A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78807

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.
Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://wrap.warwick.ac.uk/78804
mailto:wrap@warwick.ac.uk

AX APPROACH TO FORMAL REASONING ABOUT PROGRAMS

s Tlr A~~~
€Lel 11LTTNntsoek

Department of Computcr Science,
University of Warwick,

Coventry, England

mitted for the degree of Docior of Philosophy.

June 1974,

A digsertation sub

FCE=] IMAGING SERVICES NORTH

oooooooooooooooooooo

PAGE NUMBERS CLOSE TO
THE EDGE OF THE PAGE.

 SOME ARE CUT OFF

PRETACE

I would like to acknowledge the help and encouragement of my

supervisor, David Park. Chapters 2, 3, 4 and 5 are an extended form of

work done jointly with him, which was first published in Hitchcock and

Park [1972].

r'd

I would alsoc like to thank the Science Research Council for an

industrial studentship and my emplovyers, IBM UK Laboratories, for

support under their Advenced Education Programme.

Finally, special thanks are due to my wife and son, whose patience and

co-poperation have been cf the grecatest help.

ABSTRACT

This thesis presents a formal apparatus which is adequate both to
express the termination and correctness properties of programs and also
the necessary induction rules and axioms of their domains. We explore
the applications of this formalism with pérticular emphasis on
providing a basis for formalising the stepwise ~development of programs.
The formalism provides, in some sense, the minimal extension into a
second order theory that is required. It deals with binary relations
between tuples and the minimal fixpoints of monotone and continuous
functionals on them. The correspondence between common constructs in
programning languages and this formalism is shown in an informal

nanner.

To show correctrness of a program it is necessary to find an expression
for its termination propertics which will depend on the induction rules
for the data structures of the program. We show how these rules may be
formally expressed and manipulated to derive other induction rules, and
give a technique for mechanically deriving from a schema an expression

for its domain which may be czpressed in terms of given induction rules

=}

by the manipulations referred to above.

We give axiomatic definitions, including an induction rule, for some
domains which commonly occur in programs, these being finite sets,
trees, structures, arrays with fixed bounds, LISP S-expressions,

linear lists, and the integers.

In developing a program one may start by defining the basic operations
and domains in an axiomatic manner. Development prcceeds by finding
satisfactory representations for this domain in terms of more specific
domains and their operations, until finally one has domains which are
representable in a target language. We discuss what is meant by a
representation in an attempt to formalise this technique of data

refinement, and also mention the lesg al notion of simulation

D
3
[{]
~

which requires that a representation is adequate for a particular

program to work.

A program may have lLeen developed in a recursive manner and if the

target language does not contain recursion as a basic primitive it will
be nccessary to simulate it using stacks. We give axioms for such
stacks, and give a mechanical procedure for obtaining from any

recursive program, a flowchart program augmented by stacks, which

simulates 1it.

CONTENTS

4

INYRODUCTION
1.1 Objectives and Introduction
1.2 Structure of the Thesis

1.3 Notatien

DESCRIPTION OF - THE FORMALISM
2.1 The Relational Caleculus

2.2 Logical Propetrties

RELATIONS AND PROGRAMS
3.1 Relational Forms of Program Constructs
3.2 Properties of Programs

3.3 Exanmples

INDUCTION RULES AND WELL FOUNDED RELATIONS

4.1 Well Founded Relaticas

4.2 Induction Rules

4.3 Manipulations of Well Founded Relations

4.4 Extension to Multiple Domains

4.5 Manipulations of Well Founded Compound Relations
4.6 Proofs

TERMINATION

5.1 Introduction

5.2 Definitions

5.3 Lemmas

5.4 Termination Theorems

5.5 More About Goodness

5.6 Extension to Multiple Recursions

5.7 Examples

INTERPRETATIONS

* 6.1 1any Sortedness

6.2 Axioms for Data Structures
€.3 Appendix

6.4 Extcnsions to Hoare's Axioms

10

REPRESENTATION OF DATA
7.1 Representations

7.2 Simulation

CHANGES TO CONTROL STRUCTURE - RECURSION
8.1 Introduction

8.2 Labelled Stacks

8.3 Informal Introduction to the Theorem
8.4 The General Theorem

8.5 Extension to Multiple Recursions

8.6 Examples

CONCLUSIONS

REFERENCES

REMOVAL

1

INTRODUCTION

1.1 Objectives

1.2

The aim of this thesis is to introduce a formalism which is
capable of describing the correctness, termination
properties, equivalence etc of programs and also is capable
of specifying the necessary formal assertions about their
data domains, principally the induction axiom. We then use
this to derive uscful theorems &bout programs. Tari of owr
motivation has been to provide a formal basis for the
techniques of structured programming, Dijkstra [1969], Jones
(19721, Hoare [1971al, wirth [19712], and the thecrems we

have derived have been slanted towards this application.

We differ from existing formal approaches in that the
formalism provides, in some sense, the minimal extension
into a second order theory that is required for cur
purposes. The relationship to other formal approaches and
the limitations of the formalism will be discussed briefly

later.

Structure of the Thesis

The formalism is introduced in Chapter 2 where its position

with respect to other formal systems is also discussed.

Chapter 3 shows how this formalism may be used to describe

flowchart and equation schema in terms of their constituent
blocks, and gives the relational form of commonly occurring
constructions in programming languages. We also show the

form of common assertions about programs.

To show the correctness of a program it is necessary to find
an expression for its termination properties which will
depend on the .induction rules of the data structures of the
program. Chaptev & shows how induction rules may be
cxpressed and manipulated, and Chapter 5 gives a technique
for mechanically deviving from a schema an expression for

its domain. This can be related to the induction rule of

the domain of interpretation by the manipulations of Chapter

h.
Chapter 6 considers interpretations in more detail, both the
non-constructive interpretation of schema blocks by means of
the first order predicate calculus, and the expli:zit
specification of basic operations and data structures by
means of axioms. The chapter owes much to the work of Hoare

[1972a] in the axiomatic definition of Pascal.

Chapter 7 formalises the process of the refinement of data
and introduces a simulation theorem. The idea of simulation
is carried further by Chapter 8 which presents procedures
which mechanically derive from recursive programs, flowchert
programs augmented by stacks which simulate the original

program.

Notation

s

The following notation and the associated familiar theories

will be assumed.

1.3.1 PFPirst Order Predicate Calculus

True g truth values

False

— negation

& conjunction

v disjunction

= equivalence

> implication

q existential quantifier
' universal quantifier

1.3.2 3et Theory

$ the empty set

c membership

c rroper containment
c containment

-

1.3.3

1.3.4

U union
intergection
direct product
{xlp (x)} the set of all x such

set definition

that p (%), implicit

Tuples

<> the zero tuple denoted by A

D" the set of tuples from D of length
n

D’ ' the set whose only member is the
zerc tuple

<d,, d,...d > an clement from D'

0 1 2 ju!

concatenation be
<d a >n<e
1’ m 1°

eyseeet 2.

1

Relations between tuples

We include here a summary of tha n

in Chapter 2.

— m
n Y n = {<a, b>] a e D" & b ¢ D"}
Q =9¢
> n)
E ={<a, a>| a ¢ D™
m>> m
E. '={<a, a,>| a = <a,,...a > ¢
_— i i m
M
o % 0 = {<a, A>] a e D}
R = = {<b, a>|<a, b> € R}
R; S = {<a, c>|db <a, b> € R & <b,

tween tuples

e > = <d,,.e..d
T 1° m’

ntroduccd

O
ct
ab)
ct
e
O
]
e

universal relation
empty relation
identity relation
D"}

selector relation
nullifier relation
inverse

c> € S}

composition

[R, S] = {<a, b"c>|<a, b> ¢ R & <a, c> € S}

[R|S] = {<a"c, b"d>l<a, b> e R & <

The domajn of R = {<a, A>|<a, b> €

The range of R = {<b, A>]<a, b> ¢

concatenation
c, 4> ¢ S)
direct product
R} = R; N

R} = R 55 N

1.3.5

10

Substitutions

o (o/ %) is the result of substituting o for all free

occurrences of X in o.

£ 7 r
T «eo g for X
iQ xl > n n

11

DESCRIPTION OF THE TORMALISM

The formalism is a relational calculus based on binary relations
between tuples which when we talk about schema may be identified
with the relations which hold between state vectors across
program blocks. The syntax of the system is given using an
informal BNF grammar, and the context sensitjve parts of the
syntax follow. The semantics are explained using a set theoretic
model of the svstem, rather than by axioms, assuming an
arbitrary, non-empty, interpretation. Some of the operations on,
and between relations, have direct analogues in programming

languages. These will be pointed out in an informal manner in

Chaptecr 3.

2.1 The Relationgl Calculus

2.1.1 Interpretatioms

The interpretation of a term tis determined by a
structure § = <D, f> where D is known as the domain
of interpretation and f is a function from the sct of
typed relation variables to the set of binary
relations between tuples from D, such that f (m A n)
c p™ x D". The interpretation of T by a structure ®
is denoted by I (T,9). We will also talk of the
structure ® as being an interpretation of t. We

define ® [R/ ¥ to be the structure <D, £> where f (Y)

=if Y = X then'R, else f (Y) with the obvious extencion

for multiple replacements. The type of R must be the

‘same as that of X,

2.1.2 Typed Relation Variables

<typed relation variable>::= A | B ... m,P.q
m>n p->q > o

We assume that an infinite set of distinct

. ‘s i AN
identificrs exist. I (m 45 8) £0, 4)

12

. . ™ n
It is some relation between tuples from D and D,
wvhose elements are denoted by:

<<d;.s.d >, <C.e0e_>>,
m ! n

1 1

We identify the special case of relations of type m - o,

m > o with predicates or sets,. ‘e use A °

{<a, A>|X7a)} in place of the prédicate

X(xl, "'Xr)' If the domain D is not empty there are
ey

just two ¢ » o relations whichi way be considered as

2.

truth values, true is identified with <A, A> and

false with the empty set of type o - o.

2.1.3 Typed Relation Constants

<typcd relation constant>::=

<universal relation>|<empty relation> |
<nullifier relation>

2.1.3.1 Universal Pelation

<universal relation>::=

T(5.8) ={<a,b>|a

m g

2.1.3.2 Empty Relation

<empty relation>::= 2

3 m
I(9.0)=4¢

m >’

2.1.3.3 Identity Relation

<identity relation>::= _ E
m = m

. 1,
I (mg,‘#?n) = {<a, a>|<a e D}

2.1.3.4 . SelegEgE_Relation

<selcctor relation>::= Ei 1 21 <m
m->1
¥ (E.,D) ={<a. a,>| a =<a,...a> ¢ D}
m "1 1 1 m

2.1.3.5

2.1.4 Terms

<terms>::=

13

This operation corresponds to the
selection of variables from a state

vector by identifiers.

Nullifiers
<nullifier relation>::=

I(N9)={<a, A>] a

We will use the nullifier relation to
stand for the complete domain of
interpretation. We will often use the
prefix is- as a mnemonic device for the
indication of such relations; eg is+

integer, is-stack, is-binary-tree.

<typed relation variables>l<£yped relation
constants> |

<negated terms>|<inverse terms>|
<composition terms>|<concatenation terms>
<product terms>|<union terms> |

<intersection . terms>|<u-terms>

To specify context sensitive restraints we assume,

for this section, that A is a term of type m > n and

B is a term of type p = q.

2.1.4.1

Negated Terms

<negated term>::= <term>'

v
m‘§ o 1S a term of type m - n.

-t r -
L(AL®) ={<a, b>l<a, b> ¢ T (AP

14

2.1.4.2 Inverse Terms

. !
<inverse term>::= <term>

A--1 is a term of type n > m
m~+ n

I(, f}‘,}l@) = {<b, a>l<a, b>e I (_ é,ﬁ)}

The special case of o A i corresponds to
the introduction into a program of 3 set of
constants, and o §—i to the introduction
of new variables into the state vector,

possibly by declarations in inner blocks.

2.1.4.3 Composition Terms

<composition term>::= <term>; <term>

A i e > i
m3aip B q is a term of type m > q 1ff n
= p') P
i B) =fca, e>]() (<a, b> e

n’n
) & <b, c> ¢ I (B,®)}

This operation is basic to schemas and
programming languages. It may appear as
the sequencing of statements or as

functional composition, eg £ (g (x)) has

the relational form G; F if . F G
. : 11,1 -1
are relations corresponding to the
functions f and g.

2.1.4.4 Concatenation Terms
<concatenation term>::= [<term>, <term>]

S n’p B q] is a term of type m > n + g

iff m = p.

I A, B 3 9= {<a, b" c>l<a, b>
» m~>n’m-+q

e I (A,D) & <a,c >¢e I (B,&) 1}

This operation is complementary to

selection and is used both to build up

2.1.4.5

2.1.4.06

2.1.4.7

15

state vectors and to express conditional

statements or case statements.

Prcduct Terms

<product term>::= [term | term]

A ! B] is a 4erm of type m + p =
m>n 'p>aq
n + q.
9 n n
T (0 A l B TN = I« 1 > |

~
m-1n p=>gq

<a, b> e I (A®) & <c, d> eI (B,D)}

13N = [<3 c, b d

This operation can also be specified

using sclection and concatenation, eg

L, 4, 1,8 ,1=1[E A £, Bl

Union Terms

<union term>::= <term> U <term>

-

A u_ B is a term of type m > n iff
m>n - p>q
p=m q=n.
I(A u_ B, ® = {<a, b>j<a, b> ¢ I
m>n m>'n
(A,®) Vv<a,b>e I (B,®)} =1 (A, &) u

I (B, O

We use the union operation to separate
alternative paths in a program. For
conditional expressions, case statements,
the domains of the subterms are disjoint,
but we also allow non-deterministic

programs where the subterms may overlap.

Intersection Terms

<intersection term>::= <term> n <term>
N B is a term of type m > n 1ff
m>n o prg o

p=mq=n
I A n B,2) ={<a, b-|<a, b>e I
m > n m-=>"n

(A, ®) & <a, b>e I (B,0)}

16

2.1.4.8 u—-terms

<u-term>:i= W <typed relation variable

list> (<term list>)

<typed relation variable list>::=
<typed relation variable>|
<typed relation variable>

<typed relation variable list>
<term list>::= <term>|<term>, <term list>

If A,...A is a term list and Y¥,...Y_ 1is
1 n n

1
a typed relation variable list of the
same length n, if the type of each ?i’ 1
< j £ n, is the type of.% and if 1 <1 <
n, then ui Yl...Yn (Al,...An) is a term

of the type of Yi' -

The semantics of py—terms are given in

section 2.1.5.

2.1.5 Well Formed Terms

<well formed term>::={term).

A term A is well formed, if for all y-terms of the
form He Yl"'Yn (Al""Ah) occurring as subterms of
A, each Ak' 1 <k <n, is syntactically monotone in

each Yj’ 1 <3 <n.

An occurrence of a variable X in a term T is free if

it is not part of a subterm of the form Wy oo X ...

(eee)e

An occurrence of a variable X in a term t is bound
if it occurs in a subterm of the form Woeer X ees

(...).

17

A term A is syntactically monotone in X if each free

occurrence of X in A occurs within an even number of

subterms of the form B'.

A term A is syntactically continuous in X if

i No free occurrence of X in -A lies within a

subterm of the form B'.

il No free occurrence of X in A lies within a

subterm of the form uiY ...Yn (Al""Ah) with

1
some Aj not syntactically continuous in some
Yk‘

Condition (ii) arises since ‘there are terms, say
t(X,Y), where ¢ is monotone in Y and continuous in X
such that the term uY (Tt (Xs Y)) is not continuous in
X. !

Consider T (; X,) = (G vt X

Y
-0l F o0

This is syntactically continuous in X and monotone in

Y.

Y (¢ (X,¥)) =X if Xy A#N
=Nif XuA =N
Let this be F (X).

F (X is not continuous in X.

Consider sets ¥; such thatX; g A* and Ux, =_A'.
These may be found for any interpretatién'by a
structure which has an infinite domain, then U F (xi)

=A' 2 F (Uxi) =N, 1
i

If the u—term is well formed then I Q;i Yl...Yn (4,,

a

eee Ah)’ Q) is the i'th component of the minimal
fixpoint of the functional I ((Al, - Ah),i)). This
functional F is from an n-vactor of relations

oA
n . .
to an n-vector of relations such that their j'th

18

components are of type Yj’ and is defined by:
FA LA (<R1, R2 Rn>) = <Sl’ Sn>
where S, = I (Ri, (R /¥ys Ry/Yy, won R /Y T)

Vectors of relations form a lattice with the
operations €, n, U defined componentwise,and since in
a well formed term the functional F is monotone

A ...A
_the fixpoint of this functional always exists. Tarski{1955]

It is important not to confuse the algebra of vectors

with the direct product operator defined earlier, ie

n Eth (D) x P Erq (D) is n;f isomorphic with

m+p-g’n +q (D) where 0y, (D) is the set of m > n ,

relations over D, egwithm=n =p =q =1 and D=1{.2a I,
TR I O CENEESS I R O R R

<¢, ¢>, <¢, {<a’ a>}>, <{<a, a>}, ¢> <{<a, a>}, {<a,

a>}>

whereas , £§2 (o) = {¢,{<<a, a>, <a, a>>} } which has

fewer elements.

All the functionals corresponding to schemas are
continuous and we will show in the next chapter how
the fixpoint operator can be used to characterise the

programming constructs of iteration aad recursion.

2.1.6 Atomic Formulg

<atomic formula>::= <well formed term> ¢ <well formed

term>

An atomic formula is satisfied by a structure if the
inclusion holds between the interpreted terms, ie ® k

oct<=>1(,") cI (1,8)."

2.1.7 Assertions

<assertion>:;:= <atomic formula set> + <atomic formula

set>
<atomic formula set>::= ¢ | <atomic formula>|<atomic

2,2

19

formula>, <atomic formula set>

An assertion ¢y is valid iff every structure which

satisfies all of ¢ also satisfies all of y.

Logical Properties

-

The logical properties of the relational calculus can be

divided into first order and second order properties. Given

an interpretation one can consider the corresponding

interpretation for the pure predicate calculus in which (m -

n)-ary typed relations are replaced by (m + n)=- ary relations

(relations in the normal set theoretic sense).

2.2.1 First Order Properties

Theorems are stated without proofs which are sketched

in Hitchcock and Park (1972).

2.2'1.1

2.2.1.2

Ve

Theorem

There is an effective method which, given
an atomic formula gcr of the relational
calculus, not involving y-terms, provides
a sentence Fo’ T in the corresponding pure
first order predicate calculus with
eduality which is satisfied precisely by
those interpretations which correspond to

those satisfying oct.

Theorem

There is an effective method which, given
a sentence F of the pure first order

predicate calculus with identity with at

" most m variables, provides an atomic

formula of the form U <c<rt_,
m-> o F
containing only relation variables of the

type n » o, which is satisfied by

20

precisely those interpretations which

correspond to those satisfying F.

2.2.2 Second Order Properties

2.2.2.1

2.2.2.2

Theorem (Park)

There is an effective method for
translating atomic formulae involving p-
terms into the second order predicate
calculus which preserves satisfaction in
the sense of the previous two theorems.

