
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/78807

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://wrap.warwick.ac.uk/78804
mailto:wrap@warwick.ac.uk

1

1\1.::' APPR01).CH TO FOI~HAL PJ::ASONING ABOUT PROGRAHS

Department of COrilputcr Science,

Univ(;>r c; i ty of \.~;Jn,7icl(~

C~vcntry, Engla~d

° sublnlo tte-d for the degre~ of Doctor of l)hilosophy.
A dissertat~oT1 . -

June 1974.

~,----===-::: ..

· IMAGING SERVICES NORTH
Boston Spa, Wetherby

West Yorkshire, LS23 7BQ

www.bl.uk

PAGE NUMBERS CLOSE TO

THE EDGE OF THE PAGE.

SOME ARE CUT OFF

2

PREFACE

I would like to a~kn01vledge the heIp A.nd encouragement of my

supervisor, David Park. Chapters 2, 3, 4 and 5 are an extended form of

,,,rork done jointly with him, ,,,hich "Tas first published in Hitchcock and

Park [1972J.

I would also like to thank the Science Research Council for aL1

industrial studentship and my employers, IBN UK Laboratories, for

support under their Adv.::nced Education PrograrrJIle.

Finally, special thankJ are due to my wife and son, whose patience and

co-operation have been of the greatest help.

3

ABSTRACT

This the.sis presents a formal apparatus which is adequate both to

express the termination and correctness properties of programs and also

the necessary induction rules and axioms of their domains. He explore

the applications of this formalism 1;vith particular emphasis on

provicliug a basis for formalising the stepwise ,development of programs.

The formalism provides, in some sense, the minimal extension into a

second order theory that is required. It deals ~vith binary relations

be nye en t up les '].11d the nuni mal fi xp oin ts of monotone and con tinuous

functionals on them. The correspondence between common constructs in

programming languages and this formalism is shown in an informal

manner.

To shm·, correctness of a program it is necessary to find an expression

for its termination properties which will depend on the induction rules

f"or the data structures of the program. We show how these rules may be
/'

formally expressed and manipulated to derive other induction rules, and

give a technique for mechanically deriving from a schema an expression

for its domain \-Jhich may be expressed in t:erms of given induction rules

by the manipulations referred to above.

We gi ve axiomatic defini tions, including an induction rule, for some

domains ,yhich commonly occur in prograrn.3, these being fini te sets,

trees, structures, arrays with fixed bounds, LISP S-expressions,

linear lists, and the integers.

In developing a program one may start by defining the basic operations

and domains in ru1 axiomatic manner. Development prc~ecds by finding

satisfactory representations for this domain in terms of more specific

domains and thei r operations, tL.'1 ti 1 finally one has domains which are

representable in a target language. We discuss what is me~'1t by a

representation in an attempt to formalise this technique of data

refinement, and also mention the less general notion of simulation

which requires that a representation is adequate tor a particular

program to work.

A program may have been developed in a recursive manner and if the

4

target language does not contain recursion as a basic primi tive it will

be necessary to simulate it using stacks. \~e give axioms for such

stacks, and give a mecha!1ical pro'cedure for obtaining from any

recursive program, a flmvchart program augmented by stacks, \vhich

simulates it.

cmrIENTS

1 IN~RODUCTION

1.1 Objectives and Introduction

1.2 Structure of the Thesis

1.3 Nototicn

2 DESCRIPTION OF THE FORMALISH

2.1 Thp Rp.lrltlon.ql CAlc11lus

2.2 Logical Properties

3 RELATIONS AND PROGRAMS

3.1 Re1ational Forms of Program Constructs

3.2 Properties of Programs

3.3 Examples

Il INDUCTIO~ RULES lillD HELL FOUNDED RELATIONS

4.1 Well Founded Relatic~s

5

4.2 Induction Rules

4.3 Manipulations of Well Founded Relations

4.4 Extension to NUltiple DomaiTls

4.5 Manipulations of Well Founded Compound Relations

4.6 Proofs

TERHINATION

5.1 Introduction

5.2 Definitions

5.3 Lemmas

5.4 Termination Theorems

5.5 Hore About. Goodness

5.6 Extension to Hultiple Recursions

5.7 Examples

6 INTERPRETATIONS

6.1 ~·!any Sortedness

6.2 Axioms for Data Structures

6.3 Appendix

6.4 Extensions to Hoare's Axioms

7 REPP£SENTATION OF DATA

7.1 Representations

7.2 Simulation

6

8 CHANGES TO CONTROL STRUCTURE

8.1 Introduction

8.2 Labe lIed S tc?.cks

RECURSION REl-DVAL

8.3 Informal Introduction to the Theore~

8.5 Extension to Nl:ll tip Ie Recursions

8.6 Examp les

9 CONCLUSIONS

10 REFERENCES

7

1 INTRODUCTION

1. 1 Objectives

The aim of this thesis is to introduce a formalism which is

capable of describing the correctness, terminatio!L

properties, equivalence etc of programs and also is capable

of specifying the necessary formal assertions about their

data domains, principally the induction axiom. We then use

thj s to dt::; ri vc u3cful theorems ab out prograUls. r arL o[uur

motivation has been to provide a formal basis for the

techniques of structured prograrnrrdng, Dijkstra [1969J, Jones

[1972J, Hoare [1971aJ, Wirth [197laJ, and the theorems we

have derived have been slanted towards this application.

We differ from existing formal appronches in that the

formalism provides, in some sense, the mi~im3l extension

into a second order theory that is required for au!'

purposes. The re 1ationship to 0 ther formal approaches and

the limitations of the formalism will be discussed briefly

later.

1.2 Structure of the Thesis

The formalism is introduced in Chapter 2 where its position

with respect to other formal systews is also discussed.

Chapter 3 shmvs hmv this formalism may be used to describe

flowchart and equation schema in terms of their constituent

blocks, and gives the relational form of comn10nly occurring

constructions in progrannning languages. We also show the

form of common, assertions about programs.

To show the correctness of a program it is necessary to find

an expr8ssion for its termination properties which will

depend on the.induction rul~s of the data structures of the

progrmn. ·'Chapte1'.' 4 shows how induction rules may be

expressed and manipulated, and Chapter 5 gives a technique

for mechanically deriving from a schema an expression for

its domain. This can be re lated to the inc LC ti on rule 0 f

8

the domain of interpretation by the manipulations of Chapter

Chapter 6 considers int~rpretations 1.11 Tilore uetail, both the

non-constructive interpretation of schet:.1a blocks by means of

the first order predicate calculus, and the expl-i. ::it

specification of basic operations and data structures by

means of axioms. The chapter owe~ milch to the work of Hoare

[1972aJ in the axiomatic definition of Pascal.

Ch8.pter 7 formalises the process of the refinement of data

and introduces a simulation theorem. The idea of simulation

is carried further by ChapteE...! \vhich presents procedures

which mechanically derive from recursi~le programs, flowchc:rt

programs augmented by stacks \vhich simulate the original

program.

] .:3 Not :1 t i on

The following notation and the associated faITiliar theories

v!ill he assumed.

1.3.1 First Order Predicate Calculus

True ~ truth values

False}

--, negation

& conj unction

v disj uncti on

- equivalence

->- imp lication

a existential quantifier

V uni versa1 quantifier

1.3.2 Set Theory

c

c

the empty set

ncmbe rs hi p

proper contajnment

con taint:.1cn t

u

o
x.

{x Ip (x)}

1. 3. 3 Tup les

<>

o
D

9

tmion

interSection

direct product

the set of all x such that p (x) ~ implicit

set definition

tne zero tuple denoted by A

the set of tuples from D of leneth

n

the set whose only member ~s the

zerc tuple
m

an clement from D

concatcnntion b~tween tuples

... 1 .' ,f1., _ <' -' ,ul,···Um/ ,e1,···em> - Gl,···um,

el,···cn >·

1.3.4 Relations between tuples

\Je. include here a surr..mary of the notaticn introduced

in Chapter 2.

t5 {<a, b> I a E D
m

& b E nn}
m-+n

n ~
m-+ n

E = { <a, a>1 a E DID}
m-+ m

E. '= { <a, a. > I a = <a1 ,. · · am> E
m -+11 1

}l = {< a, ,,> I a E n m}
m -.~ 0
-1

R = {<b, a> I <a, b> E R}

universal relation

empty relation

identity relation

n
ID

}

selector relation

nullifier relation

inverse

R; 5 = f< a , c> I lIb < a, b > E R & <b, c> E 5}

composition

[R, 5] o {<a, b c>l<a, b> E R & <a, c> E 5}

concatenation

[RI5] =·{<aoc, bOd>!<a, b> E R 8: <c, d> E S}

direct product

The ~omain of R ~ {<a, A>I~a, b> E R} = R; N

The ranr,e of R = {<b, A>\<a, b> E R} = R-
l

; N

10

1.3.5 Substitu~ions

¢ (a/x) is the result of substituting a for all free

occurrences of X in o.

<P (a I! X P 0'2 / X 2 ••. on /X It is the re s u 1. t 0 f

siffiultUJ.Leously substituting vI forxl ' •••

in ~.

a for X
n n

11

2 DESCRIPTION OF THE FOR}~LISM

The formalism is a relational calculus based on binary relations

bet\veen tuples which \-Jhen \>iC talk about schema may be identified

with the relations Vlhich hold between state vectors ac.ross

program blocks. The syntax of the system is given using an

infonnal BNF gralmnar, and the context sensitive parts of tl'l13

syntax fo1lm.;. The semantics are explained using a set theoretic

model of the system, rather than by axioms, assuming an

arbitrary, non-empty, interpretation. Some of the operl3.tions on,

and bet\veen relations, have direct analogues in prograrrnning

languages. These will be pointed out in an informal manne r in

Chapter 3.

2.1 The Rclationfll Ca;lculus

The interpretation of a term T is determined by a

structure £) = <D, f> ,,,here D is knm·.rn as the domain

of interprcta.tion arid £ is a function from the sct of

typed relation variables to the set of binary

relations bet\'Jeell tuples from D, such that f (A)
m-+n

~ D
m

x Dn. The interpretation of T by a s tructure ~

is denoted by I (T ,&)). \.Jc will also talk of the

structure ~ as being an interpretation of T. We

define g) [R/ XJ to be the struc,ture <D, f> where f (Y)

= if Y = X then-R, else f (Y) with the obvious extension

for mUltiple rep1acementbo The type of R must be the

same as that of X!

2.1.2 !yped Relation Variables

<:typed relation variable>::= A I B
m-+n p-+q

l., e as s ume t hat an ill fin i t e set 0 f dis tin c t

identifiers cxi~t. I (A, ~)
~ ,-)- n f (A).

m+n

m,n ,p. q
;?; 0

12

m n
It is some relation between tuples from D and D ,

"'hose elements are denoted by:

«d) ••• d >, <c
1
••• e ». _ m 0 n

We ide?tify the special case of relations of type m ~ 0,

m > 0 wit~ predicates or sets. A m + 0

{<a, A>IX<a)} in place of the pn!dicate

X~xl' ••. x). If the domain D is not empty there are
III

JUSL L\'JO 0 i 0 relaLions ~·Jhil:.h 111::,\1 1,,:.-........... .; ~'" '-- cOflsiJereu as

truth values, true is identified Hith <A, A> and

false with the empty set of type 0 + o.

2.1.3 Typed Re.lation Consta.J1ts

<typed relation constnnt>::=

<uni ve rs al rc 1 :1ti on> ! <empty re 1 ati on> I
<identity relation'> I<selector relation>1

<nullifier relation>

2.1.3.1

2.1.3.2

2.1.3.3

2.1.3.4.

Unj. vers al l~e lDtio!1

<universal relation>::= U m-+n
J (~, i}) = { <a, b> I a E D

m
& b E n11

} m-rn

Empty Relation

<empty re1ation>::= n
m-+n

I (n, po) = ~
ID + n

Identity. Relation

<identity relation>::= E m-+m.
o) m I (E,~ =: {<a, a> I <a ED} m -+ lQ

Selector Relation

<selector relation>::~ E. 1 sis m
1

I!1 -+ 1
J (E .• ~) = t <a. a. > I a = <a

1
••• a > E DID}

m +1i 1 m

2.1.3.5

2.1.4 Terms

13

This operation corresponds to ~he

selection of variables from a state

vector by identifiers.

Nullifiers

<nullifier relation>::= N
m-+Cl

I (N i)) = {<a, A> I a E nm}
m -+' 0

We will use the nullifier relation to

stand for the complete domain of

interpretation. We will often use the

prefix is- as a mnemonic device for the

indication of such relations'; eg is~

integer, is-st~ck, is-binary-tree.

<terms>: :=

<typed relation variables>l<typed relation

constants> I

<negated terms>l<inverse terms> I
<composition terms>l<concatenation terms> I
<product terms> I <union terms> I
<intersectionterms»<~-terms>

To specify context sensitive restraints we assume,

for this section, that A is a term of type m -+ nand

B is a term of type p -+ q.

2.1.4.1 Negated Terms

<negated term>::= <term>'

A' is a term of type m -+ n. m-+n
1 (A·.,~) = {<a, b>l<a, b> ~ I (A,S')}

m-+n m-+n

2.1.4.2

2.1.4.3

2.1.4.4

14

Inverse Terms

. -1 <inverse term>~:= <term>
-1

A is a term of type n ~ m
m~n

I (A~l ~) = {<b, a> I <a, b> E I (A,~)}
m~n m~n

-1 The special case of A corresponds to
ill -+ 0

the introduction into a program of a set of
-1 h· d . constants, and N to t e 1ntro uct10n

m "7 0

of new variables into the state vector,

possibly by declarations in inner blocks.

Camposition Terms

<composition term>::= <term>; <term>

A : B is a term of type m ~ 0. iff n
m ~'n' p ~ q
= p.

I (A ; B,~) ={<a, c>I(3b) «a, b> E
m~nn~q

I .(A,~) & <b, c> (I (B~iJ? }

This operation is basic to schemas and

progranuning languages. It may appear as

the sequencing of statements or as

functional composition, eg f (g (x» has

the relational form G: F if F Q 1 1 ~1,1.
are relations corresponding to the

functions f and g.

Concatenation Terms

<concatenation term>::= [<term>, <term>]

[A , B] is' a term of type m ~ n + q
m~np~q

iff m = p.

I ([A B]~) = {<a, b n c>l<a, b>
m ~ n'm -- q ,

E I (A,D) & <a,c .> E I (B,£) }

This operation is com~lementary to

selection and is used both to build up

2.1.4.5

2.1.4.6

2.1.4.7

15

state vectors and to express conditional

statements or case statements.

Product Terms

<product tern>::= [term I term]

L A
m -+ n

n + q.

B J is a ~erm of type m + p -+
P -+ f!

I ([A I B J !'ogJ) = {<: .3 n c, b n d:> I
111"711 p-~q

< a , b > E I (A ,<iJ) & < c , d> E I (B,~))}

This operation can also be specified

using selection and concatenation, eg

Union Terms

<union term>::= <term> U <term>

A u B is a term of type m -+ n iff
m'+n p-rq
p = m, q n.

I (A u B Sj)::: {<a, b> i <a, b:> E I
ill -r n m -+ 'n

("A, f») v <a, b> E I (B, E))} ~ I (A, 8) u

I (B, ~)

\-Je use the Ulll.On operation to separate

alternative paths in a program. For

conditional expressions, case statements,

the domains of the sub terms are disjoint,

but we also allmv non-deterministic

programs where the subterms may overlap.

Intersection Terms

<intersection term>::= <term> n <term>

A n B is a term of type m -+ n iff
m-+n p-+q
p = m, q n

I (A n B.,:J) = {<a, b..--!<a, b> E I
III "7 11 m -+ on

(A, ~~) & <a, b> E I (B,D)}

2.1.4.8

16

lJ-terms

<lJ-term>::= lJ. <typed relation variable
l.

list> «term list»

<typed relation variable list>::=

<typed relation variable> I
<typed relation variable>

<typed n:~lRtion variable list>

<term list>::= <term>l<term>, <term list>

If Al ••• An is a term list and Yl ••• Yn is

a typed relation variable list of the

s arne length n, if thf: type of each Yj , I

s j ~ n, is the type of ~ and if 1 sis
J

n , th p n 11 i y 1- • • Y n (A I ,. • • An) i sat e rm

of the type of Y ••
l.

The semantics of ~-terrr~ are given in

section 2.1.5.

2.1.5 Well Formed Terms

<well formed term>: : = (term).

A term A is well formed, if for all 11-terms of the

form lJi Y 1· •• Yn (AI' ••• An) occurring as sub terms of

A, each~, I s k S n, is syntactically monotone in

each Y ., 1 s j S n.
J

An occurrence of a variab Ie X in a term T is free if

it is not part of a subte.rm of the form 11. ••• X •••
1.

(...) .

An occurrence of a vari ab Ie X in a term T is bound

if it occurs in a subterm of the form llo ••• X
1.

(...) .

17

A term A is syntactically monotone 1n X if each free

occurrence of X in A occurs within an even number of

subterms of the form B' •

A term A is syntactically continuous 1n X if

i No free occurrence of X in,A lies within a

subterm of the form B"' 0.

ii No free occurrence of X in A lies within a

subterm of the form ~.YI ••• Y (AI, ••• A) with
1 n n

some A. not syntactically continuous in some
J "

Condition (ii) arises since "there are terms, say

L (X, Y), where l' is monotone in Y and con tinuous in X

such that the term ~y (1' eX, Y» is not continuous in

X. "

Consider l' (X, Y) = (U; (Y U A)')' uX
1 -r- 0 I -+ 0

This is syntactically continuous in X and monotone in

Y.

lJY (1' (X, Y» =X if X u A :f N

== N ii X u A = N

Let this be F ,'X) •
F (X) is not continuous in x.

Consider sets x~ such that x. 0: A). and UX. == A '.
~ 1. I- .1"

These may be found for any interpretati6n"by a

structure which has an infinite domain, then U F (x.)
• 1

== A 0' ~ F (U x.) = N.
• l.
1.

1.

If the ~-term is well formed then I (V • YI ••• Y (A"
1. n ~

•.• A), ~) is the i' th component of the minimal
n

fixpoint of the functional I «AI' ••• An)' fl) • This

functional F~ ••• An is from An n-v~ctor of relations

to an n-vector of relations such that their j'th

· ,

".,

18

components are of type Y., and is defined by:
J

FA A «Rl , R2 ••• R » = <Sl' ••• S >
1· · · n n

where Si = I (~i' [Rl/Yl , R2 /Y2 , Rn/Yn])

Vectors of relations form a lattice with the

operations~, n. U defined cornponentwise,and since in

a well formed term the functional rA ••• A is monotone

the fixpoint. of this functional alwa9s ex~sts. Tarski[1955]

.It is important not to confuse the algebra of vectors

with the direct product operator defined earlier, ie

~ (D) x It (D) is not isomorphic with m -+ -n p -+ q
~ (D) where ~ (D) is the set m+p-+n+q m':>-"n of m -+ n

relations over D, eg with m = n p = q

1 ~ 1 (D) = {4" {< a, a> Y} , 1. ~ 1 (D) x

1 and D ~ { a }

1 f 1 (D) =

<4>, ~>, <<P', {<a, a>}>,'<{<a, a>}, <1» <{<a, a>}, {<a,

a>}>

whE:reas 2 ~ 2 (D) = {¢,{ «a, a>, <a, a»}} which has

fewer elements.

All the functionals corresponding to scheru$ are

continuous and we will show in the next chapter how

the fixpoint operator can be used to characterise the

programming constructs of iteration a,d recursion.

2.1.6 Atomic For~ul~

<atomic formula>::= <well formed term> £ <well formed

term>

An atomic formula is satis fied by a structure if the

inclusion holds be tween the interpreted terms, ie IJ F

(J ~ T <=> I (cr, D) ~ I (1', ~) •

2.1.7 Asser~ions

<assertion>::= <atomic formula set> ~ <atomic formula

set>

<atomic formula set>::= ¢ I <atomic formula>/<atomic

19

formula>, <atomic formula set>

An assertion 4>l-lfJ is valid iff every· structure which

satisfies all of 4> also satisfies all of lfJ.

2.2 Logical Properties

The logical properties of the relational calculus can be

divided into first order and second order properties. Given

an interpretation one can consider the corresponding

interpretation for the pure predicate calculus in which (m ~

n)-ary typed relations are replaced by (m + n)- ary relations

(relations in the normal set theoretic sense).

2.2.1 First Order Properties

Theorems are stated without proofs which are sketched

in Hitchcock and Park (1972).

2.2.1.1

2.2.1.2

Theorem

There is an effective method which, given

an atomic formula (T ~T of the relational

calculus, not involving ~-terms, provides

a sentence Fa, L in the corresponding pure

first order predicate calculus with

equality which is satisfied precisely by

those interpretations which correspond to

those s atis fying O::'L.

Theorem

There is an effecti ve method which, given

a sentence F of the pure first order

predicate calculus with identity with at

most m variables, provides an atonuc

formul a of the form neT F' m-ro-
contalnlng only re1ati'1n variables of the

type n ~ 0, which is satisfied by

20

precisely those interpretations which

correspond to those satisfying F.

