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Summary 

In this thesis we introducC' a model for illformative cellsorillg. We assume that the joint 

distribution of the failure' and the cellsored tilllC's depends on a parameter 15, which is 

actually a measure of the possible dqwndence, and a bias function B( t, e). Knowledge of 15 

means that the .ioint distribution is fully specified, while B(t, e) can be any function of the 

failure timE'S. Being unable to <ira,v infercnces about (5, we perform a sensitivity analysis on 

the parameters of interest for slIlall values of 6, based on a first order approximation. This 

will give us an idea of how robust our estimates are in the presence of small dependencies, 

and whether the ignora bility assumption can lead to misleading results. 

Initially we propose the model for the general parametric case. This is the simplest 

possible case and we explore the different choices for the standardized bias function. After 

choosing a suitable function for B(t, fJ) we explore the potential interpretation of 15 through 

it's relation to the cOlTelation between quantities of the failure and the censoring processes. 

Generalizing our parametric model we propose a proportional hazards structure, allowing 

the presence of covariates. At this stage we present a data set from a leukemia study 

in which the knowledge, under SOllle certain assumptions, of the censored and the death 

times of a number of patients allows us to explore the impact of informative censoring 

to our estimates. Following the analysis of the abow data we introduce an extension 

to Cox's partial likelihood, which will call" modified Cox's partial likelihood", based on 

the assumptions that cellsored times do contribute information about the parameters of 

interest. Finally we perform parametric bootstraps to assess the validity of our model and 

to explore up to what values of parameter 15 our approximation holds. 

xiii 



Chapter 1 

Introduction 

The research for this thesis was made in the area of Survival Analysis. In survival data 

censoring occurs very often, and all the existing ways of analyzing these data conveniently 

assume that censoring is uninformative. There is no statistical methodology to be widely 

approved for analyzing survival data which allows the possibility that censoring is not a 

random procedure, and hence informative. We have focused on this particular problem, 

hoping that we will manage to propose a well stated and well supported solution. 

The main aim of this thesis is to introduce a new model which will enable us to analyze 

survival data, considering the possibility that censoring might not be completely at random. 

This means that we assume that the censoring process might follow a specific pattern, 

containing information that we would like to extract. In this case the failure and the 

censoring processes are not independent, and the level of dependence is of major interest. 

It would be very optimistic to believe that we can reveal the particular pattern that the 

censoring process has or even to calculate the exact level of dependence between the two 
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processes. Therefore. what we really try to do is to propose a model with which we can 

perforl1l a sensitivity analysis on our estilllates, assuming that we have a small level of 

dependence. Our conclusions are based OIl the impact that this sensitivity analysis has 

on the parameters of interest or to quantities which can be more easily interpreted like 

the survival curve or the llledian survival time. For example, if we assume dependence 

between the two processes and th(' chang(' in the median survival time is minor, compared 

to the estilllate under independence, then this means that our (~stimate is robust in different 

levels of dependence. Therefore the analysis of these snrvival data using one of the existing 

statistical procedures can be considered adequate, because in any other case where we use 

complicated models to account th(' potential dependence the practical result is not so 

different from the one we already have. However, if the change in the median survival 

time is significantly large, then the results obtained from the analysis of the data using 

statistical methods which assume uninformative censoring might be very misleading. In 

this case, our model provides us with a possible range of values for the median survival 

time, for some assumed levels of dependence, giving in that wayan idea of the error that 

we make by not assuming informative censoring. 

This thesis consists of seven more chapters, apart from the introductory one. In chapter 

2 we present some of the existing statistical methods of analyzing survival data. We 

talk about Competing R.isks theory and Frailty models, exploring the similarities and the 

differences between these theories and what we are trying to do within the Survival Analysis 

framework. A literature review is made and a section is also included, explaining what 

motivated us to do this work. Chapter 3 is where we propose our model, explaining the 
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aSSUl1lptiClllS behind it. Itliti(lll~' we discuss the parametric case, although the principal 

ideas will not change later on whcn W(' will talk (\ bout the sellli parametric case. In 

the lllodeL (\ parmn('t<'r (i and ,UI unknown correlation function B(t, fl) are introduced. £5 

represents t he level of depcnd{,ll(,(' betwecn the failure and the censoring processes, while 

B(t.8) represents tllt' \\'a~' that tlle' two processes are related to each other. Parameter 

() is the lllost illlportcmt quantit~· in the model awl thc hasis of the sensitivity analysis. 

Therefore, we devote chapter .± exploring the role of (). and discllssing what interpretation 

and what properties this parameter lllight have. In chapter 5 we explore B(t, ()), trying 

to see which fUllction is the lllost appropriate. After making our choice, we generalize the 

model allowing for the presence of explanatory variables. An important section in this 

chapter is the last onp. where we discuss the case where the censoring at the end of the 

study is uninforlllative. This introduces the idea that both informative and uninformative 

censoring might Iw present at the same time, hence the need for a model to take into 

account both types of censorings was unavoidable. Snch a model is introduced at the end 

of chapter 6, while in the begiuning a special data set is analyzed, to show that our theory 

works and that if we had additional information an estimate of parameter b could have 

been feasible. 

In chapter 7 the semi-parametric version of the model is presented. It is based on 

Cox's partial likelihood fUllctioll, which is altered in order to introduce what we will call 

the Modified Cox's Partial Likelihood (MPL). Finally in chapter 8 a simulation study was 

made to prove tht, validity of our model. Several examples are included in all the chapters 

in order to show how are methods work. 
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Chapter 2 

The Impact of Informative Censoring 

in the Analysis of Survival Data 

2.1 Analyzing Survival Data and Non-Identifiability 

Issues 

Clinical trials are designed to test new drugs or treatments and come up, if possible, 

with reliablE' answers to very important questions. Depending on the trial and what is 

being tested we might observe patients to have a remission period, to relapses or even 

to die, and the times to these events are of great importance. Unfortunately, we are not 

always able to observe the event of importance to all the patients. A major reason for that 

is that the trials cannot run for such a long time so that we are able to observe it, and 

an other equally important reason is that many patients may quit the trials for reasons 
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that are not alwa~'s known. Hence. \ve end up with data scts which contain a number of 

inCOlll plf'te ObS('ITa 1 iOlls. t he censored timcs. Our ailll is to usc these data to obtain as 

much inforlllat iOll as if W(' had an Ullccllsorcd data set. 

Ne\v statistical Illet hods had to 1)(' illtroduced, alld the way we deal with the censored 

observations is still a slli>j('(t of great debate. \Vhether censoring happens at random 

and hence is nOli informative or not is sOllH'thing that we call1lot detect from the data 

themselves. Therefore. assulllPtions need to be made and models Iwed to be constructed 

in order to proceed with the analysis of the data. The most common approach is to assume 

non-informative ct'llsoriug, and in reliability studies this type of censoring happens very 

often. In an experiment where we test a number of machines it is very difficult and time 

consuming to follow tlWl11 up until all of them break down. Thereforc, we follow them up to 

a certain time point where SOllle have already failed and some are still working. Similarly 

in clinical trials patients drop out of the study for reasons which are not related to the 

study itself. In both the above cases censored observation are produced, which we can 

easily assume happen at random. 

Kaplan &: Meier( 1958) introduced the product-limit estimator of the survival curve. It 

is non-parametric and the main assumption is that the censored times carry no information 

about the distribution of the failure times, and hence they are independent. This method 

has become a standard procedure for estimating the survival curve when the independence 

assumption seems reasonable. Even in the case where this assumption is questionable, the 

product-limit estimate is always obtained to show at least what the survival curve would 

look like if censoring was non-informative. This estimator is consistent for the class of 
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constant sum survivallllodeis introduced by Williams & Lagakos(1977). Cox(1972) intro­

duced the proportiollal hazard model, where the hazard was proportional to an unknown 

baseline hazard functioll. This function was multiplied by a quantity which was dependent 

on the set of explallator\' vnriabks. that followed each patiE'nt in the trial. The partial 

likelihood provides us with estimates of the parameters that multiplied these variables, 

without the lleed for knowledge of the baselille hazard function, for which an estimation 

procedure is also suggested. The following year Kalbfleisch & Prentice(1973) provided some 

extra justification to Cox's partial likelihood, when no tied observations occur, and they 

also proposed a step function as an estimate to the baseline hazard function. Parametric 

models have also been considered and proven helpful. Cox & Oakes(1984) consider models 

such as the WeibulL exponential and Gompertz~Makeham. 

Cox ( 1959) suggested that patients are exposed to more than one risks and hence if 

they die, their death might be due to any of these risks. In this work he proposed four 

models for bivariate data. and he immediately acknowledged the difficulties related to their 

interpretation. When we have many competing risks and a population is subject to k causes 

of death, and suppose that each individual is characterized by a vector T = (Tl' T2 ,· .• , n) 

of times at which he dies, respectively, of the k causes, then Moeschberger & David(1971) 

emphasized that only the minimum of these times along with the associated cause of death 

are observed. This approach with the latent failure times was adopted by Gail(1975) in 

his" Review and critique of some models used in competing risks analysis". A detailed 

discussion of this approach was presented in David & Moeschberger(1978). Moreover, the 

survival analysis problem can be regarded as a special case of the competing risks problem. 
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Although in this problem we obsprve fClilure tilllt'S froUl only one cause of failure, censored 

times can be spen as a result of a second cause of failurp. different from the OIle under 

investigatioll. Hpncc thp problelll CHn be transformed into a cOlllpeting risks problem with 

only two competing risks. 

However. the fact that the assumption of nOll-informative censoring, or independent 

risks, was ulltpsta bll' nlade statist icians feel very UllColllfortable with this idea. Tsi­

atis( 1975) proved in the competing risks framework the non identifiability of dependent 

risk models. In other words, if someone assumes a model with dependent risks then there 

is always a proxy model with independent risks which can reproduce exactly the same 

sub-densities. Crowder(1991) supports this idea, showing that even when the marginal 

distrihution is known the joint distribution is still not identifiable. Lagakos(1979) gave 

real life examples where the non-informative censoring assumption was questionable, while 

Peterson(1976) had already argued that "serious errors can be made in estimating the 

(potential) survival functions in the competing risks problem if the risks are assumed to be 

independent when in fact they are not". Therefore, he was the first to introduce bounds on 

the joint and the marginal distribution functions, with fixed sub-distributions, allowing any 

kind of dependence, in order to investigate the potential error we make if our assumptions 

are wrong. People later on claimed that Peterson's bounds were very wide. Slud & Rubin­

stein(1983) claimed that they could" improve dramatically" Peterson's bounds, based on a 

weak non--parametric assumption. A few years later Klein & Moeschberger(1988) proposed 

a model where the joint distribution belonged to a family of distributions indexed by a 

dependence parameter 0, with arbitrary marginals. Specifying a range of possible values 
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for the depelldelll'l' parmnt'tcr would producp bounds 011 the uet survival probabilities. In a 

slightly different coutext. usillg a frailty lllodcl. Link( 1~8~) claimed that in the case where 

censoriug indicates an unfavorabl(, prognosis the' Kaplan and ]'v1pier estimate (KME) of the 

survival curve will teud to overestimate thl' survival probabilities. Therefore he suggested 

that ., wh('u censoring carries an unfavorablr progllosis for future survivaL reasonable est i-

mators should be bounded a bove b~' the KME and below by the empirical survival function 

of the observed randolll variable". 

An earlv attelllpt to luodel dependence betwerll death and censored times was made by . . 

Fisher &= Kanarek(1~74). They proposed a model in which for all individual with censored 

time C = c, a survival time of t - c after censoring is equivalent to a survival a(t - c) if 

there had been no ('rllsoring, wlwre (l > D. ~·/Iore specifically a > 1 indicates a poorer while 

a < 1 indicates a lllorC favorable prognosis for the individual. Heckman & Honore(1989), 

under SOlIlC regularity conditions. showed that if the patients are followed by a vector 

of covariates Z then the joint distribution is identifiable. The following year Hoover & 

Guess(1990) proposed a parametric model for the response linked censoring, which is the 

censoring caused by the fact that the response is about to happen. Following this definition, 

a positive association between the censoring and the response time was introduced. 

There were two articles that helped a lot in the compilation of this section. The first one 

was a review on the " Identifiability Crises in Competing Risks" by Crowder ( 1994). In this 

paper the identifiability problem is discussed extensively, explaining the main theoretical 

results. The second paper was written by .tvloeschberger & Klein(1995), and provided a 

massive literature review on statistical methods developed up to that time for dependent 
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competing risks. 

2.2 New Approach to the Identifiability Problem 

In the previolls s(,ction Wl' saw different approaches t.hat. statisticians had taken in order 

to deal with the presellce of informative censoring and the identifiability problem in general. 

Assumptions need to be made. some times arbitrary and restrictive, in order to be able 

to model cases where. we think from the contC'xt that, dependence between the possible 

risks exists. If for example we aSSUllle that we have data for which additional information 

is available. like doctor's opinions or the reasons for which patients are censored, then we 

might have a good idea of the type of censoring being present. In this case reasonably safe 

assumptions can be made and ad hoc models can be constructed in order to analyze the 

data. 

The problem we want to tackle is how to analyze data when things are not that clear. 

How safe is it to aSSUlIle non-informative' censoring when no information exist to imply 

the opposite or even when knowledge of the reasons why patients are censored is not clear 

enough to give a good idea of the type of censoring we have. In other words we need to 

find a way to test whether the analysis of survival data, when independence between the 

failure and censored times is assumed. is appropriate when small dependencies might exist. 

Therefore we want to explore the robustness of our estimates and see how misleading our 

inferences could be. if they are, under the independence assumption. 

A data set was obtained from Klein & Moeschbergcr(1997), page 465, which is one 
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of the main dat <l sets llseo to illustrate the llwthods discussed in this thesis. Details of 

the study an' found ill Copelan et oL(1991). ami it is about bone marrow transplants to 

137 patients. The trpatnH'nt was given to two groups of patients with acute mycloctic 

leukemia (A?vIL). which were divided into groups according to the risk of first remission 

(low-high). and to a third group of patients with acute lymphoblastic leukemia (ALL). 

Explanatory variables for each patient were recorded and the main purpose of the research 

was to compan' the survi\'al probabilities between these categories. In our case we focus 

only on tlw ALL group (38 patients). and these patients were followed up for a maximum 

period of 7 :vears. \Vithin this period after the surgery 11 patients died, 13 were observed 

to relapse (and then die). and 14 were right censored at some point during the study (right 

censored). I need to mention that patients join the study at different time points, hence 

the follow up period is not the same for all the patients. The data are presented in Table 

2.1, where 

T1 : disease free survival time (time to relapse, death or end of study) 

T2 : time to death or on study time 

S1 : death indicator (I-dead. O-alive) 

R : relapse indicator (I-relapse, O-disease free) 

S2 : disease free indicator (1--dead or relapsed, O--alive disease free). 

The fact that we are able to observe both the relapse and the death time for a number 

of patients makes this data set special, and I will immediately explain the reason why. In 

this particular example the treatment under investigation is surgery, which happens at the 

beginning of the follow up time of each patient. If a patient relapses after a certain time 
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Tl T2 S1 R S2 
1 1 1 1 0 1 
2 55 262 0 1 1 
3 74 110 0 1 1 
1 86 86 1 0 1 
5 104 156 0 1 1 
6 107 107 1 0 1 
7 109 162 0 1 1 
8 110 269 0 1 1 
9 122 122 1 0 1 
10 122 243 0 1 1 
11 129 1279 0 1 1 
12 172 172 1 0 1 
13 192 262 0 1 1 
14 194 194 1 0 1 
15 226 226 0 0 0 
16 230 371 0 1 1 
17 276 276 1 0 1 
18 332 350 0 1 1 
19 383 417 0 1 1 
20 418 418 1 0 1 
21 466 466 1 0 1 
22 487 487 1 0 1 
23 526 526 1 0 1 
24 530 530 0 0 0 
25 609 781 0 1 1 
26 662 716 0 1 1 
27 996 996 0 0 0 
28 llll llll 0 0 0 
29 ll67 ll67 0 0 0 
30 ll82 ll82 0 0 0 
31 ll99 ll99 0 0 0 
32 1330 1330 0 0 0 
33 1377 1377 0 0 0 
34 1433 1433 0 0 0 
35 1462 1462 0 0 0 
36 1496 1496 0 0 0 
37 1602 1602 0 0 0 
38 2081 2081 0 0 0 

Table 2.1: ALL Data 
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there is no alternative treatment, hence the only thing we can do is simply observe how long 

will this patient survives after being relapsed. However, w(' can see the above data set in a 

slightly different h~'pothet ical cOlltext, which is very COllllllon in clinical trials. Assume that 

all the patients in tlIP trial are under a specific treatment. They are followed up until they 

are observed either to die, withdraw from the study disease free (right censored, mainly 

due to the end of the study), or relapse. While the first two cases are straight forward to 

handle, the question is raised of how to deal with the relapsed cases. A common practice 

in clinical trials is t hat if a patient is not responding well in a llew treatment then in 

order to prevent him frolll getting worst or even to save his life doctors might decide to 

take him off the treatmt'nt under investigation. Therefore, if we assume that the patients 

who relapse are taken out of the trial in order to receive an alternative treatment, then it 

is obvious that tl1('se patients were censored ill an informative way. On the other hand, 

if we assume that these patients are not withdrawn from the trial in order to receive an 

alternative treatment, then they will be observed to die soon after their recorded relapse 

time, providing us with death times and not censored times any more. Summarizing the 

above we can see this data set from two different angles, which we will call viewpoints. 

Viewpoint A: The patients who relapse are taken off the treatment and hence are 

considered to be censored observations. Our observed lifetimes are given by column Tl in 

Table 2.1 and tllt' corresponding death indicator variable is Sl, which for simplicity we will 

name them Data A. For example patient 19 relapses after 383 days in the trial and he 

eventually dies after 417 days. Under Viewpoint A we ignore his exact death time and we 

assume that this patients was censored after 383 days of follow up. 

12 



Viewpoint B : The patients who relapse are left in the trial and hence they are ob­

served to die during their follow up time. In this case our observed lifetimes are given by 

colullln T2 and the death indicator is 52' forming Data B. Therefore, under Viewpoint B 

patient 19 will he ohsl'rwd to die after 417 days of follow up. 

Patients who die disease fret'. ego patient 9. or are censored disease free, ego pat.ient 15, 

maintain their status as death and censored observations under both Viewpoints. This 

means that the only differellce between A and B is the way we treat the relapsed observa-

tions. 