The proof may be found in Park [1970].
Theorem (Park)

There exist sentences in the second order
predicate calculus which cannot be
translated into the relational calculus,

in the sense of 2.2.2.1.
The proof is along the following lines.
The property that a domain is finite can

be expressed as a sentence in the second

order predicate calculus.

A3X(Vx3y.X(x,y) A
' (vxvyVz. ((X(x,y) A X(y,z) » y=z) A (X(x,2) A X(y,z) =+ x=y)))A

¥x.9X(x,X))

There exists no set of asserticms ¢,
finite or infinite, such that an
interpretation satisfies ¢ iff its domain

is finite.

This is known to be true for a set of
first order assertions. If the assertions
contain frec rclation variables then these

can be set to Q and elimiuated,

2.2.2.3

21

since we must be able to assert the
finiteness of any structure. It can be
shown that for any u-term, say puX F (X)
which contains no free relation variables
that (Zn) = u¥X F (X) = F" (Q). This
means that any set of assertions which
does not contain free relation variables
can be replaced by a first order set of

.
acsert:

[»]

ne.

Theorem (Park)

There exist assertions involving
syntactically monotone p~terms which
cannot be expressed by assertions
involving only syntactically continuous u-
terms, such that bLoth assertions are
satisfied by precisely the same set of

structures.
The procf is sketched below.

Syntactically continuous u-terms are
representable in the language Lw;w since
. o n
XF (0 = .
wXF (X aloF €9))
A result from logic, Keisler [19711,

states that well foundedness is not

22

representable in Lmlw
We show in chapter 4 how it is possible
to assert well foundedness using

syntactically monotone p-terms.
2.2.2.4 Theorem (Park) -

There exist sentences in L&, & whlich
cannot be translated into the relational

calculus, in the sense of 2.2.2.1.

The property that a domain is finite con
be expressed as a2 sentence in Ly.y, and

4
the proof is then along the lines of 2.2.

2.2. .

2.3 Tormal Reasoning

2.3.1 First Order Reasoning

To show the validity of any assertion, not

-

involving u-terms, we show the validity of the
corresponding predicate calculus formula.
That is we assume ¢1 F‘¢2 whenever [

(0519 €d;
F F&

> o : ¢ 3 s
o, T (chf&E¢2 , TJ 1s valid in the pure
first order predicate calculus. F0 is given
T

in 2.2.1.1. ’

e
e

From ¢1 - ¢2 and v, ¢2 k'¢3 we can deduce vy,
q)l It ¢3'
iii For any relation variable ﬁx%—n’ and any

(m + n)ary term T, we can deduce from ¢~y that
¢ (1K) = ¥ (v/%), where ¢ (z/X), ¢ (¢/X) are
the result of replacing all free occurrences
of X by 1, after a suitable alphabetic change

of bound relation variables in ¢ and y.

23

2.3.1.1 Derived Rules

First order reasoning in the remainder of
this thesis will be given informally,
rather than by following the formal
reasoning outlined above. We list some
first order results which will be found

useful.

ii - (A; B); C = A; (B; C)

iii o+ (@AD" =A

iv . (A_l)-l = A

v @y lealy)
vi - Q=1

vii + AcU

viii F A; Q@ = Q

i.x i [Ei, [Ez, C... En]]] =E .

X +-[A, [B, €11 = [[A, B], C]

xi. + [A; Blc; DI = [Alc]; [BID]

xii + (a; B) "L

"
o
>

xiii = (A v B)"

il
b
o
[v~]

“xiv + A; (BuC) =A; BuA;C

Xv + A; (BnC)cA;BnA;C
A-;lASEl- Aj(E nC) = A3B nA; C

2.3.2

24

xviooe (s XD e (WU

AhA c B R (A0

(AsN)' v A3X

- The atomic formula Afl; A ¢ E asserts

that the relation A is single-valued.
2.3.1.2 Conventions

i Elision of parentheses
A; (B; C) = A; B; C
LA, [B, cl] = [4A, B, C]

ii Composition semicolon will be
omitted and concatenation used.
A; B £ AB

iii Type indications will be drorped
whenever possible. The rules
governing well formed terms will

usually enable them to be restured.

iv Strictly the relation constants E,
£ etc should be distinguished by
types. This will not be done. Two
occurrences of E in a term may be

-of different types.

Second Order Reasoning

The rules are presented for well formed p-terms of

order n.

i Fixpoint Property:
+ pixl-.-}xn (Tl,oo"'['n) = ’{'i (uiyl..xn (T1’°°'
rn), cee W_Xpe.. X (rl,...rn))

1 <1 <n.

ii Minimality Property.

25

a if ¢F ¥ (9 ”"Qn)

b and ¢, ¥ (yl,...xn) g (Tl (xl...xn),...
T (xl.'..xn))

- . -
c then ¢ F V¥ (Ul Xl---hn (Tl""Tn)’°"
un cho‘-xn (T].’...Tn)z

provided that each atomic formula in ¥ has the

form o S0y with'oc, syntactically continuous

1
in Xi,...Xn, and gy

Xl...xn, and Xl...Xn are not free in ¢.

1
syntactically monotone in

"“he validity of this extended form of Scott
Induction, Scott and de Bakker [1969], is
shown in Hitchcock and Park [1972], together
with a counter example when gy is allowed to

be syntacctically monoteone.

2.3.2.1 Derived Rules

i Substitutivity.

If T, is the term obtained from T,
by substituting a relational
variable Y for an occurrence of a
variable X .in a context where
neither is bound then:

XcY F’r €Ty 0T Ty STy

dependinglon whether the
occurrence of Xis within an
even or odd number of
complemented subterms.

X=YFrT, =1

27"

ii Elimination of Multiple Fixpoints.

ox...., X}{q...x T s e e
*‘1—11 1 Xl-l i ﬂ(,].’
T)

T, Ty Tagene
1_1’ 9 l’ n

2.4

26

= HX ([(l‘l].x]“'X ([]9"‘[n)/]’
U X o--x T oo T X
et n1 n (12 n)/ ﬂ))

iii Fixpoint Induction.

{Ti (cl/xl,...on/Xn) c oill <i<u}

J— '.7.0. . e 0 .
u1'>\l X'n <T1’ Tn) £ 9%

I3 TeRY]
1)

(¢

rules may be

N

o

Derivations of the

found in Hitchcock and Park [1972].
2.3.2.2 Conventions

In situations where no confusion can

arise we will often use ijl...xn to
abbreviate the term v.X%X ...X (7, ,...7.).
abbreviate t i% b (L n)

Other formal techniques

Manna and Pnueli [1970] adopt an escentially first order
approach. They obtain from a progrem two first order
sentences which contain unspecified predicates. If Floyd
assertions are "guessed at" and used to replace the
unspecified predicates in the first formula, then a first

order sentence is obtained whose satisfiability implies the

- partial correctness of the program. The termination

properties of a program are given by the unsatisfiability of
the second first order sentence. To show this
unsatisfiability it is usually necessary to assume a second
order induction axiom for the domain of interpretation.

This approach is first order in the sense that once
predicates have been "guessed at" first order formula are
obtained. There is however an implicit quantification of
the unspecified predicate symbols. The fact that the
termination properties of a program are not partially
decidable shows that the problem cannot be reduced to the
proving of a first order theorem. The existence of a second

order induction rule is required.

27

Cooper [1969] uses the second order predicate calculus and
makes explicit the implied quantification of unspecified
predicate symbols, but says nothing about the necessary

induction rules for proofs of termination.

The approach we have taken follows closely that of Park
[1970], but is expressed in a relational form suggested by
Scott and de Bakker [1969]. Park [1970] shows that some of
the prelicabes corresponding to assertio:

additional fixpoint properties and that fixpoints can be

used to express induction rules.

We have not gone as far as the more sophisticated languages
of Milner's LCF [1972] and Scott's Lambda [1972] which have
higher types but which use only continuous p-forms and so
are not capable of expressing and maniﬁulating inducticn

rules and hence of talking about termination properties.

g
We must also mention the similar formalism of de Bakker
[19711, de Bakker and de Roever [1972] which is confined so
far to monadic relations. to a more restricted class of

operations on them, and to continuous M -forms.

De Roever [1973] describes a polyadic relational calculus
which does not contain monotone M-terms, but which is
otherwise essentially similar to ours. Whereas we have
derived our first order reasoning via translation to the
predicate calculus, de Roever gives axioms for first order

reasoning.

3

28

RELATIONS AND PROGRAMS

3.1 Relational Forms of Program Constructs

Our development process proceeds by postulating & program
which is composed of the familiar constructions below. Tha
program is not completely specified,blocks of

code may be defined non-constructively by the relation that
holds across them. Ultimately we arrive at a program

in a target programming language. The justification of this
final transition requires a semantic definition of the
target language. We do not wish to consider this problem
here, except to say that it will be easier to jﬁstify the
transition if the semantics are given by axioms rather than
by a mechanical interpreter, eg the Vienna Definition
Language [Walk et al 1969]. For this reason the following

treatment is rather informal.
3.1.1 Assignment

An assignment statement modifies the state vector and
we consider it as defining a relation between the
state vector before assignment, and the state vector

after assignment.

As an example consider the statement a = f (a, b) in
a program whose state vector consists of the
variables a and b. Assume that 2 F 1 is the relation
corresponding to the function f. The relation
between the input state vector and the first
component of the output state vectdr is clearly F,
and between the input and the second component of the

state vector, the selector relation E as the

2’
variable b is unchanged. The concatenation operator
is then used to build up the output state vector,

resulting in the term [F, EZJ.

We may prefer to be less explicit about an assignment

statement, or group of statements and define them by

29“u”

the relation which holds across them, realising this
relation more explicitly at a lower level in the

development.

McCarthy [1962] gave. axioms for a contents function
C(u,g) which gives the contents of location u in the

state vector £ and an assignment famction a (u, <« &)

which modifies the value of locatien ;; in the state
“vector §, to-~i, The ceontents fumction is modelled by

E; and the assignment function by [El... Ei;A cen EmJ

assuming that the state vector has m components, that

u is the name for the i'th component and that the

constant relation , A , represents the constant o.
15

a

The axioms are:

pede

1 < (U, a (v, a, £)) =

ii a (v, c (v, 8,58 =&

iii

1]

else a (v, B, a (u, a, £))

From the definitions of Ei and the concatenation
operator it is easily shown that the assertions

corresponding to these axioms are valid, ie

i "[El, oo Byl A, ...Em];Ej=ifi=j then
E.; A else E,
1 J
i3 - ‘ =
ii [El, e Ei’ oo Em] o E o
iii - [El,.... E;3B, +.v E 15 [E, ... Ej;A, B
= if i = j then [El"'°' Ej;A, .o Em] else
(El, . Ej;A, ce Em] [El’ eee Eg3B, .. Em].

Note however that we can deal only with state vectore
of a wnown leangth whereas McCarthy's axiciuss refer to

those of arbitrary length.

f u= v then ¢ else ¢ (uf)

(v, ¢, a (v, B, E)) =1f v = v then a (u, o, &)

]

3.1.2

3.1.3

3.1.4

30

Branching

A conditional statement, if p then Q else R is

. . 1
represented by the term L P, Q1 [m P o,

ps
R 1. The m > o relation P corresponds to the

m -~ m
predicate p and acts as a 'filter' allowing only
arguments which satisfy p to be applied to Q. 7The
formalism also allows non-determinate branches, ie
the domains of the sub=terms involved may overlap.
Case statements are an obvious extension. We I?ter
use the equivalent formulation of [P, E1 Q u [P, E]
R.

Compesition

The sequential execution of statements is
straightforward. If R and S arc the relations
holding across two statements r and s, then R; S is

the result of executing first r and then s.
Procedures

We will deal here only with procedures which are non-
recursive. They may not access non-local variables
other than those in the parameter list. Recursive
and mutually recursive procedures are dealt with

later.

The declaration of a procedure invoked as a function
reference defines a relation between the formal
parameters of the procedure and the result vector,
provided that we allow only access to formal
parameters and local variables in‘the body of the

procedure. Invocation of the function is the

he app

the state vector of the calling program, compositicn

~f
4

selection of t

L]

opriate actual paramcters from

with the relation representing the body of the
procedure, and then assigument of the result state

vector.

31

A procedure call differs only in that the assignment
of results is made in the body of the procedure to
formal parameters. The procedure declaration defines
a relation between the input parameter list and the
output parameters, those which are modified in the
body of the procedure. Following Hoare [1971b] these .
two types of parameters should be distinguished. A
procedure declaration could have the form p (x) : (v)
proc Q where x is the list of formal parameters which
are assigned to, and v is the list of formal
parameters which supply values. The form of a
procedure call is call p (59 : (e) where e is a list
of expressions and a is a list of variable names.
The’;elation which holds betwecen the state vector of
the calling progfam before aﬁd after such a statement
is obtained as follows; The inpuf expression list is
formed and composed with the body of the procedure,
and.the list of variables, a, enables the correct
final state vector to be built up using the
concatcnation operator. This is cssentially Hoare's
value and result model. We cannot handle calls by

name. .

As an example consider a program with variables a, b,
c and a procedure declaration p (x, y) : (y, z) Q.
The relation which holds across the statement call p

(a, b) : (b, é) is given by [[EZ’ E3] Q, E3].

Hoare's restriction that the actual parameter list a
contains a disjoint list of variables is essential.
The simultaneous assignment of two results to the
same location is not defined. However we do not have
the restriction that none of the variables in a occur
in e. This arises in Hoare's work from trying to
identify mathematical variables, which have the same
value whenever they occur in a formula, with program
variables whose values change. This is only possible

if the variables are not assigned to.

3. 1.5

32

Since we regard the procedure body as a relation
between the input and output parameter lists, and
have a call by value mechanism, we circumvent the
restriction that the actual input parameter list may
not contain the same variable more than once.
Consider the example:

p (x) : (v, x) begin

Clearly the bbdy of the procedure is the 2 »> 1
relation EZ' Hence call p (a) : (a, a) does nothing.
Note that call p (a) : (a, a) with a body replacement

mechanism as for example ALGOL 60, is rather

different.

Local variables are introduced into procedure bodies
by the use of 0 + 1 relations to extend the state
vector in tlie body of the procedure, or by use of the
concatenation operator to extend the state vector,
depending on whether the local variable is

initialised or not.
Iteration

A simple iterative form is the program construct

while B do Q, this may be represented as a flowchart.

e = e - -

3.1.6

The relational expressionfor this loop is obtained in
the following manner. Let X be the relation between

the points marked A and C in the flowchart.

We can then trace our way round the loop and obtain
the equation:

t
x=[B,E]JulB, Q]; X .

The solution which characterises this loop is given
by the minimal fixpoint, ie
1
wX([B, E]lvu[B, Q1;X),

E}owcharts

The process shown for obtaining the relational form
of a loop extends to any flowchart, and hence to
languages which include goto statements and labels,
but not label variables. Sufficient variables Xl .
X are chosen such that there is at least one
occurring in each cycle, and a set of n mutually

dependent equations is produced.

)

— e e - e o

e W 1

£, =[a", E] v L4, £) X,
. v
X, =B; [C7, E] X uB; [c, D] X%
and the relation across this program fragment is given
by .
T . L
by 1% (A, B3 v s, B3, , B (CC, B X U Lc, D] %)

3.1.7 Recursion, Equation Schema

We treat recursion in a similar manner to iteraticn.
A variable Xi is associated with each recursive
procedure or function and cquations similar to those

above can be obtained.

eg, f (xl, xz) =1if p (xl) then a (xl, x2)
else g (xl, Xy s x2)
g (xl, X, x3) = 1f p (x3) then { (h (xl), XZ)

3.1.8

TS

else j (g (xl, X,, h (X3))

X and X, are the relations associated with
_).— + . 3 .
a%d g then3we %an write the following equations.

= H

- ' = .
X, =[E; P, ATULE P, E}, By, EpJ %) = J(¥,X0)

X, = = . ’
2 [E3 P, E. H, E2] XU [El, E2, E3 H] Xé J S(XI’XZ)

1 1

and the relation which characterises f is given by:

F = }11X1X2 (9 (YI’XZ) ’ S(Xl’ Xz))

Limitations

We must not pretend that we can describe all the
familiar constructs of programming languages in this
formalism. We have already shown that we are only
able to describe a particular procedure calling
mechanism an& so cannot describe the body replacemeqp
rule of ALGOL 60. The formalism is such that the
number of components of he state vector and control
structure of a program must be capable of Being
determined statically. This means that we cannot
handle such dynamic changes to the state vector as
the creation of variables in SNOBOL IV nor the
dynamic changes to control structure caused by label
variables or the possibility of passing procedures as
parameters. The lambda calculus based languages, and
procedure variables need relations of higher types

than we allow in our formalism.

It must be remembered however that the formalism was
developed to reason about programs and program

schemas rather than for the definition of the formal
semantics of languages. There is still an element of
informality in the transition between relationgl expressions
and their realisation by an actual programming language,

which would bear further investigation.

36

3.2 Properties of Programs

We need to express properties of programs in our formalism.

3.2.1

3.2.2

Correctness

The specification of a program is a_relation between

input and output variables.

If S is the specification of a program and R is the
relation which characterises the program then the

program is partially correct with respect to S, if R

€ S and is correct with respect to S if R'= S.

Termination

The domzin of a pregram is the cet of values for

which it terminates.

-

If R is the relation which characterises the program

then the domain is given by R; N.
The program is total if RN = N.

Notice that an argument is included in the domain if
at least one computation with that argument '

terminates, not if all computations terminate.

3.3 Examples

3.3.1 Factgrial

This form of a program to compute factorial is taken

from Hoare [1971b].

The program is:
fact (r) : (a) begin
if a = othen r: =1

else begin new w;

57

call fact (w)

r: =a* w " end

———

end

call fact (r) : (a)

(a - 1);

.The relational form of the body of the declaration 1is

N

given by:

F= VX, (& vlE, BXlC)
wi.th the interpretation:

A = {<0, 1>}

B ={<a, a- 1>] a?>O}

C = {<<a1, a,>, al*a2>l a, a

-

9 2

= o}

The"ferm.[E, BX] is of type 1 » 2, ie the state

vector has been extended corresponding to the

declaration new W, the term BX is a recursive call of

the procedure with argument a - 1 whose result is

placed in the location corresponding to Ww.

Let S te the relation

S = {<a, al>| a = o}

We show by fixpoint induction that the procedure is

contained in S.

ii

iii

iv

A c S since 0! =1

(E, BS] = {<a, < ¢

& c, = b!}

>>
> | ¢

=a& (gb) b =

= {<a, <a, (a - 1)!'>>] a >0}

[E, BS1 ¢ ={<a, a* (a-1)!>] a >0}

= {<a, a!>] a >0} c S

AulE,BS] CcS+uX(AulE, BX] C) cS.

The specification of the program is:

T = {<<al, a,>, <b

19

b

2

>>| a

1
10

- b, &b
b,

1

= a, }

a-1

The relation corresponding to call fact (r) : (a) is
given by:
P = [El, E; F]

Now P = [El, E1 F] ¢ [El, El SlecrT
Hence the factorial program is partially correct.

3.3.2 Park [1970]

Consider the pair of schemas
H = uz x1) (AuB x CX1 v DX F)
with the 1nterpretat10n

A={<<al, a,>, b>| a, = 0gb =01

B = {<<al, 8y, <by, by, ba>>{ >0 &by = a & b, =
a, &b, = a,}

= {<<al, 3ys 85>, <by, by>>| a> 0¢ a, = 0&b, :
aj - 1&b, =a)
D = {<<a1, 3y, 33>, <by, by, b>>| 2> 08 a>08 by
=a &b, = a, & by = a; = 1}

o]

={<a, b>| b = a + 1}.

