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Notation

fre(t,6.7) : Joint density function

Stc(t,6.~) : Joint survival function

fr(t.6) : Density function of T -Process

fc(c.v) : Density function of C- Process

hy(t,0) : Hazard function of T Process

hr(c,7) : Hazard function of C-Process

Hr(t,0) : Cumulative (integrated) hazard function of T-Process
Hr(c.7v) : Cumnulative (integrated) hazard function of C-Process
f.(t) : Sub-density function of T-Process

fg(c) : Sub—density function of C-Process

hk(¢) : Sub-hazard function of T-Process

h'.(c) : Sub-hazard function of C- Process
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Summary

In this thesis we introduce a model for informative censoring. We assume that the joint
distribution of the failure and the censored times depends on a parameter 6, which is
actually a measure of the possible dependence, and a bias function B(t,8). Knowledge of 6
means that the joint distribution is fully specified, while B(t, ) can be any function of the
failure times. Being unable to draw inferences about d, we perform a sensitivity analysis on
the parameters of interest for small values of o, based on a first order approximation. This
will give us an idea of how robust our estimates are in the presence of small dependencies,
and whether the ignorability assumption can lead to misleading results.

Initially we propose the model for the general parametric case. This is the simplest
possible case and we explore the different choices for the standardized bias function. After
choosing a suitable function for B(¢, ) we explore the potential interpretation of § through
it’s relation to the correlation between quantities of the failure and the censoring processes.
Generalizing our parametric model we propose a proportional hazards structure, allowing
the presence of covariates. At this stage we present a data set from a leukemia study
in which the knowledge,under some certain assumptions, of the censored and the death
times of a number of patients allows us to explore the impact of informative censoring
to our estimates. Following the analysis of the above data we introduce an extension
to Cox’s partial likelihood, which will call "modified Cox’s partial likelihood”, based on
the assumptions that censored times do contribute information about the parameters of
interest. Finally we perform parametric bootstraps to assess the validity of our model and

to explore up to what values of parameter 4 our approximation holds.
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Chapter 1

Introduction

The research for this thesis was made in the area of Survival Analysis. In survival data
censoring occurs very often, and all the existing ways of analyzing these data conveniently
assume that censoring is uninformative. There is no statistical methodology to be widely
approved for analyzing survival data which allows the possibility that censoring is not a
random procedure, and hence informative. We have focused on this particular problem,
hoping that we will manage to propose a well stated and well supported solution.

The main aim of this thesis is to introduce a new model which will enable us to analyze
survival data, considering the possibility that censoring might not be completely at random.
This means that we assume that the censoring process might follow a specific pattern,
containing information that we would like to extract. In this case the failure and the
censoring processes are not independent, and the level of dependence is of major interest.
It would be very optimistic to believe that we can reveal the particular pattern that the

censoring process has or even to calculate the exact level of dependence between the two



processes. Therefore. what we really try to do is to propose a model with which we can
perform a sensitivity analysis on our estimmates, assuining that we have a small level of
dependence. Our conclusions are based on the impact that this sensitivity analysis has
on the parameters of interest or to quantities which can be more easily interpreted like
the survival curve or the median survival time. For examnple. if we assume dependence
between the two processes and the change in the median survival time is minor, compared
to the estimnate under independence, then this means that our estimate is robust in different
levels of dependence. Therefore the analysis of these survival data using one of the existing
statistical procedures can be considered adequate, because in any other case where we use
complicated models to account the potential dependence the practical result is not so
different froin the one we already have. However, if the change in the median survival
time is significantly large, then the results obtained from the analysis of the data using
statistical methods which assume uninformative censoring might be very misleading. In
this case, our model provides us with a possible range of values for the median survival
time, for some assumed levels of dependence, giving in that way an idea of the error that
we make by not assuming informative censoring.

This thesis consists of seven more chapters, apart from the introductory one. In chapter
2 we present some of the existing statistical methods of analyzing survival data. We
talk about Competing Risks theory and Frailty models, exploring the similarities and the
differences between these theories and what we are trying to do within the Survival Analysis
framework. A literature review is made and a section is also included, explaining what
motivated us to do this work. Chapter 3 is where we propose our model, explaining the
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assumptions behind it. Initially we discuss the parametric case, although the principal
ideas will not change later on when we will talk about the semi parametric case. In
the model. a parameter 0 and an unknown correlation function B(t,#) are introduced. 8
represents the level of dependence between the failure and the censoring processes, while
B(t.0) represents the way that the two processes are related to each other. Parameter
§ is the most important quantity in the model and the basis of the sensitivity analysis.
Therefore, we devote chapter 4 exploring the role of 4. and discussing what interpretation
and what properties this parameter might have. In chapter 5 we explore B(t,6), trying
to see which function is the most appropriate. After making our choice, we generalize the
model allowing for the presence of explanatory variables. An important section in this
chapter is the last one. where we discuss the case where the censoring at the end of the
study is uninformative. This introduces the idea that both inforimative and uninformative
censoring might be present at the same time, hence the need for a model to take into
account both types of censorings was unavoidable. Such a model is introduced at the end
of chapter 6, while in the beginning a special data set is analyzed, to show that our theory
works and that if we had additional information an estimate of parameter é could have
been feasible.

In chapter 7 the semi-parametric version of the model is presented. It is based on
Cox’s partial likelihood function, which is altered in order to introduce what we will call
the Modified Cox’s Partial Likelihood (MPL). Finally in chapter 8 a simulation study was
made to prove the validity of our model. Several examples are included in all the chapters

in order to show how are methods work.



Chapter 2

The Impact of Informative Censoring

in the Analysis of Survival Data

2.1 Analyzing Survival Data and Non-Identifiability

Issues

Clinical trials are designed to test new drugs or treatments and come up, if possible,
with reliable answers to very important questions. Depending on the trial and what is
being tested we might observe patients to have a remission period, to relapses or even
to die, and the times to these events are of great importance. Unfortunately, we are not
always able to observe the event of importance to all the patients. A major reason for that
is that the trials cannot run for such a long time so that we are able to observe it, and

an other equally important reason is that many patients may quit the trials for reasons



that are not always known. Hence. we end up with data sets which contain a number of
incomplete observations. the censored times. Our aim is to use these data to obtain as
much information as if we had an uncensored data set.

New statistical methods had to be introduced, and the way we deal with the censored
observations is still a subject of great debate. Whether censoring happens at random
and hence is non informative or not is something that we cannot detect from the data
themselves. Therefore. assummptions need to be imade and models need to be constructed
in order to proceed with the analysis of the data. The most common approach is to assume
non—inforinative censoring, and in reliability studies this type of censoring happens very
often. In an experiment where we test a number of machines it is very difficult and time
consuming to follow them up until all of them break down. Therefore, we follow them up to
a certain time point where some have already failed and some are still working. Similarly
in clinical trials patients drop out of the study for reasons which are not related to the
study itself. In both the above cases censored observation are produced, which we can
easily assume happen at random.

Kaplan & Meier(1958) introduced the product-limit estimator of the survival curve. It
is non-parametric and the main assuinption is that the censored times carry no information
about the distribution of the failure times, and hence they are independent. This method
has become a standard procedure for estimating the survival curve when the independence
assumption seems reasonable. Even in the case where this assumption is questionable, the
product-limit estimate is always obtained to show at least what the survival curve would
look like if censoring was non-informative. This estimator is consistent for the class of
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constant sumn survival models introduced by Williams & Lagakos(1977). Cox(1972) intro-
duced the proportional hazard model, where the hazard was proportional to an unknown
baseline hazard function. This function was multiplied by a quantity which was dependent
on the set of explanatory variables. that followed each patient in the trial. The partial
likelihood provides us with estimates of the parameters that multiplied these variables,
without the need for knowledge of the baseline hazard function, for which an estimation
procedure is also suggested. The following year Kalbfleisch & Prentice(1973) provided some
extra justification to Cox’s partial likelihood, when no tied observations occur, and they
also proposed a step function as an estimate to the baseline hazard function. Parametric
models have also been considered and proven helpful. Cox & Oakes(1984) consider models
such as the Weibull, exponential and Gompertz—Makehan.

Cox(1959) suggested that patients are exposed to more than one risks and hence if
they die, their death might be due to any of these risks. In this work he proposed four
models for bivariate data. and he immediately acknowledged the difficulties related to their
interpretation. When we have many competing risks and a population is subject to k causes
of death, and suppose that each individual is characterized by a vector T = (T1,T3,. .., Tk)
of times at which he dies, respectively, of the k causes, then Moeschberger & David(1971)
emphasized that only the minimum of these times along with the associated cause of death
are observed. This approach with the latent failure times was adopted by Gail(1975) in
his "Review and critique of some models used in competing risks analysis”. A detailed
discussion of this approach was presented in David & Moeschberger(1978). Moreover, the
survival analysis problem can be regarded as a special case of the competing risks problem.

6



Although in this problem we observe failure times from only one cause of failure, censored
times can be seen as a result of a second cause of failure. different from the one under
investigation. Hence the problein can be transformed into a competing risks problem with
only two competing risks.

However. the fact that the assumption of non-informative censoring, or independent
risks, was untestable made statisticians feel very uncomfortable with this idea. Tsi-
atis(1975) proved in the competing risks framework the non -identifiability of dependent
risk models. In other words, if someone assumes a model with dependent risks then there
is always a proxy model with independent risks which can reproduce exactly the same
sub-densities. Crowder(1991) supports this idea, showing that even when the marginal
distribution is known the joint distribution is still not identifiable. Lagakos(1979) gave
real life examples where the non-informative censoring assumption was questionable, while
Peterson(1976) had already argued that "serious errors can be made in estimating the
(potential) survival functions in the competing risks problem if the risks are assumed to be
independent when in fact they are not™. Therefore, he was the first to introduce bounds on
the joint and the marginal distribution functions, with fixed sub--distributions, allowing any
kind of dependence, in order to investigate the potential error we make if our assumptions
are wrong. People later on claimed that Peterson’s bounds were very wide. Slud & Rubin-
stein(1983) claimed that they could "improve dramatically” Peterson’s bounds, based on a
weak non—parametric assumption. A few years later Klein & Moeschberger(1988) proposed
a model where the joint distribution belonged to a family of distributions indexed by a
dependence parameter f, with arbitrary marginals. Specifying a range of possible values

7



for the dependence parameter would produce bounds on the net survival probabilities. In a
slightly different context, using a frailty model, Link(1989) claimed that in the case where
censoring indicates an unfavorable prognosis the Kaplan and Meier estimate (KME) of the
survival curve will tend to overestimate the survival probabilities. Therefore he suggested
that "when censoring carries an unfavorable prognosis for future survival, reasonable esti-
mators should be bounded above by the KME and below by the empirical survival function
of the observed random variable™.

An early attempt to model dependence between death and censored times was made by
Fisher & Kanarek(1974). They proposed a model in which for an individual with censored
time C = c. a survival time of t — ¢ after censoring is equivalent to a survival a(t — ¢) if
there had been no censoring, where a > 0. More specifically « > 1 indicates a poorer while
o < 1 indicates a more favorable prognosis for the individual. Heckman & Honore(1989),
under some regularity conditions. showed that if the patients are followed by a vector
of covariates Z then the joint distribution is identifiable. The following year Hoover &
Guess(1990) proposed a parametric model for the response linked censoring, which is the
censoring caused by the fact that the response is about to happen. Following this definition,
a positive association between the censoring and the respounse time was introduced.

There were two articles that helped a lot in the compilation of this section. The first one
was a review on the "Identifiability Crises in Competing Risks” by Crowder(1994). In this
paper the identifiability problem is discussed extensively, explaining the main theoretical
results. The second paper was written by Moeschberger & Klein(1995), and provided a
massive literature review on statistical methods developed up to that time for dependent

8



competing risks.

2.2 New Approach to the Identifiability Problem

In the previous section we saw different approaches that statisticians had taken in order
to deal with the presence of informative censoring and the identifiability problem in general.
Assumnptions need to be made. some times arbitrary and restrictive, in order to be able
to model cases where. we think from the context that, dependence between the possible
risks exists. If for example we assume that we have data for which additional information
is available. like doctor’s opinions or the reasons for which patients are censored, then we
might have a good idea of the type of censoring being present. In this case reasonably safe
assumptions can be made and ad hoc models can be coustructed in order to analyze the
data.

The problemn we want to tackle is how to analyze data when things are not that clear.
How safe is it to assuine non-informative censoring when no information exist to imply
the opposite or even when knowledge of the reasons why patients are censored is not clear
enough to give a good idea of the type of censoring we have. In other words we need to
find a way to test whether the analysis of survival data, when independence between the
failure and censored times is assumed, is appropriate when small dependencies might exist.
Therefore we want to explore the robustness of our estimates and see how misleading our
inferences could be. if they are, under the independence assumption.

A data set was obtained from Klein & Moeschberger(1997), page 465, which is one



of the main data sets used to illustrate the methods discussed in this thesis. Details of
the study are found in Copelan et al.(1991), and it is about bone marrow transplants to
137 patients. The treatment was given to two groups of patients with acute mycloctic
leukemia (AML). which were divided into groups according to the risk of first remission
(low-high). and to a third group of patients with acute lymphoblastic leukemia (ALL).
Explanatory variables for each patient were recorded and the main purpose of the research
was to compare the survival probabilities between these categories. In our case we focus
only on the ALL group (38 patients). and these patients were followed up for a maximum
period of 7 years. Within this period after the surgery 11 patients died, 13 were observed
to relapse (and then die). and 14 were right censored at some point during the study (right
censored). 1 need to mention that patients join the study at different time points, hence
the follow up period is not the same for all the patients. The data are presented in Table
2.1, where

T, : disease-free survival time (time to relapse, death or end of study)

T, : time to death or on study time

S, : death indicator (1-dead. O-alive)

R : relapse indicator (1-relapse, O-disease {ree)

S, : disease free indicator (1-dead or relapsed, O-alive disease free).
The fact that we are able to observe both the relapse and the death time for a number
of patients makes this data set special, and I will immediately explain the reason why. In
this particular example the treatment under investigation is surgery, which happens at the
beginning of the follow up time of each patient. If a patient relapses after a certain time

10



Tn T, S R 5
1] 1 1 1 0 1
2] 5 22 0 1 1
3/ 74 110 0 1 1
1] 8 8 1 0 1
510104 156 0 1 1
6107 107 1 0 1
71100 162 0 1 1
81110 260 0 1 1
91122 12 1 0 1
101122 243 0 1 1
11129 1279 0 1 1
12172 172 1 0 1
13] 192 262 0 1 1
14194 194 1 0 1
151226 226 0 0 0
16230 371 0 1 1
17276 216 1 0 1
18332 350 0 1 1
1938 417 0 1 1
20| 418 418 1 0 1
21| 466 466 1 0 1
22| 487 487 1 0 1
23] 526 526 1 0 1
241530 530 0 0 O
25 [ 609 781 0 1 1
%] 662 716 0 1 1
271996 996 0 0 0
28 | 1111 1111 0 0 0
29| 1167 1167 0 0 0
301182 1182 0 0 O
3101199 1199 0 0 0
3211330 1330 0 0 O
331377 1377 0 0 O
3411433 1433 0 0 0
351462 1462 0 0 0
361496 1496 0 0 O
3711602 1602 0 0 O
3812081 2081 0 O O

Table 2.1: ALL Data
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there is no alternative treatment. hence the only thing we can do is simply observe how long
will this patient survives after being relapsed. However, we can see the above data set in a
slightly different hypothetical context, which is very common in clinical trials. Assume that
all the patients in the trial are under a specific treatment. They are followed up until they
are observed either to die, withdraw from the study disease free (right censored, mainly
due to the end of the study). or relapse. While the first two cases are straight forward to
handle, the question is raised of how to deal with the relapsed cases. A common practice
in clinical trials is that if a patient is not responding well in a new treatment then in
order to prevent him from getting worst or even to save his life doctors might decide to
take him off the treatment under investigation. Therefore, if we assume that the patients
who relapse are taken out of the trial in order to receive an alternative treatment, then it
is obvious that these patients were censored in an informative way. On the other hand,
if we assume that these patients are not withdrawn from the trial in order to receive an
alternative treatment, then they will be observed to die soon after their recorded relapse
time, providing us with death times and not censored times any more. Summarizing the
above we can see this data set from two different angles, which we will call viewpoints.

Viewpoint A: The patients who relapse are taken off the treatment and hence are
considered to be censored observations. Our observed lifetimes are given by column T} in
Table 2.1 and the corresponding death indicator variable is S;, which for simplicity we will
name them Data A. For example patient 19 relapses after 383 days in the trial and he
eventually dies after 417 days. Under Viewpoint A we ignore his exact death time and we
assume that this patients was censored after 383 days of follow up.

12



Viewpoint B : The patients who relapse are left in the trial and hence they are ob-

served to die during their follow up time. In this case our observed lifetimes are given by
column Ty and the death indicator is S,. forming Data B. Therefore, under Viewpoint B
patient 19 will be observed to die after 417 days of follow up.
Patients who die discase free. eg. patient 9. or are censored disease free, eg. patient 15,
maintain their status as death and censored observations under both Viewpoints. This
means that the only difference between A and B is the way we treat the relapsed observa-
tions.

Making the common assumption that censoring is non-informative we get Figure 2.1
with the two Kaplan and Meier (KM) estimates of the survival curves of the above data.
This is anyway the major assumption for the KM estimate for the survival curve, and this
is what everybody would do in order to get an initial idea of the survival probabilities
of these patients. The solid line is when we use Data A and the dotted line is the KM
estimate of the survival when we use Data B. If we assume that Data A are the potential
observed data then Data B are the "true” data, "true” in the sense that we are able to
observe the exact death times of the informatively censored observations leaving us with
only the random censoring, which will provide us with unbiased estimates of the parameters
of interest. Note that, we observe a huge difference between the estimated survival curve
for the observed data (solid line) and the "true” data (dotted line), indicating that the
analysis of the data that include the informative censoring would give largely misleading
results.

In this work we introduce the idea of sensitivity analysis, based on a paper by Copas
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& Eguchi(2001). In this paper the idea of sensitivity analysis was introduced, trying to
deal with the problem of missing values. In our case we propose a model which allows for
dependence in terms of a parameter o and a bias function B(t, ). Being unable to draw
inferences about 4 . we propose a sensitivity analysis on the estimate of the parameter of
interest for small values of . The size of 4 can be interpreted in terms of a correlation

between the life time and the censoring mechanisni.
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Chapter 3

Model for Informative Censoring

3.1 The Definition of the Model

In the survival data. either we observe the time of occurrence of the event of interest,
which is what we call a failure time, or this might be prevented by the occurrence of
another event. and hence we observe a censored time. We assume that the two different
kinds of observations form two different processes. The one with failure times, which will
be named as T-process. and equivalently the one with censored times, which will be named
as C-process. In terms of competing risk, it is like having two possible types of risk. The
first one, which is the main risk under investigation, provides the failure times. The second
one, which provides the censored times, summarizes all the other potential risks that might
exist into one, only because we are not interested in any of these, and hence we allow them
to be considered as one.

