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Abstract

Structural inference for Bayesian networks is useful in situations where the under-
lying relationship between the variables under study is not well understood. This is
often the case in social science settings in which, whilst there are numerous theories
about interdependence between factors, there is rarely a consensus view that would
form a solid base upon which inference could be performed. However, there are
now many social science datasets available with sample sizes large enough to allow
a more exploratory structural approach, and this is the approach we investigate in
this thesis.

In the first part of the thesis, we apply Bayesian model selection to address a key
question in empirical economics: why do some people take unnecessary risks with
their lives? We investigate this question in the setting of road safety, and demon-
strate that less satisfied individuals wear seatbelts less frequently.

Bayesian model selection over restricted structures is a useful tool for exploratory
analysis, but fuller structural inference is more appealing, especially when there is
a considerable quantity of data available, but scant prior information. However,
robust structural inference remains an open problem. Surprisingly, it is especially
challenging for large n problems, which are sometimes encountered in social science.
In the second part of this thesis we develop a new approach that addresses this
problem—a Gibbs sampler for structural inference, which we show gives robust
results in many settings in which existing methods do not.

In the final part of the thesis we use the sampler to investigate depression in ado-
lescents in the US, using data from the Add Health survey. The result stresses the
importance of adolescents not getting medical help even when they feel they should,
an aspect that has been discussed previously, but not emphasised.
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Chapter 1

Introduction

The aim of statistical modelling is to improve the degree of understanding of a

phenomenon of interest. Statistical models can help to describe and explain many

things including which factors are important; the direction and magnitude of the

associated effects; and, more generally, the relationship (if any) between variables of

interest. However, the level of precision that is attainable with statistical analysis

is usually determined by the nature of the data that are available and the (a priori)

assumptions one is prepared to make.

In general, more precise inferences will be possible when more data are available.

The sample size is usually the most important dimension of the data. In addition,

for the analysis to be useful, it will typically be important that the data are a

representative sample from the larger population under study, to facilitate inference

about the wider population. The second dimension of the data (the number of

variables measured) is also important because of the need to minimise the possibility

that a factor that was not measured performs an important role in the system under

study.

The second aspect that is important in determining the precision of the analysis
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is the existing level of understanding. Statistical inference is always built upon

assumptions. In likelihood-based inference, many of the important assumptions are

made when determining the likelihood. In some settings, these assumptions may be

based upon accepted theories of the underlying system and are thus well founded.

In such a case, inference is about understanding the details of a system for which

the structure is already understood. In multivariate statistics, a core part of these

assumptions relate to the dependencies between different variables (or components)

of the system. Any assumption made about the structure of the dependency is

important in statistical inference because it is built into the likelihood.

1.1 Scope of the analysis

In this thesis, we consider the situation in which high-quality data are available,

but the existing accepted level of understanding of the phenomenon under study is

poor. In particular, we mostly do not assume a particular structure of dependence

between the components of the system. Instead, the purpose of the analysis is to

make inference about dependence. Making relatively weak assumptions, such as we

do here, means that we keep an open mind to unexpected relationships. Thus the

analysis that we make is mostly exploratory in nature.

We also assume that only observational data are available. In such cases, without

any information about the effect of interventions, it usually is very difficult to infer

anything conclusive about causality. There is a large literature covering methods

for analysing data collected through observational studies (Rosenbaum, 2002), but

much of this avoids making causal claims. Some of the strongest claims about

causality have come from researchers working with graphical models, for example,

Cox and Wermuth (2004), and, most prominently, Pearl (2009). However, it remains

controversial to place the emphasis on graphical approaches to causal inference, and
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there are many advocates of other approaches (notably Rubin, 2005).

Here, we take the view that graphical approaches are useful tools in situations in

which strong causal claims are sought, but we do not seek to construe our results in

this manner. Instead, we view our work as primarily about discovering relationships

that suggest interesting conjectures; these are framed in a manner that allows further

work (ideally interventional) to be carried out to examine the conjectures in more

detail. This point of view has been proposed previously by many authors including

Williamson (2005), who views the approach as a hybrid between a hypothetico-

deductive and an inductive approach to discovering causal relationships.

The cost of data collection is generally falling, and so ‘large’ datasets are now in-

creasingly the norm. A considerable amount of data are now available that describe

phenomena about which no consensus model is available. Datasets describing var-

ious aspects of economics, genetics, molecular and cell biology, and diverse areas

of the social sciences are widely available. In many of these areas, the growth in

the availability of data has exceeded the growth in theoretical understanding. This

opportunity is an opening for statistical methods that improve understanding in

these settings.

1.2 Statistical model selection

1.2.1 Inadequacy of the complete model

In poorly understood settings there may be many factors that could plausibly play an

important role in the system under study. In this situation a model that incorporates

all of these factors may seem attractive, because it incorporates all of the available

information and the analysis is not prejudiced by the disregarding of potentially

important factors.
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The estimator associated with this complete or full model will have many de-

grees of freedom, and so it is able to closely replicate features in the data. However,

the ‘volume’ of space in which a high-dimensional probability distribution may have

support (regions of positive probability) increases exponentially as its dimension in-

creases, a phenomenon described as the ‘curse of dimensionality’ by Bellman (1961)

in the context of dynamic programming. This effect results in the available data

being sparsely dispersed across the space relative to its size.

