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ABSTRACT 

This the.sis presents a formal apparatus which is adequate both to 

express the termination and correctness properties of programs and also 

the necessary induction rules and axioms of their domains. He explore 

the applications of this formalism 1;vith particular emphasis on 

provicliug a basis for formalising the stepwise ,development of programs. 

The formalism provides, in some sense, the minimal extension into a 

second order theory that is required. It deals ~vith binary relations 

be nye en t up les '].11d the nuni mal fi xp oin ts of monotone and con tinuous 

functionals on them. The correspondence between common constructs in 

programming languages and this formalism is shown in an informal 

manner. 

To shm·, correctness of a program it is necessary to find an expression 

for its termination properties which will depend on the induction rules 

f"or the data structures of the program. We show how these rules may be 
/' 

formally expressed and manipulated to derive other induction rules, and 

give a technique for mechanically deriving from a schema an expression 

for its domain \-Jhich may be expressed in t:erms of given induction rules 

by the manipulations referred to above. 

We gi ve axiomatic defini tions, including an induction rule, for some 

domains ,yhich commonly occur in prograrn.3, these being fini te sets, 

trees, structures, arrays with fixed bounds, LISP S-expressions, 

linear lists, and the integers. 

In developing a program one may start by defining the basic operations 

and domains in ru1 axiomatic manner. Development prc~ecds by finding 

satisfactory representations for this domain in terms of more specific 

domains and thei r operations, tL.'1 ti 1 finally one has domains which are 

representable in a target language. We discuss what is me~'1t by a 

representation in an attempt to formalise this technique of data 

refinement, and also mention the less general notion of simulation 

which requires that a representation is adequate tor a particular 

program to work. 

A program may have been developed in a recursive manner and if the 
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target language does not contain recursion as a basic primi tive it will 

be necessary to simulate it using stacks. \~e give axioms for such 

stacks, and give a mecha!1ical pro'cedure for obtaining from any 

recursive program, a flmvchart program augmented by stacks, \vhich 

simulates it. 
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1 INTRODUCTION 

1. 1 Objectives 

The aim of this thesis is to introduce a formalism which is 

capable of describing the correctness, terminatio!L 

properties, equivalence etc of programs and also is capable 

of specifying the necessary formal assertions about their 

data domains, principally the induction axiom. We then use 

thj s to dt::; ri vc u3cful theorems ab out prograUls. r arL o[ uur 

motivation has been to provide a formal basis for the 

techniques of structured prograrnrrdng, Dijkstra [1969J, Jones 

[1972J, Hoare [1971aJ, Wirth [197laJ, and the theorems we 

have derived have been slanted towards this application. 

We differ from existing formal appronches in that the 

formalism provides, in some sense, the mi~im3l extension 

into a second order theory that is required for au!' 

purposes. The re 1ationship to 0 ther formal approaches and 

the limitations of the formalism will be discussed briefly 

later. 

1.2 Structure of the Thesis 

The formalism is introduced in Chapter 2 where its position 

with respect to other formal systews is also discussed. 

Chapter 3 shmvs hmv this formalism may be used to describe 

flowchart and equation schema in terms of their constituent 

blocks, and gives the relational form of comn10nly occurring 

constructions in progrannning languages. We also show the 

form of common, assertions about programs. 

To show the correctness of a program it is necessary to find 

an expr8ssion for its termination properties which will 

depend on the.induction rul~s of the data structures of the 

progrmn. ·'Chapte1'.' 4 shows how induction rules may be 

expressed and manipulated, and Chapter 5 gives a technique 

for mechanically deriving from a schema an expression for 

its domain. This can be re lated to the inc LC ti on rule 0 f 
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the domain of interpretation by the manipulations of Chapter 

Chapter 6 considers int~rpretations 1.11 Tilore uetail, both the 

non-constructive interpretation of schet:.1a blocks by means of 

the first order predicate calculus, and the expl-i. ::it 

specification of basic operations and data structures by 

means of axioms. The chapter owe~ milch to the work of Hoare 

[1972aJ in the axiomatic definition of Pascal. 

Ch8.pter 7 formalises the process of the refinement of data 

and introduces a simulation theorem. The idea of simulation 

is carried further by ChapteE...! \vhich presents procedures 

which mechanically derive from recursi~le programs, flowchc:rt 

programs augmented by stacks \vhich simulate the original 

program. 

] .:3 Not :1 t i on 

The following notation and the associated faITiliar theories 

v!ill he assumed. 

1.3.1 First Order Predicate Calculus 

True ~ truth values 

False} 

--, negation 

& conj unction 

v disj uncti on 

- equivalence 

->- imp lication 

a existential quantifier 

V uni versa1 quantifier 

1.3.2 Set Theory 

c 

c 

the empty set 

ncmbe rs hi p 

proper contajnment 

con taint:.1cn t 
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o 
x. 

{x Ip (x)} 

1. 3. 3 Tup les 

<> 

o 
D 
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tmion 

interSection 

direct product 

the set of all x such that p (x) ~ implicit 

set definition 

tne zero tuple denoted by A 

the set of tuples from D of leneth 

n 

the set whose only member ~s the 

zerc tuple 
m 

an clement from D 

concatcnntion b~tween tuples 

... 1 .' ,f1., _ <' -' ,ul,···Um/ ,e1,···em> - Gl,···um, 

el,···cn >· 

1.3.4 Relations between tuples 

\Je. include here a surr..mary of the notaticn introduced 

in Chapter 2. 

t5 {<a, b> I a E D
m 

& b E nn} 
m-+n 

n ~ 
m-+ n 

E = { <a, a>1 a E DID} 
m-+ m 

E. '= { <a, a. > I a = <a1 ,. · · am> E 
m -+11 1 

}l = {< a, ,,> I a E n m} 
m -.~ 0 
-1 

R = {<b, a> I <a, b> E R} 

universal relation 

empty relation 

identity relation 

n
ID

} 

selector relation 

nullifier relation 

inverse 

R; 5 = f< a , c> I lIb < a, b > E R & <b, c> E 5} 

composition 

[R, 5] o {<a, b c>l<a, b> E R & <a, c> E 5} 

concatenation 

[RI5] =·{<aoc, bOd>!<a, b> E R 8: <c, d> E S} 

direct product 

The ~omain of R ~ {<a, A>I~a, b> E R} = R; N 

The ranr,e of R = {<b, A>\<a, b> E R} = R-
l

; N 
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1.3.5 Substitu~ions 

¢ (a/x) is the result of substituting a for all free 

occurrences of X in o. 

<P (a I! X P 0'2 / X 2 ••. on /X It is the re s u 1. t 0 f 

siffiultUJ.Leously substituting vI forxl ' ••• 

in ~. 

a for X 
n n 
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2 DESCRIPTION OF THE FOR}~LISM 

The formalism is a relational calculus based on binary relations 

bet\veen tuples which \-Jhen \>iC talk about schema may be identified 

with the relations Vlhich hold between state vectors ac.ross 

program blocks. The syntax of the system is given using an 

infonnal BNF gralmnar, and the context sensitive parts of tl'l13 

syntax fo1lm.;. The semantics are explained using a set theoretic 

model of the system, rather than by axioms, assuming an 

arbitrary, non-empty, interpretation. Some of the operl3.tions on, 

and bet\veen relations, have direct analogues in prograrrnning 

languages. These will be pointed out in an informal manne r in 

Chapter 3. 

2.1 The Rclationfll Ca;lculus 

The interpretation of a term T is determined by a 

structure £) = <D, f> ,,,here D is knm·.rn as the domain 

of interprcta.tion arid £ is a function from the sct of 

typed relation variables to the set of binary 

relations bet\'Jeell tuples from D, such that f ( A ) 
m-+n 

~ D
m 

x Dn. The interpretation of T by a s tructure ~ 

is denoted by I (T ,&)). \.Jc will also talk of the 

structure ~ as being an interpretation of T. We 

define g) [R/ XJ to be the struc,ture <D, f> where f (Y) 

= if Y = X then-R, else f (Y) with the obvious extension 

for mUltiple rep1acementbo The type of R must be the 

same as that of X! 

2.1.2 !yped Relation Variables 

<:typed relation variable>::= A I B 
m-+n p-+q 

l., e as s ume t hat an ill fin i t e set 0 f dis tin c t 

identifiers cxi~t. I ( A, ~) 
~ ,-)- n f ( A ). 

m+n 

m,n ,p. q 
;?; 0 
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m n 
It is some relation between tuples from D and D , 

"'hose elements are denoted by: 

«d) ••• d >, <c
1 
••• e ». _ m 0 n 

We ide?tify the special case of relations of type m ~ 0, 

m > 0 wit~ predicates or sets. A m + 0 

{<a, A>IX<a)} in place of the pn!dicate 

X~xl' ••. x). If the domain D is not empty there are 
III 

JUSL L\'JO 0 i 0 relaLions ~·Jhil:.h 111::,\1 1,,:.-........... .; ~'" '-- cOflsiJereu as 

truth values, true is identified Hith <A, A> and 

false with the empty set of type 0 + o. 

2.1.3 Typed Re.lation Consta.J1ts 

<typed relation constnnt>::= 

<uni ve rs al rc 1 :1ti on> ! <empty re 1 ati on> I 
<identity relation'> I<selector relation>1 

<nullifier relation> 

2.1.3.1 

2.1.3.2 

2.1.3.3 

2.1.3.4. 

Unj. vers al l~e lDtio!1 

<universal relation>::= U m-+n 
J ( ~, i}) = { <a, b> I a E D

m 
& b E n11

} m-rn 

Empty Relation 

<empty re1ation>::= n 
m-+n 

I ( n, po) = ~ 
ID + n 

Identity. Relation 

<identity relation>::= E m-+m. 
o ) m I ( E,~ =: {<a, a> I <a ED} m -+ lQ 

Selector Relation 

<selector relation>::~ E. 1 sis m 
1 

I!1 -+ 1 
J ( E .• ~) = t <a. a. > I a = <a

1 
••• a > E DID} 

m +1i 1 m 
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2.1.4 Terms 
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This operation corresponds to ~he 

selection of variables from a state 

vector by identifiers. 

Nullifiers 

<nullifier relation>::= N 
m-+Cl 

I ( N i) ) = {<a, A> I a E nm} 
m -+' 0 

We will use the nullifier relation to 

stand for the complete domain of 

interpretation. We will often use the 

prefix is- as a mnemonic device for the 

indication of such relations'; eg is~ 

integer, is-st~ck, is-binary-tree. 

<terms>: := 

<typed relation variables>l<typed relation 

constants> I 

<negated terms>l<inverse terms> I 
<composition terms>l<concatenation terms> I 
<product terms> I <union terms> I 
<intersectionterms»<~-terms> 

To specify context sensitive restraints we assume, 

for this section, that A is a term of type m -+ nand 

B is a term of type p -+ q. 

2.1.4.1 Negated Terms 

<negated term>::= <term>' 

A' is a term of type m -+ n. m-+n 
1 ( A·.,~) = {<a, b>l<a, b> ~ I ( A,S')} 

m-+n m-+n 
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2.1.4.3 

2.1.4.4 

14 

Inverse Terms 

. -1 <inverse term>~:= <term> 
-1 

A is a term of type n ~ m 
m~n 

I ( A~l ~ ) = {<b, a> I <a, b> E I ( A,~)} 
m~n m~n 

-1 The special case of A corresponds to 
ill -+ 0 

the introduction into a program of a set of 
-1 h· d . constants, and N to t e 1ntro uct10n 

m "7 0 

of new variables into the state vector, 

possibly by declarations in inner blocks. 

Camposition Terms 

<composition term>::= <term>; <term> 

A : B is a term of type m ~ 0. iff n 
m ~'n' p ~ q 
= p. 

I ( A ; B,~) ={<a, c>I(3b) «a, b> E 
m~nn~q 

I .(A,~) & <b, c> ( I (B~iJ? } 

This operation is basic to schemas and 

progranuning languages. It may appear as 

the sequencing of statements or as 

functional composition, eg f (g (x» has 

the relational form G: F if F Q 1 1 ~1,1. ...... 
are relations corresponding to the 

functions f and g. 

Concatenation Terms 

<concatenation term>::= [<term>, <term>] 

[ A , B ] is' a term of type m ~ n + q 
m~np~q 

iff m = p. 

I ([ A B]~) = {<a, b n c>l<a, b> 
m ~ n'm -- q , 

E I (A,D) & <a,c .> E I (B,£) } 

This operation is com~lementary to 

selection and is used both to build up 
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2.1.4.6 

2.1.4.7 
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state vectors and to express conditional 

statements or case statements. 

Product Terms 

<product tern>::= [term I term] 

L A 
m -+ n 

n + q. 

B J is a ~erm of type m + p -+ 
P -+ f! 

I ([ A I B J !'ogJ) = {<: .3 n c, b n d:> I 
111"711 p-~q 

< a , b > E I (A ,<iJ ) & < c , d> E I (B,~))} 

This operation can also be specified 

using selection and concatenation, eg 

Union Terms 

<union term>::= <term> U <term> 

A u B is a term of type m -+ n iff 
m'+n p-rq 
p = m, q n. 

I ( A u B Sj)::: {<a, b> i <a, b:> E I 
ill -r n m -+ 'n 

("A, f») v <a, b> E I (B, E) )} ~ I (A, 8) u 

I (B, ~) 

\-Je use the Ulll.On operation to separate 

alternative paths in a program. For 

conditional expressions, case statements, 

the domains of the sub terms are disjoint, 

but we also allmv non-deterministic 

programs where the subterms may overlap. 

Intersection Terms 

<intersection term>::= <term> n <term> 

A n B is a term of type m -+ n iff 
m-+n p-+q 
p = m, q n 

I ( A n B.,:J) = {<a, b..--!<a, b> E I 
III "7 11 m -+ on 

(A, ~~) & <a, b> E I (B,D)} 
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lJ-terms 

<lJ-term>::= lJ. <typed relation variable 
l. 

list> «term list» 

<typed relation variable list>::= 

<typed relation variable> I 
<typed relation variable> 

<typed n:~lRtion variable list> 

<term list>::= <term>l<term>, <term list> 

If Al ••• An is a term list and Yl ••• Yn is 

a typed relation variable list of the 

s arne length n, if thf: type of each Yj , I 

s j ~ n, is the type of ~ and if 1 sis 
J 

n , th p n 11 i y 1- • • Y n ( A I ,. • • An) i sat e rm 

of the type of Y •• 
l. 

The semantics of ~-terrr~ are given in 

section 2.1.5. 

2.1.5 Well Formed Terms 

<well formed term>: : = (term). 

A term A is well formed, if for all 11-terms of the 

form lJi Y 1· •• Yn (AI' ••• An) occurring as sub terms of 

A, each~, I s k S n, is syntactically monotone in 

each Y ., 1 s j S n. 
J 

An occurrence of a variab Ie X in a term T is free if 

it is not part of a subte.rm of the form 11. ••• X ••• 
1. 

( ... ) . 

An occurrence of a vari ab Ie X in a term T is bound 

if it occurs in a subterm of the form llo ••• X 
1. 

( ... ) . 
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A term A is syntactically monotone 1n X if each free 

occurrence of X in A occurs within an even number of 

subterms of the form B' • 

A term A is syntactically continuous 1n X if 

i No free occurrence of X in,A lies within a 

subterm of the form B"' 0. 

ii No free occurrence of X in A lies within a 

subterm of the form ~.YI ••• Y (AI, ••• A) with 
1 n n 

some A. not syntactically continuous in some 
J " 

Condition (ii) arises since "there are terms, say 

L (X, Y), where l' is monotone in Y and con tinuous in X 

such that the term ~y (1' eX, Y» is not continuous in 

X. " 

Consider l' (X, Y) = (U; (Y U A)')' uX 
1 -r- 0 I -+ 0 

This is syntactically continuous in X and monotone in 

Y. 

lJY (1' ( X, Y» =X if X u A :f N 

== N ii X u A = N 

Let this be F ,'X) • 
F (X) is not continuous in x. 

Consider sets x~ such that x. 0: A). and UX. == A '. 
~ 1. I- .1" 

These may be found for any interpretati6n"by a 

structure which has an infinite domain, then U F (x.) 
• 1 

== A 0' ~ F (U x.) = N. 
• l. 
1. 

1. 

If the ~-term is well formed then I (V • YI ••• Y (A" 
1. n ~ 

•.• A ), ~) is the i' th component of the minimal 
n 

fixpoint of the functional I «AI' ••• An)' fl) • This 

functional F~ ••• An is from An n-v~ctor of relations 

to an n-vector of relations such that their j'th 
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components are of type Y., and is defined by: 
J 

FA A «Rl , R2 ••• R » = <Sl' ••• S > 
1· · · n n 

where Si = I (~i' [Rl/Yl , R2 /Y2 , .... Rn/Yn]) 

Vectors of relations form a lattice with the 

operations~, n. U defined cornponentwise,and since in 

a well formed term the functional rA ••• A is monotone 

the fixpoint. of this functional alwa9s ex~sts. Tarski[1955] 

.It is important not to confuse the algebra of vectors 

with the direct product operator defined earlier, ie 

~ (D) x It (D) is not isomorphic with m -+ -n p -+ q 
~ (D) where ~ (D) is the set m+p-+n+q m':>-"n of m -+ n 

relations over D, eg with m = n p = q 

1 ~ 1 (D) = {4" {< a, a> Y} , 1. ~ 1 (D) x 

1 and D ~ { a } 

1 f 1 (D) = 

<4>, ~>, <<P', {<a, a>}>,'<{<a, a>}, <1» <{<a, a>}, {<a, 

a>}> 

whE:reas 2 ~ 2 (D) = {¢,{ «a, a>, <a, a»}} which has 

fewer elements. 

All the functionals corresponding to scheru$ are 

continuous and we will show in the next chapter how 

the fixpoint operator can be used to characterise the 

programming constructs of iteration a,d recursion. 

2.1.6 Atomic For~ul~ 

<atomic formula>::= <well formed term> £ <well formed 

term> 

An atomic formula is satis fied by a structure if the 

inclusion holds be tween the interpreted terms, ie IJ F 

(J ~ T <=> I (cr, D) ~ I (1', ~ ) • 

2.1.7 Asser~ions 

<assertion>::= <atomic formula set> ~ <atomic formula 

set> 

<atomic formula set>::= ¢ I <atomic formula>/<atomic 



19 

formula>, <atomic formula set> 

An assertion 4>l-lfJ is valid iff every· structure which 

satisfies all of 4> also satisfies all of lfJ. 

2.2 Logical Properties 

The logical properties of the relational calculus can be 

divided into first order and second order properties. Given 

an interpretation one can consider the corresponding 

interpretation for the pure predicate calculus in which (m ~ 

n)-ary typed relations are replaced by (m + n)- ary relations 

(relations in the normal set theoretic sense). 

2.2.1 First Order Properties 

Theorems are stated without proofs which are sketched 

in Hitchcock and Park (1972). 

2.2.1.1 

2.2.1.2 

Theorem 

There is an effective method which, given 

an atomic formula (T ~T of the relational 

calculus, not involving ~-terms, provides 

a sentence Fa, L in the corresponding pure 

first order predicate calculus with 

equality which is satisfied precisely by 

those interpretations which correspond to 

those s atis fying O::'L. 

Theorem 

There is an effecti ve method which, given 

a sentence F of the pure first order 

predicate calculus with identity with at 

most m variables, provides an atonuc 

formul a of the form neT F' m-ro-
contalnlng only re1ati'1n variables of the 

type n ~ 0, which is satisfied by 
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precisely those interpretations which 

correspond to those satisfying F. 

2.2.2 Second Order Properties 

2.2.2.1 

2.2.2.2 

Theorem (Park) 

There is an effective method for 

translating atomic formulae involving ~­

terITS into the second order predicate 

calculus which preserves satisfaction in 

the sense of the previous two theorems. 

The proof may be found in Park [1970J. 

Theorem (P ark) 

There exist sentences in the second order 

predicate calculus which ca~not be 

translated into the relational calculus, 

in the sense of 2.2.2.1. 

The proof is along the following lines. 

The property that a domain is finite can 

be expressed as a sentence in the second 

order predicate calculus. 

,3X(Vx3y.X(x,y) A 

(VxVyVz.«X(x,y) A X(y,z) ~ y=z) A (X(x,z) A X(y,z) ~ X=y)))A 

Vx.-.X(x,x) ) 

There exists no set of assertions ~, 

finite or infinite, such that an 

interpretation satisfies ¢ iff its domain 

is fini teo 

This is known to be true for a set of 

first order assertions. If the assertions 

contain free relation variables then these 

can be set to nand eli::ri.uated, 
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since 'ole must be able to assert the 

finiteness of any structure. It can be 

shown that for any l1-term~ say l1X F (X) 

,·;rhich contains no free relation variables 

that (8n) t- ~X F (X) = Fn (0). This 

m8 dJ.1S tl! at any set 0 f as s e rtions '\>Jhi cll 

does not contain free relation variables 

can be replaced by a first order set of 

acsertions. 

Theorem (P ark) 

There exist assertions involving 

syntactically monotone l1-terms which 

cannot be expressed by assertions 

involving only syntactically continuous 11-

terms, such that Loth assertions are 

satisfied by precisely the same set of 

structures. 

The procf 1S sketched below. 

Syn tacti cally continuous ll-te rms are 

representable in the language uAl1w since 
00 n 

11 X F (2Y = U F (n). 
n = 0 

A result from logic, Keisler [197]J, 

states that '\VeIl foundedness is not 
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representabJe in LI.I)1 w 

We show in chapter 4 how it is possib Ie 

to assert well foundedness using 

syntactically monotone p-terms. 