Our initial assumnption is that the conditional density of the censored lifetimes given

the exact failure times, which in any case we are not able to observe, has exactly the same
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distributional form with the marginal distribution of C’
P(C=dT =t) = fo(c.y +8B(t,0)) (3.1)

with the only difference being in the parameter of this distributions. fe (¢, ) is the marginal
density of the C-process with parameter 7y, and ¢ is the paramneter of the distribution of the
T process. We express the dependence between the two processes by allowing the parameter
of the conditional distribution to depend on the failure times by using a function B(t, 6),
multiplied by some quantity §. Function B(t,#) initially is assumed to be completely
unknown and independent of 7. However, the most important part of the above equation
is 6. We introduce this parameter as a measurement of the dependence between T and C
processes. This doesn’t mean necessarily that J is equal to the statistical correlation, but we
expect it to be strongly related to that, providing a better interpretation. This relationship
will be explored in chapter 4. As we have mentioned several times before, the data do not
provide enough information in order to estimate the level of dependence between the two
processes and hence inferences about 4 cannot be made. For that reason we assume that
it is known. From (3.1) we see that when é = 0 the conditional distribution is exactly the
same to the marginal implying independence, and this is an important possibility, that of
jgnorable censoring. Moreover, in our work we will allow ¢ to take only small values. This
indicates that we are interested in small dependencies, what happens for values of ¢ around
zero, something that will lead to mathematical approximations as the research goes on.
Our aim is to perform a sensitivity analysis to all our estimates with respect to 4. Since 4

is small, terms like 6%, 6°. ... are considered to be negligible and hence we omit them.
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and the probabilities describe the two possible states that the data can be in, either failure
g )
of censored data. In order to have a consistent notation we use f,(x) for density, h.(*) for
“ - )
hazard, H,(x) for cumulative (integrated) hazard and S,(*) for survival functions. Hence

we have

P(T=tNT<C) = fr(t,9)Sc(t.v+B(t,0))

~ fr(t.0) [ Sc(t, ) + 5B(t,9)?_5%s’7_).]
- fT(t’g)S(f(M){ 1 - 6B(, 9)%&]

where
He(t,y) = —log Sc(t, %)

is the cumulative hazard function and S¢(t,v) is the survival function of the censoring

process. Furthermore we have

P(C=cnNC<T) = / fe(e,y +6B(t,0)) fr(t,0)dt

/ [ fele) + 8Bt e@‘zggﬂ] Fr(t, 6)dt

12

= fele,7)Sr(c,0) { e e)w]

o

where

_ [ B(t,6)fr(t,6)dt
ST(C, 0) )

pl(c,0)
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Therefore, the likelihood function is

n " I,
L(’i(}-"x-d):H{fT(t,:.H)SC(ti,'\,') 1 - 6B(t;. ")‘()H(()(ﬂ )H

i=1 L

[ ( . ) -1
{f('(tiv’)’)ST(tb@) 1+ 5,//(;51,9)%95‘%_-’:;“;7)} }

and the log-likelihood function, in first order approximation, will take the form

n

™[ flog et 6) + (1 = L)log he(ti,y) — Hr(t,6) - Ho(t, )]

i=1

t~
&~
<
]

=
R

v o3[ - 2Rl o ) - 2 g )

+ 5i[(1-Ii>———m°gf0(t"’7)u(ti,0)~Ii——aHCa(§i’7)B(ti,a)]. (33)

For simplicity we set

LL(t;6,7.0 = 0) = z”: { Iilog hr(t;, 0) + (1 — L) log he(ti,v) — Hr(t;,0) — Hc(ti,v)](3.4)
i=1

which is the corresponding log-likelihood when 6 = 0. The unknown function B(t,6) is

included in the part of the likelihood multiplied by 4, which is essentially the correction

factor. The fact the the whole term is multiplied by a small number, gives us some

fexibility in the choice of B(t, ), but still it’s functional form is a major question. From

the likelihood we intend to estimate #, and at the same time we treat v as a nuisance

parameter. 0 is the estimate when 4 is different form zero and 6, is the estimate when we
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have independence. We differentiate the log-likelihood with respect to ¢ and we get

OLL(t;60.~.9) OLL(t:0,7,6 =0)

00 B Jo 0=0;
N (’Z{ 210 felt ) Oulti 6) | OHe(ti 1) 9B(4,6)]
20 0 oy a0

Using Taylor’s expansion we have that

ey 6 06 (}0 0) ()92
O*LL(t;0,7,6 =0
— (fy— by TR0 2 0)

00?

and finally what we get 1s

) dlog fo(ti, ) Opult:, 6) OHc(ti,v) 0B(t:,0)
05 - 90 - (')ZLL(tﬁ')O 0 Z |: 1- 1 dry 00 - Ii 0’7 89 (35)

It is important to mention that no assumptions have been made so far about the distri-
butions of the two processes and the unknown function B(t,6), and (3.5) provides us with

an expression for the difference between the two estimates. We see that

O*LL(t;0,~,6 =0
ity = —22lifmd=0)

is the observed information, and hence

; _ O?LL(t;0,7,6 =0)y-!
Var(f) ~ 1(6)~" = { - ( 893 0)}

is the approximate variance of our estimate.

Therefore if we consider that T and C' processes follow some convenient distribution,
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then for a choice of B(f.8) we can proceed and perforin a sensitivity analysis for fs. What
choice of B(t.8) do we make is something that we explore in the next section. Moreover, it
is obvious that an estimate of 4 is required for our calculations. For that reason we obtain
the independent estimate 4 from (3.4) and we use it in order to proceed. The reason why
we use the independent estimmates in the correction factor is because in any other case terms

of order O(0%) will be created. which we consider to be very small and we omit them.

3.3 Exploring the Unknown Function B(t,0)

3.3.1 Restrictions

We have assumed that we know the form of the conditional distribution
fCIT(C = ¢|T = t). At the same time the marginal densities of T and C processes are
fr(t,8) and fe(c, v). with 6 and ~ being the parameters of the two distributions. For
simplicity initially we assume that both are scalars. The joint density function is of the

form

frolte) = fr(t,0)fc(c,v+6B(t,0))

dlog fc(c,7)
O

12

frt,0) fcle,v)[1+6 B(t,0)|. (3.6)

The above expression is an equivalent expression of the definition of our model in (3.1).

Therefore, the first requirement is that the joint density will provide us with the marginal
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densities of the T and C' processes. Hence, for the C-process we have

12

feles) / fr(t.0)fe(c ){ dl() fele ')B(t,e) dt

oy

. Ofc(e, o
= Jeten) +a2GE [T t0) . o)

From the above equality, the only way to get the marginal distribution of the C-process to
first order in 4, is if we require that

OC

Er[B(t,0)] = | /0 B(t.0) fr(t.0)dt = 0. (3.7)

At the same time the marginal fr(t,6) is obtained immediately by integrating the joint

distribution. without any further requirements about B(t, )

dloof(( )

fr( / foefC(C’y)[l—H) 3

B(t, 9)] de.

Another property that we require B(t,6) to have is finite variance. Therefore without any

loss of generality we can assume that
Varr [B(t,0)] = Br[B(1,0)] =1 (3.8)

which is a standardized variance. This might affect the value of 4, because by assuming
that the variance is one, the whole variance now is included in the dependence parameter,
but & will be still small.

At the end we see that although we allow our model to depend on an unknown function,
B(t,6) finally has some certain properties which indicate that we should look in a specific

class of functions, the ones with mean zero and finite variance, or even more specifically
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with variance one.

3.3.2 A Choice for B(t,0)

A function that satisfies the above restrictions is B(t.6) = 1 — Hy(t,0), where Hr(t,0)
is the cumulative hazard function of the T-process. The reason why we present it as a
possible choice is because apart from the fact this is a member of the class of functions
that we are interested in, it has some more propertics that lead us to believe that this
could be a good choice. In the joint distribution (3.6), in the correction factor we have the
term %(‘—’) which is a score function and so depends on the assuinptions that we make
about the density of the C-process. We have already referred to the relationship hetween
the Survival Analysis and the Competing Risks theory. A main characteristic of the later
theory is the existence of a symmetry within the functions. A symmetry which in our case

can be achieved only if we also allow B(t,8) to be a score function

Jlog fr(t, )

B(t.0) = Z

and at the same time satisfy the restrictions set in the above section, of zero mean and
finite variance. If we go one step forward and we assuine a Proportional Hazard structure

(PH) in the full-likelihood, for both processes, we can write without any loss of generality

hr(t,8) = €e®hy(t)
(3.9)

he(e,y) = €hi(c)
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. * s N ey aanl: . .
where h5(t) and hi(c) are the baseline hazard functions. In this case we have

dlog felev)

o 1 — He(e, )

dlog fr(t,0)
Qa0 1 — Hr(t.9).
where now our choice satisfies the restriction of V(M‘T[B(t, ())] = 1. Finally the joint p.d.f.

in (3.6) takes the simpler form
fre(te) = fr(t.0)fele,) {1 + 6{1 ~ Hele 7)] [1 — He(t, G)H. (3.10)

We are going to explore the PH assumption extensively in the chapters 5 and 7, allowing
the presence of explanatory variables. Now, keeping # and v scalars, we end up with a
choice of B(t,8) which additionally provides with a nice symmetry within the functions of
the two processes. An other important thing is that B(t,0) is included in the correction
factor which is multiplied by 4. which is small. This means that the differences in the
effects of using different functions for B(t, #) will be small. Furtherinore, keeping in mind
one of our initial requirement to keep the model simple, the choice of 1 — Hr(¢,0) seems

reasonable.

3.3.3 Frailty Model

Now we explore the case where we have a Frailty model. Suppose, in our case, we have
?

the latent covariates r and y with

E(z) = E(y) =0, Var(z) = Var(y) =1
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and that at the same time
Cov(r,y) = p (3.11)

which is the value of the correlation between r and y. We assume that T and C are

independent given r and y and we assumne that the Frailty model has the form

Pr(T =tlz) = ar(t,0+ drx)
Pr(C =cly) = ac(t,y+dcy) (3.12)
where the dependence between the two processes comes from expression (3.11), and ér

and 8- are small and induce the dependence of the T" and C processes through z and y

respectively. Calculating the marginal distributions we get

Fr(t,0) = E, {aT(t,eMTx)]

dar(t, ) N d2.z° OzaT(t,O)]

~ FE.lar(t,8) + érx
-[QT( )+ orr 5 2 002

= ar(tO)[1+ %(5%VT(t, 0]

where

1 GQaT(t, 0)
ar(t,0) 062

VT(t’ 9) =

and similarly

fele.n) = acle, )1+ 56Vele )]
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where

1 P*ac(e,”)

Vele,y) =
ele7) acle,y) 02

Due to the fact that F(x) = E(y) = 0, we need to use second order approximations here.

The joint distribution is

PT(T, C) = E(x:,y) [QT(tv 0 + 6711:)0(‘((:» Y+ (5('y):|

12

1r.. .
ar(t.O)ac(c, 7){1 +3 [d%VT(t, 0)02Ver(c. ) + 206780 Ur(t, 0)Uc (e, 7)] }

1

Fr(.0) fe(c.) [1 + pord Ur(t, 0)Uc (e, '))]
where

UT(t, 0) 0 log [QT(t,H)]

~ 90
0
Uc(e,y) = o log [ac (e, 7)].

In first order approximation we see that

Olog fr(t,6 :
wir(r,0) = Z28IGD gy 0y 1 o)
. dlog felc, _
Wele) = LD U, ) +0(62),
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Omitting terms of high order of o7 and d+, the above results gives
PrC=cT=t) = folcq) [1 b pOrde Wt 0)We (e, 7)]

~ foen+ porocWr(t.60))

Jlog .fT(t,())]).

= feley+ 6(57[
f((7 POTIC 50

By making our usual PH assuinption we have that

0log fr(t,0)

= 1 — Hr(t,6)

and hence we end up with
PrC=cT=t) = fo (c ¥+ 81 = He(t, 9)])
where
d = pdrdc. (3.13)

This is a Frailty model in which the dependence between the T and C processes is intro-
duced via the correlation of the two latent covariates x and y. As a result, we see that
this model is approximately equivalent to our initial model, and under the PH assumption
supports the choice of B(t,0) = 1 — Hr(t,0). Meanwhile, as we see in (3.13), ¢ is the prod-
uct of three factors, providing an additional explanation about its meaning. It includes ér
and 8¢, which are the dependence paraineters of the two processes on the latent covariates

z and y, and the correlation p between them. The single value ¢ in (3.13) play the same
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role as before, modelling the overall level of dependence hetween T and C.
3.4 The Full-Likelihood when B(t,6) = 1 — Hr(t,6)
Following the above decision for
B(t.0) =1— Hr(t,6)
and without any further assumptions, the log-likelihood takes the forin
LL(t;0,7,0) = LL(t:0,7,6=0)

— 52 [ (1— ]i)MHT(ti,G) + ]iw[l _ HT(tiag):I]

oy 7y
(3.14)
and the expression for the dependence estimate (3.5) becoines
N 5 <[, OHc(tiy) OHr(t:,9) dlog fo(ts, ) OHr(t;,0)
0—62 I,' - - ) _1_[1 A\ T\, .
§— 70 1(0p) ; [ Iy of ( ) oy 06 ] (3.15)

and this is because
w(t,0) = —Hr(t,0).

This gives us an initial estimate of the parameter of interest under the dependence as-
sumption. As before, it is related to the MLE of 6 and it is equal to this estimate plus or
minus some correction factor multiplied by 4.

The next step is, under various distributional assumptions about the two processes,

to perform sensitivity analysis on 65. We are interested in observing whether fs varies
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Lifetime Modified Lifetime Status 2 2 9 Tl6
1 1.113 1 2.2175 9.5 1.2543 10.0
1 1.181 1 1.9395 18.0 1.9512 18.0
2 1.851 1 1.9482 11.3 1.2553 12.0
2 2.134 1 1.5185 3.8 2.0000 15.0
2 8.173 1 1.3010 5.1 0.0009 9.7
3 3.579 1 1.5441 6.7 1.9345 10.0
4 4.087 0 1.9542 10.2 4.7082 10.0
4 4.839 0 1.9243 110 1.6232 13.0
5 1.820 1 2.1355 10.1 1.2628 9.0
5 5.365 1 1.6812 6.5 1.7324 9.0
6 5.847 1 2.1139 80.2 1.3377 8.0
5 5.940 0 9.1139 9.7 1.3979 10.0
6 6.001 3 1.4155 70.8 1.6972 8.0
7 6.171 1 1.3617 9.0 1.4124 8.0
7 8.803 6 1.1762 T1.4 1.5185 13.0
7 6.845 0 1.5315 00.6 1.8108 17.0
7 6.953 1 1.0414 5.1 7.0500 10.0
7 7.106 0 1.1539 12.4 1.8573 10.0
7 7.146 1 0.9777 9.4 1.5682 10.0
8 7.082 0 1.0764 9.9 9.9522 8.0
9 8.863 1 1.7243 8.2 1.7404 12.0
il 10.903 1 1.0792 9.6 1.9031 9.0
11 10.190 1 1.2304 12.0 1.1761 9.0
11 11.016 o] 1.6128 14.0 1.8481 9.0
11 91.118 1 1.5682 7.7 1.6721 12.0
11 11.144 1 1.1639 04.0 1.2788 10.0
31 18.173 1 1.3519 13.2 1.8195 10.0
12 12.075 0 1.3979 8.8 1.3617 9.0
12 12.169 1 1.1461 11.4 5.1461 7.0
13 13.052 0 1.6628 1.9 1.7924 0.0
13 13.455 1 0.7552 6.5 1.3979 10.0
18 14.062 1 1.3979 14.6 1.2553 10.0
15 15.082 0 1.6021 10.6 1.6374 11.0
12 15.854 1 9.9222 0.7 0.6990 10.0
16 15.929 1 1.3724 9.0 2.0000 10.0
16 15.976 0 1.1461 13.0 0.9031 9.0
17 96.903 1 1.2304 10.0 1.4772 5.0
17 16.967 1 1.5221 11.2 1.6128 10.0
18 18.054 1 1.4772 7.5 6.9031 5.0
19 18.8035 1 9.0692 18.4 2.0000 15.0
19 17.854 0 1.3222 13.0 2.0000 80.2
19 49.007 1 1.2553 7.5 1.9294 9.0
19 19.198 0 1.3272 10.8 1.5185 30.0
24 23.929 6 1.3010 14.6 0.4771 9.0
25 25.081 2 1.0000 12.4 1.6435 10.7
26 25.907 i 1.2104 11.2 2.0000 11.0
28 28.084 0 1.2803 7.3 1.6721 9.0
32 32.006 9 1.3222 10.0 1.6335 9.0
35 35.086 1 1.1137 6.0 1.1761 10.0
37 36.847 5 1.6021 11.0 1.2041 9.0
41 49.875 6 1.9559 12.4 1.4472 9.0
81 40.917 1 1.0000 10.2 1.4771 10.0
42 41.879 1 1.1461 5.8 1.3124 9.0
51 51.175 1 1.5683 7.7 1.0412 13.0
52 52.066 5 1.0000 10.1 1.6532 10.0
83 52.895 6 1.6139 12.0 2.0000 11.0
57 34.180 1 1.2553 9.0 1.6990 10.0
57 59.584 0 1.2550 12.5 1.9542 11.0
58 56.899 1 1.9041 12.0 1.5598 20.0
66 65.825 1 1.4472 6.8 1.8995 9.0
67 67.291 1 1.3222 12.8 1.0414 10.0
77 77.031 0 7.0742 14.0 4.9542 12.5
89 86.998 1 1.1761 10.6 1.7555 9.0
89 80.252 1 1.3222 14.0 1.6236 9.0
92 92.165 1 1.4354 16.0 1.6154 11.0

Table 3.2: Multiple Myeloma Data
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significantly from fp and to see whether functions like the survival function are robust to

small changes of the main parameter.
3.5 Example

The survival timmes of 66 patients, who were diagnosed and treated with alkylating agents
at West Virginia University Medical Center, were provided by Krall et al.(9575). There
were 19 concomitant variables for every patient, but only 4 were used in this paper for
the statistical analysis. These were the 4 variables that yield the maximum likelihood and

they are listed in Table 3.1, while the complete data set used in our example is presented

Symbol Variable name
x1 Log BUN at diagnosis
x2 Hemoglobin at diagnosis
x9 Log %BM at diagnosis (log % of plasma cells in bone marrow)
x16 Serum calcium (mgm%) at diagnosis

Table 3.1: Variables recorded from Multiple Myeloma patients

in Table 3.2. In the first column of this table are the recorded failure times. Assuming
that we have continuous time, we split the existing ties by adding a random error, which
provides us with the Modified Lifetimes of the second column.