Another example of this problem is given by Silverman (1986), who calculates

the required sample size for an estimator p̂(x) of the density p(x) at the origin

of a unit multivariate normal distribution to have relative mean squared error

E
(
(p̂(0)− p(0))2

)
/p(0)2 less than 0.1. For a univariate distribution p(x), only 4

samples are required to satisfy this criterion; for a 5-dimensional distribution, 768

samples are required; and for a 10-dimensional distribution, around 842,000 samples

are required. Thus even for a smooth unimodal distribution, with a simple mea-

sure of fit based around the mode of the distribution, the amount of data required

rapidly becomes enormous as the dimension of the distribution grows. As a result,

even with a large sample size, a single dataset in a high-dimensional setting will not

exhibit all of the characteristics of the underlying probability distribution.

Thus, while on average closely matching the data will give accurate estimates, rigidly

replicating the exact properties of a single dataset may be far from optimal. An

estimator that does this will be particularly susceptible to small variations in the

data, and so the estimator will have high variance. On the other hand, the estimator

has low bias because averaging across replications of the data will give accurate

estimates. Particularly in exploratory settings, the complexity of a model including

all of the factors is a disadvantage. For these reasons, the complete model is often

not the most useful model.

Instead, we would like to construct a model that retains the advantages of the
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complete model whilst mitigating its disadvantages. The advantage that we want to

keep is the small bias; the disadvantage we seek to ameliorate is its large variance.

In these settings reducing variance will increase the bias, and so a trade-off exists

between these properties (see, e.g. Hastie et al., 2009). At the opposite end of the

spectrum of model complexity to the full model, we could consider a univariate

model that includes no covariates. This model will typically have the opposite

problem: large bias, but low variance.

A particular example of these trade-offs is a regression model with 100 potential

predictors. The ordinary least squares estimators for the regression coefficients are

consistent, so as the sample size grows, the coefficients will converge to their true

values. In practice, we have only a finite sample, and so the estimators will not give

the true values of the coefficients. In particular, the estimates for the coefficients

in the full model will have a large variance. The large variance in the estimates is

intuitive because in the parameter space for the full model, the data will be sparsely

dispersed, and so a small change to an individual data point may lead to a large

change in the estimators. Averaging across replications of the data, however, will

lead to the estimators having the correct values. Thus, the bias of the estimators is

low. In contrast, a model including only one predictor will have low variance, which

is intuitive because a relatively large amount of data will be used to estimate its

value. However, such a simple model may not be expressive enough to capture the

true form of the data, and so the bias of the estimator will be high.

1.2.2 Objectives and viewpoints

We have described why in many settings a full model may not be appropriate even if

it does subsume the ‘true model’ (the concept of a ‘true model’ is discussed further

below, in Sections 1.3.2 and 1.2.3). Conversely a simple, univariate model may not

be sufficiently rich to represent the properties of the data. We thus aim to choose
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an intermediate model that balances the competing requirements of minimising

bias and variance. The models that are considered may be of differing dimension or

contain different functional forms. Handling the varying dimensions of the models

considered is particularly difficult. The problem of finding an appropriate model is

known in general as model selection.

The ideal model will strike a balance of being consistent with the data without being

overly complicated in such a way that over-fitting will occur. This idea has a long

history and is often attributed to William of Ockham, under the name Occam’s

razor, or called the principle of parsimony. Each model may be associated with

a particular scientific hypothesis, and so model selection may be useful in comparing

the competing hypotheses.

One aim of model selection is to understand the dependence structure of the vari-

ables. The structure of the dependence within a system can be encapsulated by the

likelihood function of a statistical model. Inference about the dependence struc-

ture can thus be considered as statistical model selection. The origins of this form

of analysis can be traced back to the work of Sewall Wright, who developed the

method of path analysis (Wright, 1921), which aims to measure the direct effect

of each ‘path’ in a system. Another early methodology that can be viewed in this

light is that of Dempster (1972), in which the covariance structure of a multivariate

normal distribution is modelled with a particular focus on finding a simple descrip-

tion of its structure. A simple description of the structure is achieved by setting

appropriate entries of the inverse covariance matrix to zero. In doing so, conditional

independence, given all other variables, is implied between the corresponding vari-

ables, and the number of parameters in the model is reduced. These models can

be viewed as undirected Gaussian graphical models (Lauritzen, 1996). The models

considered in this thesis can be viewed as originating in similar work. However,

rather than considering an undirected Gaussian graphical model, we will consider
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Bayesian networks.

1.2.3 What is a statistical model?

Before turning to practical issues related to choosing the model, we discuss the

meaning and role of statistical models and their relationship to ‘truth’. Bernardo

and Smith (1994, ch. 4, pp. 237) argue that most statisticians agree that the role of

models is to provide a focused framework within which simplified representations of

phenomena can be discussed. The most optimistic view is that a single statistical

model can encapsulate ‘truth’. Thus, if we can construct a list M of candidate

models, we can try to determine which of these is true. This view usually seems

overly-optimistic. Instead, a more appropriate view in most contexts is the prag-

matic view taken by Box and Draper (1987) in a discussion of the bias-variance

trade-off: “all models are false, but some are useful”. Buckland et al. (1997) take

a similar view asserting that the ‘truth’ is high dimensional, and effectively infinite

dimensional, and so in handling model uncertainty we should seek the best approx-

imating fit rather than the ‘truth’. Another pragmatic viewpoint is taken by Fisher

and Neymann (as discussed by Lehmann, 1990), who suggest that the key char-

acteristic of models should be familiarity and simplicity. See Cox (1990) for more

discussion on the role of models.