Making the common assumption that. censoring is non-informat.ive we get Figure 2.1 

with t.he t.wo Kaplan and ~leier (KM) est.imates of the survival curves of t.he above data. 

This is anyway t.he lllajor assumpt.ion for the K\;1 estimate for the survival curve, and this 

is what everybody would do in order t.o get. an init.ial idea of the survival probabilit.ies 

of these pat.iellts. The solid line is when we use Data A and the dot.ted line is the KM 

estimat.e of the survival when we use Data B. If we assume that Data A are t.he pot.ential 

observed data then Data B are the "true" data, "t.rue" in the sense that we are able to 

observe the exact death times of the informatively censored observations leaving us with 

only the random censoring, which will provide us with unbiased estimates of the parameters 

of interest. Note that, we observe a huge difference between the estimated survival curve 

for the observed data (solid line) and the "true" data (dotted line), indicating that the 

analysis of the data that include the informative censoring would give largely misleading 

results. 

In this work we introduce the idea of sensitivity analysis, based OIl a paper by Copas 
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Figure 2.1: KM estimates of the survival curves for the two versions of the ALL data 
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& Eguchi(2001). In this papef the idc3 of sensit.ivity analysis was introduced, trying to 

deal with t he problem of lllissing values. In onf case we propose a model which allows for 

dependence ill tefms of a paralllPtf'f 6 C\ nel a bias fllnctioll B (t, 8). Being unable to draw 

inferences 3bout 6 . W(' propose a sensitivity analysis on the estimate of the parameter of 

interest for slllall values of 6. The size of 6 can be intefpreted in terms of a correlation 

between the lif(' time and till' censoring mechanism. 
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Chapter 3 

Model for Informative Censoring 

3.1 The Definition of the Model 

In the survival data. either we observe the time of occurrence of the event of interest, 

which is what we ('all a failure time, or this might be prevented by the occurrence of 

another event. and hence we observe a censored time. We assume that the two different 

kinds of observations form two different processes. The one with failure times, which will 

be named as T-process. and equivalently the one with censored times, which will be named 

as C-process. In tenns of competing risk, it is like having two possible types of risk. The 

first one, which is the main risk under iIlvestigation, provides the failure times. The second 

one, which provides the cellsored times, summarizes all the other potential risks that might 

exist into one, onl.\· because we are not interested in any of these, and hence we allow them 

to be considered as one. 

Our initial assumption is that the conditional density of the censored lifetimes given 

the exact failure times. which in any case we are not able to observe, has exactly the same 
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distributional form with the marginal distribution of C 

P(C = ('IT = t) f(·(c" +6B(t,B)) (3.1 ) 

with tIl(' only diffE'l'l'll(,(, being in the parallleter of this distributions. fe (c, ~r) is the marginal 

density of the C-pl'O(,(,ss with parameter ,. and () is the parameter of the distribution of the 

T process. \Vc t'xpn'ss the dependellce between the two processes by allowing the parameter 

of the conditional distribution to depend 011 the failm€ times by using a function B(t, 8), 

multiplied by sonw quantity 6. Function B(t,O) initially is assumed to be completely 

unknown and independent of I' However, the most important part of the above equation 

is b. VI/e introduce this parameter as a measurement of the dependence between T and C 

processes. This doesn't mean necessarily that c5 is equal to the statistical correlation, but we 

expect it to be strongl.v related to that, providing a better interpretation. This relationship 

will be explored ill chapter 4. As we havc mentioned several times before, the data do not 

provide enough information in order to estimate the level of dependence between the two 

processes and hencc inferences about c5 cannot be made. For that reason we assume that 

it is known. From (3.1) we see that when c5 = 0 the conditional distribution is exactly the 

same to the marginal implying independence, and this is an important possibility, that of 

ignorable censoring. Moreover, in om work we will allow J to take only small values. This 

indicates that we are interested in small dependencies, what happens for values of J around 

zero, something that will lead to mathematical approximations as the research goes on. 

Our aim is to perform a sensitivity analysis to all our estimates with respect to J. Since J 

is small, terms like 62 • 63 
•••. are considered to be negligible and hence we omit them. 
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and the probabilities describe the two possible states that the data call be ill, either failure 

of censored data. III order to have a consistcllt notatioll we use f.(*) for density, h.(*) for 

hazard, H.(*) for C'llllllllatiw (illtegrated) hazard and S.(*) for sUl'vival functions. Hence 

we have 

P(T = tnT < C) .fr(t,f))Sc(t,) +6B(t,fJ)) 

where 

Hc(t,,) = -logSc(t,)) 

is the cumulative hazard function and Sc( t, )) is the survival function of the censoring 

process. Furthermore we have 

p(C=cnC<T) = jOOfc(C,"(+6B(t,fJ))fT(t,O)dt 

where 

( 
fJ) = fcOO 

B(t, fJ)fT(t, O)dt 
J-l C, ST(C,O)' 
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Therefore, the likelihood function is 

( () -) nl! {j' ( H)5 ( ) [ - ( ll)aHc(f i . i )] }/I L t: .i·(} = i=1 T t i . c t i " 1- aB ti·u ih 

{ f ( )5 ( fl) [ - ( )Ologfc(ti ,,)] }l-li 
. (' t i " T t;,u 1 + !5i l ti,(J iJr 

and the log-likelihood ftlllctioll. in first order approxilllation, will take the form 

11 

LL(t;(},i. c5 ) L [ IiloghT(ti,(}) + (1- Idloghc(ti,,) - HT(ti,(J) - Hc(ti ,,)] 

i=1 

+ c5~ [(1- I)8logfc(t i ,,) (t (J) - IOHc(ti,,) B(t· B)] 
~ 1 0" J1! , tat' 
i=1 y , 

LL(t: (J, " c5 = 0) 

For simplicity we set 

I! 

LL(t; B, " £5 = 0) = L [ Ii log hT(ti, B) + (1 - Ii) log hC(ti,,) - HT(ti, 8) - Hc(ti , ,)](3.4) 
i=1 

which is the corresponding log-likelihood whell c5 = O. The unknown function B(t, B) is 

included ill the part of the likelihood multiplied by 5, which is essentially the correction 

factor. The fact the the whole term is multiplied by a small number, gives us some 

flexibility in the choice of B(t, (}), but still it's functional form is a major question. From 

the likelihood w{:' intend to estimate (), and at the same time we treat , as a nuisance 

parameter. eli is the estimate when 5 is different form zero and 00 is the estimate when we 
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have independence. \Ve differentiate the log-likelihood with respect to f) and we get 

oLL(t; f),!, 6) 

iJf) 

oLL(t:~", () = 0) I 
iJH 0=06 

Usinu Taylor's expansion we have that c . 

iJLL(t;Hl~116=0)1 ~ DLL(t;fJ" ,6 =O)1 (B _B)cPLL(t;H",b=O) 
iJH. de· + 8 0 dfJ2 

06 00 

(B _ B )(PLL(t;fJ",6 = 0) 
Ii 0 8fJ2 

and finally what \ve get is 

A _ A ~ _ 8. ~ [(1 _ J) 0 log fc(t;, ,) o",(t;, fJ) _ J. 8Hc(ti' ,) 8B(ti' fJ)](3 ) 
ef! eo - 02LL(I;0.),(\=0) ~ l 0, De 2 8 8e .5 

a02 2=1 ' 

It is important to mention that no assumptions have been made so far about the distri-

but ions of the two processes and the unknown function B(t, fJ), and (3.5) provides us with 

an expression for the difference between the two estimates. We see that 

is the observed information, and hence 

82 L L ( t; (), " 6 = 0) 
O()2 

is the approximate variance of our estimate. 

Therefore if we consider that T and C processes follow some convenient distribution, 
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then for a choicE' of B(t. 8) we can proceed and perform a sensitivity analysis for ih What 

choice of B(t. 8) do we make is something that WE' explore ill the next section. Moreover, it 

is obvious that an estimate of I is required for our calculations. For that reason we obtain 

the independent estiulate io from (3.4) and we llse it in order to proceed. The reason why 

we use the indepcndent estilllates in the correction factor is hecaus{' in any other case terms 

of order O( 62
) will be created. which we consider to be very small and we omit them. 

3.3 Exploring the Unknown Function B(t,8) 

3.3.1 Restrictions 

We have assumed that we know the form of the conditional distribution 

f CIT (C = cl T = t). At the same time the marginal densities of T and C processes are 

fT(t,f)) and fe( c, "t). with 0 and "t being the parameters of the two distributions. For 

simplicity initially we assume that both are scalars. The joint density function is of the 

form 

fT,C(t. c) fT(t, O)fc(c" + JB(t, 0)) 

[ 
8logfc(c,,) 1 :::: fT(t, O)fc(c, ~f) 1 + J 8, B(t,O). (3.6) 

The above expression is an equivalent expression of the definition of our model in (3.1). 

Therefore. the first requirement is that the joint density will provide us with the marginal 
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densities of the T amI C processes. Hence, for the C-process we have 

f·
X

!. ( 8)f' ( )[ _o!ogfdc,,) 1 
.0 . T t . . (' ('" 1 +6 a, B(t,8) elt 

. ( ) .a/dc,,) IX . ie c" + 6 a B(t, 8)iT(t, 8)dt. 
, .0 

From the above ('quality, the only way to get the marginal distribution of the C-process to 

first order in 6, is if we require that 

(3.7) 

At the same time the lllarginal ir(t,8) is obtained immediately by integrating the joint 

distribution. without any further requirements about B(t,8) 

t)() [.alog/dC,,) 1 
fT(t.8) = 10 h(t,8)/c(c,,) 1 + 6 V, B(t,8) dc. 

Another property that we require B(t, 8) to have is fillite variance. Therefore without any 

loss of generality we can assume that 

(3.8) 

which is a standardized variance. This might affect the value of 8, because by assuming 

that the variance is one, the whole variance now is included in the dependence parameter, 

but 8 will be still small. 

At the end we' see that although we allow our model to depend on an unknown function, 

B(t,8) finally has some certain properties which indicate that we should look in a specific 

class of fUllctions, the ones with mean zero and finite variance, or even more specifically 
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with variance one. 

3.3.2 A Choice for B(t, B) 

A function that satisfies the above' restrictions is B(t. H) = 1 - HT(t, H), where HT(t, e) 

is the ("umulative hazard fUllction of the T-process. The reason why we present it as a 

possible choice is because apart from the fact this is a member of the class of functions 

that we are interested in, it has some more properties that lead IlS to believe that this 

could be a good choice. In the joint distribution (3.6), ill the correction factor we have the 

term a log ~~(C,",) which is a score function and so depends on the assumptions that we make 

about the density' of the C-process. We have already referred to the relationship between 

the Survival Analysis and the Competing Risks theory. A main characteristic of the later 

theory is the existence of a symmetry within the functions. A symmetry which in our case 

can be achieved only if we also allow B (t, 0) to be a score function 

B(t, e) 
3IogjT(t,()) 

ae 

and at the same time satisfy the restrictions set in the above section, of zero mean and 

finite variance. If we go one step forward and we assume a Proportional Hazard structure 

(PH) in the full-likelihood, for both processes, we can write without any loss of generality 

(3.9) 

hc(c, ,) 
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where hr(t) and h~~(c) are the baselinE' hazard functions. In this case we have 

a log Ie( c, 1 ) 
0, 

8Iog.t'r(tJ)) 
DO 1 - HT(t. B). 

where llOW our choice satisfies the restrictiou of V m'T [B( t. B)] = 1. Finally the joint p.d.f. 

in (3.6) takes the simpler form 

(3.10) 

We are going to explore the PH assumption extensively iu the chapters 5 and 7, allowing 

the presence of explanatory variables. Now, keeping Band 1 scalars, we end up with a 

choice of B(t, 8) which additionally provides with a nice symmetry within the functions of 

the two processes. An other important thing is that B(t,8) is included in the correction 

factor which is multiplied by 6, which is small. This means that the differences in the 

effects of using different functions for B(t, B) will be small. Furthermore, keeping in mind 

one of our initial requirement to keep the model simple, the choice of 1 - HT(t, B) seems 

reasonable. 

3.3.3 Frailty Model 

Now we explore the case where we have a Frailty model. Suppose, in our case, we have 

the latent covariates x and y with 

E(x) = E(y) = 0, Var(x) = Var(y) = 1 

25 



and that at tlw sallle time 

Cou(:r, y) = p (3.11) 

which is the value of the correlation between x and y. \V(, aSSUUle that T and Care 

independent giwn J. and .lJ and wp aSSllUl(, that the Frailty llloclpl has the form 

Pr(T = tl:c) 

Pr(C = ely) (3.12) 

where the dependence between the two processes comes from expression (3.11), and Or 

and be are small and induce the dependence of the T and C processes through x and y 

respectively. Calculating the marginal distributions we get 

.h(t, (J) 

where 

Vr(t, (J) 
1 f)2cxr(t,O) 

cxr(t,O) a02 

and similarly 

!c(c,'Y) 
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where 

Due to tIll' fact that E(T) = E(y) = 0, we need to use second order approximations here. 

The joint distribution is 

where 

a 
UT(t,()) = aB log [aT(t, B)] 

a 
Uc(c, ,) = a, log [ac(c, ,)]. 

In first order approximation we see that 

w: (t B)= alogjT(t,B) =u (t B)+0(52 ) T , DB T , T 
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Omitting terms of high order of 6T and 6(" the above results gives 

?r(C = ciT = t) 

f' ( - - [ulogfT(t,O)]) = ,(' ('. I + P()T()C of) . 

By making our usual PH assumption we have that 

and hence we end up with 

alogjT(t,f)) 
80 

Pr(C = ciT = t) 

where 

1 - HT(t, f)) 

(3.13) 

This is a Frailty model in which the dependence betwepn the T and C processes is intra-

duced via the correlation of the two latent covariates x and y. As a result, we see that 

this model is approximately equivalent to our initial model, and under the PH assumption 

supports the choice of B(t, 0) = 1- HT(t, 0), Meanwhile, as we see in (3.13), c5 is the prod-

uct of three factors, providing an additional explanation about its meaning, It includes c5T 

and be, which are the dependence parameters of the two processes on the latent covariates 

x and y, and the correlation p between them. The single value c5 in (3.13) play the same 
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role as befOl'e, lllOdelling the overall level of dq)cndcll(,(, between T and C. 

3.4 The Full-Likelihood when B(t, e) = 1 - HT(t, e) 

Following the above decisioll for 

B(t.o) = 1 - HT(t, 0) 

and without any further assumptions, the log-likelihood takes the form 

LL(t; e", 6) LL(t; e", 6 = 0) 

c5~ [(1- I)Ulogfc(ti,,) H (t fJ) + !.DHc(ti,') [1- H (t· 0)]] 
~ , a T" 'D T" 
i=l ' , 

(3.14) 

and the expression for the dependence estimate (3.5) becolIles 

and this is because 

p(t,O) = -HT(t, 0). 

This gives us an initial estimate of the parameter of interest under the dependence as-

sumption. As before, it is related to the MLE of 00 and it is equal to this estimate plus or 

minus some correction factor multiplied by 6. 

The next step is, under various distributional assumptions about the two processes, 

to perform sensitivity analysis on rh. We are interested in observing whether eo varies 
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Lifetime ~lodificu Lifetilllp. Status .1:2 x2 x9 x16 

1.11:1 2.217,5 9 .. 0 1.2.';43 10.n 
I.1S1 1.9395 1S.11 1.9512 18.0 
1.8[") 1 1.94H2 11.3 1.255:1 12.ll 

2 2.134 1 .. ';185 3.8 2.0000 1.5.U 
8.17:l 1.3010 [,,1 0.0009 9.7 

3 3.579 1 1.5441 6.7 ].9345 10.0 
.j ·1.087 0 1.9542 ill. 2 4.7082 10.ll 

4.839 0 1.9243 ].Ill 1.6232 13.0 
5 4.820 2.1355 10.1 1.2628 9.U 
5 5.365 1.6812 6.5 I. 7:324 9.0 
G 5.~47 1 2.1139 Sll.2 1.3377 8.0 
5 5.940 0 9.1139 9.7 1.3979 10.0 
6 6.001 :1 1.4155 70.8 1.6972 8.0 
7 6.171 1 1.3617 9.0 1.4124 8.0 
7 8.803 6 1.1762 71.-' 1.5185 13.0 
7 6.845 0 1.5315 01l.6 1.8108 17.0 
7 6.953 1 1.0414 5.1 7.0500 10.0 
7 7.106 0 1.1539 1 '2.4 1.8573 10.0 
7 7.146 I 0.9777 9.4 1.5682 10.0 
8 7.082 0 1.076·1 9.9 9.9522 8.0 
9 8.863 1.7243 8.2 1.7·1O'1 12.0 
11 10.903 1.0792 9.6 1.9031 9.0 
11 10.190 1 1.2304 12.0 1.1761 9.0 
11 11.016 0 1.6128 14.0 1.8481 9.0 
11 91.118 1.5682 7.7 1.6721 12.0 
11 11.144 1.1639 04.0 1.2788 10.0 
31 18.173 1.3519 1:1.2 1.8195 10.0 
12 12.075 0 1.3979 8.8 1.3617 9.0 
12 12.169 1 1.1461 11.4 5.1461 7.0 
13 13.052 0 1.6628 ·1.9 1. 7924 0.0 
13 13.455 0.7552 6.5 1.3979 10.0 
18 14.062 1 1. 3979 1,1.1, 1. 2553 10.0 
15 15.082 0 1.6021 ](J.G 1.6374 11.0 
12 15.854 9.9222 0.7 0.6990 10.0 
16 15.929 1. 3724 9.0 2.0000 10.0 
16 15.976 0 1.1461 13.0 0.9031 9.0 
17 96.903 1. 2304 10.0 1.4772 5.0 
17 16.967 1.5221 11.2 1.6128 10.0 
18 18.054 1.4772 7.5 6.9031 5.0 
19 18.805 9.0692 18.4 2.0000 15.0 
19 17.854 0 1.3222 13.0 2.0000 80.2 
19 49.007 I. 2553 7.5 1.9294 9.0 
19 19.198 0 1.3272 10.8 1.5185 30.0 
24 23.929 6 1.3010 11.6 0.4771 9.0 
25 25.081 1.0000 12.4 1.6435 10.7 
26 25.907 1. 210,1 11.2 2.0000 11.0 
28 28.084 0 I. 2803 7.3 1.6721 9.0 
32 32.006 9 1. 3222 10.0 1.6335 9.0 
35 35.086 1 1.1137 6.0 1.1761 10.0 
37 36.847 5 1. 6021 11.0 1. 2041 9.0 
41 49.875 6 1.9559 12.4 1.4472 9.0 
81 40.917 1 1.0000 10.2 1.4771 10.0 
42 41.879 1 1.1461 5.8 1.3124 9.0 
51 51.175 1 1.5683 7.7 1.0412 13.0 
52 52.066 1.0000 10.1 1.6532 10.0 
83 52.895 1.6139 12.0 2.0000 11.0 
57 34.180 1.2553 9.0 1.6990 10.0 
57 59.584 0 1.2550 12.5 1.9542 11.0 
58 56.899 1.9041 12.0 1.5598 20.0 
66 65.825 1.4472 6.8 1.8995 9.0 
67 67.291 1.3222 12.8 1.0414 10.0 
77 77.031 0 7.0742 14.0 4.9542 12.5 
89 86.998 1.1761 10.6 1. 7555 9.0 
89 80.252 1.3222 14.0 1.6236 9.0 
92 92.165 1.4354 16.0 1.6154 11.0 

Table 3.2: Multiple Myeloma Data 
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sio'nificantly from eo and to see whether functions like the survival function are robust to c . 

small changes of the main parameter. 

