictive

performance of Gaussian process emulators (Andrianakis and Challenor, 2012; Gramacy and Lee,

2012), but is imperative for a stochastic simulator. We choose a constant nugget because it is

ultimately the emulator’s posterior mean that we use to sample inputs. We could let the nugget

effect vary with inputs, but forms for this relationship are not obvious; while we investigated some

log-linear forms, none improved upon the constant choice. We choose a Gaussian covariance

function because we expect the underlying function to be smooth, and the inclusion of the nugget
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term is likely to make the precise choice less critical, as we are not trying to interpolate the training

data exactly.

The emulator training data comprisem simulator runs. Inputs are chosen using a Maximin

Latin hypercube design on the emulator design region obtained having ruled out parts of the initial

design region. We define input setDX = {x1, . . . , xm}; vector of corresponding log-likelihoods

f (DX) =
(
f (x1), . . . , f (xm)

)T ; m× m matrix A with (i, j)th elementc(xi , xj); m× q matrix H with

ith rowh(xi); andt(x)T = (c(x1, x), . . . , c(xm, x)).

Choosing hyperparameter priorπ(σ2, β, φ, ν2) ∝ σ−2 gives the posterior emulator

f (x) |D, φ, ν2 ∼ tPn−q(h
T(x)β̂, σ̂2c∗(x, )),

a Studentt-process onn− q degrees of freedom, where

β̂ = (HTA−1H)−1HTA−1 f (DX)

σ̂2 = (m− q− 2)−1( f (DX) − Hβ̂)TA−1( f (DX) − Hβ̂)

m∗(x) = hT(x)β̂ + t(x)TA−1( f (DX) − Hβ̂
)

and

c∗(x, x′) = c(x, x′) − t(x)TA−1t(x′) +
(
h(x) − t(x)TA−1H

)
(HTA−1H)−1(h(x′) − t(x′)TA−1H

)T
.

We fix (φ, ν2) at the posterior mode ofπ∗(φ, ν2), where

π∗(φ, ν2) ∝ (σ̂2)−(m−q)/2|A|−1/2|HTA−1H|−1/2 π(φ, ν2).

This is found using a derivative-free optimisation algorithm, which is initialised using a short

MCMC run with 200 iterations of a Gibbs sampler with Metropolis-Hastings updates.

3.4.2 Input sampling algorithm

For reliable samples from the input posterior distribution to be obtained, the emulator should rep-

resent high values of the log-likelihood fairly accurately. To achieve this we use an initial set of

simulator runs to identify where the likelihood is not large, ie. where we are sure that calibrated

inputs do not lie. We can repeat this procedure in waves, as in Vernon et al. (2010), until a suffi-
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cient amount of the initial input space has been ruled out to give the emulator design region. We

elaborate on this preliminary step to the calibration in Section 4.4.

The calibrated inputs are obtained using importance sampling. The emulator’s posterior mean

forms the importance density, and serves as an approximation to the log-likelihood. We can sample

from the importance density using Gibbs sampling with Metropolis-Hastings updates. With the

emulator design region identified, it may still take several attempts before the emulator forms an

adequate importance density. To assess this we identify whether any parts of the input region exist

where the difference between the posterior mean and the log-likelihood is large, or where, given

the posterior mean is relatively large, the emulator’s uncertainty is large. The latter is measured

using the pivoted Cholesky decomposition (Higham, 2002). We add simulator runs in these parts

to enable the emulator to provide a more accurate representation of the log-likelihood surface. The

following algorithm then describes how we obtain the final sample of calibrated inputs.

1. Obtain a sample of inputs,DS = (X1, . . . ,XS), by Gibbs sampling as follows. Fors =

1, . . . ,S let Xs = (X(1)
s , . . . ,X

(p)
s )′ with initial stateX1. For s = 2, . . . ,S set Xs = Xs−1.

For d = 1, . . . , p, generateX(d)
∗ from univariate proposal distributionq( |X(d)

s−1) and letX∗ =

(X(1)
s , . . . ,X

(d−1)
s ,X(d)

∗ ,X
(d+1)
s , . . . ,X(p)

s )′. ReplaceX(d)
s with X(d)

∗ with probability

min




1,

exp(m∗(X∗))q(X(d)
s−1 |X

(d)
∗ )

exp(m∗(Xs))q(X(d)
∗ |X

(d)
s−1)




, wherem∗(x) = hT(x)β̂ + t(x)TA−1( f (DX) − hT(x)β̂) and

f ( ) is the vector of log-likelihoods from equation (3).