Theorem (Park) 

There exist sentenceS In V:.\ W 'vlhLCh 

cannot be translated into the relational 

calculus, in the sense of 2.2.2.1. 

The property that a domain is fini te c~n 

be expressed as a sentence 1.n Lul - uJ, and 
.1. 

the proof ~s then along the lines of 2.2. 

2.2 •. 

2.3 Formal Reasoning 

2.3.1 First Order Reasoning 

.. .... To show the validity of any assertion, not 

involving P-tenns, we show the vali.dity of the 

corresponding predicate calculus formula. 

That is we assume <1>1 I- ¢2 whenever [( 1\ 
a~T) E<1>l 

FaT -+ (acT,AE,I, Fa TJ is valid in the pure 
, - J '+'2 ' 

first order predicate calculus. F is given 
a, T 

in 2.2.1.1. 

ii From <1>1 t- ¢2 and ~I, <1>2 I- ¢3 we can deduce lP' 

<1>1 I- <1>3' 

iii For any relation va"ri'ab Ie· X , clOd any 
m-+n 

(in -+ n) ary term T, we can deduce from ~1-1jJ that 

¢ (T IX) t- VI (T IX), ,,,here ¢ (T IX) ~ ~) (T Ix) are 

the~result of replacing all free occurrences 

of X by T, after a suituble alphabetic change 

of bound relatiun variables in <1> and ~J. 
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Derived Rules 

First order reasoning in the remainder of 

this thesis will be given informally, 

rather than by following the fo~~al 

reasoning outlined above. He list some 

first order results wh1ch will be found 

useful. 

i I- A; E = E; A = A 

ii 1-. (A; B); C A; (B; C) 

iii I- (A') 1 = A 

jv I- (A-I) -1 = A 

I- . (A t)-l (A-I) 
, 

v = 

" 
vi 1-. n 1,5 

vii I- A ~ U 

viii I- A; n n 

x 1-.' [A, [B, cJ J [[A, BJ, C] 

xi. I- [A; Blc; D] :;: [Alc]; [BID] 

xii (A; B)-l -1 -1 
I- = B ; A 

xiii I- (A u B)I. A'" n B" 

X1V I- A; (B u C) = A-, B u A; C 

xv t- A; (B n C) ~ A; B n A; C 

A~lA ~ Et- A;(E nc) = A;B nA; C 
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xvi ~ (A; m ~:o?t s (A; N)t U A; X 

A-1;A ~ E ~ (A;X')' = (A;N) , u A;X 

-1 The atomic formula A ; A ~ E asserts 

that the relation A is single-valued. 

Con ven ti ons 

~ Elision of parentheses 

A; (B; C) :: A; B; C 

[A, [B, C] ] :: [A, B, C] 

ii Composition semicolon will be 

omitted and concatenation used. 

A; B E AB 

iii Type indications will be drofped 

whenever possible. The rules 

governing well formed terms will 

us ually enab Ie them to be r~s lured. 

iv Strictly the relation constants E, 

n etc should be dis tinguishcd by 

types. This will not be done. Two 

occurrences of E in a term may be 

'of different types. 

2.3.2 Secund Order Reasoning 

The rules are presented for well formed ll-terms of 

order n, 

i Fixpoin t Property: 

1- lli Xf · . Xn (T1'" "Tn) = 1"1 ('lli Xl' • Xn (-r 1,··· 

T ), •• , II Xl" • X" (T"." T » n n ....L n 
I ~ i S n. 

ii Minimality Property. 
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and~, ¢ (Y1, ••• Xn) I- ¢ (T l (Xl ••• Xn), •.. 

T (XI ••• X)) 
n n 

then ~ I- ¢ (lll Xl'· .X
n 

(T l , .•• L~), ••• 

~ . Xl · ." · X (T' l ' · · · T )) n n n , 

provided that each atomic formula in ¢ has the 

form a1 £~2' with~l syntactically continuous 

in Xl, ••• X
n

, and a
2 

syntactically monotone in 

Xl ••• 4n , and ~l, •• Xn are not free in ~. 

~6e validity of this extended form of Scott 

Induction, Scott and. de Bakker [1969J, is 

shown in Hitchcock and Park [1972J, together 

with a counter example \-;rhen cr 1 is allowed to 

bc ~yntnc~icnlly mo~otcn2. 

Derived Rules 

i Substitutivity. 

If T 2 is the term obtained from T 1 

by substituting a relational 

variable Y for an occurrence of a 

variable X .in a context where 

neither is boued then: 

X £ Y I- L 1 £ T 2 or T 2 £ T 1 

depending on whether the 

occurrence of X is wi thin an 

even or odd number of 

complemented subterms. 

X=Y~L =1" 
2 1 

ii Elimination of Hultiple Fixpoints. 
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iii Fixpoint Induction. 

{or. (°
1 
I Xl ' ••• ° IX ) ca. 11 :::; 1. :::; n} 

1. . non - 1. 

.r- 11. Xl ••• X -( T 1 , ••• T ) c (). 
1.. n l. n - .I.. 

Derivations of the above rules may be 

found in Hi tchcock and Park [1972J. 

2.3.2.2 Con ven ti ons 

Tn s i ttl A. ti. ems vJhe re no c.on fllS ion can 

arise we 'vi 11 often use 1-1. X .•.• X to . ]. 1 n 
abbreviate the term ]Ji·~l··· ~n (T 1)·' • Tn)· 

2.4 Other formal techni5.l~ 

Hanna and Pn'Jeli ~1970 ] 3dopt an essentially first order 

approAch. They obt.ain fr0m a rro~r~m~ two f1 rst order 

sentences vlhich con tain unspecified predicates. If Floyd 

assertions are" guessed at" and used to replace the 

unspecified predicates in the first formula, then a first 

order sentence is obtained whose satisfiability implies the 

partial correctness of the program. The termination 

properties of a program are given by the unsatisfiability of 

the second first order sentence. To show this 

unsatisfiabili ty it is usually necessary to <l3SUme a second 

order induction axiom for the domain of interpretation. 

This approach is first order in the sense that once 

predicates have been "guessed at" first order formula are 

obtained. There is 1-}mvever an implicit quantification of 

the unspeci fied predi cate sYIT'bols. The' fact that the 

termination properties of a program a.re not partially 

rlecidable shmvs that t.h~ problem c:.qnnot be reduced to the 

proving of a first order theorem. The existence of a second 

order induction rule is required • 
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Cooper [1969J uses the second order predicate calculus ~nd 

makes explicit the implied quantification of unspecified 

predicate symbols, but says not.hing about the necessp..ry 

induction rules for proofs of termination. 

The approach we have taken follows closely that of Park 

[1970J, but is expressed in a relational form suggested by 

Scott and de Bakker [1969J. Park [1970J shovls that some of 

the fJn~~'icat:.es corresponuing to Floytl dssertioilS must havQ 

additIonal fixpoint properties and that fixpoints cm .... be 

used to express induction· rules. 

We have not gone as far as the more sophisticaied languages 

of }1ilncr's LCF [1972J and Scott's Lambda [1972J which have 

higher types but which use only continuous l1-forms and GO 

are not capable of expressing and TIl3.nipulating inducticn 

rules and hence of t2.lking abo1..!t terIPine.tion p!'opel:ties. 

We must also mention the similar formalism of de Bakker 

[1971J, de B3kker and de Roever [1972J which is conLl_Tled so 

far tu monadic re1ations~ to a more restricted class of 

operations on them, and to continuous 11 -forms. 

De Roever [1973J describes a polyadic relational calculus 

which does not con tain monotone l1-terms, but which 1S 

otherwise essentially similar to ours. Whereas we have 

derived our first order reasoning via translation to the 

predicate calculus, de Roever gives -axioms for first order 

reasoning. 
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3 RELATIONS AND PROGRAMS 

3.1 R~lational Forms of Program Constructs 

Our development process proceeds by postulating ~ program 

which is composed of the familiar constructions below. TL:! 

program is not completely specified,blocks of 

code may be defined non-constructively by the relation that 

holds across them. VI timately we arrive at a program 

in a target programming language. The justification of this 

final transition requires a semantic definition of the 

target language. We do not wish to consider this problem 

here, except t.J say that it will be easier to justify the 

transition if the semantics are given by axioms rather than 

by a mechanical interpreter, eg the Vienna Definition 

Language [Walk et al 1969J. For this reason the following 

treatment is rather informal. 

3.1.1 Assignment 

An assignment statement modifies the state vector and 

we consider it as defining a relation between the 

state vector before assignment, and the state vector 

after assignment. 

As an example consider the statement a: = f (a, b) in 

a program whose state vector consists of the 

variables a and b. Assume that 2 ! 1 is the relation 

corresponding to the function f. The relation 

bet\veen the input state' vector and the first 

component of the output state vector is clearly F, 

and between the input and the second component of the 

state vector, the selector relation E2 , as the 

variable b is unchanged. The concatenation operator 

is then used to build up the output state vector, 

resulting'in the term [F, E2J. 

We may prefer to be less explicit about an assignment 

statement, or group of statem0nts and define them by. 
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the relation Vlhich holds across them, realising this 

re lation mare exp lici tTy at a lmver level in the 

deve lopment" 

I1cCarthy [1962] gave. axi oms for a con ten ts function 

c(u ,~) which gives the contents of location u in the 

s ta te ve ctor ~ and an as s i gnrnen t f~,mction a (u, t;z' ,~) 

Hhich modifies the value of location 1'1 l!l the state 

vt..:ctor .;, to <." ThE! cOllten tf:: fun ctiol1 ~s fflodelled by 

E· and the assignment function by [E
l
"". E.; A ••• E ] 

1 ' l' ill 

assuming that the s tate vector has m cOIDponen ts, thllt 

u is the name for the i' th component and that the 

constant relation A represents the constant ex" 1 -}- 1 
The axioms are: 

i ~ (u, a (v, a, ~») if u v then (y, else c (u!:) 

ii a (v, c (v, ~),~) 

iii a (u, ex, a (v, 13, ~)) = if u = v then a (u, cx, c:) 

else a (v, S, a (ll, ex, ~)) 

From the definitions of E. and the concatenation 
1 

operator it is easily sho\,m that the assertions 

corresponding to these axioms are valid, ie 

i 

ii 

iii 

.- [E l' ••• E'i; A, ••• Em]; E j 

E.; A else E . 

if i = j then 

1 J 

E ] 
m 

E 
m-+m 

I- [E I , ... Ei;B, •.• Em]; [E I , 

, = if ~ = j then [E
I

, .•• Ej;~' 

E •. ,' A, ••• 'R J J. .....m -
E ] else 

m 

rEI' •.. E!,; A, E ] [E I' •.• E .. : B , 
~ . m l' 

Note however thllt we Clln deal only with stat~ vectors 

of d l..nown length wher·3ds !·icCarthy's axious refer to 

those of arbitrary lcneth. 
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3.1.2 Branching 

A conditional' statement, if p then Q else R is , 
represented by the term l P, () J u [ Po, m->-om.::}:m m-* 

R J. The m -* 0 relation P corresponds to the 
m-*m 
predicate p and acts as a 'filtcr' allO\ving only 

arguments vlhich satisfy p to be appJ-ied to Q. The 

formalism also allm-ls non-determinate branches, ie 

thp dom.:li.n~ of thc-> ~l1b-tprm~ involv(>c1 mAy ()vprlClp. 

Case s tatemen ts are an obvious extens ion. He late r , 
usc the equival\2nt 'formulation of [p, EJ Q u [p' , EJ 

R. 

3.1.3 Co~position 

The sequential execution of statcm.enLs is 

strnightforu2.rd. If R 3...T1d S arc the relations 

holding across t\.,TO statements rand s, then R; S is 

the result of executing first r and then s. 

3.1.4 Procedares 

We will deal here only \vith procedures \\>hich are non­

recursive. They may not access non-local variables 

other than those in the parameter list. Recursive 

and mutually recursive procedures are dealt with 

later. 

The declaration of a procedure invoked as a function 

reference defines a relation bet~een the formal 

parameters of the procedure and the result vector, 

provided that \ve allow only access to formal 

parameters and local variables in the body of the 

procedure. Invocation of the function is the 

selection of the appropriate actual parame:ters from 

the state vector of the calling program, composition 

with the relation representing the body of the 

procedure, and then aSS.l.gtlmeilt of the result state 

vector. 
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A procedure call differs only in th~t the assignment 

of results is made in the body of the procedure to 

formal parameters. The procedure declaration defines 

a relation between the input parameter list and the 

output parameters, those which are modified in the 

body of the procedure. Following Hoare [197lbJ these 

two types of parameters should be di~tinguished. A 

procedure declaration could have the form p (~) (~) 

pl'OC Q where x is the list of formal parameters which 

are assigned to, and v is the list of formal 

parameters which supply values. The form of a 

procedure call is call p (~) : <.!:) "lhe re ~ is a lis t 

of expresJions and a is a list of variable names. 

The relation which holds between the state vector of 

the calling program before and after such a staternent 

is obtained as follows. The jnput expression list is 

formed and c.ompos~d with the body of the procedure, 

and the list of variables, ~, enables the correct 

final state vector to be built up using the 

concatenation operCltor. This is essentially Hoare's 

value and result model. We cannot handle calls by 

name. 

As an example consider a program with variables a, b, 

c and a procedure declaration p' (x, y) : (y, z) Q. 

The relation which holds across the statement call p 

(a, b) : (b, c) is given by [[E
2

, F,3] Q, E
3

J. 

Hoare's restriction that the actual parameter list ~ 

contains a disjoint list of variables is essential. 

The simultaneous assignment of two results to the 

same location is not defined. ,However we do not have 

the restriction that none of the variables in a occur 

in e. This arises in Hoare's work from trying to 

identify mathematical variab les, which have the sarne 

value whenever they occur in a formula, with program 

variables "lhose values change. This is only possible 

if the variables are not nssigned ~o. 
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Since we regard the procedure body as a relation 

between the input and output parameter lists, and 

have a call by value mechanism, we circumvent the 

restriction that the actual input parameter list may 

not contain the same variable more than once. 

Consider the example: 

p (x) : (v, x) begin x := x +,v 

x := x - v 
e..lli! ; 

Cleully the body of the procedure is the 2 ~ 1 

relation E2• Hence ~ p (a) : (a, a) does nothing. 

Note that ~ p (a) : (a, a) with a body replacement 

IlEchanism as for example ALGOL 60, is rather 

di fferen t. 

Local variables are introduced into procedure bodies 

by the use of 0 ~ 1 relations to extend the state 

vector in t:le body of the procedure, or by use of the 

concalenation operator to extend the state vector, 

depending on ~·;rhether the local 'lariab Ie is 

initialised or not. 

3.1.5 Iteration 

A simple iterative form is the program construct 

while B do Q, this may be represented as a flowchRrt. 

y 

Q 

_------------ _____ A 

N 

y. 

I 
~ 

~______ C 
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The relational expression for this loop is obtained in 

the following manner. Let X be the relation between 

the points marked A and C in the flowchart. 

We can then trace our way round the loop a~d obtain 

the equation: , 
X = [B" , E J u [B, QJ; X 

The solution which characterises this loop is given 

by the minimal fixpoint, ie , 
II X ( [B , E J u [B, QJ; X) , 

3.1.6 Flowcharts 

The process shown for obtaining the relational form 

of a loop extends to any flowchart, and hence tu 

languages which include goto statements and·labels, 

but not label variables. Sufficient variables Xl .•. 

Xn are chosen such that there is at least one 

occurring in each cycle, and a set of n mutually 

dependent equations is produced. 
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Xl = [A), EJ U [A, EJ X
2 , 

X2 = B; [C-·, EJ :XI U B; [C, DJ X2 

f 
,~ 

X 
1 

and the relation across this program fragrl1ent is given 

by 

3.1.7 Recursion, Equation Schema 

We treat recursion in a sinular manner to iteration. 

A variable Xi is associated vlith each recursive 

procedure or function and equations simi lar to those 

above can be obtained. 

eg, f (xl' xL) = if P (xl) then a (xl' x ) 
2 

else g (xl' x2 ' x ) 
2 

g (x 
l' x2 ' 

x
3

) - if p (x
3

) then f (h (xl) , x
2

) 
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If X and X are the re lations associated wi th 
2 ~ -1 3 ..".2 I . 

f and g, then \le can "tvr1 te the follmving equations. 

Xl = [E
I 

P, AJ U [E
I 

P " E
I

, E
2

, E2 J X2 ;: g (.X
l

,X:
2

) 

~2;: [E 3 P, El H, E
2

J }il U [E I , E2 , t:3 HJ X
2 

J = . S (X
l

'X
2

) 

and the relation which charact~risct; f is given by: 

3.1.8 Limitations 

\·le mus t not pre tend that we can des cribe all the 

fami liar cons tructs of progralllmir~g languages in this 
..... 

formalism. We have already ~hown that we are only 

ab le to des cr ibe a p arti cular p t ocedure calling 

mechanism and so cannot describe the body replacement 

rule of ALGOL 60. The formAlism is such that the 

number of components of ~he state vector and control 

structure of a program must be capable of being 

determined statically. This means that we cannot 

handle such dynamic changes to the state vector as 

the creation of variables in SNOBOL IV nor the 

dynamic changes to control structure caused by label 

variables or the possibility of passing procedures as 

parameters. The lambda calculus based languages, and 

procedure variables need relati~ns of higher types 

thp~ we allow in our formalism. 

It must be remembered however that the formalism was 

dave loped to reason about programs and program 

s chemas rather than for the defini tion of the formal 

semantics of languages. There is still an element of 

informa.lity in the transition between relation~l expressions 

and their realisation by an actual programming language, 

which would bear further investigation. 
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3.2 Properties of Programs 

We Ileed to express properties of programs in our formalism. 

3.2.1 Correctness 

The specification of a program is a,relation between 

input and output variables. 

If S is the specification of a program and R is the 

relation which characterises the program then the 

program is partially correct with respect to S, if R 

S Sand {s correct with respect to S if R= S. 

3.2.2 Termination 

The cOID.:lin of a program is the set of values for 

which it terminates. 

If R is the relation wid ch characterises the program 

then the domain is given by R; N. 

The program is total if RN N. 

Notice that an argument is included in the domain if 

at leas t one ,computation wi th that argumen t 

terrrinates, not if all computations terminate. 

3.3 Examp les 

3.3.1 Factorial 

This form of a program to compute' factorial is taken 

from Hoare [197lbJ. 

The progra:n 1S: 

fact (r) : (a) begin 

if a = 0 then r: = 1 

else begin ne~ W; -- -----
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call fact (w) : (a - 1); 

r: = a * \0.1 .. end 

end 

call fact (r) : (a) 

. The relational form of the body of the declaration is 

given by: 

F = . VX (A u [E, BXl C) 1 ~ 1 
w'i.th the interpretation: 

A = {<a, I>} 

B = {<a, a-l>1 a>O} 

C = {«aI' a2>, a l*a2>1 aI' a2 ~ o} 

The~term [E, BX] is of type 1 + 2; ie the state 

vector has been ~xtended corresponding to the 

declaration new w, the' term BX is a recursive call of 

the procedure with argument a-I whose result is 

placed in the location corresponding to w. 

Let S be the relation 

S = {<a, a! > I a ~ o} 

We show by fixpoint induction that the procedure is 

contained in S. 

i A ~ S since o! = 1 

ii [E, BS] = {<a, <c l ' ~2>~1 cl = a & (ab) b 

& c
2 

= b!} 

= {<a, <a, (a - 1)!»1 a >01 

iii [E, BS] C = {<a, a * (a - I)! > 1 a > O} 

= {<a, a!>1 a > O} ~ s 

i v A u [E, BS] C ~ S t-' II X (A u [E, BX] C) ~ s. 

The specification of the program is: 

T = {«aI' a2>, <b
l

, b
2
»1 a

l
! = b

2
&bl = a l } 

a-I 



- - ---------------------------- --------------- ---- --38-

The relation corresponding to call fact (r) 

given by: 

P = [E
I

, EI FJ 

(a) is 

Hence the factorial program is partifilly correct. 

3.3.2 Park [1970J 

Consider the pair of schemas 

G = lll' Xl X2 (A u B X 2' CXI U DX 2 F) 

H = II X'" (A u B X , eXl U DX
2
F) 2' I' 2 2 

wit~th~ interpretation 

A = {«aI' a2 >, b>/ a
l 

= 0& b = 01 

B = {«a a > <b b b» I' 8
1

> 0 & b 1 a & b ;: 
l' 2' l' 2' 3 1 2 

a2 & b
3 

= a
2

} 

C ~ {< < aI' a2 , a
3 

> , <b l' b 2> > 1 al > 0 & a
3 

= 0 & b 1 =/ 

a
1 

- 1 & b
2 

= a
2

} 

D = {«aI' a2 , a3>, <bI' h2' b
3
»1 a I > 0 & a

3
> 0 & hI 

= a l & b2 = a
2 

& b 3 = a
3 

- I} 

F = {<a, b> 1 b = a + I}. 

The specification of the program is the relation 

S = { «aI' a2>, b 1> 1 a1 ~ 0 & a2 ~ 0 & b 1 = a
1 

* a
2

} 

We also need . 