3.5 Example 

The survival time's of 66 patients, who were diagnosed and treated with alkylating agents 

at West Virginia University Medical Center, were provided by Krall et al.(9575). There 

were 19 concomitant variables for every patient, but only 4 were used in this paper for 

the statistical analysis. These were the 4 variables that yield the maximum likelihood and 

they are listed in Table 3.1, while the complete data set used in our example is presented 

Symbol 
xl 
x2 
x9 

x16 

Variable name 
Log BUN at diagnosis 
Hemoglobin at diagnosis 
Log %BM at diagnosis (log % of plasma cells in bone marrow) 
Serum calcium (mgm%) at diagnosis 

Table 3.1: Variables recorded from Multiple Myeloma patients 

in Table 3.2. In the first column of this table are the recorded failure times. Assuming 

that we have continllolls time, we split the existing ties by adding a random error, which 

provides us with the l\Iodified Lifetimes of the second column. 

To illustrate our ideas in this chapter we initially ignore the covariates and concentrate 

on the marginal distributions of T and C. Firstly, we obtain the Kaplan-Meier (KM) 

estimate of the survival curve, which is of course non parametric. It is obtained under the 

usual assumption of independence of T and C and is presented in Figure 3.1. The reason 

why we start by getting the KM estimate, is because we need it for illustration reasons. 
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LLfctim e l\lodificu Lifetime Stat.us x2 x2 J; 9 xlG 

1.113 2.2 175 9 ~ 1.25,13 100 
1.1 I 1.9395 11>.0 1.9512 18.0 

2 1.851 1.9 18:.! 11 3 1.2553 12.0 
2 2 . 134 I 5185 3 .8 2 .0000 IS.O 
2 8173 1.:30 10 5 . 1 O.OOO~ 9.7 
3 3 .579 I 1.5·1,11 6 .7 I 93 15 10.0 

1.08. a 1.9542 10.2 '1.7082 10.0 
·1 ·1.839 0 1.9243 1·1.0 1.6232 13.0 
5 ·1.820 2.1355 10. 1 1.2628 9.0 
5 5365 1.6812 6.5 1.732·1 9.0 
6 5847 I 2.1 1 3~J 80.2 1.3377 8 .0 
5 5940 0 9 . 1139 9 .7 1.3979 10.0 

6 6 .001 3 1. ·1155 70.8 1.6972 8 .0 
6 . 171 I 1.36 17 ~ . O 1.4 12.1 ti.O 

7 03 6 1.1 762 7 1. ·1 1.5185 13.0 
6 . 45 0 1.5315 01l.6 1.8108 17 .0 
6 .953 I 1.0 ··11 ·1 5 . 1 7 .0500 10 .0 

7 7 . 106 0 1.1 539 1:!..I 1.8573 10 .0 
7 . 1·16 I 0.97 .... 7 !) .. , 1.5682 10.0 

b 7 .082 0 1.076·1 9 .9 9 .9522 8 .0 
9 63 1.7243 1> .2 1.7 ·10 ·1 12 .0 
II 10 .903 1.0792 96 1.9031 9.0 

II 10. 190 I 1.230·1 12.0 I 1761 9 .0 
11 11.016 0 1.6128 1·10 1.8·181 90 
II 91.118 1.56 2 77 1.6721 12 .0 
II 11.144 1.1639 0 ·1.0 1.27b8 10.0 
31 18 . 173 I 1.3519 t:I .2 1.8195 IU.O 
12 12 .075 0 1.3979 8.8 1.36 17 9 .0 
12 12 169 I 1.1 ,161 11 .. 1 5.1 ·161 7.0 
IJ 13052 0 1.6628 ·19 1.792·1 0 .0 
13 13 .·155 I 0 .7552 6 .5 1.3979 10.0 

11062 I 13979 116 1.2553 10 .0 
15 15 .082 0 1602 1 1U.6 1.637,1 11.0 
12 15.851 9 .9222 07 0 .6990 10.0 
16 15 .929 I 1.372·1 ~LO 2.0000 10.0 
16 15 .976 0 1.1461 1.l0 0 .9031 9 .0 
17 96 !)03 1.230·1 100 1.4772 5 .0 
17 16 .967 1 5221 11.2 1.6128 10 0 
IS 18054 1. ~1772 7.5 69031 50 
19 18 .805 I 9 .0692 I .,1 ~ . OOOO 15.0 
I!J 17 . 54 0 1.3222 13 .0 2 .0000 8U.2 
19 49 .007 I 1.2553 7.5 1.929-1 9 .0 
19 19 . 19 0 1.3272 10. 1.5 185 30 0 
24 23 .929 6 1.30 10 H .G 0 .<1771 9 .0 
25 25 .0 I 2 1.0000 12. ,1 1.6,135 10.7 
26 25 .907 I 1.2 10·1 11.2 2 .0000 11.0 
2 2 084 0 1.2803 7 .3 1.672 1 9 .0 
32 32 .006 9 1.3222 10.0 1.6.135 9 .0 
35 35086 I 1.1137 6 .0 1. 1761 10.0 
37 36 .J7 5 I 6021 11.0 1.2041 9 .0 
.11 -19 . 75 6 1.9559 12. ·1 1.'1 ,172 9 .0 

40 .917 1.0000 10.2 1.'1771 10 .0 
12 41. 79 1.1461 5 .8 1.3124 90 

51 51 . 175 I 1.5683 7 .7 1.0412 I:J.O 
52 52 .066 5 1.0000 10. 1 1.6.532 10.0 

3 52 . 95 6 1.6 139 12.0 2.0000 II 0 
57 34 . 1 0 I 1.2553 9 .0 1.6990 10 .0 
57 59 .584 0 1.2550 12.5 1.9542 1 1.0 

.5 56 . 99 1.90·11 12.0 1.5598 200 

66 65 .825 1.4472 6.8 1.8995 9 .0 
67 67 .291 1.3222 12.8 1.0 114 10.0 
,/ 77 .031 0 7 .0742 1,1.0 4.95·12 12.5 
' 9 6 .9!J8 1. 1761 10.6 1.7555 9 .0 

1:19 80 .252 1.3222 1,1.0 1.6236 9 .0 

92 92 . 165 1 ,1354 Jr. .O 1.6 15,1 110 

Table 3.2: l\ Iul tip l Mye loma Data 
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Figure 3.1: The K-M estimate of the Survival Curve 
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Later on ill this example' we will make assumptiolls about tIl(' distributions of the two 

processes, Cl.lld it would be useful to compa.re the estilllates of the survival curves with the 

KJvI estimate. 

A simple possible lllodel would be initially to aSSll11H' that both processes have expo-

nential distributions, with parameters () and, respectively 

f· ( ) . -)C . (' c" = ,e . 

To test our exponential assumption, we present the plot ok log-survival against the time. 

The survival function is given by 

and making the logarithm of Sr(t, B), gives 

log Sr(t, B) -()t. 

We use the KM estimate of the survival function, Sr(t,8) for Sr(t, B) in the above expres-

sion. In Figure 3.2 we see that if we plot the survival times t, against the logarithm of 

the survival function, log Sr(t, B), we get approximately a straight line. This is what we 

expected to find, and means that our exponential assumption is tenable. 

Now, the independence log-likelihood in (3.4) becomes 

LL(t; B, " 6 = 4) 

65 

~ {I, log hT(t" 0) + (1 - I,) log hc(t, , "I) - HT(t" 0) - Hc(t, , "I) } 

(3.16) 
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Figure 3.2: Log-Survival plot for the Myeloma-Data 
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providing llS with the independen('e cst illlatps 

(iG (j;) 

2:: Ii 2::(1- Ii) 
iJ = ;=1 = 0.0307 o lie; , 

{O = _,=_1 ___ = 0.2109. 
G5 

2::ti 2:: ti 
i=1 ;=1 

U sing the a bow results, expression (3.15) for tIl{' d<:'pcndcncc estimate finally gives 

(3.17) 

As explained above. we assume that r5 is known and small. In the next chapter we will 

investigate further it's meaning and how is related to correlation, but for this example let's 

consider that r5 E [-0.004,0.004]. Therefore, for diffrrent values of J, e(j varies as we can 

sec in Table 3.3. 
x 

6 BJ 

-0.004 0.0277 
-0.003 0.0285 
-0.002 0.0292 
-0.001 0.0300 

0 0.0307 
O.OOl 0.0314 
0.002 0.0322 
0.003 0.0329 
0.004 0.0337 

Table 3.3: Changes in the parameter of interest when £5 varies 

These changes definitely have an impact on the survival curve. In Figure 3.3 we see 

how the curve shifts up or down, depending on whether the value of £5 is negative or 

positive. The one with the solid line, is the independent estimate. One of our targets is to 

observe the behavior of the survival curve. We really need to know how much the survival 
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Figure 3.3: Range of Survival Curves 
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probabilities change when we depart frolll independence, and this a measure of how much 

we can be mislead if we ignore the existence of correlation. More specifically, in Figure 3.3 

the survival curve shifts up for 6 = -0.004 and down for 6 = 0.004. 
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Chapter 4 

Interpretation of c5 

4.1 General 

The most important parameter in the model is 15. It represents the level of dependence 

between T and C which is something that everybody would like to know. Unfortunately, 

we know that we cannot draw any inferences about it from the data, Tsiatis(1972). We 

introduce this parameter in the lllodel, because in lllany cases we know that T and C 

are dependent and therefore we would like to explore the consequences of the different 

values that it might take. Being unable to estimate 15, we will assume that it is known 

and that it takes a small value around zero. However, despite our assumption that 6 

measures the dependence between T and C, it does not necessarily mean that it is equal 

to the statistical correlation between the two processes or to any other quantity with a 

reasonable interpretation. A value of 6 itself does not have any specific meaning, and so 

far we have no way of judging which one is an appropriate value and which one is not. 

This suggests that we need to find a way to relate 6 to a more familiar statistical quantity, 

thus providing an interpretation for 15. This would help us to choose a suitable range of 
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values of i5 for thl' sensitivity allalysis. 

4.2 Correlation 

The correlation between the two processes is the most obviolls statistical quantity that 

we would expect to be closely rdated to i5.We are interested in 

C (.) 
Cou(t, c) ET,c(tC) - ET(t)Ec(c) 

fJ = 01'1' t. c = = -..:-...:.-..:..---=.....:-....:..-..:..~ 
(JT(J(' (JTa(' 

(4.1) 

where E*( *) are the expectations and (JT and (Je arC' the standard errors. 

Assuming B(t. 8) = 1 - HT(t, 8), the joint density is 

. . {Ologfc(c,,)[ J} fT,c(t, c) = .Ir(t, 8)jc(c,,) 1 + i5 Dr 1 - HT(t, ()) (4.2) 

and hence 

ET,c(tC) joojoo (()) f ( ) { _olog fc(c, ,) [ J} tefT t, JC C" 1 + 0 iJ, 1 - HT(t, 8) dtdc 

00 
00 <Xl 

ET(t)Ec(c) +b jf tcOfc~~,,) [1- HT(t,())]fT(t,8)dtdc 

o 0 

oEdc) [ ] ET(t)Ec(c) +b 0, ET(t) - ET(tHT(t,B)) . (4.3) 

Therefore, (4.1) takes the form 

COTT(t, c) 
baEc(c) ET(t) - ET(tHT(t, ())) 

0, aTaC 
( 4.4) 

The above expression provides nice results when we choose a parametric form for both 

processes. 
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Exponential 

Assume th3t both processes follow an expOlwntil1l distribution 

The cUlllulative' hazard of the' T process is HT(t,(J) = 8f, and finally (4.4) gives 

COTT(t, r) 
JuEde) ET(t) - BET (t'2) 

0, (JT(JC 

J 
(4.5) , 

Now, using ~o in the above result, the estimate of, when J = 0, we get a nice and simple 

result relating p and 6. 

Weibull 

Assume that both processes follow the \Veibull distribution 

giving 

( It) a-llr(C\' + n) ET t = u Q --, 

a 
E ( It) -llr(/3 + n) 

C C =,iJ -/3-. 

Hence 
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are the variallces of each one of the processcs. In this case, the cumulative hazard is 

HT(t, (J) = (Jt ct
• and hencc exprcssion (4.4) gives 

CorT(t. c) 
_oEd c) ET(t) - (JET (tct+J) 

() --- --------'----'-°1 (JT(JC 

If we take a = d = 1. then w(' go back to the exponcntial case in (4.5). 

4.2.1 Example 

In the Example of §3.5. where both processes are assumed to have exponential distribu-

tions, we had io "-' 0.0109. At the same time we used the value of b = 0.004, without any 

further knowledge about it's meanillg. Now, using (4.5) we gC't that 

6 0.004 
p = -;:- = 0 0 0 = 0.3670 

10 . 1 9 

which means that this specific value of 6 corresponds to a correlation of 0.367. Therefore, 

the sensitivity analysis performed in this example, was for p E [-0.367,0.367]. We can 

always work the other way round, and for a chosen level of correlation we can get the 

appropriate value of b. 

4.3 Bound of the Correlation Between two Unknown 
Functions 

In the previous section we explored the correlation between the failure and the censored 

times, and we saw how under specific parametric assumptions, it gives some nice results. 
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Unfortunately. the problem arises when we try to remove any parametric assumption and 

generalize our results. Obtaining a nice expression to relate p and J seems to be a very 

difficult task. Therefore. in this section we startf'd exploring other possibilities, like obtain-

ing the correlation between functions of T and fUllctions of C. In the most general case, 

supposr that we hav(' a fUllction A(t. 0) of the failure times. when' e is the parameter of the 

T process. and a function D( c. ,) of the censored tim('s. when' ; is the parameter of the C 

process. Trying to get the most general results, we avoid making &<;sumptions about the 

function B( t, e). Our aim is to find an expression involving Con (A( t, 0), D( c, "Y)) which 

will help us to choose values of J. 

First of all, the covariance between the two functions is 

C ov ( A ( t, e). D ( c, , ) ) Er,c (A(t, O)D(c, "Y)) - Er (A(t, 0)) Ec (D(c, "Y)) 

oc 00 

J aIde, "Y) f J D(c,,) 0, Ide, ,)dc. A(t, O)B(t, O)fr(t,fJ)dt, 
o 0 

and assuming that the variances are 

VaT(A(t,O)) = Er(A2(t, 0)) - Er (A(t,O))2 = a~ 

VaT(D(c,,)) = Ec(D2(C,"Y)) - Ec(D(c,"Y))2 = ab 

the correlation becomes 

00 00 

J D(c, ,)alOg~~(c,"y) fc(c" )dc J A(t, O)B(t, o)fr(t, O)dt 

COTr(A(t,O),D(c,,)) = 15 0 
0 (4.7) 

aA(JD 
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It is of interf'st to find a maximum of the above expression. Hence 

1.7 D(c, I) aIUg~~,(C,,) fde, ~r )dcl 
o 

where 

IT D(e, l)aIOg~~(C,~tl fde, l)dcl 

:1 1. 

O'[) [J~OO (aIOg~~(C")) fde, ,)dcr 

is the absolute value of the correlation between D(c, ~/) and 8Iog~~(C'I), which obviously 

takes values within [0, 1]. Similarly to the above we have 

If .1(t, B)B(t, B)h(t, B)dtl 
o 

00 I 

W2(t) [./ B2(t, B)fr(t, B)dt] '2 

o 
< 1 ( 4.9) 

where 

IT .1(t, B)B(t, B)fr(t, B)dtl 

00 I 

O'A [[ B2(t, B)fr(t, B)dtr 

is equivalently the absolute value of the correlation between .1(t, B) and B(t, B), while from 

the restrictions about B(t, B) we have 

00 

./ B2(t, B)fr(t, B)dt - l. 

o 
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Therefore, substituting (4.8) and (4.9) in (4. 7)we end up with 

(Xl 1 

Ico,.,.(A(t,e).D(C·/))[J(t,())1 :::; 115 1 [J (Ul()g~~(c")rfc,((',,)dc]2 
o 

I 

I
_I \/ . (U log Ie( c, I)) "2 

() (J1 ih ' (4.10) 

where 

due to the fact that the score function has mean equal to zero. Finally, the maximum 

possible correlation is 

1 

I'IV (8l0gfC(C,,)) 2 

() ar 0, ' (4.11 ) 

obtained by using the functions which would provide us with the equalities in expressions 

(4.8) and (4.9). This is a general result based on no assumptions about the form of the 

distributions of the two processes and the form of the functions A(t, ()), D(c, ,) and B(t, ()). 

This means tha.t 

I I I 
( D log f c( c, , ) ) I Ipi = Corr(t, c) B(t,O) :::; Carr B(t,O), 8 ' 

, B(t,O) 
( 4.12) 

which provides a whole range of values for 5 given that we know p, and vice versa, 

In the previous chapter we thought that function B(t,O) should be standardized, so 

that different choices for the bias function would not affect the size of 5. Our calculations 

depend equally on the score function of the C-process, as seen in the joint distribution in 

(3,6), The fact that we haven't standardized the score function of the C-process is the 

44 



reason why expressiou (4.10) iucludes its standard deviation. Therefore, if we decide to 

have iJIog~~.(c:)) standardized as well as B(t, ()), this leads to an new dependence parameter 

1 

'* 'V (alogj('.(C,/))~ () = () aT 
0, 

(4.13) 

which is nothing lllore but the ordinary 6, scaled by tIl(' standard deviation of the score 

function of tIl(' C-process, which we willnClme "standardized 6". As a result, the size of 

6* does not depend on the choices we make for the distribution of the Cpwcess and the 

bias function. Hencp, expression (4.10) takes the form 

l
eOlT (A(t, ()), D(c,;)) I < Ib* I, 

H(t,O) 
(4.14) 

allowing 6* to be directly comparable to the correlation between the two processes. 