1.2.4 Implementation of model selection

In practice, choosing a model that balances bias and variance is not straightforward.

For complex multivariate models, assessing the bias and variance associated with

an estimator from a single, finite dataset is challenging. In particular, measuring

the discrepancy between the observed data and a model is not sufficient because by

this metric the full model is always selected. In addition, the traditional methods of

testing the coefficients for significance using classical multivariate tests based upon
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maximum likelihood estimators (MLEs) do not give sensible results in this context

for several reasons.

One problem is multiple testing. Freedman (1983) examined this issue empirically.

Data from 50 independent random variables were regressed against data from an

entirely independent variable. Alarmingly, after dropping 35 variables which were

insignificant at 0.25 level, 6 of the remaining 15 variables were judged significant

at the 0.05 level. The Bonferroni correction (Bonferroni, 1936; Bland and Altman,

1995) offers a simple adjustment for this problem under an assumption of indepen-

dent tests. There has been much work on multiple testing in recent years (see e.g.

Benjamini and Hochberg, 1995; Dudoit and van der Laan, 2008).

Additionally, the metric by which we judge a model must account for the number

of parameters that the model includes. One approach in the frequentist framework

is to add a term to the likelihood function that penalises high-dimensional models.

Examples include Akaike’s information criteria (Akaike, 1974; Burnham and Ander-

son, 2002), which is known as AIC, and the Bayesian information criteria (Schwarz,

1978), which is known as BIC. Information criteria describe a general method for

likelihood penalisation. Penalised likelihood approaches for model selection have a

rich literature, see e.g. Claeskens and Hjort (2008). We describe AIC and BIC in

more detail in Section 2.1.

In the specific context of regression, penalisation based on `1 and `2 norms of the

coefficient vector are widely used (Bühlmann and van de Geer, 2011). Ridge re-

gression (Hoerl and Kennard, 1970) uses a `2 penalty. Using this penalty allows

straightforward maximisation of the (penalised) likelihood to yield a closed-form

estimator. The estimates for the regression coefficients are shrunk towards zero,

thereby controlling over-fitting. However, ridge regression does not set regression

coefficients to exactly zero – that is, ridge regression does not result in variable se-

lection. In contrast, the LASSO (Tibshirani, 1996) uses a `1 penalty, and can shrink
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estimates for the regression coefficients to exactly zero. Here, maximisation of the

penalised likelihood requires optimisation, but an efficient algorithm called LARS

(Efron et al., 2004) exists.

Bayesian model selection offers an alternative approach (detailed in the next sec-

tion). Rather than directly using penalised likelihoods, a posterior distribution

across a set of models is constructed, and comparison between pairs of models can

be made using Bayes factors. Bayesian model selection and penalised likelihood

methods are closely related: the log posterior distribution is given, up to a con-

stant, by the sum of the log likelihood and the log prior. The (negative) log prior

can therefore be viewed as a penalty term. This view makes clear the relationship

between various penalised likelihood estimators and related Bayesian formulations.

Approaches that draw ideas from the Bayesian approach in a frequentist context are

also available. For example, Buckland et al. (1997) propose a method for assign-

ing weights to models, but the weights arise from functions of information criteria,

rather than from a posterior distribution. The BIC also straddles both frameworks:

although it takes the form of a penalised likelihood, it is also an asymptotic approx-

imation to the Bayes factor.

1.3 Bayesian model selection

1.3.1 Basic Bayesian framing

Model selection in the Bayesian framework considers an indicator variable over mod-

els as an additional parameter, equipped with a prior and posterior distribution in

the same way that all parameters do in the Bayesian framework. The usual formu-

lation assumes that a finite collection M of models is being considered, and that

prior mass is assigned to each of these models. The posterior distribution across
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models can then be found by an application of the discrete version of Bayes’ the-

orem. The theory of handling model uncertainty in a Bayesian framework is now

well-developed; Clyde and George (2004) give a full overview.

1.3.2 Interpretations of Bayesian model selection

The interpretation of Bayesian model selection is clearest when one of the models

is viewed as the ‘truth’. Usually this seems unrealistic, but in practice, especially

when |M| is large, this may be a sufficiently good approximation. Assuming one of

the models inM is true is calledM-closed by Bernardo and Smith (1994), who also

delineate two further perspectives that could be taken on the list M of models. In

theM-completed viewpoint none of the models inM is viewed as true because our

true beliefs can only be represented by a separate model Mt, which is precluded from

direct consideration by intractability. In this setting we need to proceed differently

because it does not make sense to assign a prior toM when this would not represent

our true prior beliefs. The final possibility, M-open, occurs when even specifying

Mt is not possible. For the settings considered here, an M-open viewpoint is the

most plausible, but for pragmatic reasons we will generally work in a relatively

M-closed framework.