The specification of the program is the relation
'= 4 0 > = ES
{<<al, a,>, b;>| a; 20 & a, 20 by =a; a2}
We also need '
={ 0 = - *
T <<ap, 3y, 35>, b1>| a,> & b1 (a1 1) a, + a,
& a, >0 & a3 >0 }‘
To show partial correctness we will prove by fixpoint

induction that G ¢ S and H c T.
i AcsS

.. <e S 0 - 1) %
ii = {<< 215 3,>, by ! a,>0 & b1 (a1 1 *a, *a,
S & a2 >0}
= {<<a1, a,>, b1>| a,> 0 & b1 = af@z &‘3220} c S

iii A UBT ¢S from i and ii.
iv cs = f<<a1, a,, a5>, b, >| a;> 0&a20 &
. : b1=(a1-—1)’<a2 }
< T
=" >
v DT {<<a1, ay, a5>, b1>| a»0&a30 & a,>0 &l
1 b = -1)% -
) N) fal }) a, + ay 1s
vi DIF = {<<a1, 3y, 237, b)>l a;>0& a;>0 &b,
=(a1—1)*a2+a3}§_'1‘

vii CS UDIF ¢ T

viii A UuUBTcS, CSUDIFcTH n X%y 8, u, LX)
cT

Hence from 'iii , 'vii', "viii we obtain the partial

correctness of the program.

We could realise this either as a functicnal pregram.
S =0 0

3 (xl, X)) if Xy then

else t (xl, X1 xz)

t (Xl’ X, x3) =if X, = O then s (x1 -1, x2)
1> ¥p» X3 1) +1

or as mutually recursive procedures.

s (x) : (a, b) begin

if a =0 then x: = O '

else t (x

else call t (x) : (a, a, b) end

t (x) : (a, b, c)begin

if ¢ =0 then call s (x) : (a~- 1, b)
else begin ‘

call t (x) : (a, b, ¢ = 1);

x: =x +1

end end

call s (a) : (a,b)

“4uv

INDUCTION RULES AND WELL FOUNDED RELATIONS

In order to establish the correctness of a program it is
necessary to obtain an expression for the domain of the program.
This chapter shows how induction rules, necessary for termination
proofs, can be expressed and manipulated in a schematic form, and
the following chapter uses these results tgo obtain expressions

for the domains of programs.

4.1 Well Foundec Relations

When describing data domains it is necessary to characterise
them by first an{ second order axioms if we are to prove
termination etc of programs operating on these domains. The
induction axiom for the domain states that it is well
founded with respect to some rclation R, ie that there is
no infinite sequence dl’ d2 ... of elements from D such that
d1 R d2 R Fcr example the integers are well founded
with respect to the predecessor relation, or LISP S-—
expressions are well founded with respect to the 0peratiohs

car and cdr.

The set of elements from D, all of which are well founded

with respect to R, is called the initial part, or v (R), of

R. This can be characterised using the minimal fixpoint

operator. ,
D
Defn: 1 (R) = uX (RX")'.

This definition can be justified by the following argument.
Consider first the meaning of the relation (RX')'. Using

the set model '

kX = {al(®) <a, b> e R &b X}

so (RXJ)i = {a](¥Vb) <a, b> € R + b e X}

ie (KX") ' is the set of elements all'cf whose R-

predecessors (if any) are in X. 1 (R) is closed under R, ie
de 1 (R) & dRe => e € 1 (R), and so all the R-predecessors
of any element of 1 (R) are themselves in 1 (R), it ig thus a

0]
in pX (KX')', there must be at least one R-predecessocr, Xys

fixed point of (RY"'. Conversely, for any x. not contained

41

not contained in X (RX')', likewise this too must have an
R-predecessor not in kX (KX')', and so we can produce an
infinite sequence X, R X, R Xy eeee The original element x
px (RX")'.

1 (R),‘l (R) =

0
cannot therefore be in 1 (R). Hence 1 (R)

Hal

Since we have alrcady shown that uX (RX'")'
uX (Rx')'.

n

4.2 Igduction Rules

If we now state as an axiom that a domain is well founded
with respect to a relation R, we can use an instance of

Fixpoint Induction to derive the familiar induction rules.

Let S be some predicate, ie a 1 > O relation, and assume we

are given. as an axiom, that 1 (R) = N. Then using fixpoint

induction, ie that (RS")' < § => 1 (R) ¢ S, we can derive
that '
{x|(vy) (<x, y> eR > yed} c S => N c S, or in predicate

-

calculus terms:

(vx) ((w) (<%, y> eR> S {y)) > 5 () » (vx) SGx)

eg, given that

1 (pred) = N where B_x_‘gg_#{<x+1, x> 1 x30 }

1 (>) =N wheres= Kx,y>| x>y >0 }

we obtain

S (0) A (¥x) (S (x) » S (x + 1)~ (¥x) S (%)

wWx) ((Fy) (v <x> 5 (y)) >~ S (¥)) > (Vx) 8 (%)

which are the familiar forms of mathematical and course of

values induction.

Burstall [1969] gives the structural induction rule. "If
for some set of structures, a structure has a certain
property whenever all of its prober constituents have that
property, then all of the structures in the set have the
property”. This is saying that the domain of structures
considered is well founded under the relation 'proper
constituent'; the induction rule is an informal statement

for an induction rule of the type derived above.

We have also formalised the familiar recursive definitions
of data domains, eg LISP ‘S-expressions are defined as:
"An S~expressionvis either an atomic symbol or it is
composed of these elements in the following order: a
left parenthesis, en S-expression, a dot, an S-
expression, and a right parenthesis." Given the
operations car and cdr which select the constituents

of an S-expression, the domain of 3-expressiont is

(W

given by the axiom 1 (ecar u cdr) = N.

The axioms for commonly occurring domains and their basic

operations will be discussed in more detail in section 6.2.

Manipulations of well-founded relations

We list here, with proofs in a later section, some basic

manipulations which establish or preserve well-foundedness.

4.3.1 Defn: R*m D 1Y (E U RX) .
T ..
4.3.2 Defn: R = RR* tramsitive closure of R
4.3.3 Defn: R 2 g
— J - m m - m
+1
n 2 PRn n >o
m > m -

. 2 7 1 LI . o
4,3.4 Defn: h.iRo 1JX(RX5 initial part of R

The standard rules for regular expressions hold for terms

. e X . . L s
defined from variables D% m E 2 m o) 0 u81ng‘,, u, %, ie
all those formulae deducible from the classical axioms
listed in Conway (1971) p 25 by the usual rules for =, ¢

interpreting E as 1, £ as 0 etc.
In addition we have:

4.3.6 (R+)

-1

— k=
4,3.7 RR " ¢ E => R*yR =R R

4.3.8 1 (R) ¢ Rx (Ri)', 1 ([A RD ks (an RN)'

-1

4.3.9 R "RcE =>1(R) =Rt (RD', 1 ([A, R]) =R* (A n
]

N)
N)

¥

4.3.10 R ¢ 8 =>1(5) ¢ 1 (R

4.3.11 1 (R) = Q<=> (R) ' = Q

Il

4.3.13 1 (Rn) 1 (R)n >o

£.3.14 1 (RD = 1 (R)

4.3.15 8 < R => 1 (R) <1 (8)

4.3.16 R" ¢S ¢ RY => 1 () = 1 R,n >o0

4.3.17 * (R) =N => R nL = RaR Y=g

4.3.18 1 (R US)y c1 (R) n1(S) 1 (R) utr(8) c1v(RnS)
4.3.19 1 (R US) < (RS)/E 1 (R nS)

4.3.20 1 ([RIS]) = [1 (R) [N] u [N[1 (S)]

4.3.21 1 () =N => 1 ([RIBTUEISDH = [(R) IN]

4.3.22

—

(IREJUEISD =[v (R 1 (5)]
4.3.23 1 ([1 (R) , R]) =N for any R

4.3.24 £N = N,f £ CE, Sf ¢ fR => £1 (R) ¢ 1 (S)

44

4.3.26 1 (R u [A, E]) = pX ((RX")'" n A"

4.,3.27 RAc A=>1 (RUL[A, E]) =1 (R) nA'

Note:

4.3.8/4.3.9 The composition operator ';', here elided, was

4.3.10

4.3.14

4.3.17

4.3.21

defined using an existential qUantifier, this implies
that if R is not single valued, then although

1...dn

*
where dlc R (RN)' and dn.e(RN)',and ledZ"’dn’ there

may be other sequences which start at d

there is at least one sequence of elements d

1 and do not

terminate. This explains the inclusion of 4.3.8.
Note that the initial part operator is antimonotone.

This is a formalisation of the equivalence of mathematical
and course of values induction, and of their analogues

on other domains. If R is interpreted as the predecessor
relation pred , i.e.!<x+1,xﬂx205 , then R is, by £
definition the relation > , and given that L(R)= N,

we can derive the familiar induction rules shown in 4.2.

This states formally that if a total domain is well
founded by R then there can be no element in the

sequence ledz...
loop would occur, and the total domain would not be

well founded.

dn which is repeated, otherwise a

This is a formal statement of the induction rule
corresponding to a lexicographical ordering which is
used later to show termination of Ackermann's function
If we interpret R and S as the relation >, then the
pairs <a,brand «<c,d> are related by (IR|Io[E|S]) iff

ad>c or a=c and b>d.

4.3.23

4.3.24

Lb4a

This states that if the domain of any relation R is
restricted to those elements which are well founded
by R, then any element in the domain is well founded
by this restriction of R. This is used later to show

termination of programs which ccunt up to a limit,

This is a formalism of part of the discussion
concerning proofs of termination in Floyd 1967a ,

and is a special case of a more general simulation
result, see 7.2. The normal use of this theorem is for
the mapping function f to be total and single valued.
It maps pr>gram states, related by S, into a domain
which is known to be well-founded with respect to R,
i.e. t(R)=N. Hence £N=N= Lt(S) and the domain of the

original program is well founded with respect to S.

44b

4.4 Extension to Multiple Domains

We have discussed in 2.1.5 the concept of a multiple fixpoint

of a functional acting on the direct prdduct of relation algebfas.
We discuss here the special case where the functional can be
represented by a matrix whose components are relations. The
motivation for this special case will be found in section 5.6
where the termination properties of multiply recursive pfograms;
are expressed as the initial part of a square matrix of relatibnsf'
The use of matrices is local to this section and is introduced
as a convenient notation. Although this makes the algebra of
matrices and vectors of relations look similar to that of
relations it is important not to be misled into thinking that

they are the same. The essential difference between the two
algebras is in their treatment of the null element. In the case
of relations a tuple containing a null element is itself
considered to be null, whereas in the case of a vector a null
element is a perfectly acceptable component. To extend the relational
algebra so that there is a direct correspondance between tuples
and vectors would mean introducing the concept of an object,

whose value is undefined, to be an'element of every domain of
interpretation and a corresponding redefinition of the basic
operations of the relational calculus, This exercise will not

be attempted here. An example'of the difference between the two

algebras will’ be found in 2.1.5.

4.4.1 Basic constants and operations

An m-vector V is a colum vector with m components
which are given individually by V;. It has type m x 1,
We will only be interested here in vectors whose

components are relations of type n, > o.

We consider here only those functionals on vectors
which can be represented as 3 (V) = A uBV where A and B are

matrices.An m X n matrix A is applied to an n-vector

45

to produce an m-vector according to the rules of
composition given below. m X n matrices can be built
from the following constants, variables and

operations.

(m 9 n)lj B Uij

(m g n)ij = QiJ

(m.g n)ij = Eii if i =] _

| =Qif i7 = j

(m X 0)1 B Ni) .

(m) n) 3 where Rij is a relation
(. é n) 1s a matrix of type m x n such that (A')ij =
(

2) -1 is a matri: .of type n x m such that (A.-l)ij
'(A) '

Note that this is not the conventional matrix inversion.
The following operations take place between two m x n

matrices to produce an m X n matrix.

GédnVmEaliy =45 Y B;

(m fn"nd n)ij = A‘ij n Bij g

([m 8o nd n])ij = [Aij’ Bij] |
(b nlnBadyy =Dagie,)

~ Composition takes place between m x n and n x p

‘matrices to produce an m x p matrix.

A B)--=k

mxn’ nxX p'i]

[[{ i)

1 Ak By

p-terms of the form,4X3(X) are formed from an m-vector of
relation variables and a functional 3 which acts on this m-vector
using only the constants and operations given earlier. The result

of this functional must be an m-vector. Note that not all functionals
can be represented in this matrix form, in particular those
corresponding to recursive schemas. This jt-term is an abbreviation
for p. X ...Xm(Q(X)l,...S(X)) and is weil formed if the individual
components y(k), are syntactically monotone in each XJ s 141,3¢m.

The functional J(X) is syntactically monotone or continuous if

the individual components 31 are syntactically monotcne or

continuous in the components Xj of the vector.

45a

A containment A€B between matrices is a representation of the
set of atomic formulae which are the containments between its

compotents.i.e. + f{a..eb,.) 1¢iem, 1€¢jen).
ij”~ i3

A c B
mxn ~ mxn

-

4.4,2 Formal reasoning about matrices of relations

First order reasoning: Since the algebras of relations and of

matrices and vectors are different first order reasoning about
matrices has been justified as required by translating assertions
about matrices into a set of assertions about their relational

components.,

Second order reasoning: This is as before and again matrices are

used to represent sets of assertions about relations.

4.4,3 1Initial Part

The initial part of an m x m matrix is a vector whose
components are n. - o relations, such that for any
element d. from the i'th component there is no
infinite sequence of eleme d. d. esre. Oof

fin q nts diq» j2* dk3

elements from the ijth, j'th and k'th ... domains such

. .. d. R. cee y i
that d11 Rl j2 3k dk3 We can characterise
the initial part in a similar way to that of section
4.1.

If R is a matrix and gg a vector of n. > o
mXxX m m 1 1

relations then the functional (R X')'expands

46

I B

componentwise so that (RX'){ = (j U, Rin55'
it is the set all of whose predecessors under the 1 x
m relation (R]._1 RiZ Rim) are in the-m vector X. By a
similar argument to that in section 4.1 we can

justify the following.

let 1 (R) represent the i'th component of the

initial part of R, then:
. ' "ot noto
' (m B,n? =¥ Xl ot Xm ((Rx') I (RXD 2
* o 0 (R'X') 'm)

This can “e represented in the matrix formalism

as | = 1yt
v(mgm) PX(RX") ’
where X is an m-vector.

4,5 Manipulations of well founded matrices -
% D :
.'1 = : 4 L X
4.3 (m 5 m) “m§ﬁ (m 5 nY B
T D *
4.5.2 (R)T Dy
4.5.3 m §om < m % m
n+l - D _n
% xm - RR"n 2o
4.5.4 1 (R)2y ox ((RX")!
e m x m mx O :

The development so far closely parallels that of section 4.3
and indeed all of the manipulations given are applicéble to

matrices.

4.5'7

4.5.8

4,5.9

4- 5. 12

4.5.13

4050 14

4.5’15

4.5.16

4.5.17

4.5.18

R R E
R IR €

47

-1 % —% R
RR cE=>R UR
RRL c g <=> R, Rl cE.,
- ik ik — Tii’
= i 23
(R,,) N n (Rjk) N for J

1
w
w

' *
c '
(R € R (AW
1([A,R]) € R ([A,RIN)"
where A is an mxm matrix whose elements are mi+0

relations, and AR v, = 0. A.. L.N)!
1S, so ([A,RIN)'. = (3Up Apsv RleJ)

IREE =1R) = R)"

*
E =>1([A,R]) = R ([A,RIN)
-1, ¢ -1
R & = c =R.1=21
ROREE RGRG By and RN RN =R, i
le R is single valued iff its elements are single

valued, and elements in any oue row are disjoint.

nfnSpdn™ @ ®
RecS§S <=>R,6 c8,,
ij ij
P = "=
! (m X m) T m 2 <=> (RV) m Y o
Q =
! (m X u? n1§ o

nx m
S c R => 1 (R) < 1 (S)
mx T mx m =
n : e
0¥ nSninSnln™ IA(S) 1 (R),n > o
v Ry =N -R n E_=_R_n_Rleg
(mxm mx m m yx my m mx m
VGRS DT ® L) e R U8 e

4,5.19 1 (m 5 o Ya S)

m x m

n

1 (meSm) ct1 (RnSs)

It
lam}
-

4.5.20 1 ([m § m]m 2 m]) m &R%lm § o] v [m ﬁ olﬁ &S%]

= = . U r 4 S ’ =
4.5.21 0 (8 D =N = (L R | O Tul) 5 wlm %)
G Rl Y o]
4.5.22 1 ([m§mlE] v [E !mgm]) = ['1&1}}6 !1&%3
4,5,23 If R is a restricticn of B such that £

= [k),R..
R ij = [li(‘--)’ 1J]
then 1 (R) = N ~

4,5.24 'Iﬁ m}'b;m is a matrix such that FﬁngE,,FN=N, SFcFR

m .
PR F R

ie s,, F, c. D . R,
-3 =51 1] Jng = 1 ij jk

then F,l(R)E 1 (8)

-

We now leave the straight forward analogues of 4.2 and turn
to the problem cof obtaining expressions for the initial

parts of matrices in terms of their components.

4.5.25 . If we 1et11.p(R)jrepreseﬁt the sector of length p such
that 17, , (®) = G(R) © 12(R) ...y (R), then if the '
matrix . is partitioned to be of the form
A B
pPxXpP Pxm-=-p
C me.. D
m-pxp -pP X m-p)
R) = 1yt
then 1, , o (R) =y, %o m-p)fo (X' 0 BYH',
(€X' n (DY")")
— . T\ ¢ T\ ? Tty 1! L AW
and Yp a1 R =u, XD E),(EX) a0 ")
It is only neéessary to study matrices of the above form

since any more complex matrix can eventually be expressed in

its constituent parts by a succession of partitionings.

4.5.26

4.5.27

4.5.28

4.5.29 1f in addition C =

4.5.30

Let (m R n? represent the 1 X m matrix (Ri R., ... R.),

1-712 im

1%

and let R be partitioned to
A B

s]

as above.

We can then obtain the following theorems for particular

-

forms of R.

If R is triangular ie.. a special case of the form above
where C=8.

gy (R =y (AS) | '

e

() =1 (D)

1'p-l-].:m

where (p'i p)ij =Qif i #j

= t v $F 3 o= 4
[Bi* (lp +1:m Ry, bii] ifi=j

If‘R is such that A = 9 then

y:p B = Grpsiim ®"'

1 - (R =1 (DucC B)

p+1
If R is such that the types of A B'C and D are the same
then:

U g:im/2 (R) 21 (AuBuCuD)

‘w2 +1:m (R) 21 (AuBucCuD)

E .
n/2xm/2 then:

(R) 21 (AuBuD)
(R) 21 (AuBubD)

Y4:m/2

Im/2 +1:m

Finally if R is such that A=B=C=D then:

11 : m/2 (®) =)

lm/2 +1:m ® =1 &)

Example

Since the simplicity of the above theorems may have been
obscured by the notation, we give the following example of a

triangular compound relation

Let R be -
AB | C
QD F
Qe ' g
vartitioned as shown.
then g (R) =1 (i)B e @ Bl Q
19 (R) =1 £§ v é > : g ;
QD Q [F1 (6)', E]
L, ® = EA v [c (@', E] B D 3
Q Du [F1 (G) , E]

Again using 4.5.26

1, (B =1 (0 ulR @'Y, ED) A)
4y (R) =1 ((Avula (@', E]) ulst (O ullF (G, ED',
ED)

Proofs

Proofs Section 4.3

4 *
4.3.5 To Prove: R = pX (E u XR)

Proof: by induction on P (X, Y) = X =Y, RY
XR with 3(X) = Eurx, §(¥) = EUYR.