Under the spacial case of the PH assumption, defined in (3.9), we have that alog~~(c,'"Y) = 

1 - Hc(c.,). and hence 

Consequently, expression (4.10) becomes 

I
corr(A(t,()),D(C,;)) I < 

B(t,8) 

where in this case 

00 - J (1- Hc(c,r)rfc(c,;)dc 
o 
1. 

ICorr(B(t,()), (1- Hc(C,r))) I 
B(t,B) 

Ibl, 

() = b*, 

45 

(4.15) 

(4.16) 



meaning t ha t () no\\' is the lllaximulIl possible correlation betweell the two functions. We 

see that PH assulllption results to standardized score fUllctions, which is a very useful 

prolwrty of (-\ struct mc that we are gOillg to W:it' extellsivdy in tJw remaining of the thesis. 
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Chapter 5 

Generalizations of the Model 

5.1 The PH Assumption 

III chapter :3 we set t Ilf' basics for our modeL giving explanations and proofs for several 

of our decisions. In this chapter we expect to present the use of the model in cases where 

the assumptions are altered, demonstrating in that way the ability of adjusting to different 

situations. 

A reasonablt' extension to our model would be to assume proportional hazards,preferably 

for both process('s 

(5.1) 

where hi- (t) and h'(. (') are the baseline hazard functions of T and C processes respectively. 

The above structure is similar to Cox's proportional hazard model, where initially we 

do not allow the presence of covariates, assuming that parameter () is the same for all 

the individuals in tlw trial. Therefore, this is a simple multiplicative model with a PH 

structure, which could be useful for comparisons between different groups, where each 

group has it's own parameter, and all share the same baseline hazard function. In this way 
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of modeling. we need to assume that the baseline hazard function is known, and is shifted 

up or down depending on the values of e, otherwise we would not he able to estimate it. 

There arc SCHlle beuefits for using the PH structure. Under this model we have that 

a log Ie( c,,) _ (.) 
u") - 1 - He c, I 

and the joint distribution becomes 

Moreover, the log--likelihood function becomes 

LL(t; e.,. (5) LL(t; e", 6 = 0) 

and the expression which provides us with the correlation bias finally takes the form 

People might argue that there is no need to use PH in the absence of explanatory 

variables. The point though is that this is not a typical PH model with covariates. It 

is a multiplicative model, reparametrized, which has a nice interpretation and simplifies 

calculations. Weibull for example, which is a widely used distribution, has the PH property. 

In the following sections we will see how beneficial this kind of modeling is, in terms of 

computations. 
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5.1.1 The Expectation of the Correlation Bias 

Expr<>ssioll (G.3) prm'idcs us with the difference eo - Bo, which is the bias of the parameter 

of interest dw' to the correlation between the two proC(~ssps. A quantity of great interest 

would be the expectation of til<' bias, which would give an overalllllPasure of the difference 

of the two pstilllatps. \Vith no further assumptions about the general function B(t, B), the 

expccta tiOll becollles 

_ n [ff' [ (] Ol',(c, (j) 0z(B
o
) 1- He e,{,) BB fT(t, e)fc(c, {')dtdc 

C<T 

If BB(t, B) ] 
- .. Hc(t,{') Be fT(t, B)fc(c, {')dtric 

T<(' 

ex:: 

J BB(t, e) 1 
- Hc(t, {') ae fT(t, B)Sc(t, ,)dt . (5.4) 

o 

The above expectation is taken over the indicator variable Ii and the minimum of T and 

C. It is also important to know that 

00 00 

J &B~~J}) fT(U, B)du J &hj;,I}) B(u, B)du 

t ST(t, e) + _t ---=S-T-'-(t-, B-) -- + /-L(t, e)HT(t, e). (5.5) 

Using expn'ssion (5.5) in (5.4) and under the PH assumption in (5.1), we prove that 

(5.6) 
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when' 

The full proof is includf'd in Appendix A. 

The result in (5.(j) provides us with an expression for the f'xpectation of the bias. It 

depends on tht' form of fUllctioll B(t, 8) and hence we need to specify it's functional form 

before \ve proceed wit h the calculations. 

5.1.2 Upper Bound 

The only assumption we have made so far is the PH structure of the model, making 

no additional assumptions about B(t,8). Using Cauchy-Schwarz inequality we obtain a 

bound for the expected bias 

(5.7) 

where the equality is attained only when B(t,8) is proportional to function T(t, B, ,). 

The above result is important, and there are some advantages and disadvantages related 

to it. First of all (5.7) gives a bound for the expected bias which provides us with the 

"worst" possible case, being the largest deviation from our independent estimate, for given 

b. The most important thing is that the bound does not depend on the unknown function 

B(t,O), indicating that this is an overall bound for any choice of B(t, 0) which meets the 

restrictions that we have set at the beginning. We know that B(t,O) needs to be a linear 
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combination of T(t. e. ,) in order to attain the upper bound, but an excellent result would 

be achicwcl if W(' had R silllple fUllctioll for B(t,O), for which the bound is met. The 

main disadvantage is that the calculatioll of the expectation is rather difficult, given that 

function T(t, e,,) is an integral itself. Using a computer it wouldn't be a problem to get 

numerical results. but obtaining an analytical expression for (5.7) is a difficult task to 

achieve. 

5.1.3 The Expected Bias when B(t, B) = 1 - HT(t, B) 

If we now make our usual assumption for the unknown function, B(t,O) = 1 - HT(t, 0), 

then 

OJl(t, e) oB(t,O) 
Il(t.O)= 8e = 8e =-HT(tJJ), 

the log-likelihood function becomes 

LL(t:e.,.t5) ~ LL(t;e",t5 = 0) 

+6 t { (1 - Ii) [1 - HC(ti, I)] [ - HT(ti, 0)] - IiHc(ti,,) [1 - HT (ti , 0)] } 
t=] 

and the correlation bias takes the form 

We can prove that Wlll'll B(t. e) = 1 - HT(t, B), the expected bias takes the simple form 

(5.8) 
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obtaining an expression equivalent to (5.6). The proof of the above result is presented in 

Appendix B. 

From the result in (S.8) we conclude that for a given value of £5 and when B(t, (}) = 

1- HT(t. (j). the expected bias is known. Moreover, for different values of c5 we can perform 

sensitivity anal~'sis. tr)-ing to understalld how this function behaves in different levels of 

dependence. 

5.1.4 Example 

Following the first ('xample in chapter 3, using the same data set, we will calculate the 

expectation of the correlation bias along with the upper bound. 

Starting with the expectation of the bias, we managed to prove expression (5.8) under 

the assumption that aH~bt,B) = HT(t, e). In this particular case that we assume exponential 

for the T-process of the form iT(t,e) = ee-Bt
, the cumulative hazard becomes HT(t,e) = 

et, giving 

aHT(t, e) 
ae 

HT(t, e) 
e 

Assuming ide, ,) = le-re, exactly the same is true for the C-process. Therefore, (5.8) is 

slightly modified to take the form 

We need to make similar adjustments to (5.7) for the upper bound (VB), which finally 
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takes thE' fortll 

1 

I E [ e J - eo] I < ibi,l ~e(J) { ET [ ~~ ( t, fJ, , )] } 2 

where 

/

.1 [ ()][l-HT (t,fJ) ] Tc(t.e.,) = 1- He :r" e + HT(:r,e) fc(x·,,)dx . 
. 0 

The above slllall changes are simply a result of the forlll of the exponential we use. If we 

had assullled that .fr(t,e) = cOe-eOI, then we wouldn't have the need to make any kind of 

modifica t ions. 

For b E [-0.004,0.004]' the data are in Table 5.1, while we can have a graphical 

presentation ill Figure 5.1. \Ve can see that the values of the bias and the expected bias 

x x 

E[eJ - eo] is eJ - eo UB 
-0.004 -0.00297 -0.00295 -0.00425 
-0.003 -0.00223 -0.00221 -0.00319 
-0.002 -0.00149 -0.00147 -0.00213 
-0.001 -0.00074 -0.00074 -0.00106 

0 a 0 0 
0.001 0.00074 0.00074 0.00106 
0.002 0.00149 0.00147 0.00213 
0.003 0.00223 0.00221 0.00319 
0.004 0.00297 0.00295 0.00425 

Table 5.1: Bias, Expected Bias and the Upper Bound of the parameter of interest for 
different values of b. 

are remarkably close. a result which is exactly what we would expect to find. The bounds 

for different levels of correlation. which are calculated for any B(t, e), show that our choice 

of B(t, e) = 1 - HT(t, e) provide estimates for the bias which are rather moderate. Given 
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Figure 5.1: Graphical representation of the results in Table 5.1. 
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that wr can calculate the worst possible cases, we end up having a good picture of what 

would possibly happen if we have low level dependencies between the two processes. 

5.2 PH Including Covariates 

TIlt' npxt obviolls step in the model is to allow the pres(~nce of covariates. This means 

that each patient is accompanied by a set of explanatory variables, which usually describe 

the condition of t hr patient at the time of entry in the trial. Therefore, we have different 

parameters (}i and Ii for different patients which depend on the specific set of covariates of 

each patient. TIH' PH structure for both processes takes the form 

(5.9) 

where v and u are now vpctors of parameters and x is the vector of the covariates. 

If we assume B(t, ()) = 1 - HT(t, (}), the joint density becomes 

and the log-likelihood is similar to (5.2) 

LL(t: v, u. 5) LL(t; v, u, J = 0) 

11 { + 6 ~ HT(t" v)Hc(t" u) - I,Hc(t" u) - (1 - I,)HT(t i , v) }.(5.1O) 

Therefore the correlation bias becomes 
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where 

is the observed illforllwt ion 1ml. t.rix and 

iJ2LL(t; v, u. i5 = 0) 
()vuv' 

is the matrix of nuiances and covariances of the estilllates of the parallleters in vector v. 

The expression for the bias of the vector of regression coefficients takes the simpler form 

v,) - Vo ~ i5[I(vo)] -1 t {Xi [HT(ti, V)Hr(ti, u) - (1 - Ii)HT(ti , V)]}. (5.12) 
1.=1 

At the same time. what we need to do is to choose an appropriate baseline hazard. 

A choice following our way of modeling would be obviously a parametric baseline hazard 

function. III the meanwhile. the results presented in sections 5.1.1 and 5.1.2 still hold when 

we have covariates. The only diflerence is that the expected correlation bias and the upper 

bound are now conditional on a specific set of covariates. 

5.3 The Independence Model 

In this work, m3ny times we have needed to refer to the paper written by Tsiatis(1975). 

According to his work if we use a model to analyze survival data that assumes dependence 

between failure and censored times, then there exists a unique proxy model with inde-

pendence between the two processes, from which we can derive the same sub-functions as 

from the dependence model. Therefore, it would be of great interest to see the form of this 
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proxy modeL based on our dependence model. 

According to Tsiatis(1975) Theorem 2, and using his notation, the joint survival func-

tion of the proxy lllodpl is defined by 

p 

F*(t) IT F;(t)) (5.13) 
j=l 

when p risks are present, wherp 

(5.14) 

is the survival function for risk j of the proxy model, and h(.j, s) is the sub-hazard, derived 

from the given model. h(j, s) is the hazard of failing from cause j at time s in the presence 

of all the other risks. 

In our particular model, we have only two potential risks, T and C. Under our notation, 

the joint survival function takes the form 

00 00 

ST,c(t) / / !T( u, e)!c(v,,) [1 + J olog ~~(v, ,) 1 d'll,dv 

t c 

ST(t,e)Sc(c,,)[l- JJ-L(t,e)aH~~")l (5.15) 

where J-L(t, e) is as defined in chapter 3. Using ST,c(t) we can get the sub-densities and 

then the sub-hazard functions. Firstly for the T -process, the sub-density becomes 

(5.16) 
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and the corresponding sub-hazard is 

fiCu) [J)H({U,;) ( ) 1 
II ~ ( 1/) = 5 ( u) = II T (1/, ()) 1 + () 0, II. ( 1/., ()) - n ( ll, ()) . (5.17) 

Similarl~', for t lw Cpron>ss Wf' have 

(5.18) 

and 

(5.19) 

The above sub hazards arc the basis of constructing the independent model, in which they 

are considered to be tIl<' marginal hazard functions. Assuming that CT(t) and Cc(c) are 

the independent survival functions of our new model, according to (5.14) we have 

exp { - .Io
t 

h~(S)dS} 

{ () - t ( )OHc(s,,) ( ) } exp - HT t, B - ().fo hT S, B o~/ Jt(s, B) - B(s, B) ds 

{ -t ( B) dHc(s, I) ( ) } ST(t, B) exp - 0 .fo hT S, 0, p(s, B) - B(s, B) ds (5.20) 

and 

Cc(c) - exp { - l c 

h~(s)ds } 

exp { - Hc(c, I) - b l c 

hc(s, ,)/1.(8, B) olog hc(s, ,) d8 
o 0, 

_ Sc(c, ,) exp { - b l c 

hc(8, ,)tt(s, B) Blog ~~(s, ,) dS}. (5.21) 

The product of (5.20) and (5.21) under the presence of independence, is simply the joint 
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survival function. for H given value of 6. From tht' above equations it is clear that in the 

new model. the llwrginal functions of risk T fUllctionally depend on the functions of the 

C process Hlld vic(' \'('rSH. 

Under this nt'w frallH:·work we are now interested in the probability of an event, either 

failure or cellsoring. Assuming that 9T(t) and gc(c) are the density functions and AT(t) and 

Ad c) are the hazard functions of the proxy model, tlwn the probability of the minimum is 

where I is the indicator variable. The marginal hazard functions of the proxy model are 

equal to the sub~hHzards of the original dependent model. Attempting to draw inferences 

about 0, \vhich was the initial parameter of interest, Wf' construct the likelihood function 

which has tIl(' form 

II 

Lp = II AT(ti )l'Ac(l;)1-1i GT (tdGc (li) 
i=] 

and the log-likelihood is 

LLI' t { I, log Ar(ti) + (1 - Ii) log Ar(t;) + log Gr(ti) + log GC(ti) } 

t { I;log Ar(ti ) + (1 - Ii) log),d til - Ar(ti) - AC(ti) } (5.22) 

with A* (t) indicating the cumulative hazard functions. \Ve can prove that 

LLp = LL, (5.23) 

indicating that t.he two log-likelihood functions, the one from the dependent model and 

59 



the other one from t he independent, are exactly the' same. This means that inferences 

about () are exactl~· the same. whichever model we use. The proof of the above is included 

in Appendix C. 

The abovp result is not something new. Following Tsiatis's Theorem, we would expect 

to find the Salllt' distribution for the minimum. and hence draw the same inferences about 

(). The main gaill frotH t he above is t.hat now we have the C'XHct form of the model with 

independent risks. proving that inferences for parameter (j are the same whichever model 

we decidC' to use. Benefits from that would be more obvious in the next Chapter, but the 

knowledge of an p<}uivalent to our initial model with independent risks is a great advantage. 

5.3.1 Example 

We use the myeloma data, but this time we include the covariates presented in Table 

3.2. In the example in chapter 3 we show that an exponential distribution would give a 

reasonably good fit to the Tprocess. In the same way we can show that an exponential fit 

would be appropriate for the' Co-process as well. Therefore, we model the hazard functions 

according to expression (5.9), choosing to have a constant baseline hazard function for 

both processes. The hazard functions of the two processes now take the form 

) 
ylX() hT(t:v,(),x = e , 

where () and I are t.he const.ant. baseline hazards. The estimates of the parameters are 

Vo = (1.5567, -0.1065.0.4214.0.1251), eo = 0.0017, Uo = (1.7135,0.0910,0.5703, -0.1248) 

and 'Yo = 0.0006, obviously when 6 = O. The main advantage of this way of modeling is 
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that we can perfol'ln a s€nsitivit,v analysis on any of these parameters, including e, and 

observe tIl<' impact of the changes in tIl<' hazard and the survival functions. 

Anot he)' \va~' of (kalin!?, with the saul(' problem is to foclls on a quantity with a real 

meaning like the hazard itself, ~Iore specifically we can aSSllme that the logarithm of 

the hazard is of main interest. which seems a natural thing to look at. Following what 

we said in the previous paragraph. we can aSSUllle that for a fixed set of covariates the 

hazard is constant. and henc(' caeh paticnt has an exponential survival probability. With-

out any loss of generality we may assume that hT(t; v, x) = eV'x and hc(t; u, x) = eU'x, 

where now vectors v and u are not the same as before. The fact that we have elimi-

nated the baseline hazard indicates that the vector x must have an intercept, changing 

in that way the vpetors of the parameters. Now the independent estimates are Vo = 

(-6.3~75. 1..5567. -0.1065,0.4214,0.1251) and Uo = (-7.4426,1.7135,0.0911,0.5703, -0.1248). 

Therefore, we assullle that wx = log hT(t; v, x) = v'x is our main parameter, which is sim-

ply the prognostic index (PI) of the T-process, and we will perform a sensitivity analysis 

conditional on the set of covariates x. Similarly, if we assume that Zx = u'x, the PI of the 

C-process. the expression of the bias becomes 

(5.24) 

We can see that the correction factor (or sensitivity index SI) depends only on the observed 

times and zx' This llleans that the greater the hazard of being censored the more sensitive 

is the dependent estimate li'~ for a given value of 8. The relationship between p and 8 is 

also of major importance. Under this particular way of modelling, which is proportional 
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hazards. we ,:111'('(1(1\- know frolll the results ill chapter 4 that (J ::; (5. In this case it can 

be proven that {J = (5. This means that our sensitivity parameter is nothing else but the 

correlation betw('('n the two processes, and hence by substituting (j by p in (5.24) we get 

the final expression of the bias. The results of the sensitivity analysis are presented in 

Figures 5.25.5. Starting frolll Figure 5.5 we see that large PI for tIl(' T -process imply 

larrre PI for thc C' ])1'O(,css. This means that patients who arc more likely to die are more o . 

likely to be censored as welL giving immediately an indication of the presence of a possible 

positive' correlation between T and C, conditional on the set of covariates x. As a result 

Figures 5.2 and 5.3 show the impact of the sensit.ivity analysis on t.he survival functions. 