2. Form the covariance matrix for the sample, ie. theS × S matrix AS with (i, j)th element

c∗(Xi ,Xj), for i, j = 1, . . . ,S. Compute its Cholesky square rootP with diagonal elements

{ps}Ss=1. ReorderX1, . . . ,XS according to the pivot ofP to giveX(1), . . . ,X(S) and formDpiv :=

{X(1), . . . ,X(u)} from the firstu members, whereu is the maximum number of simulator runs

we are prepared to add to the training data in one iteration (which we suggest limiting to

10% of size of the input sample).

3. Defineps to be ‘large’ if ps > v, for somev > 0. (Note that asA is a correlation matrix,

v = 2 corresponds to a correlation below 0.05, which is a cut-off often used in geostatistics.)

If no ps are large, proceed to Step 5. Otherwise form the setD† = {X(s) ∈ Dpiv : ps > v}, for

s= 1, . . . , u, evaluate the simulator at each of its members and calculate their log-likelihoods,
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f (D†).

4. AddD† and f (D†) to the training data, re-build the emulator, and return to Step 1.

5. Compute importance weightsws = exp{ f (Xs) − m∗(Xs)} for Xs ∈ DS. If a large proportion

(we suggest more than 80%) of weights are zero, return to Step 4.

6. Obtain the calibrated inputs,D∗ = {X∗1, . . . ,X
∗
M}, by resamplingDS with replacement accord-

ing to weightsw∗s = ws/
∑S

s=1 ws.

4 Calibration of a Natural History Model

4.1 Target data, output and notation

The target data and NHM output are counts that we will in general denote byZjk and Yjk(x),

respectively, wherej = 1, . . . , 4 indexes the data type andk = 1, . . . ,Kj indexes groups within

types; corresponding sample sizes are denotedNjk andnjk(x), respectively. Herex is the input

vector that we use to initialise the NHM. The data types are identified explicitly, as opposed to

considering the output as a single vector, due to their inherent differences, which will emerge in

the following summaries.

4.1.1 Cases by age

Target dataZ1k represent a cross-sectional study and give the number of people out ofN1k in the UK

developing bowel cancer in 2008, wherek = 1, . . . , 18 indexes age groups 0-4, 5-9,. . ., 80-84, 85+

(Cancer Research UK, 2011). The NHM’s output does not match the target data directly. Instead, it

represents the cancer state and age of a birth cohort, ie. longitudinal data. To make the NHM output

consistent with the target data, it is resampled by allocating each person to age groupk = 1, . . . , 18

at random, according to probabilities determined by proportions in the UK population. Thus we

take the NHM output, which corresponds to a longitudinal study, and resample it to match the target

data, which corresponds to a cross-sectional study. Letr = 1, . . . ,R index each randomisation.

The resulting NHM output corresponding toZ1k is denotedY(r)
1k (x), with corresponding sample size
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n(r)
1k(x). We assume thatZ1k andY(r)

1k (x) are binomially distributed with sample sizesN1k andn(r)
1k(x),

respectively. We approximate the likelihood for this data type by averaging over randomisations,

with R large.

4.1.2 Cases by type

The number of bowel cancer cases of typek from N2 cases isZ2k, wherek = 1, . . . , 4 indexes types

Duke’s A, B and C, and Stage D, respectively. The NHM output is denotedY2k(x) and is directly

comparable toZ2k. The total number of cases simulated is denotedn2(x). We assume multinomial

distributions forZ2 = (Z21,Z22,Z23,Z24)′ andY2(x) = (Y21(x),Y22(x),Y23(x),Y24(x))′, given sample

sizesN2 andn2(x), respectively.

4.1.3 Obstructed cases by type

These data also represent cases by type, but only those cases in which an obstruction (malignant

large bowel) occurs and only for types Duke’s B, C and Stage D (Tekkis et al., 2004). We therefore

defineZ3k, N3, Y3k(x) andn3(x) and assume multinomial distributions similarly to thej = 2 case.

4.1.4 Undetected adenomas by age

The number of people out ofN4k that developed adenomas that had not been detected in their

lifetime is Z4k, wherek = 1, . . . , 4 indexes age groups under 55, 55-64, 64-74 and over 75; these

have later been detected in a necropsy study (Williams et al., 1982). NHM outputY4k(x) andn4k(x)

are defined accordingly. We assume binomial distributions forZ4k given N4k and Y4k(x) given

n4k(x).