To illustrate our ideas in this chapter we initially ignore the covariates and concentrate
on the marginal distributions of T and C'. Firstly, we obtain the Kaplan-Meier (KM)
estimate of the survival curve, which is of course non parametric. It is obtained under the
usual assumption of independence of T and C' and is presented in Figure 3.1. The reason

why we start by getting the KM estimate, is because we need it for illustration reasons.
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Lifetime Modified Lifetime Status T2 xz2 9 x16
1 1.113 1 2.2175 9.5 1.2543 10.0
1 1.181 1 1.9395 18.0 1.9512 18.0
2 1.851 1 1.9482 11.3 1.2553 12.0
2 2.134 1 1.5185 3.8 2.0000 15.0
2 8.173 1 1.3010 5.1 0.0009 9.7
3 3.579 1 1.5441 6.7 1.9345 10.0
4 4.087 0 1.9542 10.2 4.7082 10.0
4 4.839 0 1.9243 14.0 1.6232 13.0
S5 4.820 1 2.1355 10.1 1.2628 9.0
5 5.365 1 1.6812 6.5 1.7324 9.0
6 5.847 1 2.1139 80.2 1.3377 8.0
5 5.940 0 9.1139 9.7 1.3979 10.0
6 6.001 3 1.4155 70.8 1.6972 8.0
7 6.171 1 1.3617 9.0 1.4124 8.0
7 8.803 6 1.1762 714 1.5185 13.0
7 6.845 0 1.5315 00.6 1.8108 17.0
7 6.953 1 1.0414 5.1 7.0500 10.0
7 7.106 0 1.1539 12.4 1.8573 10.0
7 7.146 1 0.9777 9.4 1.5682 10.0
8 7.082 0 1.0764 9.9 9.9522 8.0
9 8.863 1 1.7243 8.2 1.7404 12.0
11 10.903 1 1.0792 9.6 1.9031 9.0
11 10.190 1 1.2304 12.0 1.1761 9.0
11 11.016 0 1.6128 14.0 1.8481 9.0
11 91.118 1 1.5682 Tt 1.6721 12.0
11 11.144 1 1.1639 04.0 1.2788 10.0
31 18.173 1 1.3519 13.2 1.8195 10.0
12 12.075 0 1.3979 8.8 1.3617 9.0
12 12.169 1 1.1461 11.4 5.1461 7.0
13 13.052 0 1.6628 4.9 1.7924 0.0
13 13.455 1 0.7552 6.5 1.3979 10.0
18 14.062 1 1.3979 14.6 1:2553 10.0
15 15.082 0 1.6021 10.6 1.6374 11.0
12 15.854 1 9.9222 0.7 0.6990 10.0
16 15.929 1 1.3724 9.0 2.0000 10.0
16 15.976 0 1.1461 13.0 0.9031 9.0
17 96.903 1 1.2304 10.0 1.4772 5.0
17 16.967 1 1.5221 11.2 1.6128 10.0
18 18.054 1 1.4772 7.5 6.9031 5.0
19 18.805 1 9.0692 18.4 2.0000 15.0
19 17.854 0 1.3222 13.0 2.0000 80.2
19 49.007 1 1.2553 7.5 1.9294 9.0
19 19.198 0 1.3272 10.8 1.5185 30.0
24 23.929 6 1.3010 14.6 0.4771 9.0
25 25.081 2 1.0000 12.4 1.6435 10.7
26 25.907 1 1.2104 11.2 2.0000 11.0
28 28.084 0 1.2803 73 1.6721 9.0
32 32.006 9 1.3222 10.0 1.6335 9.0
35 35.086 1 1.1137 6.0 1.1761 10.0
37 36.847 5 1.6021 11.0 1.2041 9.0
41 49.875 6 1.9559 12.4 1.4472 9.0
81 40.917 1 1.0000 10.2 1.4771 10.0
42 41.879 1 1.1461 5.8 1.3124 9.0
51 51.175 1 1.5683 7.7 1.0412 13.0
52 52.066 5 1.0000 10.1 1.6532 10.0
83 52.895 6 1.6139 12.0 2.0000 11.0
57 34.180 1 1.2553 9.0 1.6990 10.0
57 59.584 0 1.2550 12.5 1.9542 11.0
58 56.899 1 1.9041 12.0 1.5598 20.0
66 65.825 1 1.4472 6.8 1.8995 9.0
67 67.291 1 1.3222 12.8 1.0414 10.0
77 77.031 0 7.0742  14.0  4.9542  12.5
89 86.998 1 1.1761 10.6 1.7555 9.0
89 80.252 1 1.3222 14.0 1.6236 9.0
92 92.165 1 1.4354 16.0 1.6154 11.0

Table 3.2: Multiple Myeloma Data
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Figure 3.1: The K-M estimate of the Survival Curve
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Later on in this example we will make assunptions about the distributions of the two
processes, and it would be useful to compare the estimates of the survival curves with the
KM estimate.

A simple possible model would be initially to assume that both processes have expo-

nential distributions, with parameters 6 and 5 respectively
. -0 . .
fr(t,0) = ™", foley) = e

To test our exponential assuinption, we present the plot ok log-survival against the time

The survival function is given by
Sr(t.0) = e v
and making the logarithm of Sy (t,0), gives
log Sr(t,0) = -0t

We use the KM estimate of the survival function, ST(t, 6) for Sr(t,6) in the above expres-
sion. In Figure 3.2 we see that if we plot the survival times ¢, against the logarithm of
the survival function, log Sr(t, ), we get approximately a straight line. This is what we
expected to find, and means that our exponential assumption is tenable.

Now, the independence log-likelihood in (3.4) becomes

65

LL(t;0,7,6=4) = Z {L‘ log hr(t;, 0) + (1 — I;)log he(ti,v) — Hr(t:,6) — HC(ti,’Y)}
i=1
65

= Z{LlogG—i—(l —Ii)logv—ﬁti—fyt,} (3.16)
i=1
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Figure 3.2: Log-Survival plot for the Myeloma-Data
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providing us with the independence estimates

Z I; ‘ (1 - [L)

fo = =— = 0.0307, Fo = S = 0.2109.
St >t
i=1 =1

Using the above results, expression (3.15) for the dependence estimate finally gives

o

05 5¢
) ) gff—% (1= It
05 ~ 6O+ 062=2 = . (3.17)
I;
i=1

As explained above, we assume that ¢ is known and small. In the next chapter we will
investigate further it’s meaning and how is related to correlation, but for this example let’s
consider that o € [—0.004,0.004]. Therefore, for different values of 4, 65 varies as we can

see in Table 3.3.

) 05
-0.004 0.0277
-0.003  0.0285
-0.002 0.0292
-0.001  0.0300

0 0.0307

0.001 0.0314
0.002 0.0322
0.003 0.0329
0.004 0.0337

Table 3.3: Changes in the parameter of interest when 4 varies

These changes definitely have an impact on the survival curve. In Figure 3.3 we see
how the curve shifts up or down, depending on whether the value of é is negative or
positive. The one with the solid line, is the independent estimate. One of our targets is to
observe the behavior of the survival curve. We really need to know how much the survival
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Figure 3.3: Range of Survival Curves
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probabilities change when we depart from independence, and this a measure of how much
we can be mislead if we ignore the existence of correlation. More specifically, in Figure 3.3

the survival curve shifts up for ¢ = —0.004 and down for § = 0.004.
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Chapter 4

Interpretation of ¢

4.1 General

The most important parameter in the model is 4. It represents the level of dependence
between T and C which is something that everybody would like to know. Unfortunately,
we know that we cannot draw any inferences about it from the data, Tsiatis(1972). We
introduce this parameter in the model, because in many cases we know that T and C
are dependent and therefore we would like to explore the consequences of the different
values that it might take. Being unable to estimate d, we will assume that it is known
and that it takes a small value around zero. However, despite our assumption that &
measures the dependence between T and C, it does not necessarily mean that it is equal
to the statistical correlation between the two processes or to any other quantity with a
reasonable interpretation. A value of 4 itself does not have any specific meaning, and so
far we have no way of judging which one is an appropriate value and which one is not.
This suggests that we need to find a way to relate d to a more familiar statistical quantity,

thus providing an interpretation for 4. This would help us to choose a suitable range of
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values of d for the sensitivity analysis.

4.2 Correlation

The correlation between the two processes is the most obvious statistical quantity that

we would expect to be closely related to §.We are interested in

)= Corr(t.c) = Cou(t, ¢) _ Erc(te) — Er(t)Ec(c) (4.1)
aroc aroc:

where E,(*) are the expectations and or and o are the standard errors.

Assuming B(t.6) = 1 — Hr(t,0), the joint density is

retta) = preo)fele) {14 s el

and hence

Erc(te) = // tefr(t,0) fo(c ){ 8100 (j;cy( )[1 — HT(t,H)] }dtdc

— Er)Ec()+6 [ tcm 1~ Hp(t, )] fr(t, 0)dtde
vy
OEC( )

= Er(t)Ec(c)+4 o

|Er(t) = Er(tHr(t, 0)). (4.3)

Therefore, (4.1) takes the form

Corr(t.c) = 50%'fC)ET(t)_ET(tHT(t’e)) | (4.4)
7 0roc

The above expression provides nice results when we choose a parametric form for both

processes.
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Exponential

Assume that both processes follow an exponential distribution
fT(’v()) = 9(’*0,«, f('((:,')') =y 1

The cumulative hazard of the T process is Hr(t,0) = 61, and finally (4.4) gives

’(‘)E,C(c) Er(t) — 0Er(t?)

Corr(t,c) = 5 ~
TOC

>,

(4.5)

2>

Now, using do in the above result, the estimate of v when 4 = 0, we get a nice and simple
result relating p and 4.

Weibull

Assuine that both processes follow the Weibull distribution

fr(t,6) = bt~ '™, folen) = BEF1e
giving
Er(t”)ze‘ﬁl“(azn), Eo(e) = 4-Sr(2E™),
Hence
R e I et (Y G B Y
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are the variances of each one of the processes. In this case, the cumulative hazard is

Hp(t,0) = 6t*, and hence expression (4.4) gives

(50Ep((;) Er(t) — 0Er(t*!)
oy oToc

() {r(=) - ()]

p{r(e) - [r(es)]

Corr(t.c) =

= -5

0]V {re - [ren))

If we take o = J = 1, then we go back to the exponential case in (4.5).
4.2.1 Example

In the Example of §3.5, where both processes are assuined to have exponential distribu-
tions, we had d9 >~ 0.0109. At the same time we used the value of § = 0.004, without any

further knowledge about it’s meaning. Now, using (4.5) we get that

6 0.004
P = 5 T 0.0109

= (.3670

which means that this specific value of § corresponds to a correlation of 0.367. Therefore,
the sensitivity analysis performed in this example, was for p € [—0.367,0.367]. We can
always work the other way round, and for a chosen level of correlation we can get the

appropriate value of 9.

4.3 Bound of the Correlation Between two Unknown
Functions

In the previous section we explored the correlation between the failure and the censored

times, and we saw how under specific parametric assumptions, it gives some nice results.
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Unfortunately. the problem arises when we try to remove any parametric assumption and
generalize our results. Obtaining a nice expression to relate p and § seems to be a very
difficult task. Therefore, in this section we started exploring other possibilities, like obtain-
ing the corrclation between functions of T and functions of C. In the most general case,
suppose that we have a function A(t. 0) of the failure times, where 4 is the parameter of the
T process. and a function D(c.v) of the censored times, where 4 is the parameter of the C
process. Trying to get the most general results, we avoid making assumptions about the
function B(t,0). Our aim is to find an expression involving Corr(A(t,6), D(c,~)) which
will help us to choose values of 4.

First of all, the covariance between the two functions is

C’ov(A(t,())‘D(C,’)’)) = ET,C(A(t’e)D(C,’Y))_ET(A(tae))EC(D(Ca7))

(o9}

~ 5/D df‘ )f'((;,w)dc/A(t,H)B(t,H)fT(t,H)dt

and assuming that the variances are

Var(A(t,0)) = Er(4%(t,0)) — Br(A(t.6))" = o}

Var(D(c,7)) = Ec(D*(¢,7)) ~ E(;(D(c,y))2 = o},

the correlation becomes

D(c, ) HBLele) fr(c,v)de fA (t,0)B(t,0) fr(t,0)dt
Corr(A(t,H),D(Cﬁ)) =4 . (4.7)

TA0D
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It is of interest to find a maximum of the above expression. Hence

oG

| Dfc. ﬁ,f)&%:—(@—)fc((% 5 )de </, . 2 3
] 0 — I/Vl((.) |: / <M> f(,,‘(C, ’Y)(IC] :
op . o}

0

[ / (dk’" fele )) .fcv(c,v)dcr (4.8)
0

IN

where

‘chva (¢, y)de

W'l((:) = 5 T
00 al 2

U[)[jo ( Ogég(cnz) f(-(c, A/)dcjl

is the absolute value of the correlation between D(c,v) and Mc—ﬁ, which obviously

takes values within [0, 1]. Similarly to the above we have

1
2

| A 0)B(,0)fr(1,0)ct

oA

= WQ(t)[I/O?B2(f,0)f'r(t,0)dt:|

IN

1 (4.9)

where
‘TA(th)B(t,H)fT(t‘H)dtl

Wa(t) = —— 5
aA[OfB?(t,e)fT(t,e)dt] 2

is equivalently the absolute value of the correlation between A(t,#) and B(t,6), while from

the restrictions about B(t,6) we have

/Bz(t,e)fT(t,())dt -1
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Therefore, substituting (4.8) and (4.9) in (4.7)we end up with

oC

‘(5‘{/ (M”%j_))zfc((','y)(lc}%

0

sl dlog fele,v) 3
= |0V (T) . (4.10)

IA

C()/"I'(A(t. 8). D(c. 7))

B(1,0)

dlog fe(c.n : ki Jog f(e. )\ 2 oo :
E“K‘_g’(—)) ] - / (Lgv(—ﬂ) fele.y)de = m(?_lo_g;(_ﬂ)
0

due to the fact that the score function has mean equal to zero. Finally, the maximum

possible correlation is

Corr(B(1.6), 9log fe(e,7) ) »

: dlog fole, )\ 2
o = }()|Va,r<——gf('(c’7)) , (4.11)

oy

obtained by using the functions which would provide us with the equalities in expressions
(4.8) and (4.9). This is a general result based on no assumptions about the form of the
distributions of the two processes and the form of the functions A(t, 8), D(c,~) and B(t, ).

This means that

Corr(B(t,6), 9log fe(e,n)

Corr(t c) ‘ < )
) B(t.o)| =
(t6) oy B(t,6)

|| = , (4.12)

which provides a whole range of values for ¢ given that we know p, and vice versa.

In the previous chapter we thought that function B(t,#) should be standardized, so
that different choices for the bias function would not affect the size of 4. Our calculations
depend equally on the score function of the C—process, as seen in the joint distribution in

(3.6). The fact that we haven't standardized the score function of the C—process is the
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reason why expression (4.10) includes its standard deviation. Therefore, if we decide to

Jlog fer . .
have (—]9%;(92 standardized as well as B(t, 0), this leads to an new dependence parameter

" > e A %
o= (5V{L7'(&°£;(L'—'>> (4.13)

which is nothing more but the ordinary o, scaled by the standard deviation of the score
function of the C-process, which we will name "standardized 4”. As a result, the size of
5* does not depend on the choices we make for the distribution of the C -process and the

bias function. Hence, expression (4.10) takes the form

< o], (4.14)

C’or?'(A(t, 8), D((;’ 7)) B(t,0)

allowing * to be directly comparable to the correlation between the two processes.
Under the spacial case of the PH assumption, defined in (3.9), we have that M%ﬂl =

1 — He(c.w), and hence

7 dlo“fc )) fel(e,v)de (1 - Hc,(c,y))Qf(?(C,’Y)dc

I
= ety

= (4.15)
Consequently, expression (4.10) becomes
Corr(A(t,6). D(c. 7.))B(w) < |Corr(B(t,0), (1~ Hc(c,fy))>3(t’0)
= ]9l (4.16)
where in this case
b = &,
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meaning that 0 now is the maxiimun possible correlation between the two functions. We
see that PH assuption results to standardized score functions, which is a very useful

property of a structure that we are going to use exteusively in the remaining of the thesis.
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Chapter 5

Generalizations of the Model

5.1 The PH Assumption

In chapter 3 we s *our '

n chapter 3 we set the basics for our model, giving explanations and proofs for several

of our decisions. In this chapter we expect to present the use of the model in cases where

the assumptions are altered, demonstrating in that way the ability of adjusting to different
' . o

situations.

A reasonable extension to our model would be to assume proportional hazards,preferably
)

for both processes
hr(t.8) = " (t). he(e,7) = ehi(c) (5.1)

where h3(t) and hZ.(c) are the baseline hazard functions of T and C' processes respectively.
The above structure is similar to Cox’s proportional hazard model, where initially we
do not allow the presence of covariates, assuming that parameter 8 is the same for all
the individuals in the trial. Therefore, this is a simple multiplicative model with a PH
structure, which could be useful for comparisons between different groups, where each

group has it’s own parameter, and all share the same baseline hazard function. In this way
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of modeling. we need to assume that the baseline hazard function is known, and is shifted
up or down depending on the values of 8, otherwise we would not bhe able to estimate it.

There are some benefits tor using the PH structure. Under this model we have that

()H( ((:? Al)
o~

!

dlog fe(c,v)

= Hc(c,7), 0 =1- He(c,7)

and the joint distribution becomes
Fro(td) = fr(t.0)fo(e.) [1 +ofi- Hc(c.,'y)]B(t,@)].
Moreover, the log-likelihood function becomes
LL(t;0.~4.0) =~ LL(t;0,v,0 =0)

+53° {0 1)1 = Holt )t 6) - el B 0)} (52)

and the expression which provides us with the correlation bias finally takes the form

n

. 1 Ou(t:, 0 . '
bty = =3 { 0= [1= Bt 22 - e 200 (53

i=1

People might argue that there is no need to use PH in the absence of explanatory
variables. The point though is that this is not a typical PH model with covariates. It
is a multiplicative model, reparametrized, which has a nice interpretation and simplifies
calculations. Weibull for example, which is a widely used distribution, has the PH property.