2.2.2 Second Order Properties

2.2.2.1

2.2.2.2

Theorem (Park)

There is an effective method for

translating atomic formulae involving ~­

terITS into the second order predicate

calculus which preserves satisfaction in

the sense of the previous two theorems.

The proof may be found in Park [1970J.

Theorem (P ark)

There exist sentences in the second order

predicate calculus which ca~not be

translated into the relational calculus,

in the sense of 2.2.2.1.

The proof is along the following lines.

The property that a domain is finite can

be expressed as a sentence in the second

order predicate calculus.

,3X(Vx3y.X(x,y) A

(VxVyVz.«X(x,y) A X(y,z) ~ y=z) A (X(x,z) A X(y,z) ~ X=y)))A

Vx.-.X(x,x))

There exists no set of assertions ~,

finite or infinite, such that an

interpretation satisfies ¢ iff its domain

is fini teo

This is known to be true for a set of

first order assertions. If the assertions

contain free relation variables then these

can be set to nand eli::ri.uated,

2.2.2.3

21

since 'ole must be able to assert the

finiteness of any structure. It can be

shown that for any l1-term~ say l1X F (X)

,·;rhich contains no free relation variables

that (8n) t- ~X F (X) = Fn (0). This

m8 dJ.1S tl! at any set 0 f as s e rtions '\>Jhi cll

does not contain free relation variables

can be replaced by a first order set of

acsertions.

Theorem (P ark)

There exist assertions involving

syntactically monotone l1-terms which

cannot be expressed by assertions

involving only syntactically continuous 11-

terms, such that Loth assertions are

satisfied by precisely the same set of

structures.

The procf 1S sketched below.

Syn tacti cally continuous ll-te rms are

representable in the language uAl1w since
00 n

11 X F (2Y = U F (n).
n = 0

A result from logic, Keisler [197]J,

states that '\VeIl foundedness is not

2.2.2.4

22

representabJe in LI.I)1 w

We show in chapter 4 how it is possib Ie

to assert well foundedness using

syntactically monotone p-terms.

Theorem (Park)

There exist sentenceS In V:.\ W 'vlhLCh

cannot be translated into the relational

calculus, in the sense of 2.2.2.1.

The property that a domain is fini te c~n

be expressed as a sentence 1.n Lul - uJ, and
.1.

the proof ~s then along the lines of 2.2.

2.2 •.

2.3 Formal Reasoning

2.3.1 First Order Reasoning

.. To show the validity of any assertion, not

involving P-tenns, we show the vali.dity of the

corresponding predicate calculus formula.

That is we assume <1>1 I- ¢2 whenever [(1\
a~T) E<1>l

FaT -+ (acT,AE,I, Fa TJ is valid in the pure
, - J '+'2 '

first order predicate calculus. F is given
a, T

in 2.2.1.1.

ii From <1>1 t- ¢2 and ~I, <1>2 I- ¢3 we can deduce lP'

<1>1 I- <1>3'

iii For any relation va"ri'ab Ie· X , clOd any
m-+n

(in -+ n) ary term T, we can deduce from ~1-1jJ that

¢ (T IX) t- VI (T IX), ,,,here ¢ (T IX) ~ ~) (T Ix) are

the~result of replacing all free occurrences

of X by T, after a suituble alphabetic change

of bound relatiun variables in <1> and ~J.

2.3.1.1

23

Derived Rules

First order reasoning in the remainder of

this thesis will be given informally,

rather than by following the fo~~al

reasoning outlined above. He list some

first order results wh1ch will be found

useful.

i I- A; E = E; A = A

ii 1-. (A; B); C A; (B; C)

iii I- (A') 1 = A

jv I- (A-I) -1 = A

I- . (A t)-l (A-I)
,

v =

"
vi 1-. n 1,5

vii I- A ~ U

viii I- A; n n

x 1-.' [A, [B, cJ J [[A, BJ, C]

xi. I- [A; Blc; D] :;: [Alc]; [BID]

xii (A; B)-l -1 -1
I- = B ; A

xiii I- (A u B)I. A'" n B"

X1V I- A; (B u C) = A-, B u A; C

xv t- A; (B n C) ~ A; B n A; C

A~lA ~ Et- A;(E nc) = A;B nA; C

2.3.1.2

'24

xvi ~ (A; m ~:o?t s (A; N)t U A; X

A-1;A ~ E ~ (A;X')' = (A;N) , u A;X

-1 The atomic formula A ; A ~ E asserts

that the relation A is single-valued.

Con ven ti ons

~ Elision of parentheses

A; (B; C) :: A; B; C

[A, [B, C]] :: [A, B, C]

ii Composition semicolon will be

omitted and concatenation used.

A; B E AB

iii Type indications will be drofped

whenever possible. The rules

governing well formed terms will

us ually enab Ie them to be r~s lured.

iv Strictly the relation constants E,

n etc should be dis tinguishcd by

types. This will not be done. Two

occurrences of E in a term may be

'of different types.

2.3.2 Secund Order Reasoning

The rules are presented for well formed ll-terms of

order n,

i Fixpoin t Property:

1- lli Xf · . Xn (T1'" "Tn) = 1"1 ('lli Xl' • Xn (-r 1,···

T), •• , II Xl" • X" (T"." T » n nL n
I ~ i S n.

ii Minimality Property.

2.3.2.1

a

b

c

25

and~, ¢ (Y1, ••• Xn) I- ¢ (T l (Xl ••• Xn), •..

T (XI ••• X))
n n

then ~ I- ¢ (lll Xl'· .X
n

(T l , .•• L~), •••

~ . Xl · ." · X (T' l ' · · · T)) n n n ,

provided that each atomic formula in ¢ has the

form a1 £~2' with~l syntactically continuous

in Xl, ••• X
n

, and a
2

syntactically monotone in

Xl ••• 4n , and ~l, •• Xn are not free in ~.

~6e validity of this extended form of Scott

Induction, Scott and. de Bakker [1969J, is

shown in Hitchcock and Park [1972J, together

with a counter example \-;rhen cr 1 is allowed to

bc ~yntnc~icnlly mo~otcn2.

Derived Rules

i Substitutivity.

If T 2 is the term obtained from T 1

by substituting a relational

variable Y for an occurrence of a

variable X .in a context where

neither is boued then:

X £ Y I- L 1 £ T 2 or T 2 £ T 1

depending on whether the

occurrence of X is wi thin an

even or odd number of

complemented subterms.

X=Y~L =1"
2 1

ii Elimination of Hultiple Fixpoints.

. '
'. -

26

iii Fixpoint Induction.

{or. (°
1
I Xl ' ••• ° IX) ca. 11 :::; 1. :::; n}

1. . non - 1.

.r- 11. Xl ••• X -(T 1 , ••• T) c ().
1.. n l. n - .I..

Derivations of the above rules may be

found in Hi tchcock and Park [1972J.

2.3.2.2 Con ven ti ons

Tn s i ttl A. ti. ems vJhe re no c.on fllS ion can

arise we 'vi 11 often use 1-1. X .•.• X to .]. 1 n
abbreviate the term]Ji·~l··· ~n (T 1)·' • Tn)·

2.4 Other formal techni5.l~

Hanna and Pn'Jeli ~1970] 3dopt an essentially first order

approAch. They obt.ain fr0m a rro~r~m~ two f1 rst order

sentences vlhich con tain unspecified predicates. If Floyd

assertions are" guessed at" and used to replace the

unspecified predicates in the first formula, then a first

order sentence is obtained whose satisfiability implies the

partial correctness of the program. The termination

properties of a program are given by the unsatisfiability of

the second first order sentence. To show this

unsatisfiabili ty it is usually necessary to <l3SUme a second

order induction axiom for the domain of interpretation.

This approach is first order in the sense that once

predicates have been "guessed at" first order formula are

obtained. There is 1-}mvever an implicit quantification of

the unspeci fied predi cate sYIT'bols. The' fact that the

termination properties of a program a.re not partially

rlecidable shmvs that t.h~ problem c:.qnnot be reduced to the

proving of a first order theorem. The existence of a second

order induction rule is required •

27

Cooper [1969J uses the second order predicate calculus ~nd

makes explicit the implied quantification of unspecified

predicate symbols, but says not.hing about the necessp..ry

induction rules for proofs of termination.

The approach we have taken follows closely that of Park

[1970J, but is expressed in a relational form suggested by

Scott and de Bakker [1969J. Park [1970J shovls that some of

the fJn~~'icat:.es corresponuing to Floytl dssertioilS must havQ

additIonal fixpoint properties and that fixpoints cm be

used to express induction· rules.

We have not gone as far as the more sophisticaied languages

of }1ilncr's LCF [1972J and Scott's Lambda [1972J which have

higher types but which use only continuous l1-forms and GO

are not capable of expressing and TIl3.nipulating inducticn

rules and hence of t2.lking abo1..!t terIPine.tion p!'opel:ties.

We must also mention the similar formalism of de Bakker

[1971J, de B3kker and de Roever [1972J which is conLl_Tled so

far tu monadic re1ations~ to a more restricted class of

operations on them, and to continuous 11 -forms.

De Roever [1973J describes a polyadic relational calculus

which does not con tain monotone l1-terms, but which 1S

otherwise essentially similar to ours. Whereas we have

derived our first order reasoning via translation to the

predicate calculus, de Roever gives -axioms for first order

reasoning.

28

3 RELATIONS AND PROGRAMS

3.1 R~lational Forms of Program Constructs

Our development process proceeds by postulating ~ program

which is composed of the familiar constructions below. TL:!

program is not completely specified,blocks of

code may be defined non-constructively by the relation that

holds across them. VI timately we arrive at a program

in a target programming language. The justification of this

final transition requires a semantic definition of the

target language. We do not wish to consider this problem

here, except t.J say that it will be easier to justify the

transition if the semantics are given by axioms rather than

by a mechanical interpreter, eg the Vienna Definition

Language [Walk et al 1969J. For this reason the following

treatment is rather informal.

3.1.1 Assignment

An assignment statement modifies the state vector and

we consider it as defining a relation between the

state vector before assignment, and the state vector

after assignment.

As an example consider the statement a: = f (a, b) in

a program whose state vector consists of the

variables a and b. Assume that 2 ! 1 is the relation

corresponding to the function f. The relation

bet\veen the input state' vector and the first

component of the output state vector is clearly F,

and between the input and the second component of the

state vector, the selector relation E2 , as the

variable b is unchanged. The concatenation operator

is then used to build up the output state vector,

resulting'in the term [F, E2J.

We may prefer to be less explicit about an assignment

statement, or group of statem0nts and define them by.

29

the relation Vlhich holds across them, realising this

re lation mare exp lici tTy at a lmver level in the

deve lopment"

I1cCarthy [1962] gave. axi oms for a con ten ts function

c(u ,~) which gives the contents of location u in the

s ta te ve ctor ~ and an as s i gnrnen t f~,mction a (u, t;z' ,~)

Hhich modifies the value of location 1'1 l!l the state

vt..:ctor .;, to <." ThE! cOllten tf:: fun ctiol1 ~s fflodelled by

E· and the assignment function by [E
l
"". E.; A ••• E]

1 ' l' ill

assuming that the s tate vector has m cOIDponen ts, thllt

u is the name for the i' th component and that the

constant relation A represents the constant ex" 1 -}- 1
The axioms are:

i ~ (u, a (v, a, ~») if u v then (y, else c (u!:)

ii a (v, c (v, ~),~)

iii a (u, ex, a (v, 13, ~)) = if u = v then a (u, cx, c:)

else a (v, S, a (ll, ex, ~))

From the definitions of E. and the concatenation
1

operator it is easily sho\,m that the assertions

corresponding to these axioms are valid, ie

i

ii

iii

.- [E l' ••• E'i; A, ••• Em]; E j

E.; A else E .

if i = j then

1 J

E]
m

E
m-+m

I- [E I , ... Ei;B, •.• Em]; [E I ,

, = if ~ = j then [E
I

, .•• Ej;~'

E •. ,' A, ••• 'R J J.m -
E] else

m

rEI' •.. E!,; A, E] [E I' •.• E .. : B ,
~ . m l'

Note however thllt we Clln deal only with stat~ vectors

of d l..nown length wher·3ds !·icCarthy's axious refer to

those of arbitrary lcneth.

30

3.1.2 Branching

A conditional' statement, if p then Q else R is ,
represented by the term l P, () J u [Po, m->-om.::}:m m-*

R J. The m -* 0 relation P corresponds to the
m-*m
predicate p and acts as a 'filtcr' allO\ving only

arguments vlhich satisfy p to be appJ-ied to Q. The

formalism also allm-ls non-determinate branches, ie

thp dom.:li.n~ of thc-> ~l1b-tprm~ involv(>c1 mAy ()vprlClp.

Case s tatemen ts are an obvious extens ion. He late r ,
usc the equival\2nt 'formulation of [p, EJ Q u [p' , EJ

R.

3.1.3 Co~position

The sequential execution of statcm.enLs is

strnightforu2.rd. If R 3...T1d S arc the relations

holding across t\.,TO statements rand s, then R; S is

the result of executing first r and then s.

3.1.4 Procedares

We will deal here only \vith procedures \\>hich are non­

recursive. They may not access non-local variables

other than those in the parameter list. Recursive

and mutually recursive procedures are dealt with

later.

The declaration of a procedure invoked as a function

reference defines a relation bet~een the formal

parameters of the procedure and the result vector,

provided that \ve allow only access to formal

parameters and local variables in the body of the

procedure. Invocation of the function is the

selection of the appropriate actual parame:ters from

the state vector of the calling program, composition

with the relation representing the body of the

procedure, and then aSS.l.gtlmeilt of the result state

vector.

31

A procedure call differs only in th~t the assignment

of results is made in the body of the procedure to

formal parameters. The procedure declaration defines

a relation between the input parameter list and the

output parameters, those which are modified in the

body of the procedure. Following Hoare [197lbJ these

two types of parameters should be di~tinguished. A

procedure declaration could have the form p (~) (~)

pl'OC Q where x is the list of formal parameters which

are assigned to, and v is the list of formal

parameters which supply values. The form of a

procedure call is call p (~) : <.!:) "lhe re ~ is a lis t

of expresJions and a is a list of variable names.

The relation which holds between the state vector of

the calling program before and after such a staternent

is obtained as follows. The jnput expression list is

formed and c.ompos~d with the body of the procedure,

and the list of variables, ~, enables the correct

final state vector to be built up using the

concatenation operCltor. This is essentially Hoare's

value and result model. We cannot handle calls by

name.

As an example consider a program with variables a, b,

c and a procedure declaration p' (x, y) : (y, z) Q.

The relation which holds across the statement call p

(a, b) : (b, c) is given by [[E
2

, F,3] Q, E
3

J.

Hoare's restriction that the actual parameter list ~

contains a disjoint list of variables is essential.

The simultaneous assignment of two results to the

same location is not defined. ,However we do not have

the restriction that none of the variables in a occur

in e. This arises in Hoare's work from trying to

identify mathematical variab les, which have the sarne

value whenever they occur in a formula, with program

variables "lhose values change. This is only possible

if the variables are not nssigned ~o.

.32

Since we regard the procedure body as a relation

between the input and output parameter lists, and

have a call by value mechanism, we circumvent the

restriction that the actual input parameter list may

not contain the same variable more than once.

Consider the example:

p (x) : (v, x) begin x := x +,v

x := x - v
e..lli! ;

Cleully the body of the procedure is the 2 ~ 1

relation E2• Hence ~ p (a) : (a, a) does nothing.

Note that ~ p (a) : (a, a) with a body replacement

IlEchanism as for example ALGOL 60, is rather

di fferen t.

Local variables are introduced into procedure bodies

by the use of 0 ~ 1 relations to extend the state

vector in t:le body of the procedure, or by use of the

concalenation operator to extend the state vector,

depending on ~·;rhether the local 'lariab Ie is

initialised or not.

3.1.5 Iteration

A simple iterative form is the program construct

while B do Q, this may be represented as a flowchRrt.

y

Q

_------------ _____ A

N

y.

I
~

~______ C

33

The relational expression for this loop is obtained in

the following manner. Let X be the relation between

the points marked A and C in the flowchart.

We can then trace our way round the loop a~d obtain

the equation: ,
X = [B" , E J u [B, QJ; X

The solution which characterises this loop is given

by the minimal fixpoint, ie ,
II X ([B , E J u [B, QJ; X) ,

3.1.6 Flowcharts

The process shown for obtaining the relational form

of a loop extends to any flowchart, and hence tu

languages which include goto statements and·labels,

but not label variables. Sufficient variables Xl .•.

Xn are chosen such that there is at least one

occurring in each cycle, and a set of n mutually

dependent equations is produced.

3!~

Xl = [A), EJ U [A, EJ X
2 ,

X2 = B; [C-·, EJ :XI U B; [C, DJ X2

f
,~

X
1

and the relation across this program fragrl1ent is given

by

3.1.7 Recursion, Equation Schema

We treat recursion in a sinular manner to iteration.

A variable Xi is associated vlith each recursive

procedure or function and equations simi lar to those

above can be obtained.

eg, f (xl' xL) = if P (xl) then a (xl' x)
2

else g (xl' x2 ' x)
2

g (x
l' x2 '

x
3

) - if p (x
3

) then f (h (xl) , x
2

)

--- .;-

35

If X and X are the re lations associated wi th
2 ~ -1 3 ..".2 I .

f and g, then \le can "tvr1 te the follmving equations.

Xl = [E
I

P, AJ U [E
I

P " E
I

, E
2

, E2 J X2 ;: g (.X
l

,X:
2

)

~2;: [E 3 P, El H, E
2

J }il U [E I , E2 , t:3 HJ X
2

J = . S (X
l

'X
2

)

and the relation which charact~risct; f is given by:

3.1.8 Limitations

\·le mus t not pre tend that we can des cribe all the

fami liar cons tructs of progralllmir~g languages in this
.....

formalism. We have already ~hown that we are only

ab le to des cr ibe a p arti cular p t ocedure calling

mechanism and so cannot describe the body replacement

rule of ALGOL 60. The formAlism is such that the

number of components of ~he state vector and control

structure of a program must be capable of being

determined statically. This means that we cannot

handle such dynamic changes to the state vector as

the creation of variables in SNOBOL IV nor the

dynamic changes to control structure caused by label

variables or the possibility of passing procedures as

parameters. The lambda calculus based languages, and

procedure variables need relati~ns of higher types

thp~ we allow in our formalism.

It must be remembered however that the formalism was

dave loped to reason about programs and program

s chemas rather than for the defini tion of the formal

semantics of languages. There is still an element of

informa.lity in the transition between relation~l expressions

and their realisation by an actual programming language,

which would bear further investigation.

36

3.2 Properties of Programs

We Ileed to express properties of programs in our formalism.

3.2.1 Correctness

The specification of a program is a,relation between

input and output variables.

If S is the specification of a program and R is the

relation which characterises the program then the

program is partially correct with respect to S, if R

S Sand {s correct with respect to S if R= S.

3.2.2 Termination

The cOID.:lin of a program is the set of values for

which it terminates.

If R is the relation wid ch characterises the program

then the domain is given by R; N.

The program is total if RN N.

Notice that an argument is included in the domain if

at leas t one ,computation wi th that argumen t

terrrinates, not if all computations terminate.

3.3 Examp les

3.3.1 Factorial

This form of a program to compute' factorial is taken

from Hoare [197lbJ.

The progra:n 1S:

fact (r) : (a) begin

if a = 0 then r: = 1

else begin ne~ W; -- -----

-~--

37

call fact (w) : (a - 1);

r: = a * \0.1 .. end

end

call fact (r) : (a)

. The relational form of the body of the declaration is

given by:

F = . VX (A u [E, BXl C) 1 ~ 1
w'i.th the interpretation:

A = {<a, I>}

B = {<a, a-l>1 a>O}

C = {«aI' a2>, a l*a2>1 aI' a2 ~ o}

The~term [E, BX] is of type 1 + 2; ie the state

vector has been ~xtended corresponding to the

declaration new w, the' term BX is a recursive call of

the procedure with argument a-I whose result is

placed in the location corresponding to w.

Let S be the relation

S = {<a, a! > I a ~ o}

We show by fixpoint induction that the procedure is

contained in S.

i A ~ S since o! = 1

ii [E, BS] = {<a, <c l ' ~2>~1 cl = a & (ab) b

& c
2

= b!}

= {<a, <a, (a - 1)!»1 a >01

iii [E, BS] C = {<a, a * (a - I)! > 1 a > O}

= {<a, a!>1 a > O} ~ s

i v A u [E, BS] C ~ S t-' II X (A u [E, BX] C) ~ s.

The specification of the program is:

T = {«aI' a2>, <b
l

, b
2
»1 a

l
! = b

2
&bl = a l }

a-I

- - ---------------------------- --------------- ---- --38-

The relation corresponding to call fact (r)

given by:

P = [E
I

, EI FJ

(a) is

Hence the factorial program is partifilly correct.

3.3.2 Park [1970J

Consider the pair of schemas

G = lll' Xl X2 (A u B X 2' CXI U DX 2 F)

H = II X'" (A u B X , eXl U DX
2
F) 2' I' 2 2

wit~th~ interpretation

A = {«aI' a2 >, b>/ a
l

= 0& b = 01

B = {«a a > <b b b» I' 8
1

> 0 & b 1 a & b ;:
l' 2' l' 2' 3 1 2

a2 & b
3

= a
2

}

C ~ {< < aI' a2 , a
3

> , <b l' b 2> > 1 al > 0 & a
3

= 0 & b 1 =/

a
1

- 1 & b
2

= a
2

}

D = {«aI' a2 , a3>, <bI' h2' b
3
»1 a I > 0 & a

3
> 0 & hI

= a l & b2 = a
2

& b 3 = a
3

- I}

F = {<a, b> 1 b = a + I}.