* - -1, %
4.3.6 To Prove: (R) 1 (R 1)

Proof: by induction on P (X, Y) = 1=y
_with %(X) = EuRX, S (Y) = EUYR“1 and then

using 4.3.5.

-1 * % % -k
4,3.7 To Prove: RR " cE =>R WUWR =R R

4.3.8

4.3.9

* * -1 =% % %
Proof:) R <R (EUR R) €cRR

-k * -% % =%
R < (EURR) R < RR
* %

. X =%
.. RuR < RR

-% * -%
2) by induction on XR < R UR with JIX) =
(E URX)

%
To Prove: 1. 1t (R) cR @®N)',
*
2. v ([A,g 1) ¢ R (AnRN)'

*
Proof 1 Induct on P (X) X ¢ R (RN)'

n

with ¥(X) = (RX')' using (RX')' ¢

(RN)' u RX.

Proof 2 Using 1
1 ([A, R]D) < [A, RI* (A n RN
R (A n RY)' since ([A, R] M)
(A n RN)', and [A, R] c R.

In

1

- *x 7
To Prove: .R RcE =>1, 1 (R) =R (RN)',

2. 1 ([A, R]) = R
(A n RN)'

Proof 1 Induct on P (X) = X =Y (RN)' with

3(X) = (RX")', G () = EuRY,
using R R € E => (RX')' = (RN)'
RX.

Proof 2 using 1,1 ([4, R]) = [A, RI* (A n
RN)* then show that [A, RJ* (A n
*
RN)'* =R (An RN)'

* %
c) Clearly [A, R] . ¢ R

5) Induction on P (X) = X (A n RN)' ¢ [A, RI*
(A n R)' with T (X) = EUuRX.

“P (R) is true, assume P (X),

(EURK) (AnRN)' < [A, RI* (AaRW)' u [A} RI [A,
*
R] (AnRN)'

T bl_ T IR e e A s R e & G S w B S EE e BT L e | et e smin s e m T e

4.3.10

4.3.11

4.3.14

52

but [A', R] [A, RI* (AnRN)' ¢ [A', RIN ¢
A'nRY < (anRY)!

Hence P (3(X)) and P (uX 5(X)).

To prove: R < S =>1 (S) <1 (R)
Proof: Fixpoint Induction using anti-

monctonicity of 8 din (S + (R} ") 1.

To prove:

1 (R) =9 <=> (RN)' =g

Proof: =>) 1 (R) = (R1 (R ' = ()" =g

<=) using 4.3.8

2 To prove: 1 () =N

Proof: 4.3.8
To prove: 1 (R7) =1 (R),n > o
Proof: <) by Fixpoint induction with 3 (X) =

ExoL @ h e @ Ty e
1 (R). C

D) using 4.3.14, 4.3.10 and R" < R .

To Prove 1 (R') = 1 (R)

Proéf: <) using 4.3.10 and R ¢ R'.

2) by induction on’P X)) = xc (RT) with

H(X) = (RX')!
P (D, P (X => (RXD' < (R1 (RO,

C@ERDY ' e RRT 1 @®DHYY

VL (RED T ((RUuRRD 1 RDHDT e (RD

Lence v (R) < 1 (R).

4.3.15

4.3.16

5o 3.17

4,3.18

4.3.19

53

To prove: S &

Proof:

¥
R

n -
To prove: R ¢

Proof:

To prove:

Proof:

;T

S

=> 1 (ﬁ) c 1 (S)

from 4.3.10, 4.3.14

c RT => 1 (S)

N <1 (R) ¢ 1 (RrE)

using 4.3.8, 4.3.10.
but (RnE) ((RnE) N)'

o ((ReR) M)

=N .

similarly N © 1 {R)

(RO Y’

in

li

In

)" ((Rox"H) Ny

L (R) =N => RAE = RnR *

1 (R,n >o

from 4.3.10, 4.3.14, 4.3.13.

= Q

%
(RAE) ((RnE) N)!

Q

. (ROE) =Q
1 (ROR 1) ¢©

but (RnR—l) ((RnR_l) N =0

To prove:

1 (S) € 1 (RnS)

Prooff

o (RnR—l) =0

from 4.3.10 1 (RWS) <

(RnS), 1 (Rus) ¢ 1 (S), 1 (S)
Hence 1 (RUS) < 1 (R) n 1 (S)

c 1 (RnS).

To prove:

Proof 1 (RuS) =
4.3.10

L ((rus) D)

t (RuS) < 1 (KS) <

n -~

n

1 (RuS) €1 (R) n1 (8) 1 (R) v

(R), 1 (R) €1

1

lv

(RnS) ,
(R) u1 (S)

(RnS)

c 1 (RS) 4.3.13,

L (RAS) = 1 ((RnS)Z) > 1 (RS) 4.3.13, 4.3.10.

vYroof:
INj2]

with 3) = (i

R

S

To prove: 1 ([R{S])

5
N

= {1 (RIN] v [N]

X,

S

(Y

)

(&)1

Jnduction on P (X, ¥,) = X = {Y|NJ v

Pl o)

{(RY")',

4,3.21

4,3.22

" Proof: <) 1 ([RJE] u [E|S])

(@]
Py

(2 = (s
using [AIB]' = [A'IN] v [¥]B'].

To prove: 1 (S) =N => 1 ([RjU] v [E|S]) =
v ®)[n]

Proof: <) 1 (JRI8T u [EJST) < v ([RIVBD) =
(v ()N

2) Induction with P (X) = [XINJ ¢ 1 ([R]8] v
[e2lsl), &) = ®)".

P (%) is truve, assume P (X), then must show
that [(Rx")'IN]) < 1 ([R]8] u [E|S]) this is
done by an inner induction on Q (Y) =

;- . £
CRe') " 1YD e v ([RIBD v [msD), T - (sy")'.

Q (®) is true, assume Q (Y), then

P (X) => ([RJB] [XINI")" ¢ ([RIV] v ([RIV] v
[(EfsDH")!'.

Q (1) => (=is] (R Y1) ' ¢

(CE]ST] v ([R]¥] u LE[SD")"

taking the intersection

CREX")"INT n (LRX")IGSYD)'T v INI(SY")' D) ¢
1 ([RIBJ v [EISD

CRR')TI(sY") '] ¢ 1 ([RIB] v [EISD)

Hence as a conclusion of the inner induction
using that 1 (S8) =N
C(RX'") "INJ < 1 ([R}¥] v [E]S])

Hence as a conclusion of the induction

(v (R)IN] < v ([R]V] v [E]S]).

[+ (R)] (8)]

To prove: 1 ([RJE] v [E]|SD)

v (RIED) ¢

In

[v Ry N

v ([RIE]J v TE]s]) < v ([EIS]) = INJv (S)]

o~
w
.

N
W

I
(98]
N
£~

Hence 1

o) by a
P (X)
Q (Y)
oY)

li

n

3 To prove: v {({¢ (K, KiJ

Proof:

([riel v LEIST) < [v (B v ().

similar nested induction to the ahove.

[¥lv (S)T ¢ v (IRIET uw []SD)
(RX")!

CRx"HMYT ¢ v ([RIEJ v [E|SD

(svy "', -

!
=

a) 1 (B < v {Ih (R, RJ) from 4.3.10

b) v ()" U (RO < [v (R), R]

Hence N

"

To prove: [N ~ N, I f <,

< ([v (R, RD

- 1 iR

fR >

o
(o)
1N

1Ry ((5)

Proof:

X)) =
T (), is true, assume P(¥) then

f R¥")'=£N n(fRX')' = (£RX')' using
£l ¢ @, fyew

4.3.26

In

n

(S 1

Hence £ 1 (R)

[H]

Induction on P (X) fX 1 (S)/

(RX")'

n

(s£x')' = (8 (INn (£x) ")) = (5 (£x) ") !

-

S$HH!

In

v (S).

n

1 (S).

To prove 1 ([1 A 0’ EJ) = Al

[A, E] is single valued
o ([A, E]) = [A, E]” A' = A

1 (Ru [A, E]) =u X((RX')‘n A")

<) fixpoint induction

- ((Ru [A, ET) ¥X'Y" =" (RuX'w[A,EJpX")’

= (Ryix'

u LA, E] (RyX'uAd)"

= (RM¥7UA)' = uX since pX'= R ,X'VA,

M,E] ReR

56

2) fixpoint induction

(Rt (Rula, EDYD' n A

= (R v (Rula, B v A but [A, E]J v (R u
[A, ED' < A

c (Rv (RulA,E]) "ulA, E]J v (Ru

LA, D'

=1 (RulA, ED.

4.3.27 PAcA=1 (R u [A, E3)Y=1 (R) n A'

From 4.3.26 v+ (R u A, E]) = uX ((RX")'n A")

Induct on P (X, ¥) Z & =Y n A"
1

N with F(X) = (RX")' n A", §(Y) = (RYH)'

(RY")" n A'=(RY "u RA) n A'induction

tn A ~

Proofs Section 4.5

These mirror exactly those of section 4.3, except that we
are now performing the induction on the lattices of vectors

and matrices, rather than the lattice of simple relaticns.

v

Since the induction predicates are the same we do not
propose to give the proofs in detail, but merely
establish some of the manipulations of formulae involving

matrices and vectors.

4,5.5 Needs R (A v = RAURB

B)
Mx M Mx M Mmx M

Proof: (R (AuB)),, = ,u, B, (A .U B .)
-~J - i

-
a - i~y i~

ins i

b

=_U R, A .U_ U e \
- k=1 ik AkJ k=1 Plk DKJ

]

R4 .. RB)..
(¥ /13 v (B)l_]

4.5.6 Needs (Ryy~1 = x71 r-l

Proof

4.5.8 Needs

Proof

4.5.9 Needs

Proof

SO

and

Now

57

_1 - m
(RO} (RO, ;) B R

-1 ,.~1_-1
kul(xkl) H Rid - = TR 4,

(RX")' c(RV)' v RX
mxXm mxo

(RX'_)]:. = Jnl (Rij'XJ)n
) < J;fﬁl((klej " U oR..X)
< _iEleJNJ). H(RlJXJ)

N (RN); U (RX) ’
RIReE => (RX')' = (RN)' U RX

R IReE => (R”lk)ijg E,. if i=j

c if i#j
U ! E if i=j
. C . 1 1=
1 N kg S Eip MR
c Q@ if 14
-1
Rei Rei€By4 (1)

(Rki)N n (Rkj)N = Q if i#] (2)

RX')! = & (R..X."'
(,.)1 j=1 (il’]

n . .
jgl ((Riij) v Rinj) using (1)

4.5.17

58

But R..N nR.,N = 9} using (2)
1] 1K

. = !/ M A) ~r - <7

and so \Rijr j/ N I\ikl\k Rikn.k
m ._ vy =

and kglkxijxk) Iy

- 0
-ty ! = v-{) 1 ,
and so (BX)i jgl ((rijNJ)) u ng
= (RN) ! v (EX),
i i
Need B
Needs Km (R "N) = »Q
Proof (R IN)! mo -]
. = .o, (R, N)'
i j=17731 73

]
=3
2
~
e
!
2
-

so (R(R Iny°)

c 9

We now leave the proofs that were analogous to

those of section 4.3, and give in detail

proofs of the remaining theorems of section 4.5.

4,

5.26

59

Toproves oBo % fply b)T D) =)
t 1:p
. 1 R = 1 D
e L m-gxm-p j ,p+1:m() ()
5 (“' .., = f& 1 11 -
where (p;p)lj 1t i]
= . Y 5y Y 1] - » 2 i -
[Bi*({;—rl:m (@2 hll], R

Proof:

Note first from 4.5.25

ll p(P\ = 11])\'})\": ((A)\i"»'n\m ', (nxi)’)
1 . - M KR XY ! K% -
p+1l:m(R) 2% X, ((A)(l) n(P‘(z) , (mz))

€) by fixpoint induction

(2) (@'Y ¢ (D)

(1) 4 (CAUS)'N' n (B D'

< (A (((AuS)"M)' n (s {aus))" ¢ (Aus)

60

since (B1uD)') (B, \(D)ED ¥

w

[P (D) IET 1 (4uS)!

-

= §,(AuS)?

) JTnduction on: P(X, X.,) = X, ¢t (R)

(R)

2 ptl:m

Withf-jl(xl’xz) = (AX]")' n- ([E* x;,,", E] xi)'

A 4 y I'4 -bt 1

P(Q,) is true, assume P{X, X2) then
‘9

(x)) ¢ (O® (R)")" € L1 ®

lp+l:m

and ((Au[}si*(nxé), EDXD' € (A, (R v [%*lpﬂ:m(R);E]{:p(R)')'

n

Ay, ®" (l3i*1p+1:m(R)' Ny ,®N!

n

(A, ®D B B Y R)

b2

61

Hznce the limit

(A1 . p DT 0 (LB, pt (R HER (BT

sy, , ®Y

and so by fixpoint induction

-

1 (AU D) c {R)
CT 1l:p
' o S B |
4.5.27 To prove: 1if 0 R = ﬁ%p pXR=D vgthen
¢ D
. - , \\q*gxp m-pxXm-p
R = B L (B))

a1 () =1 (DucE)

Proofl:
-) '
= {CubC LuCBubD) =
3 E 2B } c gY
' (Q DuCB) —
.. using 4.5.25 and 4.5.15

1p+l:m(R) ¢ 1 (DUCB) _ |
1 \\. H .j Bl] ,R, £
1:p(R) € ([Blp+1:m(P),E) < po1im)

2) By induction on P(X. .x.y= X.S17..(R)
(13k2)— 1= 1l:p

> 1
X2 pe1:n®

with 3‘1 (Xl ’}\

R

) = (3K’

3, (X X))

((DUCR)Xé)'

4.5.28 To prove: if A, B, C, D have the same type
then
1 (AuBuCuD)
1 (AuBuCuD)

n

A B ;
1

1 :m/2 cCD
1m/2 +1:m ®) '

(R) where R = g

In

Proof: (RT)ij c (AuBuCuD)?

result follows from 4.5.30

4£.5.29 To pfove: if A, B, C, D have the sam= type,
and
D = E, then 1 (AuBUC) <
1 (AuBUC) ¢ 1

))
1 : w/2 (R)

m/2+ 1 :m (R)

-

Proof: (RT)’.j c (AUBUC)T, result follows from

4.5.30 -
;e e .- (AR
4.5.30 To prove of R - ¢, 3 then
mxm (A4

1 =

1 m/2 (R) ! (A)

1 = 1 {
ITI/2 +1:m (R) \A)

Procof: By induction on P (Xl X},Y) =X =1,
’ X, =Y
, =)
with 31 (Xl, XZ) = (AX]' " AXé)'
A r ~r = 4 ‘Al rt
(kl,fz) (“kl) n(Akz)
4, (V) = (AY")' g

~3

63

5 TERMINATION

5.1 Introduction

We will show how to derive from a schema, a relation whose
initial part describes the domain ofthe schema. The
manipulations of well founded sets deriyed in the previoué
section can then be used, together with the axioms for the
domain of interpretation; to obtain expressions for the

domain of the schema.

By way of informal motivation consider thé,following
simple computation model and the deterministic schema
described by the recursion equation mﬁn = 1(X)
with a solution f = pX(t(X)). The result of

applying the schema to an argument x 1s given by X4 f and
clearly this is the same as XqT (f). Computation proceeds
by presenting arguments modified by T to nested occurrences
of f. We will show how to obtain, by syntactic means, a
derivative T which describes this modification, ie the
relation between state vectors before and after one 'cycle'
of recursion. We will also derive a co-derivative T of
type m > o, which gives those arguments for which application

of t (f) is undefined. A particular argument X can then

give rise to a non-terminating computation 1f either:
i the computation leads to an undefined result

. [e]

le X, T X, ... X Where x ¢ 1.

1 2 n n CAE

or:
S i . . . ' N ©
11 there 1s an infinite sequence such that X TX, T oeen

If cither of the above conditions is satisfied and if we let

° . . . 3
R=1[1,k ! u7t, then there is an infinite scavence X1RX2P....
i.e. the schemn terminates on preciselv the set which is well

founded under R.

As an informal example consider the échema Yo ApPX where A
is the relation <1, 0> and B is the relation {<a, b>|a#l A b
= a - 1} ie corresponding to the conditional expression f =

(x = 1) >0, £f (x=-1). f is undefined for C = (AN)' n (BN)'
ie for x = 0, and the relatjon between successive calls to f

is B. We would expect the domain of f to be given by 1 (B ulC,E]).

5.2

cesimmem oo pEle o oG

Using 4.3.27 and that BC=Q , (B v [C,E]) = 1(B)nC', but.Bspred ’

and it is an axiom of the integers
that 1 (pred) = N. Hence, using 4.3.10, 1 (B u [C, E]) = C
= {ala > 0}.

Definitions

Simplicity:

A term T is simple in a relation variable X if either:

i T contains no free occurrences of ¥

ii T=X

iii T = pg

iv T=[p,s o]

v T = cUo o, /

vhere p and ¢ are terms simple in X.

Any term which is syntactically continuous in X and this

includes any term corresponding to a schema, is reducible to

a term simple in X . More details may be found in Hitchcock
and Park [1972].

Derivatives

. . A
7 is the derivative and t the co-derivative of a term ¢
-

simple in X if:

[

. [
T contains no free occurrences of X, T = Q, T = (TN)
L]

P . . .
ii T =Xy te= €, 1. =g
: [4
o e ¢] o
111 T =W37=0UOG>I=QUPO
[4 [J o
iv T =10[p, 9], T =005, 1 = plg
* [N J
[] L A 4

v T = pud, T = pUg, T = PNg
. o &

65

Goodness:

The definition of the domain of a non-deterministic schema
is such that the schema is considered to terﬁfnate for a
given argument if there is at least one terminating sequence
from that argument, not that all possible computation sequences
from that argument terminate. This is due tc the use of an
existential quantifier in the definition of the composition
operator. The definition of well foundedness states that all
sequences, starting with elements in the well founded set,
terminate., It is natural therefore to expect the containment in
theorem 5.4.1 which relates the initial part of a relation
derived from a schema to the domain of that schema. Good terms
are defined to be such that there is only one computation
sequence from a given argument, and hence we would expect the
equality of theorem 5.4.2. A deterministic computation sequence
will arisc if,firstly the individual rclations in the secquence
are single valued, with the exception of the terminating relation,
and secondly if,when branching occurs in the schema, either the
branch allows no parallel paths, or if it does then the
computations along parallel paths follow the same sequence. These
two conditions correspend to conditione (i) and (ii) in the
definition of goodness below., We will show later, in section 5.5,
that conditional expressions form an important subset of good

terms.