4.2 Discrepancy specification

Simulator discrepancy is introduced to the NHM by reducing output sample sizes and counts,

njk(x) andYjk(x), which are specified as fractions,λ j ∈ (0,1], j = 1, . . . , 4. We letλ vary with data

source as sample sizes in the NHM output vary by orders of magnitude. For example, the cases by
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age data are based only on patients that have developed cancer, whereas the undetected adenomas

by age data are based on all patients in the model.

To assess calibrated output, we consider its similarity to the target data, given approximate

error bounds. These bounds represent how close a simulator output should be to the target data,

considering three sources of error: sampling variability in the data, stochastic variability of the

simulator output, and simulator discrepancy. For brevity, we present results for binomial data,

though only minor alterations are required for multinomial data.

We first consider error due to sampling variability. IfZ|θ∗ ∼ Bin(N, θ∗), then the variance

of p := Z/N, which is used to estimateθ∗, is p(1 − p)/N. Similarly, if Y(x) ∼ Bin(n(x), θ(x))

is simulator output without discrepancy, the estimatorp(x) := Y(x)/n(x) has variancep(x)(1 −

p(x))/n(x). The addition of simulator discrepancy, throughλ ∈ (0,1], inflates the variance to

p(x)(1− p(x))/(λn(x)), which can be partitioned as

p(x)(1− p(x))
λn(x)

=
p(x)(1− p(x))

n(x)
+

p(x)(1− p(x))(1− λ)
λn(x)

.

This decomposes the variance into contributions due to the simulator being stochastic and it being

imperfect. We assess the calibrated output by considering approximate 95% intervals around the

target data, which widen as we add in the different sources of error:

measurement error
±2

√
p(1− p)

N
,

measurement error and

simulator uncertainty ±2

√
p(1− p)

N
+

p(x)(1− p(x))
n(x)

,

measurement error,

simulator uncertainty and

simulator discrepancy

±2

√
p(1− p)

N
+

p(x)(1− p(x))
n(x)

+
p(x)(1− p(x))(1− λ)

λn(x)
.

(4)

While p(x), n(x) andY(x) vary with x, they are estimated only once, from the simulator run with

highest likelihood.

Figure 1 shows variance decompositions for each data source1. This visual representation lets

us choose values ofλ j ‘by eye’: we choose values to give bounds around the target data that are

1Note that where proportions are all non-zero, representation on the logit scale might be more informative.
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such that, if output falls within the bounds, then we judge it and its corresponding input plausible.

We perform the calibration in waves and, prior to the final calibration, can broaden the search

for inputs by extending these intervals. We investigate sensitivity to different choices ofλ in

Section 4.8. Our method is intended to make such sensitivity analyses relatively straightforward.

Ultimately we setλ1 = 0.8, λ2 = 0.008, λ3 = 0.04 andλ4 = 0.0004, which are the values

represented in Figure 1. It is difficult to interpret the absolute value of theλ j ’s, due to the different

corresponding sample sizes generated internally in the model. Instead Figure 1 is the main tool for

understanding how much discrepancy has been incorporated, and we later inspect the calibrated

model outputs to assess how well the model can fit each type of data (see Figure 5).

4.3 Prior distributions for the calibration inputs

The prior distributions for the inputs were independent uniform, set with conservatively wide

ranges. It is possible that more carefully specified priors would remove the need for some of

the early waves in the history matching process (see Section 4.4). However, the elicitation prob-

lem would be hard, as the inputs do not all correspond to simple observable quantities. In that case,

one might consider constructing a proper prior using the technique of ‘probabilistic inversion’ (Du

et al., 2006), in which experts make judgements about model outputs, from which priors for model

inputs are constructed. The problem then would be that the experts may have already seen the

calibration data, and may be unable/unwilling to provide judgements that do not take into account

the known output data.

4.4 Likelihoods for the cancer data

Combining sections 3 and 4.1 allows us to calculate the likelihood for all the NHM’s output.