The specification of the program is the relation

S = { «aI' a2>, b 1> 1 a1 ~ 0 & a2 ~ 0 & b 1 = a
1

* a
2

}

We also need .

T::. {«aI' a2 , a
3

>, b1>1 a1> 0 & b
1

= (a
l

- 1) * a
2

+ a
3

& a
2

~ 0 & a
3

~ 0 }

To show partial correctness we will prove by fixpoint

induction that G ~ S and H ~ T.

i A ~ S

ii BT ==. { «aI' a > b > I a > 0 & b = (a - 1) * 3
2

+3
2 2' 1 1 1 1

& a
2

~ 0 }

= {«aI' a2>, b1>1 aI > 0 & b 1 = ar~2 &.~2~0} E S

.39

iii A u BT ~ S frorr, i and ii.

iv CS = t«al , a2 , a3>, b l > I a l > 0 & ato &"

bl =(a l -I)*a2 J

c:: T

v DT = {«aI' a2 , a3>, b l > I a l ?,· 0 &a2~0 & a
3

>0 &

hI = ... (a1-1) *a2 + a
3

- I}

vi DTF = {«aI' a
2

, a3>, hl>1 a l > 0·& a3> 0 & b l
= (al - 1) * a2 + a;} ~ T

vii CS u DTF ~ T

viii'" A u BT ~ S, CS u DTF ~ T I- lltXI X2 ~ S, 112 Xl X2

ST

Hence from "iii", · vii', . viii we obtain the partial

correctnes~ of the program.

We could realise this either uS ~ functional program.

S (xl'
else t

t (xl'
else t

or as

s (x)

X) = if x = 0 then 0
2 - 1

(xl' xl' x2)

x2 ' x3) = ~f x3 = 0 then s (xl

(xl' x2 ' x3 - 1) + I

mutually recursive procedures.

: (a, b) begin

if a = 0 ~ x: = 0

else call t (x) : (a, a, b) end

t (x) : (a, b, c) begin

if c = a ~ call s (x) (a - 1, b)

~ ~egin

call t (x)

x: = x + 1

end end

call s (a)

(a, b, c - 1);

(a,b)

4 INDUCTION RULES AND HELL FOUNDED RELATIONS

In order to establish the correctness of a program it is

necessary to obtain an expression for the domain of the program.

This chapter shows how j.nduction rules, necessary for termination

proofs, can be expressed and manipulated in a schematic for.m, and

the following chapter uses these results tg obtain expressions

for the domains of programs.

4.1 Wel~ Founde~ Relations

When describing data domains it is necessary to characterise

them by first ar. ~ second order axioms if we are to prove

termination etc of programs operating on these domains. The

induction axiom for the domain states that it is well

founded with respect to some relation R, ie that there is

no infinite sequence d
l

, d
2

••• of elements from D such that

d
l

R d
Z

R •... FCL example the integers are well founded

with respect to the predecessor relation, or LISP S­

expressions are well founded ,,!ith respeet to the operations

car and cdr.

The set of elements from D, all of which are well founded

with respect to R, is called the initial part, or 1 (R), of

R. This can be characterised using the minimal fixpoint

operator.
D

De fn : 1 (R) = 11 ~X (RX')'.

This definition can be justified by the following argument.

Consider first the meaning of the relation (RX')'. Using

the se t mode 1

R X' '= {a I (3b) <a, b> € R & b /' Xl
so (RX'") , = {al(Vb) <a, b> € R-+ b € X}

ie (EXt)' is the set of elements all of whose R-

predecessors (if 8.1"1Y) are in X. 1 (R) is closed under R, ie

d c t (R) & dF.e => e € 1 (R), and so all the R-predecessors

of any element of 1 (R) are themselves in t (R)J it is thus a

fixed point of (RX')'. Conversely, for any xo not contained

in l1'X (RX')', there must be at least one R-predecesscr, Xl'

4.1

not contained in vX (R~') " likewise this too must have an

R-predecessor not in ~ X (RX')'., and so we can produce an

infini te sequence Xo R Xl R x
2

The original element Xo
cannot therefore be in t (R). Hence 1 (R) ~lJ·X(RX')'.

Since we have already shown that 1l.X (RX')' ~ 1 (R), 1 (R) =

llX (R..l{') , "

4.2 Induction Rules

If we now state as an axiom that a domain is well fOill1ded

with respect to a relation R, we can use an instance of

Fixpoint Induction to derive the familiar induction rules.

Let S be some predicate, ie a 1 .)- 0 relation, and assume we

are given. as an axiom, that 1 (R) = N. Then using fixpoint

inducti on, ie that (RS '')' ~ S ==> t (R) ~ S, ",e can derive

that

{x I (vY) «x, y> E~ -)- YEs)} ~ S => N ~ S, or in predicate

calculus term..c;:

(Vx) «VY) «~, y> ER -)- S (y)) -)- S (x) -)- (vx) Sex)

eg, gi ven that

1 (Ered) = N where pred ~ {<x+l, x> x~ 0 }

1 (» = N where> = {<'x, y > I x > y ~ 0 }

we obtain

S (0) A (Vx) (S (x) -)- S (x +. 1») -)- (Vx) S (x)

(Vx) «(VY) (y <x -)- S (y» -)- S (x» -)- (Vx) S (x)

which are the familiar forms of mathematical and course of

values induction.

Burstall [1969J gl.ves the structural induction rule. "If

for some set of structures, a structure has a certain

property whenever all of its proper constituents have that

property, then all of the structures in the set have the

property". This is saying that the domain of structures

considered is.well founded under the relation 'proper

constituent'; the induction rule is an informal statement

for an induction rule of the type derived above.

42

He have also formalised the famili.3r recursive dcfinition:..~

of data domains, "eg LISP oS-expressions arc defined as:

"An S-ex:pression is ei ther an atomic symbol or it is

composed of thes8 eler.1ents 1-n the folloHing ordzr: a

left parenthesis, en S-expression, a dot, an S-

expl-essioll, awl a ri(~ht parenthesis." Given the

operations car and cdr which selest the constituents

of an S-expression, the domain of S-expressions is

given by the axiom 1 (car u cdr) = N.

The axioll's for commonly occurring domains and their basic

operations v7ill be discussed in more detail in section 6.2.

4.3 Hanipulations of well-foundeJ relations

We list 1u:>re, with proofs in 3 iatE~r section: some basic

manipulutions \·;;hich establish or preserve well-foundednE:ss.

4.3.1 Defn: R'"'
D

).l"X (E RX) u
m+ m

"[
~ 4.3.2 Defn: R RRi, transitive closure of R

m -l- m - -- ---~ --. ---- .. - .. -----

4.3.3 Defn: RO D
E ,m -)0- m ro+ m

T{n+l D rRn
= n > 0

~ -)- m -

4.3.4 Defn: 1 (R) ~
m-*o

).l X(Ri) , initial part of R

The standard rules for regular e}"--pressions hold for terms

defined from variables X E n using ,., u, * ie
m .:..-;. ro' m + m' m -:,. m

all those formulae deducible from the classical axioms

listed in Conway (1971) p 25 by the usual rules for ~,

in terpre tir. g E as 1, n as 0 etc.

In addition we have:

4. 3. 5 R* = 11 X (E U Xp.J

4 3 ,. (RA',-l • .0

43

_1 _* *-*
4. 3. 7 RR"':::. E = > Rk uR = R R

4.3.8 1 (R) ~ R* (fen', 1 ([lA, RJ) ~Rk (A n RN)' m -.,. 0

-' L} • 3. 9 l{ J- R ~ E = > 1 (R) R* (EN)', 1 ([A, R]) = R* (A n

1/1\1 'I , I

4. 3. lOR :: s = > 1 (8) ::. 1 (R)

. .
4.3.11 1 (R) n <=> (Rn)' - n

4. 3. 12 1 (n) = N

= 1 (R) ,11 > 0

4 ') I' (n" T) .• .J. '-t -"

4. 3. 15 8 ::. R T = > (R)::. 1 (8)

4 • 3. 1 7 1 (It) == N =: > R n ERn R -1 = n

4. 3. 18 1 (R uS) ~ 't (R) n 1 (s) ::. 1 (R) U 1 (S) ::. 1 (R n 8)

4. 3. 19 1 (R U 8) ::. 1 (RS) ~ 1 (R n S)

4.3.20 1 ([RIS]) = [1 (R) INJ U [NIl (8)J

4.3.21 1 (S) ~ N => 1 ([Rlu] u [E 18J) = [1 (~) INJ

4.3.22 ([RIEJ u [E 18J) = [1 (R) 11 (S) J

4.3.23 1 ([1 (R), RJ) = N for any R

-1
4.3.24 fN = N ,f £:: E, Sf ~ fR => f1 (P.) c 1 (8)

,
4.3.25 1 ([1 A, EJ) ~-= A

-+ 0

44

4.3.26 1 (R u [A, EJ) lJ X « Rl{')' n A')

4.3.27 RA ~ A => 1 (R u [A, EJ) = 1 (R) n A'

Note:

4.3.8/4.3.9 The composition operator ';', here elided, was

defined using an existential quantifier, this implies

that if R is not single valued, then although

4.3.10

4.3.14

4.3.17

4.3.21

there is at least one sequence of elements d
1

••• d
n

* where d1 E R (RN)' and d
n

E (RN)' and d1Rd
2

••• d
h

, there

may be other sequences which start at d1 and do no~ ,

terminate. This explains the inclusion of 4.3.8. .

Note that the initial part operator is antimonotone.·

This is a formalisation of the equivalence of mathematical

and course of values induction, and of their analogues

on other domains. If R is interpreted as the predecessor.

relation pred , i.e. l<x+1,x>!xtOj , then R is, by

definition the relation> , and given that ~(R)= N,

we can derive the familiar induction rules shown in 4.2.

This states formally that if a total domain is well

founded by R then there can be no element in the

sequence d
1

Rd
2

••• d
n

which is repeated, otherwise a

loop would occur, and the total domain would not be

well founded.

This is a formal statement of the induction rule

corresponding to a lexicographical ordering which is

used later to show termination of Ackermann's function

If we interpret Rand S as the relation >, then the

pairs <.a,b>and <c,d> are related 'by ([Rll1]U[ElsJ) iff

a>c or a=c and b>d.

------------_. __ ._.---_ ... _--_ .. _ .. --

4.3.23

4.3.24

44a

This states that if the domain of any relation R is

restricted to those elements which are well founded

by R, then any element in the domain is well founded

by this restriction of R. This is used lat~r to show

termination of programs ~'lhich count up to a limit.

This is a formalism of part of the discussion

concerning proofs of termination in Floyd J967a,

and is a special case of a more general simulation

result, see 7.2. The normal use of this theorem is for

the mapping function f to be total and single value~.

It maps pr~gram states, related by S, into a domain

which is 'known to be ~1ell-founded with respect to R,

i.e. ~(R)=N. Hence fN=N= ~(S) and the domain of the

original program is well founded ;1i th respec t to S.

44b

4.4 Extension to Multiple Domains

We have discussed in 2.1.5 the concept of _a mu1 tip1e f ixpoint

of a functional acting on the direct product of relation algebras.

We discuss here the special case where the functional' can be

represented by a matrix whose componen~s are relations. The

motivation for this special case will be found in section 5.6

where the termination properties of mUltiply recursive programs

are expressed as the initial part of a square matrix of re1atibns.

The use of matrices is local to this section and is introduced

as a convenient notation. Although this makes the algebra of

matrices and vectors of relations look similar to that of

relations it is important not to be misled into thinking that

they are the same. The essential difference between the two

algebras is in their treatment of the null element. In the case

of relations a tuple containing a null element is itself

considered to be null, whereas in the case of a vector a null

element is a perfectly acceptable component. To extend the relational

algebra so that there is a direct correspondance between tuples'

and vectors would mean introducing the concept of an object, .

whose value is undefined, to be an 'element of every domain of

interpretation and a corresponding redefinition of the basic

operations of the relational calculus. This exercise wi11.not

be attempted here. An example of the difference between the two

algebras will' be found in 2.1.5.

4.4.1 Basic constants and operations

An nr-vector V is a colunn vector with m components

which are given individually by Vi. It has type m x 1.

We will only be interested here in vectors whose

components are relations of ,type ni ~ o.

We consider here only those functiona1s on vectors

which can be represented as ¢ (V) = A u BV where A and Bare

matrices. An m x n matrix A is applied to an n-vector

45

to produce an rrrvector according to the rules of _

composition given below. m x n matrices can be built

from the following constants, variabies and

operations.

{m ~ n)ij = U ••
1.J

{m Q n)fj = n ..
1.J

{m ~ n)ij = E •. if i = j
1.1.

= n if i· = j

(N) = N.
m x 0 i 1.

(R).. = R .. where R.. is C! re lation
m ¥ n 1.J 1.J 1J

(.- A)' is a matrix of type m x n such that (A') .. =
m x n 1.J

(t\l) ,
-1 -1

(A) is a matri:- -of type n x m such that (A) ..
m x n 1.J

= {A ..)-l
J1.

Note that this is not the conventional matrix inversion.

The following ope rations take p 1uce bet\I~cn t\-lO m x n

matrices to produce an m x n matrix.

{ Au m x n
{ A ()
m x n

(~ ~ n'

B). ~
m x n 1.J

B) • ~
m x ti 1.J

B]) •.
m x n - 1.J

([A I B J) ..
m x n m x- n 1J

~~. u B ••
1J 1.J

= i\j () Bij
= [A. :, B ••]

1.] 1. J

=[A·~IB .. J
1J 1J

Composition takes place between m x nand n x p

-matrices to produce an m x p matrix.
n

(m ~ n; n ~ p)ij = k ~ 1 Aik ; Bkj •

r.. -terms of the form ftX~(X.) are formed from an m-vector of

relation variables and a functional 3 which acts on this m-vector

using only the constants and operations given earlier. The result

of this functional must be an m-vector. Note that not all functionals

can be represented in this matrix form, in particular those

corresponding to recursive schemas. This p.-term is an abbreviation

for fti Xl ••• XmUJ(X)l,···a(X)m) and is \lrell formed if the individual

components ~(X). are syntactically monotone in each X. , l~i,j~m.
1. _ J

The functional j(X) is syntactically monotone or continuous if

the individual components J. are syntactically monotone or
- 1.

continuous in the components X. of the vector-.
J

45a

A containment A ~ B between matrices is a representation of the

set of atomic formulae which are the containments between its

compOlients.i.e. A ~ B t­mxn m(n fa .. ~ b .•
l.J l.J

4.4.2 Formal reasoning about matrices of relations

First order reasoning: Since the algebras of relations and of

matrices and vectors are different first order reasoning about

matrices has been ju~tified as required by translating asserti0ns

about matrices into a set of assertions about their relational

components.

Second order reasoning: This is as before and again matrices are

used to repre~ent sets of assertions about relations.

4.4.3 Initial Part

The initial part of &1 m x m matrix is a vector whose

components are n. -7 0 relation8, such that for any
1

element d. from the i'th ~omponent there is no
1

infinite sequence of elenents dil , dj2 , '\3 ••• of

e lemen ts from the i ~ th, j' th and k' th ••• domains such

that di1 Rij dj2 Rjk '\3 We can chaLacterise

the initial part in a similar way to that of section

4.1.

If R is a matrix and X 1 a vector of n.
mxm mX" 1

"* 0

relations then the functional (R X')'expa..T1ds

4.5

46

n
componen twise so that (RX ') ! = (. U 1 R .. x.') I

1 J 1J J
it is the set all of whose predecessors under the 1 x

m relation (R.
l

R.
2

R.) are in the· m vector X. By a
111m

similar argument to that in section 4.1 we can

jus tify the following.

Let 1. (R) represent the i' th component of the
1

initial part of R, then:

1. (R) = ~. X
l
-

1 m x, n. 1

• •• (RX') I)
m

This can be represented in the matrix formalism

as \..- \n~) = P.X (RX ,)'
where X is an m-vector.

Han i p u 1 at ion s of well founded matrices

4.5.1 (* ~ 11 X~ (E u RX) m ~ m) mxm m x m

4.5.2 (R) or R * m x m RR

4.5.3 R
O D

E m x m m ~ m
Rn +l ~ RR

n
n ~ 0 m x. m

4.5.4 (R) D X «RX') , 1 = 11 m x m m x 0

The development so far closely parallels that of section 4.3

and indeed all of the manipulations given are app licab Ie to

matrices.

4.5.5 R* ="1-1 X (E u .XR)
mxm m~m

4.5.6 -1 -1 * D -* (R*) = (R) = R
m x m

47

-1 * -* * _.*
4.5.7 RR ~E => R u R R R

-1
Rik

-1
c E .. , RR ~E <=> Rik - ~~

(Rik) N n (Rjk) N == n for i ~ j

4.5.8 * \(R) ~ R (RN)'
roXm *

l([A,R]) ~ R ([A,R]N),

where A is an mxm matrix Hhose elements are m.-+{)
~

relations, and so ([A,R]N)'. = (.YJ
1

A .. u R •• N.)'
~ J= ~J ~J J

4.5.9 R -1R ~ E =>\ (R) = R * (RN) ,

R-1R ~ E ~>\([A,R]) = R*(rA,R1N),
-1 r; -1

R R E <=>R .R . ~ E •. and (R.. .)Nn, (R.J.N) =J2,i~j
-l<~ -1<~ ~ ~ -K~ -K

ie R is single valued iff its elements are single

valued, and elements in anyone row are disjoint.

1,: .

4.5.10 ReS => 1 (S) c 1 (R)
m x~ m - m x m

R ~ 8 <=> R.. c 8
~J - ij

4.5.11 1 (R) = n
mx-m mx 0

(RN)" = n
m x 0

<=>

4.5. 12 1 (n)
m x m N

m x 0

4.5.13 1 (Rn) = 1 (R) n > 0
m x m

4 (R'r) 4.5.1 1 Ul X m = t (R)

4.5.15 8 c R'[=> t
mxm-mxm

(R)

4.5.16

(8)

4.5.17 t' (R) = N => R n E
'rnxm mx!ll illxm

= t (R) ,n > 0

= R
ill X m

4.5.18 t (m ~ mUm ~ ill) ~, t (R) n 1 (8) ~ t (R) u 1 (S) ~

1 (R n S)

--------~~~--------- .-....... -._----------------------

4.5.19 \ (R uS) ~ \ (R S) c \ (R n S)
mxm mxm mxm-

4. 5 • 20 \ ([R IS]) = [1 (R) IN] u [N 1\ (S)]
m x m m x m m x 0 m x 0 m x 0 m X 0

4.5.21 \ (S) = N => \ ([R I U] u [E I S J) =
mxm mxmmxm mxUlI:lx m

[\ (R) IN]
m ~ 0 m x 0

4.5.22 \ ([R IE] u [E J 5]) =
m x m mXTI

4.5.23 If R is a restriction of R such that i .. = [\ .(R),~ .. J
" 1.J 1. 1.J

then 1 (R) = N

-1
4.5.24 Ii F is a matrix such that F FSE,. FN=N, SFcFR . rnxm

.'

ie
... J

II'
.:.U 1 S ••

1.J
F. c. __ U

Jk - J

then ¥. 1 (R) s 1 (5)

1

We now leave the Rtraight forward analogues of 4.2 and turn

to the prob 1em of obtaining expressions for the ini tial

parts of matrices in terms of their components.

4.5.25 If we 1etl1:p(Ri.represent the 7ector of

that t1 p (R) == (\r(R) 'l2(R) .••• lp(P.», then

matrix R is partitioned to be of the form
m x m

~ p ~ p p x ~ - p ~
e . D

m-pxp m -p x m-p

length p such

if the

then 11 (R) = ~ X
P , 1 pxo

y
(m.-p) xo ((AX')' n (BY')',

(eX')' n (DY')')

and tp + 1 : m (R) = 112 'xY «AX') 'n(BY')', (eX') 'n(DY') ')

It is only necessary to study matrices of the above form

since any more complex matrix can eventually be expressed 1.n

its constituent parts by a succession of partitionings.

Let (R)., represent the I x m matrix (R. I R. 2 .•• R.), m x m 1~ 1 . 1 1m
and let R be partitioned to

fA B ~
~c D ~
as above.

We can then obtain the following theorerrs for particular

forms of R.