T::. {«aI' a2 , a
3

>, b1>1 a1> 0 & b
1 

= (a
l 

- 1) * a
2 

+ a
3 

& a
2 

~ 0 & a
3 

~ 0 } 

To show partial correctness we will prove by fixpoint 

induction that G ~ S and H ~ T. 

i A ~ S 

ii BT ==. { «aI' a > b > I a > 0 & b = (a - 1) * 3
2 

+3
2 2' 1 1 1 1 

& a
2 

~ 0 } 

= {«aI' a2>, b1>1 aI > 0 & b 1 = ar~2 &.~2~0} E S 
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iii A u BT ~ S frorr, i and ii. 

iv CS = t«al , a2 , a3>, b l > I a l > 0 & ato &" 

bl =(a l -I)*a2 J 

c:: T 

v DT = {«aI' a2 , a3>, b l > I a l ?,· 0 &a2~0 & a
3

>0 & 

hI = ... (a1-1) *a2 + a
3 

- I} 

vi DTF = {«aI' a
2

, a3>, hl>1 a l > 0·& a3> 0 & b l 
= (al - 1) * a2 + a;} ~ T 

vii CS u DTF ~ T 

viii'" A u BT ~ S, CS u DTF ~ T I- lltXI X2 ~ S, 112 Xl X2 

ST 

Hence from "iii", · vii', . viii we obtain the partial 

correctnes~ of the program. 

We could realise this either uS ~ functional program. 

S (xl' 
else t 

t (xl' 
else t 

or as 

s (x) 

X ) = if x = 0 then 0 
2 - 1 

(xl' xl' x2) 

x2 ' x3) = ~f x3 = 0 then s (xl 

(xl' x2 ' x3 - 1) + I 

mutually recursive procedures. 

: (a, b) begin 

if a = 0 ~ x: = 0 

else call t (x) : (a, a, b) end 

t (x) : (a, b, c) begin 

if c = a ~ call s (x) (a - 1, b) 

~ ~egin 

call t (x) 

x: = x + 1 

end end 

call s (a) 

(a, b, c - 1); 

(a,b) 



4 INDUCTION RULES AND HELL FOUNDED RELATIONS 

In order to establish the correctness of a program it is 

necessary to obtain an expression for the domain of the program. 

This chapter shows how j.nduction rules, necessary for termination 

proofs, can be expressed and manipulated in a schematic for.m, and 

the following chapter uses these results tg obtain expressions 

for the domains of programs. 

4.1 Wel~ Founde~ Relations 

When describing data domains it is necessary to characterise 

them by first ar. ~ second order axioms if we are to prove 

termination etc of programs operating on these domains. The 

induction axiom for the domain states that it is well 

founded with respect to some relation R, ie that there is 

no infinite sequence d
l

, d
2 

••• of elements from D such that 

d
l 

R d
Z 

R •... FCL example the integers are well founded 

with respect to the predecessor relation, or LISP S­

expressions are well founded ,,!ith respeet to the operations 

car and cdr. 

The set of elements from D, all of which are well founded 

with respect to R, is called the initial part, or 1 (R), of 

R. This can be characterised using the minimal fixpoint 

operator. 
D 

De fn : 1 ( R) = 11 ~X (RX')'. 

This definition can be justified by the following argument. 

Consider first the meaning of the relation (RX')'. Using 

the se t mode 1 

R X' '= {a I ( 3b) <a, b> € R & b /' Xl 
so (RX'") , = {al(Vb) <a, b> € R-+ b € X} 

ie (EXt)' is the set of elements all of whose R-

predecessors (if 8.1"1Y) are in X. 1 (R) is closed under R, ie 

d c t (R) & dF.e => e € 1 (R), and so all the R-predecessors 

of any element of 1 (R) are themselves in t (R)J it is thus a 

fixed point of (RX')'. Conversely, for any xo not contained 

in l1'X (RX')', there must be at least one R-predecesscr, Xl' 
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not contained in vX (R~') " likewise this too must have an 

R-predecessor not in ~ X (RX')'., and so we can produce an 

infini te sequence Xo R Xl R x
2 

The original element Xo 
cannot therefore be in t (R). Hence 1 (R) ~lJ·X(RX')'. 

Since we have already shown that 1l.X (RX')' ~ 1 (R), 1 (R) = 

llX (R..l{') , " 

4.2 Induction Rules 

If we now state as an axiom that a domain is well fOill1ded 

with respect to a relation R, we can use an instance of 

Fixpoint Induction to derive the familiar induction rules. 

Let S be some predicate, ie a 1 .)- 0 relation, and assume we 

are given. as an axiom, that 1 (R) = N. Then using fixpoint 

inducti on, ie that (RS '')' ~ S ==> t (R) ~ S, ",e can derive 

that 

{x I (vY) «x, y> E~ -)- YEs)} ~ S => N ~ S, or in predicate 

calculus term..c;: 

(Vx) «VY) «~, y> ER -)- S (y)) -)- S (x) -)- (vx) Sex) 

eg, gi ven that 

1 (Ered) = N where pred ~ {<x+l, x> x~ 0 } 

1 (» = N where> = {<'x, y > I x > y ~ 0 } 

we obtain 

S (0) A (Vx) (S (x) -)- S (x +. 1») -)- (Vx) S (x) 

(Vx) «(VY) (y <x -)- S (y» -)- S (x» -)- (Vx) S (x) 

which are the familiar forms of mathematical and course of 

values induction. 

Burstall [1969J gl.ves the structural induction rule. "If 

for some set of structures, a structure has a certain 

property whenever all of its proper constituents have that 

property, then all of the structures in the set have the 

property". This is saying that the domain of structures 

considered is.well founded under the relation 'proper 

constituent'; the induction rule is an informal statement 

for an induction rule of the type derived above. 
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He have also formalised the famili.3r recursive dcfinition:..~ 

of data domains, "eg LISP oS-expressions arc defined as: 

"An S-ex:pression is ei ther an atomic symbol or it is 

composed of thes8 eler.1ents 1-n the folloHing ordzr: a 

left parenthesis, en S-expression, a dot, an S-

expl-essioll, awl a ri(~ht parenthesis." Given the 

operations car and cdr which selest the constituents 

of an S-expression, the domain of S-expressions is 

given by the axiom 1 (car u cdr) = N. 

The axioll's for commonly occurring domains and their basic 

operations v7ill be discussed in more detail in section 6.2. 

4.3 Hanipulations of well-foundeJ relations 

We list 1u:>re, with proofs in 3 iatE~r section: some basic 

manipulutions \·;;hich establish or preserve well-foundednE:ss. 

4.3.1 Defn: R'"' 
D 

).l"X (E RX) u 
m+ m 

"[ 
~ 4.3.2 Defn: R RRi, transitive closure of R 

m -l- m ...... - ....... -- ---~ --. ---- .. - .. -----

4.3.3 Defn: RO D 
E ,m -)0- m ro+ m 

T{n+l D rRn 
= n > 0 

~ -)- m -

4.3.4 Defn: 1 (R) ~ 
m-*o 

).l X(Ri) , initial part of R 

The standard rules for regular e}"--pressions hold for terms 

defined from variables X E n using ,., u, * ie 
m .:..-;. ro' m + m' m -:,. m 

all those formulae deducible from the classical axioms 

listed in Conway (1971) p 25 by the usual rules for ~, 

in terpre tir. g E as 1, n as 0 etc. 

In addition we have: 

4. 3. 5 R* = 11 X (E U Xp.J 

4 3 ,. (RA',-l • .0 
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_1 _* *-* 
4. 3. 7 RR"':::. E = > Rk uR = R R 

4.3.8 1 (R) ~ R* (fen', 1 ([ lA, RJ) ~Rk (A n RN)' m -.,. 0 

-' L} • 3. 9 l{ J- R ~ E = > 1 (R) R* (EN)', 1 ([A, R]) = R* (A n 

1/1\1 'I ......... , I 

4. 3. lOR :: s = > 1 ( 8 ) ::. 1 ( R) 

. . 
4.3.11 1 (R) n <=> (Rn)' - n 

4. 3. 12 1 (n) = N 

= 1 (R) ,11 > 0 

4 ') I' (n" T) .• .J. '-t -" 

4. 3. 15 8 ::. R T = > (R)::. 1 (8) 

4 • 3. 1 7 1 ( It) == N =: > R n ERn R -1 = n 

4. 3. 18 1 (R uS) ~ 't (R) n 1 (s) ::. 1 (R) U 1 (S) ::. 1 (R n 8) 

4. 3. 19 1 ( R U 8) ::. 1 ( RS ) ~ 1 ( R n S) 

4.3.20 1 ([RIS]) = [1 (R) INJ U [NIl (8)J 

4.3.21 1 (S) ~ N => 1 ([Rlu] u [E 18J) = [1 (~) INJ 

4.3.22 ([RIEJ u [E 18J) = [1 (R) 11 (S) J 

4.3.23 1 ([1 (R), RJ) = N for any R 

-1 
4.3.24 fN = N ,f £:: E, Sf ~ fR => f1 (P.) c 1 (8) 

, 
4.3.25 1 ([1 A, EJ) ~-= A 

-+ 0 
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4.3.26 1 (R u [A, EJ) lJ X « Rl{' )' n A') 

4.3.27 RA ~ A => 1 (R u [A, EJ) = 1 (R) n A' 

Note: 

4.3.8/4.3.9 The composition operator ';', here elided, was 

defined using an existential quantifier, this implies 

that if R is not single valued, then although 

4.3.10 

4.3.14 

4.3.17 

4.3.21 

there is at least one sequence of elements d
1 

••• d
n 

* where d1 E R (RN)' and d
n 

E (RN)' and d1Rd
2 

••• d
h

, there 

may be other sequences which start at d1 and do no~ .... , 

terminate. This explains the inclusion of 4.3.8. . 

Note that the initial part operator is antimonotone.· 

This is a formalisation of the equivalence of mathematical 

and course of values induction, and of their analogues 

on other domains. If R is interpreted as the predecessor. 

relation pred , i.e. l<x+1,x>!xtOj , then R is, by 

definition the relation> , and given that ~(R)= N, 

we can derive the familiar induction rules shown in 4.2. 

This states formally that if a total domain is well 

founded by R then there can be no element in the 

sequence d
1

Rd
2 

••• d
n 

which is repeated, otherwise a 

loop would occur, and the total domain would not be 

well founded. 

This is a formal statement of the induction rule 

corresponding to a lexicographical ordering which is 

used later to show termination of Ackermann's function 

If we interpret Rand S as the relation >, then the 

pairs <.a,b>and <c,d> are related 'by ([Rll1]U[ElsJ) iff 

a>c or a=c and b>d. 

------------_. __ ._.---_ ... _--_ .. _ .. --
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4.3.24 
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This states that if the domain of any relation R is 

restricted to those elements which are well founded 

by R, then any element in the domain is well founded 

by this restriction of R. This is used lat~r to show 

termination of programs ~'lhich count up to a limit. 

This is a formalism of part of the discussion 

concerning proofs of termination in Floyd J967a, 

and is a special case of a more general simulation 

result, see 7.2. The normal use of this theorem is for 

the mapping function f to be total and single value~. 

It maps pr~gram states, related by S, into a domain 

which is 'known to be ~1ell-founded with respect to R, 

i.e. ~(R)=N. Hence fN=N= ~(S) and the domain of the 

original program is well founded ;1i th respec t to S. 



44b 

4.4 Extension to Multiple Domains 

We have discussed in 2.1.5 the concept of _a mu1 tip1e f ixpoint 

of a functional acting on the direct product of relation algebras. 

We discuss here the special case where the functional' can be 

represented by a matrix whose componen~s are relations. The 

motivation for this special case will be found in section 5.6 

where the termination properties of mUltiply recursive programs 

are expressed as the initial part of a square matrix of re1atibns. 

The use of matrices is local to this section and is introduced 

as a convenient notation. Although this makes the algebra of 

matrices and vectors of relations look similar to that of 

relations it is important not to be misled into thinking that 

they are the same. The essential difference between the two 

algebras is in their treatment of the null element. In the case 

of relations a tuple containing a null element is itself 

considered to be null, whereas in the case of a vector a null 

element is a perfectly acceptable component. To extend the relational 

algebra so that there is a direct correspondance between tuples' 

and vectors would mean introducing the concept of an object, . 

whose value is undefined, to be an 'element of every domain of 

interpretation and a corresponding redefinition of the basic 

operations of the relational calculus. This exercise wi11.not 

be attempted here. An example of the difference between the two 

algebras will' be found in 2.1.5. 

4.4.1 Basic constants and operations 

An nr-vector V is a colunn vector with m components 

which are given individually by Vi. It has type m x 1. 

We will only be interested here in vectors whose 

components are relations of ,type ni ~ o. 

We consider here only those functiona1s on vectors 

which can be represented as ¢ (V) = A u BV where A and Bare 

matrices. An m x n matrix A is applied to an n-vector 
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to produce an rrrvector according to the rules of _ 

composition given below. m x n matrices can be built 

from the following constants, variabies and 

operations. 

{m ~ n)ij = U •• 
1.J 

{m Q n)fj = n .. 
1.J 

{m ~ n)ij = E •. if i = j 
1.1. 

= n if i· = j 

( N ) = N. 
m x 0 i 1. 

( R ).. = R .. where R.. is C! re lation 
m ¥ n 1.J 1.J 1J 

(.- A )' is a matrix of type m x n such that (A') .. = 
m x n 1.J 

(t\l) , 
-1 -1 

( A) is a matri:- -of type n x m such that (A ) .. 
m x n 1.J 

= {A .. )-l 
J1. 

Note that this is not the conventional matrix inversion. 

The following ope rations take p 1uce bet\I~cn t\-lO m x n 

matrices to produce an m x n matrix. 

{ Au m x n 
{ A () 
m x n 

(~ ~ n' 

B ). ~ 
m x n 1.J 

B ) • ~ 
m x ti 1.J 

B ]) •. 
m x n - 1.J 

( [A I B J) .. 
m x n m x- n 1J 

~~. u B •• 
1J 1.J 

= i\j () Bij 
= [A. :, B •• ] 

1.] 1. J 

=[A·~IB .. J 
1J 1J 

Composition takes place between m x nand n x p 

-matrices to produce an m x p matrix. 
n 

(m ~ n; n ~ p)ij = k ~ 1 Aik ; Bkj • 

r.. -terms of the form ftX~(X.) are formed from an m-vector of 

relation variables and a functional 3 which acts on this m-vector 

using only the constants and operations given earlier. The result 

of this functional must be an m-vector. Note that not all functionals 

can be represented in this matrix form, in particular those 

corresponding to recursive schemas. This p.-term is an abbreviation 

for fti Xl ••• XmUJ(X)l,···a(X)m) and is \lrell formed if the individual 

components ~(X). are syntactically monotone in each X. , l~i,j~m. 
1. _ J 

The functional j(X) is syntactically monotone or continuous if 

the individual components J. are syntactically monotone or 
- 1. 

continuous in the components X. of the vector-. 
J 
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A containment A ~ B between matrices is a representation of the 

set of atomic formulae which are the containments between its 

compOlients.i.e. A ~ B t­mxn m(n fa .. ~ b .• 
l.J l.J 

4.4.2 Formal reasoning about matrices of relations 

First order reasoning: Since the algebras of relations and of 

matrices and vectors are different first order reasoning about 

matrices has been ju~tified as required by translating asserti0ns 

about matrices into a set of assertions about their relational 

components. 

Second order reasoning: This is as before and again matrices are 

used to repre~ent sets of assertions about relations. 

4.4.3 Initial Part 

The initial part of &1 m x m matrix is a vector whose 

components are n. -7 0 relation8, such that for any 
1 

element d. from the i'th ~omponent there is no 
1 

infinite sequence of elenents dil , dj2 , '\3 ••• of 

e lemen ts from the i ~ th, j' th and k' th ••• domains such 

that di1 Rij dj2 Rjk '\3 We can chaLacterise 

the initial part in a similar way to that of section 

4.1. 

If R is a matrix and X 1 a vector of n. 
mxm mX" 1 

"* 0 

relations then the functional (R X')'expa..T1ds 
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n 
componen twise so that (RX ') ! = (. U 1 R .. x.') I 

1 J 1J J 
it is the set all of whose predecessors under the 1 x 

m relation (R.
l 

R.
2 

R. ) are in the· m vector X. By a 
111m 

similar argument to that in section 4.1 we can 

jus tify the following. 

Let 1. (R) represent the i' th component of the 
1 

initial part of R, then: 

1. ( R ) = ~. X
l
-

1 m x, n. 1 

• •• (RX') I ) 
m 

This can be represented in the matrix formalism 

as \..- \n~) = P.X (RX , )' 
where X is an m-vector. 

Han i p u 1 at ion s of well founded matrices 

4.5.1 ( * ~ 11 X~ (E u RX) m ~ m) mxm m x m 

4.5.2 ( R ) or R * m x m RR 

4.5.3 R
O D 

E m x m m ~ m 
Rn +l ~ RR

n 
n ~ 0 m x. m 

4.5.4 ( R ) D X «RX') , 1 = 11 m x m m x 0 

The development so far closely parallels that of section 4.3 

and indeed all of the manipulations given are app licab Ie to 

matrices. 

4.5.5 R* ="1-1 X (E u .XR) 
mxm m~m 

4.5.6 -1 -1 * D -* ( R*) = (R ) = R 
m x m 



47 

-1 * -* * _.* 
4.5.7 RR ~E => R u R R R 

-1 
Rik 

-1 
c E .. , RR ~E <=> Rik - ~~ 

(Rik) N n (Rjk) N == n for i ~ j 

4.5.8 * \( R) ~ R (RN)' 
roXm * 

l([A,R]) ~ R ([A,R]N), 

where A is an mxm matrix Hhose elements are m.-+{) 
~ 

relations, and so ([A,R]N)'. = ( .YJ
1 

A .. u R •• N.)' 
~ J= ~J ~J J 

4.5.9 R -1R ~ E =>\ (R) = R * (RN) , 

R-1R ~ E ~>\([A,R]) = R*(rA,R1N), 
-1 r; -1 

R R E <=>R .R . ~ E •. and (R.. .)Nn, (R.J.N) =J2,i~j 
-l<~ -1<~ ~ ~ -K~ -K 

ie R is single valued iff its elements are single 

valued, and elements in anyone row are disjoint. 

1,: . 

4.5.10 ReS => 1 (S) c 1 (R) 
m x~ m - m x m 

R ~ 8 <=> R.. c 8 
~J - ij 

4.5.11 1 ( R ) = n 
mx-m mx 0 

(RN)" = n 
m x 0 

<=> 

4.5. 12 1 ( n ) 
m x m N 

m x 0 

4.5.13 1 ( Rn) = 1 (R) n > 0 
m x m 

4 ( R'r) 4.5.1 1 Ul X m = t (R) 

4.5.15 8 c R'[ => t 
mxm-mxm 

(R) 

4.5.16 

(8) 

4.5.17 t' ( R ) = N => R n E 
'rnxm mx!ll illxm 

= t (R) ,n > 0 

= R 
ill X m 

4.5.18 t (m ~ mUm ~ ill) ~, t (R) n 1 (8) ~ t (R) u 1 (S) ~ 

1 (R n S) 



--------~~~--------- .-....... -._----------------------

4.5.19 \ ( R uS) ~ \ ( R S ) c \ (R n S) 
mxm mxm mxm-

4. 5 • 20 \ ([ R IS] ) = [1 (R) IN] u [ N 1\ (S)] 
m x m m x m m x 0 m x 0 m x 0 m X 0 

4.5.21 \ ( S ) = N => \ ([ R I U ] u [ E I S J) = 
mxm mxmmxm mxUlI:lx m 

[\ (R) IN] 
m ~ 0 m x 0 

4.5.22 \ ([ R IE] u [E J 5 ]) = 
m x m mXTI 

4.5.23 If R is a restriction of R such that i .. = [\ .(R),~ .. J 
" 1.J 1. 1.J 

then 1 (R) = N 

-1 
4.5.24 Ii F is a matrix such that F FSE,. FN=N, SFcFR . rnxm 

.' 

ie 
... J 

II' 
.:.U 1 S •• 

1.J 
F. c. __ U 

Jk - J 

then ¥. 1 (R) s 1 (5) 

1 

We now leave the Rtraight forward analogues of 4.2 and turn 

to the prob 1em of obtaining expressions for the ini tial 

parts of matrices in terms of their components. 

4.5.25 If we 1etl1:p(Ri.represent the 7ector of 

that t1 p (R) == (\r(R) 'l2(R) .••• lp(P.», then 

matrix R is partitioned to be of the form 
m x m 

~ p ~ p p x ~ - p ~ 
e . D 

m-pxp m -p x m-p 

length p such 

if the 

then 11 (R) = ~ X 
P , 1 pxo 

y 
(m.-p) xo ( (AX' )' n (BY')', 

(eX' )' n (DY')') 

and tp + 1 : m (R) = 112 'xY «AX') 'n(BY')', (eX') 'n(DY') ') 

It is only necessary to study matrices of the above form 

since any more complex matrix can eventually be expressed 1.n 

its constituent parts by a succession of partitionings. 



Let ( R )., represent the I x m matrix (R. I R. 2 .•• R. ), m x m 1~ 1 . 1 1m 
and let R be partitioned to 

fA B ~ 
~c D ~ 
as above. 

We can then obtain the following theorerrs for particular 

forms of R. 