Notation for realisations follows from Section 4.1; for example,z1k is the observed number of

people in age groupk developing bowel cancer out ofN1k andy1k(xi) is the corresponding NHM

count out ofn1k(xi) for input xi, with notation for other data types defined similarly. We model the

cases by age and undetected adenomas by age data as binomially distributed, and assume weak

prior information for its parameters by adopting a Uniform[0,1] prior. (Note that if population

age-group proportions changed considerably over time, then the cases by age data could be subject
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to greater-than-binomial variation.) We assume that the cases by type and obstructed cases by

type data are multinomially distributed, and use a Dirichlet(1) prior to again represent weak prior

knowledge. Finally the complete target data arez= (z1, z2, z3, z4) wherezj = (zj1, . . . , zjK j ).

We build the emulator for the overall log-likelihood for the complete target data for an inputxi

at which we have run the simulator and obtained outputy(xi), wherey(x) = (y1(x), y2(x), y3(x), y4(x))

with yj(x) = (yj1(x), . . . , yjK j (x)). This is given by

f (xi) := log{π(z|X = xi , y(xi))} =
4∑

j=1

log(π j),

where

π1 =
1
R

R∑

r=1

{ K1∏

k=1

N1k! B
(
1+ z1k + λ1ky

(r)
1k(xi), 1+ N1k − z1k + λ1k{n

(r)
1k(xi) − y(r)

1k(xi)}
)

(N1k − z1k)! z1k! B
(
1+ λ1ky

(r)
1k(xi), 1+ λ1k{n

(r)
1k(xi) − y(r)

1k(xi)}
)

}

with indexr = 1, . . . ,Rdenoting therth randomisation of the NHM output,

π2 =
N2! {λ2n2(xi) + K2 − 1}!
{N2 + λ2n2(xi) + K2 − 1}!

K2∏

k=1

{z2k + λ2y2k(xi)}!
z2k!{λ2y2k(xi)}!

,

π3 =
N3! {λ3n3(xi) + K3 − 1}!
{N3 + λ3n3(xi) + K3 − 1}!

K3∏

k=1

{z3k + λ3y3k(xi)}!
z3k!{λ3y3k(xi)}!

,

π4 =

{ K4∏

k=1

N4k! B
(
1+ z4k + λ4ky4k(xi), 1+ N4k − z4k + λ4k{n4k(xi) − y4k(xi)}

)

(N4k − z4k)! z4k! B
(
1+ λ4ky4k(xi), 1+ λ4k{n4k(xi) − y4k(xi)}

)

}

.

We calculate the log-likelihood for 10,000 NHM runs, each using a birth cohort of size 100,000.

Figure 2 shows the log-likelihood against inputs 1, 2, 3, 12, and 25, specifically against single in-

puts (achieved by maximising the likelihood over equal-sized bins) and for pairwise combinations

of inputs (achieved by maximising over grid cells). Of the 25 inputs to the NHM, these inputs tend

to cause greatest change in the output, while also being relatively simple to interpret without de-

tailed knowledge of the NHM. Input 1 represents the age at which a person can develop adenomas,

input 2 the log-parameterised Weibull shape parameter for progression times between pre-cancer

states, input 3 the Weibull scale parameter for progression to the first pre-cancer state, input 12 the

change in Weibull scale parameters due to having previously been treated for cancer and input 25

the probability that a person develops adenomas in their lifetime.
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Figure 2 shows that for some regions of input space the log-likelihood is much higher than for

others. We use where the likelihood is relatively high to define a reduced input space, which is

specified by marginal ranges and pairwise regions. Because we start with broad parameter ranges

for all 25 inputs, there is large variation in the likelihood values of Figure 2, and so our criterion

for ruling out parts of input space is set conservatively: we omit parts where the likelihood ratio,

relative to the observed maximum, fails to exceed e−40. This reduces the input space to 0.7% of

its original size. As we approximate true maximum log-likelihoods by those observed, we make

conservative choices here to compensate for observed maxima being underestimates of the true

maxima. This could be avoided if it were feasible to use many more simulator runs.

Three waves are used to identify the emulator design region, which is 0.0001% the size of

the initial input region. Second and third waves have 10,000 NHM runs and use birth cohorts of

200,000 and 300,000 people, respectively.

4.5 Emulator specification and building

We use 2,000 simulator runs to build the emulator and specify a constant mean function, ie.h(x) =

1. Our choice of mean function reflects that many runs have very low likelihoods, which gives a

small mean for the Gaussian process and prevents inputs being sampled far away from those with

high likelihoods. Polynomial terms could be added. A linear form gave unsatisfactory results,

as inputs far away from those with simulator runs would be sampled if they had a high value of

the linear predictor. A quadratic form with interactions might combat this, but as the NHM has

25 inputs, this was impractical. Perhaps more suitable would be (the log of) a parametric density

function, though this gives a mean function that is non-linear in its parameters.