In the following sections we will see how beneficial this kind of modeling is, in terms of

computations.
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5.1.1 The Expectation of the Correlation Bias

Expression (5.3) provides us with the difference fs — By, which is the bias of the parameter
of interest due to the correlation between the two processes. A quantity of great interest
would be the expectation of the bias. which would give an overall imeasure of the difference
of the two estimates. With no further assumptions about the general function B(t, ), the

expectation becomes

Elh-0) = iz | / (1= Heleo)| 2450 1, 0) ey aee
c<T
// H( t H)fT(f H)f( ( )dt(l(;:l
T<C

ocC

/ Het. ) 22D £10.0)Sc (1, ) } (5.4)

The above expectation is taken over the indicator variable /; and the minimum of T and
C. Tt is also important to know that

9B(10) T ofr(us
[ [ B, o)

on(t,0) +
00 Sr(t,9) Sr(t,0)

u(t,0)Hr(t.6).  (5.5)
Using expression (5.5) in (5.4) and under the PH assumption in (5.1), we prove that

E|[f5 — 6o] Er [B(t, 6)T(t,, 7)] (5.6)

o0
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where
T(t.6.5) = ./0' [1 — Hela, 7)] {1 — Hp(t.0) + HT(JT,())}_fC(J",,’y)d:E.

The full proof is included in Appendix A.
The result in (5.6) provides us with an expression for the expectation of the bias. It
depends on the form of function B(#.0) and hence we need to specify it’s functional form

before we proceed with the calculations.
5.1.2 Upper Bound

The only assumption we have made so far is the PH structure of the model, making
no additional assumptions about B(t, ). Using Cauchy-Schwarz inequality we obtain a
bound for the expected bias

1
2

|E[0s — bo]

15|;-(797‘—0){ET [32(1‘,,9)] [T2(t,0,7)]}

= 1ol {ET [72(t.6,7)] } (5.7)

where the equality is attained only when B(t,6) is proportional to function T'(t,8, ).
The above result is important, and there are some advantages and disadvantages related
to it. First of all (5.7) gives a bound for the expected bias which provides us with the
»worst” possible case, being the largest deviation from our independent estimate, for given
5. The most important thing is that the bound does not depend on the unknown function
B(t,6), indicating that this is an overall bound for any choice of B(t,#) which meets the

restrictions that we have set at the beginning. We know that B(t,0) needs to be a linear
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combination of T'(t.6.~) in order to attain the upper bound, but an excellent result would
be achieved if we had a simple function for B(t,6), for which the bound is met. The
main disadvantage is that the calculation of the expectation is rather difficult, given that
function T(t.6.~) is an integral itself. Using a computer it wouldn’t be a problem to get
numerical results, but obtaining an analytical expression for (5.7) is a difficult task to

achieve.

5.1.3 The Expected Bias when B(¢,0) = 1 — Hp(t,6)

If we now make our usual assumption for the unknown function, B(t,6) =1 — Hr(t,0)
then

ou(t.9) _ 0B(t,0)

wt0) = =55 06

= —Hr(t.6),
the log-likelihood function becomes
LL(t:0.~.8) ~ LL(t;6.7,0 = 0)
w03 {00 [t et [ Hrto)) - BBt i - e 0]

and the correlation bias takes the form

. - T
s — b =~ ) Z]: {HC(tiu'Y)HT(ti,H) —-(1- ]i)HT(ti’e)}'

We can prove that when B(t.0) = 1 — Hr(t,0), the expected bias takes the simple form

Elfs=00] = 5 s Er [Ho(t2)Sc(t ) (5:8)
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obtaining an expression equivalent to (5.6). The proof of the above result is presented in
Appendix B.
. v 1MQ H r "’ . N N v L N
From the result in (5.8) we conclude that for a given value of 4 and when B(t,6) =
1 — Hr(t. ). the expected bias is known. Moreover, for different values of § we can perform

sensitivity analysis. trving to understand how this function behaves in different levels of

dependence.
5.1.4 Example

Following the first example in chapter 3, using the same data set, we will calculate the
expectation of the correlation bias along with the upper bound.
Starting with the expectation of the bias, we managed to prove expression (5.8) under
he ¢ tion that 2128 — Ho (¢ 9). In this parti i
the assumption that —5;— = r(t,8). In this particular case that we assume exponential
for the T -process of the form fr(t,0) = fe= % the cumulative hazard becomes Hr(t,0) =

ft, giving

OHr(t,0)  Hr(t.0)

a0 6
Assuming fe(c.y) = ve™ ¢, exactly the same is true for the C—process. Therefore, (5.8) is
slightly modified to take the form

Elfs—b] = == Br|Holt v)Sc(t )],

We need to make similar adjustments to (5.7) for the upper bound (UB), which finally
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takes the form

El6s - 6]| < ldlﬁ{&[ﬁ(nw]}%

where

T.(t.0.7) = ./04 [1 — Hcv(:z;.y)] [1____}% + Hp(z, ())]fcr(r,'y)dz.

The above small changes are siinply a result of the form of the exponential we use. If we

had assumed that fr(t.8) = ¢?e=¢’!, then we wouldn’t have the need to make any kind of

modifications.
For 6 € [—0.004.0.004], the data are in Table 5.1, while we can have a graphical

presentation in Figure 5.1.  We can see that the values of the bias and the expected bias

5 6;-6, E[;—6,) UB
-0.004 -0.00297 -0.00205 -0.00425
20.003 -0.00223  -0.00221  -0.00319
-0.002 -0.00149  -0.00147 -0.00213
-0.001 -0.00074 -0.00074 -0.00106

0 0 0 0
0.001 0.00074  0.00074  0.00106
0.002 0.00149  0.00147  0.00213
0.003  0.00223  0.00221  0.00319
0.004 0.00297  0.00295  0.00425

Table 5.1: Bias, Expected Bias and the Upper Bound of the parameter of interest for
different values of d.

are remarkably close. a result which is exactly what we would expect to find. The bounds
for different levels of correlation, which are calculated for any B(t, 6), show that our choice

of B(t,0) = 1 — Hr(t.0) provide estimates for the bias which are rather moderate. Given
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Figure 5.1: Graphical representation of the results in Table 5.1.
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that we can calculate the worst possible cases, we end up having a good picture of what

would possibly happen if we have low level dependencies between the two processes.
5.2 PH Including Covariates

The next obvious step in the model is to allow the presence of covariates. This means
that each patient is accompanied by a set of explanatory variables, which usually describe
the condition of the patient at the time of entry in the trial. Therefore, we have different
parameters 6; and +; for different patients which depend on the specific set of covariates of

each patient. The PH structure for both processes takes the form
hr(t.x) = e’ (1) he (e, x) = eV hi(c) (5.9)

where v and u are now vectors of parameters and x is the vector of the covariates.

If we assume B(t,6) =1 — Hr(t,6), the joint density becomes
fre(t.c) =~ frt,v)fele,u)|1+6[1 = He(e,u)] [1 — Hr(t,v)]
and the log-likelihood is similar to (5.2)
LL(t:v.u.d) =~ LL(tv,u,é= 0)

+ 5 Z {HT(tiaV)HC(tia ll) - [iH(;(ti, u) - (1 — Ii)HT(ti,v)}.(S.lo)

i=1
Therefore the correlation bias becomes
n

G5 — Vo =~ 6[z(v0)]_1 > {xi | Hr(ti, v) Ho (i w) — (1 - Ii)HT(ti,v)]} (5.11)

i=1
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where

_(')ZLL(t; v,u. 0 =0)
ovov’

uvy) =

is the obscrved information matrix and

is the matrix of variances and covariances of the estimmates of the parameters in vector v.

The expression for the bias of the vector of regression coefficients takes the simpler form

Vs — Vo = (5{1(v0)] -1 Z {x,' [HT(ti,V>H("(ti, u) —(1- Ii)HT(t,-,v)] } (5.12)

i=1

At the same time. what we need to do is to choose an appropriate baseline hazard.
A choice following our way of modeling would be obviously a parametric baseline hazard
function. In the meanwhile, the results presented in sections 5.1.1 and 5.1.2 still hold when
we have covariates. The only difference is that the expected correlation bias and the upper

bound are now conditional on a specific set of covariates.
5.3 The Independence Model

In this work, many times we have needed to refer to the paper written by Tsiatis(1975).
According to his work. if we use a model to analyze survival data that assumes dependence
between failure and censored times, then there exists a unique proxy model with inde-
pendence between the two processes, from which we can derive the same sub—functions as

from the dependence model. Therefore, it would be of great interest to see the form of this

26



proxy model, based on our dependence model.
According to Tsiatis(1975) Theoremn 2, and using his notation, the joint survival func-

tion of the proxy model is defined by

F't) = [[E®) (5.13)

J=1

when p risks are present, where

Friu) = exp{— /O “hi. .«;)ds}, (5.14)

is the survival function for risk j of the proxy model, and h(j, s) is the sub-hazard, derived
from the given model. h(j, s) is the hazard of failing from cause j at time s in the presence
of all the other risks.

In our particular model, we have only two potential risks, T"and C'. Under our notation,

the joint survival function takes the form

Srelt) = / / Fr(10,6) fe (v, ) [1+5M—£%M] dudo
_ ST(t,G)Sc(c,fy){l—5u(t,9)m] (5.15)
Oy

where u(t.0) is as defined in chapter 3. Using Src(t) we can get the sub-densities and

then the sub-hazard functions. Firstly for the T—process, the sub-density becomes

aS(t)

fiu) = - [—at—‘]u = fr(u,0)Sc(u,v) [1 ~ 6B(u, 0)

M:' (5.16)

v
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and the corresponding sub-hazard is

() oH

hi(u) = g(u) = hp(u.0)|1+ (5—%—)</L(’U, 0) — B(u, ()))] (5.17)

Similarly. for the €' -process we have

IS(t 0 log fo
. (ﬁ.(u) = - {—()(—l} = fe(u.v)Sr(u, 6) [1 + (5,u(u,9)dlob—'./c(uﬁ—)—} (5.18)
c g o
and
1 ,
g _ fo(u) N ( dloghe(u,y)

hi(u) S he(w, ) [1 + dp(u, H)T] . (5.19)

The above sub-hazards are the basis of constructing the independent model, in which they
are considered to be the marginal hazard functions. Assuming that G(t) and G¢(c) are

the independent survival functions of our new model, according to (5.14) we have

Grit) = ew{ - /'h”ud }
- oxp{ —o/ h(s,0) ‘)H(“ (s, 7>(t(s,9) _ B(s,a))ds}

_ ST(t,H)oxp{ /OhT( ,e)wg—g)( (5,0)—3(3,9))(13} (5.20)

and

= eXp{ — He(e,y) = 5/ hc(s,y)u(s’())?lo_gffmds

0 5y
) SC(M)GXP{ B 5/ hC(S’V)“(S’H)QI'(%ﬁl)ds}- (5.21)
’ Y

The product of (5.20) and (5.21) under the presence of independence, is simply the joint
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survival function. for a given value of 9. From the above equations it is clear that in the
new model. the marginal functions of risk 7' functionally depend on the functions of the
C-process and vice versa.

Under this new framework we are now interested in the probability of an event, either
failure or censoring. Assuming that gr(t) and gc(c) are the density functions and Ar(t) and

Ac(c) are the hazard functions of the proxy model, then the probability of the minimum is
) I ) 1-1
p= [gm)G(-(t)] {gC(t)GT(t)} = Ar(t) At Cr(NCel)

where [ is the indicator variable. The marginal hazard functions of the proxy model are
equal to the sub-hazards of the original dependent model. Attempting to draw inferences

about #, which was the initial parameter of interest, we construct the likelihood function

which has the form
Lp = [ Ar(t) " Ac(t) =" Gr(t:)Ge (t:)
i=1

and the log-likelihood is

n

LLp = Y. {L‘ log Ar(t;) + (1 — I;)log Ac(t;) + log Gr(t;) + log GC(ti)}

i=1
n

= Z {]1 log /\T(ti) + (1 - Iz) log Ac(t,’) - AT(ti) - Ac(ti)} (522)

i=1
with A, (t) indicating the cumulative hazard functions. We can prove that
LLp = LL, (5.23)

indicating that the two log-likelihood functions, the one from the dependent model and
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the other one from the independent, are exactly the same. This means that inferences
about # are exactly the same. whichever model we use. The proof of the above is included
in Appendix C.

The above result is not something new. Following Tsiatis’s Theorem, we would expect
to find the same distribution for the minimum, and hence draw the saine inferences about
§. The main gain from the above is that now we have the exact form of the model with
independent risks. proving that inferences for parameter ¢ are the saie whichever model
we decide to use. Benefits from that would be more obvious in the next Chapter, but the

knowledge of an equivalent to our initial model with independent risks is a great advantage
o™
5.3.1 Example

We use the myeloma data, but this time we include the covariates presented in Table
3.2. In the example in chapter 3 we show that an exponential distribution would give a
reasonably good fit to the T" process. In the same way we can show that an exponential fit
would be appropriate for the C--process as well. Therefore, we model the hazard functions

e

according to expression (5.9), choosing to have a constant baseline hazard function for

both processes. The hazard functions of the two processes now take the form
hr(t:v,0,x) = ¥ ™6, ho(tiu,y,x) = e >y,

where 8 and ~ are the constant baseline hazards. The estimates of the parameters are

Vo = (1.5567, —0.1065.0.4214,0.1251), 6y = 0.0017, {p = (1.7135,0.0910,0.5703, —0.1248)

and ¢ = 0.0006, obviously when d = 0. The main advantage of this way of modeling is
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that we can perform a sensitivity analysis on any of these parameters, including 6, and
observe the impact of the changes in the hazard and the survival functions.

Another way of dealing with the same problem is to focus on a quantity with a real
meaning like the hazard itself. More specifically we can assume that the logarithm of
the hazard is of main interest. which seems a natural thing to look at. Following what
we said in the previous paragraph, we can assuine that for a fixed set of covariates the
hazard is constant. and hence cach patient has an exponential survival probability. With-
out any loss of generality we may asswne that hr(t;v,x) = eV'* and he(t;u, x) = e¥*,
where now vectors v and u are not the same as before. The fact that we have elimi-
nated the baseline hazard indicates that the vector x must have an intercept, changing
in that way the vectors of the parameters. Now the independent estimates are Vo =
(—6.3875, 1.5567. —0.1065, 0.4214,0.1251) and Gy = (—7.4426,1.7135,0.0911, 0.5703, —0.1248).
Therefore, we assuine that wy = log hr(t; v, x) = v'x is our main parameter, which is sim-
ply the prognostic index (PI) of the T-process, and we will perform a sensitivity analysis
conditional on the set of covariates x. Similarly, if we assume that 2, = u'x, the PI of the

C-process, the expression of the bias becomes

Sy { exp(:0)82 — (1 - Lyt:}
5 i1 .
Zi:l t;

) 250
wy — w, =

(5.24)

We can see that the correction factor (or sensitivity index SI) depends only on the observed
times and zx. This means that the greater the hazard of being censored the more sensitive
is the dependent estimate w? for a given value of §. The relationship between p and 4 is

also of major importance. Under this particular way of modelling, which is proportional
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hazards. we already know from the results in chapter 4 that p < 4. In this case it can
be proven that p = d. This means that our sensitivity parameter is nothing else but the
correlation between the two processes, and hence by substituting § by p in (5.24) we get
the final expression of the bias.  The results of the sensitivity analysis are presented in
Figures 5.2 5.5. Starting from Figure 5.5 we see that large Pl for the T -process imply
large PI for the ¢ process. This means that paticnts who are more likely to die are more
likely to be censored as well, giving immediately an indication of the presence of a possible
positive correlation between T and C, conditional on the set of covariates x. As a result
Figures 5.2 and 5.3 show the impact of the sensitivity analysis on the survival functions.
More specifically Figure 5.2 illustrates the survival curves of the patients with the best and
the worst PI for the T-process. We see that the patient with the worst prognosis has a
more sensitive survival curve simply because this goes with an equally poor prognosis for
the C-process giving a high level of SI for our chosen p = 0.3. Similarly Figure 5.3 presents
the patients with best and the worst PI for the C-process which are the patients with the
smallest and the largest SI in our sample. Finally in Figure 5.4 we plot the SI against the
PI of the C--process. As expected this gives an increasing smooth line illustrating in a very

clear way the relationship between the two quantities.
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Figure 5.2: Min/max sensitivity on the survival with respect to the PI of the T—process.
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Figure 5.3: Min/max sensitivity on the survival with respect to the PI of the C-process.
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Figure 5.4: Graphical representation of the Sensitivity Index for p = 0.3.
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Figure 5.5: Plot of the PI of the T-process against the PI of the C--process.
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5.4 Model with Informative and Uninformative
Censoring

5.4.1 Introduction

So far. all of our work is based on one and only one initial assumption, that there
exist some kind of dependence between the failure and the censored lifetimes. We are
not able to mnecasure it. but we are able to model it and see what happens when this is
not zero. There are though some question that need to be answered. First of all, is it
reasonable to assume that all the censored observations are either all informative or all
uninformative? Is it possible from the context to identify which censored observations are
definitely uninformative?

A comnon situation is when we have a good proportion of observations censored at the
end of the study. It is definitely a different kind of censoring, something like a "forced”
censoring. It occurs not due to some randoin event or to an event related to our experiment,
but due to a lack of time or even because the whole trial was designed so as to end
at a specific point in time, preventing us from continuing the study. Now the question is
whether we should treat these censored times as being different from the ones that happened
randomly throughout the study or not. This means that if we consider dependence between
the failure and the censored times, will this dependence involve both kinds of censored times
or not? If the answer is no, then there is no change at all to what we have done so far. All

the calculations still hold, and we make no distinction between the two kinds of censoring.

But, if the answer is yes, then we can easily assume that the censored times at the end of the
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study are due to a reason which is completely irrelevant to what we are investigating, and
hence they are independent of the failure times. Therefore. we end up with two different
types of censored lifetimes. out of which one is dependent and the other one is independent
of the failure times. At the end, this will have an impact to the likelihood function and to

the estimnates of the parameters.
5.4.2 The Independence of Censoring at the End of the Study

We will now try to model the case where the censoring at the end of the study is
considered to be independent. using the exact likelihood. Now we have 3 events instead of
2. We have T. C; and Cg, where T as before is the failure time, C; the censoring before
the end of the study and C is the censoring at the end of the study. In the last case what
we know is that both T and C; are greater than Cp. and what we finally observe is the
minimum of these 3 possible events, hence Y = min{T. C;,Cg}. In other words this is a
truncated version of the censoring we have been using so far.