1.3.3 Practical implementation

In the previous section, we noted the difficulty in comparing models of different

dimension, because unadjusted measures of fit will invariably prefer the most com-

plex model. In the Bayesian formulation, the relative posterior weights assigned to

two models is determined by the Bayes factor, which is the relative marginal likeli-

hood. Comparison of models of differing dimension is possible because the marginal

likelihood gives a one-dimensional measure of fit.
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The computation of the posterior model distribution is often challenging, and ad-

dressing this in a particular context forms a key part of this thesis. Simpler alter-

natives have been proposed. For example, Draper (1995) considers starting from a

single model, and expanding it as suggested by context or the data. However, in the

context we consider here, it is attractive to consider a fully-Bayesian approach be-

cause the high-dimensionality makes it difficult to propose a sensible starting model.

Another simplification that can be often useful is BIC, which is an asymptotic ap-

proximation to the posterior distribution.

1.3.4 Summarising the posterior distribution

Once the posterior distribution over models has been evaluated, two distinct ap-

proaches can be taken to summarising its contents.

A simple approach is to find the posterior mode. The modal model (or models) is

the model that is most consistent with the data. While simple and convenient, a

drawback to this approach is that a level of uncertainty is ignored because it implies

that the final results are made conditional on the modal model (e.g. Chatfield, 1995).

When a quantity of interest that is interpretable across all the models under con-

sideration can be extracted from each model an alternative approach is available.

In this case, it follows from Bayes’ theorem that the posterior distribution for this

quantity is given by taking its average across the models, weighted by the posterior

mass for each model.

1.3.5 Bayesian model uncertainty in social science

Bayesian approaches to model uncertainty have not been widely adopted in social

science, despite the significant model uncertainty that exists. The foremost pro-

ponent of Bayesian model selection and averaging in the context of social science
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research is Raftery (1995). In econometrics, Fernández et al. (2001b) advocated

Bayesian model averaging as a principled way to account for model uncertainty in

cross-country growth regression.

1.4 Contributions of the thesis

The thesis consists of three main contributions.

The first contribution is a study of the effects of well-being on risk-taking. This

question has not been considered before, although Kirkcaldy and Furnham (2000)

found correlations consistent with the findings of our work. We take a Bayesian

model selection approach to the question, which is unusual in empirical economics.

We find evidence in support of the theory that those with higher levels of well-being

are more averse to risk-taking.

We then introduce a novel Gibbs sampler for structural inference of Bayesian net-

works. While Gibbs samplers have been used with Bayesian networks before, they

have not been used for structural inference. The Gibbs sampler introduced here

explores the posterior distribution of Bayesian networks. While the general method

of Gibbs sampling is well-established, the requirement of acyclicity in Bayesian net-

works makes designing a Gibbs sampler difficult in this context. We show empiri-

cally that the Gibbs sampler exhibits far superior performance compared to several

state-of-the-art methods. Indeed, in many cases, results obtained from widely used

methods are so unstable as to be unusable in practice.

The final contribution of the thesis is an explorative study of depression in adoles-

cents. Large social science questionnaires, including the survey we use in the thesis,

have not been previously studied using structural inference of Bayesian networks.

Our results are consistent with earlier results, but emphasise the importance of

adolescents seeing their doctor when they feel they should.
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Chapter 2

Background

2.1 Model selection

A parametric statistical model does not fully describe a probability distribution.

Instead, it describes a family of distributions, up to some parameters θ. For a

vector valued random variable y, a model M specifies the joint distribution of y, up

to unknown parameters θ. The joint probability of y can be specified conditional

on both parameters θ and model M .

p(y | θ,M) with θ ∈ Θ

Often, dependence on the model M is left implicit and emphasis placed on the joint

distribution as a function of parameters θ, i.e. the likelihood function. Statisti-

cal inference seeks to understand the relationship between these parameters, and

data. In Bayesian inference, we aim to describe the posterior distribution of these

parameters, given the data.

p(θ | y) with θ ∈ Θ
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As outlined in Chapter 1, we will be considering a situation in which observations

of many variables are available, but the appropriate model for the variables is not

known. Therefore, we will consider the model itself as the object of interest for

inference.

Suppose n samples from p variables are available. Let pM be the dimension of model

M .

In the frequentist framework, a widely used approach to model selection involves pe-

nalised likelihood methods. The most well-known of these, the AIC, was introduced

by Akaike (1974) and has the following form.

−2 log(p(y | θ,M)) + 2pM

The model that minimises AIC is preferred. An alternative is the Bayesian Infor-

mation Criterion (BIC), introduced by Schwarz (1978).

−2 log(p(y | θ,M)) + pM log(n)

In the specific context of regression, numerous penalised estimators for the regression

coefficients β have been proposed. Consider a regression model for an outcome

variable y, using a set of q predictors. Suppose we have observations y = (y1, . . . , yn)

of the outcome, and observations of the predictors arranged into the columns of

a matrix X. The LASSO (Tibshirani, 1996) penalises the regression coefficients

by an `1 penalty. This penalty permits setting of some regression coefficients to

exactly zero, thereby leading to variable selection. An older alternative is ridge

regression (Hoerl and Kennard, 1970), which uses an `2 penalty, and yields the

following estimators for the regression coefficients, with Iq being the q × q identity

matrix.