4.6 Sampling calibrated inputs

For Step 1 of the calibration algorithm, outlined in Section 3.4.2, we chooseS = 2,000, thinning

an initial sample of size 100,000 by 50. We chooseu = 200 for Step 2 andv = 2 for Step 3. In

the first iteration almost allps are large, which indicates that the emulator’s uncertainty is large for

most sampled inputs. Consequently, the importance density may have insufficient support where

the true log-likelihood is high. We flatten the log-likelihood to compensate for this by usingαm∗(x)
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instead ofm∗(x), 0 < α ≤ 1, in Step 1; we initially chooseα = 0.1. Introducingα can also combat

multi-modality of the log-likelihood, as found for parallel tempering in Fielding et al. (2011).

Log-likelihoods calculated for the simulator runs,f (x), for x ∈ D†, are compared against previous

emulator posterior means,E( f (x) |D), whereD are the last-used training data. This comparison is

shown for iterations 1–9 in Figure 3.

From Figure 3, we see that the agreement betweenf (x) and E( f (x) |D) is poor for the first

iteration, which means that the emulator posterior mean will not serve well as an importance

density for sampling inputs from the log-likelihood. We also look at how the simulator’s output

compares with the target data, given expected levels of uncertainty (as described in Section 4.2),

which is shown for iterations 1, 2, 4, and 8 in Figure 4. For iteration 1, while some runs give a

good match to some of the target data, most fail to provide an adequate match to all of the target

data. We proceed with further iterations.

For iteration 2 we increaseα to 0.2. The match betweenf (x) andE( f (x) |D) improves, but

is still unsatisfactory; see Figure 4. Therefore we perform further iterations, increasingα by 0.1

for each. Adequate agreement between the emulator and observed log-likelihoods is achieved by

iteration 8, which is confirmed by iteration 9, the latter of which we choose to be the final emulator.

There is some suggestion from Figure 4 of disagreement between the NHM output and the target

data at iteration 8; however, the points used to assess this are those for which the emulator’s condi-

tional variance is greatest, and therefore a better match between the emulator’s posterior mean and

the true log-likelihoods can be expected for a random sample of inputs. Furthermore, we only need

approximate agreement between the emulator posterior mean and the true log-likelihood, because

those points for which agreement is poor will be downweighted during importance sampling. Fur-

ther iterations could instead be performed to improve agreement, but here that was found to be less

efficient than having some negligible importance weights. We therefore deem the emulator to be

adequate for providing a proposal distribution for the importance sampler.

4.7 Calibrated output

The emulator from iteration 9 is used for the final sample of calibrated inputs. We choose this

sample to be of size 1,000, and obtain it from an importance sample of size 2,000 by sampling
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with replacement according to the importance weights, ie. exp{ f (x) −m∗(x)}. Figure 5 shows the

calibrated NHM output against the target data for the four different data types. We can see the

calibration to have worked well, as the calibrated output is consistent with the target data, once we

account for the cumulative effect of each source of uncertainty.

4.8 Sensitivity to the discrepancy specification

We have calibrated the NHM using discrepancy values ofλ1 = 0.8, λ2 = 0.008,λ3 = 0.04 and

λ4 = 0.0004. We can investigate sensitivity to these choices by simply recalculating log-likelihoods

and then importance weights for alternative discrepancy values. This requires little computational

cost compared to re-running the simulator. The calibrated output for four alternative discrepancy

specifications is shown in Figure 6.

For the first alternative discrepancy scenario, we consider the case where no discrepancy is

assumed, which would imply that the simulator is a perfect representation of reality at the true

value of X. This results in an unsatisfactory calibration: all but two of the simulator runs have

negligible importance weights, one of which is much larger than the other, and the output from

neither of these runs matches the target data, given uncertainty amounts. We then consider doubling

discrepancy amounts (ie. halving theλ j ’s), relative to our preferred amounts, so thatλ1 = 0.4,λ2 =

0.004,λ3 = 0.02 andλ4 = 0.0002. This results in the importance sample having a greater range,

when compared to the original calibrated inputs of Section 4.7, and in turn gives more variability

in the calibrated output. Altering the discrepancy specification has changed the distribution of

the calibrated inputs, but the change in distribution of corresponding output is relatively small,

suggesting that we do not need to be overly precise when specifying the discrepancy in order to

achieve a reliable calibration.