4.5.26 If R is triangular ie .. · a special case of the form above 
where C= S1, • 

11:p (R) = I (AuS) 

'R) = 'l (D) 
p + I : m \ 

whe re ( S ).. = n if i ;t j 
p x P 1J 

= [B. * ('l + I (R»' , E .. ] if 1 = J 1 P : m 11 

4.5.27 If R is such that A = n then 

11 :p (R) = (Bl~+l:ci (R)')' 

'lp + 1 : m (R) = 'l (D U C B) 

4.5 .. 28 If R is such that the types of A BC and D are the same 

then: 

I 1 :m/2 (R) :2 I (AuBuCuD) 

lm/2 + 1 : m (R) 2 'l (A u B u CuD) 

4.5.29 If in addition C = E 
m/2xm/2 then: 

11 :m/2 (R) ? 1 (AuBuD) 

'l (R) 2 'l (A u BuD) 
m/2 + 1 : m 

4.5.30 Finally if R is such that A~B=C=D then: 

11 : m/2 (R) = leA) 
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(R) t (A) 

4.6 Exampl~ 

Since the simplicity of the above theorems may have been 

obscured by the notation, we give the following example of a 

triangular compound relation 

Let R be 

IA B ; C I 
n D I F 
------
n n ~ G 

partitioned as shown. 

then t 3 (R) t (G) ~ 

H t H~: u 
~~Ct (G)', EJ n 

tl (R) = 
2 eFt (G)' , EJ 

~ A U 
[Ct (G)' , EJ B 

~ t 1 : 2 (R) = t n 
D u [Ft (G)', EJ 

Again using 4.5.2 6 

\2 (R) = t (D u [Ft (G)~', EJ) " 

tl (R) = t «A u [Ct (G)', EJ) u [fit (D u [Ft (G)', EJ)', 

EJ) 

4. 7 Proofs 

Proofs Section 4.3 

* 4. 3. 5 ToP rove: R = llX (E u X R) 

Proof: by induction on P (X, Y) = X = Y, RY 

XR with rcr(X) = EURX, 9 (y) = EuYR. 

4 3 6 P (R*)-l = (R- l )* •• To rove: 

Proof: 

. with 

by induction on P (i, Y) = X-I = Y 
-1 

~(X) = E uRX, 9 (Y) = E uYR and then 

using 4.3.5. 

4.3. 7 To Prove: 
-1 *-* 

RR ~ E => R \J R 
)( -* R R 
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* * -1 -* * -* Proof: 9 R ~ R (EuR R ) ~ R R 
-* * -* *-* R ~ (EURR ) R ~ R R 

* -* * -* Rv R ~ R R 

-* *-* ~) by induction on XR ~ R uR wi th Z1 (X) 

(EURX) 

* 4.3.8 To Prove: 1. 1 (R) ~ 'R (RN) , , 

4.3.9 

Proof 1 

Proof 2 

* 1 (CA,R J) ~ R (AnRN) , 

* Induct on P (K) = X ~ R (&~)' 

with 3(X) = (RX')' using (RX')' c 

(RN) , u RX. 

Using 1 

1 ([A, rrJ) ~ [A, RJ* (A n RN)' ~ 

* R (A n PN)' since ([A, RJ N)' 

(A n RN)', and [A, RJ ~ R. 

* /' -1 
To Prove: .R R ~ E => 1. 1 (R) = R (&~)', 

Proof 1 

Proof 2 

2. 1 (CA, RJ) 

(A n RN)' 

* R 

Induct on P (X) = X ~ Y (RN)' with 

~OO = (RX')', S (Y) = EuRY, 

usingR-1R~E => (RX')' = (IDJ)' u 

"R.X. 

using 1, 1 ([A, RJ) = [A, RJ* (A n 

RN)' then show that [A, RJ* (A n 

* RN)' R (A n RN)' 

* * ~) Clearly [A, RJ "c R 

~) Induction on P (X) = X (A n RN)' c [A, RJ* 

(A n RN)' wi tIl a- (X) = E uRX. 

," p. (Q) is true, assume P (X), 

(E uRX) (AnR!n' :::. [A, rrJ* (AnIm)' u [A~ rrJ [A, 

* R J (An~~)' 
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but [A.', RJ [A, ny- (AnHN), ~ [A', RJ N ~ 

A' nRN ~ (AnR~) 1 

Hence P ( ~(X) and P (jlX ~(X». 

4.3.10 To prove: ReS => 1 (S) c 1 (R) 

Proof: . Fixp oin t In dlicti on lJS i ng an ti-

r~~0noLull i ci ty of S in (S ; (R) t) f. 

4.3.11 To prove: 

1 (R) == n < = > (EN)' == 51 

Pro 0 f : = > ) 1 ( R) 

<=) using 4.3.8 

4. 3. l 2 Top ro '.re : 1 (n) :::: N 

r ro 0 f : 4 • 3 • 8 

(R 1 (R)') t 

4.3.13 To prove: 1 (R
n

) = 1 (R),n > 0 

(RN)' :::: D 

Proof: ~) by Fi.xpoint ir.duction \li.th ~ (X) 

(RnX' ) '.. (R
n 

1 (R) 1) , ~ (Rn - 1 1 (R)')' ~ 
1 (R). 

~) using 4.3.14, 4.3.10 and R
n 

~ RL • 

4.3.14 To Prove 1 (RL) = 1 (R) 

Proof: ~) using 4.3.10 and R::; RL. 

~) by induction on P (X) -

~(X) = (RX')' 

p (~), l' (X) => (RX')' ~ 

(RX')' ~ (R RT 1 (RT) ') , 
l' (RX·') , ~ «(R u RR ) 

L 
X ~ 1 (R) wit.h 

or 
(R 1 (R ') ') , , 
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4.3.15 To prove: S C 'r;r _ 1\' = > 1 ( R) ~ 1 ( S ) 

Proof: from If. 3. 10, 4. 3. 14 

4.3.16 To prove: R
n ~ S ~ RT => 1 (8) = 1 (R)., n > 0 

Proof: from 4.3.10, 4.3.14, 4.3.13. 

fl. 3.17 To prove: 
-1 

1 ( R) = N :: > RnE = R n R = n 

Proof: 
~', 

1'1 ~ 1 ( R) ~ 1 ( R rE ) ~ (R nE ) ( ( R rE ) N) t 

usine 4.3.H~ 4.3.10. 

but ( R nE ) « R nE ) H)':= n 
. '. « R nE) N) , "~N .'. ( R nE ) = n 
si.mi1C1LJy N ~ 1 (R) ~ 1 (RnR-

1
) ~ 

(RnR- 1)'" «RnR- 1) N)' 

but (RnR- 1) «RnR- 1) N)' = n 
-1 

(RnR ) = n 

q. 3.18 To prove: 1 (RuS) ~ 1 (R) 0 1 (S) ~ 1 (R) U 

1 (S) ~ 1 (RoS) 

Proof: from 4.3.10 1 (RuS) ~ 1 (R), t (R) ~ 1 

(RnS), t (RuS) ~ t (S), t (S) ~ t (RnS) , 

Hence 1 (RuS) ~ t (R) f) t (S) ~ t (R) u 1 (S) 

~ 1 (RnS). 

4.3.19 To prove: t (RuS) ~ t (RS) ~ t (RnS) 

Proof 1 (Rus) 

l~. 3. 10 

1 « RuS) 2) ~ 1 (RS) 4. 3. 13, 

1 (RnS) = 1 (RS) 4.3.13, 4.3.10. 

4.3.20 To prove: t ([RisJ) [ t (R) IN] 1I [N It (S) J 

Proof: Tndur.tion on P (X, y., ~) - X 

'-N I!Z 1 L L-l.J 

[y IN J u 

with :1 (:\:) - ([ R I S J X t )', 9 (Y) (RY' )' , 
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~{(~) = (S?3')' 

using [AlB]' = [A' IN] U [~~IB' J. 

4.3.21 To prove: 1 (S) =: N => 1 ([Rio] u [E is]) 

[1 oCR) 11] 

Proof: ~) 1 (fRlol u [E../S]) c 1 ([RI<J]) 

[1 (R)IN] 

~ Induction \vi th P eX) - [X IN] ~ 1 ([R 1(3] u 

[E IS]), j (x) :: (RX')'". 

P (rt) is trt.!e, assume P (X), then must show 

that [(RX')'!N] ~ 1 (rRI<J] u [ElsJ) this is 

done by an inner induction on Q CY) = 
f[R I?n ., r17 Is1) .r.~ (Y) 
,- I '-'...J U L...... oJ, v" ,..., (8Y')'. 

Q (n) is true, ass ume Q (Y), then 

P (X) => ([R!<J] [xIN]') r ~ ([RI<J] 1 ([RIU] u 

[EI8])')' • 

Q ( Y) = > (L~ IS J L ( RX ' ) • i Y J I ) i c 

([ElsJ t ([RI<JJ u LElsJ)')' 
taking the intersccdon 

[(RX' ) , IN] n ([ (RX' )' I (SY' ) '] u [N I (SY' ) ']) c 

1 ( [R I <JJ u [E Is]) 

[ (R X ' )' 1 (5 Y , ) 'J ~ 1 ([ Rio] u IE Is]) 

Hence as a conclusion of the inner induction 

us ing that (S) = N 

[(RX") 'IN] ~ 1 ([R1 UJ u [ElsJ) 

Hence as a conclusion oE the induction 

[1 (R) INJ ~ 1 ([RJUJ u [E IsJ) • 

4.3.22 To prove: 1 ([RIEJ u [EJSJ) [1 (R) J 1 (S) J 

"Pr60f: ~) 1 ([RIEJ u [Els]) £ 1 ([R]EJ) ~ 
r. (R \ I ~l J L L \.1 H 

1 ([rrIE] u [c ISJ) £ 1 ([E ISJ) _ [N h (S) J 
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Hence 1 ([RIE] u LE]SJ) c [1 (R) h (S)J. 

~) by a similc.r nested jnriuC't;on to thp. ahove. 

p (X) 

::r (X) 

[ X 11 ( S) J ~ 1 ([ R ! E J u [E IS]) 

(RX') , 

Q (Y) [( RX' ) 'IY J ~ 1 ([R IE J u [E 15 J) 
8 (Y) (sy ') , • 

4.3.23Tu pruve: 1 ([l (l{)~ Rj) ~N 

Proof: a) 1 (R) ~ 1 ([1 (R), RJ) from 4.3.10 

b) . 1 (R)' u (Rl~) I c 1 [1 (R), RJ 

Hence N c 1 ([1 (R» RJ) 

4. 3. 24 T u 1> ru v l:: : 

.;: (;;\_ 1 .. ,-. 

.L 1 J..\.I;; l \d) 

,... -1 f ._" 
1. ~ .Lo, Sf. c fR --=~ 

Proof: Induction on P (X) _ f X ~ 1 (5) 

~(X) (RX')' 

r (n), is true, assum~ P(X) then 

f (RY , ) t = f N n (f RX' )' = (f RX ' )' us in g 
-1 

f. f ~ E, fN=N 

~ (Sf'X')' = (5 (fN n (fX) f» t = (5 (£x) t) , 

~ (5 1 (5) ')' ~ 1 (5). 

Hence f 1 (R) ~ 1 (5). 

4.:l.25 To prove ~ ([I!; 0' EJ) = A' 

[A, EJ is single valued 

1 (CA, EJ) * [A, EJ A' 

4 .. 3.26 1 (Ru [A, EJ) =]..1 X«RX')'n A') 

~) fixpoint induction 

A' 

(CRu [A, EJ) }J XIy: =' (R].lX'u[A,EJpX')' 

..• ('1) ·v t - "'PA~ u fA, EJ (R,X'IIA))' . II .. 

= (Ill. 'f .. ~ u.A') , -= 1. X s]· nee v '= . 'R v' vA \I-' • ~ . - - 1.l ... ,. --]..I ~- . , 
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?J fixpoint induction 

(R 1 (R u .[A, E J)')' n A' 

= (R 1 ( R u [A, E J) , u A)' but [ A, E ] 1 (R u 

[A, EJ)' ~ A 

~ (R 1 (R u [A, EJ) , u [A, EJ 1 (R u 

[A, EJ)')' 

:; 1 (R u [A, E J) • 

(R) " A' 

From 4.3.26 1 (R u rA, El) :; llX «RX')'n A') 

Induct on P eX, Y) = x = Y n A'· 

,.,i th ~ (X) = (RX')' nAt, 8 (Y) 

(RX') f n A I = (RY t U p..c\)i 'n A I il~duction 

hypothesis 

(RY')' n (RA) , n A' but (RA)' ~ A' ,given 

(Kl')' n A' 

Hence 

rili~A =:: > l-iX' ( (RX ' ) , n Ii') .~ (n) n A' • 

Proofs Section 4.5 

These mirror exactly those of section 4.3, except that we 

are now performing the induction on the lattices of vectors 

and matrices, rather than the lattice of simple relations. 

Since the induction predicates are the sa~ we do not 

propose to eive the ·proofs in detail, but merely 

establish some of the manipulations of furmulae involving 

matrices and vectors. 

4.5.5 Needs R (A' u B) ~ R A u R B 
lllx m mxm mxm 

m 
Proof: (R (AuE» i'; = lr~l Rit_ (t\..; u B, ... .;) 

... .J &.~. .A..... A. ..... ,J ~ .. J 

m ill 
U R. A. u u 

k=l 1k kj k.:l 

(P.A) . . u (RB) .. 
1J 1J 

4.5.6 Needs .(RX~-l 

E •• 
KJ 



Proof 

4.5.8 Needs 

Proof 

4.5.9 Needs 

Proof 

i.e. 

so 

and 

Now 
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-1 
(RX) .• 

1J 
-1 

= «RX) .. ) 
J1 

m -1 
U(R·kX- .) k=l J -K1 

= 

-1 -1 
= (X R ) .. 

1J 

(RX') I ~ (RN)' u RX 
mxm rnxo 

(RX ~ ) : 
1 

m ' = rf (R .. X.) , 
J=l 1J J 

m ' 
c ." «R .. N . ) u R .. X. ) 

j =1 1J J 1J J 

~ WrR .. N.)' u l1(R .. x.) 
j =1 1J J .. =1 1J J 

S (RN) ! u (RX) : 
1 .I. 

-1 => (RX') , (RN) , R RsE = u RX 

-1 -1 if i=j R Rc;E => (R R) .. c E .. 
1J - 11 

s· n if i=fj 
m -1 
U R ~j f E . i if i=j 

k=l ki 11 

S n if ':fi 1,.) 

-1 
~i Rki S Eii (1) 

(~i)N n (I) .)N = 0 
(J 

if i=fj (2) 

(RX' ) ! 
Yn 

(R •. X. ') I = .711 1 J= 1.J J 

m 
= .n1 «R .. N.)'v R .. X.) using (1) 

oJ = 1J J 1J J 



4.5.17 

58 

But R .. N nR., N 
1J 1 t\ 

and so (R .. N.)'nR,kx1 1J J. l' <: 

and so (EX')! 
1 

_1 

Needs R (k &N)' 
rnxm 

Proo: (R-IN), 
i = 

(R(Il-1N) , ) , so 
1 

c -

(RN)~ u (EX), 
1 .l 

.m1 -1 
N,) , . r.

l 
(R, , 

J::: . J 1- J 

m m 
(R-1 

k1l1 R'l ,n
l 1"- J= jk 

Rik 
-1 N,) , U (R'l k=l 1C J 

using (2) 

N,) , 
J 

R .. X. 
1J J 

We now leave the proofs that were analogous to 

those of section 4.3, and give in detail 

proofs of the remaining theorems of section 4.5. 



!~.5.26 To F~ prove: 
mxT. 

~vhe re ( S ) .. 
pxp 1J 
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-
~ 

A 
pxp 

~ r n ,. 
{ 

rt it i:/ J 

n 
~ 

=> 1 (R) p:':m-p 
i :p 

~ 

D ~ 1 (R)-
~ m-pxm-p _p+l:m -

:;;: [R .. ( l 1 (E) )'~ E.:~] if i = j 
p.. p+ :m .u-

Preof: 

Note first from 4.5.25 

1. (R) == 1t X X ((AX ')!n{RX'), rn"J.<"")') 
. .l : p' . . 1. . 1 Z " l' , -2' • '-2 

S) by fixpoint induction 

(1) (A (l(AuS)'»)' () (B leD) t) , 

~ (A (\(AuS)')' () (Sl(AuS)')' £ t(AuS) 

::: lCAuS) (1) 

1 CD) (2) 



since (B leD) '~ 

~) Inducti.on on: 

= 
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In. ,l(D)!EJ N 
~x 

-- Sl(AuS)' 

X· c 1 (R) 
2"' p+l:re 

(AX')' n"([B ., EJ X')' 
1 i* X2, 1 

fD'V't) , 
" '~2' 

P (f2, n) is true, assume P (:X, X
2

) then .. , 

c (D (R)')' c 1 (R) 
lp+ l:m \, - p+ l:m " 

• :.1', 

.-. 
" " 

and «Au[B.*(DX
2
'), E])X

1
')' s (Al '(R)' u [B 1 (R)'EJl (R)')' 

~ 1 : P i* P+ 1 :m ~ 1 : P 

~ (A 1: p (~) , u (B 1 (R) , .* p+l:m 
~ " 

n 1 (R) , ) ) , 
l:p 

~ (A 1 (R) , ) , L! B 1 (R) , ) , c \:p (R) 1 :.p .* p+l:m -

" 
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IL~nce the limi t 

(A
l

: p (R~')' n ([B
i
* lp+l:m(R)'JE]tl:p(P .. )')' 

• n 
(R) ') f 

• r 

and so by fixpoint induction 

(!:. '6 ~) L. • 

l:p 

4 . 5 . 27 Top r 0 v e : if m ~ m = ~ p<ftp 

c 
n-pxp. 

px~-'p ~-Chen 
. D ~ 
: m-pxm-p 

\ (R);: (B ( 1 . (P.)) , Y' -
l:D p+1:~ 

lp +l:m (R) = 1 (DuCB) 

Pruof: 

) R R'" ( Be . Bu"Rn } ~ .~-,_T C U K - C .I._'A.-,.!:' 

~. ~ n B .- ~\ ~URD~ DuCB0DD j 

· · t n DuCB' -
.•• using 4.5.16 and 4.5.15 

1 _ (R) ~ 1 (D'~JCB) p+l:m --, 

1 1 (R) 
l:p 

c 1 ([J:H 1 (R)! E]) ~ (Bl
1
•
J
+, 'm(R) f)' 

p+ ;m r J.. 

with :71 (Xl ;X2) == 

S2(Xl ,X2) 

(BX') , 
2 

«DUC~)'X2) I 

x c 1 (R) 
2 e, p+l:m 

4.5.28 To prove: if A, B, C, D have the same type 

then 

1 (AuBuCuD) ~ 1 (R) where R = ~ AC DB ~ 
1 : m/ 2 ~ j 

1 (AuBuCuD) c 1 (R) 
m/2 + 1 : m 

Proof: (RT
) •• _c (AuBuCuD)l' 

1J 
result follows from 4.5.30 



62 

4.5.29 To prove: if A, B, C, D have the sam2 type, 

; r '-. ,-. 
4.J • .JV 

a.nd 

D - E, then 1 (AuBuC) ~ '1 : 

1 (AuBuC) c 1 . (R) 
m/2 + 1 : TIl 

In in, L. 
(R) 

Proof: (RT) .. C (AUBlC)T, result follows from 
1J 

4.5.30 

I A A\ 

To provt! J.i R C L,>' L,~1 ttH2.n 
m x rn C 1~ KJ 

1 (R) -- t (A) 1 mj2 
t 
m/2 + I 

(R) ::. 1 (A) 
m 

Proof: By inc!uction on P (Xl, x2',Y) - Xl Y, 

v VoL 
''-2 

\\7i L Ii .... I.~ ~T \ - I." f)' . ( ... ~ r ) , 
:)' \AI' '/)..2) \,HoJl.

1 
II .lU'l..2 I 

;'" 
(XI 'Y2) ::; ( • .).Xi) () (AX;) "'2 

33 
(Y) = (AY') , 
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5 TERHINATION 

5.1 Introduction 

We will show how to derive from a schema, a relation whose 

initial part describes the domain of the schema. The 

manipUlations of well founded sets deri)led in the previous 

section can then be used, together with the axioms for the 

domain of interpretation, to obtain expressions for the 

domain of the schema. 

By way of informal motivation consider the.folloHing 

simple computation model and the deterministic schema 

described by the recursion equation X 
m+':1 

T(X) 

with a solution f = ~X( T(X». The r~sult of 

applying the schema to an argument x is given by Xl f and 

c 1 ear 1 y t his is the s am e a s x 1 T ( f). Com put;] t ion pro c e e d s 

by presenting arguments modified by T to nested occurrences 

of f. We will show how to obtain, by syntactic means, ~ 

derivative ~ which describes this modification, ie the 

relation between state vectors before and after one 'cyclo' 

of recursion. \.Je will also derive a co-derivative T , of 
o 

type m -)- 0, 'ivhich gives those arguments for which ~!prl i r~ti ()tl 

of T (f) is undefined. A particular argument Xl can then 

give rise to a non-terminating computation if either: 

i the computation leads to an undefined result 

or: 

ii 
(' (> 

there is an infinite sequence such that Xl TX
2 

T 

If either of tbe above conditions is s;:1tl:-fi(>d nnd if 'i.7C let 
o 

R = r T,f. 

i . ('. th(' schem;1 terminates on precise] v the s('t \·;\d ell is h'(' 1 ] 

founded under R. 

As an in forma 1 examp Ie cons ider the s choma X 0-:- " •• d~~·~ i·:l\c'rc A 

1 S the reI a t ion < 1, 0> and B i s the r e 1. ;l t j () 11 {< (1., h > 1.:1. f 1. ;~ h 

= a - l} ie corresponding to the conditional expression f = 

(x = 1) -)0 0, f (x - 1). f is undefined for C = (AN)' n (BN)' 

ie for X = 0, and the relation between successive calls to f 

is B. \ve would expect the domain of f to be given by 1 (3 u [C,E 1 ). 



Using 4.3.27 and that BC=n, t(B u [C,EJ) = t(B)O C', but B£pred 

and it is an axiom of the integers 

that t (pred) = N. Hence, using 4.3.10, t tB U [C, EJ) 

= {a I a > O}. 

