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Effects of Feedback Latency on P300-based Brain-computer Interface

Mahnaz Arvaneh1, Tomas E. Ward2, and Ian H. Robertson1

Abstract— Feedback has been shown to affect performance
when using a Brain-Computer Interface (BCI) based on sen-
sorimotor rhythms. In contrast, little is known about the
influence of feedback on P300-based BCIs. There is still an open
question whether feedback affects the regulation of P300 and
consequently the operation of P300-based BCIs. In this paper,
for the first time, the influence of feedback on the P300-based
BCI speller task is systematically assessed. For this purpose,
24 healthy participants performed the classic P300-based BCI
speller task, while only half of them received feedback. Im-
portantly, the number of flashes per letter was reduced on a
regular basis in order to increase the frequency of providing
feedback. Experimental results showed that feedback could
significantly improve the P300-based BCI speller performance,
if it was provided in short time intervals (e.g. in sequencesas
short as 4 to 6 flashes per row/column). Moreover, our offline
analysis showed that providing feedback remarkably enhanced
the relevant ERP patterns and attenuated the irrelevant ERP
patterns, such that the discrimination between target and non-
target EEG trials increased.

I. INTRODUCTION

A brain-computer interface (BCI) provides a direct com-
munication pathway between a human brain and an external
device [1]. Using appropriate sensors and data processing
algorithms, a BCI maps patterns of brain activity associ-
ated with a volitional thought onto commands suitable for
controlling a device [2]. Such technology can be potentially
used as an assistive device, a rehabilitation tool or a brain
training protocol [3]. In most BCI systems, brain signals are
measured by electroencephalogram (EEG), due to its low
cost and high temporal resolution [4]. Currently, majority
of the EEG-based BCI systems are working based on either
P300 [5] or sensorimotor rhythms [4].

A BCI is a closed-loop system relying on mutual learning
efforts between the user who learns to generate robust EEG
patterns, and the classification system that is trained to
accurately identify the EEG patterns. The mutual learning
between the user and the classifier is crucial for having an
accurate and robust BCI system. However, most of the BCI
studies have only focused on training of the classification
system, and neglected the user learning part.

Typically, the user learning is mediated by feedback pro-
vided from the classifier. Feedback is known to significantly
increase the motivation of learning [6]. Although, several
studies showed the effectiveness of feedback on high quality
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learning [7], a poorly designed feedback mechanism may
deteriorate the performance [6]. There are some interesting
studies considering effects of different types of feedbackon
motor imagery-based BCIs. For example, McFarland et al.
suggested that feedback facilitates initial learning of the BCI
skill [8]. Neuper et al. showed that continuous feedback is
more efficient than delayed discrete feedback [9]. Some au-
thors explored multidimensional feedback (e.g. 3D or Virtual
Reality feedback) [10], whereas some studies investigatedthe
effects of biased feedback, negative feedback, and positive
feedback on motor imagery-based BCIs [11], [12].

Despite all these studies, little is known about the in-
fluence of feedback on P300-based BCIs. There is still an
open question whether feedback affects the regulation of
P300 and consequently the operation of P300-based BCIs.
It seems logical to expect that feedback could positively
influence the performance of P300-based BCIs, since, in
addition to learning effects, feedback increases motivation,
and motivation modulates the P300 amplitude during BCI
use as shown in [14]. Nevertheless, in the study conducted
by McFarland et al. providing feedback did not affect the
P300-based BCI results [5]. There might be a number of
reasons leading to this observation. Importantly, there is
a substantial delay between the stimuli and the feedback,
since the feedback is given after averaging a relatively high
number of trials. Thus, the user cannot be certain in which
trials he/she behaved incorrectly. Moreover, due to averaging
over a large number of trials, the user usually achieves a
high accuracy. It means negative feedback is rarely given.
Alternatively, the processes involved in the generation of
P300 may not be readily influenced by feedback.

This paper investigates the above-mentioned possibilities.
In this paper, as the first study, we systematically assesses
the influence of feedback on the P300-based BCI speller
system. For this purpose, 24 healthy participants performed
the classic P300-based BCI speller task, while only half
of them received feedback. Importantly, to provide more
frequent feedback the number of trials for averaging was
reduced on a regular basis. Providing feedback based on
fewer number of trials also increased the probability of
having negative feedback. In addition to the online accuracy,
the effects of feedback on the EEG patterns are also explored
by considering the power of the target trials versus the power
of the non-target trials.