4.5.26 If R is triangular ie .. · a special case of the form above
where C= S1, •

11:p (R) = I (AuS)

'R) = 'l (D)
p + I : m \

whe re (S).. = n if i ;t j
p x P 1J

= [B. * ('l + I (R»' , E ..] if 1 = J 1 P : m 11

4.5.27 If R is such that A = n then

11 :p (R) = (Bl~+l:ci (R)')'

'lp + 1 : m (R) = 'l (D U C B)

4.5 .. 28 If R is such that the types of A BC and D are the same

then:

I 1 :m/2 (R) :2 I (AuBuCuD)

lm/2 + 1 : m (R) 2 'l (A u B u CuD)

4.5.29 If in addition C = E
m/2xm/2 then:

11 :m/2 (R) ? 1 (AuBuD)

'l (R) 2 'l (A u BuD)
m/2 + 1 : m

4.5.30 Finally if R is such that A~B=C=D then:

11 : m/2 (R) = leA)

m
(R) t (A)

4.6 Exampl~

Since the simplicity of the above theorems may have been

obscured by the notation, we give the following example of a

triangular compound relation

Let R be

IA B ; C I
n D I F

n n ~ G

partitioned as shown.

then t 3 (R) t (G) ~

H t H~: u
~~Ct (G)', EJ n

tl (R) =
2 eFt (G)' , EJ

~ A U
[Ct (G)' , EJ B

~ t 1 : 2 (R) = t n
D u [Ft (G)', EJ

Again using 4.5.2 6

\2 (R) = t (D u [Ft (G)~', EJ) "

tl (R) = t «A u [Ct (G)', EJ) u [fit (D u [Ft (G)', EJ)',

EJ)

4. 7 Proofs

Proofs Section 4.3

* 4. 3. 5 ToP rove: R = llX (E u X R)

Proof: by induction on P (X, Y) = X = Y, RY

XR with rcr(X) = EURX, 9 (y) = EuYR.

4 3 6 P (R*)-l = (R- l)* •• To rove:

Proof:

. with

by induction on P (i, Y) = X-I = Y
-1

~(X) = E uRX, 9 (Y) = E uYR and then

using 4.3.5.

4.3. 7 To Prove:
-1 *-*

RR ~ E => R \J R
)(-* R R

- ">

* * -1 -* * -* Proof: 9 R ~ R (EuR R) ~ R R
-* * -* *-* R ~ (EURR) R ~ R R

* -* * -* Rv R ~ R R

-* *-* ~) by induction on XR ~ R uR wi th Z1 (X)

(EURX)

* 4.3.8 To Prove: 1. 1 (R) ~ 'R (RN) , ,

4.3.9

Proof 1

Proof 2

* 1 (CA,R J) ~ R (AnRN) ,

* Induct on P (K) = X ~ R (&~)'

with 3(X) = (RX')' using (RX')' c

(RN) , u RX.

Using 1

1 ([A, rrJ) ~ [A, RJ* (A n RN)' ~

* R (A n PN)' since ([A, RJ N)'

(A n RN)', and [A, RJ ~ R.

* /' -1
To Prove: .R R ~ E => 1. 1 (R) = R (&~)',

Proof 1

Proof 2

2. 1 (CA, RJ)

(A n RN)'

* R

Induct on P (X) = X ~ Y (RN)' with

~OO = (RX')', S (Y) = EuRY,

usingR-1R~E => (RX')' = (IDJ)' u

"R.X.

using 1, 1 ([A, RJ) = [A, RJ* (A n

RN)' then show that [A, RJ* (A n

* RN)' R (A n RN)'

* * ~) Clearly [A, RJ "c R

~) Induction on P (X) = X (A n RN)' c [A, RJ*

(A n RN)' wi tIl a- (X) = E uRX.

," p. (Q) is true, assume P (X),

(E uRX) (AnR!n' :::. [A, rrJ* (AnIm)' u [A~ rrJ [A,

* R J (An~~)'

52

but [A.', RJ [A, ny- (AnHN), ~ [A', RJ N ~

A' nRN ~ (AnR~) 1

Hence P (~(X) and P (jlX ~(X».

4.3.10 To prove: ReS => 1 (S) c 1 (R)

Proof: . Fixp oin t In dlicti on lJS i ng an ti-

r~~0noLull i ci ty of S in (S ; (R) t) f.

4.3.11 To prove:

1 (R) == n < = > (EN)' == 51

Pro 0 f : = >) 1 (R)

<=) using 4.3.8

4. 3. l 2 Top ro '.re : 1 (n) :::: N

r ro 0 f : 4 • 3 • 8

(R 1 (R)') t

4.3.13 To prove: 1 (R
n

) = 1 (R),n > 0

(RN)' :::: D

Proof: ~) by Fi.xpoint ir.duction \li.th ~ (X)

(RnX') '.. (R
n

1 (R) 1) , ~ (Rn - 1 1 (R)')' ~
1 (R).

~) using 4.3.14, 4.3.10 and R
n

~ RL •

4.3.14 To Prove 1 (RL) = 1 (R)

Proof: ~) using 4.3.10 and R::; RL.

~) by induction on P (X) -

~(X) = (RX')'

p (~), l' (X) => (RX')' ~

(RX')' ~ (R RT 1 (RT) ') ,
l' (RX·') , ~ «(R u RR)

L
X ~ 1 (R) wit.h

or
(R 1 (R ') ') , ,

53

4.3.15 To prove: S C 'r;r _ 1\' = > 1 (R) ~ 1 (S)

Proof: from If. 3. 10, 4. 3. 14

4.3.16 To prove: R
n ~ S ~ RT => 1 (8) = 1 (R)., n > 0

Proof: from 4.3.10, 4.3.14, 4.3.13.

fl. 3.17 To prove:
-1

1 (R) = N :: > RnE = R n R = n

Proof:
~',

1'1 ~ 1 (R) ~ 1 (R rE) ~ (R nE) ((R rE) N) t

usine 4.3.H~ 4.3.10.

but (R nE) « R nE) H)':= n
. '. « R nE) N) , "~N .'. (R nE) = n
si.mi1C1LJy N ~ 1 (R) ~ 1 (RnR-

1
) ~

(RnR- 1)'" «RnR- 1) N)'

but (RnR- 1) «RnR- 1) N)' = n
-1

(RnR) = n

q. 3.18 To prove: 1 (RuS) ~ 1 (R) 0 1 (S) ~ 1 (R) U

1 (S) ~ 1 (RoS)

Proof: from 4.3.10 1 (RuS) ~ 1 (R), t (R) ~ 1

(RnS), t (RuS) ~ t (S), t (S) ~ t (RnS) ,

Hence 1 (RuS) ~ t (R) f) t (S) ~ t (R) u 1 (S)

~ 1 (RnS).

4.3.19 To prove: t (RuS) ~ t (RS) ~ t (RnS)

Proof 1 (Rus)

l~. 3. 10

1 « RuS) 2) ~ 1 (RS) 4. 3. 13,

1 (RnS) = 1 (RS) 4.3.13, 4.3.10.

4.3.20 To prove: t ([RisJ) [t (R) IN] 1I [N It (S) J

Proof: Tndur.tion on P (X, y., ~) - X

'-N I!Z 1 L L-l.J

[y IN J u

with :1 (:\:) - ([R I S J X t)', 9 (Y) (RY')' ,

54

~{(~) = (S?3')'

using [AlB]' = [A' IN] U [~~IB' J.

4.3.21 To prove: 1 (S) =: N => 1 ([Rio] u [E is])

[1 oCR) 11]

Proof: ~) 1 (fRlol u [E../S]) c 1 ([RI<J])

[1 (R)IN]

~ Induction \vi th P eX) - [X IN] ~ 1 ([R 1(3] u

[E IS]), j (x) :: (RX')'".

P (rt) is trt.!e, assume P (X), then must show

that [(RX')'!N] ~ 1 (rRI<J] u [ElsJ) this is

done by an inner induction on Q CY) =
f[R I?n ., r17 Is1) .r.~ (Y)
,- I '-'...J U L...... oJ, v" ,..., (8Y')'.

Q (n) is true, ass ume Q (Y), then

P (X) => ([R!<J] [xIN]') r ~ ([RI<J] 1 ([RIU] u

[EI8])')' •

Q (Y) = > (L~ IS J L (RX ') • i Y J I) i c

([ElsJ t ([RI<JJ u LElsJ)')'
taking the intersccdon

[(RX') , IN] n ([(RX')' I (SY') '] u [N I (SY') ']) c

1 ([R I <JJ u [E Is])

[(R X ')' 1 (5 Y ,) 'J ~ 1 ([Rio] u IE Is])

Hence as a conclusion of the inner induction

us ing that (S) = N

[(RX") 'IN] ~ 1 ([R1 UJ u [ElsJ)

Hence as a conclusion oE the induction

[1 (R) INJ ~ 1 ([RJUJ u [E IsJ) •

4.3.22 To prove: 1 ([RIEJ u [EJSJ) [1 (R) J 1 (S) J

"Pr60f: ~) 1 ([RIEJ u [Els]) £ 1 ([R]EJ) ~
r. (R \ I ~l J L L \.1 H

1 ([rrIE] u [c ISJ) £ 1 ([E ISJ) _ [N h (S) J

55

Hence 1 ([RIE] u LE]SJ) c [1 (R) h (S)J.

~) by a similc.r nested jnriuC't;on to thp. ahove.

p (X)

::r (X)

[X 11 (S) J ~ 1 ([R ! E J u [E IS])

(RX') ,

Q (Y) [(RX') 'IY J ~ 1 ([R IE J u [E 15 J)
8 (Y) (sy ') , •

4.3.23Tu pruve: 1 ([l (l{)~ Rj) ~N

Proof: a) 1 (R) ~ 1 ([1 (R), RJ) from 4.3.10

b) . 1 (R)' u (Rl~) I c 1 [1 (R), RJ

Hence N c 1 ([1 (R» RJ)

4. 3. 24 T u 1> ru v l:: :

.;: (;;_ 1 .. ,-.

.L 1 J..\.I;; l \d)

,... -1 f ._"
1. ~ .Lo, Sf. c fR --=~

Proof: Induction on P (X) _ f X ~ 1 (5)

~(X) (RX')'

r (n), is true, assum~ P(X) then

f (RY ,) t = f N n (f RX')' = (f RX ')' us in g
-1

f. f ~ E, fN=N

~ (Sf'X')' = (5 (fN n (fX) f» t = (5 (£x) t) ,

~ (5 1 (5) ')' ~ 1 (5).

Hence f 1 (R) ~ 1 (5).

4.:l.25 To prove ~ ([I!; 0' EJ) = A'

[A, EJ is single valued

1 (CA, EJ) * [A, EJ A'

4 .. 3.26 1 (Ru [A, EJ) =]..1 X«RX')'n A')

~) fixpoint induction

A'

(CRu [A, EJ) }J XIy: =' (R].lX'u[A,EJpX')'

..• ('1) ·v t - "'PA~ u fA, EJ (R,X'IIA))' . II ..

= (Ill. 'f .. ~ u.A') , -= 1. X s]· nee v '= . 'R v' vA \I-' • ~ . - - 1.l ... ,. --]..I ~- . ,

56

?J fixpoint induction

(R 1 (R u .[A, E J)')' n A'

= (R 1 (R u [A, E J) , u A)' but [A, E] 1 (R u

[A, EJ)' ~ A

~ (R 1 (R u [A, EJ) , u [A, EJ 1 (R u

[A, EJ)')'

:; 1 (R u [A, E J) •

(R) " A'

From 4.3.26 1 (R u rA, El) :; llX «RX')'n A')

Induct on P eX, Y) = x = Y n A'·

,.,i th ~ (X) = (RX')' nAt, 8 (Y)

(RX') f n A I = (RY t U p..c\)i 'n A I il~duction

hypothesis

(RY')' n (RA) , n A' but (RA)' ~ A' ,given

(Kl')' n A'

Hence

rili~A =:: > l-iX' ((RX ') , n Ii') .~ (n) n A' •

Proofs Section 4.5

These mirror exactly those of section 4.3, except that we

are now performing the induction on the lattices of vectors

and matrices, rather than the lattice of simple relations.

Since the induction predicates are the sa~ we do not

propose to eive the ·proofs in detail, but merely

establish some of the manipulations of furmulae involving

matrices and vectors.

4.5.5 Needs R (A' u B) ~ R A u R B
lllx m mxm mxm

m
Proof: (R (AuE» i'; = lr~l Rit_ (t\..; u B,;)

... .J &.~. .A..... A. ,J ~ .. J

m ill
U R. A. u u

k=l 1k kj k.:l

(P.A) . . u (RB) ..
1J 1J

4.5.6 Needs .(RX~-l

E ••
KJ

Proof

4.5.8 Needs

Proof

4.5.9 Needs

Proof

i.e.

so

and

Now

57

-1
(RX) .•

1J
-1

= «RX) ..)
J1

m -1
U(R·kX- .) k=l J -K1

=

-1 -1
= (X R) ..

1J

(RX') I ~ (RN)' u RX
mxm rnxo

(RX ~) :
1

m ' = rf (R .. X.) ,
J=l 1J J

m '
c ." «R .. N .) u R .. X.)

j =1 1J J 1J J

~ WrR .. N.)' u l1(R .. x.)
j =1 1J J .. =1 1J J

S (RN) ! u (RX) :
1 .I.

-1 => (RX') , (RN) , R RsE = u RX

-1 -1 if i=j R Rc;E => (R R) .. c E ..
1J - 11

s· n if i=fj
m -1
U R ~j f E . i if i=j

k=l ki 11

S n if ':fi 1,.)

-1
~i Rki S Eii (1)

(~i)N n (I) .)N = 0
(J

if i=fj (2)

(RX') !
Yn

(R •. X. ') I = .711 1 J= 1.J J

m
= .n1 «R .. N.)'v R .. X.) using (1)

oJ = 1J J 1J J

4.5.17

58

But R .. N nR., N
1J 1 t\

and so (R .. N.)'nR,kx1 1J J. l' <:

and so (EX')!
1

_1

Needs R (k &N)'
rnxm

Proo: (R-IN),
i =

(R(Il-1N) ,) , so
1

c -

(RN)~ u (EX),
1 .l

.m1 -1
N,) , . r.

l
(R, ,

J::: . J 1- J

m m
(R-1

k1l1 R'l ,n
l 1"- J= jk

Rik
-1 N,) , U (R'l k=l 1C J

using (2)

N,) ,
J

R .. X.
1J J

We now leave the proofs that were analogous to

those of section 4.3, and give in detail

proofs of the remaining theorems of section 4.5.

!~.5.26 To F~ prove:
mxT.

~vhe re (S) ..
pxp 1J

59

-
~

A
pxp

~ r n ,.
{

rt it i:/ J

n
~

=> 1 (R) p:':m-p
i :p

~

D ~ 1 (R)-
~ m-pxm-p _p+l:m -

:;;: [R .. (l 1 (E))'~ E.:~] if i = j
p.. p+ :m .u-

Preof:

Note first from 4.5.25

1. (R) == 1t X X ((AX ')!n{RX'), rn"J.<"")')
. .l : p' . . 1. . 1 Z " l' , -2' • '-2

S) by fixpoint induction

(1) (A (l(AuS)'»)' () (B leD) t) ,

~ (A (\(AuS)')' () (Sl(AuS)')' £ t(AuS)

::: lCAuS) (1)

1 CD) (2)

since (B leD) '~

~) Inducti.on on:

=

60

In. ,l(D)!EJ N
~x

-- Sl(AuS)'

X· c 1 (R)
2"' p+l:re

(AX')' n"([B ., EJ X')'
1 i* X2, 1

fD'V't) ,
" '~2'

P (f2, n) is true, assume P (:X, X
2

) then .. ,

c (D (R)')' c 1 (R)
lp+ l:m \, - p+ l:m "

• :.1',

.-.
" "

and «Au[B.*(DX
2
'), E])X

1
')' s (Al '(R)' u [B 1 (R)'EJl (R)')'

~ 1 : P i* P+ 1 :m ~ 1 : P

~ (A 1: p (~) , u (B 1 (R) , .* p+l:m
~ "

n 1 (R) ,)) ,
l:p

~ (A 1 (R) ,) , L! B 1 (R) ,) , c \:p (R) 1 :.p .* p+l:m -

"

61

IL~nce the limi t

(A
l

: p (R~')' n ([B
i
* lp+l:m(R)'JE]tl:p(P ..)')'

• n
(R) ') f

• r

and so by fixpoint induction

(!:. '6 ~) L. •

l:p

4 . 5 . 27 Top r 0 v e : if m ~ m = ~ p<ftp

c
n-pxp.

px~-'p ~-Chen
. D ~
: m-pxm-p

\ (R);: (B (1 . (P.)) , Y' -
l:D p+1:~

lp +l:m (R) = 1 (DuCB)

Pruof:

) R R'" (Be . Bu"Rn } ~ .~-,_T C U K - C .I._'A.-,.!:'

~. ~ n B .- ~\ ~URD~ DuCB0DD j

· · t n DuCB' -
.•• using 4.5.16 and 4.5.15

1 _ (R) ~ 1 (D'~JCB) p+l:m --,

1 1 (R)
l:p

c 1 ([J:H 1 (R)! E]) ~ (Bl
1
•
J
+, 'm(R) f)'

p+ ;m r J..

with :71 (Xl ;X2) ==

S2(Xl ,X2)

(BX') ,
2

«DUC~)'X2) I

x c 1 (R)
2 e, p+l:m

4.5.28 To prove: if A, B, C, D have the same type

then

1 (AuBuCuD) ~ 1 (R) where R = ~ AC DB ~
1 : m/ 2 ~ j

1 (AuBuCuD) c 1 (R)
m/2 + 1 : m

Proof: (RT
) •• _c (AuBuCuD)l'

1J
result follows from 4.5.30

62

4.5.29 To prove: if A, B, C, D have the sam2 type,

; r '-. ,-.
4.J • .JV

a.nd

D - E, then 1 (AuBuC) ~ '1 :

1 (AuBuC) c 1 . (R)
m/2 + 1 : TIl

In in, L.
(R)

Proof: (RT) .. C (AUBlC)T, result follows from
1J

4.5.30

I A A\

To provt! J.i R C L,>' L,~1 ttH2.n
m x rn C 1~ KJ

1 (R) -- t (A) 1 mj2
t
m/2 + I

(R) ::. 1 (A)
m

Proof: By inc!uction on P (Xl, x2',Y) - Xl Y,

v VoL
''-2

\\7i L Ii I.~ ~T \ - I." f)' . (... ~ r) ,
:)' \AI' '/)..2) \,HoJl.

1
II .lU'l..2 I

;'"
(XI 'Y2) ::; (• .).Xi) () (AX;) "'2

33
(Y) = (AY') ,

63

5 TERHINATION

5.1 Introduction

We will show how to derive from a schema, a relation whose

initial part describes the domain of the schema. The

manipUlations of well founded sets deri)led in the previous

section can then be used, together with the axioms for the

domain of interpretation, to obtain expressions for the

domain of the schema.

By way of informal motivation consider the.folloHing

simple computation model and the deterministic schema

described by the recursion equation X
m+':1

T(X)

with a solution f = ~X(T(X». The r~sult of

applying the schema to an argument x is given by Xl f and

c 1 ear 1 y t his is the s am e a s x 1 T (f). Com put;] t ion pro c e e d s

by presenting arguments modified by T to nested occurrences

of f. We will show how to obtain, by syntactic means, ~

derivative ~ which describes this modification, ie the

relation between state vectors before and after one 'cyclo'

of recursion. \.Je will also derive a co-derivative T , of
o

type m -)- 0, 'ivhich gives those arguments for which ~!prl i r~ti ()tl

of T (f) is undefined. A particular argument Xl can then

give rise to a non-terminating computation if either:

i the computation leads to an undefined result

or:

ii
(' (>

there is an infinite sequence such that Xl TX
2

T

If either of tbe above conditions is s;:1tl:-fi(>d nnd if 'i.7C let
o

R = r T,f.

i . ('. th(' schem;1 terminates on precise] v the s('t \·;\d ell is h'(' 1]

founded under R.

As an in forma 1 examp Ie cons ider the s choma X 0-:- " •• d~~·~ i·:l\c'rc A

1 S the reI a t ion < 1, 0> and B i s the r e 1. ;l t j () 11 {< (1., h > 1.:1. f 1. ;~ h

= a - l} ie corresponding to the conditional expression f =

(x = 1) -)0 0, f (x - 1). f is undefined for C = (AN)' n (BN)'

ie for X = 0, and the relation between successive calls to f

is B. \ve would expect the domain of f to be given by 1 (3 u [C,E 1).

Using 4.3.27 and that BC=n, t(B u [C,EJ) = t(B)O C', but B£pred

and it is an axiom of the integers

that t (pred) = N. Hence, using 4.3.10, t tB U [C, EJ)

= {a I a > O}.

5.2 Definitions

Sinp1icity:

A term t is simple in a relation variable X if either:

i T contains no free occurrences of i

ii T = X·

iii T = PO'

iv T = [~, oJ

V T = pUa 4

where p and a are terms simple in X.

Any term which is syntactically continuous in X and this

C

. includes any term corresponding to a schema, is reducible to

a term, simple in X. More details may be found in Hi tchcock

and Park [1972 J.