4 0
We define 7, t as t (£/X), T (£/X)
° e

A term 1 is gnod relative to X,f and 1 set of axioms ¢ if T-
is simple in X and:
i for any subterm of T of the - form po in which X occurs

free,

o F(o-lp)(f/x) € E ie p (£f/X) is single valued

For any subterm of 1 of the form pug,
o

srgcpupl
©

[
P

[~ =]
and ¢+ p Sg Ug O
e

5.3

Lemmas

65a

if T is simple in X then:
' o
5.3.1 (N)' ¢ T(XN)' un
[
The proof is by induction on the formation rules for r.
i " case: T free fromX, ¢t u 1 (XN)' = (tN)'
TrvT

case: T = XaIU; XN)' = (N)!

5.3.2

66

Assume that the lemma is true for subterms p, and o.

case: T = PO,
(wN)' = (poM)" < (pN)" U p (oN) "'
= puS (XN) Ungpé (xN)', induction Hyp

[4

(pupo) U (Pups) (XN)'

T utl (XN)'

In

in

case: T = [p, o]
(M) = (Lp, I N)' = (pM)' U (©OEN)'
€ gupu (pug) (EN) ', Induction Hyp
[} [
=rut ('
[4
case: 1 = pug
N = (eN)"'n ©GN)'
c (pus N)') n (oué (XN)"') Induction Hyp

(bno) u (6 (AN’ & (MU (end (AN’ U (pnS (M)

® o

(pno) v (b (D' 3 (X))

in

[]
g'c.u't'
.4

The conclusion is that the lemma is true for all simple

terms.

If t is simple in X then ¢ and { are syntactically

continuous in ¥,

The proof follows simply from the formation rules for, simple

terms since no term with any X, “free is complemented in
i

forming a derivative.

5.3.3

if T is good relative to X, f and ?

¢, yefr) =T UT (N

67

" Again the proof proceeds by induction on the formation rules

for simple terms.
i case: T~isAfreg from X, trivial.
case: T = X, trivial.
ii Assume that the lemma is true for subterms p and o.

case: T = pO,
(tN)' = (poN)' = (pN) 'up (ON)', goodness of T

Also (TN)' 2 (p (£/%x) oN)' 2 p (£/X) (GN)', since Xcf and
monotonicity of p.
so (tN)' = (pN)! u p @GN up (f/x) GN)'

But p (oN)' < p (£/%) (oN)', Xcf, monotonicity of p
so (t8)' = (pN)' v p (£/X) (ON)'
(pUp (£/X) o) U (pUp (£/X) o) (XN)', Induct Hyp

]

]

TUT ()
(-3

case: 1 = [p, o]
(T8 "= (eN)' U (N)'
(puo) U (pus) (XN) ', Induction Hyp

o o
T UT (XN)'

(]

case: T = puo
(zN)"' = (pN)' n (oN);
(bup (X)) n (G5 (xN)'")

pnou (B (' 0 (ous (x) ")) U @)t n (pUd () "))

o o©

But ¢ is good relative to X ind £ and so we may deduce

that:
p ON)' wous (xN)'
g (XN)" cpup (XX)"
and therefore: °
(tN)' = pnou (pus) (KW)' = tur (XN)'

o o o

5

A

68

iii The conclusion is that the lemma is true for all terms

7,g00d relative to X, £ and ¢.

Termination Theorems

Let £ = px(1).

Tf T is simple in ¥, then:

o -
5.4,1 + 1 (r,u [r, E]) c N

o

1f, in addition, T is good relative to X, f and ¢ then:

5.4.2 & 1 (¢ ulr, E]) = £N

Iroofs

5.4.1

5.4.2

o]

The proof is by fixpoint induction.

((t v [r, ED) (L)' ¢ (4 (W' U 1) siuce

£NcN i

But from 5.3.1, for the case that ¥ = £,

EN)'= (@ (/0 W' g7 V' v g EN' v
o

T

°

Therefore:
(€ u lr, E]) (£N)')' c £N, and hence, by
[+]
fixpoint induction:

v (¢ u [t, E]) ¢ fN.

The proof is by Scott Induction on P (X, Y)

fxv = ¥, x ¢ £} with 3 =« ®©, YO =
o

(T ury")!

(]

i P (Q, Q) is clearly truc.

i1 Assume P (¥, Y).

69

a TN = (g Ut (XN) ') ',Induction Hyp,
lemma 5.3.3

(trutyY""'.
o

b T ¢t (£/X) Induction Hyp,
monotonicity of T

since £ = pXx (1).

In
Hh

. -

iii The conclusion is:
pX (f) N=p¥ (zurty¥')'

or fN = 1 ([E’ E]u ;) Jasing 4.3.26

5.5 More about Goodness

An important subset of terms which are good relative to X, f

and ¢ is the relational form of conditional expressions

[McCarthy:

A Basis for a Mathematical Theory of

Computation]. Consider a conditional expression of the form

(pl ~el, p2 > e2, ..., p > e
a

), whose value is the value of
n

the g corresponding to the first p that is true. The

corresponding relational form is:

- = 1 |
T [Pl, E] Ty U [Pl'n P2, E]J Ty ees U [P1 n P2 Noeee

Pl
*n -

1 n Pn, E] T,

Assuming that we have first normalised the conditional

expression so that the terms T, are union free, t is made up

of subterms of the form pug with p = [A, E] Py» O = [B, E] o1

and A n B =8, The derivatives of such p and o are:

(4
p

Qo

[+]
Thus p N

]

(A, E] Sl,p = A' v [A, E] oy
o Q

[

[B, E]g,,0 = B' u [B, E] g
19 71

B [+]
(A, E] 51 N cAcB' sinceAnB=g. Hencep N¢

° . R .) N .
o and p € o U which satisfies the second criterion for
[[+

goodness.

We have deliberately chosen this form for conditional

expressions rather than the equivalent form of t = [Pl’ 11] U

[Pl'n Py, 12] ... since it allows us to use simpler

70

. -1 ~ s e -
vatives than theec in Hitc

eri
still obtain the desired prcperties of conditional

expressions.

If, in addition, all the components of the subterms T, are
single valued,then the subterms"ri must be single wvalued.
Further, no evaluatiocns of the T, can proceed in parallel and
so the function f, given by 7, is single-valued and t

on for goodness will be satisfied.

.

criter

The definition of goodness allows arlimited amount of non-
determinism. The first gocdness criterion will be satisfied
by union free terms given by the following production rules:

<good term>::= <basic term>|[<goocd term>, <good terwm>]
<basic term>::= <trece from X>|X|<det term> X

term>|A|B

ve
.,
li
A
[aW
(]
ct

<free from X>

<det term>::= P|Q ...

wherce P, Q ... are single valued and 4, B ... may be

non-deterministic,
The second goodness criterion allows a certain amount of
parallelism in evaluation, ie the domains of subterms
involved can overlap under certain conditions. Notice
however that the definition of the domain of a non-
deterministic program is such that the program is considered
to terminate for a given argument if there is at least one
terminating computation seqﬁence from that argument, not that
all possible computation sequences from that argument

terminate.

The property of goodness is certainly undecidable when ¢ is,

for example, the axioms of arithmetic.

Consider the term (G u H) X which is simple in X and has the

form pg. Let G and H be the relational form of two functions

g (x) and h (x). Clearly G u H ig single valued oaly if g

(x) and h (x) are eQuivalent functions,a property which is

vell knewn to be undecidable in the arithmetic domain.

71

5.6 Extension to Multiple Recursions

5.6, Definitions

A term 7 is simpi~ in Xy oo X if

n
i T has no free occurrence of any X:o 1 <1i <n.
ii T=%,1<i<n
‘1-
iii T = po
iv T = [p, ¢J
v T = pUg

where p and ¢ are simple in X, ... X .

1 il

The i'th partial derivative T (1) and the co-

derivative of a term 1 simple in Xl coe Xn are

obtained as follows:

i if T has no free occurrences of X1 e Xn then
T (i) =9, 1 €1 <nand ¢ = (N)'
A :
ii if v = Xi thent (i) =E, T (j) =Q, j # 1 and
T = Q
iii if T = pg then T (i) =5 (i) Up § (i) and 1 =
]
pUpoO
. .
iv. if t=10[p, ol then T (i) = (i) UG (i) and 1
. =pUo
* [4
v ifT=puUuocthent () =5 (i) u & (i) and «
p.0nc
r) <

Let v (i) abbreviate T (i) (fl/xi’ voe £, 7%5)
T abbreviata T (fl/x1 coe T/%5)

5.6.2

5.6.3

72

A term 1 is good relative toX,1 ...Xg . f1 ceeg if ¢

is Simple in xl +es X and
n

i for any subterm po of t in which some X.i occurs

free, p (fl/xl’ "'fn/Xh) is single valued.

ii for any subterm pus of 1
@) cpBup (1),1 <i=n
©
° . ° .
p) coBuo (i),1<1is<n
[}
Lemmas

If tis simple in X, ... Xn, then T and %,(i) are
o

1
syntactically continuous in Xy oee X

If v is simple in Ry oo Xn then:
(tN)* ctwvvu t (1) (Xi N)*

If 1t is good relative to X, ... Xn’ f fn then:

1 1 ¢ o 0
F; £ 11 i salf (W' =rvuT) &R

| 1

>

.The proofs of all the above lemmas proceed in a

straight forward manner by induction on the formation

rules for simple terms.
Theorems
Let fi=ui Xl LY Xn (Tl, Y Tn) ..Slsn
If each fi is simple in Xl cee X then
C

where I i1s an n X n matrix whose elements are given

by:

IA

° 3 3
(Z)ij = r'i(J) ifi=j, 121, j n

.0 . . s = 8
=1, (i) v [Ei’ El if i = j

If, in addition, each 5 is good relative to Xl Qe

73
X fl e fn, then:
Y (%) =f, XN

The proofs of the above theorems are essentially

similar to the single recursive case.

Examplces

5.7.1 Descending Recursions

Many recursion equgtions have the form
f(x,y) = (x¢ i E 1 dom (Si) +h (x, y), k (£ (Sl(x),
Jp e y))y eeeeeen s £(8 G, 5 (% 9)), % YD

where h, k, jl “es jn are known to be total.

In the relational feorm -
f=qux (lp, ;v O EITRUTRE 0y ey, [5,5,9,]
, JnJ X, B] K) =uX (¢t (X))

i
Y
@e 000000440 [E

1
1 Sn

-

Given that KN = N = J; N = Nsi =1, 2 ... n , then

the derivaiives are:

T = [0 S;NINT n v [(syi) ' INT =g
o i i

= : = 2. 187
T : (£, s;, J;) ¢ : [s;1v] = ys, |8l

Hence from 5.4.1, 4.3.10, 4.3.11,
fN 21 (¢ vlr, E]) 21 ([uS;l8] = [1 ;) IN]

-] i i
A sufficient condition for termination is then
provided by 4.3.15 ie that S, ¢ R" and v (R) = N for i

=1, 2, ... n.

The familiar cases of such recursion equations are
those of arithmetic, with R = pred, and LISP, with R =
.. T

car U cdr. The conditions Si ¢ R then amount to

Si c > and Si € is-superlist of respectively.

Primitive recursion is the special arithmetic case

where n = 1, J1 = E and S1 = EEEQ'

74

5.7.2 Bounded upward recursion

Any equation scheme of the form:
£ (x,9) = ((xe 1 (s) vdom(s)') » g (x, y),
k (£ (s (x), 7 (x,)5 %, ¥))

is total, provided that k, j and g are total.

The relational form is given by:
F=uX (t (X)) = uX ([E1 (1 (8) nSN)Y,EJGu

(v (8) n 8Ny, E] [[E; S, J] X, EIK

'LEl

The derivatives are:
T = [1 (8) nSNINT n ([{x (5) n SN)' |N] v
[El (v (8) nSN), EJL (sN)'| ND) = Q
T = [E, (v (5) nsW), EJ [E] 8, 31 ¢ [[1 (8),8]10)

(
L

Hence N ¢ [1 [1 (S), SI)IN] < 1 (1) ¢ £N
using 4.3.23, 4.3.20, 4.3.11, 4.3.10, 5.4.1

We can usc this to establish the totality of an

arithmetic function which counts up to some limit.

eg f (%, y) =x2 10>y, £ (x+1, x+1y)

Let S =[10',.succd, 10 is the tuple <10, A> and

X
suce = {<x, x + 1>[x 2 0}, 1 (S8) = succ 10 = <10

using 4.3.9, 1 (S)'= 2 10 and so f is of the above

form, and hence is total.

5.7.3 McCarthy's 91 Function

This is the function defined by:

f(x) =(x>100x - 10, £ (f (x + 11)))
or, in a relational form
| an pl0 - 11y gy
£ =wX([>100, RF°Ju [100, E]I R X X)

with R = pred.

Applying 5.4.1 we have that
v ([< 100, E] R~ € yu) cm

5.7.

75

. 10 . ann
Let 5 = [> J.OO, R _—j' U [> 10U,

wJ
O
[

Ao o}]
i
—

vhere 91 = {<a, b>la 20 &b =
Then by fixzpoint induction f ¢ g aad so by 4.3.10
L (< 100, E1 R M o g)) c fN
-1 - 1.
ie 1 ([< 100, EJ R ™'y [<100 > 20, W M1 ¢ [90,

r

911) & fN

Each of the three terms involved in the initial part

is contained in [£ 100, <], end, as ip example 5.7.2,

1 ([s 100, <1) = N, taking $ = [100 ', <J.

Hence fN = N, from 4.3.10, and f = g since g is single

valued.

Ackermann's Function

We consider the following form of Ackermann's function.

£ (x,) =
if x = o theny + 1
ify = o then f (x -1, 1)

else £ (x -1, f (x, y - 1))

The relational form for f is given by:
' -
£ = ux (LY (R 17 [RIAD X u (] R, [EIRIX] X)

where R = pred
A = {<0, 15}

. o o
The derivatives T and T are:
o

T =0
o

© = [RIA] v [ER] v [E, R, [E[R] £]

< [EJR] v [R]|¥]
(f) = N from 4,3.21, 4.3.10 and the axiom that 1 (R)=N

~o

But

and 1

Hence Ackermann'se function is total.

/10

5.7.5 We continue with the example first introduced in
3.3.2 This was the pair of recursion equations:
s (xl, xz) =
if X = 0 then O
else t (xl, Xy s XZ)
t (xl’ xz’ X3) =
if X3 = O then s (x1 -1, x2)
else t (x;, X,, X3 = 1) +1

These were abstracted to the schema.
G =u X, X, (Avu BX,, CX; u DX, F)
H=u2}xlX2 (AUBX,,CXIUDXZF)

The interpretation which gives the .ecursion equations
can be expressed entirely in terms of the predecessor

relation R.

A= [[(N)', E]IN]

B = [[RN, EJ|[E, E]]

C = [RIE[(RN) ']

D=1[r{E][R]

F=gr !)

We have among the axioms for the integers that R 1 R= E

and that v (R) = N

From 5,6.3 the domains of G and H are given by the

initial part of the matrix:

s j
C bu [(EM'n W', E]

Using 4.5.27 _

HN = 1 (DuCBu [(CN)' n (DN)', EJ)

=1 (: [glEIR] v [R [RN, E]|[E, T/ (RN)']

u [O(RN)' INJ(RN) '], ET)

= 1 ([[RN, EJ|E|R] v [R [RN, EJ|[E, EJI(RN) ']) n
(RN N] v [N N/ RND)

using 4.3.27.

> 1 ([EIEIR] v [R|EJE]) n [RN|N|N]

using 4.3.10.

77

= {1 (R)IN]v (R)] n [RYIN|N] using 4.3.20
[RIININ] since 1 {R) = N.

]

Again using 4.5.27
GN > (L[R¥, EJJ[E, EJ] ([ROIN|NI) "'

= [N|N|N]
These expressions for the domains of G and H are
sufficient tc show the correctness of the prog

rams

i

n

6

78

INTERPRETATIONS

6.1

Many Sortedness

We extend our concept of an m » n relation on a domain D to
relations between tuples whose elements come from domains of

different sorts. We will pursue this ima less formal

fashion that that of chapter 2, assuming A

won-empty

interpretation in giviug the semantics of terms.

6.1.1 Many Sorted Relation Variables

We use the following notzticns to specify the type c¢f

a2 many sorted relation R, on domains Sl’ 82 ce Sm, Tl

n

. -0 -
R: <5 S, oo 5S>+ <0
m

or
T, ¢e¢ T >

S, .o Sm> - <Tl’ 2 n

1’ "2

~

R is some relation between tuples from S1 0 32 % e

Sm and '1‘1 x T2 ««. T_whose elements are denoted by:

<<Sl’ Sg v Sm>’ <t1, t2 .o tn>>
head tail

e . . Srhitatel
& <lists> > <atoms>’ <lists> - <lists>

6.1.2 Many Sorted Relation Constants

(4
= PP > < e e
<Sl, eee Sm> -> <T1, e Tn> {<<Sls Sln s tl’
s, . 1 . <3<
tn>>l ; € Sl, 1 <1 <ms¢& tj € Tj’ 1<js<n}
Q =4
<Sl, LI] Sm> -> <T1’ DY Tn>
E = {<<s >, <5
<Sl’ PR Sm>'+ <Sl’ . Sn1> l, oo Sm [} 19 cee
s >s, € S., 1 £1i < m}
m i 1 .
Ei'
= {<s , ... >k . € 5., 1%
= ce. S > <8 LSS, s 8 >L,J € S5 1
j £ m
N ={<<s, ...8 >, A>]s. £ 8., 1 <1<
<S., ... S>>0 1 ? R A

6.2

79

6.1.3 Many Sorted Operations

The basic operaticas between many sorted relations are
defined as obvious extensions to the basic operations

defined previously. -

eg 1f A ic of type <Sl’ S, +:v S > > <T e T >, and
A il

s

i m 1
i P s < -
U > <V, ... V > then [A, B]

is of type <Sis e Sm> - <T1, .en Tn’ V1 oee Vq>

iffm=p &S, =U,, 1<1i<m,
i i

fA, B] = {<a, b "c>l<a, b> ¢ A & <a, c> € B}.

Axioms for Data Structures

te

We will now give axiomatic definitions for some of the hasic

!

domains likely to occur in programs, and their associated

-

operations.

Again type indications will be omitted when possible. The
rules governing well formed termr will usually enakle them to

be restored.
6.2.1 Finite Sets

Our ultimate interest is in objects which can be
represented in a machine, and so the '"set theory"
given here is more restrictive than any general set
theory. We deal here with finite sets of objects
which satisfy a predicate is-el. The basic operation,
the removal of an element from such a set, is given
the name sub. It is of type <is-set> - <is-set, is-~
el>, and is defined by the following axioms. These
sets correspond to the powerset type of PASCAL, Wirth
£1971b1].

)l

D(1) <3>¢+ o <g> * <s, e> <s, §> > 0

80

in sub 2
D(ii) — = -
. <g> > <> <g> = <s, e> <g, e> > <e>
. -1 N
+ ¢ 9 = <> 5% <g>
ii v (sub E.) = N = is-set,
— 71 <> =+ 0
Pii sub” | sub E. =k b E, u K
ii s sub E, = LK, su
=T T ==V
iv sub sub c F,
—_— = <8> > <g>
-1 in
v (sub N) = —
— <g> > 0 <s, e> > 0o

E

we show in 6.3, that any model of these axioms is

isomorphic to the set of finite subsets of elements

sub
<§> > <g, e>

from 1s~el with

¢bé&a=hui{c}.