II. MATERIALS AND METHODS

A. Participants

In total, 24 healthy young adults aged 18-39 years were
participated in this study. The participants had no history
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of neurological illness. They gave informed consent to the
study which had been reviewed and approved by the ethical
review board of the School of Psychology, Trinity College
Dublin, in accordance with the Declaration of Helsinki.

Participants were randomly assigned to two groups, la-
beled as “Feedback” and “No-feedback”. The Feedback
group consisted of 5 females and 7 males with a mean age
of 27.25 (SD±6.00). The No-feedback group consisted of 7
females and 5 males with a mean age of 24.83 (SD±3.09).
22 of the entire 24 participants had no previous experience
of performing BCI sessions. There were no significant differ-
ences between the two groups according to the demographic
variables (age:t(22) = 1.22, p = 0.24; gender:χ2(1) =
0.67, p=0.48; and BCI naivety:χ2(1)=2.18, p=0.14).

B. EEG data acquisition

EEG was acquired using a Biosemi ActiveTwo system
from 8 electrodes located at positions Fz, C3, Cz, C4, P3,
Pz, P4, and Oz following the International 10-20 system.
Impedances were kept below5kΩ, and the sampling rate
was 512 Hz. The P300-based speller task was designed
using the BCI2000 software [13]. In offline analysis, the
continuous EEG data were filtered with a zero-phase low-
pass 35 Hz Butterworth filter and a zero-phase high-pass 0.5
Hz Butterworth filter. The EEG data were segmented and
baseline corrected relative to the interval -150 to 0 ms before
the onset of the stimuli. Segments with amplitudes exceeding
+75µV , or voltage steps of more than 150µV within a
window of 200 ms were rejected from further analysis.

C. P300-based BCI speller task

The P300-based speller task has been widely used in BCI
community as an assistive device for communication [5]. Fig.
1 presents the interface of the P300-based speller task usedin
this study. A6×6 matrix, containing the letters of the alphabet
and other symbols, was displayed on a computer screen,
while EEG was recorded. The text-to-spell was presented
above the matrix. Directly next to the text-to-spell, the target
letter-to-spell was displayed in the parenthesis. The rows
and the columns of the matrix were flashed/intensified in
a random order. Each flash lasted 55 ms followed by an
inter stimulus interval of 117 ms. The participants were
instructed to concentrate on the target letter and silentlycount
how often it flashed. Basically, flashes of the row and the
column containing the target letter (i.e. target stimuli) evoke
P300 on the EEG signals, whereas flashes of the other rows
and columns (i.e. non-target stimuli) correspond to neutral
EEG signals. Thus, the target letter can be inferred by a
classification algorithm that searches for the row and the
column which evoked the largest P300 responses.

After each sequence, the matrix stopped flashing for 6
seconds. During this interval, the next target letter was dis-
played in the parentheses. Thus, the participant was allowed
sufficient time to locate this new target in the matrix. This
process was repeated over the entire target word.

Fig. 1. The interface of the P300-based BCI speller task

D. Procedure

The procedure of the present study is illustrated in Fig. 2.
Participants engaged in a single session of around one hour
duration including set up time. The data recording and task
performance took place in a dark sound-attenuated closed
room.

Fig. 2. A schematic illustration of the procedure in the present study

1) Questionnaire:At the beginning and at the end of the
session, the participants filled out a simple questionnaire
which was used to record self-reported levels of alertness,
boredom, tiredness of the mind, and tiredness of the eyes on
a 10-point Likert scale.

2) Calibration: In this stage, the participants completed
two runs, in which the words “the” and “quick” were respec-
tively spelled without providing feedback. The sequence of
attending each letter consisted of 12 flashes per row/column.
The EEG data collected from this stage were used to calibrate
a subject-specific model identifying attended letters.