β̂ridge = (XTX + λIq)
−1XTY
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While ridge regression will shrink coefficients towards zero, it will not shrink them

to exactly zero in the way the LASSO does, and so does not lead to variable selec-

tion directly. Numerous other penalties have been proposed, notably the smoothly

clipped absolute deviation (Fan and Li, 2001), the elastic net (Zou and Hastie, 2005)

and the adaptive LASSO (Zou, 2006).

The Bayesian approach does not use a penalised likelihood explicitly, but the log

prior can be viewed as such. A particular instance in which the two approaches yield

the same solution is a regression in which the prior for the regression coefficients

is β ∼ N(0, σ2λ−1Iq). The resulting maximum a posteriori (MAP) estimator for β

matches the ridge estimators exactly (Hoerl and Kennard, 1970; Hsiang, 1975).

2.1.1 Bayesian model selection

The Bayesian approach to model selection treats the model simply as another pa-

rameter. Suppose a finite set of modelsM is under consideration, and that a vector

of observations y is available. Each model M ∈M consists of a likelihood function

p(y | M, θM ) with parameters θM ∈ ΘM . These parameters have priors π(θM | M)

in each model.

Since the set of models M under consideration is a finite set, the model prior is a

discrete distribution over this set.

π(M) = πM , M ∈M where πM ≥ 0 and
∑
M∈M

πM = 1

An expression for the posterior distribution for a model M can be written down

immediately, by a simple application of Bayes Theorem. The expression depends

on the marginal likelihood p(y |M) of M .

P (M | y) =
p(y |M)π(M)∑

M∈M p(y |M)π(M)
(2.1)
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The quantity p(y |M) is given by

p(y |M) =

∫
ΘM

p(y |M, θM )π(θM |M)dθM , (2.2)

and is referred to as the marginal likelihood.

Evaluation of this posterior distribution is typically difficult for two reasons. First,

the integration in Equation 2.2 may be difficult to evaluate. This difficulty motivates

the use of conjugate models, as described in Section 2.3.1, which enable evaluation

of the integral analytically. The second difficulty is the summation over M in

the normalising constant of Equation 2.1. When the cardinality of M is large, it

is not possible to evaluate the summation exactly. However, Markov chain Monte

Carlo methods enable the posterior distribution to be approximated without directly

evaluating the normalising constant.

There are two distinct approaches for summarising the posterior distribution. A

simple approach is to select a single model, and base any further inference as condi-

tional upon this model. When choosing a single model, the maximum a posteriori

(MAP) model is usually chosen.

MMAP = arg max
M

P (M | y)

The MAP model MMAP may not be unique, and even when it is, it may not be rep-

resentative of the posterior distribution. If the posterior distribution is multi-modal,

with disparate models having high posterior probability, it may be unsatisfactory

to choose the one model.

Alternatively, if some quantity ∆ is interpretable in all models, we can average it

across all of the models, weighting by the posterior model probability.

p(∆ | y) =
∑
M∈M

p(∆ | y,M)P (M | y)
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This approach is called Bayesian Model Averaging (Hoeting et al., 1999; Wasserman,

2000). Choosing an appropriate model prior can be challenging, and is discussed

further in Sections 2.4.3 and 2.5.4.

2.2 Graphical models

Throughout this thesis, the relationship between variables is studied using graphical

models. These models enable the decomposition of complex multivariate distribu-

tions into simpler local distributions. Such a decomposition can reveal a great

deal about the relationships between the variables. In addition, a graphical model

provides a statistical and computationally tractable description of a large joint dis-

tribution.

The decomposition is formed by the conditional independence structure, which can

be represented by a graph. Thus, graphical models describe families of probability

distributions using a mathematical graph. The graphical representation can ease

the interpretation and clarify the structure of complex models. In addition, in some

situations, the computation of particular marginal distributions can be simplified

when a graphical representation is considered (see e.g. Lauritzen and Spiegelhalter,

1988).

In most graphical models, the nodes of the graph represent random variables and

the edges represent the (conditional) dependence structure amongst the random

variables. The conditional independence structure gives a deeper understanding of

the relationships between the random variables, as we describe below.

A variety of graphical models have been developed (see e.g. Lauritzen, 1996; Smith,

2010). The two most widely used graphical models are Markov random field models,

which are represented by an undirected graph, and Bayesian networks, which are

represented by directed, acyclic graphs (DAGs). This thesis focuses on the latter
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model.

2.2.1 Conditional independence

While a crude understanding of the relationship between random variables is pro-

vided by a simple correlation analysis, a far deeper understanding is provided by

the conditional independence structure. In particular, correlation analysis gives no

understanding of whether relationships between two variables are mediated by a

third, whereas this is captured in the conditional independence structure. Such

knowledge is generally informative, and indeed much of statistics can be considered

in terms of conditional independence (Dawid, 1979). Knowledge of the conditional

independence structure is particularly valuable when a loose form of causality is

sought.