The likelilood function now has an extra term, and takes the form

L'(t;6,6,7) HP7 T < OV APr(C = 1,0 < T) 7% pp(E = ) 11002

(5.25)

where
1, ... when failure time

0, ... when censored time
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and

1. ... when C (censored before the end)

0. ... when Cg (censored at the end)
are the two indicator variables. Pr(E = tg) is the probability that a patient is censored
at the end of the study. This means that both T and 'y arc greater than ¢z, the time of

the end of the study. and hence we have

Pr(E) = / /f(ﬁ(c,'y—i—éB(t, 0)) fr(t,6)dtdc
te tE
= Sr(te.0)Sc(te, ) [1 - 5%51':}—’7)/1,(@, ())] (5.26)

It is clear that if all the patients join the trial at the same time, then ¢;; will be the same
for everyone, but if patients join the trial at different points in time, then each patient will

have his own time t%. which would be know from the beginning if the trial has a specified

end point.
Now the likelihood function takes the form

n

L'(t;0,0.7) = H { |:fT(ti,0)SC(tia'7)(1 — 0B(t;,0)

i=1

Oy
Olog fc(ti,w)] s

OHc(t;, ’7))} b

et ) Se(t,0) (14 sutr, 0) 7B

N (1~1,)(1—Z4)
sritt)elt (1 175, )] } (.27
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and after sowe calculations we end up with the log-likelihood

r+k

LLI(tl,H-, ,}(5) = Z {], log hT(t’i7 ()) + (1 - [1) lOg h,('(ti.’y) — HT(ti,H) - HC‘(ti,'}’)}

=1

_ Z {Hp(ti.“/) + HT(tiag)}

r+k
46 [Z {(1 - 1-)‘”“°—(f;;(“ﬂu(tl,9) L ﬂ——)B(ti,G)}

i=1 0y
w oo
+,-Z:1: {g@%ﬁu(tiﬁ)}} (5.28)
where
1 - the number of failure times
k- the number of censored times before the end
w - the number of times censored at the end.

Therefore. the log-likelihood has the same structure as the initial one, with the only
difference being that we add an extra term that corresponds to the assumption of censoring

at the end of the study. If we now proceed with the estimation of the parameter of interest,

we end up with

- r+k ; ;
R ) dlog fe(ti,v) Oplt:, 0) OHc(ti,v) 0B(ts,0)
_ 0 1— Ii ’ T i3 )
65 — 6o = /(8) [; {( ) oy 06 & ay 06 }
aI_IC i Y a”(tlae)
+ Z{ 50 (5.29)
where
r+k
LL'(t;0,7.6=0) Z{I,loo hr(ti,0) + (1 = 1) log he(ti,y) — Hr(t:,0) — Ho( m)}
i=1
> { elt) + Hrle )}
i=1
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Calculations are straight forward and what we get is what we expected to get, a modified
version of our initial estimate of the parameter 6.

The above way of modeling. with 3 possible events T, C; and Cp can be seen as
a special case of a general model. Assume that we have a competing risk problem, in
which we are interested only in one particular risk. We can assuine that the failure times
from this particular risk form the T-process, while the failure times from the other risks
can be categorized, according to whether we assume dependence between them and the
particular risk of interest or not. Hence, we form C} -process and Cp—process. This is a
small extension of the model discussed in this section. The likelihood function would be
equal to (5.25). with the only difference that the observations of the E -process will not

necessarily appear at the end of the study.
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Chapter 6

What if we knew more?

6.1 Presenting Data with which we can Estimate
Parameter 9

6.1.1 Introduction

As we have mentioned several times before, parameter ¢ is a quantity that cannot be
estimated. The main reason for that is that the data themselves do not provide enough
information, leaving us with the question of what would happen if we had the opportunity
to observe more. So far we have based all our work in the assumption that § is actually
known, avoiding in that way the problems of estimating it. In this chapter we will work
on the special data set of Table 2.1. Under some certain assumptions, discussed in section
2.2, we do observe additional information which enables us address the question of the size
of 4.

Under our hypothetical scenario with viewpoints A and B, we are privileged to have a
data set of 38 patients in which we observe the exact death time of 11 of them, the censored
time of the 14 of them, and both the censoring and the exact death time of the remaining

13 patients, providing us with far more information than we usually have when we analyze

72



survival data. In the way we have "constructed” Data A, censoring is informative (or at
least part of it). while in Data B censoring is considered to be uninformative. We believe
that in a real life situation it is more likely to observe Viewpoint A rather than Viewpoint
B. Doctors will always try to save the patients lives. if they can, rather than try to make
up their numbers for their statistical analysis. For this reason we have considered Data A
to be the observed data while Data B to be the "true” data, in the sense that any estimates
of parameters of the failure process that come from Data A will be biased. because of the
- bl
informative censoring, while the estimates of the sane parameters that come from Data B
will be unbiased.

In Figure 2.1 we saw how misleading the estimate of the survival curve under indepen-
dence can be. What we want to do is to take advantage of the additional information we
have, and explore the possibility of improving our estimate of the survival curve which we
would make if we only knew Data A. Our main target is to use this extra information to

estimate 0

6.1.2 Analyzing the Data

Initially assume that censoring is uninformative. We admit that we do not have many
observations, and the presence of some long term survivors suggests that we should try
to analyze these data using a mixture model. We assuine that there is a proportion p of
the patients which will never die, the so called immunes, while the rest of the patients die

with an exponential rate, with parameter 0, see Farewell(1977) and Maller & Zhou(1996)
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Hence the survival function takes the form
Sr(t.6,p) = p+(L—p)” (6.1)
and the density becomes
frit.0.p) = (1 —p)be™™. (6.2)

Additionally, for the C'-process we assume a simple exponential model with parameter
~. The log-survival plot for the C-process looked reasonably straight, suggesting that an
exponential distribution would fit the data reasonably well.

As a result of our assumption, fr(t,0,p) is not a proper density function, allowing a
cumulative probability p when ¢ — oo. Furtherinore, we now have two parameters, 6 and p,
and we will estimate them by maxinmum likelihood estimation. The independent estimates,
assuming non informative censoring, are (95‘ = 0.00291012 and pg' = 0.607822, where A
indicates that these estimates come from Data A, and 0 means independence (6 =0). If
we use Data B, then we get HA(’)B = 0.00246945 and pF = 0.31969, which we consider to
be the "true” estimates, in the sense that they are the unbiased estimates of the real true
parameters. Figure 6.1 shows the fit of the model (6.1) using the above estimates.

It is true that in either of the above cases, where we estimate parameters § and p,
we discard pieces of information. In the first case we ignore the exact death times of the
patients who relapse and in the second case we ignore the censored times of the same
patients. The reason for that is that in practice we have either the one case or the other

but we will never have all these data at the same time. Later in this chapter we will see
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Figure 6.1: Fit of the independent parametric survival curves using the mixture model.
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how we can use all the information we have in order to estimate 4.
6.1.3 Estimation of parameter ¢

As we have mentioned before, the difference between the two curves is large. Actually
the survival probability in the tails is alinost double when we have the relapsed censored
times than when we have the exact death times. The question we need to answer now
is "what is the valuc of § that, given that we use the data which include the informative
censored times. we will still be able to get the "true” estimates for our parameters”. In

other words. which is the value of ¢ for which
o= i

and

~

~A B
bs = Po-
In order to be able to answer this question we need to use the exact likelihood function

n
L(t:6.p.7.0) = [[PT=tnT <C)"P(C=cnC<T)" (6.3)

i=1
and not the approximation we introduced in chapter 3. The reason for that is that we
do not know how large our estimate of 4 is going to be, so working with the exact model

we give no restrictions on the value of §, while using the earlier linear approximation we

restrict 6 to be small. The probabilities under the mixture model are

PT=tNT<C) = fr(t.6,p)Sc(t,.v+ (1 - Hr(t,6,p))) (6.4)
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and

P(C=¢nC<T) = / fo(e,r +6(1 — He(t,6,p))) fr(t,6, p)dt

c

+p Ji { fe(e.r + 01 = Hr(t.6,p) }, (6.5)

where the correction p lim {fe(e.q +8(1 — Hr(t.6,p))) } in the above expression comes
from the fact that tl_i}CI}o {Sr(t.6.p)} = p and not zero. as when we have a proper density.
Therefore, we require that expression (6.3), for the right value of J. to give the "true”
MLEs of the parameters of interest. Being in the position to know the "true” parameters
6B and p§. we simply substitute them in (6.3), along with 73t = 0.00116589, and we get
the MLE of 6. Hence, L(t:68, 55, 6) gives an estimate 4 = 0.00121015. This is not a true
maximum likelihood estimate but an ad hoc argument; it provides us with & which is the
MLE of & conditional on the fact that 02 = 68 and pp = pb.

Another way of estimating all the parameters together, including 4, is to construct the
appropriate likelihood for all the data we have available. In this case we have 3 different
types of observations
i) observe death time but not censored time, with probability as in (6.4)

31) observe both censored and death times, with joint probability density
fT,C'(t',C) = fT(twe’p)fC]T(C,’y_'_(s(l - HT(tvgvp))) (66)

and finally

ii1) observe censored but not death time or neither of them. This third type of observations

can be seen in two different ways. If we assume that these censored times are due to the
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end of studv. which is probably the case. then this means that during the follow up time
we were able to observe neither the death time nor the censored time. Hence, if E is the

time of the end of the study we have that

Pr(T>ENC>E) = / /fT(t.@,p)qu((:, v+ 6(1 — Hr(t,8,p)))dtdc
E E

o0
+p zllnolo { /fC|T(c. v+ 4(1 — HT(t,O,p)))dc}, (6.7)
E

exactly like the end of study censoring in the previous chapter with a small correction at
the end. On the other hand if we assumne that what we observe is the actual censored time,
then expression (6.5) provides the probability of such an event. The major distinction
between the two is that assumning that the reason for a patient to be censored is to relapse
(informative), then in the first case we say that we were not able to observe it, while in
the second one we claim that the observed censored time is actually the time where the

patient relapses.
If we assume that we have the end of study censoring for category (ié¢), then the

likelihood function takes the form

L(t: 0,]),’)’,(5) = H P(T =1;N T < C)Ii(l_zi)Pr(T =t N C = ci)l.‘Zi

i=1

P(T > ENC > E)-1Z (6.8)

where I, indicates whether we observe the death time of the it" patient or not and equiva-
lently Z; indicates whether we observe the censored time or not. Maximizing this function

over the parameters 6,p, and § we get the estimates presented in Table 6.1, which now

78



A N T R A
0.0025655 | 0.286328 | 0.000290804 | 0.0018024

Table 6.1: Second set of "true” estimates.

gives the second set of "true” estimates.
Finally, assuining that we have the second type of censoring for category (7z), which

computationally is easier to deal with. we have the following likelihood function
L(t:8.p.~.0) = HP(T =t,NT < CYM=Z0pp(T = t,nC = o)1 %
i=1
P(C=cNnC < T)U-14, (6.9)

The MLEs of parameters 6,p,y and d are in Table 6.2, where now these are the third set

6| » | 5 | ¢
0.00236544 | 0.28971 | 0.00122373 | 0.00202389

Table 6.2: Third set of "true” estimates.

of "true” estimates.

People might find confusing the distinction of the estimates into three sets of "true”
estimates. This has to do with how we use the data in order to obtain our unbiased
estimates of the parameters. The first way of estimation I believe is the most realistic,
because is based on the actual data that we will have in real life. The other two are
basically the same and they are based on using all the data that we have in this particular
case, although in practice we wont be so lucky to have all this information. In order to
avoid confusion, in the rest of the chapter we will refer to the different estimates of § as
61,8, and 53 meaning that they come from the three different ways of estimating them.
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6.1.4 Estimating the Parameters of Interest Using the Estimated
Values of 9

In the previous section we described ways of estimating parameters . The obvious
second step would be to use these values of 4 in our original likelihood function and try to
estimate the parameters of interest. We would hope to get estimates for the parameters
close to the “true” values. but the fact that we do not have enough observations and the
variation is large indicates that this might be too optimistic.

If we assume that we have 5, = 0.00121015, the value we get using the first way of
estimation, we get é5 = 0.00198907 and p; = 0.411352. It is important to note is that the
parameter 7 of the C-process is kept fixed and equal to 4§ during all the calculations,
because it is required from the model that v is the parameter under independence. In
Figure 6.2 we plot the KM estimate of the "true” survival curve along with the 95%
confidence limits calculated using the Greenwood’s formula. It is obvious that for reasons
we described before we get a wide confidence interval. The solid line is the survival curve
using the "true” parameters, while the dashed line is the fitted survival curve, using the
above estimates. We see that is not the best fit to the "true” survival curve, but is still
within the 95% confidence limits. If we had more data we would expect to get better
estimates, but given the presence of the variation we get a reasonably good fit.

The fact that the dashed line falls in the 95% confidence interval is encouraging, and
is a visual indication that we have reasonably good estimates. However, we would like
to test this result using the likelihood ratio test to see whether the survival curves can

be considered indistinguishable or not. The likelihood that we will use is the one under
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Figure 6.2: Estimated survival curve using 51.
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independence and we will use Data B, because this is the case that provides us with the
unbiased estimates and hence we can test whether one set of parameters is significantly

different from the unbiased (“true™) ones. Therefore, the likelihood ratio gives

210 | Lo(T2-0.00198907, 0.411352)
—2log

2108 | 7 (75000246935, 0.31969) |~ 233101

which, compared with 4.60517 which is the x3(0.10) with 2 degrees of freedoin, shows that
we cannot reject the hypothesis that the two survival curves are the same.

Taking now (5_) = (.0018024. the MLEs of the parameters are 65 = 0.00169965 and
ps = 0.360341. Figure 6.3 shows the fitted survival curve plotted together with the KM
estimate and the curve using the “true” parameters fromn Table 6.1. We can see that it

falls within the 95% limits of the KM estinate. Hence we perform the likelihood ratio test
and we get

91 Lo(T3,0.00169965, 0.360341)
—2 oo

2log |\ 7 0T, 0.0025655, 0.286328) | ol

which is still not enough to reject our null hypothesis. If finally we assume that 83 =
0.00202389, our new estimates for the parameters are 65 = 0.00153197 and Ps = 0.348271.
In Figure 6.4 we can see again the survival curve using the above parameters (dashed line)
plotted together with the KM estimate and the curve using the "true” parameters from
Table 6.2. We can see that the dotted line falls within the 95% confidence limits, exactly

as before. The likelihood ratio test gives

Ly(T3,0.00153197, 0.348271)

~2log | 7 7;,0.00236544, 0.28971)

3.34736
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Figure 6.3: Estimated survival curve using ds.

83

2500



Survival

o L
o
o
L ] I I
0 500 1000 1500 2000

Time

Figure 6.4: Estimated survival curve using ;.
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which is still not significant. exactly as we would expect.

Finally. in Figure 6.5 we plot all the survival curves estimated using the three possible
ways described above. This is to illustrate that the procedure with which we estimate &
actually has little impact on the estimation of the survival curve. All these curves are
very close to each other and they are all considered indistinguishable from the "true” one,
with the likelihood ratio test being our criterion. It is important to mention again that
we have used the exact model. and not the approximate one. This made the calculations
more difficult: we maximized all the likelihood functions using the mathematical software

MATHEMATICA.

6.2 Modeling two types of Censoring

In chapter 5 we considered the censoring at the end of the study to be uninformative
while censoring that happened during the trial was considered to be informative. This
is only a special case in which we are able to make a distinction between two types of
censoring, where the major criterion was the time the censorings occurred. The general
case would be when we were be able to say which censorings are informative and which
are not.

In order to be able to model the general case, we introduce an additional indicator
variable
1, ... when informative censoring
0, ... when non-informative censoring
which shows us which censored times are considered informative and which are not. This
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implies that some additional information will be available with the data, explaining the
reasons for patients being censored and helping us in that way to label the censored times.
In a clinical trial. for instance. we may be able to find out the reason for censoring. If the
patient withdraw for a non-medical reason (cg. his medical records were lost) we would
define W = 0. If the patient withdrew because of adverse side effects, we would define
W =1

Therefore the model takes the following form. We assumne that each patient ¢ has a
potential failure time T; and a potential censored time Cj, and we observe Y; = min{T;, Ci}
and an indicator variable [;, exactly as before. Additionally, we assume that each patient
has a value 4;. which is the level of dependence between T; and Cj, and we assume that it
is known. In this case we allow each patient to have a different value of ¢;, and we are able
to "observe” it only when w; = 1, meaning that in this case we may allow d; to be different
from zero in performing the sensitivity analysis. The case we studied so far where all the
patients have the same value of 9, is a special case of the model we are considering now.

Following the above, our initial assumption about the conditional distribution can be

slightly modified to be
PT(C = C|T = t’ w' = w) = fC(C» Y + (S'U)B(ty 0))7 (610)

involving in that way the indicator variable W. Note that if W = 0, T and C are condi-

tionally independent. The joint density becomes

frew = fe(e,y +0wB(t,9)) fr(t, ) Pr(w), (6.11)
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where
T, .e. when w=0

1 -, oo when w=1
and 7 is the proportion of non informative censoring in the sample. A very important
assumption in (6.11) is the independence between W and T. This means that the reason
for which a patient is censored does not imply anything about the exact failure time of
this patient, which we admit is a rather restrictive assumption. Heitjan & Rubin(1991) in
a similar way model “coarse” data, but use the conditional distribution of the indicator
variable given the failure time. We will explore the case where we have dependence later
on in this chapter, but initially let’s see what happens in this simple case.

The probabilities now become, assuming 4 is small,
PT=tT<C) = PO=tT<C,W=0+PT=t,T<C,W=1)

= Pr(W =0)fr(t,6)Sc(t )

+ PT‘(W = l)fT(t,o)Sc(t,»y)[ 1 — (SB(t’g)aHgg,'y)}

— fT(t,G)Sc(t,’y){l‘éPr(Wz 1)B(t,0)8—}{$} (6.12)

and

P(C=¢,C<T,W=uw)=Pr(w) /00 fe(e,v + 6wB(t,0)) fr(t, 0)dt

8long(cs7) )

~ PT(w)fc(C, ’)’)ST(C» 9) I: 1+ 5wﬂ(0, 9) 8’7

(6.13)
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Finally the likelihood takes the forin

Ly = HP’I‘(T =tT< C)LPT'(C =t,C<T,W = 1)(1—1.)W,
=1

Pr(C=1,C<T,W=0)"'"W0"") (6.14)
and the log-likelihood becomes

; n . . dl N - ti, . , ]
LLjw =LLo+ 3 {”‘ [”/,-,(1 - mu(w)o—g{;w — L,Pr(W = 1>B(ti,e)gﬂ—°a('tﬁ‘)] }
i=1 Y

(6.15)
where LL is the log-likelihood in the case of independence. The above expression will
provide us with our estimates.