Derivatives

•
L is the derivative and T the co-derivative of a term T

•
simple in X if:

i • T contains no free occurrences of X, T =

i i T = X j t ,tc: E', T I = Q

•

iii
. .
pUDa, T = PUPa . .
• • •

iv T "" [p, cr J, -r = pw, T = PUa ..
;, • •

• • •
v T = P UO', i = PUa, T = POa • • "

n, T' =
•

(-rN)

65

Goodness:

The definition of the domain of a non-deterministic schema

is such that the schema is cOD3idered to termi"nate for a

given argument if there is at least one terminating sequence

from that argument, not that all possible computation sequences

from that argument terminate. This is due to the use of an

existential quantifier in thedefinition.oJ the composition

operntor. The definition of well foundedness states that all

sequences, starting with elements in the well founded set,

terminate. It is natural therefore to expect the containment in

theorem 5.4.1 which relates the initial part of a relation

derived from a schema to the domain of that schema. Good terms

are defined to be such that there is only one computation

sequence from a given argument, and hen~e we would expect the

equality of theorem 5.4.2. A dete!ministic computation sequence

will arise if,firstly the individual rclntions in the sequence

are single velued, with the exception of the terminating relati0n,

and secondly if,when branching occurs in the schema, either the

branch allows no parallel paths, or if it does then the

computations along parallel paths follow the same sequence. These

two conditions correspond to conditions (i) and (ii) in the

defInition of goodness below. We will show later, in section 5.5,

that conditional expressions form an important subset of good

terms.

o •
We def ine T, T as 'r (f IX), ~ (f IX)

o .#

A term T is g00d relative to X,f and 1 set of axioms ~ if' T­

is simple in X and:

i for any sub term of T of the - form pa in which X occurs

free,

~'~(p-lp)(f/X) S E ie p (fIX) is single valued

ii For any sub term of T of the form pUo- ,
0 0

(j .p~ 0- S P u P
()

0 0

and ~ ~ p Sa U (J U
'>.

65a

:"1

I'
'<

5 • 3 Lerrr:nas

if T is sjmple jn X then:

~

5.3.1 (TN)' s 1. (XN)' u t
•

The proof is by induction on the formation rules for T.

1 case: T free from X, T U ; (XN)' = (TN)'
•

case: T
• X,TU T ·(XN) ,

(TN) I

66

ii Assume that the lemma is true for subterms p, and a.

iii

case: T = PO',

(TN)' n (paN),' ~ (PN).f· u p (aN):'

~ pu~ (XN) upaupo (X\")', induction lIyp
•

~ (pupa) u (~upJ) (XN)'

~ T U ~ (XN)'
•

case: T = [p, 0']

(TN)' = ([p, 0'] N)' = (pN) , u (aN)'

{;; 0' up U (p U;) (J,N)', Indue tinn lIyp
• •

•

case: T = pua

(TN)' = (pN)' n (aN)'

C (pup (XN)') n (au; (XN)') Induction Hyp
•

(pna) (p (XN)' • (XN) ') U (anp con' = u no-
• • •

(pna) • • - u (p (XN)' Ucr ('(1,)')
• •

•
~ t. U t· "

•

u

The conclusion is that the lemma is true for

terms.

• (p nO' (A"N)')
•

all simple

5.3.2 If T is simple in X then T and ~ are syntactically

continuous in)c. •

The proof follows simply from the formation rules for,simple

terms since no term with any X'. ~free is complemented in
1

forming a derivative.

5.3.3

if T is good relative to X, f and ~

o
= T U T

o
(2N) ,

67

Again the proof proceeds by induction'on the formation rules

for simple terms.

i case: T· iS,free from' X, trivial.

case: T = X, trivial.

ii Assume that the lemma is true for' subterms p and a.

case: T = pa,

(TN)' = (paN)' (pN) 'up (aN)', goodness of T

Also (TN)' ;: (p (frX) aN)" ::> p (fiX) (aN)', since XSf and

roonotonicity of p.

so (TN)' = (pN)' u p (aN)' u p (fix) <aN)'

But p (aN)' ~ p (fix) (aN)', X~f, monotonicity of p

so ,(TN)' = (pN) , u p (fix) (aN)'

= (~up (fiX) a) u (pup (fiX) ~) (X,N)', Induct Hyp
o

= T 'u T (XN)'
o

cas e : T = [p ~ a]

(TN)' (pN)' u (aN)'

~ (pua) u (pu~) (XN) " Induction Hyp
o 0

o = T U T' (XN) ,
o

case: T = pua

(TN)" = (pN)' n (aN)'
o 0 = (pup (XN)') n (a ua (IN)')

o '0

o 0 0 o·
= pncr u (p (X1~)' n (aua (XN)')) u (a, (XN)' n (pup (Xt') '))

o 0 0 0

But T is bood relative to X lnd f and so tV'e IDClY deduce

that:
0 (IN) , 0

OiN) , p gJua
(\

0
(XN) ,

0

(Xi~) , (J ~pup

0

and therefore:

68

iii The conclusion is that the lemma is true for all terms

T,good relative to X, f and Q.

5.4 Termination Theorems

Let f llx(-r).

Tf T i~ simplp in X, then:

o
5.4 t 1 1-- 1 (T. U [T, E J) E fN

o

If, in addition, T is good relative to X, f and ¢ then:

o
.'5.4. 2 ~) I- 1 (-[U [T, E J) fN

Proofs --
o

5.4.1 The proof is by fixpoint induction.

But frOIl! 5.3.1, for the case that X = f,

(fN)' = (T (fIx) N)' ~; (fN)' U T S; (fN)' U

T

o

Therefore:
o

«T U [T, EJ) (fN)')' SfN, and hence, by
o

fixpoint induction:

, (~ U [T, EJ) S fN.
o

5.4.2 The proof is by Scott Induction on P (X, yj -

{X N = Y, X E f} ,., i t h :3- (X) = T (X), ~ (Y) =
o

(1:' IJ"tY')'
o

i P (n, n) is clearly true.

ii Assume PC):"" Y).

iii

5.5 More about Goodness

An important subset

69

o
a TN = (T U T (XN) ') ',Induction Hyp,

o

lemma 5.3.3

= (T U ~ Y') , •
o

b T S T (fIX)

S f

The conclusion is:

llX (T) N ~ llY

or fN = t ([T, EJ U
0

of terms ,.yhich are

Induction Hyp,

monotonicity of T

since f = llX (,r).

(T
0
u~Y')'

~) using 4.3.26

good relative to X,

and <P is the relational form of conditional expressions

LHcCarthy: A Basis for a Hathematical 'lheory of

f

ComputationJ. Consider a conditional expression of the form

(pI -+ el, p2 -+ e2, •.• , p -+ e' ,), whose value is the value of
n n

the ~ ~orresponding to the first ~ that is true. The

corresponding relational form is:

T = [P I' E J T I U [PI' n P 2' E] T 2 ••• U [P l' n P 2' n

. Pn' - 1 n Pn , EJ Tn

Assuming that we have first normalised the conditional

expression so that the terms T. are union free, T is made up
1

of ~ubterms of the form PUcr with P ~ [A, EJ PI' cr = [B, EJ cr l
and A n B = n. The derivatives of such P and cr are:

o
P = [A, EJ

o
cr = [B, EJ

o·

PI' ~
0

cr l' ~ =

A' U [A, EJ PI
~

B' u [B, EJ ~l

Thus P N = [A, EJ PI N E A S B' since A n B = n. Renee P N ~
a and P s a U which satisfies the second criterion for
o 0

goodness.

We have deliberately chosen this form for conditional

~xpressions rather than the equivalent form of T = [PI' TIJ u

[PI' n P2' T 2J ••• since iL allows us to use simpler

70

dcriv~tivcs than these in Hitchcock and Park [1972J and to

still obtain the desired preperties of conditional

expressions.

If, in addition, all the components of the subterms T. are'
1

single valued, then the subterrns'T. must be single valued.
1

Further, no evaluations of the T. can proceed in parallel and
1

30 the function f, given by L", is single-'valued anel the fir6i:

criterion for goodness will be satisfieu.

The cl ef ini tion of goodness a 110\..;s a limi led amount of non­

determinism. The first goodness criterion will be satisfied

by union free terms given by the following production rules:

<good ttrm>:;= <basic terlli>I[<good term>, <goud

<basic term>::= <free from X> Ix I <det term> X

<free from X>::= <det term>IAIB ••••

<det term>::= PIQ •••

... - • ___ - -I
LC.Lul/ J

where P, Q ... arc single valued and A, B •.• may be

non-deterministic.

Thp second foodness criterion allows a certain amount of

parallelism in evaluation, ie the domains of sub terms

involved can overlap under certain conditions. Notice

however that the definition of tIle domain of a non­

deterministic program is such that the program is considered

to terminate fOi' a given argument if there is at least one

terminating computation sequence from that argument, not that

all possible computation sequences f;rom that argument

terminate.

The property of goodness is certainly undecidable when ¢ is,

for example, the axioms of arithmetic.

Consider the term (G u H) X which is simple in ~ and has the

[arm po. Let G and H be the relational form of two functions

g (x) and h (x). Clearly G u H is single valued o~ly if g

(x) and h (x) are equivalent functions,a propp.rty which is

well known to be undecidable in the arithmetic domain.

71

5.6 Extension to HultipJ.c Recursions

5.6.1 IJcfirli tions

Ate rrn Tis simp 1 ~ in X 1 ... X if
n

1 T has no free occurrence of any X., 1 sis n.
1.

ii T

iii T = per

IV T = [p, er]

V T = (.lUa

where P and G are simple In ~l X
u

l

The itt}! part~al derivative; (i) and the co­

derivative of 8 term T si1nple ip Xl .•• Xn are

ubtained as follows:

i if T has no free occurrences of Xl X then
n

ii

iii

iv

v

• (-) • d T 1 = n, 1 ~ 1 ~ n an T =
'"

• e' •
If T = X. then T (i) :: E, T (j) = n, j ~ i and

1

T = n

if T • (i)
..

(i) • (i) and = pO' then T :: p U P a T =
•

P u P cr
• •

if [p, crJ
..

(i) (i) • (i) and T = then T -.. P U cr T -= p U cr
II' ,

if T = P u a then ~ (; '\
... " : (i) u ; (i) and T =

I/{I

pf'l (J
/I c·

Let ~ (i) abbreviate ~ (i) (fi/X
l

, ••• £lJXn)

J abbrcvia~.~ ;- (fi/X
I

.•. fr./Y"Q)

72

A term T is good relative to X'
l

is simp Ie in Xl .•• .x and
n

if T

i for any subterm pC1 of T in'tvhich some x .. occurs
1.

free, p (f
l

/ XI
, •.• f n / Xn ~ is single valued.

ii for any subterm pu~ of T
0

(i)
0

(5 c p U U p (i), 1 ~ i '~n
0

0

(i) u U
0

P c (5 C1 (i), 1 ~ i ~ n
0

5.6.2 Lemmas

o
If 1" is simr:e in Xl ••• X

n
, then ;- and 1" (i) are

syntactically continuous in Xl ••• X •
n

If T is simple in Xl Xn then:

(TN)' S 1"'U U t (i) (X. N)'
• . 1

i

If T is good relative to Xl· •• Xn, f1 fn then:
o

{X. c f. 11 ~ i ~ nl ~ (TN)' = ~ U U ~ (i) (X.H)'
1 - 1. 0 i 1.

.The proofs of all the above lemmas proceed in a

straight forward manner by induction on the formation

rules for simple terms.

5.6.3 Theorems

Let f, = ~. Xl.'. X (T
l

,
1. 1. n

1") ? ~ i ~ n
n

If each 1"i is simple in ~l ••• Xn then

\ (}:) S f, N
k K

where}: is an n x n matrix whose elements are given

by:

()
0 (-' ~s: • •• }: •• = T. J J 1.J.. 1. j, 1 ~ 1., J

1.J 1.

= '~.(i) U [T., EJ if i = j
1. 01.

~ n

If, in addition, e<ic.h l'i is good relative to Xl •• '

73

x , fl'.. f , then: n n
1 (i:) = f N k k

The proofs of the above theorems are essentially

similar tu the singJe recursive case.

5. 7 EX8;7lP les

Many r~cursion equations have the form
n

f (x, y) = (x i i E 1 dom (Si) ~ h (x, y), k (f (Sl(x),

jl (x~ y», .••.••.• f (Sn (x), jn (x, y», x, y»
\vherc h, k, j 1 .•• j n are known to be total.

In the relational form

Given that KN = HN ; J. N = N,i
~

1) 2 ••• n , then

the dt!l'.LvuLi'.·e::; are:

T = [0 S ·N!NJ n ~J [(SiN) , IN] 1 0 i i
0

[E
l

J"] c [S./!5J T = U S" , u
1 1 - 1

i i

Hence from 5.4.1, 4.3.10, 4.3.11,

fN ~ 1 (; U [T, E]) 2. 1 ([U S . / uJ
o • 1

1

=n
[LJ s. I UJ. =

1 1

[1 (U . S .) / N J
. 1
1

A sufficient condition for t~rmination is then

provided by 4.3.15 ie that S. c RT and 1 (R) ~ N for i
1 -

= 1, 2, ' •. n.

The familiar cases of such recurSl.on equations are

those of arithmetic, ,.;ith R= pred, Clnd LISP, with R -

car U cdr. The conditions S. c RT then amount to
1 -

S c > and S1" £ is-superlist of respectively.
i -

Primitive recursion is the special arithmetic case

where n = 1, J 1 = E 3nd Sl = Ercd.

74

5.7.2 Bounded upward recursion

Any equation scheme of the form:

f (x, y) = (x £ 1 (s) , u dom (s) ,) --7 g ex, y),

k (f (S (x) , J (x, y», x, y»

is total, provided that k, j and e are total.

The relational form is give.n by:

F = u X (T (X) = II X ([E .. (1 (S) () SN)' , E] G u
J.

LEI (1 (S) () SN), EJ [[E
1

S, JJ X, EJ K

The d2rivativcs are:

or e:: [1 (S) () sNINJ
0

n ([(1 (S) () SN)'

[E 1
(1. (S) n SN), EJ [(SN) , i NJ)

0

[E
1

(1 (S) SN), EJ [E S, JJ T = () c
1

Hence N ~ [t ([t (S), S J) IN] ;: t (~) ~ fN

using 4.3.23, 4.3.20, 4.3.11, 4.3.10, 5.4.1

IN]

:: ~~

[[t

lJe can usc tnis to establish the tot.:l.1i.ty of an

u

(S) ,sJ IU)

arithmetic function \vhich counts up 1:0 some limit.

eg [(x, y) = x ~ 10 ~ y, f (x + 1, x + y)

Let S = [10' ,: ~J, 10 is the tuple <10, A> and

* ~ = {<x, x + l>lx ~ OJ, 1 (S) = SlICC 10 = ~lO

using 4.3.9, \ (S)'= ~ l~ and so f is of the above

form, and hence is total.

5.7.3 McCarthy's 91 Function

This is the function defined by:

f (x) = (x > 100 7 x-10, f (f (x + 11»)

or, in a relational form

f = l.r X ([> 100, RIO] u [~ 100, EJ R- 11 X X)

~.Ti th R == 1) red.
, .. .L--

Applying 5.4.1 we have that

\ ([~ lOO~ EJ R- 11 (E u f» c EN

75

Let g ~ [> 100, RIO] u [~ 100, E] 91

where 91 = {<a, b>/a ~ ° & b ~ 91}

Then by fixpoint: inductioll fee ALler so by 4.3.10

1 ([s 100, E] R - 11 (E u g») c fN
- 11 1 ie 1 ([~ 100, E] R u [~ 100 n > 90, R- --J u [~90,

.91) S fN

Each of the three terms involved III the initial part

is contained in [:; 10,2" ~J, and, as iv example 5.7.2,

1 ([$ 100, ~J) ~ N, taking S = [100 , <].

Hence fN N, from 4.3.10, and f g since g is single

valued.

5.7. 4 Acke'i~n1<lnn' s Function

We consider tIle followIng fonn of Ackennann'H function.

f (x, y)

if x = 0 then y + 1

if Y ~ 0 then f (x - It 1)

else f (x - 1, f (x, y - 1»

The relational form for f is given by:
• 1 f =]JX ([(RN) IR- J u [RIA] Xu [E

I
R, [E/R]X] XJ

where R = pred

A :.: {<O, I>}

The derivatives T and ~ are:

T = n
o

o

o
T = [RIA] U [EIRJ U [E

l
Rt [E/RJ f]

But T S [E/R] u [R/UJ

and 1 (~) =. N from 4.3.21, 4.3.10 and the aXIom that 1 (R)=N

Hence Ackerm~nn'~ function IS totRl.

I fj ________ . __ ~ ____ .. O ____ • __ - 0---------_·

5.7.5 He continue with the example first introduced in

3.3.2 This was the pair of recursion equations;

if Xl = 0 then 0

else t (Xl' x2 ' x2)

t (Xl' x2 ' x3) =

if x3 = 0 then S (Xl - 1, x2)

else t (Xl' x2 ' x3 - 1) + 1

These were abstracted to the schema.

G = III Xl X2 (A u nx2 , CX I u DX2 F)

H = 112 Xl X 2 (A u BX
2

, CX l u DX 2 F)

The interpretation which gives the Lecursion equations

can be expressed entirely in terms of the predecessor

relation R.

A = [[(HN)', EJINJ

B = [[RN, EJI[E, EJJ

C = [RIEI(RN) 'J

D = [Eli E i f RJ

F = R 1

We have among the 'axioms for the integers that R- 1 R= E

and that t (R) = N

~rom 5.6.3 the domains of G and H are given by the

initial part of the matrix:
~CO B ~ t D u [(CN) , () \ ~N) t, E J j

Using 4.5.27

lIN = 'l (DuCBu [(CN)' () (DN)', E J)

= 1 (: [E:IE/RJ u [R [RN,EJI[E, ~JI(RN)'J

u [[(RN)' INI(RN)'J, EJ)

= 'l ([[RN, E J I E I RJ u [R [RN, E J / [E J E] I (RN) 'J) ()

([RNr ~I NJ u [Nr ~JI RNJ)

using 4.3.27.

2 1 ([EIEIRJ u [RIEIE]) () [~~ININ]

using 4.3.10.

77

[t (R) IN It (R) J n [R::~ IN IN] llsing 4.3.20

[PJ1IN IN] since 1 -(R) = N.

Again using 4.5.27

GN ~ ([[RN, EJ ICE, EJ] ([RN IN INJ) ') ,

= [NININJ

These expressions for the domains of G 8nd Hare

sufficient to show the correctness of the prograrrs In

3.3.2.

78

6 INTE RP RE TATIO:~ S

6.1 Many Sortedness

We extend our concept of an m ~ n relation on a domain D to

relations between tuples whose elements come from domains of

different sorts. We 'vi 1] pnrsue thi ~ jrr a less fonnal

fashion that that of chapter 2~ assuming ~ Don-empty

interpl'elat.i.oll in giV.i.llg the ::;emantics of terms.

6.1.1 Many SOL"ted Relation Variables

We use the following not~ticns to specify the type cf

a many sorted relation R, on domains 8
1

,

R:

or

T .
n

R is some relation between tuples from Sl x S2 x

Sm and II x T2 ... Tn whose elements are denoted by:

«51' s2 .•. sm>' <t l , t2 •.• t n »

head tail
eg <lis ts -;-::;-<a toms>' < lis ts ;--::;:-<lis to>

6.1.2 Many Sorted Relation Constants

<SI ' · ..
t »/s.

n 1

<SI' · ..

<Sl' · ..
s > Is • E

m ::.

u
S > ~

m
E S. ,

1

S >
m

S >
ill

S. ,
1

E.
l'

S >
m

n
~

E
~

1

<Tl '
1 ~ i

<Tl '

<SI '
~ i

<S.>
1

T > = {«s 1 ' s >,
m

n
~ m & t. E T'j , 1 ~ j ~ n}

J

T > = </> . ..
n

{<<s s >, . .. S >' l' m
m

~ m}

= lr <6: S > .:: > ,- --1' ... ,.;;. t:3. t,:,
m 1 J

< t l , .•. •

<s l'

r' v. ,
J

...

N
S > ~ 0

m
{ < < s ••• s > , A'> /'5. ::: S., 1 ~ 1 ~., m }

1 mIl

79

The basic operati0~s between many sorted relations are

defined as obvious extensions to the basic operations

defined previously.

cg if A is of type <S .. , S.) • <. S > -+ <T l' ... T._ >, Clnd
- - 1.,t.. fli 1. U

n is of .-1:
• v 1 , u" ... U :>

~ p
-- . • .• v > ttien

q
[A, BJ

L

is of type <S ... S > -+ <T
l

, T n' VI . .. V >
1 ' m q

iff m '.- p & S. = u. , 1 ~ i ~ m.
1 1

LA, BJ { n I . } <~, b c>,<a) b> £ A & <a, c> E B •

6.2 Axi~ for DrIta Strnctures

We will DOW Biv~ axiomatic definitions for some of the bnsic

domains likely to occur in programs, and their associated

operations.

Again type indications will be omitted when p08sibJe. The

rules governing well formed terITlf' 'viII usually enaJ.jlc them to

be res tored.

6.2.1 Finite Sets

Our ultimate interest is in objects which can be

represented in a machine, and so the "set theory"

given here is more restrictive than any general set

theory. We deal here \.;ith finite sets of objects

which satisfy a predicate is-el. The basic operation,

the removal of an element from such a set, is given

the name sub. It is of type <is-set> -~ <is-set, is·~

el>, and is defined by the following axioms. These

sets correspond to the powerset type of PASCAL, Wirth

Ll97JbJ.