After completing the two calibration runs, the EEG re-
sponses to each row/column was obtained by averaging
over the 12 corresponding EEG trials. Thereafter, 800 ms
segments starting immediately after the onset of the stimuli
were extracted from the EEG responses. The segments were
decimated to 20 Hz. Then, the resulting data arrays were
concatenated to form the feature vector. The dimension of
the feature vector wasNe×Nt, whereNe denotes the number
of electrodes andNt denotes the number of temporal samples
in an EEG response. Finally, the extracted features were used
to train a linear discriminant analysis (LDA) classifier which
was used to discriminate between target and non-target trials.



It should be noted that the specific P300 paradigm presented
here has been demonstrated to yield reliable performance in
several studies [14], [15].

3) Evaluation: In this stage, the participants were asked
to spell the word “dog” without receiving feedback. The
EEG data collected from this stage were used to evaluate the
model calibrated in the calibration stage. If at least two ofthe
three letters of “dog” were identified correctly, the participant
was ready to move to the training stage. Otherwise, the
participant was removed from the study. It is noted that in this
study all the participants were able to achieve a calibration
model with satisfactory performance.

4) Training: In this stage, the participants were asked to
spell the word “beautiful” in 4 runs. The number of flashes
per row/colum was set to 10, 8, 6, and 4 in the first, the
second, the third and the fourth run respectively.

For the Feedback group, feedback was provided at the
end of each sequence of flashes through presentation of the
attended letter target as determined by the output of the clas-
sifier. By reducing the number of flashes participants received
feedback more frequently. Thus, this presents a means by
which we can investigate the effects of feedback on BCI
performance. Significantly reducing the number of flashes
can increase the probability of receiving negative feedback
as the decision of the classifier becomes more dependent
on each individual P300 response. The participants in the
No-feedback group underwent entirely similar process, but
without receiving any feedback. They were not informed
about the output of the classifier neither on the screen nor
orally. This is not a situation which one encounters with a
P300 BCI in normal operation but it is necessary here in
order to isolate the effects of feedback explicitly.

5) Post-training: In this stage, the Feedback and the No-
feedback groups both spelled the word “dance”, without
receiving feedback. Similar to the calibration stage, in this
stage the number of flashes per row/colum was set to 12.

III. RESULTS AND DISCUSSION

A. Questionnaire

Analysis of the pre-scores and the post-scores suggested
that both the groups (Feedback and No-feedback) were
similar in terms of alertness, boredom, tiredness of the mind,
and tiredness of the eyes. Furthermore, the within-group
comparisons revealed no significant changes on any of the
variables prior and following the test.

B. Effects of feedback on classification accuracy

Results obtained from the evaluation stage showed that
both groups were very successful in performing the task,
since they achieved similar average classification accuracies
of 97.25 ± 9.6 on spelling the word “fox”. Obtained from
offline analysis, Fig. 3 shows the average classification accu-
racies of the evaluation stage as a function of the number of
flashes per column/row. A repeated ANOVA revealed a sig-
nificant main effect for the number of flashes (F(11, 242)=
39.72, p < 0.001). Neither the group (F(1, 22)= 0.03, p=
0.86) nor the interaction between the group and the number

of flashes (F(1, 11)=0.18, p=0.99) had a significant effect.
The statistical analysis confirms that the Feedback and the
No-feedback groups were very similar in performing the
P300-based speller task in the evaluation stage.
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Fig. 3. Average classification accuracy as a function of number of flashes
per row/column in the evaluation stage (no feedback was provided).

In the training stage, the word “beautiful” was spelled 4
times using different number of flashes per column/row. Fig.
4 presents the average classification results obtained from
the training stage as well as the post-training stage where
the word “dance” was spelled without providing feedback
to both of the groups. As Fig. 4 shows the feedback group
outperformed the No-feedback group in terms of the classi-
fication accuracy. Interestingly, a smaller number of flashes
yielded a larger difference between the performance of these
two groups. A repeated ANOVA revealed significant main
effects for the number of flashes (F(3, 66)=15.74, p<0.001)
and the group (F(1, 22) = 4.74, p = 0.04). However, the
interaction between the group and the number of flashes
(F(1, 11) = 2.08, p = 0.11) was not significant. Since the
Feedback and the No-feedback groups performed very sim-
ilarly during the evaluation stage, the significant difference
between these two groups during the training stage is most
likely due to feedback provided to the Feedback group.
Exploratory analysis using independent t-tests indicatedthat
the Feedback group significantly performed better than the
No-feedback group when the number of flashes was 4
(t(22) = 2.1, p = 0.04). The superior performance of the
Feedback group tended to be significant when the number
of flashes was 6 (t(22) = 1.96, p = 0.06). However, no
significant differences in performance was found for greater
flash sequences (p = 0.10 and p = 0.53 for 8 and 10
flashes respectively). These results suggest that the effect of
feedback is more pronounced when it is given in shorter time
intervals (i.e. Feedback is more frequent).
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Fig. 4. Average classification accuracies obtained from Feedback and No-
feedback groups over the training and post-training stages