= {<a, <b, e>>laz¢ & ¢

ie the axioms are complete relative to interpretations

of is-el.

-

The more familiar set operations can now be defined in

terms of the basic relation sub.

add
S, e> > <g>

sub 1 ul

—

Define

then:

union
<S4, 8> - <g>

intersect
<8, 8>, <g>
E3J add))

difference
<gs, 8> > <g>

E,J in, B, E;J x u [[Ey, E,J in', [E

E2J add))

in
<g, e> > o’

=ux ([Elp] v [E sub] [[E

E1]

l’

13

E,J X E4) add)

=uX (B, [¢, E] v [E|suw] ([[E,
EZJ X u [[El, E3J in, [El, E23 X,

= ux (2, [6, E] v [sub|E] (LIEy,

E3] X,

Notice that mc complement operation is defined. If the

domain is—el were infinite tnen this would result in

infinite sets.

6.2.1.1

81

We can generalise our ideas about sets to
describe finite sets which can include
finite sets .as elements. Consider the
following axioms, sub is now a 2 ~ 1

relation on a mixed domain of sets and

elements.
i (sub N)' = ¢ u is—el
ii ¢ n is-el = Q

iii 1 (su E1 U sul E2) =N

ﬁ -1

iv sub sub c E

v b” lsub E. =E. swb E. uL
sw Suw &, 1 2 2

vii

D(i) is-set = ¢ U sub N
in

D(ii) 75 ; = sub E,

We allow auy object to be added to a set,
and the induction rule now states that the
domain of sets is well founded with
respect to the operations of taking a

subset and of taking an element.,

The induction rule does not allow sets
which are elements of themselves, using

4.3.17, and so paradoxes do not arise.

‘These objects bear the same resemblance to

the finite sets of 6.2.1, as LISP S-

expressions bear to linear lists.

82

6.2.2 Trees
The following objects are loosely based on those of
the Vienna Definition Language, and are a
generalisation of LISP S-expressions.
We consider first the single sorted case.
We suppose a finite number of cousiructor relations wk-— ij
i > 1, wherc i gives the type of the relation as
i > 1, and j distinguishes relations of the same type.

These relations satisfy the following axiom schema.

i mk - i.nk - 60 Y =E,j =k, 1=
J K '

U = Q octherwise

i mk-iT Ymk-i, cE
J J -
e U =] .
111 (. . mk - 1. E = N
(1, I, kK] k)
-1 |D
Di .1, (uk - i, T~ N) = is-eo the set of
1, 3 J ’

elementary objects.
These easily extend to the many sorted case.

6.2.2.1 Arithmetic expressions

Consider the following definition of
arithmetic expressions in the Vienna

Notation, Walk et al [1969].
is-expr::= is-var Vv is-unary V is-binary

is-binary::= (<S1l: is-expr>, <S2: is-bin-

- Cp>, <83: is-cxpr>)

is-unary::= (<34: is-un~op>, <S5: is-=

expr>)

83

is-un-op::= + VvV -
is-bin-op::=+ Vv =~ v ¥ v /

is-var:ii=x vy Vv z

We use. mk - 3 and mk - 2
- <e, b, e>~» <e%> <u, e> + <e>
sorted constructor relations, where e

many

abbreviates is—expression, b, is~bin-op and u

is-un-op, called mk-bin and mk-un_respectively,

and abbreviate, mk - 3 1 E1 to S1 etc. Then

——

we have that

»

D
(v

1 Ny n (wk=bin 1 N) = is-var.

i (mk-un_

The induction axiom is given by:

e
e

is-expr = Yy ()
is-un-op = 1, (63))
is-bin-op = s (¢3)

where M is the 3 x 3 matrix.

(<e§;<e>U<e§§<e>u<e§§<e>) <e§§<u> <e§g
<u>§<e>‘ <u£z<u> <u>g
g<e> ﬁ<u> <b§1 e

By way of further explanation.

g) =1 (Q) by 4.5.30
= is-bin-op by 4.3.12 ‘

L, @) =1 (2) =is-un-op similarly.

X ({(S1 uS3 usS5) X' n (b is-un
i

ie, for a binary expression the S1 and S3

components must be expressions and the S2

component is a binary operator, recalling that

6.2.2.2

6.2.2.3

84

(AX") ' is the set all of whose

predecesgors under A are in X.

Operations on Trees

The basic operation on a tree is the
ability to select a hranch and modify it

the other btranches.

be

without affectin

1]

[+
®

This is analogous to the y-operater of the
Vienna Definition Language. We model this

assignment in the following fashion.

Assume that we wish to modify the j'th

component of a tree constructed by a mk -

i relation., This is done by the term.
(e -i” YE1 TR, .. E. _, E, ,
= o 1 -1 7i o+ 1
E. o e B._} Txl‘:‘;‘l..

i+ 1’ i

-changed, and the tree is reconstructed.

The property that modification does not
affect other branches follows immediately
from the properties of selection and
concatenation, in the same way as do those

in 3.1.1

Structures

-We have in mind the structures of PL/I or

the record types of Pascal. No induction
axiom is required in their definition for
they are basically storage disciplines

rather than recursively defined objects.

A struciure whose czomponents are of
different types is defined using a single

many sorted mk - i relation. The axiomus

are i

6.2.2.4

6.2.4 Lists

6.2.4.1

. -1 . .
iv mk = n lis = T, lis - T

<8> > <T 5, w.. T > ° 118 2

1 1 _
Jeewe is = T 1 = N = ig~gtructure-s
n <g>r 0

Arrays -
oK e

cial

1]

Arrays, with fixed bLounds, are a sp
case of structures, the components are all
of the same type and the integers are used

as selectors.

possible to form tuples of an arbitrary

length and hence to construct arrayé'of an

~arbitrary length. The arrays ol such

languages as APL cannot thercfore be

described.

The Vienna Definition Language uses
objects which may be considered as trees
with an infinite number of selectors, a
finite number of which are non-empty. We -
cannot therefore describe these, but only
that subset where the selegtors used are

all known in advance.

LISP S-expressions

Thesc arc a specizl cagse of trees using a
t

i
single nk - 2 relation to construct binary

trees rrom elements satisfying is-atoit.

6.2.4.2

86

i mk - 2 mk :_.?._ ! =F
2+1 1->2
. , 1
ii mk - 2 mk ~ 2 ¢ E
e . -1 -1
113 1 (mk - 2 E1 Umk - 2 E2) = N

= ig-s-expressions

-

1 D
Di {(mk - 2 7 N) = is-atom

mk - 2 is more usually kaown as cons, mk -
PR -1 T
2 El as car, mk - 2 E2 as cdr.

Linear Tists

These may be modelled as a restricted form
of binary trees whose righi hand
components are always atoms. A special
object nil is distinguished to signal the

end of a list, and denotes the null list.

- 1
. wk -~ 2 mk - 2 _
* <&, a> > <> <A> > <L, a>
[<L> g <2>|<a> g <a>]
it omk -2 Yo -2 E
- <> > <>
s i e . |
1ii nil ni € > § <> |
. -1 .
iv v (mk = 2 El) = N = is~linear-.
list
D .
. -1 _ nil
D1 (ok - 2 N)!' = <R,~>_:0
. -1
mk - 2 is known as cons, wk — 2 El as
1

tail, nk - 2 E, as head

Linear Lists with no repeated elements

We achieve lists with no repeated elements

by restricting the mk - 2 operation so that

atoms are only added to lists if they have

not been added before.

: mk -2 omk-2 & _
<L, a>» > <> L> > <L, a>
list in!
[él, a> > o’ <> E <£>I<a> E <a>]:I
ii, iii, iv, Di as above.
y -1 % -1 D
Dii (mk - 2 E,) mk - 2 E, =
: - 1 2
list in
<> » <a>

6.2.4.4 Ordered Linear Lists

Again we have the axioms for linear lists

with the mk - 2 operation restricted so

that the atcm which is added is great
1Y

e
t the hcad of the list being

)

than the wvne

added to. ~
.) -1 _ <<
i nk = 2 nk - 2 = [<2’ 7> > o’
[<£> E <2>|<a> E €a>]]
ii, iii, iv, v, Di as above.
.o << . .
Dii 4 55, o = [pil jligsatend v
+ [mk - 2- ' E2I<a> E <a>] <a :> > 0
<1l> - <a> ’
where < is the ordering

<a> -+ <a>
relation between atoms.

6.2.5 Constructed Domains

We have already seen 6.2.2.3, an example of the
construction of a new domain from other domains. We

now give two further examples.

6.2.5.1 Discriminated Union

These objects correspond to those with the

6.2.6

88

now obsolete CELL attribute of PL/I or to

" the union type of PASCAL.

We use many sorted conv relatioms to
"convert" from a domain to the
discriminated union domain. These relation
relations obey the following axiom

-l e

1 = E
§03V<T> <T>C~3n¥s > <g.> > <8,>
hj 1 1

= Q otherwise.
- “his ensures that we are able to test
- unambiguously for the original sort of an
individual element. Again this is

basically a storage discipline.

6.2.5.2 Cartesian Product

We already have in our many sorted
formalism the ability to form direct
products of domains and to select

components from those domains.

Integers

Finally we give the axioms for the integers.

i RoR
1>11-1SE
ii R 1r-g
D
iii (RN)' = is zero
. . . -1
iv 1S—2ero 1s-zero cE

v 1 (R) =N = is-integer

6.3

69

6.2.7 Representations

We will say nothing here concerning the modelling and
representation of the objects defined axiomatically
above but will instead refer the reader to Hoare

[1972b].

AEnend{x

y :
v v

We show that any model of the axioms of 6.2.1 for setls is

isomorphic to the set of finite subsets of elements from is-

el with sub = {<a, <b, c>>|a # ¢ & is~el {c) & cd b & a =

b U {c}}.

Let R be any relation which satisfies the axicms for sub and

define y (x) = {c|<x, ¢> € RE,} as a mapping from the domain

1. ~ae A £ A mm A £
he et of finits subsects ¢f clemencs

associated with R toc t

We show that ¢ is an icomorphism ie that ¥ is singla valued,
total, onto, and preserves kK, and that ¥ is single valued.

A ¢ is single valued, by definition.

B Y is a homomorphism with disjoint union compatible
with R 1.
ie (Vxyz) (<x, <y, z>> e Ry (x) =¥ (y) v {z} & z
v () '

Proof: from iii {<<y, z>, w>|(&x) ((x, <y, 2>> ¢ R &
w =y (x))}
= {<cy, 2>, wslv =y (y) Vv = {z}}

(identifying y (x) with RE,)

from iv for each y, z there exists at most

one x such that <x, <y, z>> € R

froia v p{id if z ¢ ¢ (y) there is exactly

one such X

6.4

90

Hence (Vxyz) (<x, <y, z>> e R+ § (x) = ¢ (y) v {2z} &

zd ¢y (¥))
c ¢ is total. This follows from ii and B.
D ¢ is onto.

We show by induction on the number of elements in

that (W) (Zx) v = y (x).
if w = {} then x = ¢, from 1 D¢j)

Assume (dy) v = ¢ (y)
then (dx) w y {z} = ¢ (x) &zdw

w

since () ¢ (x) =V (y) v {z} & z ¢ w from induction

hypothesis, B, v, D(ii)

with <x, <y, z>> € R.

E] 1 is single valued ie y (%) = Wi(xl) > X

Suppose § (%) = ¢ (xl), then either ¢ (x) =

&

= {yl, oo yn} since ¢ is total.

if y (x) = ¢ then x = x- = ¢ from D(i), i.
if p (x) =y u{z} &z ¢y for some y, z
then y = § (W) since y is onto »

iey (0 =y (xD) =p &) u{z} &zdy V)

1
+ <X", <w, z>> € R & <x, <w, z>> ¢ R from B

]

]

1 .
> X = X" from iv

Extensions to Hoares Axioms

~

v (%)

The relational formalism may become notationally very clumsy

when talking about complicated programs, and it may be more

convenient to switch to the first order predicate calculus.

This is done in a mamner which generalises the developnent of

Hoare [1969] in describing program semanticss?

6.4.1 Non-Constructive Definition

We define an interpretation for a relation in the

6.4.2

91

following manner.
S = {<a, b>|P (a, b)}.

The predicate P (a, b) is a formula in the first order
predicate calculuz whose domain, functions and

predicate letters are known.

We find it convenient to express the predicate P in
such a way that the domain of S is made explicit ie

S ={<a, b>|Q (a) &R (a, b)} and Q (a) > (%) R (a,b)

These relations correspond precisely to the minimal

valid ﬁredicates of Manna and Pnueli [1970].

Operations between non-constructive relations

We assume that we have the relations

R ={<a, b>[P (a) & Q (a, b)} and P (a) > (4b) Q (a,b)

S ={<a, b>|T (a) & U (a, b)} and T (a) = (3b) U, (a,b)

The remainder of this section gives expressions for
the basic operations between R and S. These are
special cases of the operations defined before, and are

shown in 6.4.3 to be a generalisation of Hoare {1969] .

6.4.2.1 Composition

If P (a) & Q (a, b) > T (b)

P (a) &Q (a, b) & U (b, c) >V (a, c)
then R; S = {<a, ¢>|P (a) & V (a, c)} and
P (a) » (Hc) V (a,).

6.4.2.2 Concatenation

If 0 (a) =P (a) & T (a)
P(a) & T (a) &Q (a, b) & U (a, c) & d =

6.4.3

6.4.2.3

92

b Ne»v (a, d)
then [R, S] = {<a, d>|0 (a) & V (a, d)}

and 0 (a) » () Vv (a, d)
Uniown

RuS =1{<a, b>|(P @ v T (a)) & ((P (a)
&Q (a, b)) v (U (a, b) & T (a)))}

Hoares Axioms

If we had chosen to define relations by predicates on

the input zad output tuples separately; ie in the
manner S = {<a, b>|P (a) & R (b)}, and did not

explicitly define the domain of S, then operations

between such relations model the axioms of Hoare

[19691].

6.4.3.1

6.4.3.2

Nntation

The notation P {Q} R is taken to mean, "if
the assertiorn P is true before initiation
of a program Q, then the assertion R will

be true on its completion."

‘Let S be the relation {<a, b>|P (a) & R
(b))}, then if the program Q, restricted to
inputs satisfying P, is to satisfy R on
termination, then [P, E] Q ¢ S, and
similarly, if the program Q is restricted

to outputs satisfying R, then S ¢ Q [R,E]

ie the notation P {Q} R is represented by

the formula [P, E] Q < Q [R, EJ.

Rule of Composition

The rule of composition is:
If ¢+ -
p {QI}R 1 and R1 {Qz} R then

6.4.3.3

In the relational formalism.
tp, EJ Q; ¢ Q R}, EJ, [R;, EJQ, =Q, (R, E]

0. c0. IR, ETQ

L 0y 0 IR 2 £9; 0, [ReE]

Rule of Iteration

The rule of iteration is:

if+ P & B{S} P thent+ P {while B

L =uXx ([B', E] u [B, E] SX)

We wish to show that
(fp, EJ[B,ElScec [P,] [P,E]J]Lcl
[B', £] [P, EJ

The proof proceeds by Scott Induction on P(X).
PX) =[P, E] xcx[B'", ED] [P, E].

i P () is true

1i Assume P (),
(p, E] ([8', E] v [B, E] 8X) c [B',
ej [p, E] v [B, E1 S [P, E]X
c [B', E] [P, E] u [B, E] SX [B', EI]
[(p, EJ
c ([B', E] v [B, E] SX) [B', E]J [P,E]

iii Hence [P, E] L < L [B', =] [P, E]

94

REPRESENTATION OF "DATA

One may start to write a program and specify its domain and basic
operations in an axiomatic manner. Development proceeds by
finding satisfactory representations for this domain in terms of
more specific domains and their operations, until finally we have
domains which are representable in our target language. We must
distinguish between tﬁe general notion of finding a representation
such that any program will work, from finding a representaticn
Such that a particular program will work. The two may well be
different. Compiler wri:a=rs would be interested in the former

whilst the latter is of use in the development of programs.

7.1 'Represéntatioas

Equality between elements of a domain is a basic predicate

which we assume in the set theoretic definition of the forma'lism
When we progress, in the develcpment of a program, from one
model of the domain to another, there may be several possible
representations of a single element from the first domain in the
new domain, and we must ensure that this notion of equality is
preserved, i,e, that any two representations of the same original

element must be censidered equal.

.We show how to go, by a simple substitution process, from a

program o, written in a language L,, to an equivalent program &

¢

written in another language L, using representations of the basic

14

operations of L¢, and we state a representation theorem which .

enables such representations to be validated.

. . . A . .

The 1interpretations of the new program © will, in general, be
inefficient since they are essentially non-deterministic making
copious use of an equivalence relation, in order to preserve the

noticn of equality mentioned earlier, and we introduce the concept

95

of good representations which make a minimal use of such

equivalence relations,

7.1 .1 ‘Representation Theorem

7.1.,1.1 ‘Operations modulo ‘equivalence classes

If we have a domain N¢ and an equivalence relation

R on N, which relates different representations of

] ;
the same object from a domain N¢, then we define

N, moi R to be the domain whose elements are

equivalence classes of objects from N¢.

X e N mod R <=> x ¢ R N¢“

<=»> x ¢ N since R is toial,

where x is the equivalence class which

contains X.

We define operations modulo these equivalence

classes as follows.
. - - . '..= N
<x, y> € n3n mod R <=> <x, y> ¢ R.m T Rn

where Ro = o E o

R, =R

1
R

n+1 [Rh,R]

This definition is meaningful because R is an

equivalence relation, Consider the tuple

AAL A= =
<X, y> such that x ¢ x, 9 €Y.

Then <x, y> € T mod R => <x, y> e RTR
=>R <x, y» RcRRTRRcRTR
: A A :

= <X, ¥y e RTR

"FR = R since R is an equivalence relation,

7.1.1.2

7.1.1.3

96

the extension for m - n relations and many

sorted relations is straight forward.

‘Lemma

Let Lw be a language with constants Vss given by

a set of axioms i, let A be an equivalence relation
added to the language Lw, and let IW be an interpretation
of this language over a domain Nw which assigns an
equivalence relatiou R to A. In addition let L¢ be
anoth.r language with constants'¢i, given by a set

of acioms § gnd let I¢ bg an interpretation of

L¢ over the domain‘Nw mod R which assigns to

the constants ¢i the relation I¢ (Ti) mod R, where T;

are terms in the language LW.

Then for all terms o in L¢,

<;" ;'> € I¢ (o) <=>

<x, y> € I¢ (o (A/E,EiA/Ei,AriA/¢i)).

The proof, which will not be given here, proceeds by
straightforward induction on the formation rules for

terms in L.

¢

‘Representation Theorem

Let Lw, I¢, L, I and A be as in 7.1.1.2

¢’ Té
Then I¢ satisfies the axioms @ <=>

I, satisfies the modified axioms

¥
8 (a/E, B[R, AT8/))

Proof:

“The individual elements of the set of axioms é are

atomic formulae of the form a < B.