D
D(i) «s> .§.ub<

. -r S, e> <5,

D(ii)

~

ii

iii

iv

v

80

in
D sub E2

<8> -+ <c> <s> ~ <8, e> <s, e> -+

- 1
c cp ¢ <s>

1 (s ub E _)
'-- l'

- 1
sub

-
S Ilb sub ._---

- I (sub

1

<s>

~

N
-+

E
-+ <s>

N is-set.
<s> -+ 0

t; S l.1b E u.t:2
1 --- 2

E
<s> -+ <s>

) , in
=

0 <s, e> -+ 0

<e>

i-.7e sho", in 6.3, tha t any mode 1 of these axioms ~s

isomorphic to the set of finite subsets of elements

[nlll\ i~-el with sub {<A, <b, <s> -}- <s, e>

i b & A. = h I) {c}}.

ie the axioms are complete relative to interpretations

of is-ell

The more familiar set operations can nm·, be defined in

terms of the basic relation sub.

Define

then:

add - I
u [<

in
0' EI J sub <s, e> -+ <s> s, e> -+

union
II X ([E I~] u [E sub] [[E

I
, E

2
J X ,E3] add) = <s, s> -+ <s>

difference
<s, s> -+ <s> = llX (E I . [¢, EJ IJ [sub IE] ([[E 3 ,

E2J in, El , E3J X u [[E
3

, E
2

J in', [E
I

, E3J X,

E
2

J add))

Notice that no complement operation is defined. If the

domRin is-~l were infinite tnen this would result in

infini tc se::s.

6.2.1.1

81

We can generalise our ideas about sets to

describe finite sets which can include

finite sets ,as elements. Consider the

follmving axioms, sub is now a 2 -+ 1

relation on a mixed d,omain of sets and

elements.

i (~N)' = ~ u is-el

ii ~ n is-el n

iii N

iv
- 1 sub sub c E

v
- 1 .

sub sub E2 E sub E u E
1- 2 2

vi (sub- 1 N)' in
= 2--:; 0

vii (sub - 1 N) ~ [is-set IN] '-
D (i) is-set ~ u sub N

in
D (ii) 1 -+ 1 = sub E2

We allmv allY object to be added to a set,

~nd the induction rule now states that the

domain of sets is well founded with

respect to the operations of taking a

subset and of taking an element.

The induction rule does not allmv sets

which are eleme'nts of themselves, using

4.3.17, and so paradoxes do not arise.

These objects bear the same resemblance to

the finite sets of 6.2.1, as LISP S­

expressions bear to linear lists.

82

6.2.2 Trees

The fo11m'ling objects are loosely based on those of

the Vienna Defini tion L,ln81JClee) and are R

generalisation of LISP S-e:h.'}Jressions.

We consider first rhc single sort.Pd case.

He suppuse a finite number of COlltlLLUt.:Lol' lelaL.iol1s

i ~ 1, where i gives the type of the-relation as

uJ<.- .J..

--j

i -+ 1, and j distinguishes relations of the same type.

These r~lations satisfy the following axiom schema.

i Irk - i j mk - t~ 1 = E, j = k, ~ ~= e

ii

iii

Di

= n othcrl'lise

- 1
mk-i. mk-i.~E
__ ~J J

U 1
1 (•• 1 mk - i. E) = N

1, J, L~ _~.~,_. -J k

D
. n . (!idC - i -:- 1 N) ,
1, J J
elementary objects.

is-eo the set of ,

These easily extend to the many sorted case.

6.2.2.1 Ari thIDe ti C expressions

Consider the following c1efinition of

arithmetic expressions in the Vienna

Notation, Walk et al [1969J.

is-expr::= is-var v is-unary v is-binary

is-binaD1::= «81: is-expr>, <S2: is-bin-

cp>, <S3: is-cxpr»

1s-unary::= «.54: is-un"'op>, <55: 1S­

expr»

83

is-un-op::= + v -

is-bin-op::= + v - v * v /

is-var::= x v y v z

mk-3 mk-2 We use ~ and many <e, b, e> + <e> <u, e> + <e>
so=ted constructor relations, vhere e

abbreviates is-expression, b, is-bin-op and u

is-un-op, called m1e-bin and mk-un r~specti ve ly,

d bb · mk - 3- 1 E S 1 Th an a revlate, 1 to etc. en

we have that

i
D

(k b • - 1 N) I' = n. m .. - l~ is-var.

ii The induction 8xiohl is given by:

is-~xp r == 11 (N)

is-un-op = 12 (M)

is-bin-op = 13 (M)

where M is the 3 x 3 matrix.

(~1 u S3 u S5) S4 S2 <e>+<e> <e>+<~> <e>~<e> <e>~<u> <e/+

n. . (>. n
<u>+<e> <u~~<u> <u>+

n n n +<e> +<u> ~ ~:..,r·

By way of further e~~p 1anation •

.
\ 3 (H) ::: 1. «b > U. <b » by 4. 5 . 30

c is-bin-op by 4.3.12

1. 2 (M) = 1. (n) -= is - un - op simi 1 a r 1 y • <u> + <u>

1. 1 .(M) = Jl X «((S 1 u S 3 u S 5) X ')' n (S4 i ~.~ U t\
. . I

cn')r ~, IS) ~s_h~~-cn"') ::- Ii, ... ~ u~.. r' /

ie, for a binary expression the Sl and 53

components must be expressions U:1d the S2

component is a binary operato:, r~ca11ing that

..
..'

6.2.2.2

6.2.2.3

(AX ') , is the set all of ,,,hose

predecessors under A are in X.

Operations on Trees

T.he basic operation on a tree is the

ability to select a b.ranch and modify it

~·,Tithout affecting the other branches.

Thls ls analogous to Uu:.: ;l-operCttor of the

Vienna Definition Language. We model this

assignment in the follmdng f.:l8hion.

Assume that V.Tt:! 'visil to modify the j' th

cOffi'~onent of a tree constructed by A mk -

i relation. This is done by the term .
. - 1 r 1"111, -, I h' 1 rEo h' h'

L .,~ .~- I >.J ..J ~ 1 ... ~ j - l' ~ i + 1 >

,., ,~ -,
f', j + l' ... J..;. i .J

/"

The modification to the tree is in the

into i components, the j'th one i8

. changed, and the tree is reconstructed.

Tha property that modification docs &ot

affect other branches follm..,s immediately

from the properties of selection and

concatenation, in the same way as do those

in 3.1.1

Structures

·We have in mind the structures of pL/I or

the record types of Pascal. No induction

axiom is required in their definition for

they are basically storage disciplines

rather than recursively defined objects.

A s true L.ure ,·,Those :::omponents arp. of

diff~rent types is defined using a single

many sorted !J2ls:.i re1at?on. The axioms

are:

----.. ---------~ --_ .. _._------_ .. _-_ .. ,--._----_. --..

6.2.2.4

6.2.2.5

6.2.4 Lists

6.2.4.1

85

i, ii, iii as fo r 6.2.2.

iv
- 1

ITlk - n Lis - Tllis - T2
<5 > -+ <T 1 ' T >

I. . .. is - T 1
n'

11

N
<s> 'r 0

is-8 true ture--s

Arrays, '\'Jith fixell 'lJOU(lGS, are a sPecial

case of structures, the components are all

of the same type and the integers are used

as selectors.

Lin~i tations

Tll e f lJ r Hl'::;' 1 i S in i s

knowTi and fini te; types. I t is nOL:

,...4=
V.L..

possible to 'form tuples of an arbi trary

length and hence to cons truct arrays 0 [an

'arbitrary length. The arrays of such

languages as APL Cannot therefore ve

described.

The Vienna Defini tion Language uses

objects \vhich may be considered as trees

with an infinite number of selectors, a

fini te numbe r 0 f whi ch are non-erop ty. He'

cannot therefore describe these, but only

that subset where the selectors used are

all knm·;rn in advance.

LISP S-expressions

These arc 3 opccial case of trees using a

single mk - 2 re ldtioll to cons truct bi.nary

tre"s from elements satisfying is-atolil.

6.?LL.2

6.2.4.3

86

i E

ii fit!" - 2 1
m.'tz - 2 c E

iii - 1 - 1
1 (rrk - 2 E 1 LJ role - 2 E 2) N

= is-s-expressions __ ~. ___ ~._.~....t..~ ._~.,_",._, v· __

D
Di (m1\: - 2- 1 N)l ~ Is-atom

lrJe - 2 is more usually kilmV'n .:1S cons, mk -
:=-T2- -E' - 1

1 as car, mk - 2 E 2 as cdr.

These may be modelled as a restricted form

of binai'y crees whose righL hanci

compone.l.lts arE: al"ways atoms. i;' special

object nil is distinguished to signal, the

ena of a list, and denotes the null list.

i

ii

iii

iv

Di

- ,
lnk - 2 mk - 2 ...

- 1
mk - 2 mk - 2

nil nil
1

---- ~ <i>

(mk - 1 E
l

) 'l - 2

lis t

(rrJ< -
D

2 - 1 N)' =-

c E - <~> ~ <9",>

E
~ <R,>

= N = is-Ii near-"

nil
<R,> ~ 0

mk 2 · k k 2- 1 E - 1S nown as con~, fil. - 1 as
- I tail, mk - 2 E as head

2

Linec:.l' Lists with no n!}Jt:!ated elements

lve Clchi.eve lists lrith no rep~ated elements

by rcst.ri ct.i.ng the 1:)k - 2 operati.on :-;t") th(t~':

6.2.4.4

i

87

atoms are only added to lists if they have

no~ been added before.

i mk" - 2
... 1

ml: - 2
<Jl" a> -+ <2'> <Jl, > -~ <Jl" a>

=

[lis t in' [E IE]]
<i, a> -+ 0' <2> -+ <Jl,> <a> -+ <a>

ii, iii, iv, Di as aoove.

Dii - 1 * (mk - 2 E
I

)
list in

mk -
D

<t> -+ <a>

Ordered Linear Lists

Again we have the a~ioms for linear lists

with the mk - 2 operation restricted so

that the atcm which 1S added is greater

than the unc at the h ~
\.;. '-1..4 of the '~"'.f- being ~.1.u

added to.

ii, iii, iv, v, Di as above.

Dii
«

= [nnil lis-atom] u
<2, 2> -+ 0 <~> -+ 0 <a> -+ 0

[mk - 2- 1 E IE] <
2 <a> -+ <a> <a, a> -+ 0

<t> -+ <a>

where < is the ordering
<a> -+ <a>

relation between atoms.

6.2.5 Constructed Domains

lIe have already seen 6.2.2.3, an exarnp Ie of the

construction of a new domain from other domains. We

now give two further examples.

6.2.5.1 Discriminated Union

These objects correspond to those with the

6.2.5.2

6.2.6 In tege rs

88

now obsolete CELL attribute of pLII or to

the union type of PASCAL.

We use many sorted ~ relations to

"convert" from a domain to the

discriminated union domain. These relation

relations obey the following axiom

i -I ~
<s.~o~v<T> <T~G~n~s.>

1 J
if i = j

= n otherwise.

E <s.> -+ <s.>
1 1

~'his ensures that we are ab Ie to tes t

unambiguously for the original sort of an

individual element. Again this is

basically a storage discipline.

Cartesian Product

lie already hnvc in our many Gortcd

formalism the abilily lo form direct

products of domains and to select

components from those domains.

Finally we give the axioms for the integer3.

i

ii

iii

R
I -+

R 1

(RN)'

R
I

I I -+ 1 S E

R = E

D
is zero

iv is-zero is-zero- I S E

v 1. (R) = N is-integer

89

6.2.7 Representations

l·,Te \.;ri 11 say nothing he re conce. rning the mode.lling and

representation. of the objects defined axiomatically

above but \\,ill instead refer the reader to Hoare

[1972bJ.

6.3 Appendix

We sho\v that any model of tne axioms of tJ • .L • .L for sct~ is

isomorphic to ,the set of finite subsets of elements from is-

e 1 wit h s ub ::; {< a , <b, c > > / a ~ ~ &. is-el (c) ~ c , b & a ~

b U {c}}.

Let R be Clny relation \.i'hich s'-:lti::;f:i.c~ the. axioms for sub and

define ~ (x) ::' {c/<x, c> (EE
2

}.:IS a m&pping from the domain

associated ·with R to the sc:I: of :init.: SUb3C:::: C:: 21err.c:;.r:s

from is-cl.

/'

We sho\v that t!J is em isomorphism, ie that l/J is SiIlgL~ valued,
- 1 total, onto, and preserves R, and that ijJ is single valued.

A ~ is single valued, by definition.

B 1jJ is a homomorphism wi th disj oin l union compatib Ie

wi th R- 1.

ie (Vxyz) «x, <y, z» E R ~ l/J (x) = l/J (y) U {z} & z

r/ VJ (y»)

Proof: from iii

from iv

{«y, z>, w> /(~x) «x, <y, z» E R &

W = l/J (x» }

= {< <y, z>, w > I H l./J (y) v w { z} }

(identifying".jJ (x) with RE
2

)

for each y, z there exists at most

one x such thRt <xs <y, z» E R

D(ii) if Z '- l/J (y) there is ex~ctly

one such x

E

90

Hence (Vxyz) «x, <y, z» E R ++ ~ (x)

z r/. tJ1 (y»

C tJ1 is total. This follows from ii and B.

D ~ is onto.

tJ1 (y) u {z} &

We show by induction on the number of elements in w

that (Vw) (~x) V1 = V' (x).

if w = {} then x = cp, i.rom 1.D(i)

As s u me (~y) w = ,~ (y)

then (~x) w U {z} = ~ (x) & z , w

since (~x) tJ1 (x) = tJ1 (y) u {z} & z r/. w from induction

hypothesis, B, v, Deii)

with :::x, <y, z» E R.

~- 1 is singl~ valued ie ~ (x) = ·11
ljI'. (x) -+- x = x

1 '.
Suppose ~ (x) ~;p (x), then ei thcr 0/ (A) = 4, or tJ1 (x)

= {Yl' ••• y } since V' is total.
n 1

if tJ1 (x) = ~ then x = x = cp from Dei), i.

if !JI (x) = y U {z} & Z , Y fo r s orne y, Z

then y = ~ (w) since ~ is ~

ie tJ1 (x) = tJ1 (xl) = tJ1 (\0;) U {z} & Z r/. tJ1 (W)
1

-+- <x , <w, z» E R & <x, <w, z» E R from B

-+- x = xl from iv

6.4 Extensions to Hoares Axioms

The relational formalism may become notationally very clumsy

when talking about complicated programs, and it may be more

convenient to switch to the first order predicate calculus.

This is done in a manner which generalises the developnent of

Hoare [1969] in describing program semantics-:

6.4.1 ~~-conptructive Definition

We define an interpretation for a relat~on in the

...... -. __ .. - ..• _--

91

following manner.

S == {<a, b> Ip (a, b)}.

The predicate P (a, b) is a formula in the first order

predicate ca1cu11.W ,.7hose domain, functions and

predicate letters are knm.;n.

We find it convenient to express the predicate P in

such a way that the rlomain of S is made explicit ie

S == {<a, b> IQ (a) & R (a, b)} and Q (a) -+ (3h) R (a, b)

These re lat~_ons correspond precise 1y to the minimal

valid predicates of Manna and Pnue1i [1970J.

6.4.2 Operations between non-constructive relations

We assume that we have the relations

R == {<a, b> Ip (a) & Q (a, b)} and P (a) -+ (3:b) Q (a, b)

S == {<a, b> IT (a) & U (a, b)} and T (a) -+ (3:b) U, (a, b)

The remainder of this section gi ves expressi.ons for

the basic operations between Rand S. These are

special cases of the operations defined b~fore, and are

shown in 6.4.3 to be a generalisation of Hoare (1969J •

6.4.2.1 Composition

6.4.2.2

If P (a) & Q (a, b) -+ T (b)

P (a) & Q (a, b) & U (b, c) -+ V (a, c)

then R; S == {<a, c>IP (a) & V (a, c)} and

P (a) -+ (3: c) V (a, c).

Concatenation

If 0 (a) == P (a) & T (a)

P (a) & T (a) & Q (a, b) & U (a, c) & d ==

6.4.2.3

92

b n c -+ V (a, d)

then [R, S] {<a, d> /0 (a) & V (a, d)}

and 0 (a) -+ (30) V (a, d)

R u S = {<a, b> I (P (..a) V T (a» & «P (a)

& Q (a, b» v (U (a, b) & T (a»)}

6.4.3 Hoares Axioms

If we had chosen to define relations by predicates on

the input &~d output tuples separately, ie in the

manner S = {<a, b> Ip (a) & R (b)}, and did not

explicitly define the domain of S, then operations

between such relations model the axioms of Hoare

[]C)()9J.

6.4.3.1

6.4.3.2

Nt)tation

The notation P {Q} R is taken to mean, "if

the assertior. P is true before initiation

of a program Q, then the assertion R will

be true on its completion."

Let S be the relation {<a, b>/P (a) & R

(b)}, then if the program Q, restricted to

inputs s atis fying P, is to s atis fy R on

te rmination, then [p, E] Q s. S, and

similarly, if the program Q is restricted

to outputs satisfying R, then S ~ Q [R, EJ

ie the notation P {Q} R is represented by

the formula [P, EJ Q ~ Q [R, EJ.

Rule of Composition

The rule of co~osition 1" C' • u.

6. 1 •• 3.3

93

In the relationRl formalism.

Rule of IterRtion

The rule of iteration is:

if I- r & B {51 P then I- P {\"hi Ie B

do S} -, B & P

'rIte while lccp 1':; rcprcs£:1ted ~y th.::

term

L = llX ([B 1
, EJ u [B, EJ 5X.)

We wish to show that

[P, EJ [D, EJ S ~ s [r, EJ I- CP, EJ L c L

[B', EJ [P, EJ

The proof proceeds by Scott Induction on p(X).

P(X):: [P, EJ XSX[B' ,EJ [P, EJ.

i P (n) is true

ii Assume P (l),

[P, EJ ([B', EJ u [B, EJ SK) ~ [B' ,

EJ [P, EJ u [B, EJ S [P, EJ X

~ [B! , E J [P, EJ u [B, E J SX [B' , E J

[P, EJ

S ([B' , E J u [B, E J SX) [B' , E J [P ,E]

iii Hence [r, LJ L c L en' , ::.:J [P, EJ

94

7 REPRESENTATION'OF'DATA

One may start to write a p=ogr.am and specify its domain and basic

operations in an axiomatic manner. Development proceeds by

finding satisfactory representations for this domain in terms of

more specific domains and their operations, u~til finally we have

domains 'olhich are representable in our target J anguage. We must

distinguish between the general notion of finding a representation

such that·~ program will work, from finding a representatiun

Such that a par .. ticl!t~!' program will work. The two may well be

different. Compiler wri': ~rs would be interested in the former

whilst the latter is of use in the development of programs.

7.1 . 'Representations

Equality between eleffi~nts of a domain is a basic predicate

which we assume in the set theoretic definition of the forma'lism

Hhcn \ole progress, in the d~vclcpm2nt of a program, from on€;

model of the domain to another, there may be several possible

representations of a single element from the first domain in the

new domain, and we must ensure that this notion of equality is

preserved, ioe. that any two representations of the same original

element must be ccnsidered equal.

We show how to go, by a simple substitution proceGS, from a

program cr, 'vritten in a language L~, to an equivalent program ,{

written in another language L~ using representations of the basic

operations of L~, and we state a representation thepremwhich

enables such representations to be validated.

The interpretations of the new program /\ cr will, in general, be

inefficient since they are essentially non-deterministic making

copious use of an equivalence relation, in order to preserve the

notion of equality mentioned earlier, and we introduce the concept

95

of 'good representations which make a minimal use of such

equivalence relations.

7.1.1' 'Representation 'Theorem

7.1.1.1' 'Operations 'modulo 'e~ivalence'classes

If we have a domain N, and an equivalence relation
, tp

R on N~ whi~h relates different representations of

the same object from a domain N~, then we define

N, mo~ R to be the domain whose' elements are
,V'
equivalence classes of objects from N,.

V'

X E N~ mod R <=> x E R NIjJI'

<=> X E N~ sine!:! R .i..~ toLal.
-where x is the equivalence class which

contains x.

We define operations modulo these equivalence

classes as follows.

m.l.n

,,,here R = E o 0 -). 0

Rl = R
R = [R IR] n + 1 n

~od R <=> <x, y> e R T R m n

This definition is meaningful because R is an

equivalence relation. Consider the tuple
A'A' A A

<x, y> such that x e x, y e y.

- -Then <x, y> e T mod R => <x, y> e R T R

=> R <x, y> R S F~ T RR CRT R
A A

=) <x, y> e R T R

'FR = R since R is an equivalence relation,

96

the extension for m + n relations and many

sorted relations is straight forward.

7 • 1. 1. 2 "Lemma

Let L, be a language with constants W., given by
~ ~

a set of axioms ~, let ~ be an equivale.nce relation

added to the language LtjJ' and let ItjJ be an interpretation

of this language over a domain NtjJ which assigns an

equivalence relation R to~. In addition let L~ be

anoth~r language with constants" t., given by a set
1.

of ex ioms p ~nd let 1<1> b~ an interpretation of

L~ over the domain ,NtjJ mod R whi~h assigns to

the constants ~. the relation I. (T.) mod R, where T.
1. lIJ 1. ~

are terms in the language L~.