Two random variables A and B are conditionally independent given a third random

variable C if the following property holds.

p(A,B | C) = p(A | C)p(B | C) for all C such that p(C) > 0

When this property holds, we use the shorthand A ⊥⊥ B | C. We write A ⊥⊥� B | C

when the property does not hold.

2.2.2 Graphs

A mathematical graph G = (V,E) consists of a set of nodes V = (1, . . . , p), and a

set of edges E that link pairs of nodes. We also use v1, . . . , vp to denote the nodes

in the graph.

The edges may be directed, in which case E ⊆ V × V , or undirected, in which

case E consists of unordered pairs of nodes. We will mostly consider directed graphs,
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and will use three different notations to specify their edges: the collection of edges;

adjacency matrices; and parent sets.

First, we can specify edges of a graph as a subset E ⊆ V × V , as per the definition

of a graph. Individual directed edges from node i to node j can thus be denoted

by either the pair (i, j), or the symbol i→ j. We will refer to i as the head of the

edge, and j as the tail.

We can also specify the graph G = (V,E) with an adjacency matrix G, a p × p

matrix with elements Gij given by

Gij =

 1 if (i, j) ∈ E

0 otherwise.

The final specification of the edge set E of the graph G that we use is in terms of

the parents Gj of each node j, for j ∈ {1, . . . , p}. The parents Gj of node j are

the subset of nodes V such that i ∈ Gj ⇔ (i, j) ∈ E. We refer to Gj as a parent

set.

It will sometimes be convenient to use the collection of parent sets 〈G1, . . . , Gp〉 to

specify a graph G. Subsets thereof are denoted by GA = 〈Gk : k ∈ A〉. Thus GA is

a collection of parent sets, specifying only the parent sets of nodes in A; the parent

sets of nodes not in A are not specified by GA. The subset given by the complement

AC = {1, . . . , p} \ A of a set A is denoted by G−A = 〈Gk : k ∈ AC〉. Thus G−A

specifies the parent sets of nodes not in A, leaving the parent sets of nodes in A

unspecified. The parent sets of all nodes can be specified by 〈GA, G−A〉. Thus, in

particular, any graph G can be specified as 〈Gj , G−j〉 = 〈G1, . . . Gp〉 = G for any

j ∈ {1, . . . , p}.

A path on a graph from a node j ∈ V to a node k ∈ V is a sequence of nodes

j = v0, v1, . . . , vd = k, d ∈ N, such that an edge exists linking vi−1 ∈ V and vi ∈ V
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for each i = 1, . . . , d. In a directed graph, we usually require that (vi−1, vi) ∈ E

meaning that the path obeys the directions of the edges. However, it will occasionally

be useful to consider a path that does not obey the direction of the edges on a path.

Cycles are a particular type of path that will be of key interest. A cycle is path

v0, v1, . . . , vd, d ∈ N, such that v0 = vd, and the path obeys the direction of the

edges. A graph G in which a cycle exists is called cyclic; a graph without cycles

is called acyclic. We denote the set of all directed, acyclic graphs (DAGs) with p

nodes by G.

For undirected graphs, we denote by i− j an edge between node i and node j. We

define adj(i) as the set of nodes j such that i−j. A complete undirected graph

is an undirected graph in which an edge links every pair of nodes in the graph.

2.2.3 Bayesian networks

Bayesian networks are a particular type of graphical model. A Bayesian network G

is a DAG with nodes V = (1, . . . , p), and directed edges E ⊂ V × V . The nodes

correspond to the components of the random variables X1, . . . , Xp. We denote by

XGj the set of random variables that correspond to the parents Gj of node j in the

graph G. It is convenient to refer to XGj as the parents of Xj .

A defining feature of Bayesian networks is that the joint distribution of X is spec-

ified in terms of p(Xi | XGi , θi), the conditional distribution of each Xi, given

its parents XGi in the Bayesian network, with parameters θi. Denoting by X−i =

{X1, . . . , Xi−1, Xi+1, . . . , Xp} the random vector excluding Xi, we have local mod-

els (or local distributions) p(Xi | XGi , θi) that satisfy the following.

p(Xi | X−i, θi) = p(Xi | XGi , θi)

The complete joint distribution of X1, . . . , Xp, given the Bayesian network G, is the
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product of these local distributions.

p(X1, . . . , Xp | G) =

p∏
i=1

p(Xi | XGi , θi)

The conditional dependence structure of the probability distribution can be deter-

mined using the d-separation criterion (Verma and Pearl, 1990). We describe this

criterion using the concept of blocked paths, which uses the concept of a path being

head-to-head at a node. We say that a path v0, . . . , vd (not necessarily obeying

edge directions) on a DAG G = (V,E) is head-to-head at a node vi, for some

i ∈ {1, . . . , d− 1} if (vi−1, vi) ∈ E and (vi+1, vi) ∈ E.

A blocked path can then be defined as follows. Let S be a subset of V so that S is

a set of nodes in the graph. A path (not necessarily obeying edge directions) from

node v0 ∈ V to node vd ∈ V in a DAG G is said to be blocked by S if the path

includes a node vi, i ∈ {1, . . . , d − 1}, such that one of the following two criteria is

satisfied.