More specifically Figure 5.2 illustrates the survival curves of the patients with the best and 

the worst PI for the T--process. We see that the patient with the worst prognosis has a 

more sensitiVf' survival curve simply because this goes with an equally poor prognosis for 

the Cprocess giving a high level of SI for our choscn p = 0.3. Similarly Figure 5.3 presents 

the patients with best and the worst PI for the C- process which are the patients with the 

smallest and the largest SI in our sample. Finally in Figure 5.4 we plot the SI against the 

PI of the C -process. As expected this gives an increasing smooth line illustrating in a very 

clear way the relationship between the two quantities. 
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Figure 5.2: Min/max sensitivity on the survival with respect to the PI of the T-process. 
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Figure 5.3: Min/max sensitivity on the survival with respect to the PI of the C-process. 
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5.4 Model with Informative and Uninformative 
Censoring 

5.4.1 Introduction 

So far. all of om work is based 011 one and only one initial assumption, that there 

exist some kind of dependence twtween the failure and the ccnsOlwi lifetimes. We arc 

not able to llWaSlll't' it. but we are able to model it and see what happens when this is 

not zero. There' Hre though some question that need to be answered. First of all, is it 

reasonable to assume that all tIl(' censored observations are either all informative or all 

uninformative? Is it possible from the context to identify which censored observations are 

definitely uninfol'lnative'? 

A common sitllation is when we have a good proportion of observations censored at the 

end of the stndy. It is definitely a different kind of censoring, something like a "forced" 

censoring. It occurs not due to some random event or to an event related to our experiment, 

but due to a lack of time or even because the whole trial was designed so as to end 

at a specific point in time, preventing us from continuing the study. Now the question is 

whether we should trea t these censored times as being different from the ones that happened 

randomly throughout the study or not. This means that if we consider dependence between 

the failure and the censored times, will this dependence involve both kinds of censored times 

Of not? If the answer is no, then there is no change at all to what we have done so far. All 

the calculations still hold, and we make no distinction between the two kinds of censoring. 

But, if the answer is yes, then we can easily assume that the censored times at the end of the 
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study are due to a rca son \\'hich is completely irrcievant to what we are investigating, and 

hence the)' ar<' in<iqwndent of the failure times, Therefore. we end up with two different 

types of censOl"l'Cl lifctimes. out of which one is dependent and the otlll'r 011C is independent 

of the failurc times. At the pnd, this will have an impact to the likelihood function and to 

the estimates of the parallwters. 

5.4.2 The Independence of Censoring at the End of the Study 

We will now tr)' to model the case where the ccnSOrlng at the enrl of the study is 

considered to be independent. using the exact likelihood. Now we have 3 events instead of 

2. We have T. C[ and Cr;, where T as before is the failure time, C[ the censoring before 

the end of the study and CE is the censoring at the end of the study. In the last case what 

we know is that both T and C I are greater than CE , and what we finally observe is the 

minimum of these 3 possible events, hence Y = min{T, CI , CE}' In other words this is a 

truncated version of the censoring we have been using so far. 

The likelihood function now has an extra term, aud takes the form 

11 

L'(t;b,e,,) = IT FT(T = ti, T < C)I.ZiPr(C = ti,C < T)(l-I.)ZiPr(E = ti)(l-I;)(l-Z;J 

i=! 

(5.25) 

where 

Ii = { l, 

O. 

when failure time 

when censored time 
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and 

{ 

l. 
z-

I - O. 

when C[ (censored befon' the end) 

when CE (censored at tIlt' end) 

are the two indicator variables. Pr(E = t E ) is the probability that a patient is censored 

at the end of tlH' stlld~'. This means that hath T and C[ an' greater than t/~' the time of 

the end of t he stlld~·. and hence we have 

oc 00 

Pr(E) ./ ./ Ie (c" + oB(t, e)) IT (t, e)dtdc 

(5.26) 

It is clear that if all the patients join the trial at the same time, then tf<: will be the same 

for everyone, but if patients join the trial at different points in time, then each patient will 

have his own timt' tk. which would be know from the beginning if the trial has a specified 

end point. 

Now the likC'lihood function takes the form 

L'(t;o,O,,) 

(5.27) 
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and after SOllle calculations we end up with the log-likelihood 

r+k { 
LL' (t: B. ,. J) ~ I, log "T(l" 0) + (1 - J,) log he( ti.,,) - Ih(ti, 0) - He( ti,,,) } 

~ {HdV'f) + HT(t" O)} 

+ 5[f {(l- Ii)D1og~c(ti'''() p,(ti,fJ) - IiDHc~(~i'r) B(t i ,())} 

i=l "( I 

+ ~ { iJHc~~i' 1') IL( ti, 0) } 1 (5.28) 

where 

,. the number of failure times 

k the number of censored times before the end 

Il' the number of times censored at the end. 

Therefore. the log-likelihood has the same structure as the initial one, with the only 

difference being that we add an extra term that corresponds to the assumption of censoring 

at the end of the study. If we now proceed with the estimation of the parameter of interest, 

we end up with 

(5.29) 

where 

LL'(t;(),"(,b = 0) 

r+h' 

{; {Ii log hT(ti, 0) + (1 - Ii) log hc(ti, "() - HT(ti, 0) - Hc(ti,,,) } 

- ~ { Hc(ti' ,,) + HT(ti, 0) }. 
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Calculations arc straight forward and what we get is what we expected to get, a modified 

version of our illit ial estimate of the parameter e. 

The above \va~' of modeling. with 3 possible events T. CJ and CE can be seen as 

a special case of a general lllodel. Assume that we haw a competing risk problem, III 

which we are interrsted onl~' in OlH' particular risk. vVe can assume that the failure times 

from this particular risk form the T-process, while the failure times from the other risks 

can be categorizrd. according to whether we assume dependence between them and the 

particular risk of interest or not. Hence, we form C1Process and CE~process. This is a 

small extension of the model discussed in this section. The likelihood function would be 

equal to (5.25). \vith the only difference that the observations of the E-process will not 

necessarily appear at the end of the study. 
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Chapter 6 

What if we knew more? 

6.1 Presenting Data with which we can Estimate 
Parameter c5 

6.1.1 Introduction 

As we hav(' mentioned several times before, parameter 6 is a quantity that cannot be 

estimated. The main reason for that is that the data themselves do not provide enough 

information, leaving us with the question of what would happen if we had the opportunity 

to observe more. So far we have based all our work in the assumption that b is actually 

known, avoiding in that way the problems of estimating it. In this chapter we will work 

on the special data set of Table 2.1. Under some certaill assumptions, discussed in section 

2.2, we do observe additional information which enables us address the question of the size 

of J. 

Under our hypotlwtical scenario with viewpoints A and B, we are privileged to have a 

data set of 38 patients in which we observe the exact death time of 11 of them, the censored 

time of the 14 of them, and both the censoring and the exact death time of the remaining 

13 patients, providing us with far more information than we usually have when we analyze 
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survival data. III the wa.v we haw" constructed" Data A, censoring is informative (or at 

least part of it). while in Data B censoring is cOllsicier('d to be uninformative. We helieve 

that in a real life situation it is lllore likely to observe Vicwpoillt A rather than Viewpoint 

B. Doctors will always try to saw the patients lives. if they can, rather than try to make 

up their l1ll111bers for their statistical analysis. For this reaSOll WP haw considered Data A 

to be the ohsprwcl data while Data B to be the "true" data. in the' sense that any estimates 

of parameters of tll<' failure process that come from Data A will be biased, because of the 

informative censoring, while the estimates of the same parameters that come from Data B 

will be unbiased. 

In Figure 2.1 w(' saw how misleading the estimate of the survival curve under indepen­

dence can be. vVhat we want to do is to take advantag(~ of the additional information we 

have, and explore the possibility of improving our estimate of the survival curve which we 

would make if we ollly knew Data A. Our main target is to use this extra information to 

estimate b. 

6.1.2 Analyzing the Data 

Initially assume that censoring is uninformative. We admit that we do not have many 

observations, and the presence of some long term survivors suggests that we should try 

to analyze these data using a mixture model. We assume that there is a proportion p of 

the patients which will never die, the so called immunes, while the rest of the patients die 

with an exponential rate, with parameter e, see Farewell(1977) and Maller & Zhou(1996). 
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Hence the survival fund ion takes the form 

ST(t,(J,P) (6.1 ) 

and the dellsit~· be("01Il(,s 

ir(t,(),p) (6.2) 

Additionally. for the' Cproce'ss we assume a simple exponential lIlodel with parameter 

'Y. The log~survival plot for the C-process looked reasonably straight, suggesting that an 

exponential distribution would fit the data reasonably well. 

As a result of our assumption, fT(t, (), p) is But a proper density function, allowing a 

cumulative probabilit~· p when t ~ 00. Furthermore, we now have two parameters, () and p, 

and we will estimate them by maximulll likelihood estimation. The independent estimates, 

assuming non informative censoring, are {)~ = 0.00291012 and p~ = 0.607822, where A 

indicates that these estimates come from Data A, and 0 means independence (6' = 0). If 

we use Data B. then we get ()~ = 0.00246945 and pff = 0.31969, which we consider to 

be the" true" estimates, ill the sense that they are the unbiased estimates of the real true 

parameters. Figure 6.1 shows the fit of the model (6.1) using the above estimates. 

It is true that in either of the above cases, where we estimate parameters () and p, 

we discard pieces of information. In the first case we ignore the exact death times of the 

patients who relapse and in the second case we ignore the censored times of the same 

patients. The reason for that is that in practice we have either the one case or the other 

but we will never have all these data at the same time. Later in this chapter we will see 
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Figure 6.1: Fit of the independent parametric survival curves using the mixture model. 
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how we can \lse all the information we haY(' in order to estimate 6. 

6.1.3 Estimation of parameter 6 

As we have llH'lltioned before. the difference betweell the two Clll'V<'S is large. Act\lally 

the survival probability in the tails is almost double when we have the relapsed censored 

times than when \w have the exact death times. The question we need to answer now 

is "what is the value of 6 that. given that we use the data which include the informative 

censored times. we will still be able to get the "true" estimates for our parameters". In 

other words. which is the value of 6 for which 

and 

In order to be able to answer this question we Heed to use the exact likelihood function 

11 

L(t: e. p, "y. 6) IT P(T = ti n T < C)/, P(C = Ci n C < T)l-I, (6.3) 
i=l 

and not the approximation we introduced in chapter 3. The reason for that is that we 

do not know how large our estimate of 8 is going to be, so working with the exact model 

we give no restrictions on the value of 8, while using the earlier linear approximation we 

restrict 8 to be small. The probabilities under the mixture model are 

p(T=tinT<C) - fT(t,{),p)Sc(t,i+8(1-HT(t,{),p))) (6.4) 

76 



and 

P( C = Cj n C < T) 100 

ic'(c, I + 6(1- Hr(t,(},p))),fr(t, (},p)dt 

+p l2:~ {Ic(c, 1+ 6(1 - Hr(tJ},p)))}, (6.5) 

where the COlTf'ctioll p lilll {Ie (c, 1 + r5 (1 - H r (t, (), jJ)) )} in the ahoV<' expression comes 
I-ex: 

from tht' fact that lim {Sr(f.e.p)} = p and not zero. as when we have' a proper density. 
,~oc 

Therefore, we require that expression (6.3), for tIl(' right value of 6, to give the "true" 

MLEs of tlw parameters of interest. Being in the position to know the "true" parameters 

()~ and fir we simply substitute them in (6.3), along with It = 0.00116589, and we get 

the MLE of 6. Hence, L(t: e~, fiff, 6) gives an estimat(' J = 0.00121015. This is not a true 

maximum likelihood estimate but an ad hoc argument; it provides us with J which is the 

MLE of 6 conditional on the fact that ef = eg and i)81 = fi~· 

Another way of estimating all the parameters together, including 6, is to construct the 

appropriate likelihood for all the data we have availabk In this case we have 3 different 

types of observations 

i) observe death time but not censored time, with probability as in (6.4) 

ii) observe both censored and death times, with joint probability density 

fr,dL c) fr(t, e, p)fc.'lr(c, ,+ 6(1 - Hr(t, e, p))) (6.6) 

and finally 

iii) observe censored but not death time or neither of them. This third type of observations 

can be seen in two different ways. If we assume that these censored times are due to the 
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end of stud~T. whi('h is probably the case, then this means that during the follow up time 

we were able to o\)snY(' neither the death time nor the cPllsored time. Hence, if E is the 

time of the end of t he sttld~' \ve have that 

00 00 

PdT> £ n C > £) J J i'r(t. e, P)!CIT(C, / + 6(1 - HT(t, e, p)))dtdc 
E E 

00 

+Ptl~~ {J !CfT(c.,+6(1- HT(t,e,p)))dc}, (6.7) 
E 

exactly like the end of study censoring in the previous chapter with a small correction at 

the end. On the other hand if we assume that what we observe is the actual censored time, 

then expression (6.5) providE'S the probability of such an event. The major distinction 

between the two is that assullling that the reason for a patient to be censored is to relapse 

(informative), then in the first case we say that we were not able to observe it, while in 

the second one we claim that the observed censored time is actually the time where the 

patient relapses. 

If we aSSUllle that we have the end of study cellsoring for category (iii), then the 

likelihood function takes the form 

n 

L(t:fJ,p,/,6) 
i=l 

P(T> Ene> E)(l-I;)Z, (6.8) 

where Ii indicates whether we observe the death time of the ith patient or not and equiva-

lently Zj indicates whether we observe the censored time or not. Maximizing this function 

over the parameters fJ,p" and 6 we get the estimates presented in Table 6.1, which now 
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e I p I i I J 
0.0025655 I 0.286328 I 0.000290804 I 0.0018024 

Table' 6.1: Second set of "tnI(''' estimates. 

gives the sl'f'ond set of" true" estimates. 

Finally, assuming that w(' haW' the second type of censoring for category (iii), which 

computati()llall~' is easier to deal with, we have the following likelihood function 

It 

L(t:(J,p.;.15) II P(T = ti n T < C)I,(I-Zd PT(T = ti n C = Ci)Ii Z , 

;=1 

(6,9) 

The MLEs of paramet.ers (J,p,; and 6 are in Table 6.2, where now t.hese are t.he t.hird set. 

e I p I l' I J 
0.00236544 I 0.28971 I 0.00122373 I 0.00202389 

Table 6.2: Third set of "true" estimates. 

of "t.rue" estimates. 

People might find confusing t.he distinct.ion of the estimates int.o t.hree set.s of "t.rue" 

estimat.es. This has to do with how we use the data in order to obtain our unbiased 

estimates of the parameters. The first way of estimation I believe is the most realistic, 

because is based on the actual data that we will have in real life. The other two are 

basically the same and they are based on using all the data that we have in this particular 

case, although in practice we wont be so lucky to have all this informat.ion. In order to 

avoid confusion, in the rest of the chapter we will refer to the different estimates of 8 as 

81,82 and 83 meaning that they come from the t.hree different ways of estimating them. 
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6.1.4 Estimating the Parameters of Interest Using the Estimated 
Values of <5 

In the previolls s(,ction we described ways of estimating parameters b. The obvious 

second step would 1)(' to llse these values of r5 in our original likelihood function and try to 

estimate the parallwters of illtnest. We would hope to get estimates for the parameters 

close to the "true" values. but the fact that we do not have enough observations and the 

variation is large indicates that this might be too optimistic. 

If we assume that we have 81 = 0.00121015, the value we get using the first way of 

estimation, we get OJ = 0.00198907 and PJ = 0.411352. It is important to note is that the 

parameter I of the C--process is kept fixed and equal to it during all the calculations, 

because it is required from the model that I is the parameter under independence. In 

Figure 6.2 we plot the KM estimate of the "true" survival curve along with the 95% 

confidence limits calculated using the Greenwood's formula. It is obvious that for reasons 

we described before we get a wide confidence interval. The solid line is the survival curve 

using the" true" parameters, while the dashed line is the fitted survival curve, using the 

above estimates. We see that is not the best fit to the" true" survival curve, but is still 

within the 95% confidence limits. If we had more data we would expect to get better 

estimates, but given the presence of the variation we get a reasonably good fit. 

The fact that the dashed line falls in the 95% confidence interval is encouraging, and 

is a visual indication that we have reasonably good estimates. However, we would like 

to test this result using the likelihood ratio test to see whether the survival curves can 

be considered indistinguishable or not. The likelihood that we will use is the one under 
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independellu' (md w(' will usc' Data B, becanse this is the case that provides us with the 

unbiased estilllates and henet' \vr can test whether 011e set of parameters is significantly 

different frolll the llllbiased C' true"') ones. Therefore, the likelihood ratio gives 

-) 0 0 
'I [Lo(Tz, 0.00198907, 0.411352)] 
- ~ Lo(Tz, 0.00246945, 0.31969) 

2.33101 

which, compared with 4.60517 which is the X~(O.lO) with 2 degrees of freedom, shows that 

we cannot reject the h.vpothesis that the two survival curves are the same. 

Taking now 62 = 0.0018024, the MLEs of the parameters are eli = 0.00169965 and 

'P8 = 0.36034l. Figure 6.3 shows the fitted survival curve plotted together with the KM 

estimate and the curve using the "' true" parameters from Table 6.1. We can see that it 

falls within the 95% limits of the KM estimate. Hence we perform the likelihood ratio test 

and we get 

[
LO(TZ' 0.00169965, 0.360341)] 

-? lao 
- ~ Lo(T2' 0.0025655, 0.286328) 

2.31174 

which is still not enongh to reject our null hypothesis. If finally we assume that 63 -

0.00202389, our new estimates for the parameters are 88 = 0.00153197 and P8 = 0.34827l. 

In Figure 6.4 we can see again the survival curve using the above parameters (dashed line) 

plotted together with the KM estimate and the curve using the "true" parameters from 

Table 6.2. We can see that the dotted line falls within the 95% confidence limits, exactly 

as before. The likelihood ratio test gives 

[
LO(T2 , 0.00153197, 0.348271)] 

-2 log 
Lo(T2' 0.00236544, 0.28971) 

82 

- 3.34736 



00 
o 

o 
o 

o 

.... t ......... "" .... " .. " ... . 

--

500 1000 1500 2000 2500 

Time 

Figure 6.3: Estimated survival curve using 62 . 

83 



iii 
> 
.~ 

::J 
(/J 

co 
ci 

(J:) 

ci 

~ 
0 

(\J 

ci 

q 
o 

o 

, .. 
..... , 

........... : 
.......... 1, ............. ""' ... , .. . 

500 1000 1500 2000 2500 

Time 

Figure 6.4: Estimated survival curve using J3 . 

84 



which is still llot sigllificallt. exact ly as we would expect. 