Then for all terms 0 in L¢,

-<x, y> £ I ~ (0) "<=>

<x, y> £ I", (0 (6/E,E.6/E.,6T.6/~.)).
If' ~ 1. ~ 1.

The proof, which will not be givea here, proceeds by

straightforward induction on the formation rules for

terms in L~.

7.1.1.3 "Representation Theorem

Let L~, 1
lJJ

, L~, 1<1> and 6 be as in 7.l.l.~

Then 1¢ satisfies the axioms ~ <=>

1lJJ satisfies the modified axioms

I (6/E, E.6/E., 6T.~/¢.)
1. 1. 1. 1.

Proof:

-The individual elements of the set of axioms ~ are

atomic formulae of the form a c B.

1<1> satisfies a c S

97

(a) 5 'rcp (S) <=> Icp

<=> IljJ (a(I1/E, E.l1lE.,11 T.I1/J..» .s.. ItjJ (S(I1/E,E.A/E. "
1 1 1 '*'1 1 1 ' , ,

I1Ti I1/CPi»

using the previous lemma

<=> I", satisfies (a ~ S) (I1/E, E.I1/E.,11 T.I1/cp.»
If' 1 1 1 1

The intended use of this theorem is to validate that

terms 11 TiA in the language LtjJ are representations

of constants CPi in the original language Lcp~

7.1~2 Representations of programs

Having used the representation theorem to validate that

terms 11 T.11 in L", are representations of constants cp. in
1 If' 1

,the original language Lcp' it is a.straightforward consequence

of the lemma that a program P in Lcp,~modified by/the substitution

(I1/E, E.I1/E.,A T.A/cp.) is a program P in the language L", such '
1 1 1 1 '*' '

that any representation in NtjJ of the input to P is mapped to

any representation of the output of P.

We identify as 'good terms those which have the property that

I~(I1T,I1) =1 (T.I1),where T. does not contain ~, and it is clear
'If' 1 tjJ 1 1

that good terms which are combined by the operations of

composition,concantenation and union result in good terms. This
~

concept enables simplifications to be made to program P such that

it will be more efficient. In many cases the resulting program
~ A

P will be ~, and if the final equivalence relation in P is

removed the program P produces ~ representation of the result of

the program P rather than all, which is usually all that is

required.

Unfortunately this concept of goo~ness is not all that powerful,

since it is possible to produce programs which are good from

components which are not good (see the list union program used

later as an example).

'j
j

98

7.1.3 'Example

We take as an example the language ~~ of finite sets defined

by the set of axioms ~ of 6.2.1 and the language L~, linear

lists with no repeated elements defined by the axioms , of

6.2.4.3. L~ is extended by ~.

Define a function f which maps lists into the finite set of

elements in the list~

-1 -1 -1 f = liX (nil ~ u cons [E, X, E
2

] sub,)

and define the equivalence relation:

R =, ff- l

This is assigned to ~,in the interpretation Iw. ~The relation

R makes equivalent all lists with the same set of elements. E ~s

the equivalence reiation on the domain of clements of lists.

We will show, in 7.1.3.1, that R has the following properties.

1

2

3

4

5

RR = R·

R = R 1

E c R

[RIE] cons c cons R- --------
R cons 1 E2 = (cons-

, 'listin

Using these properties we can show that I satisfies the
~

modified axioms

Making
.... t.. _
L1H:: substi.tutions in the axioms of 6.2.1

99

i (R'cons- 1 N)' «R'cons-1 N)'- 1 ~
--=1:::-y- - 1 - 1

Retons N)' «cons N) ') ~
- 1--

c R'rti1:rti1- R ~ R using 1, 2, 6.2.4.3. (iii D (i))

ii \ (R'cons- 1 E
1
R)'..= l(Rcons- 1 E

1
) using 1,4

:= R t' (cons - 1 E
1
), usin~ 4.3.24,

iii

" -= Nt/J using 6.2.4.3 (iv)

[RIE]'~ R'cons- 1 E2 =
5, 6.2.4.3 (i)

- 1 I - 1 iv R cor,3 [R E] cons R c R cons ~ R using 1,4

v

'c R using 6.2.4.3 (ii), 1.

'listin
=' (cons N)' .=. ([R/E]

<2 e>+ 0

[RIE] (cons N)'

6.2.4.3 (i)

[RIE] (cons N) 1 _c [RIE] <2,e> -r 0

listin

6. 2. 4. 3. (D (i i)), 4

R cons- 1 E2
Hence ([RIE] _cons N)' = (----) (note

<Rt, e> -r 0

the implicit conversion of the RHS to a relation

of type<2,e>+ 0)

and hence from the representation theorem, that we

·have- a representation in Lt/J of the language L~.

7.1.3.1 Properties of R.

We will first establish some properties of f.

1. f- 1 f = E

Proof.

f- 1 = ~Y (~ ni1- 1 U sub [E
1

Y, E
2

]

.. ~)

'100

- 1 f N = N from termination theorem and

6* 2.1 (ii)

:..) ind11ction with Xf- 1 c E

=) since E is single valued and f- 1

is total.

ii f'in ='listin

Induction on P (X, Y) = X sub

= y

with :J (X) <P ni1- 1
u sub =

'[E
1

X, E2]"~

- 1 E) S(Y) = {cons E1 Y u cons

and using 6.2.1 (iii).

1 E
2

- 1
E2

Now we establish the required properties of/R

1

2

3

4

- 1 - 1 - 1
RIt ff ff = ff = R from

- 1 1
R = ff = R

- 1 since E c ff f is total.
- 1 - 1

[fiE] 'cons ff = 'cons (cons

- 1) - 1 fixpoint ' 'sub f , property of -
= [flE]'sub- 1 f- 1

'

-1 - 1 = [f E] ~ sub [f EJ ~,

- 1 fixpoint property of f •

.=[fIEJ [in', EJ [f-l'E] cons

"-= [f IE] [(f- I, E] listin " E]

[f- llEJ '~~ using (ii)

~ [ff- llEJ [listin', EJ cons

(i)

f.

~ [ff- liE] ~ since we have lists

with no repeated elements.

101

5 - 1
E2

- 1 - 1 R'cons = ff cons --= f' (sub [f l/EJ '~) cons

fixpoint property of f

= f'~ub [f- llEJ E2

E2
- 1

= f'sub E2 since f- 1 is total.

= f'in, 6.2.1 D(ii)

='listin from (ii)

E2 ,

The mapping f is canonical, in that it maps equivalent

lists to a unique representation.

7.1.4 'E~arnpleof'program'representation

We showed in 7.1.3 that sets may be represented by lists

with no repeated elements, and that R'cons- 1 [RIE] was

a representation of'~

The following terms arc good representations relative to

tP and R.

1 , 'listin
<R., e> -+ 0

for in since [RIE] listin = listin

2 cons R for sub 1 since [RIEJ cons R = cons R

3 '~ for ~ since R nil = nil

However R cons- 1 [RIE] ~ cons - 1 [RIEJ

If we consider the program union defined in 6.2.1 then

Itp'(union,(A/E, EiAI~i,f1cons- l[f1IEJ/sub» is a represent­

ation of 'union in the language L~. Let this be the program

P, note that ~ is redefined as T (f1'nil).
"'ljJ

,.'

102

([[RIE] listi~, R] u [RIE] ~ R)

if we define'listunion to be:

'listunion =p.Y ([Enil] u [E cons- lJ [[E
l

, E
2

] X, E
3

]

([Listin, Er] u~»

then using the fact that listin, ~, nil are good

representati~ns relative to L~ and R, it can be shown

that

P = [EIR]' 'listunion R.

The original progrPM union was ~ingle valued~ furthermore

, 'listunion is total, hence

[EIR]' 'listurtio~ R ='listu~ion R

and so the program'listunion is a good representation of

'union relativ~ to L~ and R.

Note that mechanical substitution did not take us all the

way to the final programlistunion. The program P was

optimised as a separate process to produce listunion.

Note also that this is a good representation of a program

whose components were not all good representations.

The program listunion has the property that given any

representations of two sets as lists, it produces a list

which is ~ representation of the result of the union of

the two original sets. This is usually what is desired.

106

PAGES 103 TO 105 HAVE BEEN INTENTIONALLY OMITTED

7.2 Simulation

\.Je may have a representation for a domain which is sufficient

for a particular program to work but which need not satisfy

the axioms fer the original domain. We state this form;::l11v

by saying that a prvgram ~ith this representation'simulates the

original program1 cf Milner [197lJ.

7.2.1 Simulation Theorem

Let f be a relation between the input domains of

programs represented by JJX :j-(X) and llY .s (Y), and let

g be a relation between their output domains.

Iff X g - 1 = Y r- f j eX) g - 1 5 (Y)

then f l1 X ~ (X) g- 1 = llY 8 (Y)

and we say that f lJX ~ (X) g- 1 simulates ~Y 5 (Y).

This is easily extended to multiple recursions.

I f {.:. X . g ~ 1 = Y. 11 ~ i ~ m}
1 1 1 _ 11'

f- {f. E. (X) g. = S. (Y) 11 ~ i ~ m}
1 1 - 1 _11 -

then f. ll. X .j(X) g. =11. Y G (!~ 1 ~ i ~ m.
1 1 - - 1 1:';

Proofs are a straight forward application of Scott

Induction.

7.2.2 Example

We can pursue the previous exarr~le oi union and

107

listunion in a simulation style. Here however the

for111 of listunion must be 'guessed' at rather than be

mechanically produced by substitutions.

If f is again the fupction which maps from lisLs to

sets, \ve cal) easily show,using the simulation theorem

and results from the previous section that:
-1 -1 . . - . r f f £ J l~s turner.. f ~ urll.on

I

d f ' ." ,.- 1 i T"1

Ull SlIH.:e lS toLal. <Jlld 1 ~- r:,

listunipn ~ [fit] union f- 1

ie «x, y>, z> E listunicn => «£ (x), f (y», f (z»

E union

Furthermore listunion is total, hence again listunion

acts on any representation of DvO sets to produce a

rcp~C8cntntion of their l~ic~.

:::::::----~~ .. -... ~.- .•.. -.-- --- ------- .. _--_.-
lUti

8 CHANGES TO CONTROL STRUCTURE RECURSION REMOVAL

8.1 Introduction

It may be most natur~l to pose a problem or an initial

solution, in a recursive manner n.~d then to develop from this

a flowchart program augmented by stac~s. A result from

Paterson and Hewitt [1970J states that the~e exist recursive

program schema ~.,hich cc..'1not be represented by flmvchart

schema. It follows that, in general, we must use flowchart

schema augmented by stacks to simulate recursive program

schema.

8.2 Labelled Stacks

Compilers usually hanJle recursion in the following manner,

Dijkstra [1960J. When a procedure is called, link information

is stacked which enaLles the calling program to continue when

control is returned from the called procedure. This link

information contains a 'return address' which tells us thE:

point from ~..rhich eXecution is to continue, and also contains

a way of restoring the envirunment to that which was current

at the time of the procedure call.

We formalise this by using labelled stacks. A labelled stack

is a conventional stack whose elements are state vectors.

Return addresses are not stacked, rather, this ir .. formation is

kept by giving each stack operation a label. There is a

corresponding unstack operation for each label which is used

both to restore the state vector, and to switch control to

the appropriate place.

Any augmented flowchart schema will only use a f,ixed number,

n, of labels. This may be determined statically. The labelled

stacks are defined by the following axiom schema.

stack& unstack. = E, 1 = j
1 J..

< v, s>-+ s, s -+ <:V, S > =- n 1;t j
(1)

where v is a state vector and s is a s~ack.

109

We will also use a degenerate form of these stacks as to

count~ Here no information, other than the label, is put

onto the stack.

inc. dec· = E, i = j ----J.. .:.::..:.J.
(2)

1+1 1+1 = n ,i ;t j

At anyone time the stack can be viewed as a stack of , .
coloured counters. Labels may be identified with colours,

some counters will have information written on them, if they

have been put there by a stack operation, and some will be

blank, if they have been put there by an inc operation.

We will use the fo1: 'Jwing abbreviations:

stack. unstack. to s. U.
1 111

inc. dec. to i. d .•
1 1 1 1

8.3 Informal Introduction to the General Theorem

To introduce the general theorem we will first study two

CX.:lInp les.

Example 1: Given a recursive schema represented by f = ~
(A u B X C X D), we can identify the relation A with the idea

of a return instruction, ie that its invocation tells us that

an evaluation of f has finished. The s ubterm B, commits us

L:O the evaluation of the remainder of this term, which

. includes recursive calls to f, and again the final subterm D

can be associated with a return. We can produce a pair of

flowchart schema, the first of which calculates f, by either

returning, having evaluated A, or by applying B, stacking a

return address, and then invoking itself again. The second

schema calculates the remainders of terms by inspecting

markers on the stack and then using them to switch to

evaluation cf the appropriate remainders. These remainders

too may involve recursive calls to £, and so markers may be

stacked and ~ontrol passed back to the first schema.

We produce terni.'3:

110

(T)e = [EldO] U [Eld l] [ci i 2] Y U [Eld2].[D~E] n
and define f =]Jl Y23 «T) , (T)Q)

a .a fJ

f(3 = 112 Y23 «T) a' (T) (3)

The schem~define 2 + 2 relations. The first component of

their state vector is the argument, and the second is a stack

of markers. These schem~are related to the original schema

by the theorem of 8.4.4 as folIous:

[fl E] fS = fa

Clearly [Elio] fa = E, and so we obtain the following

equality

] f where iO
CI. 0+1

produces a ~tack initialised to

Example 2: We study the schema corresponding to a tree

traversal program.

f = 11){ (A U [BX, CX] D)

The concatenation operation, [,], is dealt with as follows.

tve arbitrarily decide to evaluate the left subterm first, and

then the right subterm, which must be evaluated with the same

argument as the left term. The sequence of operations to be

carried out, together with the corresponding subterms is:

1. S tack the argument, [E l' S 1 J

2 Evaluate the left subterm which

includes a recursive call to f, GBIEJ Y

3 Unstack the argument and stack the.

result of the left subterm, [Elul J[E2 ,[El ,E3J s2J

4 Evaluate the right subterm,[C IE] Y

5 Unstack the result of the left

sub term cu"1d form the res ul t ve ctor, [E I u2 J[[E 2 ,El J, E3 J

6 Apply the remaining term,[DIE]

111

7 Evaluate the remaining stack,~.

The resulting schema are:

(-d
a

= [AlE] ~ U [E
l

, Sl] [BIE] Y

(T)S [Eld
O

] U [Elu
l

] [E
2

, [E
I

, E3 J s2] fe/E] Y U

[Elu'2] [[E
2

, E
l
], E

3
] [DIE] ~

and the theorem relating these to the original schema is

again

[fiE] f = f
S a

8.4 The General Theorem

8.4.1 Unique Lab_~~~

The only prob lem l"emaining before embarking on the

general theorem is that ·of ensuring uniqueness of

labels. In general, we will consider terms T of the
m

form T = . U 1 T ., where the terms T. are fl"ee from
1 = 1 1

the union operation. The index i will uniquely identify

each subterm. Within each subterm T., lye give each
1

matching pair of [] brackets a unique 'block' number

b, l'lritten as [b,] and give each of its subterms a

further index x of value 0 for the left subterm, and 1

for the right subterm. Each occurrence of X within

these subterms at the same block level is then given a

fourth index y in turr.. Two indices i, b thus serve

to uniquely identify each concatenation operetion, and

four indices, i, b, x, y, identify each occurrence of

X. This need to ensure unique labelling is the main

reason why the following algorithrr~ ·to derive terms

(T)a and (T)S initially look rather complex. The

stack, unstack, increment and decrement operations

will have unique labels depending on the a.bove

indi ces.

8.4.2 Deflnltlons

Simplicity: .. A .. definition of the sirr..plicity of a Otero in X ~"las

given in the section dealing with termination. He

"I

1"12

find it more convenient to use the following

equivalent definition.

4 term T is simple in a relation variable X if either

i T contains no free occurrences of X

or

ii T - 1"1 X

or

iii
/

X T 2 'T - T
1

or

iv "[' - [T 3' T 4J T5

or

v T - T3 u T4

where T leon tains no free occurrences of X and T 2' T 3'

T4, T5 are terms simple in X. There may be an

imp Ii ci t use 0 f E to ob tain terms in this form. Thi·;

definition is ambiguous in the sense that a term may

have more than one form eg AX = AXE and so is of the

form ii or iii. This ambiguity is c.eliberate1y

introduced to avoid unnecessary inefficiency in the

derived schema, the associated algorithms are

expressed in terITS of conditional expressions, and so

will act on the first permissible form.

Union Normal Form:

Any simple term T can be wri t ten in union normal forra
m

as T = i !J I T i 't\rhere the te rIDS T i do not contain

unions)~=~cept pcn:;ibly in tCnlS not containing X free.

113

Derivatives:

T is the a-resultant of a term T where T 1S simple in
a

X, and is expressed in union normal form, if
m

T = 0 U (T)
a 1=1 ic:

(To) = a (T 0, i, 0, 0, 1) and
1 a 1

a (T, i, b, x, y) = if T contains no free occurrences

of X then [TiEJ B

if L - Ll ~ then [Ll'EJ Y

if T = Tl X T2 then [TIl iO b] y
1 xy

(3)

if T = [ir 3' T4:; T5 then [E l , sijOJ a (T 3' i, j, 0, 1)

where Tl does not con tain X free.

TS is the S resultant of a term T, where T is simple

in X and is expressed in union normal form, if:
m

T S = [E I dO] u i 1! 1 (T i) t3
(T 0) a = S (T 0' i, 0, 0, 1) and (4)

1 jJ 1

S (T, i, b, x, y) =
if L' contains no free occurrences of X/ then n

if '[= '[1 X then P-

if T ='Tl X T2 then [EldibxyJ a (1: 2 , i, b, x,

y + 1) u 0 S (T 2' i 1 b, x, Y + 1)

if T = [J T 3' T 4] T 5 then S (T 3' i, j, 0, 1) u

[Elu ijOJ'[E2 , [E l , E3J sijlJ a (T 4 , i, j, 1, 1)

u S (T 4' i, j, 1, 1) u [E lUi j 1 J [[E 2' E 1 J, E 3 J

a (T
5

, i,b, x, y) u S (T
5

, i, b, x, y)

Example:
1 '

if T = A u [BX, ex] D then

Ta = [AlE] B u [EI,S 2IOJ [HIE] Y

's = [EI dO] u [E1 u2IOJ [E 2 , [E I , E3 J S2lI J

[eIE] Y u [E!u2II J [[E2 , ElJ, E3J [DIE] B.

Derived relations

Le t .. ' f = iJ Y 23 (T T)
a 1 a' t3

is = 1-1 2 Y n (T a ' T t3)

~lhere f = llX (T (X».

114

8.4."3 Lemmas

Definition
,.,

Le t f B = II ~ (T B (~)),., ,.,
where TS = Ta ([fIEJ llY, ~/l)

o (• Abbreviation: Let a T, L, b, x, y) = a (T, i,
o

b, x, y) ([fiE] fS /Y, f Sll) arrd simi 1 a r 1 y S.

Lerrmla 1

From the indexing system used for labels and the

definitions of a and a, there can only be at most one

term CJ.,commencing Hith [Elu.okJ or [E/dob] in T.'"
1J 1 xy a

Lemma 2

(>

R (T i h x y) C fh =>
tJ , , v" - a

g (T, ;. , b, x, y) = [T (fl X)" IE] fS'
l'roof:

The proof is by induction on the formation

rules for union fiee simple terms.

i if T contains no free occurrences of .'{
0

(1' , i, b, y) f" a x, = n S- a 0
(T , i , b, y) = [T IE] f" ex x,

S

ii if l' = 1'1 X where 1'1 contains no free

occurrence of X
0

(1' , i, b, y) = n c fA. S X, - a
0

(1' , i, b, y) = [TIlE] [fiE] f" = a x, a
['t(f/~ El fa ·

iii if l' = "[' 1 X "[' 2 ~,.]here T 1 contains no free

occurrences of X.
o S (T, i, b, x, y) :: [E1dibxyJ a (T2' ~, b,

x, Y + 1) u S (1'2' i, b, x, Y + 1) ~ fa
(Given)

115

Hence ~ (-[2' i, b, x, y + 1) =

[TZ(f/X) IE] is ,induction hypothesis·

A1s a from lemma 1.
o

(5)

P U [EldibxyJ a (T 2 , 1., b, x, y + 1) f" (6) s

where p contains no terms starting ,,,ith

o
a (T, i, b, x, y) = [T1liibxyJ [f.IEJ fS

[T
1

fIE][T
2

(f/X) IE] fS from (2), (5),

(6)

= [T (fiX) IE] fA •
B

1. , J , 0, 1) u
, 0

(T :. , .J a 1, J : ...