• vi ∈ S and the path from node v0 to node vd is not head-to-head at node vi.

• The path is head-to-head at node vi, and neither is node vi in S, nor does S

contain any of the descendants in the graph G of node vi.

Two subsets A,B ⊆ V are d-separated if all the paths (not necessarily obeying edge

directions) from A to B are blocked.

A particular conditional independence structure can be implied by multiple different

Bayesian networks. However, we can define an equivalence class on the space of

Bayesian networks such that Bayesian networks within the same class imply the

same conditional independence structure. The definition arises from the definition

of d-separation and uses the concept of the skeleton of a Bayesian network, and of v-

structures. The skeleton of a Bayesian network is the undirected graph formed by

removing the directions attached to the directed edges in the network. A v-structure
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is defined as an ordered triple (i, j, k) of nodes, such that i→ j and k → j, but no

edge exists linking nodes i and k directly. Two Bayesian networks are equivalent

if they share the same skeleton and v-structures (Verma and Pearl, 1990).

We can specify the equivalence class of a Bayesian network using a completed

partially-directed acyclic graph (CPDAG). This name originates in Chickering (2002),

but the idea has been used by other authors under a variety of names. A CPDAG is

a partially-directed graph, whose directed edges do not form a cycle. For a Bayesian

network G, CPDAG(G) is formed by considering all of the edges E′ for which in all

graphs G′, such that G and G′ are equivalent, that edge is oriented as in G. Then

CPDAG(G) is formed by removing the direction attached to each edge not in E′.

Chickering (2002) show that CPDAGs uniquely represent an equivalence class of

Bayesian networks.

2.3 Univariate Bayesian models

The basic building-blocks of the models that we consider in Section 2.4 and 2.5 are

simple univariate models. In this section, we first describe conjugacy, a property that

characterises a class of analytically-tractable models. We then review the simplest

form of the two conjugate models that are considered throughout this thesis.

We assume that Y is an n-dimensional random vector consisting of independent,

identically distributed components. We suppose observations y of Y are available.

2.3.1 Conjugate priors

The integration required to evaluate Equation 2.2 is analytically intractable for

many choices of priors for a given model. If our understanding is such that our prior

needs to take a form for which the integration is intractable, numerical methods of

evaluating the integral will be necessary. However, if our prior has a form close to
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a prior for which the integration is straightforward, this difficulty can be avoided.

For the models that we consider in this thesis, priors of the required form are well

known, and are called conjugate priors.

Conjugate priors (Raiffa and Schlaifer, 1961) are families P of distributions that are

closed under sampling from a distribution in a family F of distributions. A family P

of prior distributions is said to be closed under sampling from a distribution p(y | θ)

in a parametric family F if for every prior distribution π(θ) ∈ P, the posterior

distribution p(θ | y) ∝ π(θ)p(y | θ) is also in P. A catalogue of many conjugate

priors is given in Gelman et al. (2004).

Raiffa and Schlaifer (1961) list three properties that they view as desirable in a

family of priors: tractability, interpretability and richness. Conjugate families are

tractable, and this is the main reason for their adoption. Conjugate priors sometimes

also have a simple interpretation. In exponential families we can consider the prior

as constituting “virtual samples” (see, e.g. Robert, 2007), and so the relative weight

implied on the prior and data can be ascertained. It is in richness, however, that

conjugate families can be lacking. Ideally, a prior should exactly match a Bayesian

modeller’s prior beliefs, but conjugate priors are often not flexible enough to allow

this to be fully achieved. Sometimes, a close approximation to prior beliefs can be

constructed within the conjugate family, but often a poor approximation is accepted

because of the computational advantages of conjugate priors.

In many standard Bayesian models, using non-conjugate priors is now feasible since

the emergence of easily available computationally-intensive approximations. How-

ever, in the setting considered here, non-conjugate priors are not viable for the

following reasons.

First, there are formidable computational challenges even when conjugate priors are

used. These challenges are considerably compounded by the use of non-conjugate

priors. Additionally we will be exclusively considering settings in which the sample
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size of the data is large. The large sample size means that the prior will exert only

a minimal effect on the posterior distribution, thus making its exact specification

less important.

For these reasons, we use conjugate priors throughout.

2.3.2 Multinomial-Dirichlet

The standard Bayesian model for univariate multinomial data (e.g. O’Hagan and

Forster, 2004) will form the basis of the models we consider in this thesis. Consider a

random vector Y, each component of which takes one of r discrete categories. Sup-

pose that Y is distributed according to a multinomial distribution, with parameter

vector θ = (θ1, . . . , θr), with θ > 0 and θ1 + · · ·+ θr = 1.

Y ∼ Mult(θ1, . . . , θr)

The conjugate prior for the vector θ is Dirichlet, with hyperparameters α = (α1, . . . , αr)

where αk > 0, k = 1, . . . r.

θ1, . . . , θr ∼ Dir(α1, . . . , αr) with θ1, . . . , θr ≥ 0 and

r∑
k=1

θk = 1

The normalising factor in the Dirichlet likelihood is a ratio of gamma functions

Γ(α) =
∫∞

0 xα−1e−x dx, for which, in particular, Γ(α) = (α− 1)! for α ∈ N.

p(θ1, . . . , θr) =
Γ(α1 + · · ·+ αr)

Γ(α1) . . .Γ(αr)

r∏
k=1

θαk−1
k

The mean is αk(
∑r

k=1 αk)
−1 for each θk.