5.2 Definitions 

Sinp1icity: 

A term t is simple in a relation variable X if either: 

i T contains no free occurrences of i 

ii T = X· 

iii T = PO' 

iv T = [~, oJ 

V T = pUa 4 

where p and a are terms simple in X. 

Any term which is syntactically continuous in X and this 

C 

. includes any term corresponding to a schema, is reducible to 

a term, simple in X. More details may be found in Hi tchcock 

and Park [1972 J. 

Derivatives 

• 
L is the derivative and T the co-derivative of a term T 

• 
simple in X if: 

i • T contains no free occurrences of X, T = 

i i T = X j t ,tc: E', T I = Q 

• 

iii 
. . 
pUDa, T = PUPa . . 
• • • 

iv T "" [p, cr J, -r = pw, T = PUa .. 
;, • • 

• • • 
v T = P UO', i = PUa, T = POa • • " 

n, T' = 
• 

(-rN) 
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Goodness: 

The definition of the domain of a non-deterministic schema 

is such that the schema is cOD3idered to termi"nate for a 

given argument if there is at least one terminating sequence 

from that argument, not that all possible computation sequences 

from that argument terminate. This is due to the use of an 

existential quantifier in thedefinition.oJ the composition 

operntor. The definition of well foundedness states that all 

sequences, starting with elements in the well founded set, 

terminate. It is natural therefore to expect the containment in 

theorem 5.4.1 which relates the initial part of a relation 

derived from a schema to the domain of that schema. Good terms 

are defined to be such that there is only one computation 

sequence from a given argument, and hen~e we would expect the 

equality of theorem 5.4.2. A dete!ministic computation sequence 

will arise if,firstly the individual rclntions in the sequence 

are single velued, with the exception of the terminating relati0n, 

and secondly if,when branching occurs in the schema, either the 

branch allows no parallel paths, or if it does then the 

computations along parallel paths follow the same sequence. These 

two conditions correspond to conditions (i) and (ii) in the 

defInition of goodness below. We will show later, in section 5.5, 

that conditional expressions form an important subset of good 

terms. 

o • 
We def ine T, T as 'r (f IX), ~ (f IX) 

o .# 

A term T is g00d relative to X,f and 1 set of axioms ~ if' T­

is simple in X and: 

i for any sub term of T of the - form pa in which X occurs 

free, 

~'~(p-lp)(f/X) S E ie p (fIX) is single valued 

ii For any sub term of T of the form pUo- , 
0 0 

(j .p~ 0- S P u P 
() 

0 0 

and ~ ~ p Sa U (J U 
'>. 
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:"1 

I' 
'< 

5 • 3 Lerrr:nas 

if T is sjmple jn X then: 

~ 

5.3.1 (TN)' s 1. (XN)' u t 
• 

The proof is by induction on the formation rules for T. 

1 case: T free from X, T U ; (XN)' = (TN)' 
• 

case: T 
• X,TU T ·(XN) , 

# 
(TN) I 
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ii Assume that the lemma is true for subterms p, and a. 

iii 

case: T = PO', 

(TN)' n (paN),' ~ (PN).f· u p (aN):' 

~ pu~ (XN) upaupo (X\")', induction lIyp 
• 

~ (pupa) u (~upJ) (XN)' 

~ T U ~ (XN)' 
• 

case: T = [p, 0'] 

(TN)' = ([p, 0'] N)' = (pN) , u (aN)' 

{;; 0' up U (p U;) (J,N)', Indue tinn lIyp 
• • 

• 

case: T = pua 

(TN)' = (pN)' n (aN)' 

C (pup (XN)') n (au; (XN)') Induction Hyp 
• 

(pna) (p (XN)' • (XN) ') U (anp con' = u no-
• • • 

(pna) • • - u (p (XN)' Ucr ('(1,)') 
• • 

• 
~ t. U t· " 

• 

u 

The conclusion is that the lemma is true for 

terms. 

• (p nO' (A"N)' ) 
• 

all simple 

5.3.2 If T is simple in X then T and ~ are syntactically 

continuous in )c. • 

The proof follows simply from the formation rules for,simple 

terms since no term with any X'. ~free is complemented in 
1 

forming a derivative. 

5.3.3 

if T is good relative to X, f and ~ 

o 
= T U T 

o 
(2N) , 
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Again the proof proceeds by induction'on the formation rules 

for simple terms. 

i case: T· iS,free from' X, trivial. 

case: T = X, trivial. 

ii Assume that the lemma is true for' subterms p and a. 

case: T = pa, 

(TN)' = (paN)' (pN) 'up (aN)', goodness of T 

Also (TN)' ;: (p (frX) aN)" ::> p (fiX) (aN)', since XSf and 

roonotonicity of p. 

so (TN)' = (pN)' u p (aN)' u p (fix) <aN)' 

But p (aN)' ~ p (fix) (aN)', X~f, monotonicity of p 

so ,(TN)' = (pN) , u p (fix) (aN)' 

= (~up (fiX) a) u (pup (fiX) ~) (X,N)', Induct Hyp 
o 

= T 'u T (XN)' 
o 

cas e : T = [p ~ a ] 

(TN)' (pN)' u (aN)' 

~ (pua) u (pu~) (XN) " Induction Hyp 
o 0 

o = T U T' (XN) , 
o 

case: T = pua 

(TN)" = (pN)' n (aN)' 
o 0 = (pup (XN)') n (a ua (IN)') 

o '0 

o 0 0 o· 
= pncr u (p (X1~)' n (aua (XN)')) u (a, (XN)' n (pup (Xt') ')) 

o 0 0 0 

But T is bood relative to X lnd f and so tV'e IDClY deduce 

that: 
0 (IN) , 0 

OiN) , p gJua 
(\ 

0 
(XN) , 

0 

(Xi~) , (J ~pup 

0 

and therefore: 
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iii The conclusion is that the lemma is true for all terms 

T,good relative to X, f and Q. 

5.4 Termination Theorems 

Let f llx(-r). 

Tf T i~ simplp in X, then: 

o 
5.4 t 1 1-- 1 (T. U [T, E J) E fN 

o 

If, in addition, T is good relative to X, f and ¢ then: 

o 
.'5.4. 2 ~) I- 1 (-[ U [T, E J) fN 

Proofs --
o 

5.4.1 The proof is by fixpoint induction. 

But frOIl! 5.3.1, for the case that X = f, 

(fN)' = (T (fIx) N)' ~; (fN)' U T S; (fN)' U 

T 

o 

Therefore: 
o 

«T U [T, EJ) (fN)')' SfN, and hence, by 
o 

fixpoint induction: 

, (~ U [T, EJ) S fN. 
o 

5.4.2 The proof is by Scott Induction on P (X, yj -

{X N = Y, X E f} ,., i t h :3- (X) = T (X), ~ (Y) = 
o 

(1:' IJ"tY')' 
o 

i P (n, n) is clearly true. 

ii Assume PC):"" Y). 
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5.5 More about Goodness 

An important subset 
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o 
a TN = (T U T (XN) ') ',Induction Hyp, 

o 

lemma 5.3.3 

= (T U ~ Y') , • 
o 

b T S T (fIX) 

S f 

The conclusion is: 

llX (T) N ~ llY 

or fN = t ([ T, EJ U 
0 

of terms ,.yhich are 

Induction Hyp, 

monotonicity of T 

since f = llX (,r). 

(T 
0 
u~Y')' 

~) using 4.3.26 

good relative to X, 

and <P is the relational form of conditional expressions 

LHcCarthy: A Basis for a Hathematical 'lheory of 

f 

ComputationJ. Consider a conditional expression of the form 

(pI -+ el, p2 -+ e2, •.• , p -+ e' ,), whose value is the value of 
n n 

the ~ ~orresponding to the first ~ that is true. The 

corresponding relational form is: 

T = [P I' E J T I U [ PI' n P 2' E ] T 2 ••• U [P l' n P 2' n 

. Pn' - 1 n Pn , EJ Tn 

Assuming that we have first normalised the conditional 

expression so that the terms T. are union free, T is made up 
1 

of ~ubterms of the form PUcr with P ~ [A, EJ PI' cr = [B, EJ cr l 
and A n B = n. The derivatives of such P and cr are: 

o 
P = [A, EJ 

o 
cr = [B, EJ 

o· 

PI' ~ 
0 

cr l' ~ = 

A' U [A, EJ PI 
~ 

B' u [B, EJ ~l 

Thus P N = [A, EJ PI N E A S B' since A n B = n. Renee P N ~ 
a and P s a U which satisfies the second criterion for 
o 0 

goodness. 

We have deliberately chosen this form for conditional 

~xpressions rather than the equivalent form of T = [PI' TIJ u 

[PI' n P2' T 2J ••• since iL allows us to use simpler 
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dcriv~tivcs than these in Hitchcock and Park [1972J and to 

still obtain the desired preperties of conditional 

expressions. 

If, in addition, all the components of the subterms T. are' 
1 

single valued, then the subterrns'T. must be single valued. 
1 

Further, no evaluations of the T. can proceed in parallel and 
1 

30 the function f, given by L", is single-'valued anel the fir6i: 

criterion for goodness will be satisfieu. 

The cl ef ini tion of goodness a 110\..;s a limi led amount of non­

determinism. The first goodness criterion will be satisfied 

by union free terms given by the following production rules: 

<good ttrm>:;= <basic terlli>I[<good term>, <goud 

<basic term>::= <free from X> Ix I <det term> X 

<free from X>::= <det term>IAIB •••• 

<det term>::= PIQ ••• 

... - • ___ - -I 
LC.Lul/ J 

where P, Q ... arc single valued and A, B •.• may be 

non-deterministic. 

Thp second foodness criterion allows a certain amount of 

parallelism in evaluation, ie the domains of sub terms 

involved can overlap under certain conditions. Notice 

however that the definition of tIle domain of a non­

deterministic program is such that the program is considered 

to terminate fOi' a given argument if there is at least one 

terminating computation sequence from that argument, not that 

all possible computation sequences f;rom that argument 

terminate. 

The property of goodness is certainly undecidable when ¢ is, 

for example, the axioms of arithmetic. 

Consider the term (G u H) X which is simple in ~ and has the 

[arm po. Let G and H be the relational form of two functions 

g (x) and h (x). Clearly G u H is single valued o~ly if g 

(x) and h (x) are equivalent functions,a propp.rty which is 

well known to be undecidable in the arithmetic domain. 
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5.6 Extension to HultipJ.c Recursions 

5.6.1 IJcfirli tions 

Ate rrn Tis simp 1 ~ in X 1 ... X if 
n 

1 T has no free occurrence of any X., 1 sis n. 
1. 

ii T 

iii T = per 

IV T = [p, er] 

V T = (.lUa 

where P and G are simple In ~l X 
u

l 

The itt}! part~al derivative; (i) and the co­

derivative of 8 term T si1nple ip Xl .•• Xn are 

ubtained as follows: 

i if T has no free occurrences of Xl X then 
n 

ii 

iii 

iv 

v 

• (-) • d T 1 = n, 1 ~ 1 ~ n an T = 
'" 

• e' • 
If T = X. then T (i) :: E, T (j) = n, j ~ i and 

1 

T = n 

if T • (i) 
.. 

(i) • (i) and = pO' then T :: p U P a T = 
• 

P u P cr 
• • 

if [p, crJ 
.. 

(i) (i) • (i) and T = then T -.. P U cr T -= p U cr 
II' , 

if T = P u a then ~ ( ; '\ 
... " : (i) u ; (i) and T = 

I/{I 

pf'l (J 
/I c· 

Let ~ (i) abbreviate ~ (i) (fi/X
l

, ••• £lJXn ) 

J abbrcvia~.~ ;- (fi/X
I 

.•. fr./Y"Q) 
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A term T is good relative to X'
l 

is simp Ie in Xl .•• .x and 
n 

if T 

i for any subterm pC1 of T in'tvhich some x .. occurs 
1. 

free, p (f
l

/ XI
, •.• f n / Xn ~ is single valued. 

ii for any subterm pu~ of T 
0 

(i) 
0 

(5 c p U U p (i), 1 ~ i '~n 
0 

0 

(i) u U 
0 

P c (5 C1 (i), 1 ~ i ~ n 
0 

5.6.2 Lemmas 

o 
If 1" is simr:e in Xl ••• X

n
, then ;- and 1" (i) are 

syntactically continuous in Xl ••• X • 
n 

If T is simple in Xl Xn then: 

(TN)' S 1"'U U t (i) (X. N)' 
• . 1 

i 

If T is good relative to Xl· •• Xn, f1 fn then: 
o 

{X. c f. 11 ~ i ~ nl ~ (TN)' = ~ U U ~ (i) (X.H)' 
1 - 1. 0 i 1. 

.The proofs of all the above lemmas proceed in a 

straight forward manner by induction on the formation 

rules for simple terms. 

5.6.3 Theorems 

Let f, = ~. Xl.'. X (T
l

, 
1. 1. n 

1" ) ? ~ i ~ n 
n 

If each 1"i is simple in ~l ••• Xn then 

\ (}:) S f, N 
k K 

where}: is an n x n matrix whose elements are given 

by: 

( ) 
0 (-' ~s: • ..... •• }: •• = T. J J 1.J.. 1. .... j, 1 ~ 1., J 

1.J 1. 

= '~.(i) U [T., EJ if i = j 
1. 01. 

~ n 

If, in addition, e<ic.h l'i is good relative to Xl •• ' 
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x , fl'.. f , then: n n 
1 (i:) = f N k k 

The proofs of the above theorems are essentially 

similar tu the singJe recursive case. 

5. 7 EX8;7lP les 

Many r~cursion equations have the form 
n 

f (x, y) = (x i i E 1 dom (Si) ~ h (x, y), k (f (Sl(x), 

jl (x~ y», .••.••.• f (Sn (x), jn (x, y», x, y» 
\vherc h, k, j 1 .•• j n are known to be total. 

In the relational form 

Given that KN = HN ; J. N = N,i 
~ 

1) 2 ••• n , then 

the dt!l'.LvuLi'.·e::; are: 

T = [0 S ·N!NJ n ~J [(SiN) , IN] 1 0 i i 
0 

[E
l 

J"] c [S./!5J T = U S" , u 
1 1 - 1 

i i 

Hence from 5.4.1, 4.3.10, 4.3.11, 

fN ~ 1 (; U [T, E ] ) 2. 1 ([U S . / uJ 
o • 1 

1 

=n 
[LJ s. I UJ. = 

1 1 

[ 1 (U . S .) / N J 
. 1 
1 

A sufficient condition for t~rmination is then 

provided by 4.3.15 ie that S. c RT and 1 (R) ~ N for i 
1 -

= 1, 2, ' •. n. 

The familiar cases of such recurSl.on equations are 

those of arithmetic, ,.;ith R= pred, Clnd LISP, with R -

car U cdr. The conditions S. c RT then amount to 
1 -

S c > and S1" £ is-superlist of respectively. 
i -

Primitive recursion is the special arithmetic case 

where n = 1, J 1 = E 3nd Sl = Ercd. 
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5.7.2 Bounded upward recursion 

Any equation scheme of the form: 

f (x, y) = (x £ 1 (s) , u dom (s) , ) --7 g ex, y), 

k (f (S (x) , J (x, y», x, y» 

is total, provided that k, j and e are total. 

The relational form is give.n by: 

F = u X (T (X) = II X ([ E .. ( 1 (S) () SN)' , E ] G u 
J. 

LEI (1 (S) () SN), EJ [[E
1 

S, JJ X, EJ K 

The d2rivativcs are: 

or e:: [1 (S) () sNINJ 
0 

n ([ (1 (S) () SN)' 

[E 1 
(1. (S) n SN), EJ [ (SN) , i NJ ) 

0 

[E
1 

(1 (S) SN), EJ [E S, JJ T = () c 
1 

Hence N ~ [t ([ t (S), S J) IN] ;: t (~) ~ fN 

using 4.3.23, 4.3.20, 4.3.11, 4.3.10, 5.4.1 

IN] 

:: ~~ 

[[ t 

lJe can usc tnis to establish the tot.:l.1i.ty of an 

u 

(S) ,sJ IU) 

arithmetic function \vhich counts up 1:0 some limit. 

eg [ (x, y) = x ~ 10 ~ y, f (x + 1, x + y) 

Let S = [ 10' ,: ~J, 10 is the tuple <10, A> and 

* ~ = {<x, x + l>lx ~ OJ, 1 (S) = SlICC 10 = ~lO 

using 4.3.9, \ (S)'= ~ l~ and so f is of the above 

form, and hence is total. 

5.7.3 McCarthy's 91 Function 

This is the function defined by: 

f (x) = (x > 100 7 x-10, f (f (x + 11») 

or, in a relational form 

f = l.r X ([> 100, RIO] u [~ 100, EJ R- 11 X X) 

~.Ti th R == 1) red. 
, .. .L--

Applying 5.4.1 we have that 

\ ([~ lOO~ EJ R- 11 (E u f» c EN 
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Let g ~ [> 100, RIO] u [~ 100, E] 91 

where 91 = {<a, b>/a ~ ° & b ~ 91} 

Then by fixpoint: inductioll fee ALler so by 4.3.10 

1 ([ s 100, E] R - 11 (E u g») c fN 
- 11 1 ie 1 ([~ 100, E] R u [~ 100 n > 90, R- --J u [~90, 

.91) S fN 

Each of the three terms involved III the initial part 

is contained in [:; 10,2" ~J, and, as iv example 5.7.2, 

1 ([$ 100, ~J) ~ N, taking S = [100 , <]. 

Hence fN N, from 4.3.10, and f g since g is single 

valued. 

5.7. 4 Acke'i~n1<lnn' s Function 

We consider tIle followIng fonn of Ackennann'H function. 

f (x, y) 

if x = 0 then y + 1 

if Y ~ 0 then f (x - It 1) 

else f (x - 1, f (x, y - 1» 

The relational form for f is given by: 
• 1 f =]JX ([(RN) IR- J u [RIA] Xu [E

I 
R, [E/R]X] XJ 

where R = pred 

A :.: {<O, I>} 

The derivatives T and ~ are: 

T = n 
o 

o 

o 
T = [RIA] U [EIRJ U [E

l 
Rt [E/RJ f] 

But T S [E/R] u [R/UJ 

and 1 (~) =. N from 4.3.21, 4.3.10 and the aXIom that 1 (R)=N 

Hence Ackerm~nn'~ function IS totRl. 
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5.7.5 He continue with the example first introduced in 

3.3.2 This was the pair of recursion equations; 

if Xl = 0 then 0 

else t (Xl' x2 ' x2) 

t (Xl' x2 ' x3) = 

if x3 = 0 then S (Xl - 1, x2) 

else t (Xl' x2 ' x3 - 1) + 1 

These were abstracted to the schema. 

G = III Xl X2 (A u nx2 , CX I u DX2 F) 

H = 112 Xl X 2 (A u BX
2

, CX l u DX 2 F) 

The interpretation which gives the Lecursion equations 

can be expressed entirely in terms of the predecessor 

relation R. 

A = [[(HN)', EJINJ 

B = [[RN, EJI[E, EJJ 

C = [RIEI(RN) 'J 

D = [Eli E i f RJ 

F = R 1 

We have among the 'axioms for the integers that R- 1 R= E 

and that t (R) = N 

~rom 5.6.3 the domains of G and H are given by the 

initial part of the matrix: 
~CO B ~ t D u [ (CN) , () \ ~N) t, E J j 

Using 4.5.27 

lIN = 'l (DuCBu [(CN)' () (DN)', E J) 

= 1 (: [E:IE/RJ u [R [RN,EJI[E, ~JI(RN)'J 

u [[(RN)' INI(RN)'J, EJ) 

= 'l ( [ [RN, E J I E I RJ u [R [RN, E J / [E J E] I (RN) 'J) () 

([RNr ~I NJ u [Nr ~JI RNJ ) 

using 4.3.27. 

2 1 ([EIEIRJ u [RIEIE]) () [~~ININ] 

using 4.3.10. 
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[t (R) IN It (R) J n [R::~ IN IN] llsing 4.3.20 

[PJ1IN IN] since 1 -(R) = N. 

Again using 4.5.27 

GN ~ ([[RN, EJ ICE, EJ] ([RN IN INJ) ') , 

= [NININJ 

These expressions for the domains of G 8nd Hare 

sufficient to show the correctness of the prograrrs In 

3.3.2. 
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6 INTE RP RE TATIO:~ S 

6.1 Many Sortedness 

We extend our concept of an m ~ n relation on a domain D to 

relations between tuples whose elements come from domains of 

different sorts. We 'vi 1] pnrsue thi ~ jrr a less fonnal 

fashion that that of chapter 2~ assuming ~ Don-empty 

interpl'elat.i.oll in giV.i.llg the ::;emantics of terms. 

6.1.1 Many SOL"ted Relation Variables 

We use the following not~ticns to specify the type cf 

a many sorted relation R, on domains 8
1

, 

R: 

or 

T . 
n 

R is some relation between tuples from Sl x S2 x 

Sm and II x T2 ... Tn whose elements are denoted by: 

«51' s2 .•. sm>' <t l , t2 •.• t n » 

head tail 
eg <lis ts -;-::;-<a toms>' < lis ts ;--::;:-<lis to> 

6.1.2 Many Sorted Relation Constants 

<SI ' · .. 
t »/s. 

n 1 

<SI' · .. 