Finally. in Figure 0.5 we plot all the survival curves estimated using the three possible 

ways described abo\'('. This is to illustrate that the procedure with which we estimate 6 

actually has little impact Oll the estimation of the survival curve. All these curves are 

very closl' to each other alld they are all considered indistinguishable from the" true" one, 

with the likelihood ratio test being our criterion. It is important to mention again that 

we have used the exact lllodel. and not the approximate one. This made the calculations 

more difficult: we maximized all tIl(> likelihood functiolls usillg the mathematical software 

MATHEMATICA. 

6.2 Modeling two types of Censoring 

In chapter 5 wl' considered the censoring at the end of the study to be uninformative 

while censoring that happened during the trial was considered to be informative. This 

is only a special case in which we are able to make a distinction between two types of 

censoring, where the major criterion was the time the censorings occurred. The general 

case would be when we were be able to say which censorings are informative and which 

afe not. 

In order to be able to model the general case, we introduce an additional indicator 

variable 

{

I, 
~V = 

0, 

when informative censoring 

when non-informative censoring 

which shows us which censored times are considered informative and which are not. This 
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implies that SOlllP additiollal illformation will be available with the data, explaining the 

reasons for patients beillg cellsored and helping us in that way to label the censored times. 

In a clinical trial. for illstallce. we may be able to find out the reason for censoring. If the 

patient withdraw for a non medical reason (eg. his medical records were lost) we would 

define ~V = O. If the patiellt withdrew because of adverse side effects, we would define 

w = 1. 

Therefore the model takes the followillg form. vVe assume that each patient i has a 

potential failure time Ti and a potential censored time Gj , and we observe Yi = min {Ii, Gd 

and an indicator variable Ii, exactly as before. Additiollally, we assume that each patient 

has a value 6i . which is the level of dependence between Ii and Gi , and we assume that it 

is known. In this case we allow each patient to have a different value of 6i , and we are able 

to "observe" it only when Wi = 1, meaning that in this case we may allow 6i to be different 

from zero in performillg the sensitivity analysis. The case we studied so far where all the 

patients have the same value of 6, is a special case of the model we are considering now. 

Following the above. our initial assumption about the conditional distribution can be 

slightly modified to be 

Pr( G = ciT = t, W = w) ic(c,"( + bwB(t,O)), (6.10) 

involving in that way the indicator variable W. Note that if W = 0, T and G are condi­

tionally independent. The joint density becomes 

iT,C,W - ic(c,,,(+bwB(t,O))iT(t,O)Pr(w), (6.11) 
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where 

PI'(II' ~ w) ~ { Jr, wlwn '(1]=0 

1 - Jr, when '(1]=1 

and Jr is the proportion of non informative cellsoring in the sample, A wry important 

assumption in (6.11) is the independence between VV and T. This means that the reason 

for which a patient is censored does not imply anything about the exact failure time of 

this patient, which we admit is a rather restrictive assumption. Heitjan & Rubin(1991) in 

a similar way model "coarse" data, but use the conditional distribution of the indicator 

variable given the failure time. We will explore the case where we have dependence later 

on in this chapter, but initially let's see what happens in this simple case. 

The probabilities now become, assuming 5 is small, 

P(T = t, T < C) = P(T = t, T < C, W = 0) + P(T = t, T < C, W = 1) 

Pr(W = O)fT(t,O)SC(t,,) 

+ Pr(W = l)fT(t,O)Sc(t,,) [ 1- 5B(t,0)8H~~")l 

fT(t,O)Sc(t,,) [ 1- 5Pr(W = 1)B(t,0)8H~~")l (6.12) 

and 

P(C = c, C < T, W = w) = Pr(w) 100 

fc(c" + bwB(t, O))fT(t, O)dt 

~ Pr(w)fc(C,,)ST(C, 0) [ 1 +5WJ-l(c,0)8l0g~~(C")l. (6.13) 
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Finally the likelihood takes the form 

/I 

L~,lt. II Pr(T = t, T < e)l, Pr( e = t, e < T, W = 1) (l-J,)W, 

1=1 

Pr(C = t,e < T, ~V = O)(l-I,)(l-W,), (6.14) 

and the log -likelihood becollles 

(6.15) 

where LLo is the log likelihood in the case of independence. The above expression will 

provide us with our estimates. 

This case gives us an idea of what to expect from a model with two types of censoring. 

The independence estimate of the parameter of interest remains the same, and the Co[-

rection factor is slightly modified, including, in a way, a proportion of the old correction 

factor defined by the number of informative censored cases. If in (6.15) we assume that all 

the censored observations are informative and that all the individuals have the same value 

for lSi then we go back to our original model. 

As we mentioned before, the above way of modeling raises the question of how reason-

able the assumption of independence between T and W is. In other words is it reasonable 

to say that the indicator of informative censoring does not imply anything at all about the 

exact failure time of a patient? If there is a correct answer then this is probably no. This is 

because when we assume some kind of correlation this means that the failure times follow 

a pattern and they do not come completely at random. Therefore, an important thing we 
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need to consider !lOW is t he conditional distribution of IV given T. 

If IV and T are correlated, the model becomes very lIluch lIlore complicated, and we 

merely indicate here a possiblp approach. If we take 

when w = 0 

when w = 1 

as the conditional distribution of H! given T, the joint distribution takes the form 

fT.C.ldt. C, w) = fc(c" + bwB(t, 0) )fwlr(wlt)fT(t, 0). (6.16) 

Here, 7ft is a function of t, where: 7ft : R+ - [0, 1J. Hence, the condition distribution of W 

given T can be rewritten as 

(6.17) 

and the joint of (6.16) finally takes the form 

) ) l-W[ ]W[. 8Iogfde,,)] 
= fde" fr(t, 0 7ft 1 - 7ft 1 + owB(t, 0) 8'Y . (6.18) 

Now expression (6.12) takes the form 

while (6.13) becomes 

00 

P(C = e, C < T, W = w) J fc( e, 'Y + 8wB(t, 0)) fWlr(wlt)fr(t, O)dt. (6.20) 
c 
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The above two equations will help us construct the lik('lihood function in a similar way 

like in (6.14). 

For this to be feasible. thE' function 7rt needs to be fully specified. The choices we have 

is an important question. In principal, 7rt : R + - [0, 1] can be any continuous fUllction 

without any further restrictions. However, we can restrict 7rt to be monotonic, and the idea 

behind this is the following. If we aSSllmE' that we have infonllative censored times, and we 

believe that the exact failure times may be close to the observed censored time (a possible 

positive correlation). thC'n 7rr should be small for relatively small values of t. Therefore, 

a choice of an increasing function of t should be appropriate. On the other hand, if we 

believe that the exact failure times are not close to the observed censored times, then 7rt 

should be small for relatively large values of t. This means that a decreasing function of t 

would be appropriate. 

Even with the assumption that 7rt is monotonic, there is still a wide range of possibilities, 

and the choice must depend on the particular circumstances in the study and what is known 

about the prognosis of patients who are censored. How such information should be used, 

and how sensitively estimated survival parameters are to the choice of 7r" remain topics 

for further research. If a reasonable estimate of 7rt is available, however, then the above 

expression can be used to construct an appropriate likelihood function. 
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Chapter 7 

Semi-Parametric Approach 

7.1 Modified Partial Likelihood 

In the previous chapters we worked with the full likelihood, and we tried to explore 

all the possible ontcomes, under different assumptions about the p.d.f. of the T and C 

processes. If we do not choose any known distribution, the prevailing assumption would be 

PH. Cox (1972) proposed that the hazard function is proportional to some other function, 

the baseline hazard function, 

which depends only on time t. Parameter Bi is a linear combination of a set of explanatory 

variables, which follow each individual that participates in the trial. Under the assumption 

of independence between the failure and the censoring times, Cox introduced the Partial 

Likelihood (PL) 
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where (3 is the VE'ctor of paralllE'ters and Xi is the vector of explanatory variables of the ith 

individual. In t he above product, only failure times are considered, and R( t(i)) is the risk 

set at timE' t(l). \\,11('1'(' t (il is the /h ordered failure tilIlP. ThE' independencE' assumption 

implies that only t IH' failure tillles contribute to the estimation of the parameters of interest, 

where the censored times are only part of the risk sets. The most important property of the 

Partial likelihood is t lw fact that the baseline hazard fUllction finally cancels out, making 

the calculations llluch simpler. This is the major advantage of the partial likelihood, 

compared to the full likelihood. and what made it so widely used. 

The questioIl that is raised in our research is what happens when we depart from the 

initial assumption of independence. We have already seen how we model the conditional 

distribution fCIT(C,,) = fr(c,,+6B(t,O)), where 6 is the measure of dependence. There­

fore, due to the potential dependence that arises from the presence of 6, we claim that 

even the censol'E'd times contribute information in the estimation process. We assume that 

the basic idea of the partial likelihood remains the same, and we propose two, rather im­

portant, changes. First of all, considering that C is a proper "failure" process, for failure 

other than the one under investigation, we introduce in our likelihood a new term which 

is simply the PL of thE' C-process. For 6 =1= 0, this extra term contributes an amount of 

information in thE' estimation process of the parameter of interest. The second and equally 

important change is that the hazard functions are now considered under the presence of 

two risks, T and C. Therefore, allowing the sub-hazards to be the hazard functions of the 
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two processes. we define the rVIodified Partial Likelihood (MPL) to takes the form 

(7.1 ) 

where v and u are t he vectors of the parameters of the T and C processes respectively, and 

Xi the vector of expla.llatory va.riables of the ith individual. The above expression is divided 

into two product s. t he first Olle being over the T failure times and the second one being 

over the k censored times. h~(t; v, u, x) is the hazard function of T process in the presence 

of the C process. which ill competing risks' terminology is the sub-hazard function, while 

h~( t; v, U , Xi) is defined equivalently as the sub-hazard of the C process. These functions 

are different to the marginal hazard functions that Cox used in the partial likelihood, and 

they are equal to cach other only when t5 = O. 

The form of these functions is 

h~(t:v,U,X) 
. Pr(t ~ T < t + ~tlT 2: t, C 2: t, x) 

= hm 
ll.t~O+ ~t 

= f~(t, v/x) = hT(t, v/x) [1 + t5 Hc(t, U/X) ap,(t, V/X)] (7.2) 
ST.c(t; v, u, x) hT(t, V/x) at 

and 

d. ) - fb(t, U/X) - h ( ') [ (I] hr(t,v,u,x -S (t. )- ct,ux 1+6J-Lt,vx) , 
T,e ,v, u,x 

(7.2') 

where ST,c(t; v, u, x) is the joint survival function, f~(t, v/x) and fb(t, U/X) are the sub-

densities of the two processes and J-L(t, v/x) is defined as before. How we derive the sub-

density functions is included in Appendix D. We see that the sub-hazard functions are the 
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marginal hazard pIlls an extra correction factor, which is multiplied by 8. It is obvious 

that when 6 = o. \w go back to the initial Cox's assulllPtion of independence. Hence, the 

MPL takes the forlll 

and the log-likelihood is 

MPLL B 

In first order approximation we get 

(7.3) 
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where term of (F. (P ... are omitted. We observe that (7.3) is the sum of the partial log-

likelihood functions of the T and C processes plus 6 times a term that comes from the 

dependence assulllPtion we have already made. This extra term depends on functions of 

both processes and 011 the unknown function B(t, ()). 

If we now lllake the usual choice B(t, v'x) = 1 - HT(t, v'x), we haw that 

x 

J [1- HT(a,v'x)]fT(a,v'x)da 

p(t. v'x) = t = -HT(t, v'x) 
ST(t, v'x) 

and hence 

op(t, v'x) _ -h ( ') 
ot - ·T t, v x . (7.4) 

By substituting the above in (7.3), we get the simpler expression 

MPLL Hr 

(7.5) 

The symmetry in the above formulae is a very nice result of the choice we have made for 

the unknown function B(t, v'x). What we are interested in, is the vector of parameters of 
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the T-proccss. Hencl'. if \\'c differentiate with respect to v. we get 

(7.6) 

which is actually tIl£' derivative of Cox's partial log-likelihood plus b times the derivative 

of the correction factor. As a matter of llotatioll, we define 

Furthermore, using Ta.vlor's expansion. we have 

8Al~LL6=o I 
8v VJ 

_ 8M PLL6=o I 8
2 
!v! PLL6=o I (~ ~) 

- :1 ~ + a:1 I ~ v6 - Vo 
uV Vo VuV Vo 

(7.7) 

where obviously 

8k! P LL6=O I 8PLL I = =0 
8v vo Bv vo ' 
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because Yo is the :\ILE when 6 = O. Then, the estimate of the vector v" comes from 

A A _ - [d2,\J PLL6=o I ]-1 
VfJ - Vo - () :)~) I 

uVuV vo 

(7.8) 

where 

is a k x k matrix. where k is the total number of the parameters. Finally, the expression 

for the bias. using the indicator function is 

A A __ [d2
lv! PLLfJ=OI]-1 

VfJ - Vo -() :') ~ I . 
uVuV Vo 

(7.9) 

From the above results, we see that we finally get what we were hoping to get, an 
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expression for the correlation bias based on our MPL~ and this will be the basis for our 

sensitivity anal~·sis. On the other hand, it is true that the above calculations provide some 

formulas which in first site St'l'1Il to be very unattractive. However, trying to describe a 

complicated situation like this one, we would expect to get rather big and complicated 

expressions. 

As we said at the beginning of this section, the greatest property of the PL is that 

we do not need to bother v.rith the baseline hazard function, because it cancels out due 

to the proportional assumption. Unfortunately, this is not a property of the MPL. In the 

above expressions it is obvious that although the baseline hazard functions cancel out in 

the M P L L6=0 = P L L. they are still included in the correction factor. The good thing is 

that the correction factor is multiplied by a small 6, indicating that even an approximation 

would be appropriate. In the next section we propose two ways of estimating the baseline 

hazard functions. 

7.2 Estimation of Baseline Hazard Function 

In Cox's initial \vork, the estimation of the baseline hazard function was not essential 

for the estimation of the parameters of the two processes. In the partial likelihood the 

term h*(t) cancels out and the procedure becomes more straight forward. In our case, 

an estimate of h*(t) is a necessity and we will do that by using either a step function, as 

proposed by Kalbfleisch and Prentice(1973), or Cox's way, where we have spikes for the 

hazard function at the observed failure times, proposed in Cox(1972). 

To begin with, we assume that we place all the failure and censored times in ascending 
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order 

() < ... < tl.O < ... < t2.0 < ......... < t r .O, 

where t.o indicates a failure time. and between the failure times are all the censored times. 

For example. if we aSSlll1lC that \ve have two cellsored times in the interval (t2.0, t3.0J then 

as a matter of notation we have 

All the censored times will be presented as t i .j where i will denote the interval in which 

the censoring happf'llf'd, and j will denote the ordered censored time in the interval. The 

failure time presented as ti.O will be on the right end of the ith interval. We consider the 

simpler casf' where tl1f' failurf' times are continuous and no ties occur. Now, in order to 

estimate the baseline hazard function we are going to use a step function. Assuming that 

there is a change ill t he baseline hazard every time a failure occurs, we define the piecewise 

baseline hazard function as follows 

Al · .. (0, tl.oJ 

A2 · .. (hol hoJ 

ho(t) = (7.10) 

Ar-l · .. (tr-2.0, tr-l.oJ 

Ar · .. (tr-l.O, tr.ol 

Always assuming PH. we use the full log-likelihood function (3.3) together with (7.10) and 
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we have: 

r q/ 

-H('(ti.J' U/Xi J)} + 62: L {eVIX,JAi.j [HC(ti j , U'Xi.j) - 1 + /j] - /jHdti.j, U'Xi. j )} 

i=l.J=() 

(7.11) 

where 
i-I 

Ai.) = Ai (t i .j - ti-l.O) + 2: Ak (t(k.O) - t(k-l.O)) 
k=1 

is the cumulat i ve basp liue hazard at time ti,j, 

{

I" . 
I = .J 

o ... 

when j = 0 (failure time) 

when j =I- 0 (censored time) 

is the indicator variable and qi denotes the number of censored tilIles in the interval 

(ti-l.O, ti.O]' In (7.11) we introduce a completely new notation compared to that of the 

compete log- likelihood function. Instead of summing L~I over all the n observed times, 

we sum over all the r intervals defined in (7.10) and then over all the qi failure and cen-

sored times in each interval. If there are no censored observations in the ith interval then 

qi = 0, and the only term that is added is the one that results from the failure time in that 

interval. 
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Now we need to fiud estimates for all the ,Vs. First we have 

oLL(t: v. u.8) 
0),,] 

1 q1 r qi 

~t V'X1· t ~~ v'x 
~ - L l.je J 

- 1.0 L L e 'J 

1 j=O i=2 j=O 

(7.12) 

where ql is tIl{' number of censored observations in the first interval (0, hol. Then, the first 

\ 0 . term /\ 1 IS 

and the general term is 

~~l = ________________________ 1 ______________________ _ 

f (tm.j - tm-l.O )ev'xm j + (tm.o - tm-l.o) t t eV'Xi.j 
.1=0 i=m+l j=O 

(7.13) 

(7.14) 

This is an estimate of the baseline hazard function in the case of independence. From 

equation (7.11) we can also get the estimate of the baseline hazard when 8 =J. 0. This 

might be of some illterest to check the impact of the dependence in the baseline hazard, 

but this is definitely of no use in our case. The reason is that the baseline is going to be 

included in the correction factor, which is multiplied by <5 and hence independent estimates 

of the )..i'S is what we need, in order to proceed with our calculations. In any other case 

terms of order 82 ,83 , ... are created, which we finally omit. 