I, satisfies a ¢ 8

$

—~an.

97

<> I, (@I (8

<=>1 (a(a/E, E,0/E;,0 T,4/9.)) < Iw (B(A/E,EiA/Ei’,i} l_':
At, A/¢i)) ' o :*'nw

using the previous lemma

<=> Iw satisfies (a < B) (A/E, EiA/Ei’A TiA/¢i))

The intended use of this theorem is to validate that

terms A TiA in the language Lw are representations

of constants $: in the original language L¢.

7.1¢2 Representations of programs

Having used the representation theorem to validate that

terms A T.A in L, are representations of constants ¢; in

v

'the original language L

o’ it is a~straightforward consequence f
of the lemma that a program P in L¢,Amodified by .the substitutiop
(a/E, EiA/Ei’A TiA/¢i) is a program P in the language Lw'sgch

that any representation in Nw of the input to P is mapped to

any representation of the output of P,

We identify as good terms those which have the property that ﬁ
I (Ar A) =1 (t A),where T, does not contain A, and it is clear :
that good terms which are comblned by the operations of ‘
compositiony¢oncantehation and union result in good terms. This
concept enables simplifications to be made to program ﬁ such that
it will be more efficient. In many cases the resulting program
P will be good, and if the final equivalence relat1on in P is
removed the program § produces a representation of the result of
the program P rather than all, which is usually all that is

required.

Unfortunately this concept of goodness is not all that powerful,
since it is possible to produce programs which are good from
components which are not good (see the list union program used

later as an example).

98

7.1.3 ‘Example

We take as an example the language L¢ of finite sets defined
by the set of axioms §'of 6.2.1 and the language Lw, linear
lists with no repeated elements defined by the axioms V¥ of

6.2.4.3. Lw is extended by A.

-

Define a function f which maps lists into the finite set of

elements in the list.
v f e -1 -1 -1
f=uX (nil ¢ ~ v cons " [E, X, EZJ sub)

and define the equivalence relation:

R = ff 1
This is assigned to A in the interpretation Iw. ‘The relation
R makes equivalent all 1lists with the same set of elements, E 1s
the equivalence relation on the domain of elements of lists,

We will show, in 7.1.3.1, that R has the following properties.

1lm=R
2 R=R !
3 EcR
4 [R]E] cons < cons R
=1 -1 -1
= * =
5 R cons E2 (cons El) cons E2

“listin
Using these properties we can show that I¢ satisfies the

modified axioms

§ (a/E, E; A/E;, A'cons” ra [E]/ sub)

Making the substitutions in the axicms of 6.2.1

i

ii

iii

iv

7.1.3.1

SN

99

(Rcons” ' M)' (Reons ' MY e
R(consflux)' ((COns— 1 N) ')_ 1 R 1

cRailnil” ' R e R using 1, 2, 6.2.4.3. (iii D (1))

v (Rcons 1 ElR)'j?x(R'cons_ 1 El) using 1,4

2R 1" (cons 1 El)’ using 4. 3.24,

v using 6.2.4.,3 (iv)

: . -1 - ; -1
[R|E] cons R cons E, = E; R cons E, UE,
5’ 60204.3 (i)

R cors 1 [R{E] cons R E.R-EQEET 1 cons R using 1,4

< R using 6.2,4,3 (ii), 1.

listin = (cons N)' E_([RIEJ cons ¥)' ¢
e> o0

<L .
[RJE] (cons M)

6.2,4,3 (i)

v listin .
' T ————
[R[E] (cons N)' c [R|E] e, S listin

6.2.4.3. (D (ii)), 4

R cons 1 E
| I
Hence ([R|E] cons N)' = (<t, e> + o) (note

the implicit conversion of the RHS to a relation

of type<f, e>> o)

and hence from the representation theorem, that we

have a representation in L, of the language L¢.

v

Properties of R.

We will first establish some properties of f.

-1

i f f=E
Procf.
-1 -1
f = uY (¢ nil U sub [E1 Y, EZJ

" cons)

' fg'iﬁd"ction with Xf

ii

-100

-1 . .
£ N = N from termination theorem and

6.2.1 (ii)
1 cE
=) since E is single valued and f 1

is total,

fin = 'listin

Induction on P (X, Y) = X sub 1 E2

ey

Now

M~ W=

with 5(X) = ¢ nil~ Ly sw

’[E1 X, Ez]"cons

) = (cons 1 E1 Y u E) cons 1 E2

and using 6.2.1 (iii).

we establish the required properties of R

RR o= ff L fem d = £ L = R from (i)

R=¢ff =g !

E c ff 1 since f is total.

‘cons ff 1 - cons (cons 1 [f]|E]

‘sub 1) £ 1, fixpoint property of f.

= [£|E] sub_ g1
-1 -1
= [£]|E] sub sub [f E] cons,

fixpoint property of f 1.

“ 5[£]E] Cin ', E] [£ '|E] conms

© o>[f|E] 0f YIED 1istin ', EJ

[£” '|E] cons using (ii)

© o[£f Y|E] [listin', E] cons

© 2 [£f llE] cons since we have lists

with no repeated elements.

101

oo =1 - _ -1 -
5 R cons ' E2 = ff cons E2

= f (sub [f IIE]'COnS)'ConS- 1 Eps

fixpoint property of f

fsub [£ 1|E) E,

= f sub E2 since £ 1 is total,

£in, 6.2.1 D(ii)

‘listin from (ii)

The mapping f is canonical, in that it maps equivalent

lists to a unique representation.

7.1.4 Example of program representation

We showed in 7.1.3 that sets may be represented by lists
with no repeated elements, and that R cons 1 [R|E] was

a representation of ‘sub,

The following terms are good reprcsentations relative to

Y and R,
1 “listid , . . s . e
Listin for in since [R|E] listin = listin
<L, e> >+ o0 —_
2 “‘cons R for sub_ ! since [R|E] cons R = cons R
3 ‘nil for ¢ since R nil = nil

However R cons ! [R|E] # cons -1 [R|E]

If we consider the program union defined in 6.2.1 then
Iw'(union.(A/E, EiAlEi,A‘cons- 1[AIE]/sub)) is a represent-
ation of ‘union in the language L¢. Let this be the program

P, notc that ¢ is redefined as I@ (A nil).

102

P =pX ([RIR'Eii] u[RfR’cons- 1 [RIE]} [[El, EZJ

[R|R] X, E,] (C[R|E] 1listin, R] v [R|E] cons R)

if we define listunion to be:

listunion =pY ([E nill v [E cons 1] L [E;» E,1 X, E,]

(Clistin, E’] U cons))

then using the fact that listin, cons, nil are good

representati:ns relative to L, and R, it can be shown

Y
that

P = [E|R] listunion R.

The original progrem union was cingle valued, furthermore

‘listunion is total, hence B

[E|R] ‘listunion R = listunion R

and so the program listunion is a good rcpresentation of

“‘union relative to L, and R,

v

the that mechanical substitution did not take us all the
way to the final program listunion. The program P was
optimised as a separate process to produce listunion.
Note also that this is a good representation of a prdgram

whose components were not all good representations.,

The program listunion has the property that given any
representations of two sets as lists, it produces a list
which is a representation of the result of the union of

the two original sets, This is usually what is desired.

106

PAGES 103 TO 105 HAVE BEEN INTENTIONALLY OMITTED

- a

[

7.2 Simulation

We may have a representation for a domain which is sufficient

for a particular program to work but which need not satisfy

the axioms fcr the original domain. We state this formallv

by saying that a program with this representation simulates the

original program,cf Milner [19711].

7.2.1 Simulation Theorem

702-2

Let f be a relation between the input domains of
programs represented by p¥ F(X) and pY 5 (¥Y), and let

g be a relation between their output domains.

IffXg—1=YFf3(X) g_1=9(Y)
then £ pX g (X) g— 1=uY g)
and we say that f pX 9((X) g 1 simulates uY § (Y).

This is easily extended to multiple recursions.
1£{c,x, g !
‘ imi 5y

j = i <
P 5,) g (‘:’.il(p'ISI"m}~
th = i < m,
en fou. X J(X g =u; YGQ@ 1<ism

= i <
Yill < i < m}

Proofs are a straight forward application of Scott

Induction.
Example
—— e

We can pursue the previous examwple oi union and

107

listunion in a simulation style. Here however the

form of listunion must be 'guessed' at rather than be

mechanically produced by substitutions.

If £ is again the function which maps from liscs to
sets, we can easily show,using the simulation theorem
and results from the previous section that:

-1 -1 . . .
[f 1 £] listunicen £ = union

and since f is t
listunion ¢ [f|f] union f

ie <<x, y>,

€ union
Furthermore listunicn is total, hence again listunion

acts on any

. - . .
represcntation cf their unicen.

e e - an

8 CHANGES TO CONTROL STRUCTURE - RECURSION REMOVAL

8.1

8.2

Introduction

It may be most natural to pose a problem or an initial
solution, in a recursive manner and then to develop from this
a flowchart program augmented by stacks. A result from
Paterson and Hewitt [1970] states that there exist recursive
program schema which caanot be represented by flowchart
schema. It follows that, in general, we must use flowchart

schema augmented by stacks to simulate recursive program

schema.

Labelled Stacks

Compilers usually handle recursion in the following manner,
Dijkstra [1960].When a procedure is called, link information
is stacked which enables the calling program to continue when
control is returned from the called procedure. This 1link
information contains a 'return address' which tells us the
point from which execution is to continue, and also contains

a way of restoring the environment to that which was current

at the time of the procedure call.

We formalise this by using labelled stacks. A labelled stack
is a conventional stack whose elements are state vectors.
Return addresses are not stacked, rather; this information is
kept by giving each stack operation a label. There is a
corresponding unstack operation for each label which is used
both to restore the state vector, and to switch control to

the appropriate place.

Any augmented flowchart schema will only use a fixed number,

n, of labels. This may be determined statically. The labelled

stacks are defined by the following axiom schema.

(1

stack. unstack, = E,
1 g Q

= (1)
<v,55s, s+ V,8> = j

Z

o

where v is a state vector and s is a s+tack.

-

8.3

109

We will also use a degenerate form of these stacks as to

count. . Here no information, other than the label, is put

onto the stack.

inc, decj =E, i =] (2)
1+l 171 =R, = j

At any one time the stack can be vieweg as a stack of
coloured counters. Labels may be identified with colours,
some counters will have information written on them, if they
have been put there by a stack operation, and some will be

blank, if they have been put there by an inc operation.

We will use the following abbreviations:

i
inc, dec, to i. d
i i

stack. unstack. to s. u.
1 1 1

Informal Introduction to the General Theorem

To introduce the general theorem we will first study two

cxamp les,

Example 1: Given a recursive schema represented by f = pX

(AUBXCZXD), we can identify the relation A with the idea

- of a return instruction, ie that its invocation tells us that

an evaluation of f has finished. The subterm B, commits us

co the evaluation of the remainder of this term, which

.includes recursive calls to f, and again the final subterm D

can be associasted with a return. We can produce a pair of

flowchart schema, the first of which calculates f, by either
returning, having evaluated A, or by'applying B, stacking a
return address, and then invoking itself again. The second
schema calculates the remainders of terms by inspecting
markers on the stack and then uéing them to switch to
evaluation cf the appropriate remainders. These remainders
too may involve recursive calls to f, and so markers may be

stacked and control passed back to the first schema.

We produce terns:

(1), = [AIE] 2 v [B}i, D Y

110

(g = [E|d0] u [Eldll Ccl i2] Yu [Eldz].[DlEJ 2z
and define £, = g Y2 ((T)a, (T)B)
fg = wy Y2 ((1) s (1))

The schemasdefine 2 + 2 relations. The first component of
their state vector is the argument, and the second is a stack
of markers. These schemasare related to the original schema

by the theorem of 8.4.4 as follous:

L£f]E] fé = fa

Clearly [Elio] f8 = E, and so we obtain the following
equality
i
£ = (B i . . P
[E] iy 'J £, where éLl produces a stack initialised to
10.
Example 2: We study the schema corresponding to a tree

traversal program.

f =uX (A v [BX, CX] D)

The concatenation operation, [, 1, is dealt with as follows.
We arbitrarily decide to evaluate the left subterm first, and
then the right subterm, which must be evaluated with the same
argument as the left term. The sequence of operations to be

carried out, together with the corresponding subterms is:

1 Stack the argument,[EI, 51]

2 Evaluate the left subterm which

includes a recursive call to f, [B|E] Y
3 Unstack the argument and stack the .

result of the left subterm, [Elu1][E2’[El,E3] 52]
4 Evaluate the right subterm,[CIE] Y

5 Unstack the result of the left
subterm and form the result vector,[Eluzj[[Ez:Ell, 333

6 Apply the remaining term,[D|E]

111

7 Evaluate the remaining stack,Z.

The resulting schema are:
(1‘)0‘ = [AlE] 2 v [El, sll [BIE] Y
(T)B = [Ede] u [E|u1] [132, [El, E3] sz] Cielyu
[Ehivzl [[Ez, E1], E3] [DIE] 2
and the theorem relating these to the original schema is
again -
CflE] fB =f,

8.4 The General Theorem

8.4.1 Unique Labels

The only problem remaining before embarking on the
general theorem is that of ensuring uniqueness of
labels. Inmgeneral, we will consider terms T of the
form T = ; U 1 Ti’ where the terms Ti are free from
the union operation. The index i will uniquely identify
each subterm. Within each subterm Ti’ we give each
matching pair of [] brackets a unique 'block' number
b, written as [b,] and give each of its subterms a
further index x of value O for the left subterm, and 1
for the right subterm. Each occurrence ofX within
these subterms at the same block level is then given a
fourth index y in turr. Two indices i, b thus serve
to uniquely ideﬁtify each concatenation operation, and
four indices, i, b, X, y, identify each occurrence of
X. This need to ensure unique labelling is the main
reason why the following algorithmr~ -to derive terms
(T)a and (T)B initially look rather complex. The
stack, unstack, increment and decrement operations

will have unique labels depending on the above

indices.
8.4.2 Definitions

Simplicity: A definition cfthe simplicity cof 2 term in X was

given in the section dealing with terminaticn. We

112
find it more convenient to use the following
equivalent definition.
A term T is simple in a relation variable X if either

contains no free occurrences of X

[
e

or
ii T =1, X
1

or
iii =1, X1
iii) 9
or
iv T = &3,14315
or

= U
v TET, VT,
where T contains no free occurrences of X and Tys Tg
T,» Tg are terms simple in X. There may be an

implicit use of E to obtain terms in this form. This
definition is ambiguous in the sense that a term may
have more than one form eg AX = AXE and so is of thé
form ii or iii. This ambiguity is cdeliberately
introduced to avoid unnecessary inefficiency in the
derived schema, the associated algorithms are
expressed in terms of conditional expressions, and so

will act on the first permissible form.

Union Normal Form:

Any simp1% term T can be written in union normal form
as T = ., U, T, where the terms T do not contain

i=1
unions,except pessibly in tcrms not containing X free.

113
Derivatives:

T is the a-resultant of a term T where T is simple in

X, and is expressed in union normal form, if

m
T = T
o i g 1 (i)a

(Ti)a = q (Ti, i, 0, 0, 1) and (3)

a (t, i, b, x, y) = if 1 contains no free occurrences

-

of ¥ then [tIE] 2

if 1 = L X then [T]lE] Y
Tl X 12

e] - . L
if 1=/ Tgs Tyd T then [El, sijO] a (13, i, j, 0, 1)

if T then [Tlllibxy] Y

where Tl does not contain X free.

T is the B resultant of a term T, where T is simple

in X and is expressed i% union normal form, if:
TB = [EIdO] u ; U 1 ('ri)B
(t.), =B (r,, i, 0, 0, 1) and (4)
1°B i ‘
B(Ts i, b, x,y)=
if T contains no free occurrences of X then Q

if1 = 11 X then §

if t =‘Tl X T,y then [Eldibxy] o (12, i, b, x,
y + 1) U.B (12, i, by, x, y +1)

if 1 = [313, t,] Tg then 8 (15, 1, j, 0, 1)U
[EluijO] [EZ’ [El, E3] Sijl] a (TA, i, 3, 1, 1)
usg (14, i, j, 1,) v [Eluijll [[Ez, El], E3]
a (TS, i, b, X, y) UB (Ts, i, b, x, y)

Example: '
iftr =AvU [le, cX] D then
. [AlIE] 2 v [El,s 210] [BIE] Y
g [Eldy] u [EluZI_OJ [E,, [E;, B4l s,,,]
[CIE] Y u [Eju,,,] [[E,, EJ, E,] [DIE] &.

T
o

Derived relations

Let-f, =1 Y2 (r_, Tp)
£ o=, Y8 (1 1,)
where £ =uX (t (X)).

114

8.4.3 Lemmas

Definition
Let fé = ug (Té ()
where Té =T, ((£lE] 2/Y, 2/%)

Abbreviation: Let a (t, i, by, %, y) = a (1, i,
b, x, y) ([£]E] £5/Y, fé/z) ad similarly §.

Lemma 1

From the indexing system used for labels and the
definitions of a and B, there can only be at most one

term 0 commencing with [hluijk] or [Eld, y] in z1a,

ibx B8
Lemma 2
o
B (t, i, b, x, y) € fé =>
g(r, Lobyox, y)= v () ED £, -
Proof: M |

The proof is by induction on the formation

rules for union free simple terms.

if T contains no free occurrences of X

i
8 (t, i, b, %, ¥) =:z;=_fé
& (ty i, by x, y) = [TIE] fé
il if T = Tl X where T, contains no free

occurrence of X
Bo (v, i, b, x,)') =Q§_fé 5
& (1'9 is b, x, Y) = [TIIE] [fIE] fé =

[(£/9ET £3.

iii ifT =7T_X T2 where Tl contains no free
occurrences of X.
£ (v, i, b, x, y) = [Eld.._3a (t,, i, b,
))’o’} Ile}’ 2 ’
X,y +1) ug (12, i, b, x, y +1) ¢ fé

(Given)

iv

Hence « (Tz, i, by, %, vy + 1) =

[Tz(f/X)]E] fé,induction hyvpothesis’

Also from lemma 1.

pu [Eldj od o (rys 3o by 3y + 1) =57 (6)

where p contains no terms starting with

& (1, i, b, %, y) = [rliiibxy] [£1e] £}
[r, £IE) [r, (£/X)[E] £ from (2), (59,
(6)

= [T (£/X)|E] ¢

il

.
. -] .

tfr [T3,T4]rsfh@

B(T9 i,b, X,Y)’:B(T.s i,j,(), 1) U.

3
AL —l 4, . DI O 3 3 :
[Elugsol Dhys [Fps Egleygy Joo oy, iy 3,
1’ 1)UB(Tsi’js 13 1)U[Elu..]
4 © . 1310
[[EZ’ El], E3] o (rs, i, b, %X, y)'uB (TS’

i, b, ¥, y).
c fé (Given)

Hence from the induction hypothesis.
(t55 1, 3, 0, 1) Lty (£/X) E] £2 (D
(1,0 1» §5 1, D = [r, (£/X)IE] £ (8)
(tgs 1, by %, y) = [rg (f/x)IE] £ (9
(t 15 by %, 3) = [Esya0 1 & (g5 4,
j, 0, 1

and again by use of lemma 1 we can show

n I

Qo Qo RO Qo

that:
o (T': i, b, x, y) = [El’sijo] [13
(£/%) |E] fé from (7)
= [T3 (f/X),S.j] [E,uijO] [Ez,

(lemna 1, and (8))

170
g [t

i
B

= [T3 (f/X>,SijO] [EluijO] [EZ’

L[nz, EIJ, E3J [rS (£/X) |E] fé

(lemma 1, and (9))

8.4.4

116
= [ley (£/%0), 1, (£/0] 1508] £
(using (1))

Hence the lemma is true for all union free

simple terms.