Importantly, in the post-training stage where both groups
did not receive any types of feedback, again the classification
results were similar (F(1, 22) = 0.71, p = 0.41). Offline
analysis of the classification results as a function of the
number of flashes per column/row revealed a significant main
effect for the number of flashes as expected (F(11, 242)=
38.96, p < 0.001). Neither the group (F(1, 22)= 0.03, p=
0.95) nor the interaction between the group and the number
of flashes (F(1, 11)=1.95, p=0.13) had a significant effect.

C. Effects of feedback on EEG patterns

In addition to the classification accuracy, we conducted
an offline re-analysis of the data to better understand the
effects of feedback on EEG patterns. We speculated that
by receiving feedback, subjects may consciously or uncon-
sciously modify patterns of his/her brain activity throughout
the experiment. To seek changes in EEG patterns, we defined
a new criterion, called as signal to noise ratio (SNR). SNR
was calculated by the average power of the target trials (i.e.
signal) divided by the average power of the non-target trials
(i.e. noise) over the centroparietal electrodes (namely C3, Cz,
C4, P3, Pz, P4). Since N200 and P300 are both contributing
in the classification of P300-based BCIs [15], 150 ms to 550
ms after the onset of the stimuli were used for calculating
the energies.
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Fig. 5. Comparing the signal to noise ratios (SNR) between the calibration
and evaluation stages vs. the training stage for Feedback and No-feedback
groups. Asterisk indicates a tending to be significant difference (p = 0.07).

Fig. 5 compares the average SNR value obtained from the
calibration and evaluation stages with the average SNR value
obtained from the training stage. Indeed, neither the Feed-
back group nor the No-feedback group received feedback in
the calibration and evaluation stages, whereas the feedback
was provided to the Feedback group during the training stage.
There was no significant difference between the average SNR
values of the two groups during the calibration and the eval-
uation stages (F(1, 22) = 0.33, p = 0.57). As Fig. 5 shows,
on average both groups presented improvements on SNR,
when they transferred to the training stage. This improvement
might be due to learning to better attend the task as time
passes regardless of providing feedback. Besides, reducing
the number of flashes in the training stage leads to shorter
sequences of flashes for spelling each word. Attending to
shorter sequences might be less distracting than attendingto
longer sequences. Interestingly, the paired t-test revealed that
the improvement in the SNR values of the feedback group
tends to be significant (t(11)=−1.99, p=0.07. However, the
improvement in the SNR values of the No-feedback group

was not significantt(11)= −1.02, p= 0.33. Thus, we can
conclude that there is an association between feedback and
the improvement in SNR.

IV. CONCLUSIONS

With this study, we showed that feedback can positively in-
fluence the performance of P300-based BCIs, if it is provided
more often than what most P300-based BCI systems cur-
rently provide. Our experiments revealed that when feedback
was given after sequences of 4 flashes per row/column, the
Feedback group significantly outperformed the No-feedback
group (p= 0.04),whereas the superior performance of the
Feedback group tended to be significant when the number
of flashes was 6 (p=0.06). However, the effect of feedback
was not significant as the number of flashes increased. These
findings are unsurprising, because when the feedback is
provided after a large number of flashes the user cannot be
certain in which trials he/she behaved incorrectly. Moreover,
the user may not even get aware of failure in attention in
some trials, since it can be compensated by averaging over
many other trials. Reducing the number of flashes mitigates
this problem by directing the user to better attend the task.
Our study on the EEG patterns also showed that providing
feedback remarkably contributed in improving SNR.
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