We also consider assuming no discrepancy for only one data source, leaving discrepancy values

for the remaining sources unchanged. With no discrepancy for the cases by age data, the calibrated

output still matches the target data for the cases by age data and for the other data sources, and

the sample of calibrated inputs also contains sufficiently many unique values. When we assume

no discrepancy for the cases by type data, the sample of calibrated inputs again contains only

two unique members (the same two as previously), and for cases by type the calibrated output
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fails to match the target data. In summary we find that although discrepancy amounts need some

consideration, the precision that specifications require is within our capabilities, allowing the NHM

to be calibrated reliably. The calibration becomes unsatisfactory when we ignore discrepancy, or

specify it poorly.

5 Discussion

We have presented a calibration method which, although motivated by a particular application, has

features common to many calibration problems. In particular, three important issues have been

addressed in the process. The first is calibrating a simulator of ‘moderate’ computational expense,

which is not practical using Monte Carlo simulation alone, but nor do we need to rely solely on

a computationally cheap surrogate model, such as a Gaussian process emulator. Our calibration

method combines the two: an emulator provides a preliminary, approximate calibration and is

combined with simulator run data, through importance sampling, to give a final, more accurate

calibration. As the simulator is of moderate computational expense, we calibrate it conservatively,

especially when refining the design region and ‘flattening’ the log-likelihood. A more expensive

simulator might need us to consider optimising the calibration process to need fewer simulator

runs.

Using importance sampling lets us explore a further issue: sensitivity of calibration to different

discrepancy specifications, which is important to understand as discrepancy must be well quantified

before calibrating any simulator (Brynjarsdóttir and O’Hagan, 2014). Although we can always

adjust a discrepancy specification and check the sensitivity of a calibration to adjustment, this is

often impractical due to computational requirements. This becomes computationally feasible here,

as we simply recalculate importance weights and obtain a new sample of calibrated inputs to assess

different discrepancy specifications. The original importance sample must be suitable, with enough

non-negligible importance weights under the new discrepancy specification.

Finally we have addressed calibrating a simulator, known to be of moderate computational ex-

pense, that is stochastic and has count data output. We achieve this by using a Gaussian process

prior for the log-likelihood, which is better suited to the Gaussian process assumptions than the
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count data. It also reduces the task of calibrating 30-dimensional output to one involving a univari-

ate entity. Introducing a nugget effect, overcomes the simulator being stochastic, which will reflect

in the log-likelihood surface.

The motivation for the calibration is to support decision-making. Incorporating simulator dis-

crepancy aims to protect against over-confidence. Although we have incorporated discrepancy

into the four output types, the analysis is less informative for understanding the causes of simu-

lator error, and where simulator improvements would be beneficial. Our approach to discrepancy

is also less suited to capturing systematic errors, which could arise from posterior correlation in

the cases by age data (Figure 5), but is not recognised in likelihood (3). Such issues may be better

addressed with the ‘internal’ simulator discrepancy approach in Strong et al. (2012). Nevertheless,

the present calibrated simulator, with allowance made for discrepancy, will still have significant

value in supporting decisions.
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Figure 1: Variance decompositions for each target data source as described in Section 4.1. Cu-
mulative contributions to variability (as given in equation set (4)) due to target data (◦), simulator
uncertainty (×) and simulator discrepancy (+) are shown.
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Figure 2: Pairwise maximised log-likelihood (off-diagonal) and marginal binned maximised log-
likelihoods (diagonal) for inputs 1, 2, 3, 12 and 25. (Pairwise plots are a smoothed representation
of an 8× 8 grid.)
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Figure 3: Observed log-likelihoods against emulator posterior means (based on previous iteration)
at iterations 1–8 for samples of size 200 and iteration 9 for a sample of size 1000. The liney = x
is superimposed ( - - - ).
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Figure 4: NHM output against target data for iterations 1, 2, 4 and 8. Uncertainty bounds are as in
Figure 1. The black line highlights the run with highest likelihood.
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Figure 5: Calibrated NHM runs against target data.
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Figure 6: Summaries of simulator output against target data for various discrepancy specifications:
no discrepancy for any data source (row 1), discrepancy levels doubled (row 2), no discrepancy for
cases by age (row 3) and no discrepancy for cases by type (row 4).
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