Lemma 3
B (t, i, b, %, y) (HIE3 fF/Y’ £ /) < fF => {1, i,
R 2

b, x, y) (Ix|2] £ /Y, £,/2) = [t12] £,.
. 8 8 8

Proof: The proof, not given here, proceeds by
induction on the formation rules for-simple terms in

essentially the same manner to the proof of Lemma 2.

Theoram

Let £ = pX (1 (X)) where T is simple in X.

n - 1! z
Let £ Ll YZ (Ta, TB)

ol =)
then [f|E] fB fa' (10}

Proof:
We actually prove the following.

[£lE] fg =f,

induction
. © .
B (, 1, Oa 0, 1)

o) The proof is by fixpoin
(i~ Y, £2/8) =,

£ (LEIB] §/Y, £5/8) =

from (4) and defn of fé'

= £ ()

. ’S . " a - ° -
£, (LEIEY £3/¥, £2/2) = U | & (x, 4, 0, 0, D)
from (3)
Lt (£/X)|EJ £ from lemma 2 and (11)
: B

f

e g

1

]
g

1

s g

| S Ny

i
=[f

E

™ >

Henee fB c f
£ < [flE] £.
Qa

R>W >

117

©) We first show by Scott Induction that
[LIE] £ < £. (12)

Let P (X) = X|E] €, ¢ f
a P (n) is true

-

b Assume [X|E] f, < f

B~ "o
) m
' fe = i I,l 1 B (Ti, i, 0, O, 1) (fC/Y’ fe/z)
(from (4))

From the assumption and monotonicity of terms
pr%duced by 8.

;U e (ops d,0,0, 1) (IXIED £/Y, £/8) <1

n

He&ce, using lemma 3

; Uq @ (g, i, 0,0, 1) (KIE] fB/Y, fB/Z)
(r1E] FB

bue o B o (rps £, 00 00 0 (XED £/, £/

il

e, 0,eG 1,001 (£ 1y, £,/8) from
inductive assumption and monotonicity of terms

produced by a.
= f (from (3))
o
c¢) Hence [flE] fB c fa by Scott Induction.

We can now use this result to show by fixpoint

induction that

fr ¢ £ .

B— GA

A 5 = fE f Y,f Z
fB (fslﬁ) fB (el J. B/ 8/)
< £, (f /Y, £ /2) (using (12))

< fw.
8

Hence by fixpoint induction fé c .

B

118

8.4.5 Intended Use of the Theorem

The intended use of the theorem is for the initial
term [E|dO] in the derived relation og of 8.5.2'to be
the test for the empty stack, and the corresponding
operation i0 to create the empty stack. Clearly

o0-~>1
then

£=lfl,5 1 = [Elemty” 15 T

8.5 Extension to Multiple Recursions

8.5.1 Introduction

The general'theorem of 8.4 extends easily to multiple
recursions. From each equation schema we derive a
flowchart schema augmented by a stack, and from all
the equation schema we derive a single augmented
flowchart schema which evaluates the stack and so
handles the flow of control. The only change we need
to mcke is to include a further index which identifies
the equation in which a concatenation block, or a

reference to some Xi occurs.

8.5.2 . Definitions

Consider a set of mutually recursive equation schema
wi uti i o= X, ... cee

ith solutions given by fl X, Xn (01 cn),
1l £1 £ n, where the terms 01 are simple in eachX;,

1 <i <n.
Derivatives

(Ui)a is the o resultant of a termg, where o4 is

simple in X , and is in union normal form, if:

REE
(z.) =j

i’a 1 (Tij)a
'(TO-) = 0 (T-.., i, j, O’ O’ 1) and
ii‘a 1]

a (ty, i, j, b, x, y) = if ¢ contains no free

X
n

m,

gl

occurrences of anyX, then [x|E] &

P
i Tlxk then ['rllE] ¥

8.5.3

119

.) L i
T =1y Xy Ty then wrgfiy g Y

L) o o
if 1 =[13, LAJ TS then EEI, bijzoj a (t3’ 1,
j’ ﬁa 0, 1)'

where T does not contain X free.

Q
P
th
..

£

(c.) is the B—rcgultant of term ;

1°8

&

g =5 Y1 (g

(t..), =B (1,., 1, j, O, 0, 1) and
1] 13

(t, i, j» by %X, y) = if T contains no free
‘occurrences of any K then §
. - X
1f 1 Tl k then Q
if v =1, Xk T2 then [le J a (TZ: i, j: b,
X, v + L) u B (Tz, i, j, b
if 1 = L Ty T] T, then
R (T3, i, 3, 2, 0, 1) u rrlb . ELZ’ [El’ E3J
sij21] ol (TA’ i, j’ L, 1, 1) U B (T4’ i, is L,
1, 1) u [hluijzlj [[hz, E ds L3] a (TS, i, j,
b, x, Y) uB (T5s i, js b, x, Y)' _

Derived relations

N B

Define OB = [E]do] vy 1 (oi)B

Let (fl)a =M Y1 .o Yn 7 ((cl)a’ ces (Gn)a, cs),
1 <1 <n

and fB =W, Y1 e Yn Z ((Gl)a’ ce (On)a’ 08)
where fi = X1 “es Xn (01, “ee on). 1 €1 <£n.
Lenmeas

Lemma 1. Clearly there is still at most one term O
commencing with [Elu] or [E/d] in (GB), hence .

ccf, =>pu = fB where p contalnL no terms

th [Rlug L, Joor TEHd; 4y 1

0
,—l
o]
. 09
)
fd o
i~

Let 2 = 12 (cé (2))

B

120

where oé = c ({[f [E] £2 /Y [1 <i <n}, £f2 /Z)

then B (1, 1, js b, X, y) ({[f [E] £ /Y |1 <i <n},f é/Z)
< fB => 0 (Ts 1’ J’ b, x, y) ({[fl IE] fé/Ylll <

i <n}, fé/z) = [t ({fi/xi}ll <1i<n})IE] fé

The proof is similar that of lemma 2 in section 7.4.3
and proceeds by induction on the formation rules for

simple terms. -

~Lemma 3

B (t, i, j, by X, ¥) ({[X.IE] f /Y.Il <i <nl, fB/z)
c fB =>a (1, i, js b, %, y) ({[X IE] f /Y |1 i <

-—

n}, f /’) [t/E] f

Again the proof is straightforward by induction on the

formation rules for simple terms,

8.5.4 Theorems

-

£f.oo=u X, w.0 X (ces <1ic<
Let £, = u; X, RCIE cn),l <1 £ n be
solutions to a set of recursion equations, where the

terms Oy eee o, are simple in all Xk’ 1 <k <n.

= . Y s e e no.o i
Let (fi)a W Yy Y 2 ((Ol)a (on)a, oB) 1<i
<n
p— A4
and fB = un + 1 *1 s s Yn z ((0'1)cx e (Un)a’ (0])
then [f |E] fB = (fi)a’l <1 <n
whereGJ)... (o _Jand ¢ _are augmented flowchart schemas,
1o ng B
Proof:
The proof will not be given here, but proceeds
in essentially the same manner as the proof of
7.4.4, by actually showing that: /
[filE] fB = (fi)a’l <ic<n

f8 = f8

8.6

121

Exaggle

8.,6.1 Tree Traversal

We wish to produce a string from a binary tree by
traversing its terminal nodes from left to right and
concatenating them together in order. Our problem is
stated in a recursive form, and our target language
does not contain recursion. -

traverse (x) = if is~atom (x) then x else traverse
(car (x))n traverse (cdr (x)).

n . o s .
where is the associative operation concatenate.

We abstract this recursive form to a schema:

T = uX(A v [BX » CXID) and apply the theorem of 8.4.4
to prdduce, after simplification of labels, the
following flowchart schema.

LTIE] uz YZ = ul YZ

where My YZ My Yz (AJE]J] 2 U [E] B, 82] Y,/[Eldl] u
[Eluz'][E2 C, [El’ E3] 83] YU E Iu§ [[EZ’ El] DIE}Z).

This can be further simplified. The operation D is
associative and so we can keep a 'result so far',

rather than stacking intermediate results.

Lemma. .
if D is associative ie [E| [F, ¢] P11 D = [[E|F] D, GID

and px =pX(Au [BX, CX] D) and
Y2 = W, Y2 ([EJAIE] [D|E] 2 v [E]| [El B, SZJJY,

[EIEldli U [EIEJU2] [E|CIE] Y)
then [E|pX{E] [D|E] Y2 = W Y%,

The proof is straight forward.
i ' Define pZ as before

~

ii Show that [E|uX|E] [D|E] pZ = ulYZ

8.6.2

122

~

uz = uZYZ

by fixpoint induction

(=18
Fde
e
n
~—

2) Scott Induction to show that [E|uX|E] [D|E]

My YZ < ulYZ and using this to show nz ¢ quE
by fixpoint induction. _

We can now return to the original interpretation, and

by noting that concatenation has an identity element,

. . 4N .
ie nil x = x, and that we can think of the marker

detected by d1 as the empty stack, we can produce the
usual form of a tree traversal program. FKnuth [1988]

2.3.1 p 317.
T (x) = Tr (nil, x, empty)

Tr (S, x, k) = it is-atom (x) then if is-empty (k)
then S“x, else Tr (Snx, cdr (hd (k)), tl (k))

else Tr (S, car (x), stéck (x, k))

where hd = unstack E1

tl = unstack EZ'

Further development of the program would now take
place by finding a more machine oriented

representation for trees and stacks.

Factorial

We can use the theorem of 8.4.4 to gain insight into

an iterative form of the factorial program.

Let F = ux(A U U&X,E]4C) with the interpretation.

A
C

{<0, 1>}, B = {<a, b>|la>0&b =a - 1}

{<<a1, a,>s b>|a1, a,20&b = a, * az}

It is c¢acily shown that F is total and correctly

computes factorial.

Using 8.4.4 and 8.5.5 we obtain the following

iterative form of T

F = [Elio] wY ([AJET v [El D, 82] Y)
uz ([Erdo] v [Eju,]. [CIE] &)

The next level in the development is the actual

representation of the stack and unstack operat‘ons.

We choose to represent the stack by two integers, a,

which is the value of its top element, and a, which is

.. . .
a marker for 1 {(This is cnly possible here Lecause in
o P

this particular case a preceding element on the stack

can be obtained by knowing the top one).

52 = {<<al’ 3y 8575 <b,, b,,>la1 20¢&a, = a; + 1&
a3 2 32 i b2 = a1 & b3'= a3}
u2 - Sz.
i = {<a,, a,>la, = a,}
(o] “ > >

Assuming that the domain of the stack operations is

given by is-valid-stack-op = {<al, ays a3>lal 204 a,

=a +1&a, 2 a,l
3 2

1
then the axioms for stacks are satisfied.

s, u, = E

3 E
U2 ‘52 <.
s, d o=,Q

27 ' |
This assumption holds provided that the input i

satisfies is-valid-stack, since [is-valid-stack-op, EJ

[E1 B, Sz] = [El B, 32] [is-valid-stack-op, EJ.

This gives the following program for F (x), which we
will write in the more familiar functional form.
F(x) =2 (Y (x, x+1, x + 1))

where Y (x, y, z) = 1f x = o then <1, y, 2>

else Y (x -1, y - 1, z) ‘

2 (ﬁ, y, z) =if y = z then x

else 2 (x %y, y + 1, 2)

Clearly the function Y (%, » + 1, x + 1) always has

124

the result <1, 1, x + 1> and so
F (x) =% (1, 1, x + 1) which is a familiar iterative

form for factorial.

125

CONCLUSIONS

The motivation fer this thesis was to take an existing formalism,

the relational calculus, and to explore its application to formal
reasoning about programs, in particular that‘reasoning necessary to
justify some techniques used in the stepwise development of programs.
The relational calculus was a good tool with which to do this,

providing a common framework in which to reason about the many facets

of program proofs,

The development of a program starts with its specification as
a relation between input and output values. Development proceeds by
specifying a schema and subsidiary relations as its interpretationm,
this forms an initial solution to the Speéification. We showed in 3.3

examples of proofs of partizl correctness of schemas. A proof of

termination is needed to establish total correctness, this requires

an induction rule on the domain of interpretation, which is related
to the program schema by the derivatives of chapter 5. This is made
straightforward because the relational calculus can describe induction
rules and schemas in the same language. Having shown the correctness
of this initial solution, the process is repeated for each of the
subsidiary relations until a schema is obtained whose interpretation

is related immediately to the target programming language.

In parallel with this refinement of control and function is a
process of refining the data structures of the douwains of interpretation,
until we arrive & acceptable structures in the target programming language.
Chapter 6 gives axioms for many commonly occuring data structures and
chapter 7 shows, with an example in 7.1.3, how we can change an '

interpretation based on a certain data.structure to another based on °

representations of the original data structure in the language cf the
new one.

We have also shown in Chapter 8 how to mechanically transform

a recursive program schema to a set of schemas which are not recursive.

125a

This justifies the technique of choosing a recursive schema as an initial
solution to a problem and later refining it into a program which does

not use recursion.

Although the relational calculus provides a convenient
metalanguage in which to work, it is clumsy <in actual application
and we see the main use of the presented theorems being the justification
of less opague versions of them. There is a need to develop the relational
calculus into a language with named selectors, rather than positional
ones and with more familiar programming constructs than the relational

constructs used here.

High level languages have many constructs, subroutines, loops,
macros etc., which aid in the abstraction of operaticns and the flow
of control, but few which allow the abstraction of data structures
and which separate them from a particular representation, and we

foresee a need for language development in this area.

We have left several areas unexplored. We have not attempted to
formalise an important transition in program development, that from
a non-deterministic form to a deterministic one involving back-
tracking, Floyd [1967b] , we have not tried to apply the formalism
to proofs about parallel programs nor have we tried to extend the
formalism to deal with such constructs as functions of higher
types, call by name parameter mechanisms or dynamic changes to

control or data structures.

 We foresee the development of interactive systems to aid .
program development , calling upon theorems presented above to
aid in the justification of certain steps, or in some cases
to mechanically carry out appropriate substitutions, derivations etc.,

and ultimately limited program synthesis.

10

126

REFERENCES

de Bakker J W (1971) Recursive procedures, Mathematical Centre

Tracts 24, Mathematical Centre, Amsterdam.

de Bakker J W, and de Roever WP (1972) A calculus for recursive

program Schemes
Automata, Languages and Programming ﬁb 167-195 (ed M Nivat)

‘North Holland/American Elsevier.

Burstall R (1969) Proving Properties of Programs by Structural

Induction,

Comp Journal 12, p; 41-48

Conway J H (1971) Regular Algebra and Finite Machines, Chapman and
Hall. '

Cooper D C (1969) Program schemeequivalence and second-order
logic. -
Machine Intelligence, Vol 4 pp 3-15 (eds B Meltzer and D

Michie) Edinburgh University Press.

Darlington J and Burstall R M (1973) A System which automatically

Improves programs. Experimental Programming Report No. 28.

School of Artificial Intelligence

University of Edinburgh.

Djikstra E W (1960) Recursive Programming
Num Math 2 pp 312-318

Djikstra E W (1969) Notes on Structured Programming
Report EWD 249. Technische Hogeschool, Eindhoven, Netherlands.

Floyd R (1967a), Assigning Meaningé to Programs.

Proc Sym in Applied Math 19
Mathematical Aspects of Computer Science (Schwartz J T ed)

Amer Math Soc pp 19-32

127

Floyd R (1967b) Non-deterministic algorithms
JACM 14 pp 636-644.

Hitchcock P and Park D M R (1972) Induction Rules and terminaiion
proofs. |
Automata, Languages and Programming pp 225-251 (ed M Nivat)
North Holland/American Elsevier.

Hoare C A R (1969) An Axiomatic Basis for Computer Programming

CACM 12 pp 576-583.

Hoare C A R (1971a) Proof of a Program: FIND
CACM, vol 14, no 1. pp. 39 - 45

o~

Hoare C A R (1971b) Procedures and Parameters: An axiomatic
approach, Symposium on Semantics of Algorithmic Languages (ed

Engeler)

Springer-vVeriag Lecture Notes in Mathematics 188.

-

Hoare C A R (19723) An Axiomatic Definition of the Programming

Language PASCAL - Second Draft. (unpublished notes)

Hoare C A R (1972b), Dijkstra E W, Dahl O - J, Structured
Programming
Academic Press. New York 1972.

Jones C B (1972) Formal Development of Correct Algorithms: an
Example Based on Early's Recogniser. in Proc., of an ACM Conference

on Proving Assertions about Program, Las Cruces, New Mexico, Jan. 6/7,

1972, pp. 150 - 169.

Knuth D E (1968) The Art of Computer Programming vol 1 Fundamental
Algorithms Addison-Wesley. /

~ Keisler (1971) Model Theory for Infinitary Logic,ch 10

North Hollav.j.d Ffublishing Company.

128

McCarthy J (1962) Towards a Mathematical Science of Computation
Proc IFIP Conference 1962
North-Holland.

Manna Z and Pnueli A, (1970) Formalisation of propertiec of

functional programs, J ACM 17, pp 555-569.

Manna Z and Waldinger R J (1971) Towards Automatic Program

Synthesis
CACM 14 no 3 pp 151-165.

Milner R (1971) An Algebraic Definition of Simulation Between

Programs

Second International Joint Conference on Artificial
Intelligence pp. 481 - 489
British Computer Society.

Milner R [1972] Implementation and Applications of Scott's Logic

for computable Functions. in " Proc. of an ACM Conference on
Proving Ascertions about Programs, Las Cruces, New Mcxics, Jan. §/7,

1572, pp. 1 - 6.

Park D M R (1970) Fixpoint induction and proofs of program
semantics, Machine Intelligence, Vol 5 pp 59-78, (eds B
Meltzer,D Michie)

Edinburgh University Press.

Paterson M S and Heﬁittc E (1970) Comparative Schematology
Project MAC Conference on Concurrent Systems and Parallel
Computation.

ACM pp 119-128.

de Roever W P (1973) Operational and Mathematical Semantics for
Recursive Polyadic Program Schemata.
Mathematical Centre Report

Amsterdam (to appear).

Scott D, and de Bakker J W, (1969) A theory of programs,

unpublished notes, IBM Seminar, Vienna.

129

Scott D (1972) Data Types as Lattices (unpublished notes).

Tarski A (1955) A lattice-theoretical fixpoint theorem and its

applications

Pacific J of Maths 5 285-309.

Walk K et al (1969) Abstract Syntax and Interprctation of PL/I.

IBM Laboratory Vienna
TR.25.098

Wirth N (1971a) Preogram Development by Stepwise Refinement

CACM, volume 14, No 4. pp. 221 - 227

Wirth N (1971b) The Programming Language Pascal.

Acta Informatica 1, pp 35-63.

	WRAP_Theses_Hitchcock_1974.pdf