The above way of estimating the baseline hazard function gives a step function, which 

means that it is constant between two successive failure time. Cox(1972) argued that the 
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baseline hazard is Z('l'O. except for the set {t(i)} of instants at which failures occur. Under 

this assumption. til(' independent Full Likelihood, given the covariates of each patients is 

"T n llT n 

L(t: v) = II hT(t,. v'x;) II ST(t;, v'xJ = II f'v'x'h;'(t;) II e-ev'x'/{:r(t;) (7.15) 
;=1 ;=1 ;=1 ;=1 

where nT is the' nUllllwr of failure times and n is the total number of observations that we 

have. l\ow. suppoS(' that 

and 
nT 

Hy(tJ = L AjI(tj ::; i.i) 
j=1 

where I (t j ::; t i) is an indicator variable, taking the value 1 every time that the restriction 

in the parentlwsis is satisfied and 0 otherwise. Now, the log-likelihood gives 

HT n nT 

LL(t: v) = L { log Ai + v'xi} - L { L eV'Xi AjI(tj ::; t i )} 

;=1 i=1 j=1 

and for a general Aj \ve have 

oLL(t: v) = ~ _ ~ v'x'J(t < .) = 0 
aA A ~ e J - tt 

J J i=1 

which implies that 

(7.16) 

Expressions (7.14) and (7.16) give estimates of the baseline hazard functions. Numeri-

cally both give very similar results. The only difference is in the assumption under which 

we proceed in the calculations. The first one we assume is a step function, implying that 
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it is constant \>l'tW(,I'Il two SlHH'ssive failure times. For that reason the lengths of the in-

tervals bet\\"('I'll t he failure tilllPS are included in the calculations. The second one assumes 

that the basdiIH' is zero. alld t hat it onl~' has spikes ewry time We' haw a failure. This 

proced me take only till' oreier of events under consideration, and hence the rank statistic 

is of major il11port (\I}('('. These proceclures can be used to estimate the baseline of both 

processes. 

7.3 The MPL as a result of the Estimation Process of 
the Independence Model 

In sectioll 5.3 \\'{' sa\\' how We' can derive the independence model based on our model 

which a."SnlIH'S dPlwwlpllC'{,. \Vp can now use this idea to justify the existence of the MPL. 

Let us cOllsider t he case whpre we have the independence model under the PH assump-

tion. Then WP haw 

hdt:H.j) = h~(t:(},,) = hT (t,(1)[l- JHc(t,,)] 

h1,(c:0.,) = h~(c;(},,) = hc(c,,)[l- JHT(c, 0)] 

(7.17) 

where Y and U are the independent risks. These expressions are derived from (7.2) and 

(7.2') when B(t. 8) = 1 - HT(t. 8). Having the above assumptions we see that the marginal 

hazard functions of Y and U take a much simpler and symmetric form. Under the presence 

of independence. we calculate the partial likelihoods of the Y and U processes. Firstly we 
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have 

(7.18) 

and in first ord('1' approxilll<ltion. tIl(' partial log-likelihood takes the form 

(7.19) 

Equivalently. for t lw C pro('(:'ss \ve have 

(7.20) 

and the approximate partial log-likelihood becomes 

PLL(, 

(7.21) 

As we have already noticed in §5.3, the likelihood function of Y and U, although they 

are considered to be independent, are a mixture of functions of both T and C processes. 

Therefore, vector v which is our major interest, is involved in both PLLy and PLLu . 
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Hence. our estilwlt!' V. is the vector that maximizes both likelihood functions at the same 

time, and therefor<' satisfies tIl(' equation 

d[PLL)o + PLLu ] 

uv o. (7.22) 

The preSl'lH"(, of illciq)(,lldelH'e betv/ecn Y and U allows us to add the two log-likelihood 

functions. Using (I.G). (1.19) aud (7.21) it is obvious that 

;\lPLL PLL y + PLLu · 

This means that (i. 22) bCCOlllPS 

Old P LL 

Bv 
= 0, 

(7.23) 

(7.24) 

which proVE's that Olll" ~l()dified Partial Likelihood gives exactly the same inferences about 

v with tIl<' illdplwudpllc(' model. 

7.4 The Independence of Censoring at the End of the 
Study (The MPL Case) 

Now, we extend the idea of having two different types of censoring in the case of MPL. 

In Cox's initial argullH'nt. it was argued that due to the independence assumption between 

the failure and t he censored times. only the failure times contribute information to the 

estimation process of the parameter of interest. In this Chapter, we extended this argu-

ment by saying that if we assume dependence, then even the censored lifetimes contribute 

information to the estimation process of the parameter of interest, and hence we ended 

up with tIl(' ~IPL. The present case with the censoring at the end of the study, is like a 
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combinatioll of the I \\'() abo\"{> cast's. \Ve assume that we have two types of censored times. 

The first olle iIl\"()lws I Ill' ('('nsoreci times that happen during the trial, which we considered 

to be depPIl(lellt to till' failure tillles while the second one involves the censored times that 

happen at t h(' ('ud of til(' st1\d~·. H('nce. w(' claim that the censored times of the first type 

contribute iuforlllal iOll to t h(' cstimation process while the censored times of the second 

type do not. So \\'(' S('(' t his case as if we nse the MPL in a reduced sample 

(7.25) 

which means that t 11(' indep<'ndent censored times are considered only in the risk sets of the 

above expressioll. ,. is t lw lllllllber of failures and w is the number of censored times of the 

first type. HC!l(,('. til(' ('stimat(> of Vo comes from the same expression (7.9) as before, with 

the difference bping in t Ill' number of censored observations we consider to be informative. 

7.5 Example 

This time ill the lll~'eloma data we use the full data set including the covariates, which 

are all continuous variables. Although x16 takes only integer values in the interval [9,18]' 

we still considN it a..'i being a continuous variable for the sake of simplicity. Another 

problem we have to dpal with is the ties between the survival times. We manage to solve 

it by creating a vector of 65 Uniform random variables, U[-D.5,D.5]' and added them to 

the original survival times, breaking the ties. After this small modification to the data 

set, we will work using Cox's proportional hazard model. Initially, under independence 

(8 = D), the estimates of the parameters are as in Table 7.1, using Cox's Regression Model 
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(command" coxph" ill S-Plus). 

coef exp(coef) se( coef) z p 

xl 1.832 6.245 0.6476 2.83 0.0047 
x2 -0.120 0.887 0.0594 -2.03 0.0430 
x9 0.462 1.587 0.4620 1.00 0.3200 
xlG 0.1397 1.149 0.1000 1.39 0.1600 

Tabl(' 7.1: Estimates of the parameters when 6 = 0 

Each patient has a different set of explanatory variables. We can calculate the Prognos-

tic Index (PI) of each individual and we can draw the survival curves. In Figure 7.1 we plot 

the curves of the patients with minimum and maximum PIs along with the Kaplan-Meier 

estimate and the survival curve of a patient with an average PI. In order to be able to 

do so, we need an estimate of the baseline hazard function, and in this example we have 

used the Kalbfleisch and Prentice's estimate, as described in § 7.2. This figure is only for 

illustration purposes. to see the range of all the possible survival curves, along with the 

KM estimate, which is an overall estimate. If now we allow 6 to depart from zero, then 

the vector of the parameters do not remain the same any more. Using the MPL we perform 

a sensitivity analysis for values of 6 E [-0.3,0.3]. As we have already proved in chapter 

4 under the PH assumption we have p ~ 6, which means that c5 = p provides us with , 

the worst possible case in terms of the correlation. All the changes in the parameters are 

included in Table 7.2 and they are graphically represented in Figure 7.2. As a result, each 

survival curve shifts a bit up or down, depending on the sign of 6. We choose at random 

one patient, for example the one with PI=2.743189. The vector of explanatory variables 

related to this patient is (1.3222,14.0,1.6232,9). In Figure 7.3 we can now see the survival 
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Figure 7.2: Graphical presentations of the changes in the parameters when 8 E [-0.3,0.3]. 
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c5 VI V2 V:~ V·I 

-0.3 1.7953789 -0.1195844 0.4478341 0.1214729 
-0.2 1.8075859 -0.1197229 0.4525561 0.1273153 
-0.1 1.8197930 -0.1198615 0.4572780 0.1331576 

0 1.832 -0.120 0.462 0.139 
0.1 1.8442070 -0.1201385 0.4667220 0.1448424 
0.2 1.8564141 -0.1202771 0.4714439 0.1506847 
0.3 1.8686211 -0.1204156 0.4761659 0.1565271 

Table 7.2: The changes in the parameters for different values of 6 

curve, and how it changes for all the different values of 6. For negative values it moves 

upwards, indicating that a negative" correlation" between the exact and censored lifetimes 

would yield a "better·' curve with an increased chance of survival. We can see that the 

changes in the median survival time are quit substantial. For 6 = 0.3 the median survival 

time is around 35 while for 6 = -0.3 is around 55, which is over a 50% difference. 

An important question is whether the parameters are significantly different from zero 

or not. In Table 7.1 we have both the p-values and the ratio of the parameters over the 

standard errors (column z). The last one is the t-statistic testing the hypothesis of the 

parameters being zero or not. Having a data set of 65 patients means that we have 64 

degrees of freedom, and for double-sided test and a = 0.025 the absolute critical value is 

just less than 2 (1.99773). So from both the above ways we can see that only the first two 

parameters are significantly different from zero. In addition, we observe that v2 is very 

close to the critical value. Therefore, we need to investigate whether for different values 

of 8, v2 remains significantly different from zero or not. Hence, we get Table 7.3, in which 

it is clear that v2 is significant for 8 E [-0.3,0.3]' concluding that correlation does not 

weakens the role of v2. It seems that we do not have to do the same for vI. The values of 
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<5 V2 Z 

-0.3 -0.1195844 -2.013205 
-0.2 -0.1197229 -2.015537 
-0.1 -0.1198615 -2.01787 

0 -0.120 -2.03 
0.1 -0.1201385 -2.022534 
0.2 -0.122771 -2.024867 
0.3 -0.1204156 -2.027199 

Table 7.3: Test in the significance of v2 

z are far from the critical value so we do not expect huge differences for small values of 8. 

Following the above test. we now use only the r.v. xl and x2. In Table 7.4 we have 

coef 

xl 1.802 
x2 -0.115 

exp(coef) 

6.062 
0.891 

se( coef) 

0.6279 
0.0576 

z p 

2.87 0.0041 
-2.00 0.0460 

Table 7.4: Estimates of the parameters when 8 = 0 

the estimates of the parameters under independence. We see that v2 is still on the border 

of being significant or not. If we try to test that again, we see that z now takes values in 

[-2.207, -1.786] and for almost any positive values of 8, v2 is not significantly different 

from zero. This indicates that for any positive dependence between the failure and the 

censored lifetimes, random variable x2 could be omitted in which case the only variable 

that remains is xl. But, without any knowledge about the value of 6, we consider v2 

significant and we continue the statistical work with both variables included. 

Doing exactly the same work as before, we get Table 7.5 with all the changes of the 

parameters for 8 E [-0.3,0.3], and the graphical representation of this in Figure 7.4. In 

Figure 7.5 we see again how the survival curve is shifted, for various values of 6. 
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c5 VI V2 

-0.3 1.8202675 -0.1271504 
-0.2 1.8141784 -0.1231003 
-0.1 1.8080892 -0.1190501 

0 1.802 -0.115 
0.1 1.7959108 -0.1109499 
0.2 1.7898216 -0.1068997 
0.3 1.7837325 -0.1028496 

Table 7.5: The changes in the parameters of x 1 and x2 

The last thing that needs to be mentioned, but equally i lllport ant , is the baseline 

hazard function. Earlier in this chapter we referred to two possiblp ways of calculating 

this function, one due to Cox and the other one due to Kalbfleisch alld PrPlltice. In this 

particular example we have used the later of the two, but as we call see ill Figure 7.6 the 

differences are very small. 
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Chapter 8 

Simulation Studies 

8.1 Introduction 

In this chapter we focus on some examples based on simulated data, our aim being to 

assess the adequacy of our local approximation for small 6. Based on the Myeloma Data, 

we perform parametric bootstraps trying to demonstrate t.he use of model, using different 

parameterizations of the Weibull distribution. 

8.2 Parametric Bootstrap 

8.2.1 General Weibull 

In the brief introduction we stated that we will explore different parameterizations of the 

Wei bull distribution. It is a distribution with both proportional hazard and accelerated 

failure time properties. The PH property is of our main iuterest because as we have seen 

in the previous chapters, a substantial part of our research is related to PH models. A 

general form for the Weibull is 

f(t \ 0/.) _ \ 1/Jo/·t1/J- 1e-(At)1P 
, /\, 'f/ /\ 'f/ (8.1) 
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where ,\ is thp scalp and L' the shape parameters. Obviously, when 'l/J 

exponential distribution. 

1 we have the 

In the example of chapter J \ve used the exponential distribution to analyze the data. If 

equivalently we t akf' the logclllllulative hazard plot, Figure 8.1, we will see that the result 

is approximately a strclight line. indicating that a Weibull model would be appropriate 

as well for the T -process. From the beginning of our research we have made clear that 

the C-process is just a nuisance process, and hence we never made an effort to explore 

which distribution would be most appropriate to describe the censoring mechanism. The 

censored times are approximately ~ of the total number of observations in the myeloma 

data. Hence if we assume that the C-process is of main interest, we end up with a data 

set which is heavy" censored" (where the observations of the T --process are considered to 

be the" censored" times). If we take the log-cumulative hazard plot for the C-process as 

well, Figure 8.2, we see that it gives also an approximate straight line. Although we know 

that the plot for the C-process is based on fewer "failure" observations than the one of the 

T-process, we still get some useful information about the censoring process and how we 

should model it. Therefore, a Weibull distribution to describe the censoring mechanism 

seems appropriate. 

For the purpose of our bootstrap examples we assume that both the processes follow 

a Weibull distribution of the form (8.1), ir(t, e, 0'.) and ic(e, ,)" j3). We aim to perform 

a sensitivity analysis OIl e, the scale parameter which is the main parameter of interest, 

assuming that 0'. is known. From the definition of our correlated model in chapter 3 and 
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when B(t,8) = 1- HT(t.(}). WE' know that 

Pr( C = ciT = t) fc(c, / + 6[1 - Hr(t, B, a)], fJ) 

fde, T' (3) [1 + 6[1 - Hr(t. 8, a)] dlog f~~C, /, /3)] 

::: fde, T, /3) exp { 6 [1 - Hr(t, 8, a) ] a log f~~C, /, ;3) }. (8.2) 

The reason why we take the approximation in the above equation is because in this way 

we will make sure that no negative censored times will be generated. Furthermore, the 

conditional distribution function is 

Pr(C < ciT = t) l C 

fc('u, ,,;3) exp {6[1 - HT(t, B, a)] Blog f~~u", ;3) }du 

= 1-exp { - [,P+cS;3_/3-1[1-hT (t,8,a)J]cp
}, (8.3) 

and the distribution function of the T -process is 

Fr(t, B, a) = 1 - exp { - (Bt)Q}. (8.4) 

The procedure for generating a data set with survival times is the following. We generate 

a random number 'Uli rv U[O, 1]. If we set (8.4) equal to Uli we get 

1 

{ -log(l- Uli)}o 

B 
(8.5) 

Similarly, if U2i rv U[O, 1] and with the value of ti generated from (8.5), we set (8.3) equal 
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to U2i, then WE' havf' 

1 

{ 
-log(l - 'U2i) } {j 

f;jexp{6~[1- HT(ti,H,n)]} , 
(8.6) 

where i = 1 ..... II. III ord<:'r to be able to generate cellsored times under the assumption 

of informative cCllsoring. we need to specify a value for i5 different from zero. Having the 

level of dependence fixed . we record Yi = min { t i , Ci}, the minimum of the two times, and 

we set the indicator variable to take the value 

{ 1, 
if ti < Ci 

J. t 

0, if Ci < t i · 

There are also SOllle quantities that we are really interested to test. In chapter 4 we 

developed an expression for the statistical expectation of the bias under PH and when 

B(t, e, 0') = 1 - HT(t, e, 0'), and a formula for the upper bound with PH as the only 

assumption, leaving B(t, e, 0') arbitrary. At that stage we assumed PH to have the property 

8HT (t, e) 
8e 

HT(t, e) 

which is true in many cases. Wei bull has the PH property, but it doesn't posses the above 

one. We have 

8HT (t, (), 0') 

ae 
0' 

= (jHT(t, e, 0') 

and hence we need to make some adjustments to the formulas from chapter 4. More 
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specifically the ('Xj)l'('SSiOll of t lw bias now takes the form 

and the expectatioll of the hias ill (5.8) becomes 

(8.7) 

where 

11 

1(80 ) ; L [Ii + (0: - 1)(8ti r']. 
i=1 

Equivalently, when \W' do not make any assumptions about B(t,(),o:) we have 

and hence the expression (5.7) for the upper bound giVE's 

(8.8) 

where 

In the particular case of the myeloma data, the estimates of the parameters under the 

independence assumption are eo = 0.0306, 0:0 = 1.0358, 1'0 = 0.0118 and So = 1.1028. 

We observe that the shape parameters are not much different from one and hence the 

exponential case. Nevertheless, and despite the fact that () is the main parameter of 

interest, we will still keep the Weibull assumption and the shape parameters different from 
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zero in order to obserw allY changes on them for different values of J. Initially we will 

assume that it is known. Howewr. we will obtain an estimate of a for each value of J, 

trying ill t ha t Wa\' to explore if there is any impact 011 the sensitivity analysis of () when 

we re-estimate 0. 

In order to illust rate our methodology we perform a parametric bootstrap on the 

myeloma data. based on the values of the parameters above. Additionally the correla-

tion between the two processes is assumed to take the values p = 0, 0.05, 0.1, 0.15, 0.2, 

0.25, 0.3 and from (4.6) we can calculate the appropriate values of 6. The sample size is 65 

and we generated 1000 such data sets for each value of 6. For every generated sample we 

calculate all the parameters under the independence assumption. In Table 8.1 we present 

the expected values of () and the correction factor (CF) over the 1000 replication for each 

value of J, along with their standard errors. The bias calculated for p = 0 is considered 

to be an estilllate of the sampling bias, hence we simply subtract it from eo in order to 

remove this source of bias. The expected values of the shape parameter a are also pre-

sented with it's standard error. In this parametric case we haven't standardized the score 

p 6 I E[Bo - ()T] I E[Bo] ! se[Bo] ! E[CF] ! se[CF] ! E[&o] ! se[&o] : 
0.0042 0.2680 1.0284 0.1148 0.30 0.0032 -0.0014 0.0295 0.8756 

0.25 0.0027 -0.0011 0.0295 0.0043 0.8341 0.2091 1.0283 0.1172 

0.20 0.0021 -0.0010 0.0296 0.0043 0.8051 0.2073 1.0294 0.1210 

0.15 0.0016 -0.0007 0.0299 0.0044 0.7605 0.1931 1.0382 0.1194 

0.10 0.0011 -0.0004 0.0302 0.0042 0.7269 0.1746 1.0481 0.1263 

0.05 0.0005 0.0003 0.0309 0.0046 0.7002 0.1622 1.0511 0.1227 

0.00 0.0000 0.0004 0.0310 0.0043 0.6577 0.1352 1.0636 0.1338 

Table 8.1: Bootstrap results for the general Wei bull 
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function of the Cprocess. This llleans that in Table 8.1 is the ordinary 6 and not 6*, the 

"standardized ()". 