<Sl' · .. 
s > Is • E 

m ::. 

u 
S > ~ 

m 
E S. , 

1 

S > 
m 

S > 
ill 

S. , 
1 

E. 
l' 

S > 
m 

n 
~ 

E 
~ 

1 

<Tl ' 
1 ~ i 

<Tl ' 

<SI ' 
~ i 

<S.> 
1 

T > = {«s 1 ' s >, 
m 

n 
~ m & t. E T'j , 1 ~ j ~ n} 

J 

T > = </> . .. 
n 

{<<s . . . . s >, . .. S >' l' m 
m 

~ m} 

= lr <6: S > .:: > ,- --1' ... ,.;;. t:3. t,:, 
m 1 J 

< t l , .•. • 

<s l' 

r' v. , 
J 

... 

N 
S > ~ 0 

m 
{ < < s ••• s > , A'> /'5. ::: S., 1 ~ 1 ~., m } 

1 mIl 
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The basic operati0~s between many sorted relations are 

defined as obvious extensions to the basic operations 

defined previously. 

cg if A is of type <S .. , S.) • <. S > -+ <T l' ... T._ >, Clnd 
- - 1.,t.. fli 1. U 

n is of .-1: 
• v 1 , u" ... U :> 

~ p 
-- . • .• v > ttien 

q 
[A, BJ 

L 

is of type <S ... S > -+ <T
l

, . ... T n' VI . .. V > 
1 ' m q 

iff m '.- p & S. = u. , 1 ~ i ~ m. 
1 1 

LA, BJ { n I . } <~, b c>,<a) b> £ A & <a, c> E B • 

6.2 Axi~ for DrIta Strnctures 

We will DOW Biv~ axiomatic definitions for some of the bnsic 

domains likely to occur in programs, and their associated 

operations. 

Again type indications will be omitted when p08sibJe. The 

rules governing well formed terITlf' 'viII usually enaJ.jlc them to 

be res tored. 

6.2.1 Finite Sets 

Our ultimate interest is in objects which can be 

represented in a machine, and so the "set theory" 

given here is more restrictive than any general set 

theory. We deal here \.;ith finite sets of objects 

which satisfy a predicate is-el. The basic operation, 

the removal of an element from such a set, is given 

the name sub. It is of type <is-set> -~ <is-set, is·~ 

el>, and is defined by the following axioms. These 

sets correspond to the powerset type of PASCAL, Wirth 

Ll97JbJ. 

D 
D(i) «s> .§.ub< 

. -r S, e> <5, 



D(ii) 

~ 

ii 

iii 

iv 

v 
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in 
D sub E2 

----
<8> -+ <c> <s> ~ <8, e> <s, e> -+ 

- 1 
c cp ¢ <s> 

1 ( s ub E _ ) 
'-- l' 

- 1 
sub 

-
S Ilb sub ._---

- I (sub 

1 

<s> 

~ 

N 
-+ 

E 
-+ <s> 

N is-set. 
<s> -+ 0 

t; S l.1b E u.t:2 
1 --- 2 

E 
<s> -+ <s> 

) , in 
= 

0 <s, e> -+ 0 

<e> 

i-.7e sho", in 6.3, tha t any mode 1 of these axioms ~s 

isomorphic to the set of finite subsets of elements 

[nlll\ i~-el with sub {<A, <b, <s> -}- <s, e> 

i b & A. = h I) {c}}. 

ie the axioms are complete relative to interpretations 

of is-ell 

The more familiar set operations can nm·, be defined in 

terms of the basic relation sub. 

Define 

then: 

add - I 
u [< 

in 
0' EI J sub <s, e> -+ <s> s, e> -+ 

union 
II X ([E I~] u [E sub] [[E

I
, E

2
J X ,E3] add) = <s, s> -+ <s> 

difference 
<s, s> -+ <s> = llX (E I . [¢, EJ IJ [sub IE] ([[E 3 , 

E2J in, El , E3J X u [[E
3

, E
2

J in', [E
I

, E3J X, 

E
2

J add)) 

Notice that no complement operation is defined. If the 

domRin is-~l were infinite tnen this would result in 

infini tc se::s. 
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We can generalise our ideas about sets to 

describe finite sets which can include 

finite sets ,as elements. Consider the 

follmving axioms, sub is now a 2 -+ 1 

relation on a mixed d,omain of sets and 

elements. 

i (~N)' = ~ u is-el 

ii ~ n is-el n 

iii N 

iv 
- 1 sub sub c E 

v 
- 1 . 

sub sub E2 E sub E u E 
1- 2 2 

vi (sub- 1 N)' in 
= 2--:; 0 

vii (sub - 1 N) ~ [is-set IN] '-
D (i) is-set ~ u sub N 

in 
D (ii) 1 -+ 1 = sub E2 

We allmv allY object to be added to a set, 

~nd the induction rule now states that the 

domain of sets is well founded with 

respect to the operations of taking a 

subset and of taking an element. 

The induction rule does not allmv sets 

which are eleme'nts of themselves, using 

4.3.17, and so paradoxes do not arise. 

These objects bear the same resemblance to 

the finite sets of 6.2.1, as LISP S­

expressions bear to linear lists. 
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6.2.2 Trees 

The fo11m'ling objects are loosely based on those of 

the Vienna Defini tion L,ln81JClee) and are R 

generalisation of LISP S-e:h.'}Jressions. 

We consider first rhc single sort.Pd case. 

He suppuse a finite number of COlltlLLUt.:Lol' lelaL.iol1s 

i ~ 1, where i gives the type of the-relation as 

uJ<.- .J.. 

--j 

i -+ 1, and j distinguishes relations of the same type. 

These r~lations satisfy the following axiom schema. 

i Irk - i j mk - t~ 1 = E, j = k, ~ ~= e 

ii 

iii 

Di 

= n othcrl'lise 

- 1 
mk-i. mk-i.~E 
__ ~J J 

U 1 
1 ( •• 1 mk - i. E) = N 

1, J, L~ _~.~,_. -J k 

D 
. n . ( !idC - i -:- 1 N) , 
1, J J 
elementary objects. 

is-eo the set of , 

These easily extend to the many sorted case. 

6.2.2.1 Ari thIDe ti C expressions 

Consider the following c1efinition of 

arithmetic expressions in the Vienna 

Notation, Walk et al [1969J. 

is-expr::= is-var v is-unary v is-binary 

is-binaD1::= «81: is-expr>, <S2: is-bin-

cp>, <S3: is-cxpr» 

1s-unary::= «.54: is-un"'op>, <55: 1S­

expr» 
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is-un-op::= + v -

is-bin-op::= + v - v * v / 

is-var::= x v y v z 

mk-3 mk-2 We use ~ and many <e, b, e> + <e> <u, e> + <e> 
so=ted constructor relations, vhere e 

abbreviates is-expression, b, is-bin-op and u 

is-un-op, called m1e-bin and mk-un r~specti ve ly, 

d bb · mk - 3- 1 E S 1 Th an a revlate, 1 to etc. en 

we have that 

i 
D 

( k b • - 1 N) I' = n. m .. - l~ is-var. 

ii The induction 8xiohl is given by: 

is-~xp r == 11 (N) 

is-un-op = 12 (M) 

is-bin-op = 13 (M) 

where M is the 3 x 3 matrix. 

(~1 u S3 u S5 ) S4 S2 <e>+<e> <e>+<~> <e>~<e> <e>~<u> <e/+<b> 

n. . (>. n 
<u>+<e> <u~~<u> <u>+<b> 

n n n <b>+<e> <b>+<u> <b>~<b> ~:..,r· 

By way of further e~~p 1anation • 

. 
\ 3 (H) ::: 1. «b > U. <b » by 4. 5 . 30 

c is-bin-op by 4.3.12 

1. 2 (M) = 1. ( n ) -= is - un - op simi 1 a r 1 y • <u> + <u> 

1. 1 .(M) = Jl X «( (S 1 u S 3 u S 5) X ')' n (S4 i ~.~ U t\ 
. . I 

cn')r ~, IS) ~s_h~~-cn"') ::- Ii, ... ~ u~.. r' / 

ie, for a binary expression the Sl and 53 

components must be expressions U:1d the S2 

component is a binary operato:, r~ca11ing that 

.. 
..' 



6.2.2.2 

6.2.2.3 

(AX ') , is the set all of ,,,hose 

predecessors under A are in X. 

Operations on Trees 

T.he basic operation on a tree is the 

ability to select a b.ranch and modify it 

~·,Tithout affecting the other branches. 

Thls ls analogous to Uu:.: ;l-operCttor of the 

Vienna Definition Language. We model this 

assignment in the follmdng f.:l8hion. 

Assume that V.Tt:! 'visil to modify the j' th 

cOffi'~onent of a tree constructed by A mk -

i relation. This is done by the term . 
. - 1 r 1"111, -, I h' 1 rEo h' h' 

L .,~ .~- I >.J ..J ~ 1 ... ~ j - l' ~ i + 1 > 

,., ,~ -, 
f', j + l' ... J..;. i .J 

/" 

The modification to the tree is in the 

into i components, the j'th one i8 

. changed, and the tree is reconstructed. 

Tha property that modification docs &ot 

affect other branches follm..,s immediately 

from the properties of selection and 

concatenation, in the same way as do those 

in 3.1.1 

Structures 

·We have in mind the structures of pL/I or 

the record types of Pascal. No induction 

axiom is required in their definition for 

they are basically storage disciplines 

rather than recursively defined objects. 

A s true L.ure ,·,Those :::omponents arp. of 

diff~rent types is defined using a single 

many sorted !J2ls .. ..:.i re1at?on. The axioms 

are: 
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6.2.2.4 

6.2.2.5 

6.2.4 Lists 

6.2.4.1 
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i, ii, iii as fo r 6.2.2. 

iv 
- 1 

ITlk - n Lis - Tllis - T2 
<5 > -+ <T 1 ' T > 

I. . .. is - T 1 
n' 

11 

N 
<s> 'r 0 

is-8 true ture--s 

Arrays, '\'Jith fixell 'lJOU(lGS, are a sPecial 

case of structures, the components are all 

of the same type and the integers are used 

as selectors. 

Lin~i tations 

Tll e f lJ r Hl'::;' 1 i S in i s 

knowTi and fini te; types. I t is nOL: 

,...4= 
V.L.. 

possible to 'form tuples of an arbi trary 

length and hence to cons truct arrays 0 [ an 

'arbitrary length. The arrays of such 

languages as APL Cannot therefore ve 

described. 

The Vienna Defini tion Language uses 

objects \vhich may be considered as trees 

with an infinite number of selectors, a 

fini te numbe r 0 f whi ch are non-erop ty. He' 

cannot therefore describe these, but only 

that subset where the selectors used are 

all knm·;rn in advance. 

LISP S-expressions 

These arc 3 opccial case of trees using a 

single mk - 2 re ldtioll to cons truct bi.nary 

tre"s from elements satisfying is-atolil. 
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6.2.4.3 
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i E 

ii fit!" - 2 1 
m.'tz - 2 c E 

iii - 1 - 1 
1 (rrk - 2 E 1 LJ role - 2 E 2 ) N 

= is-s-expressions __ ~. ___ ~._.~....t..~ ._~.,_",._, v· __ 

D 
Di (m1\: - 2- 1 N)l ~ Is-atom 

lrJe - 2 is more usually kilmV'n .:1S cons, mk -
:=-T2- -E' - 1 

1 as car, mk - 2 E 2 as cdr. 

These may be modelled as a restricted form 

of binai'y crees whose righL hanci 

compone.l.lts arE: al"ways atoms. i;' special 

object nil is distinguished to signal, the 

ena of a list, and denotes the null list. 

i 

ii 

iii 

iv 

Di 

- , 
lnk - 2 mk - 2 ... 

- 1 
mk - 2 mk - 2 

nil nil 
1 

---- ~ <i> 

(mk - 1 E
l

) 'l - 2 

lis t 

(rrJ< -
D 

2 - 1 N)' =-

c E - <~> ~ <9",> 

E 
~ <R,> 

= N = is-Ii near-" 

nil 
<R,> ~ 0 

mk 2 · k k 2- 1 E - 1S nown as con~, fil. - 1 as 
- I tail, mk - 2 E as head 

2 

Linec:.l' Lists with no n!}Jt:!ated elements 

lve Clchi.eve lists lrith no rep~ated elements 

by rcst.ri ct.i.ng the 1:)k - 2 operati.on :-;t") th(t~': 
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atoms are only added to lists if they have 

no~ been added before. 

i mk" - 2 
... 1 

ml: - 2 
<Jl" a> -+ <2'> <Jl, > -~ <Jl" a> 

= 

[ lis t in' [ E IE]] 
<i, a> -+ 0' <2> -+ <Jl,> <a> -+ <a> 

ii, iii, iv, Di as aoove. 

Dii - 1 * (mk - 2 E
I

) 
list in 

mk -
D 

<t> -+ <a> 

Ordered Linear Lists 

Again we have the a~ioms for linear lists 

with the mk - 2 operation restricted so 

that the atcm which 1S added is greater 

than the unc at the h ....... ~ 
\.;. '-1..4 of the '~"'.f- being ~.1.u .... 

added to. 

ii, iii, iv, v, Di as above. 

Dii 
« 

= [nnil lis-atom] u 
<2, 2> -+ 0 <~> -+ 0 <a> -+ 0 

[mk - 2- 1 E IE] < 
2 <a> -+ <a> <a, a> -+ 0 

<t> -+ <a> 

where < is the ordering 
<a> -+ <a> 

relation between atoms. 

6.2.5 Constructed Domains 

lIe have already seen 6.2.2.3, an exarnp Ie of the 

construction of a new domain from other domains. We 

now give two further examples. 

6.2.5.1 Discriminated Union 

These objects correspond to those with the 
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now obsolete CELL attribute of pLII or to 

the union type of PASCAL. 

We use many sorted ~ relations to 

"convert" from a domain to the 

discriminated union domain. These relation 

relations obey the following axiom 

i -I ~ 
<s.~o~v<T> <T~G~n~s.> 

1 J 
if i = j 

= n otherwise. 

E <s.> -+ <s.> 
1 1 

~'his ensures that we are ab Ie to tes t 

unambiguously for the original sort of an 

individual element. Again this is 

basically a storage discipline. 

Cartesian Product 

lie already hnvc in our many Gortcd 

formalism the abilily lo form direct 

products of domains and to select 

components from those domains. 

Finally we give the axioms for the integer3. 

i 

ii 

iii 

R 
I -+ 

R 1 

(RN)' 

R 
I 

I I -+ 1 S E 

R = E 

D 
is zero 

iv is-zero is-zero- I S E 

v 1. (R) = N is-integer 
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6.2.7 Representations 

l·,Te \.;ri 11 say nothing he re conce. rning the mode.lling and 

representation. of the objects defined axiomatically 

above but \\,ill instead refer the reader to Hoare 

[1972bJ. 

6.3 Appendix 

We sho\v that any model of tne axioms of tJ • .L • .L for sct~ is 

isomorphic to ,the set of finite subsets of elements from is-

e 1 wit h s ub ::; {< a , <b, c > > / a ~ ~ &. is-el (c) ~ c , b & a ~ 

b U {c}}. 

Let R be Clny relation \.i'hich s'-:lti::;f:i.c~ the. axioms for sub and 

define ~ (x) ::' {c/<x, c> (EE
2

}.:IS a m&pping from the domain 

associated ·with R to the sc:I: of :init.: SUb3C:::: C:: 21err.c:;.r:s 

from is-cl. 

/' 

We sho\v that t!J is em isomorphism, ie that l/J is SiIlgL~ valued, 
- 1 total, onto, and preserves R, and that ijJ is single valued. 

A ~ is single valued, by definition. 

B 1jJ is a homomorphism wi th disj oin l union compatib Ie 

wi th R- 1. 

ie (Vxyz) «x, <y, z» E R ~ l/J (x) = l/J (y) U {z} & z 

r/ VJ (y») 

Proof: from iii 

from iv 

{«y, z>, w> /(~x) «x, <y, z» E R & 

W = l/J (x» } 

= {< <y, z>, w > I H l./J (y ) v w { z} } 

(identifying".jJ (x) with RE
2

) 

for each y, z there exists at most 

one x such thRt <xs <y, z» E R 

D(ii) if Z '- l/J (y) there is ex~ctly 

one such x 
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Hence (Vxyz) «x, <y, z» E R ++ ~ (x) 

z r/. tJ1 (y» 

C tJ1 is total. This follows from ii and B. 

D ~ is onto. 

tJ1 (y) u {z} & 

We show by induction on the number of elements in w 

that (Vw) (~x) V1 = V' (x). 

if w = {} then x = cp, i.rom 1.D(i) 

As s u me (~y ) w = ,~ (y ) 

then (~x) w U {z} = ~ (x) & z , w 

since (~x) tJ1 (x) = tJ1 (y) u {z} & z r/. w from induction 

hypothesis, B, v, Deii) 

with :::x, <y, z» E R. 

~- 1 is singl~ valued ie ~ (x) = ·11 
ljI'. (x ) -+- x = x 

1 '. 
Suppose ~ (x) ~;p (x), then ei thcr 0/ (A) = 4, or tJ1 (x) 

= {Yl' ••• y } since V' is total. 
n 1 

if tJ1 (x) = ~ then x = x = cp from Dei), i. 

if !JI (x) = y U {z} & Z , Y fo r s orne y, Z 

then y = ~ (w) since ~ is ~ 

ie tJ1 (x) = tJ1 (xl) = tJ1 (\0;) U {z} & Z r/. tJ1 (W) 
1 

-+- <x , <w, z» E R & <x, <w, z» E R from B 

-+- x = xl from iv 

6.4 Extensions to Hoares Axioms 

The relational formalism may become notationally very clumsy 

when talking about complicated programs, and it may be more 

convenient to switch to the first order predicate calculus. 

This is done in a manner which generalises the developnent of 

Hoare [1969] in describing program semantics-: 

6.4.1 ~~-conptructive Definition 

We define an interpretation for a relat~on in the 
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following manner. 

S == {<a, b> Ip (a, b)}. 

The predicate P (a, b) is a formula in the first order 

predicate ca1cu11.W ,.7hose domain, functions and 

predicate letters are knm.;n. 

We find it convenient to express the predicate P in 

such a way that the rlomain of S is made explicit ie 

S == {<a, b> IQ (a) & R (a, b)} and Q (a) -+ (3h) R (a, b) 

These re lat~_ons correspond precise 1y to the minimal 

valid predicates of Manna and Pnue1i [1970J. 

6.4.2 Operations between non-constructive relations 

We assume that we have the relations 

R == {<a, b> Ip (a) & Q (a, b)} and P (a) -+ (3:b) Q (a, b) 

S == {<a, b> IT (a) & U (a, b)} and T (a) -+ (3:b) U, (a, b) 

The remainder of this section gi ves expressi.ons for 

the basic operations between Rand S. These are 

special cases of the operations defined b~fore, and are 

shown in 6.4.3 to be a generalisation of Hoare (1969J • 

6.4.2.1 Composition 

6.4.2.2 

If P (a) & Q (a, b) -+ T (b) 

P (a) & Q (a, b) & U (b, c) -+ V (a, c) 

then R; S == {<a, c>IP (a) & V (a, c)} and 

P (a) -+ (3: c) V (a, c). 

Concatenation 

If 0 (a) == P ( a) & T ( a) 

P (a) & T (a) & Q (a, b) & U (a, c) & d == 
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b n c -+ V (a, d) 

then [R, S] {<a, d> /0 (a) & V (a, d)} 

and 0 (a) -+ (30) V (a, d) 

R u S = {<a, b> I (P (..a) V T ( a» & «P ( a) 

& Q (a, b» v (U (a, b) & T (a»)} 

6.4.3 Hoares Axioms 

If we had chosen to define relations by predicates on 

the input &~d output tuples separately, ie in the 

manner S = {<a, b> Ip (a) & R (b)}, and did not 

explicitly define the domain of S, then operations 

between such relations model the axioms of Hoare 

[]C)()9J. 

6.4.3.1 

6.4.3.2 

Nt)tation 

The notation P {Q} R is taken to mean, "if 

the assertior. P is true before initiation 

of a program Q, then the assertion R will 

be true on its completion." 

Let S be the relation {<a, b>/P (a) & R 

(b)}, then if the program Q, restricted to 

inputs s atis fying P, is to s atis fy R on 

te rmination, then [p, E] Q s. S, and 

similarly, if the program Q is restricted 

to outputs satisfying R, then S ~ Q [R, EJ 

ie the notation P {Q} R is represented by 

the formula [P, EJ Q ~ Q [R, EJ. 

Rule of Composition 

The rule of co~osition 1" C' • u. 
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In the relationRl formalism. 

Rule of IterRtion 

The rule of iteration is: 

if I- r & B {51 P then I- P {\"hi Ie B 

do S} -, B & P 

'rIte while lccp 1':; rcprcs£:1ted ~y th.:: 

term 

L = llX ([B 1
, EJ u [B, EJ 5X.) 

We wish to show that 

[P, EJ [D, EJ S ~ s [r, EJ I- CP, EJ L c L 

[B', EJ [P, EJ 

The proof proceeds by Scott Induction on p(X). 

P(X):: [P, EJ XSX[B' ,EJ [P, EJ. 

i P (n) is true 

ii Assume P (l), 

[P, EJ ([B', EJ u [B, EJ SK) ~ [B' , 

EJ [P, EJ u [B, EJ S [P, EJ X 

~ [B! , E J [P, EJ u [B, E J SX [B' , E J 

[P, EJ 

S ( [ B' , E J u [B, E J SX) [ B' , E J [P ,E ] 

iii Hence [r, LJ L c L en' , ::.:J [P, EJ 
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7 REPRESENTATION'OF'DATA 

One may start to write a p=ogr.am and specify its domain and basic 

operations in an axiomatic manner. Development proceeds by 

finding satisfactory representations for this domain in terms of 

more specific domains and their operations, u~til finally we have 

domains 'olhich are representable in our target J anguage. We must 

distinguish between the general notion of finding a representation 

such that·~ program will work, from finding a representatiun 

Such that a par .. ticl!t~!' program will work. The two may well be 

different. Compiler wri': ~rs would be interested in the former 

whilst the latter is of use in the development of programs. 