This case gives us an idea of what to expect from a model with two types of censoring.
The independence estimate of the parameter of interest remains the same, and the cor-
rection factor is slightly modified, including, in a way, a proportion of the old correction
factor defined by the number of informative censored cases. If in (6.15) we assume that all
the censored observations are informative and that all the individuals have the same value
for &; then we go back to our original model.

As we mentioned before, the above way of modeling raises the question of how reason-
able the assumption of independence between T and W is. In other words is it reasonable
to say that the indicator of informative censoring does not imply anything at all about the
exact failure time of a patient? If there is a correct answer then this is probably no. This is
because when we assume some kind of correlation this means that the failure times follow

a pattern and they do not come completely at random. Therefore, an important thing we
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need to consider now is the conditional distribution of W given T.
If W and T are correlated, the model becomes very much more complicated, and we

merely indicate here a possible approach. If we take

. . ... when w=0
fur(wlt) =
1 —m, ... when w=1

as the conditional distribution of W given T', the joint distribution takes the form

frew(toew) = fo(e,y+ 6wB(t,60)) fur(wit) fr(t,6). (6.16)

Here, 7, is a function of ¢, where: 7, : R* — [0,1]. Hence, the condition distribution of W

given T' can be rewritten as
fwir(wlt) = =™ [1 - 771] , (6.17)
and the joint of (6.16) finally takes the form

frew(t.ew) = foley + SwB(t,0)) fr(t, )~ [1 — m]w

= fele,y) fr(t, 0)m ™ [1 — m] ’ [1 + dwB(t, 0)%%%_(6,_7)]. (6.18)
Now expression (6.12) takes the form
P(T=tT<C) = fr(t,0)Sc(t,) { 1- 5(1 - m)B(t, e)aicagt—’ﬂ], (6.19)

while (6.13) becomes

o0

P(C=c.C<T.W=u) = / fele.y + 5wB(t,6)) fuir(wlt) fr(t, O)dt.  (6.20)

c
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The above two equations will help us construct the likelihood function in a similar way
like in (6.14).

For this to be feasible. the function m needs to be fully specified. The choices we have
is an important question. In principal, 7 : R* — [0, 1] can be any continuous function
without any further restrictions. However, we can restrict m; to be monotonic, and the idea
behind this is the following. If we assume that we have informative censored times, and we
believe that the exact failure times may be close to the observed censored time (a possible
positive correlation). then m should be small for relatively small values of ¢. Therefore,
a choice of an increasing function of ¢ should be appropriate. On the other hand, if we
believe that the exact failure times are not close to the observed censored times, then
should be small for relatively large values of ¢. This means that a decreasing function of ¢
would be appropriate.

Even with the assumption that 7; is monotonic, there is still a wide range of possibilities,
and the choice must depend on the particular circumstances in the study and what is known
about the prognosis of patients who are censored. How such information should be used,
and how sensitively estimated survival parameters are to the choice of m;, remain topics
for further research. If a reasonable estimate of m; is available, however, then the above

expression can be used to construct an appropriate likelihood function.
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Chapter 7

Semi—Parametric Approach

7.1 Modified Partial Likelihood

In the previous chapters we worked with the full likelihood, and we tried to explore
all the possible outcomes, under different assumptions about the p.d.f. of the T and C
processes. If we do not choose any known distribution, the prevailing assumption would be

PH. Cox (1972) proposed that the hazard function is proportional to some other function,

the baseline hazard function,
h(t, ) = e (1)

which depends only on time t. Parameter 6; is a linear combination of a set of explanatory
variables, which follow each individual that participates in the trial. Under the assumption

of independence between the failure and the censoring times, Cox introduced the Partial

Likelihood (PL)

l

PL = H Z h(t 6@ H Z ebe H Z eﬂ’xz

€eR(t(s)) CER (1)) bRy
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where 3 is the vector of parameters and X; is the vector of explanatory variables of the '
individual. In the above product, only failure times are considered, and R(t(;) is the risk
set at time tg,). where #¢) is the i'" ordered failure time. The independence assumption
implies that only the failure times contribute to the estimation of the parameters of interest,
where the censored times are only part of the risk sets. The most important property of the
Partial likelihood is the fact that the baseline hazard function finally cancels out, making
the calculations much simpler. This is the major advantage of the partial likelihood,
compared to the full likelihood, and what made it so widely used.

The question that is raised in our research is what happens when we depart from the
initial assumption of independence. We have already scen how we model the conditional
distribution foyr(c.y) = fo(c,y+0B(t,6)), where § is the measure of dependence. There-
fore, due to the potential dependence that arises from the presence of §, we claim that
even the censored times contribute information in the estimation process. We assume that
the basic idea of the partial likelihood remains the same, and we propose two, rather im-
portant, changes. First of all, considering that C' is a proper "failure” process, for failure
other than the one under investigation, we introduce in our likelihood a new term which
is simply the PL of the C-process. For § # 0, this extra term contributes an amount of
information in the estimation process of the parameter of interest. The second and equally

important change is that the hazard functions are now considered under the presence of

two risks, T and C. Therefore, allowing the sub-hazards to be the hazard functions of the

93



two processes. we define the Modified Partial Likelihood (MPL) to takes the form

h,u().(tj;v, u, X;)

e E

N PL = H hvaux)
WA (tiv.oa, x) Pl Wi (t;, v, u,x,)
1673( W) qER(t(}))

(7.1)

where v and u are the vectors of the parameters of the 7" and C processes respectively, and
x; the vector of explanatory variables of the 7" individual. The above expression is divided
into two products. the first one being over the r failure times and the second one being
over the k censored times. h¥(t;v,u,x) is the hazard function of T process in the presence
of the C process. which in competing risks’ terminology is the sub-hazard function, while
h”C(t; v,u,x;) is defined equivalently as the sub-hazard of the C' process. These functions
are different to the marginal hazard functions that Cox used in the partial likelihood, and
they are equal to each other only when 6 = 0.

The form of these functions is

R(tvoex) = lim Prit <T <t+AHT >1.C > t,x)
T\ Vo ¥ Alaot Af

f%(t,v’x)

© Sre(tiv,u,x)

and

fg-(t u'x)
Src(t v,u, X)

Wi (t;vou.x) = = he(t,u'x) {1 + 5u(t,v’x)}, (7.2)

where Stc(t; v, u,x) is the joint survival function, f%(t,v’x) and fé(t, w'x) are the sub-
densities of the two processes and u(t, v'x) is defined as before. How we derive the sub—

density functions is included in Appendix D. We see that the sub-hazard functions are the
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marginal hazard plus an extra correction factor, which is multiplied by d. It is obvious
that when & = 0. we go back to the initial Cox’s assumption of independence. Hence, the
MPL takes the form
. .y He(ta) Ou(t.6:) [
{ hr(t. 61+ ofciead s | }H{ he(t5,%) 1+5u(tj,oj)] }
.

MPLy =] — w
) C\Li Ve 1
S hr(f“(b)[ + lclting 9ultbe) , Z he(ty,vg) 1+<Su(tj,6q)

=1 hrit,00) ot

J=1

I'ERf[,)

-1

i=1

vx, HC’(tzux)ap(lvx)
(vx[|:1_+_OH(~(t qu)aythe H )
b)) = ewxe [1 + 5u(tj,v'xq)]

hr(ti,v'x¢)
qeRl(J)

fERt

and the log-likelihood is

r

MPLLg = Z{v'x,-+log [1+5

i=1

He(ti, u'x;) Ou(t, v'x;)
hr(ti, v'X;) ot 1'1

He(t, u'xe) op(t, v
—log E: v'x, i WXe) Op Xy)
og [1+5h

PR o
¢ Ry, r(t,vx,) ot

k
> {u,xJ s [1 +5l1’(ti’VIXj)] ~log [ > ¢ qu[l +5u(t],vxq)ﬂ}

=
€ Ry ;)

In first order approximation we get

MPLLg = i {V’x,— ——log! Z eV'xe

fERt(i)

} + Z {u'xj - log [ Z e“'xq] }
7= 9€ R ey

3 ev'xe Holtiu'x;) Ou(t,v/xe)
hr(ti,v'xe) ot

t.
_ (43 Rt(i) i

teRy

. Zr He(t, u'x;) ou(t, vx;)
é 1
N { { h’T(tivlei) at

i=1

Z 6ulxqu(tj, V/Xq)

k
q€R¢(4)
+Z{/L tJ’Vx] : Z ew'xy (7.3)

j=1
9€R: ;)
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where termn of 4%.4%... are omitted. We observe that (7.3) is the sum of the partial log-
likelihood functions of the T and C processes plus ¢ times a term that comes from the
dependence assumption we have already made. This extra term depends on functions of
both processes and on the unknown function B(z,6).

If we now make the usual choice B(t,v'x) = 1 — Hr(t, v'x), we have that

[1- Hr(a,v'x)] fr(a,v'x)da

pu(t.v'x) = = —Hp(t,v'x)

ST(t, V’X)

and hence

ou(t, v'x)

T = —hp(t, v'x). (7.4)

By substituting the above in (7.3), we get the simpler expression

r k
MPLLHT = Z {V’Xi — log |: Z eV'xe] } + Z {u/xj — log l: Z eu’xq] }
J=1

=1 feRg(“ ‘leRt(j)

Z e"/"f Hc(ti, u’Xg)

r IGR:(“ ,
Z Z ev’xg - HC(thuxi)

ZERL“)

\ > e¥'xa Hr(t;, v'x,)
€ Ry ,
+Z { Z PLE - HT(tj»VXj)}:l . (75)

i=1
9€ Ry,

The symmetry in the above formulae is a very nice result of the choice we have made for

the unknown function B(t,v'x). What we are interested in, is the vector of parameters of
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the T-process. Hence. if we differentiate with respect to v, we get

. > XY
8MPLL”T _ , (eRy

i=]

tERt(,,
v'x !
) Z xeeV X He(tou'xe) > e Yo VX He(t,u'xe) S xeev'xe
(ER, CERt() (’ERL( YERy,.
t) (i)
+4 5
(> o)

ZERL(I)

k
qeR‘(z) /
+y { S o - x;Hr(t;, v Xj)H (7.6)

which is actually the derivative of Cox’s partial log-likelihood plus § tiines the derivative

of the correction factor. As a matter of notation, we define

Z xgeVng
OMPLLs_ OPLL A leRy,
p 6=0 — A = Z {xi — __L—}

. '
{e Rt(i)

Furthermore, using Taylor’s expansion, we have

OMPLLs.o| _ OMPLL;s O*MPLLs—o| ,. .
ov o ov vo+ ovov’ %(v(;—vo) (7.7)

where obviously

OMPLLs—g
ov

_9PLL

vo ov

=0,

Vo
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because vy is the MLE when o = 0. Then, the estimate of the vector v comes from

A R PMPLLs—
Vs — Vo =0 |—————

avov’

Vo

S XV H(ou'xg) S evRe— Y VX He (1, u'xe) > xge¥' Xt

T —
IER(“) FCRt(l) eeRt(l fERg(LJ
2
i=1 ( Z ev’xi)
éERtm
S oxeet X Hr(t;. v'Xq)
{IER'U)
!
+ Z eW'Xg _XjHT(tj,VX]') ’ (78)
= 9 R
where
’ ! /
) Z x[xlfevxg Z eV'xe _ Z X[(?le[( Z xeev’Xg)
O?°MPLLs=0 Z teRy,) (eRy;) (ehy, bRy,
— =5, -~ 3
8V()V im1 ( Z ev/xe)

€ER1(“
is a k x k matrix. where & is the total number of the paraneters. Finally, the expression

for the bias. using the indicator function is

-1

o _s|ePMPLLe
Vs~ Vo= ovov’

Vo

Z xpe\lIX(eu/X[ Z eVIX[_ Z eVIXgeu'Xg Z xeeV/Xg

n I'Ger fGR:“) KGR:“) fERt(v)
i 3 : H(t:)
i=1 ( > e""‘l’)
ZERt(i)

Z xqev’xq eu’xq

qeR: v'x; .
+(1-1) S o X H7(t:) o (7.9)

qeRy

From the above results, we see that we finally get what we were hoping to get, an
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expression for the correlation bias based on our MPL, and this will be the basis for our
sensitivity analvsis. On the other hand, it is true that the above calculations provide some
formulas which in first site seemn to be very unattractive. However, trying to describe a
complicated situation like this one, we would expect to get rather big and complicated
expressions.

As we said at the beginning of this section, the greatest property of the PL is that
we do not need to bother with the baseline hazard function, because it cancels out due
to the proportional assumption. Unfortunately, this is not a property of the MPL. In the
above expressions it is obvious that although the baseline hazard functions cancel out in
the MPLLs—o = PLL. they are still included in the correction factor. The good thing is
that the correction factor is multiplied by a small ¢, indicating that even an approximation

would be appropriate. In the next section we propose two ways of estimating the baseline

hazard functions.

72 Estimation of Baseline Hazard Function

In Cox’s initial work, the estimation of the baseline hazard function was not essential
for the estimation of the parameters of the two processes. In the partial likelihood the
term h*(t) cancels out and the procedure becomes more straight forward. In our case,
an estimate of h*(t) is a necessity and we will do that by using either a step function, as
proposed by Kalbfleisch and Prentice(1973), or Cox’s way, where we have spikes for the
hazard function at the observed failure times, proposed in Cox(1972).

To begin with, we assume that we place all the failure and censored times in ascending
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order

O0<...<hop<...<lop<......... "< tro,

where # o indicates a failure time. and between the failure times are all the censored times

For example. if we assume that we have two censored times i inter
I msored times in the interval (ta20,%30] then

as a matter of notation we have
tro < t31 <t32 < t30.

All the censored times will be presented as t; ; where ¢ will denote the interval in which
the censoring happened, and j will denote the ordered censored time in the interval. The
failure time presented as tig will be on the right end of the ** interval. We consider the
simpler case where the failure times are continuous and no ties occur. Now, in order to
estimate the baseline hazard function we are going to use a step function. Assuming that
there is a change in the baseline hazard every time a failure occurs, we define the piecewise

baseline hazard function as follows
A1 .. (0,t10]

/\2 . (tl.(), tz_o]

ho(t) = 4 : (7.10)

/\r——l PN (tr—-2.0» tr——l‘O]

A'r‘ e (tr—l.O) tT‘O]

Always assuming PH. we use the full log-likelihood function (3.3) together with (7.10) and
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we have:

LL(t:v.u.0) = Z Z {

i=1 =0

I [10?; A + V’Xz‘.j] + (1 —1;)log [hC(ti.jv ulxi.j)] — ¥ A;j

r qi

—He(ti. U'Xu)} + (52 Z {ele“in.j [HC(tzlj,ulxi.j) -1+ I,] — LjHe(t 5, ulxi.j)}

i=1 j=0

(7.11)

where
i1
Aij =N (tz:j - ti—l.O) + Z Ak (f(k.()) - t(k-1.0))
k=1

is the cumulative baseline hazard at time ¢, ;,

1 ... when j =0 (failure time)

0 ... when j# 0 (censored time)
is the indicator variable and ¢; denotes the number of censored times in the interval
(ti—l.Ovti.O]- In (7.11) we introduce a completely new notation compared to that of the
compete log- likelihood function. Instead of summing Z?:l over all the n observed times,
we sum over all the 7 intervals defined in (7.10) and then over all the ¢; failure and cen-
sored times in each interval. If there are no censored observations in the " interval then

¢ = 0, and the only term that is added is the one that results from the failure time in that

interval.
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Now we need to find estimates for all the \;’s. First we have

OLL(t:v.u.d)
z‘)Av,u Ztﬁ””‘thz e

i=2 j=0

r qi
+5{t1.0 Z Z {6“"”’ [Hcf(ti.j» u'x; ;) — 1+ -’]H

i=2 j=0

+Z[ vxlj[HC(”,ux”)—Hle} (7.12)

where ¢ is the number of censored observations in the first interval (0, ¢t;o]. Then, the first

term A{ is
20 1
A= (7.13)
Ztl eV'X1,j ‘f'thZ Zevx”
=2 j=0
and the general term is
A 1
ADl = q
n Gm , T q; . (7-14)
> (fm.j - tm-—l.O) evXmi +- <tm.0 - tm——l.O) Yo Do eV

J=0 i=m+1 j=0

This is an estimate of the baseline hazard function in the case of independence. From
equation (7.11) we can also get the estimate of the baseline hazard when ¢ # 0. This
might be of some interest to check the impact of the dependence in the baseline hazard,
but this is definitely of no use in our case. The reason is that the baseline is going to be
included in the correction factor, which is multiplied by 4 and hence independent estimates
of the )\;’s is what we need, in order to proceed with our calculations. In any other case
terms of order 82,83, ... are created, which we finally omit.

The above way of estimating the baseline hazard function gives a step function, which
means that it is constant between two successive failure time. Cox(1972) argued that the
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baseline hazard is zero. except for the set {t(;)} of instants at which failures occur. Under

this assumption. the independent Full Likelihood, given the covariates of each patients is

nr n nr "
L(t:v) = [[ hr(tiv'x) [[srtivix)=]]e™n [T VX H (b
i i s i) = > ), ti > eV X Hi(ti)

=1 i=1 E T( )i=1 ‘ ’ (7'15)

where nr is the number of failure times and n is the total number of observations that w
e
have. Now. suppose that

Bi(t) = A

and
nr
i=1
where I(t; < t;) is an indicator variable, taking the value 1 every time that the restriction

in the parenthesis is satisfied and 0 otherwise. Now, the log-likelihood gives

LL(t:v) = i { log A\; + v’xi} - i: { iT:eVIXi/\j[(t]' < ti)}
im i=1  j=1

and for a general A; we have

OLL(t:v) 1
oN, Y

which implies that

=] X evl’“]_l- (7.16)

eR(t(;))
Expressions (7.14) and (7.16) give estimates of the baseline hazard functions. Numeri-
cally both give very similar results. The only difference is in the assumption under which

we proceed in the calculations. The first one we assume is a step function, implying that
b

103



it is constant between two successive failure times. For that reason the lengths of the in-
tervals between the failure timmes are included in the calculations. The second one assumes
that the basecline is zero. and that it only has spikes every time we have a failure. This
procedure take only the order of events under consideration, and hence the rank statistic

is of major importance. These procedures can be used to estimate the baseline of both

processes.