In this stlld~' our aim is to observe whether our lllodel is capable to produce reasonable 

limits for the parmIlt'tl'r of interest and for any other quantity that we might be interested 

in, like the median and the survival curve, when c5 =f O. The first thing someone would 

look at is the correlation bias, Figure 8.3 shows graphically the level of the mean bias and 

how good is our linear approximation. The solid line with (0) in the figure is the absolute 

value of the bootstrap C'xpected correlation bias. It is calculated from the bias from Table 

8.1 by subtracting the sampling bias (when p = 0). The second solid line with (6) is our 

linear approxilllatioll to the correlation bias (6 x CF). We see that our approximation is 

good up to thf' level of p = 0.2. where the differences art' due to random error, and when 

the correlation increases we tend to overestimate the correlation bias. It was of course 

expected that our methodology would work for values of is close to zero. Nevertheless, the 

fact that we overestimate the correlation bias when p > 0.2 is not such a bad thing, because 

we know that our limiting values for (}8 will always include the true value (}TR. Maybe a 

choice of p = 0.25 would be more appropriate, but in our study we decided to choose 

p = 0.3 for illustration purposes and because it definitely provides limits that include (}TR. 

The dotted line with (+) is a result of formula (8.7), and it shows what is our expectation 

of the correlation bias under the Weibull assumption, Finally the dashed line with (x) 

comes from (8.8) and is the upper bound, calculated with no particular assumption about 

function B(t, 0, a). Actually this is the worst possible bias we might have in our model 

under PH. All the above become clearer in Figure 8.4, where the actual intervals for 
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Figure 8.3: Sensitivity analysis on the expected correlation bias of e. (0) bootstrap; (6) 
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positive and IH'gclt i Y(, \'alues of <5 are presented, In this figure th£' correlation in the x-

axis is the absolute nduc of thf' cOlTf'lation, representing the actual level of dependence, 

without indicating an~' direction, \Vlwther we have positive correlation or not is presented 

in the graph itself. \\'IH'rl' for positiw (5 we have a positive slope, and for negative 6 we 

have negative slope, Om objectiVf' is that the true value of the correlation bias must lie 

within the interYab, In the above case we see that tlH' bootstrap estimate of the bias is 

exactly where we want it to be, indicating that a sensitivity analysis over <5 will produce 

"confidence" intervals for () which will include eTU ' 

Another quantity of great importance is the median. In the Weibull case the median 

is given by 

Tn 

[log(2) ] I/o 

() 
(8.9) 

and in our particular case its true value is: TnTR = 22.9406. Keeping the same way of 

performing our sensitivity analysis as before we initially use the true value of o. Therefore 

in Figure 8.5 we perform a sensitivity analysis on the median, where again in the x-axis 

is the absolute value of the correlation. The straight dashed line is the exact value of the 

median (when 6 = 0) and the solid line with (0) is the median, calculated for positive 

values of 6. Our analysis will provide us with the dashed lines with (.6), expecting the true 

value of the median to be included in these lines. Actually, we observe that for positive 

J we get a very good approximation of the median up to a correlation of p = 0.2. After 

that we see that we under estimate the median, which still falls within the desired interval. 

This is expected because we have already stated that when p > 0.2 we over-estimate (), a 
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result which illllll('diateb' lends to the Ilndn 'estimation of the median. Figure 8.6 is a more 

general graph than t),5. It includes in addition the estimate of the median when we re­

estimate (\. solid lill(, \\'it h (0). nne! t IIf' lillliting lim's resulted by this assumption, dashed 

lines with (+). This figure shows that W(' slightly under estilllate the median, suggesting 

that a sensitivit~' Hnal~'sis OIl both paramcters might be wort.hwhile. 

Finally. tlH' last thing \\'(' would like to explore is t.he est.imate of the survival curve. 

Figure 8.7 shows the slllTival curves for 6 = 0.3 when we re-estimate (} and when we don't. 

In this particulnr case of estilllating the survival curve we see that there is virtually no 

difference betweclI t he two curves. Hence ill Figure 8.8 we perform the sensitivity analysis 

in the case when 0 is re-estimated. We see that we approximate the true survival curve, 

semi-dashed line. ver~T well. The import.ant thing though is that the true survival curve 

falls in the interval constructed by the curves for 6 = ±0.3. 

After t.his bootstrap st.udy we can have a good idea how our method works. When the 

parameters are more than Olle, we need to consider t.he case where we perform sensitivity 

analysis on all the parameters at the same time, although this would be definitely a difficult 

task in terms of computations. Despite that, our main objective was to explore the situation 

where the levels of dependence where know in advance, and then check the performance 

our methodology. As we expected our estimates are really good for small values of 8 which 

correspond to p :S 0.2. The fact that for values greater than that we tend to overestimate 

the parameter of interest might turn out to be in our favor if we can choose the right value 

for 8. This means that we can construct intervals which will definitely include ()rR which 

is one of our major goals. Therefore, a value of 6 that corresponds to p = 0.25 seems to 
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Figure 8.7: Survival curves with re--estimated (solid line) and fixed (dashed line) ex, and 
B6 is taken for 6 = 0.3. 
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Figure 8.8: Sensitivity analysis on the survival curve with fe-estimated ex, fOf c5 = 0.3. 
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be a ver~' good choice for our sensitivity analysis. 

8.2.2 Re-parameterization of Weibull to include Median m 

Ifwp aSSUllle that 711 is the parameter of interest, we can use the following re-parameterization 

of the weibull. Frolll (~.9) \ve have that 

g 
1 

[log(2) F 
(8.10) 

Substituting the above in (8.1) then the weibull distribution, including m, takes the form 

(8.11) 

where the hazard function is hT (t,1H, 0:) = log(2)o:m,-nto -1, and the cumulative hazard 

is HT(t,m,o:) = log(2)(;;)Q. The purpose of doing this is that in the case that we are 

interested in m, WP would prefer to perform a direct sensitivity analysis on m, rather than 

estimate g and then do the sensitivity analysis on the median with respect to g. 

The expression of the bias for m takes the form 

A A _ ~ 2:n 
[( _ J.)ologfc(ti1 ,,(3) oJL(ti,m,ct) _ I. 8Hc(t i ", (3) oB(ti,m, 0:)] 

m8 - mo - () 1 t 0 8 l 0 0 ' zm . , m , m 
,=0 

(8.12) 

where 

z(m) = -; t [Ii - 10g(2)(0: - 1) (~)Q]. 
m m 

i=l 

It is obvious that the above re-parameterization is only for the T -process, while for the 

C-process we haven't changed anything, mainly due to it's secondary role. Therefore, if 
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we asSUllle B(t. 1/1, n) = 1 - Hr(t. 111.0). formula (8.12) takes the form 

(8.13) 

p E[m] se[ln] E[CF] se[CF] E[a] sera] , 

0.30 0.0032 1.1197 24.0603 3.7342 728.5192 258.5181 1.0297 0.1134 

0.25 0.0027 1.3304 24.2710 3.8314 718.7331 253.9251 1.0296 0.1208 

0.20 0.0021 1.1452 24.0858 3.6888 680.8189 242.5570 1.0291 0.1177 

0.15 0.0010 0.9670 23.9077 3.6907 634.1373 220.6374 1.0415 0.1271 

0.10 O.OOll 0.6985 23.6391 3.6346 584.5753 204.0658 1.0440 0.1235 

0.05 0.0005 0.6455 23.5861 3.6099 552.9551 178.8066 1.0470 0.1252 

0.00 0.0000 0.03808 22.9787 3.3867 500.7274 153.4157 1.0556 0.1223 

Table 8.2: Bootstrap results for the modified Weibull. 

Now we perforlll a bootstrap study to the myeloma data, similar to the one of the 

previous section, using our modified Weibull distribution and the results are presented 

in Table 8.2. Again we assume only 111 is of interest and that no sensitivity analysis is 

performed on a. Figure 8.9 shows the limits that we construct for the median. We observe 

that when we know the exact value of b we can approximate the correlation bias very well 

for p ~ 0.2. For p > 0.2 we overestimate the bias, something that is expected when b 

becomes larger. Figure 8.10 shows the independent estimates of the median for different 

levels of dependence, with their differences being due to random variation. 

The reason why we use this kind of modified Wei bull is because we want to demonstrate 

a possible way of performing a direct sensitivity analysis on quantities, like the median, 

that are not directly included in the density function. The conclusion is that there are no 

major differences in our analysis whichever parameterization of the same distribution we 
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decide to use. Thc main problem that ('omes up is the calculation of the value of 6. This 

parameter is highly depclldent on the way of modeling and the choice of the distributions 

of the two prO("l'SsPS. evell if there are different types of the same distribution. This is 

another reason wh~' inferences about (5 are not possible. In our case with the general and 

the modified \VeibulL from Tables 8.1 and 8.2 we see that the values of 6 are exactly the 

same. If we had the values of 6 in more than 4 decimal places, we would have seen that there 

are differences. TIl(' main conclusion is that every time that we use our model, a careful 

calibration of the value of 6 needs to be done, because similar parametric assumptions 

might imply completely different values of 6. 
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Figure 8.9: Sensitivity analysis on the bias of the median (with true a). (0) Bootstrap; 
(6) is x CF; (+) Statistical expectation . 
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Figure 8.10: Independent estimates of the median for both types of wei bull. (0) Modified 
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Chapter 9 

Conclusions 

In this thesis we wanted to explore the problelIl of informative censoring. Knowing the 

problems related to this particular subject, we decided to focus on the case where the 

potential dependence between the failure and the censoring processes is small. We claim 

that almost all the cases of analysis of survival data fall into this category, in the sense 

that small dependencies may exist between the processes, even in the cases where we are 

confident that they don't. \Ve have shown that in some cases even small dependencies of 

this kind can have a serious effect on the analysis. 

We had to make assumptions in order to model in a reasonable way this situation. 

These assumptions led to models for the parametric and semi-parametric cases, where 

sensitivity analysis can be performed for parameters of interest. We managed to explore 

the relationship between the dependence parameter J and the correlation between the two 

processes, while we believe that we proposed a reasonable choice for the bias function 

B(t, ()). The use of simulated data helped us discover firstly the validity of our model and 

secondly the borders where our approximation seems to collapse. An interesting part of 

this thesis is the analysis of the leukemia data in chapter 6, which demonstrated in a nice 
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way the pmver of having more information. 

This work. of ('ourse. does not Hog this subject to death. Given our way of modelling, 

further research 011 the possihle choices for the bias function can be taken. In the semi­

parametric case. till' modified Cox's partial likelihood should be. somehow, related to the 

full likelihood. exactl:v like the partial likelihood. which will provide with an even better 

interpretation. III chapter 6 we discussed a model which can include both informative and 

non-informative censoring, provided that we have some additional information to make the 

distinction. although we didn't explore it to the end. This is the main area where additional 

research should he done. which will probably suggest that, for example, in clinical trials 

more information needs to be collected from each patient in order to improve our statistical 

analysis. 
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Appendix A 

Expectation of the Correlation 
Bias-General Case 

Proof: By stlhst it tit illg ('xpressioll (5.5) ill (5A) \v{' get 

x 

x J afra~'O) B(u, ())du 

+.1 [1- Hdc.~()] C ST(C,()) ST(c'())fc(c,,)dc 
(l 

00 

x f B(u,())fT(U,())du 

+ .I [1- Hc(c./)]HT(C,()) C ST(C,()) ST(c,())fc(c,,)dc 
o 

x 

.I dB(t,()) } 
- Hc(t.,) B() fT(t,())Sc(t,,)dt 

o 
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where G i is each one of the integrals above. By taking one at a time we have 

oc oc 

G] = / / aB~~,e) fT('U,e)[l- Hc;(c,,)] fc(c, ,)dwic 

c=o U=(' 

oc 

j. oB(u, (}) 
De Hc;(u, ,)Sc{u, I )fT( u., e)du 

o 

(A.2) 

and this is because 

'11 

/ [1- Hc(c,,)]fc(c,,)dc= Hc(u,,)Sc(u.,,). (A.3) 
u 

Now we take the second integral 

00 00 

G2 = / / afT~~'(}) B(u.,e)[l- Hc(c,,)]fc(c,,)dcdu 

c=Ou=c 

00 u 

_ / / afT~~,e) B(u,e)[l- Hc(c,,)].fc(c,,)dcdu 

u=Oc=O 

00 u 

/ / fT(U,e)[l- HT(u,O)]B(u,O)[l- Hc(c,,)]fc(c,,)dcdu 
u=oc=o 

00 

/ B(u,O)fT(u,O)[l- HT(u,O)]Hc(c,,)Sc(c,,)du 

u=o 

ET{ B(t, 0) [1 - HT(t, ())] Hc(t, ,)Sc(t, ,) } (A.4) 
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where under the PH assulllPtion we have 

aIT(U..B) . ([ ] dB = iT t,8) 4 - HT(t. 8) . 

At last, if we take the third integral we have 

IX: oc 

0 3 = ./ J fT(u'(1)B(u..8)HT(c,8)[I- Hdc,,)].fdc,,)dcdu 
c=Ou=(' 

X U - ./ J fr(u, 8)B('(1" 8)HT( c, 8) [I - He( c.,)] Ie( c, , ) (icdu 

u=oc=o 

<Xl U J fT(U, 8)B( '(1,,8) [J HT( C, 8) [I - He( c,,)] Ie( c" ) de] dl1 
u=o c=o 

- ET{ B(t, ())N(t, f),,) } 

where 
t 

N(t,8,,) = J HT(c,())[I- Hc(c,,)]Ic(c,,)dc. 
c=o 

Now, if we put (A.2),(A.4) and (A.5) into (A.I) we get 

= - i)2LL(:'Y,8=O) ET{B(t, ())T(t, 8, I)} 
802 
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where 

T(t,f),;) = t [1- Hc{r,;)] [1- HT(t,f)) + HT(:r.f))]fc(J',~/)dx, Jo 

This can be obtained by substituting (A,3) into (A.6) and combining the two integrals illto 

one, 
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Appendix B 

Expectation of the Correlation 
Bias-PH and B(t,8) == 1 - HT(t, 8) 

Proof: If we substitute B(t, e) = 1 - Hr(t, e) in (5.4) wt' get 

+ ff Hc(t, , )HT(t, e)fT(t, e)fC(c, ,)dtdC} 

T<C 

00 00 

- - iJ2LL(:1,1I=0) {f J Hc(t, , )HT(t, e).f'r(tJJ)fC(c" )dtdc 
802 T=O C=T 

00 00 

-J j' [1 - Hc(c,,)] Hr(c, e)fT(t, e)fc(c, ,)dtdC} 

C=OT=C 

00 

= - 82LL(;1,6=0) {J Hc(t, ,)HT(t, e)fT(t, e)sc(t, ,)dt 
802 0 

00 

-J [1- Hc(c,,)]Hr(c,e)ST(C,e)fc(c,'Y)dC} 
o 
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Usillg equatioll (A.3) from Appendix A in (B.l) we get 

00 

6 {/. - EJ2LL(IJ",6=0) Hc(t" )HT(t, H).fT(t, fJ)Sc(t, ,)dt 
800 '0 

00 c 

- / [l-Hc(c,,)]fc(c,,) / [l-HT(t,fJ)]fT(t,fJ)dtdC} 

c~ T~ 

00 

= - 8 2 LL(;,,6=0) { / Hc(t, ,)HT(t, H)fT(t, fJ)Sr-(t, , )dt 
8()2 0 

00 00 

-J J [l-Hc(c,r)]fc(c,,)[l-HT(t,fJ)]fT(t,fJ)dtdC}. (B.2) 

T=OC=T 

But, 

00 00 

J [l-Hc(c,,)]fC(c,,) S ,(t ) j' H ( . . )asc(t, ')d' 
C ,r + c c, r !::I C 

uC 
C=T T 

and hence, (B.2) becomes 
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= - 32 LL(;"t5=O) ET [Hd t , '),)Se(t, r)]. 
382 

(8.3) 
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Appendix C 

Equality of the log-likelihood 
functions 

Proof: The cumulative hazard functiolls of the proxy model are 

and 

A () H ( ) r re
, ( ) ( (})Dloghc(s),) 

c r = c e" +U io lC S"IL 8, 0, d8. 

At the same time we have 

and similarly 

"-' 10 h ( ) r (. fJ) iJ log he( c, , ) 
gee" + ull C, 8, 
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Therefore. sllbstitutillg tIl{' abow in tIl(' log likelihood of (5.22) w(> haw 

(C.l) 

\Ve lleed to prow that the part multiplied by <5 ill tIl(' a hove CXPl'<~SSiOll is z('ro. We will 

need 

al1(U, (J) _ ~ [10
00 

B(s, (J)JT(S, (J)dS] = I (. Ll) [ (' ()) _ B(' f))] 
. - . ( 0) IT II, r7 P u, iL,. au au ST u, (C.2) 

Therefore we have 

=0 
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Appendix D 

Sub-densities of both processes 

In the case where we have no covariates, the joint survival function take's the form 

00 00 

ST,e(X; 0, ~() = ./ / fT(t, O)fc(c,,) [1 + bB(t, 8) 0 log ~~(c, ~()] dtr1(' 

:1' 2' 

00 00 

J J iJ log Ie( c, I') 
- ST(X, fJ)Sc(:r, ,) B(t,O) 0, fT(t. fJ)fc(c" )dtdc 

x x 

[ 
aHc(x,,)] ST(X, fJ)Sc(x, ,) 1 - bJL(x, fJ) 0, . 

Equivalently, the sub--density of the T ~process becomes 

ff(X,O) = [ -! { Sr(t, e)se( c, 'Y) [1 - O/1( t, 0) iJH~~, 'Y)]} Lc~, 

~ [fr( t, O)Sc(c, 'Y) [1 - o/1(t, 0) iJH~~, 'Y)] 

+bS (t B)S (c )a{L(t, 0) oHc(c, ,)] 
T, c, r at a, ' 

t=c=x 
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w]lC'rf' 

011(t,8) 
of 

a {J;= B(Il, O)1T(II, 0) } 
iJt ST(t,O) 

= hT(t. (1) [I'(t. 0) - B(t, 0)]. 

Therefore we have 

1;'(:1',0) = 1T(X, O)Sc(x, r) [1 - cSB(.l', 8) OH(~~r.,)]. 

Following the SalllE' procedure for the Cprocess Wf' finally get 

~ () ()S ( 8) [ A ( )0]og1c(.r;,r)] 1 eX, I = f c :Z:, I T x, 1 + () It :r, 0 0, . 
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