. '=. fS (Gi ven)

Hence from the induction hypothesis.
0

(T
3

, i , 0, 1) [T
3

(f/X) IE] fA (7) a. J , B
0

(T 4' i, j , 1, 1) [T 4 (f/4) IE] fA (8) ex B
0

(T 5' i, b, y) [T 5 (fix) IE] f ," (9) Ct x, =
0

' 0 f3
a (T, i, b, x, y) = [E 1, SijO J a (T 3' i,

j, 0, 1)

and again by use of lemma 1 we can shmv

that:

~ (T, i, b, x, y) = [E 1 ,s ij °] [T 3

(fiX) IEJ fS from (7)

= [T 3 (fiX), SijO] [E lu ijOJ [E 2 ,

[E " E 3 J s';. 1.J [T l (fix) IE] f ~
~ J I ~

(1 e nulla 1, an d (8))

= [T 3 (fiX), SijO] [E r uijOJ [£2'

[E
1

, E
3
1s

ij1
] rT 4 (f/X) IE] [E 1Uij1]

[[E
2

, E1 J, E3 J [r 5 (f/X) IE] fS

(If'mr.1a 1, 3nd (9»

Lermna 3

,... /

116

== [[T 3 (f,' X), T 4 (fIx)] T 51 E J f S
(us ing (1»

I-Ience the lemma is true fo r all union free

simple tenns.

/

P \ T : 1, b, => c.~. \" T ~ 1 ~

Proof: The proof, not given here, proceeds by

induction on the formation rules [or simple lerms J.n

essentially the same In2nner to the proof of Lemnla 2.

H. 4.4 Thporp.m

Let f = ~X (T (X» where T is simple in x.

Proof:

We actually prove the following.

[f IE] fS == fa

fA == f
S S

2) The proof is by fixpoint induction
m

([fIEJ f" Iy, f"/E)
. c

(T , i, f == i
u 1 S S S B -

from (4) and defn of f." 0

S
= £." s m

0

f ([fiE] f8/Y , fS/l) i Y 1
a (T, 1,

a
from (3)

m

0, 0,

0, 0,

- U L'" (fiX) IEJ f" from lemma 2 and (11) - i ==] L S
= [fiE] f"

S

He~ce fS ~ fS
fa ~ [fiE] fr.o

(10)

1)

(11)

1)

117

~ We first shm" by Scott Induction that

[fl EJ f c S- f . (12) a

Let P (X) - ex IE] is ::. f
a

a P (n) 1S true

b Assume Lx IE] fS c f
rv u.

m

fS =
i !l S (T. , i, 0, 0, 1) (fJY, fr/r,) 1 1

(from (4))

From the assumption and monotonicity of tcrIT~

prgduced by S.
ll.

i !l 1 S (Ti' i, 0,0, 1) ([x IE] f~/Y, £13/ 23) ~ fS

Hence, using lemma 3
m

. U 1 a. (T., i, 0, 0, J.) (IX I E J f Q /Y, 'f cJ't.)
1 :; 1 j.J j.J

[T IEJ f
'8

but]. ~ 1 a. (T i' i., 0, o. 1) ([X IEJ fe/Y., is/i!;)

s i ~ 1 a. (ii' i, 0, 0, 1) (fa/Y) fB/~) from

inductive assumption and monotonicity of terms

produced by a..

= f (from (3))
a.

c) Hence [fIEJ f ~ f by Scott Induction.
S a.

\.Je can nm., usc this rer.:ult to show by fixpoint

induction that

fA C f •
~ - ~L.

f" (f /:t;) =
S S

::. f (f /Y,
Q (V ~.

.... f •
~

f ([fIEJ f /Y, f /23)
(3 (3 (3

f /23) (using (12))
~
1-'

Hpnce by fi xpoint induction f· ... C

S
,.
L •

(3

118

8.4.5 Intended Use of the Theorem

The intended use of the theorem is fOJ the initial

term [EldOJ in the derived relation aS of 8.5.2 to be

the test for the empty stack, and the corresponding
i

operation 0 ~ 1 to create the empty stack. Clearly

then

f = [flO ~ OJ = [E/empty- 1J fa 'E l

8.5 Extension to Multiple Recursions

8.5.1 Introduction

The general theorem of 8.4 extends easily to multiple

recursions. From each equation schema we derive a

flowchart schema augmented by a stack, and from all

the equation schema we derive a single augmented

flowchart schema which evaluates the stack and so

handles the flow of control. The only change/ we need

to m~ke is to include a further index which identifies

the equation in 'tvhich a concatenation block, or a

reference to some X. occurs.
1

8.5.2 0 Definitions

Consider a set of mut'j~lly recursive equation schema

with solutions given by f. = Jl i ~1 . . . X (11
1

... a),
1 on n

1 ~ i ~ n, where the terms 0'1 are simp Ie in each X.i '

1 ~ , ~ n.

Derivatives

(cr.) is the ex resultant of a term cr. where a. is
1 ex '1 1

simple in X'l X and is in union normal form, if:
n' m.

(~ •) -. t_]ll (T •• ")
1 ex J 1~ a.

(r ..) = a (T .. , 1, J, 0, 0, 1) and
1J ex 1.J

ex (1', i, j, b, x, y) = if T' contains no free

occurrences of any X k then [1' IE] ~

if T = T 1 X k then [1' 1/ EJ Yk

119

if 1 11 Xk 12 then [11Iiijb:tyJ Yk
i

if 1 := [1
3

, T,] 1 r then [E l' s· '!l] a (-[3' i,
it J ~j ,,0

j, x" 0, 1).

where 11 does not contain X free.

is thi B-rcsultaut of ~ term 0. if:
m. 1 , . .

(a.)(3 == • tr 1 (1. ')0
1 J :;:: 1.1 P

(1.! .) () == (3 (1 • .:, i, j, 0, 0, 1) and
.1.J I.... 1J

fj (1, i, j, b, x, y) =if1 c('ntains no free

occurrences of any 'k then n
if 1 = 11 Xk then n
if 1 1, X

k
1,., then [EI (1. ':1...~~) a (T

2
, i, j, b,

i. . £. 1Ju"'j

x, Y + 1) u I=> (1
2

, i, j, b, x, y + 1).

if 1 == l~13' 14J 15 then

B (1
3

, i, J, 9...~ 0,1) U [EIU"Q J [F.:2~ [E
l

, E'JJ
1J.,O ~

Sij 9 .. 1 J a (1", i, j, ~, 1, 1) U (3 (1 4 , i, j ~ .Q"

1, 1) U [E I ui j.Q, 1 J [[E 2' E 1 J, E 3] a (T 5' i, j,

b, x, y) U (3 (1
5

, i, j, b, x, y).

Derived relatioDs

n
Define as = [EJ do] U i H 1 (a i) S

Let (fi)a = ~1 Y1

1 ~ 1 ~ n

(a) . n ex'

an d fa = ~ 1 Y 1 ••• y ~ « a 1) , ••• (a) , a a)
IJ n + nan ex IJ .

whe re f. = ~. Xl .,. X (a l' ••• a). 1 ~ i ~ n.
1 1 n n

8.5.3 Lennn2s

Lemma 1. Clearly there. is still at most one term a

commencing vlith [Elu. '0'] or [E/d, 'b] in (0(3)' hence,
, 1Jx.·K 1J xy

a ~ fa => pua = f where p contains no terms
IJ {3 .

com..rnencing ,.li ttl [E I tL . ('1] or fE I d "b 1 •
. 1JL~ . 1J xy

Lemma 7.
-~-- .. --

"
pZ (a" (l»)

(3

120

where Os = 0(3

then (3 (-r, i,

({ [f 0 IE] fS" /Y 0 11 ~ i ~ n}, f S" / B)
1 1 .

j, b, x, y) ({ [f i / E] f S /Y i /1 ~ i :::; n}, f S / z)
~ fS = > a. (T, i, j, b, x , y) ({ [f 0 IE] f ~ IY 0 11 :$

1 jJ 1.

i ~ n}, fS/B) [T ({ f 0 Ix 0 } 11 ~ i ~ n}) IE] f ~
1 1 jJ

The proof is similar that of lemma 2 in section 7.4.3

and proceeds by induction on the formation rules for

simple terms.

Lemma 3

s ('[, i, j, b, x, y) ({[Xi / E] f (3 IY i /1 ~ i ~ n}, f (3 / r.)
~ f (3 => ex (~, i, j, b, x, y) ({ [Xi IE] f S /Y i /1 ~ i :::;

n}, f S / E) = ['[/E] f S •

Again the proof is straightfonlard DY induction on the

formation rules for simple terms.

8.5.4 Theorems

Le t f 0 = 1.1 0 Xl... X (° l' ••• °), 1 :::; i :::; n be
1. 1. n n

solutions to a set of recursion equations, where the

° are simple in all X , 1 ~ k :::; n. n k

Let (fo) = l.1o Y1 1 a. 1.
(0) , OS) 1 ~ i n a.

~ n

and fS = l.1n + 1 Y1 ••• Yn r. «°1)0. ••• (on)a' OS)
th en [f 0 IE] f Q = (f 0) ,1 ~ i ~ n

1 jJ 1 a.
where (°

1
) ••• (0)and ('" are augmented flowchart schema~~
a. nO. e

Proof:

The proof will not be given here, but proceeds

in essentially the same manner as the proof of

7.4.4, by actually showing that:

[f 0 IE] f~ = (f 0) ,1 ~ i ~ n
1. jJ 1. a.

f" = f
(3 (3

121

8.6 Example

8.6.1 Tree Traversal

vIe wish to produce a string frow a binary tree by

traversing its terminal nodes from left to right and

concatenating them together in order. Our problem is

stated in a recursive form, and our target language

does not contain recursion.

traverse (x) = if is-atom (x) then x else traverse

(car (x» n traverse (cdr (x».

h n. h .. . were 1S t e assoc1at1ve operat10n concatenate.

We abstract this recursi ve form to a schema:

T = II X (A u lBx , eX] D) and apply the theorem of 8.4.4

to produce, after simplification o~ labels, thc

following flowchart schema.

[TIE] 112 YE = ~1 YE

where lli YE :: lli YB (rA IE] B u [E l B, s2] Y, /[Eld1] u

[E f uiJ [E z e, [E l' E 3 J s 3 J Y u fE t u j1 [[E Z' E 1 J DiE] B).

This can be further simplified. The operation D is

associative and so we can keep a 'result so far',

rather than stacking intermediate results.

Lemma. I"

if D is associative ie [E I [F, GJ D] D = [[ElF] D, GJD

and ~~~ ::ttX (Au [BX, ex J D) and

II i Y~ :: II i YB ([E I A IE] [DIE] B u [E I [E 1 B, s 2]] Y ,

[ErEld
1
J u [EIEJu2] [EleIE] Y)

then [EI~xIE] [DIE] llZYB = 11lY~'

The proof is straight forward.

i Define lln as before

ii Show that [EI J.lX.' EJ [DI EJ J.lE = ~lYE

122

11 Yl 2

2) Scott Induction to ShOH that [E /l1X IE] [DIEJ

112 y.'i; ~ lllYZ and using this to shm., III ~ 112Yc

by fixpoint ind~ctic~.

He can nm·, re t urn to the ori gin al in te rp re t a tion) and

by noting that concatenation has an identity e1err..ent,

1e nil nx = x, and that we can think of the marker

de tected by d
1

as the empty stack, 1;ve can produce the

uoual form of a trc8 tr·av~r8.:!1 program. Knuth [1968J

2.3.1 p 317.

T (x) = Tr (nil, x, empty)

l'r (S, x, k) = if is-atom (x) then if is-empty (k)
1\ , _ n ..,_ ~ ,

then S "X, e Is e 'l'r \S x, cdr (hci lk,i) t 1 (k))

else Tr (S, car (x), stack (x, k))

where hd = unstack El

t 1 = uns ta ck E _ •
1.

Further development of the program "J'ould now take

place by finding a more machine oriented

representation for trees and stacks.

8.6.2 Factorial

We can use the theorem of 8.4.4 to gain insight into

an it~rative form of the factorial program.

Let F :: II X (A u [B X, EJ C) 1;vith the interpretation.

A = {<O, 1>}, B = {<a, b>la > 0 & b = a - 1}

C = {«aI' a
2

>, b>la1 , a2 ~ 0 & b = a
1

* a2 }

It .is ('a~i1y shmvn thai... F is total and correctly

computes factorial.

Us ing 8./-+.4 and 8.5.5 \Je ob tain the fo 110\ving

iterative forM of r

123

F = CEliol 11Y ([AlE] lJ [E
I

13, S2] Y)

ll~ ([EI'd
o

] LJ [Elu
2

J. [CIE] Z)

The next level in the development is thc; actual

representation of the stack end unstack operat~ons.

We choose to represent the stack by two integers, a
2

which is the value of its top -element, and a
3

\olhich is

a marker for i (This is c!i.ly possible here bec':nJs·:! in
'0

this particular case a preceding element on the stack

can be ob tained by knowing the top one).

The stack operations are given by.

S2 = {«aI' a2 , a3>, <b 2 , b3>la l ~ 0 & a2 - al + 1 &

a3 ~ a~ i b 2 a 1 & b 3 ::: a 3 }

u s
2 2

1
o

Assuming that the domain of the stack operations is

= a
l

+ 1 & a 3 ~ a
2

}

then the axioms for stacks are satisfied.

s2 u2 :..: E

USc E
2 2-'

s d =n 2 0' a6

i u ~
o 2 n

This assumption holds provided that the input

satisfies ~lid-stack, since [is-valid-stack-op, EJ

[E 1 B, S2] = [E I B, S2] ris-valid-stack-op, EJ.

This gives the following program for F (x), which we

,.,ill write in the more familiar functional form.

F (x) = ~ (Y (x, x + 1, x + 1))

where Y (x, y, z) = if x = 0 then ~l, y, z>

else Y (x.- 1, Y - 1, z)

£ (:x:, y, z) --= if y ~ 2 then x

e Is e n (x * Y!I Y + 1, z)

Clearly the function Y (x, x + 1, x + 1) always has

124

the result <1, 1, x + 1> and so

F (x) = ~ (1, 1, x + 1) which is a familiar iterative

form for factorial.

125

9 CONCLUSIONS

The motivation fer this thesis Has to take an existing formalism,

the relational calculus, and to explore its application to formal

reasoning about programs, in particular that reasoning necessary to

justify some techniques used in the stepwise development of programs.

The relational calculus ~'las a good too 1 lvi th which to do thi s,

providing a common framework in which to reason about the ma~y facets

of program proofs.

The developmenL of a program starts ~ith its specification as

a relation betlveen input and output values. Development proceeds by

specifying a schcm~ and subsidiary relations as its interpretation,

this for-ms an initial solution to the specification. He sholved in 3.3

examples of proofs of parti~l correctness of schemas. A proof of

termination is needed to establish total correctness, this requires

an induction rule on the domain of interpretation) which is related

to the program schema by the derivatives of chapter 5. This is made

straightforward because the rel~tional calculus can describe induction

rules and schemas in the same language. Having shown the correctness

of this initial solution, the process is repeated for each of the

subsidiary relations until a schema is obtained whose interpretation

is related immediately to the target programming language.

In parallel with this refinement of control and function is a

process of refining the data structures of the do~ains of interpretation~

~ until we arrive ~acceptable structures in the tacget programming langu~ge.

Chapter 6 gives axioms for many commonly occuring data structures and

chapter 7 shows, with an example in 7.1.3, how we can c~ange an

interpretation based on a certain data,structure to another based on

representations of the original data structure in the language of the

new one.

~]e have also s.hown in Chapter 8 how to mechanically transform

a recursive program schema to a set of schemas which are not recursive.

l25a

This justifies the technique of choosing a recursive schema as an initial

solution to a problem and later refining it into a program which does

not use recursion.

Although the relational calculus provides a convenient

metalanguage in \olhich to vlOrk, it is clumsy .. in actual application

and we see the main use of the presented theorems being the justification

of lc~s opaque versions of them. There is a need to develop the relational

calculus into a language with named selectors, rather than positional

ones and with more familiar programming constructs than the relational

constructs used here.

High level languages have many constructs, subroutines, loops,

macros etc., which aid in the abstrnction of operations and the flow

of control, but few which allow the abstraction of data structures

and which separate them from a particular representation, and we

foresee a need for language development in this area.

We have left several areas unexplored. We have not attempted to

formalise an important transition in program development, that from

a non-deterministic form to a deterministic one involving back­

tracking, Floyd [l967bJ , we have not tried to apply the formalism

to proofs about parallel programs nor have ,~e tried to extend the

formalism to deal with such constructs as functions of higher

types, call by name parameter mechanisms or dynamic changes to

control or data structures.

We foresee the development of interactive systems to aid

program development , calling upon theorems presented above to

aid in the justification of certain steps, or in some cases

to mechanically carry out appropriate substitutions, derivations etc~,

and ultimately limited program synthesis.

126

10 REFERENCES

de Bakker J W (1971) Recursive procedures, Nathematical Centre

Tracts 24, Mathematical Centre, Amsterdam.

de Bakker J W, and de Roever W P (1972) A calculus for recursive

program schemes

Automata, Languages and Program..rning pp 167-195 (ed .H Nivat)

North Holland/American Elsevier.

Burstall R (1969) Proving Properties of Programs by Structural

Induction,

Comp Journal 12, P: 41-48

Conway J H (1971) Regular Algebra and Fini te Machines, Chapman and

Hall.

Cooper D C (1969)' Prograrr. scheme equivalence and second-order

logi c.

Machine Intelligence, Vol l~ pp 3-15 (eds B Meltzer and D

Nichie) Edinburgh Uni versi ty Press.

Darlington J and Burstall R N (1973) A System which automatically

Improves programs. Experimental Programming Report No. 28.

School of Artificial Intelligence

University of Edinburgh.

Djikstra E W (1960) Recursive Programndng

Num Math 2 pp 312-318

Djikstra E W (1969) Notes on Structured Programrrdng

Report EWD 249. Technische Hogeschool, Eindhoven, Netherlands.

Floyd R (1967a), Assigning Meanings to Programs.

Proc Sym in App lied Hath 12.
Nathematic.al Aspects of Computer Science (Schwartz J Ted)

Amer Math Soc pp 19-32

127

Floyd R (1967b) Non-deterministic algorithms

JACM 11 pp 636-644.

Hitchcock P and Park D M R (1972) Induction Rules and termination

proofs.

Automata, Languages and Programming pp 225-251 (ed M Ni vat)

North Holland/American Elsevier.

Hoare CAR (~969) An Axiomatic Basis for Computer Programming

CACM ~ pp 576-583.

Hoare CAR (197la) Proof of a Program: FIND

CACM, vol 14, no 1, pp. 39 - 45

Hoare CAR (197lb) Procedures and Paramete'rs: An axiomatic

approach, Symposium on Semantics of Algorithmic Languages (ed

Engeler)

Springer-Verlag Lecture Notes in Mathematics 188.

Hoare CAR (19723) An Axiomatic Definition of the Programming

Language PASCAL - Second Draft. (unpuhlished notes)

Hoare CAR (1972b), Dijkstra E W, Dahl 0 - J, Structured

Programming

Academi c Press. New York 1972.

Jones C B (1972) Formal Development of Correct Algorithms: an

Example Based on Early's Recogniser. in Proc. of an ACM Conference

on Proving Assertions about Program, Las Cruces, New Mexico, Jan. 6/7,

1972, pp. 150 - 169.

Knuth D E (1968) The Art of Computer Programming vol 1 Fundamental

Algori thI!1S Addison-Hes ley.

Keisler (1971) Model Theory for Infinitary Logic,ch 10

North Holland Pub lishing Company.

128

HcCarthy J (1962) Towards a Hathematica1 Science of Computation

Proc IFIP Conference 1962

No rt h-H 0 11 an d.

Hanna Z and Pnueli A, (1970) Formalis ation of propertie.: of

functional programs, J ACH .!2, pp 555-569.

Hanna Z and Waldinger R J (1971) Towards Automatic Program

Synthesis

CACM 14 no 3 pp 151-165.

Hi1~er R (1971) An Algebraic Definition of Simulation Between

Programs

Second International Joint Conference on Artificial

Intelligence pp. 481 - 489

British Computer Society.

Hilner R [1972J Implementation and Applications of Scott's Logic

for computable Functions. in Proc. o£ an ACM Conference on

Proving Assertions 3bout Programs, Lnc Crucc~, New Hcxico, Jun. 6/7,
1972, pp. 1 - 6.

Park D M R (1970) Fixpoint induction and proofs of program

semantics, Machine Intelligence, Vol 5 pp 59-78, (eds B

Heltzer,D Hichie)

Edinburgh University Press.

Paterson M Sand Heivitt C E' (1970) Comparati ve Schematology

Project MAC Conference on Concurrent Syste~s and Parallel

Computation.

ACM pp 119-128.

de Roever W P (1973) Operational and Mathematical Semantics for

Recursive POlyadic Program Schemata.

Mathematical Centre Report

Amsterdam (to appear).

Scott D, and de Bakker J W, (1969) A theory of programs,

unpublished notes, IBM Seminar, Vienna.

129

Scott D (1972) Data Types as Lattices (unpublished notes).

Tarski A (1955) A 1attice-thp.orctica1 fixpoint theorem and its

applications

Pacific J of Maths 5 285-309.

Walk K et al (1969) Abstract Syntax and Interpretation of PL/i.

IBH Laboratory Vienna

TR.25.098

Hirth N (1971a) Prcgraffi DevelopmE:nt by Stepwise Refinement

CACM, volume 14, No 4. pp. 221 - 227

\'lirth N (1971b) The Programming Language Pascal.

Acta Informatica 1, pp 35-63.

	WRAP_Theses_Hitchcock_1974.pdf