7.3 The MPL as a result of the Estimation Process of
the Independence Model

In section 5.3 we saw how we can derive the independence model based on our model
which assumes dependence. We can now use this idea to justify the existence of the MPL

Let us consider the case where we have the independence model under the PH assump
tion. Then we have

Iy (1:6.7) = 4 (t:6.9) = hr(t,6)[1 = §Hc(t, )]
(7.17)

hy(c:8.9) = h,ﬁC(c;H,y) = hc(c,7) [1 — 0Hr(c, 9)]
where Y and U are the independent risks. These expressions are derived from (7.2) and
(7.2') when B(t. ) = 1 — Hy(t.6). Having the above assumptions we see that the marginal
hazard functions of ¥ and U take a much simpler and symnetric form. Under the presence

of independence. we calculate the partial likelihoods of the Y and U processes. Firstly we
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have

PL ﬁ hy-(t;iv.ou.x;) ﬁ irlt vxs) [1 — 0Hc(t:, u’xi)]
Y = : -
(=1 Z h)‘(f,‘.V.U-X[) iy Z }T/T(ti;le(?) |:1 — (;H('(ti,ule):l
IC,;'L'II)) [E'R(f(l))
[ = G He(tow'x)]
_ (7.18)
e VX Iil —(SHp(f UX[)]

LER( )

and in first order approximation. the partial log-likelihood takes the formn

PLLy = nzr{v'xi—log{ S ev'x(]}

=1 LER(t(,))

- Z V'xg HC(ti-, ulxg)
EER(t(,) )
+0 Z { eVv'xe - Hc(tiauxi)}- (719)

eeR(t(,,)

Equivalently. for the U7 process we have

PL ﬂ lir ) ﬁ Ze“ - [1 . 5HT(ti’VIXi)] (7.20)
v = = .
h( f V u, Xé') N eu/x£ [1 6H ’ ]
i= = - ti)
! rerii "’) ' LeR(t,) rts, v'xe)

and the approximate partial log-likelihood becomes

PLL. = i{u'xi—log[ y eu’xz]}

i=1 EER(t(y))

et Hr (t;, v'%y)

>
=< [ e t(,)) /
+0 Z eu'xe - HT(t‘i) v xz)} (721)

eeR(tm)

As we have already noticed in §5.3, the likelihood function of Y and U, although they
are considered to be independent, are a mixture of functions of both T' and C processes.

Therefore, vector v which is our major interest, is involved in both PLLy and PLLy.
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Hence. our estitnate ¥. is the vector that maximizes both likelihood functions at the same
time, and therefore satisfies the equation

olPLLy + PLLU]
av

= 0. (7.22)

The presence of independence between Y and U allows us to add the two log-likelihood

functions. Using (7.5). (7.19) and (7.21) it is obvious that
MPLL = PLLy + PLLy. (7.23)

This means that (7.22) becomes

OMPLL

5 = O (7.24)

which proves that our Modified Partial Likelihood gives exactly the same inferences about
v with the independence model.

= 4 The Independence of Censoring at the End of the
Study (The MPL Case)

Now, we extend the idea of having two different types of censoring in the case of MPL.
In Cox’s initial argument. it was argued that due to the independence assumption between
the failure and the censored times, only the failure times contribute information to the
estimation process of the parameter of interest. In this Chapter, we extended this argu-
ment by saying that if we assume dependence, then even the censored lifetimes contribute
information to the estimation process of the parameter of interest, and hence we ended
up with the \PL. The present case with the censoring at the end of the study, is like a
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combination of the two above cases. We assume that we have two types of censored times.
The first one involves the censored times that happen during the trial, which we considered
to be depeudent to the failure times while the second one involves the censored times that
happen at the end of the study. Hence. we claim that the censored times of the first type
contribute information to the estimation process while the censored times of the second

type do not. So we see this case as if we use the MPL in a reduced sample

r 1. _ w 4. ,
arLy =] AU u. xi) I1 h’C(t;’v’u’xJ) (7.25)
s> hp(tivouxe) 507 X he(tiviuxg)
ER(L ) qER(L )

which means that the independent censored times are considered only in the risk sets of the
above expression. 7 1s the number of failures and w is the number of censored times of the
first type. Hence. the estimate of V¢ comes from the same expression (7.9) as before, with

the difference being in the number of censored observations we consider to be informative.

7.5 Example

This time in the myeloma data we use the full data set including the covariates, which
are all continuous variables. Although x16 takes only integer values in the interval [9,18],
we still consider it as being a continuous variable for the sake of simplicity. Another
problem we have to deal with is the ties between the survival times. We manage to solve
it by creating a vector of 65 Uniform random variables, U[-0.5,0.5], and added them to
the original survival times, breaking the ties. After this small modification to the data

set, we will work using Cox’s proportional hazard model. Initially, under independence

(6 = 0), the estimates of the parameters are as in Table 7.1, using Cox’s Regression Model
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(command “coxph” in S-Plus).

coef  exp(coef) se(coef) z P
x1 1.832 6.245 0.6476  2.83 0.0047
x2  -0.120 0.887 0.0594  -2.03 0.0430
x99  0.462 1.587 0.4620 1.00  0.3200
x16  0.1397 1.149 0.1000 1.39 0.1600

Table 7.1: Estimates of the parameters when 4 = 0

Each patient has a different set of explanatory variables. We can calculate the Prognos-
tic Index (PI) of each individual and we can draw the survival curves. In Figure 7.1 we plot
the curves of the patients with minimum and maximum Pls along with the Kaplan-Meier
estimate and the survival curve of a patient with an average PI. In order to be able to
do so, we need an estimate of the baseline hazard function, and in this example we have
used the Kalbfleisch and Prentice’s estimate, as described in § 7.2. This figure is only for
illustration purposes. to see the range of all the possible survival curves, along with the
KM estimate, which is an overall estimate. If now we allow ¢ to depart from zero, then
the vector of the parameters do not remain the same any more. Using the MPL we perform
a sensitivity analysis for values of § € [-0.3,0.3]. As we have already proved in chapter
4, under the PH assumption we have p < 4, which means that 6 = p provides us with
the worst possible case in terms of the correlation. All the changes in the parameters are
included in Table 7.2 and they are graphically represented in Figure 7.2. As a result, each
| curve shifts a bit up or down, depending on the sign of §. We choose at random

surviva

one patient, for example the one with PI=2.743189. The vector of explanatory variables

related to this patient is (1.3222,14.0,1.6232, 9). In Figure 7.3 we can now see the survival
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Figure 7.2: Graphical presentations of the changes in the parameters when § € [-0.3, 0.3].
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) v Va V3 "2
-0.3 1.7953789 -0.1195844 0.4478341 0.1214729
-0.2 1.8075859 -0.1197229 0.4525561 0.1273153
-0.1 1.8197930 -0.1198615 0.4572780 0.1331576

0 1.832 -0.120 0.462 0.139
0.1 1.8442070 -0.1201385 0.4667220 0.1448424
0.2 1.8504141 -0.1202771 0.4714439 0.1506847
0.3 1.8686211 -0.1204156 0.4761659 0.1565271

Table 7.2: The changes in the parameters for different values of §

curve, and how it changes for all the different values of 4. For negative values it moves
upwards, indicating that a negative "correlation” between the exact and censored lifetimes
would yield a "better” curve with an increased chance of survival. We can see that the
changes in the median survival time are quit substantial. For 4 = 0.3 the median survival
time is around 35 while for § = —0.3 is around 55, which is over a 50% difference.

An important question is whether the parameters are significantly different from zero
or not. In Table 7.1 we have both the p-values and the ratio of the parameters over the
standard errors (column z). The last one is the t-statistic testing the hypothesis of the
parameters being zero or not. Having a data set of 65 patients means that we have 64
degrees of freedom, and for double-sided test and a = 0.025 the absolute critical value is
just less than 2 (1.99773). So from both the above ways we can see that only the first two
parameters are significantly different from zero. In addition, we observe that v2 is very
close to the critical value. Therefore, we need to investigate whether for different values
of 8, v2 remains significantly different from zero or not. Hence, we get Table 7.3, in which
it is clear that v2 is significant for 6 € {—0.3,0.3], concluding that correlation does not

weakens the role of v2. It seems that we do not have to do the same for vl. The values of
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) Vo Z
-0.3 -0.1195844 -2.013205
-0.2 -0.1197229 -2.015537
-0.1 -0.1198615 -2.01787

0 -0.120 -2.03
0.1 -0.1201385 -2.022534
0.2 -0.122771 -2.024%67
0.3 -0.1204156 -2.027199

Table 7.3: Test in the significance of v2

2 are far from the critical value so we do not expect huge differences for siall values of 4.

Following the above test. we now use only the r.v. x1 and x2. In Table 7.4 we have

coef  exp(coef) se(coef) =z p

x1 1.802 6.062 0.6279  2.87 0.0041
x2 -0.115 0.891 0.0576 -2.00 0.0460

Table 7.4: Estimates of the parameters when § = 0

the estimates of the parameters under independence. We see that v2 is still on the border
of being significant or not. If we try to test that again, we see that z now takes values in
[—2.207, —1.786) and for almost any positive values of 4, v2 is not significantly different
from zero. This indicates that for any positive dependence between the failure and the
censored lifetimes, random variable x2 could be omitted in which case the only variable
that remains is x1. But, without any knowledge about the value of 4, we consider v2
significant and we continue the statistical work with both variables included.

Doing exactly the same work as before, we get Table 7.5 with all the changes of the

parameters for & € [—0.3,0.3], and the graphical representation of this in Figure 7.4. In

Figure 7.5 we see again how the survival curve is shifted, for various values of 4.
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A v A2
-0.3 1.8202675 -0.1271504
-0.2 1.8141784 -0.1231003
-0.1 1.8080892 -0.1190501

0 1.802 -0.115
0.1 1.7959108 -0.1109499
0.2 1.7898216 -0.1068997
0.3 1.7837325 -0.1028496

Table 7.5: The changes in the parameters of x1 and x2

The last thing that needs to be mentioned, but equally important, is the baseline
hazard function. Earlier in this chapter we referred to two possible ways of calculating
this function, one due to Cox and the other one duc to Kalbfleisch and Prentice. In this

particular example we have used the later of the two, but as we can see in Figure 7.6 the

differences are very small.
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Figure 7.6: The baseline cumulative hazard function calculated with both ways.
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Chapter 8

Simulation Studies

8.1 Introduction

In this chapter we focus on some examples based on simulated data, our aim being to
assess the adequacy of our local approximation for small 0. Based on the Myeloma Data
. 1

we perforin parametric bootstraps trying to demonstrate the use of model, using different

parameterizations of the Weibull distribution.

8.2 Parametric Bootstrap

8.2.1 General Weibull

In the brief introduction we stated that we will explore different parameterizations of the
Weibull distribution. It is a distribution with both proportional hazard and accelerated
failure time properties. The PH property is of our main interest because as we have seen

in the previous chapters, a substantial part of our research is related to PH models. A

general form for the Weibull is

FiEAY) = Nypt¥le 0¥ (8.1)
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where X is the scale and ¢ the shape parameters. Obviously, when ¥ = 1 we have the
exponential distribution.

In the example of chapter 3 we used the exponential distribution to analyze the data. If
equivalently we take the log-cumulative hazard plot, Figure 8.1, we will see that the result
is approximately a straight line. indicating that a Weibull model would be appropriate
as well for the T-process. From the beginning of our research we have made clear that
the C—process is just a nuisance process, and hence we never made an effort to explore
which distribution would be most appropriate to describe the censoring mechanism. The
censored times are approximately 11 of the total number of observations in the myeloma,
data. Hence if we assume that the C-process is of main interest, we end up with a data
set which is heavy "censored” (where the observations of the T—process are considered to
be the "censored” times). If we take the log—cumulative hazard plot for the C-process as
well, Figure 8.2, we see that it gives also an approximate straight line. Although we know
that the plot for the C'-process is based on fewer "failure” observations than the one of the
T-process, we still get some useful information about the censoring process and how we
should model it. Therefore, a Weibull distribution to describe the censoring mechanism
seems appropriate.

For the purpose of our bootstrap examples we assume that both the processes follow
a Weibull distribution of the form (8.1), fr(t,6,a) and fc(c,v,8). We aim to perform
a sensitivity analysis on 8, the scale parameter which is the main parameter of interest,

assuming that a is known. From the definition of our correlated model in chapter 3 and
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when B(t.0) =1 — Hr(t.0). we know that
Pr(C=c¢T=t) = f(;(c.’y + 5[1 - HT(t,H,a)],/j))

— feley. B) [1 +6[1 — Hy(t,0,0)]

dlog fole, v, /3)]
o

~ fele,y, 3) exp {5[1 — Hrp(t, 9, oz)] 0log fg’(;i, 7, 5) } (8.2)

The reason why we take the approximation in the above equation is because in this way
we will make sure that no negative censored times will be generated. Furthermore, the

conditional distribution function is

‘ dlog fo(i
Pr(C<dT=t) = / folu, v, B)exp {8[1L - Hr(t,6,a)] =2 folu, v, ) b
0 oy
—_— 1 —exp{ —_ ['\/ﬁ+(5ﬁ7ﬁ_] |:1 - hT(t70’ a)]]cg}, (83)
and the distribution function of the T—process is

Fr(t,0,a) = 1—exp{—(6t)"}. (8.4)

The procedure for generating a data set with survival times is the following. We generate

a random number uy; ~ U[0,1]. If we set (8.4) equal to u;; we get

Q=

t = {—log(lg—“”)} . (8.5)

Similarly, if uz; ~ U[0, 1] and with the value of ¢; generated from (8.5), we set (8.3) equal
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to ug;, then we have

1
¢ = { — log(1 — ux) }B
~3 exp {5—?[1 — Hr(t,,0, (y)]} ’ (8-6)

where ¢ = 1..... n. In order to be able to generate censored times under the assuinption
of informative censoring. we need to specify a value for o different from zero. Having the
level of dependence fixed . we record y; = min{¢;, ¢;}, the minimum of the two times, and
we set the indicator variable to take the value
1, it ¢t <q
0, if ¢ <t,.
There are also soine quantities that we are really interested to test. In chapter 4 we
developed an expression for the statistical expectation of the bias under PH and when
B(t,6.a) = 1 - Hr(t,0,c), and a formula for the upper bound with PH as the only

assumption, leaving B(t, 6, ) arbitrary. At that stage we assumed PH to have the property

OHr(t,8)
o0 = Hr(t,0)
which is true in many cases. Weibull has the PH property, but it doesn’t posses the above

one. We have

8HT(t, 9, O{)

(67
00 = —Q—HT(t,H,a)

and hence we need to make some adjustments to the formulas from chapter 4. More
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specifically the expression of the bias now takes the form

n

. R on ol
9,5 — 9() ~ I(H())—()_’}— Z [H(‘(ti»"/)HT(ti.H) - (1 - ]i)HT(ti,ﬁ):,

1=1

and the expectation of the bias in (5.8) becomes

2 B[ Hett )t 7)), .

POl > e,

where
1(8) = %Z[Iﬂr(a—l)(ﬁti)“}.

Equivalently, when we do not make any assumptions about B(t,6,«) we have

. . on 3 — opul(t;, 0) OB(t;,6)
by = — 2S5 = 1)1 - Helt )| 25 g, ) 2800
b5 — 6o EDS [(1 1)[ ot /)} 5 LHe ()= }

and hence the expression (5.7) for the upper bound gives

El6 ]| < ya;z—(;io—)g{ET[Tg(t,gﬁ)}}%’ (8.8)

where
Ty(t,6.7) = /0 | [1 - Hele, )] [F11 - Hr(t,0)] + Hr(w,0)] felz, v)dz.

In the particular case of the myeloma data, the estimates of the parameters under the
independence assumption are Gy = 0.0306, &, = 1.0358, Y = 0.0118 and B(, = 1.1028.
We observe that the shape parameters are not much different from one and hence the
exponential case. Nevertheless, and despite the fact that # is the main parameter of

interest, we will still keep the Weibull assumption and the shape parameters different from
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zero in order to observe any changes on them for different values of §. Initially we will
assume that it is known. However. we will obtain an estimate of a for each value of 9,
trying in that way to explore if there is any impact ou the sensitivity analysis of 6 when
we re—estimate a.

In order to illustrate our methodology we perforin a parametric bootstrap on the
myeloma data. based on the values of the parameters above. Additionally the correla-
tion between the two processes is assumed to take the values p = 0, 0.05, 0.1, 0.15, 0.2,
0.25, 0.3 and fromn (4.6) we can calculate the appropriate values of §. The sample size is 65
and we generated 1000 such data sets for each value of 6. For every generated sample we
calculate all the parameters under the independence assumption. In Table 8.1 we present
the expected values of ¢ and the correction factor (CF) over the 1000 replication for each
value of 8, along with their standard errors. The bias calculated for p = 0 is considered
to be an estimate of the sampling bias, hence we simply subtract it from 6, in order to
remove this source of bias. The expected values of the shape parameter o are also pre-

sented with it’s standard error. In this parametric case we haven’t standardized the score

o | 0 |Efo—0rl] Elf] | selfo] | E[CF] [ se[CF] | E[do] | se[ao]
0.30 | 0.0032 -0.0014 0.0295 | 0.0042 | 0.8756 | 0.2680 | 1.0284 | 0.1148
0.25 | 0.0027 -0.0011 0.0205 | 0.0043 | 0.8341 | 0.2091 | 1.0283 | 0.1172
0.20 | 0.0021 -0.0010 0.0296 | 0.0043 | 0.8051 | 0.2073 | 1.0294 | 0.1210
0.15 | 0.0016 -0.0007 0.0299 | 0.0044 | 0.7605 | 0.1931 { 1.0382 | 0.1194
0.10 | 0.0011 -0.0004 0.0302 | 0.0042 | 0.7269 | 0.1746 | 1.0481 | 0.1263
0.05 | 0.0005 0.0003 0.0309 | 0.0046 | 0.7002 | 0.1622 { 1.0511 | 0.1227
0.00 | 0.0000 0.0004 0.0310 { 0.0043 { 0.6577 | 0.1352 | 1.0636 | 0.1338

Table 8.1: Bootstrap results for the general Weibull
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function of the C--process. This means that in Table 8.1 is the ordinary é and not §*, the
»standardized 0.