7.1 . 'Representations 

Equality between eleffi~nts of a domain is a basic predicate 

which we assume in the set theoretic definition of the forma'lism 

Hhcn \ole progress, in the d~vclcpm2nt of a program, from on€; 

model of the domain to another, there may be several possible 

representations of a single element from the first domain in the 

new domain, and we must ensure that this notion of equality is 

preserved, ioe. that any two representations of the same original 

element must be ccnsidered equal. 

We show how to go, by a simple substitution proceGS, from a 

program cr, 'vritten in a language L~, to an equivalent program ,{ 

written in another language L~ using representations of the basic 

operations of L~, and we state a representation thepremwhich 

enables such representations to be validated. 

The interpretations of the new program /\ cr will, in general, be 

inefficient since they are essentially non-deterministic making 

copious use of an equivalence relation, in order to preserve the 

notion of equality mentioned earlier, and we introduce the concept 
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of 'good representations which make a minimal use of such 

equivalence relations. 

7.1.1' 'Representation 'Theorem 

7.1.1.1' 'Operations 'modulo 'e~ivalence'classes 

If we have a domain N, and an equivalence relation 
, tp 

R on N~ whi~h relates different representations of 

the same object from a domain N~, then we define 

N, mo~ R to be the domain whose' elements are 
,V' 
equivalence classes of objects from N,. 

V' 

X E N~ mod R <=> x E R NIjJI' 

<=> X E N~ sine!:! R .i..~ toLal. 
-where x is the equivalence class which 

contains x. 

We define operations modulo these equivalence 

classes as follows. 

m.l.n 

,,,here R = E o 0 -). 0 

Rl = R 
R = [R IR] n + 1 n 

~od R <=> <x, y> e R T R m n 

This definition is meaningful because R is an 

equivalence relation. Consider the tuple 
A'A' A A 

<x, y> such that x e x, y e y. 

- -Then <x, y> e T mod R => <x, y> e R T R 

=> R <x, y> R S F~ T RR CRT R 
A A 

=) <x, y> e R T R 

'FR = R since R is an equivalence relation, 
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the extension for m + n relations and many 

sorted relations is straight forward. 

7 • 1. 1. 2 "Lemma 

Let L, be a language with constants W., given by 
~ ~ 

a set of axioms ~, let ~ be an equivale.nce relation 

added to the language LtjJ' and let ItjJ be an interpretation 

of this language over a domain NtjJ which assigns an 

equivalence relation R to~. In addition let L~ be 

anoth~r language with constants" t., given by a set 
1. 

of ex ioms p ~nd let 1<1> b~ an interpretation of 

L~ over the domain ,NtjJ mod R whi~h assigns to 

the constants ~. the relation I. (T.) mod R, where T. 
1. lIJ 1. ~ 

are terms in the language L~. 

Then for all terms 0 in L¢, 

-<x, y> £ I ~ (0) "<=> 

<x, y> £ I", (0 (6/E,E.6/E.,6T.6/~.)). 
If' ~ 1. ~ 1. 

The proof, which will not be givea here, proceeds by 

straightforward induction on the formation rules for 

terms in L~. 

7.1.1.3 "Representation Theorem 

Let L~, 1
lJJ

, L~, 1<1> and 6 be as in 7.l.l.~ 

Then 1¢ satisfies the axioms ~ <=> 

1lJJ satisfies the modified axioms 

I (6/E, E.6/E., 6T.~/¢.) 
1. 1. 1. 1. 

Proof: 

-The individual elements of the set of axioms ~ are 

atomic formulae of the form a c B. 

1<1> satisfies a c S 
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(a) 5 'rcp (S) <=> Icp 

<=> IljJ (a(I1/E, E.l1lE.,11 T.I1/J..» .s.. ItjJ (S(I1/E,E.A/E. " 
1 1 1 '*'1 1 1 ' , , 

I1Ti I1/CPi» 

using the previous lemma 

<=> I", satisfies (a ~ S) (I1/E, E.I1/E.,11 T.I1/cp.» 
If' 1 1 1 1 

The intended use of this theorem is to validate that 

terms 11 TiA in the language LtjJ are representations 

of constants CPi in the original language Lcp~ 

7.1~2 Representations of programs 

Having used the representation theorem to validate that 

terms 11 T.11 in L", are representations of constants cp. in 
1 If' 1 

,the original language Lcp' it is a.straightforward consequence 

of the lemma that a program P in Lcp,~modified by/the substitution 

(I1/E, E.I1/E.,A T.A/cp.) is a program P in the language L", such ' 
1 1 1 1 '*' ' 

that any representation in NtjJ of the input to P is mapped to 

any representation of the output of P. 

We identify as 'good terms those which have the property that 

I~(I1T,I1) =1 (T.I1),where T. does not contain ~, and it is clear 
'If' 1 tjJ 1 1 

that good terms which are combined by the operations of 

composition,concantenation and union result in good terms. This 
~ 

concept enables simplifications to be made to program P such that 

it will be more efficient. In many cases the resulting program 
~ A 

P will be ~, and if the final equivalence relation in P is 

removed the program P produces ~ representation of the result of 

the program P rather than all, which is usually all that is 

required. 

Unfortunately this concept of goo~ness is not all that powerful, 

since it is possible to produce programs which are good from 

components which are not good (see the list union program used 

later as an example). 

'j 
j 
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7.1.3 'Example 

We take as an example the language ~~ of finite sets defined 

by the set of axioms ~ of 6.2.1 and the language L~, linear 

lists with no repeated elements defined by the axioms , of 

6.2.4.3. L~ is extended by ~. 

Define a function f which maps lists into the finite set of 

elements in the list~ 

-1 -1 -1 f = liX (nil ~ u cons [E, X, E
2

] sub,) 

and define the equivalence relation: 

R =, ff- l 

This is assigned to ~,in the interpretation Iw. ~The relation 

R makes equivalent all lists with the same set of elements. E ~s 

the equivalence reiation on the domain of clements of lists. 

We will show, in 7.1.3.1, that R has the following properties. 

1 

2 

3 

4 

5 

RR = R· 

R = R 1 

E c R 

[RIE] cons c cons R . ..........- --------
R cons 1 E2 = (cons-

, 'listin 

Using these properties we can show that I satisfies the 
~ 

modified axioms 

Making 
.... t.. _ 
L1H:: substi.tutions in the axioms of 6.2.1 
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i (R'cons- 1 N)' «R'cons-1 N)'- 1 ~ 
--=1 .. .. .:::-y- - 1 - 1 

Retons N)' «cons N) ') ~ 
- ..... 1--

c R'rti1:rti1- R ~ R using 1, 2, 6.2.4.3. (iii D (i)) 

ii \ (R'cons- 1 E
1
R)'..= l(Rcons- 1 E

1
) using 1,4 

:= R t' (cons - 1 E
1
), usin~ 4.3.24, 

iii 

" -= Nt/J using 6.2.4.3 (iv) 

[RIE]'~ R'cons- 1 E2 = 
5, 6.2.4.3 (i) 

- 1 I - 1 iv R cor,3 [R E] cons R c R cons ~ R using 1,4 

v 

'c R using 6.2.4.3 (ii), 1. 

'listin 
=' (cons N)' .=. ([R/E] 

<2 e>+ 0 

[RIE] (cons N)' 

6.2.4.3 (i) 

[RIE] (cons N) 1 _c [RIE] <2,e> -r 0 

listin 

6. 2. 4. 3. (D (i i) ), 4 

R cons- 1 E2 
Hence ([RIE] _cons N)' = (---- ) (note 

<Rt, e> -r 0 

the implicit conversion of the RHS to a relation 

of type<2,e>+ 0) 

and hence from the representation theorem, that we 

·have- a representation in Lt/J of the language L~. 

7.1.3.1 Properties of R. 

We will first establish some properties of f. 

1. f- 1 f = E 

Proof. 

f- 1 = ~Y (~ ni1- 1 U sub [E
1 

Y, E
2

] 

.. ~) 
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- 1 f N = N from termination theorem and 

6* 2.1 (ii) 

:..) ind11ction with Xf- 1 c E 

=) since E is single valued and f- 1 

is total. 

ii f'in ='listin 

Induction on P (X, Y) = X sub 

= y 

with :J (X) <P ni1- 1 
u sub = 

'[E
1 

X, E2]"~ 

- 1 E) S(Y) = {cons E1 Y u cons 

and using 6.2.1 (iii). 

1 E 
2 

- 1 
E2 

Now we establish the required properties of/R 

1 

2 

3 

4 

- 1 - 1 - 1 
RIt ff ff = ff = R from 

- 1 1 
R = ff = R 

- 1 since E c ff f is total. 
- 1 - 1 

[fiE] 'cons ff = 'cons (cons 

- 1) - 1 fixpoint ' 'sub f , property of -
= [flE]'sub- 1 f- 1 

'

-1 - 1 = [f E] ~ sub [f EJ ~, 

- 1 fixpoint property of f • 

.=[fIEJ [in', EJ [f-l'E] cons 

"-= [f IE] [(f- I, E] listin " E] 

[f- llEJ '~~ using (ii) 

~ [ff- llEJ [listin', EJ cons 

(i) 

f. 

~ [ff- liE] ~ since we have lists 

with no repeated elements. 
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5 - 1 
E2 

- 1 - 1 R'cons = ff cons --= f' (sub [f l/EJ '~) cons 

fixpoint property of f 

= f'~ub [f- llEJ E2 

E2 
- 1 

= f'sub E2 since f- 1 is total. 

= f'in, 6.2.1 D(ii) 

='listin from (ii) 

E2 , 

The mapping f is canonical, in that it maps equivalent 

lists to a unique representation. 

7.1.4 'E~arnpleof'program'representation 

We showed in 7.1.3 that sets may be represented by lists 

with no repeated elements, and that R'cons- 1 [RIE] was 

a representation of'~ 

The following terms arc good representations relative to 

tP and R. 

1 , 'listin 
<R., e> -+ 0 

for in since [RIE] listin = listin 

2 cons R for sub 1 since [RIEJ cons R = cons R 

3 '~ for ~ since R nil = nil 

However R cons- 1 [RIE] ~ cons - 1 [RIEJ 

If we consider the program union defined in 6.2.1 then 

Itp'(union,(A/E, EiAI~i,f1cons- l[f1IEJ/sub» is a represent­

ation of 'union in the language L~. Let this be the program 

P, note that ~ is redefined as T (f1'nil). 
"'ljJ 

,.' 
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([[RIE] listi~, R] u [RIE] ~ R) 

if we define'listunion to be: 

'listunion =p.Y ([Enil] u [E cons- lJ [ [E
l

, E
2

] X, E
3

] 

([Listin, Er] u~» 

then using the fact that listin, ~, nil are good 

representati~ns relative to L~ and R, it can be shown 

that 

P = [EIR]' 'listunion R. 

The original progrPM union was ~ingle valued~ furthermore 

, 'listunion is total, hence 

[EIR]' 'listurtio~ R ='listu~ion R 

and so the program'listunion is a good representation of 

'union relativ~ to L~ and R. 

Note that mechanical substitution did not take us all the 

way to the final programlistunion. The program P was 

optimised as a separate process to produce listunion. 

Note also that this is a good representation of a program 

whose components were not all good representations. 

The program listunion has the property that given any 

representations of two sets as lists, it produces a list 

which is ~ representation of the result of the union of 

the two original sets. This is usually what is desired. 
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PAGES 103 TO 105 HAVE BEEN INTENTIONALLY OMITTED 

7.2 Simulation 

\.Je may have a representation for a domain which is sufficient 

for a particular program to work but which need not satisfy 

the axioms fer the original domain. We state this form;::l11v 

by saying that a prvgram ~ith this representation'simulates the 

original program1 cf Milner [197lJ. 

7.2.1 Simulation Theorem 

Let f be a relation between the input domains of 

programs represented by JJX :j-(X) and llY .s (Y), and let 

g be a relation between their output domains. 

Iff X g - 1 = Y r- f j eX) g - 1 5 (Y) 

then f l1 X ~ (X) g- 1 = llY 8 (Y) 

and we say that f lJX ~ (X) g- 1 simulates ~Y 5 (Y). 

This is easily extended to multiple recursions. 

I f {.:. X . g ~ 1 = Y. 11 ~ i ~ m} 
1 1 1 _ 11' 

f- {f. E. (X) g. = S. (Y) 11 ~ i ~ m} 
1 1 - 1 _11 -

then f. ll. X .j(X) g. =11. Y G (!~ 1 ~ i ~ m. 
1 1 - - 1 1:'; 

Proofs are a straight forward application of Scott 

Induction. 

7.2.2 Example 

We can pursue the previous exarr~le oi union and 
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listunion in a simulation style. Here however the 

for111 of listunion must be 'guessed' at rather than be 

mechanically produced by substitutions. 

If f is again the fupction which maps from lisLs to 

sets, \ve cal) easily show,using the simulation theorem 

and results from the previous section that: 
-1 -1 . . - . r f f £ J l~s turner.. f ~ urll.on 

I 

d f ' ." ,.- 1 i T"1 

Ull SlIH.:e lS toLal. <Jlld 1 ~- r:, 

listunipn ~ [fit] union f- 1 

ie «x, y>, z> E listunicn => «£ (x), f (y», f (z» 

E union 

Furthermore listunion is total, hence again listunion 

acts on any representation of DvO sets to produce a 

rcp~C8cntntion of their l~ic~. 
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8 CHANGES TO CONTROL STRUCTURE RECURSION REMOVAL 

8.1 Introduction 

It may be most natur~l to pose a problem or an initial 

solution, in a recursive manner n.~d then to develop from this 

a flowchart program augmented by stac~s. A result from 

Paterson and Hewitt [1970J states that the~e exist recursive 

program schema ~.,hich cc..'1not be represented by flmvchart 

schema. It follows that, in general, we must use flowchart 

schema augmented by stacks to simulate recursive program 

schema. 

8.2 Labelled Stacks 

Compilers usually hanJle recursion in the following manner, 

Dijkstra [1960J. When a procedure is called, link information 

is stacked which enaLles the calling program to continue when 

control is returned from the called procedure. This link 

information contains a 'return address' which tells us thE: 

point from ~..rhich eXecution is to continue, and also contains 

a way of restoring the envirunment to that which was current 

at the time of the procedure call. 

We formalise this by using labelled stacks. A labelled stack 

is a conventional stack whose elements are state vectors. 

Return addresses are not stacked, rather, this ir .. formation is 

kept by giving each stack operation a label. There is a 

corresponding unstack operation for each label which is used 

both to restore the state vector, and to switch control to 

the appropriate place. 

Any augmented flowchart schema will only use a f,ixed number, 

n, of labels. This may be determined statically. The labelled 

stacks are defined by the following axiom schema. 

stack& unstack. = E, 1 = j 
1 J.. 

< v, s>-+ s, s -+ <:V, S > =- n 1;t j 
(1 ) 

where v is a state vector and s is a s~ack. 
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We will also use a degenerate form of these stacks as to 

count~ Here no information, other than the label, is put 

onto the stack. 

inc. dec· = E, i = j ----J.. .:.::..:.J. 
(2) 

1+1 1+1 = n ,i ;t j 

At anyone time the stack can be viewed as a stack of , . 
coloured counters. Labels may be identified with colours, 

some counters will have information written on them, if they 

have been put there by a stack operation, and some will be 

blank, if they have been put there by an inc operation. 

We will use the fo1: 'Jwing abbreviations: 

stack. unstack. to s. U. 
1 111 

inc. dec. to i. d .• 
1 1 1 1 

8.3 Informal Introduction to the General Theorem 

To introduce the general theorem we will first study two 

CX.:lInp les. 

Example 1: Given a recursive schema represented by f = ~ 
(A u B X C X D), we can identify the relation A with the idea 

of a return instruction, ie that its invocation tells us that 

an evaluation of f has finished. The s ubterm B, commits us 

L:O the evaluation of the remainder of this term, which 

. includes recursive calls to f, and again the final subterm D 

can be associated with a return. We can produce a pair of 

flowchart schema, the first of which calculates f, by either 

returning, having evaluated A, or by applying B, stacking a 

return address, and then invoking itself again. The second 

schema calculates the remainders of terms by inspecting 

markers on the stack and then using them to switch to 

evaluation cf the appropriate remainders. These remainders 

too may involve recursive calls to £, and so markers may be 

stacked and ~ontrol passed back to the first schema. 

We produce terni.'3: 
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(T)e = [EldO] U [Eld l ] [ci i 2] Y U [Eld2].[D~E] n 
and define f =]Jl Y23 «T) , (T )Q ) 

a .a fJ 

f(3 = 112 Y23 «T) a' (T) (3 ) 

The schem~define 2 + 2 relations. The first component of 

their state vector is the argument, and the second is a stack 

of markers. These schem~are related to the original schema 

by the theorem of 8.4.4 as folIous: 

[fl E] fS = fa 

Clearly [Elio] fa = E, and so we obtain the following 

equality 

] f where iO 
CI. 0+1 

produces a ~tack initialised to 

Example 2: We study the schema corresponding to a tree 

traversal program. 

f = 11){ (A U [BX, CX] D) 

The concatenation operation, [, ], is dealt with as follows. 

tve arbitrarily decide to evaluate the left subterm first, and 

then the right subterm, which must be evaluated with the same 

argument as the left term. The sequence of operations to be 

carried out, together with the corresponding subterms is: 

1. S tack the argument, [E l' S 1 J 

2 Evaluate the left subterm which 

includes a recursive call to f, GBIEJ Y 

3 Unstack the argument and stack the. 

result of the left subterm, [Elul J[E2 ,[ El ,E3J s2J 

4 Evaluate the right subterm,[C IE] Y 

5 Unstack the result of the left 

sub term cu"1d form the res ul t ve ctor, [E I u2 J[ [E 2 ,El J, E3 J 

6 Apply the remaining term,[DIE] 
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7 Evaluate the remaining stack,~. 

The resulting schema are: 

(-d
a 

= [AlE] ~ U [E
l

, Sl] [BIE] Y 

(T)S [Eld
O

] U [Elu
l

] [E
2

, [E
I

, E3 J s2] fe/E] Y U 

[Elu'2] [[E
2

, E
l
], E

3
] [DIE] ~ 

and the theorem relating these to the original schema is 

again 

[fiE] f = f 
S a 

8.4 The General Theorem 

8.4.1 Unique Lab_~~~ 

The only prob lem l"emaining before embarking on the 

general theorem is that ·of ensuring uniqueness of 

labels. In general, we will consider terms T of the 
m 

form T = . U 1 T ., where the terms T. are fl"ee from 
1 = 1 1 

the union operation. The index i will uniquely identify 

each subterm. Within each subterm T., lye give each 
1 

matching pair of [ ] brackets a unique 'block' number 

b, l'lritten as [b, ] and give each of its subterms a 

further index x of value 0 for the left subterm, and 1 

for the right subterm. Each occurrence of X within 

these subterms at the same block level is then given a 

fourth index y in turr.. Two indices i, b thus serve 

to uniquely identify each concatenation operetion, and 

four indices, i, b, x, y, identify each occurrence of 

X. This need to ensure unique labelling is the main 

reason why the following algorithrr~ ·to derive terms 

(T)a and (T)S initially look rather complex. The 

stack, unstack, increment and decrement operations 

will have unique labels depending on the a.bove 

indi ces. 

8.4.2 Deflnltlons 

Simplicity: .. A .. definition of the sirr..plicity of a Otero in X ~"las 

given in the section dealing with termination. He 

"I 
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find it more convenient to use the following 

equivalent definition. 

4 term T is simple in a relation variable X if either 

i T contains no free occurrences of X 

or 

ii T - 1"1 X 

or 

iii 
/ 

X T 2 'T - T 
1 

or 

iv "[' - [T 3' T 4J T5 

or 

v T - T3 u T4 

where T leon tains no free occurrences of X and T 2' T 3' 

T4, T5 are terms simple in X. There may be an 

imp Ii ci t use 0 f E to ob tain terms in this form. Thi·; 

definition is ambiguous in the sense that a term may 

have more than one form eg AX = AXE and so is of the 

form ii or iii. This ambiguity is c.eliberate1y 

introduced to avoid unnecessary inefficiency in the 

derived schema, the associated algorithms are 

expressed in terITS of conditional expressions, and so 

will act on the first permissible form. 

Union Normal Form: 

Any simple term T can be wri t ten in union normal forra 
m 

as T = i !J I T i 't\rhere the te rIDS T i do not contain 

unions )~=~cept pcn:;ibly in tCnlS not containing X free. 
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Derivatives: 

T is the a-resultant of a term T where T 1S simple in 
a 

X, and is expressed in union normal form, if 
m 

T = 0 U (T) 
a 1=1 ic: 

( To) = a (T 0, i, 0, 0, 1) and 
1 a 1 

a (T, i, b, x, y) = if T contains no free occurrences 

of X then [TiEJ B 

if L - Ll ~ then [Ll'EJ Y 

if T = Tl X T2 then [TIl iO b ] y 
1 xy 

(3) 

if T = [ir 3' T4:; T5 then [E l , sijOJ a (T 3' i, j, 0, 1) 

where Tl does not con tain X free. 