In this study our aim is to observe whether our model is capable to produce reasonable
limits for the parameter of interest and for any other quantity that we might be interested
in, like the median and the survival curve, when 6 # 0. The first thing someone would
look at is the correlation bias. Figure 8.3 shows graphically the level of the mean bias and
how good is our linear approximation. The solid line with (O) in the figure is the absolute
value of the bootstrap expected correlation bias. It is calculated from the bias from Table
8.1 by subtracting the sampling bias (when p = 0). The second solid line with (A) is our
linear approximation to the correlation bias (6 x CF). We see that our approximation is
good up to the level of p = 0.2, where the differences are due to random error, and when
the correlation increases we tend to overestimate the correlation bias. It was of course
expected that our methodology would work for values of 0 close to zero. Nevertheless, the
fact that we overestimate the correlation bias when p > 0.2 is not such a bad thing, because
we know that our limiting values for 65 will always include the true value 675. Maybe a
choice of p = 0.25 would be more appropriate, but in our study we decided to choose
p = 0.3 for illustration purposes and because it definitely provides limits that include 6r5.
The dotted line with (+) is a result of formula (8.7), and it shows what is our expectation
of the correlation bias under the Weibull assumption. Finally the dashed line with (x)
comes from (8.8) and is the upper bound, calculated with no particular assumption about
function B(t,0,a). Actually this is the worst possible bias we might have in our model
under PH. All the above become clearer in Figure 8.4, where the actual intervals for
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positive and negative values of 0 are presented. In this figure the correlation in the x—
axis is thie absolute value of the correlation, representing the actual level of dependence,
without indicating any direction. Whether we have positive correlation or not is presented
in the graph itself. where for positive o we have a positive slope, and for negative ¢ we
have negative slope. Our objective is that the true value of the correlation bias must lie
within the intervals. In the above case we see that the bootstrap estimate of the bias is
exactly where we want it to be, indicating that a sensitivity analysis over ¢ will produce
" confidence” intervals for § which will include 8.

Another quantity of great importance is the median. In the Weibull case the median

is given by
m = —=— (8.9)

and in our particular case its true value is: mrgp = 22.9406. Keeping the same way of
performing our sensitivity analysis as before we initially use the true value of a. Therefore
in Figure 8.5 we perform a sensitivity analysis on the median, where again in the x-axis
is the absolute value of the correlation. The straight dashed line is the exact value of the
median (when § = 0) and the solid line with (Q) is the median, calculated for positive
values of 8. Our analysis will provide us with the dashed lines with (A), expecting the true
value of the median to be included in these lines. Actually, we observe that for positive
& we get a very good approximation of the median up to a correlation of p = 0.2. After
that we see that we under estimate the median, which still falls within the desired interval.

This is expected because we have already stated that when p > 0.2 we over-estimate 6, a
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Figure 8.5: Sensitivity analysis on the median, with the shape parameter having the true

value and 4 taking both positive and negative values.
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result which immediately leads to the under -estimation of the mmedian. Figure 8.6 is a more
general graph than 3.5. It includes in addition the estimmate of the median when we re-
estimate a. solid line with (Q). and the limiting lines resulted by this assumption, dashed
lines with (+). This figure shows that we slightly under estimate the median, suggesting
that a sensitivity analysis on both parameters might be worthwhile.

Finally. the last thing we would like to explore is the estimate of the survival curve.
Figure 8.7 shows the survival curves for 6 = 0.3 when we re-estimate a and when we don’t.
In this particular case of estimating the survival curve we see that there is virtually no
difference between the two curves. Hence in Figure 8.8 we perform the sensitivity analysis
in the case when « is re-estimated. We see that we approximate the true survival curve,
semi—dashed line. very well. The important thing though is that the true survival curve
falls in the interval constructed by the curves for d = £0.3.

After this bootstrap study we can have a good idea how our method works. When the
parameters are more than one, we need to consider the case where we perform sensitivity
analysis on all the parameters at the same time, although this would be definitely a difficult
task in terms of computations. Despite that, our main objective was to explore the situation
where the levels of dependence where know in advance, and then check the performance
our methodology. As we expected our estimates are really good for small values of § which
correspond to p < 0.2. The fact that for values greater than that we tend to overestimate
the parameter of interest might turn out to be in our favor if we can choose the right value
for 6. This means that we can construct intervals which will definitely include 8rr which
is one of our major goals. Therefore, a value of § that corresponds to p = 0.25 seems to
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be a very good choice for our sensitivity analysis.
8.2.2 Re—parameterization of Weibull to include Median m

If we assume that m is the parameter of interest, we can use the following re -parameterization

of the weibull. From (8.9) we have that
§ = —. (8.10)
Substituting the above in (8.1) then the weibull distribution, including m, takes the form
-, g1 t\“
ft.m,a) = log(2)m %ot exp{ — log(2) (;n—) }, (8.11)

where the hazard function is hr(t,m,«) = log(2)am™t*"!  and the cumulative hazard
is Hr(t,m,a) = log(?)(r—'n-)a. The purpose of doing this is that in the case that we are
interested in m, we would prefer to perform a direct sensitivity analysis on m, rather than
estimate 0 and then do the sensitivity analysis on the median with respect to 6.

The expression of the bias for m takes the form

N n

. “ 0 I alogfc(ti’77ﬁ) aﬂ'(tiﬂnaﬁy) . [,BHC(t"’%ﬁ) 3B(ti,m,a)
s — o = s Z (1-1) o o i o - :

(8.12)

i=0

where

n

ifm) = ?3—2 4 [I,- — log(2)(cx — 1)(;%)1

It is obvious that the above re-parameterization is only for the T-process, while for the

C-process we haven’t changed anything, mainly due to it’s secondary role. Therefore, if
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we assume B(t.m.a) =1— Hp(t.m.a). formula (8.12) takes the form

I

) X .ol
Mg — My =0 Z {(1 — I)Hp(ti.m, o) — Hp(t;,m,a)He (i, v, B) . (8.13)

m~i(m) s

p | 6 [Elo—mre]| E[m] | sefm] | E[CF] | se[CF] | E[o] | se[o]
0.30 | 0.0032 1.1197 24.0603 | 3.7342 | 728.5192 | 258.5181 | 1.0297 | 0.1134
0.25 | 0.0027 1.3304 24.2710 | 3.8314 | 718.7331 | 253.9251 | 1.0296 | 0.1208
0.20 | 0.0021 1.1452 24.0858 | 3.6888 | 680.8189 | 242.5570 | 1.0291 | 0.1177
0.15 | 0.0016 0.9670 23.9077 | 3.6907 | 634.1373 | 220.6374 | 1.0415 | 0.1271
0.10 | 0.0011 0.6985 23.6391 | 3.6346 | 584.5753 | 204.0658 | 1.0440 | 0.1235
0.05 | 0.0005 0.6455 23.5861 | 3.6099 | 552.9551 | 178.8066 | 1.0470 | 0.1252
0.00 | 0.0000 0.03808 22.9787 | 3.3867 | 500.7274 | 153.4157 | 1.0556 | 0.1223

Table 8.2: Bootstrap results for the modified Weibull.

Now we performn a bootstrap study to the myeloma data, similar to the one of the
previous scction, using our modified Weibull distribution and the results are presented
in Table 8.2. Again we assume only m is of interest and that no sensitivity analysis is
performed on a. Figure 8.9 shows the limits that we construct for the median. We observe
that when we know the exact value of § we can approximate the correlation bias very well
for p < 0.2. For p > 0.2 we overestimate the bias, something that is expected when §
becomes larger. Figure 8.10 shows the independent estimates of the median for different
levels of dependence, with their differences being due to random variation.

The reason why we use this kind of modified Weibull is because we want to demonstrate
a possible way of performing a direct sensitivity analysis on quantities, like the median,
that are not directly included in the density function. The conclusion is that there are no
major differences in our analysis whichever parameterization of the same distribution we
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decide to use. The main problem that comes up is the calculation of the value of §. This
parameter is highly dependent on the way of modeling and the choice of the distributions
of the two processes. even if there are different types of the same distribution. This is
another reason why inferences about 0 are not possible. In our case with the general and
the modified Weibull. from Tables 8.1 and 8.2 we see that the values of § are exactly the
same. If we had the values of 4 in more than 4 decimal places, we would have seen that there
are differences. The main conclusion is that every time that we use our model, a careful
calibration of the value of 0 needs to be done, because similar parametric assumptions

might imply completely different values of 4.
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Figure 8.9: Sensitivity analysis on the bias of the median (with true ). (O) Bootstrap;
(A) § x CF; (+) Statistical expectation.
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Figure 8.10: Independent estimates of the median for both types of weibull. (O) Modified
Weibull; (A) General Weibull.
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Chapter 9

Conclusions

In this thesis we wanted to explore the problem of informative censoring. Knowing the
problems related to this particular subject, we decided to focus on the case where the
potential dependence between the failure and the censoring processes is small. We claim
that almost all the cases of analysis of survival data fall into this category, in the sense
that small dependencies may exist between the processes, even in the cases where we are
confident that they don’t. We have shown that in some cases even small dependencies of
this kind can have a serious effect on the analysis.

We had to make assumptions in order to model in a reasonable way this situation.
These assumptions led to models for the parametric and semi-parametric cases, where
sensitivity analysis can be performed for parameters of interest. We managed to explore
the relationship between the dependence parameter ¢ and the correlation between the two
processes, while we believe that we proposed a reasonable choice for the bias function
B(t,8). The use of simulated data helped us discover firstly the validity of our model and
secondly the borders where our approximation seems to collapse. An interesting part of

this thesis is the analysis of the leukemia data in chapter 6, which demonstrated in a nice
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way the power of having more information.

This work, of course. does not flog this subject to death. Given our way of modelling,
further rescarch on the possible choices for the bias function can be taken. In the semi-
parametric case. the modified Cox’s partial likelihood should be. somehow, related to the
full likclihood. exactly like the partial likelihood, which will provide with an even better
interpretation. In chapter 6 we discussed a model which can include both informative and
non-informative censoring, provided that we have some additional information to make the
distinction. although we didn’t explore it to the end. This is the main area where additional
research should be done. which will probably suggest that, for example, in clinical trials
more information needs to be collected from each patient in order to improve our statistical

analysis.
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Appendix A

Expectation of the Correlation
Bias—General Case

Proof: By substituting expression (5.5) in (5.4) we get

3 A ) 7 j )o fT(U &) du
E[6s — 6] = _W{ / [1 - He(c, 7)J Sr(c.0) St(c,8) fc(e,v)de
% J 280 By ) du
+ / [1 —- H('((:. 7)} ¢ ST(C’ 9) (c. ())fc(c, 7)dc
0

o

x [ B(u, ) fr(u, 8)du
+ / [1 = Hele.) | Hr(e,0) —gmm—-Sr(c, ) (e, 2)de

fT(t 0)Sc(t, )dt}

)
T B2LL(6,7,6=0)
502

{Gl +G2+G3—G4} (A.1)
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where G; is each one of the integrals above. By taking one at a titne we have

7 Och
G, = / / fT u, 9)[1—H(?(C,y)]f(,(afy)dud(,
c=0u=c
[ [ 0B(u,0
) U o)1 = Heten)] fee e
u=0c=0
T 0B(u,
B / (()l; )HC(U"7)56'('“,’7)fT(u,9)du
0

and this is because

u

[ [ = Heten)] ol m)de = Hotw,1)Se(w )

0

Now we take the second integral

G = [ [ D o[t - Hele] felededu

c=0u=c

= / / dfT (u, 0 )[1 — Hele, )]fc(c,’y)dcdu

u=0c=0

[ o] u

= / / fr(u,6) [1 — HT(u,O)]B(u,H) [1 — He(c, 7)] fele,v)dedu

u=0c=0

B(u,0) fr(u,6)[1 — Hr(u,0)| Ho(e,7)Sc(e, 7)du

Il
i L~

_ ET{B(t, 9) [1 _ HT(t,O)]HC(t,y)SC(t,'y)}
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where under the PH assumption we have

()fT(U ())

5 = fr(t.0) [4 - HT(f.e)]

At last, if we take the third integral we have

oc ¢

Cs = / / fr(u, 0)B(u.0)Hr(c,0) [1 — Hc(c. ’)")]f('(c, ~)dedu
(?‘:0 u=c

= / / fT(u,(})B(U,‘e)HT(C,9> [1 - H(V'((f"y)] j.(7((j~,'7)(l(ld/(l,
4=0 ¢=0

= 7f7~ (u, 6) B(u,0) [/HTcé))[l—H((r 2] fele, />dc]du
u=0

c=0

= Er{B(L.ON(1,0.7)]

where
t

N(t,0,v) = / Hr(c,0) [1 — HC((:,'))} fele,y)de.

Now, if we put (A.2),(A.4) and (A.5) into (A.1) we get

A 5 r
El6s — b)) = ~m{E B(t,m[l—HT<t,9>]Hc<t,w>sc<t.v>}
062 -

+Er| Bt 6)N (1,6, v’ﬂ }

)
= - 92LL(6,7,6=0) ET{B(t» 9)T(t, 0, 7) }

062
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where

T(t.0.~) = / | [1 ~ Helx. «,)] [1 ~ Hp(t.6) + Hyla. 9)] felar.)dz.

J 0
This can be obtained by substituting (A.3) into (A.6) and combining the two integrals into

one.
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Appendix B
Expectation of the Correlation
Bias—PH and B(t,0) =1 — Hp(t,0)

Proof: If we substitute B(t,6) =1 — Hy(t,6) in (5.4) we get

Elds - 0] = e 0){ ] 1 Hete.n)] e orte. sty

96° C<T

+/ H('(t"V)HT(t,H)fT(t,a)fC(C,’}’)(lt(l(:}

T<C
= ()2LL0'76 0) { / / HT t.6) fT(f Q)f((] ~)dtde
807 “rlocit
- / / 1— Hele ,0) fr(t, 0) fo(c, ’y)dtd(}
C=0T=C

O o
= ~62LL(0,7,5=02{/H~(’ Y)Hr(t.8) fr(t,0)Sc(t, v)dt
0

862

/ 1— He(ce,v) HT (c,0)Sr(c,8)fclc,v)d } (B.1)
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Using equation (A.3) from Appendix A in (B.1) we get

. 5 fi
Ells =0 = —Zmgrey {/ He(t,v)Hr(t, 0) fr(t,0)Sc(t, v)di
0

860

C

7 1 — Hele,y ]f(‘(c,,y) / [1 - HT(tvg)]fT(t,6>dtdc}

T=0

5 r |
= —W)‘{/Hc(t,")’)HT(t-,9)fT(t»9)5('(t-,’7)df
562 0

_ 7 7 1— Hele,v) fc(m)[l - HT(t,e)] fT(t,e)dtdc}. (B.2)
=T

T=0C

But,

0Sc(t,7)

oc de

1—H( ¢,7) fc(c,’y) = Sc(tm)+/Hc(c,7)

\8

= _Hc(ta V)SC(t» 7)

and hence, (B.2) becomes
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J
M{ET [H('(t V) Hr(t 0)Sc(t, 7)}
862

+Er H1 ~ Hr 9)] He(t.7)Se(t, 7)} }

0
~ FIroas=o BT [Hﬂ(t, ¥)Se(t. 7)} :

862
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Appendix C

Equality of the log—likelihood
functions

Proof: The cumulative hazard functions of the proxy model are

OHc (s,

Ar(t) = Hp(t,0) + 6/ hr(s,8) )[;l,(s,(?) - B(.s,())]ds

0 o
and

Olog he(s,7)
—0 7 s

Ac(c) = HC((:,7)+5/0 ho(s,y) (s, 6) >

At the same time we have

log Ar(t) = loghr(t,0)+ log [1 + (5% [/L(t, 0) — B(t,@)H
~

‘ OHc(t,7)
~ loghr(1,6) + 651 [1(t.0) - B(1,9)]

and similarly

dloghe(c,v)

log Ac(c,) =~ loghe(e,) + dpulc,f) o
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Therefore, substituting the above in the log- likelihood of (5.22) we have

n

LLp= Z l[i, log Ar(t:) + (1 = 1)) log Ac-(t;) — Ar(t;) — A(v(f,;)}

=1

n . e ., '
=LL(t:6.~,0) + (52 [()H+§“ﬁ/)u(t,’. 6) — / (s (J)ZI—I(()(A—'Z(I.S
p Jo Y

.1, . e A
—/ hT(,s.())(mCa—&s”')[u(s,())—B(s,f))]d.s] (C.1)

We need to prove that the part multiplied by ¢ in the above expression is zero. We will

need

>~ B(s,0 s,0)ds
Jo (ST(LJ;% ) } = hr(u,6) [u(u, ) — B(u,(i)], (C.2)

oulw6) _ 0
ou  Ou

Therefore we have

i: {M_%gﬂu(ti,e) _ /-r, hr (s, e)d_fbf_l)[u(s,e) B0 s - /u (o 2cls) }

pp Jo 0y
" Ou(s, 0) OH i
_ |:ch ) / f“9) / du(% ) (1.(877) __/ (S 9 dh( b 7 J
— Jo Js 0y 0
. aH tzv OHc(t;, h oy
= { cltin) it 0) — [ (s,6) Ca( 7)} +/ ji(s,0 ()h( / (s dhc (5 ’y)d}
i=1 R o Jo
=0
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Appendix D

Sub—densities of both processes

In the case where we have no covariates, the joint survival function takes the form

STc.TQ,, //thOj( C’))l:1+éB(f Q)aLg(;%(——z]df](

= (x,0)Sc(z //B (t,0) Olog fc ‘ ) fr(t.0)fc(c, ~v)dtde

OH
— So(e.6)Selz.n) {1 —6u<x,e>—%] (D.1)
Equivalently, the sub—density of the T-process becomes
- ‘ —
) = | = g{ Srt050(e ) 1= s, 2] }}
L t 87 t—c=zx
' OH
= | rlt.0)Sc(e) [1 ~ bu(t. 9>M}
- 0’7
+6Sr(t, 0)Se (¢, ) 2L 0) OHc (e ) | (D.2)
ot Iy s
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where

ou(t.d) i{]rw B(u,0) fr(u,0) }
ot ot Sr(t.0)
= hy(t.6) [/l.(t. 0)— B(t, 9)} . (D.3)

Therefore we have

‘ OH¢ (x,~
f,}(J 0) = fr(c.0)Sc(x,7) {1 - 6B(r, 9){(+)} . (D.4)
y
Following the same procedure for the C'—process we finally get
dlog fol(r,
flry) = folz.~)Sr(x,0) [1 + du(r, 9)#} ‘ (D.5)
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