TS is the S resultant of a term T, where T is simple 

in X and is expressed in union normal form, if: 
m 

T S = [E I dO] u i 1! 1 (T i) t3 
(T 0 ) a = S (T 0' i, 0, 0, 1) and (4) 

1 jJ 1 

S (T, i, b, x, y) = 
if L' contains no free occurrences of X/ then n 

if '[ = '[ 1 X then P-

if T ='Tl X T2 then [EldibxyJ a (1: 2 , i, b, x, 

y + 1) u 0 S (T 2' i 1 b, x, Y + 1) 

if T = [J T 3' T 4 ] T 5 then S (T 3' i, j, 0, 1) u 

[Elu ijOJ'[E2 , [E l , E3J sijlJ a (T 4 , i, j, 1, 1) 

u S (T 4' i, j, 1, 1) u [E lUi j 1 J [[E 2' E 1 J, E 3 J 

a (T
5

, i,b, x, y) u S (T
5

, i, b, x, y) 

Example: 
1 ' 

if T = A u [ BX, ex] D then 

Ta = [AlE] B u [EI,S 2IOJ [HIE] Y 

's = [EI dO] u [E1 u2IOJ [E 2 , [E I , E3 J S2lI J 

[eIE] Y u [E!u2II J [[E2 , ElJ, E3J [DIE] B. 

Derived relations 

Le t .. ' f = iJ Y 23 (T T) 
a 1 a' t3 

is = 1-1 2 Y n (T a ' T t3 ) 

~lhere f = llX (T (X». 
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8.4."3 Lemmas 

Definition 
,., 

Le t f B = II ~ ( T B (~)),., ,., 
where TS = Ta ([fIEJ llY, ~/l) 

o ( • Abbreviation: Let a T, L, b, x, y) = a (T, i, 
o 

b, x, y) ( [ fiE] fS /Y, f Sll ) arrd simi 1 a r 1 y S. 

Lerrmla 1 

From the indexing system used for labels and the 

definitions of a and a, there can only be at most one 

term CJ.,commencing Hith [Elu.okJ or [E/dob ] in T.'" 
1J 1 xy a 

Lemma 2 

(> 

R (T i h x y) C fh => 
tJ , , v" - a 

g ( T, ;. , b, x, y) = [T ( fl X)" IE] fS' 
l'roof: 

The proof is by induction on the formation 

rules for union fiee simple terms. 

i if T contains no free occurrences of .'{ 
0 

(1' , i, b, y) f" a x, = n S- a 0 
(T , i , b, y) = [T IE] f" ex x, 

S 

ii if l' = 1'1 X where 1'1 contains no free 

occurrence of X 
0 

(1' , i, b, y) = n c fA. S X, - a 
0 

(1' , i, b, y) = [TIlE] [fiE] f" = a x, a 
['t(f/~ El fa · 

iii if l' = "[' 1 X "[' 2 ~,.]here T 1 contains no free 

occurrences of X. 
o S (T, i, b, x, y) :: [E1dibxyJ a (T2' ~, b, 

x, Y + 1) u S (1'2' i, b, x, Y + 1) ~ fa 
(Given) 
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Hence ~ (-[2' i, b, x, y + 1) = 

[TZ(f/X) IE] is ,induction hypothesis· 

A1s a from lemma 1. 
o 

(5 ) 

P U [EldibxyJ a (T 2 , 1., b, x, y + 1) f" (6) s 

where p contains no terms starting ,,,ith 

o 
a (T, i, b, x, y) = [T1liibxyJ [f.IEJ fS 

[T
1 

fIE][T
2 

(f/X) IE] fS from (2), (5), 

(6) 

= [T (fiX) IE] fA • 
B 

1. , J , 0, 1) u 
, 0 

(T :. , .J a 1, J : ... 

. '=. fS (Gi ven) 

Hence from the induction hypothesis. 
0 

(T
3

, i , 0, 1) [T
3 

(f/X) IE] fA ( 7) a. J , B 
0 

(T 4' i, j , 1, 1) [T 4 (f/4) IE] fA ( 8) ex B 
0 

(T 5' i, b, y) [T 5 ( fix) IE] f ," ( 9 ) Ct x, = 
0 

' 0 f3 
a (T, i, b, x, y) = [E 1, SijO J a (T 3' i, 

j, 0, 1) 

and again by use of lemma 1 we can shmv 

that: 

~ (T, i, b, x, y) = [E 1 ,s ij ° ] [T 3 

(fiX) IEJ fS from (7) 

= [T 3 (fiX), SijO ] [E lu ijOJ [E 2 , 

[E " E 3 J s';. 1.J [T l ( fix) IE] f ~ 
~ .... J I ~ 

( 1 e nulla 1, an d ( 8) ) 

= [T 3 (fiX), SijO ] [E r uijOJ [£2' 

[E
1

, E
3
1s

ij1 
] rT 4 (f/X) IE] [E 1Uij1 ] 

[[E
2

, E1 J, E3 J [r 5 (f/X) IE] fS 

(If'mr.1a 1, 3nd (9» 
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== [[ T 3 ( f,' X), T 4 ( fIx) ] T 51 E J f S 
(us ing (1» 

I-Ience the lemma is true fo r all union free 

simple tenns. 

/ 

P \ T : 1, b, => c.~. \" T ~ 1 ~ 

Proof: The proof, not given here, proceeds by 

induction on the formation rules [or simple lerms J.n 

essentially the same In2nner to the proof of Lemnla 2. 

H. 4.4 Thporp.m 

Let f = ~X (T (X» where T is simple in x. 

Proof: 

We actually prove the following. 

[f IE] fS == fa 

fA == f 
S S 

2) The proof is by fixpoint induction 
m 

([fIEJ f" Iy, f"/E) 
. c 

(T , i, f == i 
u 1 S S S B -

from ( 4) and defn of f." 0 

S 
= £." s m 

0 

f ([fiE] f8/Y , fS/l) i Y 1 
a (T, 1, 

a 
from (3) 

m 

0, 0, 

0, 0, 

- U L'" (fiX) IEJ f" from lemma 2 and (11) - i == ] L S 
= [fiE] f" 

S 

He~ce fS ~ fS 
fa ~ [fiE] fr.o 

(10) 

1) 

(11) 

1) 
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~ We first shm" by Scott Induction that 

[fl EJ f c S- f . ( 12) a 

Let P (X) - ex IE] is ::. f 
a 

a P (n) 1S true 

b Assume Lx IE] fS c f 
rv u. 

m 

fS = 
i !l S (T. , i, 0, 0, 1) (fJY, fr/r,) 1 1 

(from (4)) 

From the assumption and monotonicity of tcrIT~ 

prgduced by S. 
ll. 

i !l 1 S (Ti' i, 0,0, 1) ([x IE] f~/Y, £13/ 23 ) ~ fS 

Hence, using lemma 3 
m 

. U 1 a. (T., i, 0, 0, J.) ( IX I E J f Q /Y, 'f cJ't. ) 
1 :; 1 j.J j.J 

[T IEJ f 
'8 

but ]. ~ 1 a. (T i' i., 0, o. 1) ([X IEJ fe/Y., is/i!;) 

s i ~ 1 a. (ii' i, 0, 0, 1) (fa/Y) fB/~) from 

inductive assumption and monotonicity of terms 

produced by a.. 

= f (from (3)) 
a. 

c) Hence [fIEJ f ~ f by Scott Induction. 
S a. 

\.Je can nm., usc this rer.:ult to show by fixpoint 

induction that 

fA C f • 
~ - ~L. 

f" (f /:t;) = 
S S 

::. f (f /Y, 
Q (V ..... ~. 

.... f • 
~ 

f ([fIEJ f /Y, f /23) 
(3 (3 (3 

f /23) (using (12)) 
~ 
1-' 

Hpnce by fi xpoint induction f· ... C 

S 
,. 
L • 

(3 
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8.4.5 Intended Use of the Theorem 

The intended use of the theorem is fOJ the initial 

term [EldOJ in the derived relation aS of 8.5.2 to be 

the test for the empty stack, and the corresponding 
i 

operation 0 ~ 1 to create the empty stack. Clearly 

then 

f = [flO ~ OJ = [E/empty- 1J fa 'E l 

8.5 Extension to Multiple Recursions 

8.5.1 Introduction 

The general theorem of 8.4 extends easily to multiple 

recursions. From each equation schema we derive a 

flowchart schema augmented by a stack, and from all 

the equation schema we derive a single augmented 

flowchart schema which evaluates the stack and so 

handles the flow of control. The only change/ we need 

to m~ke is to include a further index which identifies 

the equation in 'tvhich a concatenation block, or a 

reference to some X. occurs. 
1 

8.5.2 0 Definitions 

Consider a set of mut'j~lly recursive equation schema 

with solutions given by f. = Jl i ~1 . . . X (11
1 

... a ), 
1 on n 

1 ~ i ~ n, where the terms 0'1 are simp Ie in each X.i ' 

1 ~ , ~ n. 

Derivatives 

(cr.) is the ex resultant of a term cr. where a. is 
1 ex '1 1 

simple in X'l X and is in union normal form, if: 
n' m. 

(~ • ) -. t_]ll ( T •• ") 
1 ex J 1~ a. 

(r .. ) = a (T .. , 1, J, 0, 0, 1) and 
1J ex 1.J 

ex (1', i, j, b, x, y) = if T' contains no free 

occurrences of any X k then [1' IE] ~ 

if T = T 1 X k then [1' 1/ EJ Yk 
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if 1 11 Xk 12 then [11Iiijb:tyJ Yk 
i 

if 1 := [ 1
3

, T, ] 1 r then [E l' s· '!l ] a (-[3' i, 
it J ~j ,,0 

j, x" 0, 1). 

where 11 does not contain X free. 

is thi B-rcsultaut of ~ term 0. if: 
m. 1 , . . 

(a.)(3 == • tr 1 (1. ')0 
1 J :;:: 1.1 P 

( 1.! .) () == (3 (1 • .:, i, j, 0, 0, 1) and 
.1.J I.... 1J 

fj (1, i, j, b, x, y) =if1 c('ntains no free 

occurrences of any 'k then n 
if 1 = 11 Xk then n 
if 1 1, X

k 
1,., then [EI (1. ':1...~~) a (T

2
, i, j, b, 

i. . £. 1Ju"'j 

x, Y + 1) u I=> (1
2

, i, j, b, x, y + 1). 

if 1 == l~13' 14J 15 then 

B (1
3

, i, J, 9...~ 0,1) U [EIU"Q J [F.:2~ [E
l

, E'JJ 
1J.,O ~ 

Sij 9 .. 1 J a (1", i, j, ~, 1, 1) U (3 (1 4 , i, j ~ .Q" 

1, 1) U [E I ui j.Q, 1 J [[E 2' E 1 J, E 3] a (T 5' i, j, 

b, x, y) U (3 (1
5

, i, j, b, x, y). 

Derived relatioDs 

n 
Define as = [EJ do] U i H 1 (a i ) S 

Let (fi)a = ~1 Y1 

1 ~ 1 ~ n 

(a ) . n ex' 

an d fa = ~ 1 Y 1 ••• y ~ « a 1) , ••• (a) , a a) 
IJ n + nan ex IJ . 

whe re f. = ~. Xl .,. X (a l' ••• a ). 1 ~ i ~ n. 
1 1 n n 

8.5.3 Lennn2s 

Lemma 1. Clearly there. is still at most one term a 

commencing vlith [Elu. '0' ] or [E/d, 'b ] in (0(3)' hence, 
, 1Jx.·K 1J xy 

a ~ fa => pua = f where p contains no terms 
IJ {3 . 

com..rnencing ,.li ttl [E I tL . ('1 ] or fE I d "b 1 • 
. 1JL~ . 1J xy 

Lemma 7. 
-~-- .. --

" 
pZ (a" (l») 

(3 
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where Os = 0(3 

then (3 (-r, i, 

( { [ f 0 IE] fS" /Y 0 11 ~ i ~ n}, f S" / B) 
1 1 . 

j, b, x, y) ({ [ f i / E ] f S /Y i /1 ~ i :::; n}, f S / z ) 
~ fS = > a. (T, i, j, b, x , y) ({ [ f 0 IE] f ~ IY 0 11 :$ 

1 jJ 1. 

i ~ n}, fS/B) [T ({ f 0 Ix 0 } 11 ~ i ~ n}) IE] f ~ 
1 1 jJ 

The proof is similar that of lemma 2 in section 7.4.3 

and proceeds by induction on the formation rules for 

simple terms. 

Lemma 3 

s ('[, i, j, b, x, y) ( {[Xi / E ] f (3 IY i /1 ~ i ~ n}, f (3 / r. ) 
~ f (3 => ex (~, i, j, b, x, y) ({ [Xi IE] f S /Y i /1 ~ i :::; 

n}, f S / E) = ['[ /E ] f S • 

Again the proof is straightfonlard DY induction on the 

formation rules for simple terms. 

8.5.4 Theorems 

Le t f 0 = 1.1 0 Xl... X ( ° l' ••• ° ), 1 :::; i :::; n be 
1. 1. n n 

solutions to a set of recursion equations, where the 

° are simple in all X , 1 ~ k :::; n. n k 

Let (fo) = l.1o Y1 1 a. 1. 
(0 ) , OS) 1 ~ i n a. 

~ n 

and fS = l.1n + 1 Y1 ••• Yn r. «°1)0. ••• (on)a' OS) 
th en [f 0 IE] f Q = (f 0) ,1 ~ i ~ n 

1 jJ 1 a. 
where (°

1
) ••• (0 )and ('" are augmented flowchart schema~~ 
a. nO. e 

Proof: 

The proof will not be given here, but proceeds 

in essentially the same manner as the proof of 

7.4.4, by actually showing that: 

[f 0 IE] f~ = (f 0) ,1 ~ i ~ n 
1. jJ 1. a. 

f" = f 
(3 (3 
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8.6 Example 

8.6.1 Tree Traversal 

vIe wish to produce a string frow a binary tree by 

traversing its terminal nodes from left to right and 

concatenating them together in order. Our problem is 

stated in a recursive form, and our target language 

does not contain recursion. 

traverse (x) = if is-atom (x) then x else traverse 

(car (x» n traverse (cdr (x». 

h n. h .. . were 1S t e assoc1at1ve operat10n concatenate. 

We abstract this recursi ve form to a schema: 

T = II X (A u lBx , eX] D) and apply the theorem of 8.4.4 

to produce, after simplification o~ labels, thc 

following flowchart schema. 

[TIE] 112 YE = ~1 YE 

where lli YE :: lli YB (rA IE] B u [E l B, s2] Y, /[Eld1 ] u 

[E f uiJ [E z e, [E l' E 3 J s 3 J Y u fE t u j1 [[E Z' E 1 J DiE] B ). 

This can be further simplified. The operation D is 

associative and so we can keep a 'result so far', 

rather than stacking intermediate results. 

Lemma. I" 

if D is associative ie [E I [F, GJ D] D = [[ElF] D, GJD 

and ~~~ ::ttX (Au [BX, ex J D) and 

II i Y~ :: II i YB ([E I A IE] [ DIE] B u [E I [E 1 B, s 2]] Y , 

[ErEld
1
J u [EIEJu2] [EleIE] Y) 

then [EI~xIE] [DIE] llZYB = 11lY~' 

The proof is straight forward. 

i Define lln as before 

ii Show that [EI J.lX.' EJ [DI EJ J.lE = ~lYE 
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11 Yl 2 

2) Scott Induction to ShOH that [E /l1X IE] [DIEJ 

112 y.'i; ~ lllYZ and using this to shm., III ~ 112Yc 

by fixpoint ind~ctic~. 

He can nm·, re t urn to the ori gin al in te rp re t a tion) and 

by noting that concatenation has an identity e1err..ent, 

1e nil nx = x, and that we can think of the marker 

de tected by d
1 

as the empty stack, 1;ve can produce the 

uoual form of a trc8 tr·av~r8.:!1 program. Knuth [1968J 

2.3.1 p 317. 

T (x) = Tr (nil, x, empty) 

l'r (S, x, k) = if is-atom (x) then if is-empty (k) 
1\ , _ n ..,_ ~ , ........ 

then S "X, e Is e 'l'r \S x, cdr (hci lk,i) t 1 (k)) 

else Tr (S, car (x), stack (x, k)) 

where hd = unstack El 

t 1 = uns ta ck E _ • 
1. 

Further development of the program "J'ould now take 

place by finding a more machine oriented 

representation for trees and stacks. 

8.6.2 Factorial 

We can use the theorem of 8.4.4 to gain insight into 

an it~rative form of the factorial program. 

Let F :: II X (A u [B X, EJ C) 1;vith the interpretation. 

A = {<O, 1>}, B = {<a, b>la > 0 & b = a - 1} 

C = {«aI' a
2

>, b>la1 , a2 ~ 0 & b = a
1 

* a2 } 

It .is ('a~i1y shmvn thai... F is total and correctly 

computes factorial. 

Us ing 8./-+.4 and 8.5.5 \Je ob tain the fo 110\ving 

iterative forM of r 
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F = CEliol 11Y ([AlE] lJ [E
I 

13, S2] Y) 

ll~ ([EI'd
o

] LJ [Elu
2

J. [CIE] Z) 

The next level in the development is thc; actual 

representation of the stack end unstack operat~ons. 

We choose to represent the stack by two integers, a
2 

which is the value of its top -element, and a
3 

\olhich is 

a marker for i (This is c!i.ly possible here bec':nJs·:! in 
'0 

this particular case a preceding element on the stack 

can be ob tained by knowing the top one). 

The stack operations are given by. 

S2 = {«aI' a2 , a3>, <b 2 , b3>la l ~ 0 & a2 - al + 1 & 

a3 ~ a~ i b 2 a 1 & b 3 ::: a 3 } 

u s 
2 2 

1 
o 

Assuming that the domain of the stack operations is 

= a
l 

+ 1 & a 3 ~ a
2

} 

then the axioms for stacks are satisfied. 

s2 u2 :..: E 

USc E 
2 2-' 

s d =n 2 0' a6 

i u ~ 
o 2 n 

This assumption holds provided that the input 

satisfies ~lid-stack, since [is-valid-stack-op, EJ 

[E 1 B, S2] = [E I B, S2] ris-valid-stack-op, EJ. 

This gives the following program for F (x), which we 

,.,ill write in the more familiar functional form. 

F (x) = ~ (Y (x, x + 1, x + 1)) 

where Y (x, y, z) = if x = 0 then ~l, y, z> 

else Y (x.- 1, Y - 1, z) 

£ (:x:, y, z) --= if y ~ 2 then x 

e Is e n (x * Y!I Y + 1, z) 

Clearly the function Y (x, x + 1, x + 1) always has 
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the result <1, 1, x + 1> and so 

F (x) = ~ (1, 1, x + 1) which is a familiar iterative 

form for factorial. 



125 

9 CONCLUSIONS 

The motivation fer this thesis Has to take an existing formalism, 

the relational calculus, and to explore its application to formal 

reasoning about programs, in particular that reasoning necessary to 

justify some techniques used in the stepwise development of programs. 

The relational calculus ~'las a good too 1 lvi th which to do thi s, 

providing a common framework in which to reason about the ma~y facets 

of program proofs. 

The developmenL of a program starts ~ith its specification as 

a relation betlveen input and output values. Development proceeds by 

specifying a schcm~ and subsidiary relations as its interpretation, 

this for-ms an initial solution to the specification. He sholved in 3.3 

examples of proofs of parti~l correctness of schemas. A proof of 

termination is needed to establish total correctness, this requires 

an induction rule on the domain of interpretation) which is related 

to the program schema by the derivatives of chapter 5. This is made 

straightforward because the rel~tional calculus can describe induction 

rules and schemas in the same language. Having shown the correctness 

of this initial solution, the process is repeated for each of the 

subsidiary relations until a schema is obtained whose interpretation 

is related immediately to the target programming language. 

In parallel with this refinement of control and function is a 

process of refining the data structures of the do~ains of interpretation~ 

~ until we arrive ~acceptable structures in the tacget programming langu~ge. 

Chapter 6 gives axioms for many commonly occuring data structures and 

chapter 7 shows, with an example in 7.1.3, how we can c~ange an 

interpretation based on a certain data,structure to another based on 

representations of the original data structure in the language of the 

new one. 

~]e have also s.hown in Chapter 8 how to mechanically transform 

a recursive program schema to a set of schemas which are not recursive. 
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This justifies the technique of choosing a recursive schema as an initial 

solution to a problem and later refining it into a program which does 

not use recursion. 

Although the relational calculus provides a convenient 

metalanguage in \olhich to vlOrk, it is clumsy .. in actual application 

and we see the main use of the presented theorems being the justification 

of lc~s opaque versions of them. There is a need to develop the relational 

calculus into a language with named selectors, rather than positional 

ones and with more familiar programming constructs than the relational 

constructs used here. 

High level languages have many constructs, subroutines, loops, 

macros etc., which aid in the abstrnction of operations and the flow 

of control, but few which allow the abstraction of data structures 

and which separate them from a particular representation, and we 

foresee a need for language development in this area. 

We have left several areas unexplored. We have not attempted to 

formalise an important transition in program development, that from 

a non-deterministic form to a deterministic one involving back­

tracking, Floyd [l967bJ , we have not tried to apply the formalism 

to proofs about parallel programs nor have ,~e tried to extend the 

formalism to deal with such constructs as functions of higher 

types, call by name parameter mechanisms or dynamic changes to 

control or data structures. 

We foresee the development of interactive systems to aid 

program development , calling upon theorems presented above to 

aid in the justification of certain steps, or in some cases 

to mechanically carry out appropriate substitutions, derivations etc~, 

and ultimately limited program synthesis. 
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