The posterior distribution of θ is parameterised in terms of a contingency table

constructed from the observations y, such that nk is the number of observations in
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the kth category, k = 1, . . . , r.

θ1, . . . , θr | y ∼ Dir(α1 + n1, . . . , αr + nr)

The formulation simplifies in the natural manner for binomial data with beta priors.

In using this formulation, we are assuming that the data are independent, identically-

distributed draws from a multinomial distribution. It will often be the case that some

heterogeneity exists and so it is more appropriate to use a model that is conditional

on some collection of covariates; we consider this possibility in Section 2.4.1.

2.3.3 Normal inverse-gamma

The models for normally-distributed data that we consider will similarly build upon

standard univariate models (e.g. Gelman et al., 2004). Suppose we have a ran-

dom vector Y, components of which are independent random variables distributed

according to a normal distribution, with mean µ and variance σ2.

Y ∼ N(µ, σ2)

When both µ and σ2 are unknown, the conjugate priors for µ and σ2 are normal

and inverse-gamma respectively.

µ | σ2 ∼ N(m, v−1σ2)

σ2 ∼ IG(a, b)

The hyperparameters a and b are respectively the shape and scale parameters of

the inverse-gamma distribution. The hyperparameters m can be interpreted as the

prior mean, and v is inversely proportional to the prior variance. The inverse-gamma
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distribution has density

π(σ2) =
ba

Γ(a)
(σ2)−(a+1) exp(−b/σ2).

The joint prior for (µ, σ2) is thus normal inverse-gamma NIG(m, v, a, b).

π(µ, σ2) =

√
v

σ
√

2π

ba

Γ(a)
(σ2)−(a+1) exp

(
−2b+ v(µ−m)2

2σ2

)

By conjugacy, the joint posterior distribution for (µ, σ2) is also normal inverse-

gamma.

µ, σ2 | y ∼ NIG(m?, v?, a?, b?)

where, with ȳ = 1
n

∑n
i=1 yi and s2 =

∑n
i=1(yi − ȳ)2, the parameters are

m? =
mv + nȳ

n+ v

v? =
1

n+ v

a? = a+
n

2

b? = b+
1

2

(
s2 +

nv(x̄−m)2

n+ v

)
.

2.4 Model selection for Bayesian regression models

Regression models aim to characterise the relationship between a response variable

and a collection of predictor variables. The model for the response is specified condi-

tionally on the predictor variables. We consider situations in which the parametric

form of the conditional distribution is known, up to the choice of predictor vari-

ables. Model uncertainty in this context is therefore uncertainty about which set of

predictor variables should be used. The problem is known as variable selection.

We assume that the observations consist of a n-dimensional random vector y of ‘out-
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come’ values, and a n× p random matrix x of observations of p predictor variables.

These observations come from a random vector Y, and a n × p random matrix X,

the columns of which are random vectors X1, . . . , Xp, respectively.

We aim to determine which subset of the predictors {X1, . . . , Xp} is best suited to

predicting Y, the outcome variable. There are 2p subsets of the p predictors, each

of which corresponds to a possible model for Y. A regression model Mγ is specified

using a p-dimensional indicator vector γ = (γ1, . . . , γp), the ith component of which

takes the value 1 when the ith variable is included in the model, for i = 1, . . . p. Let

Xγ = {Xi : γi = 1} be the set of predictor variables included in model Mγ , and

pγ =
∑p

i=1 γi be the number of predictors included in the model. We use Mγ to

refer to the set of all models. Note that the predictor variables are assumed to be

observed without error.

2.4.1 Multinomial-Dirichlet

Suppose each component of the response vector Y has r levels, or categories. We will

be considering models for the response Y specified to be conditional on a subset Xγ

of the set of discrete variables {X1, . . . , Xp}. Each component of Xi, for i = 1, . . . , p,

has ri levels. We define the configurations of Xγ to be the components of its

sample space, for which qγ =
∏p
i=1 r

γi
i is the cardinality. We label the configurations

Cγj for j = 1, . . . , qγ . We assume that observations y and x for the outcome random

vector Y and the predictor random variables X respectively are available; we denote

by xγ the observations for the predictors included in model Mγ .

For a particular model Mγ , we assume that the distribution of Y is independently

parameterised for different configurations of Xγ , the predictors in the model. Thus

the parameter space Θγ of the distribution of Y under model Mγ can be broken into
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smaller parameter spaces Θγ,j corresponding to the configurations of the predictors.

Θγ = ×
j=1,...,qγ

Θγ,j

Thus the likelihood factorises across configurations.

p(Y | Xγ , θγ,j ,Mγ) =

qγ∏
j=1

p(Y | Xγ = Cγj , θγ,j ,Mγ) with θγ,j ∈ Θγ,j

This independence assumption means that no information is ‘shared’ about the dis-

tribution of Y between cases in which the configuration of the predictors differ, and

the model may be entirely different for different configurations. In particular, lin-

earity in the predictors is not a requirement for the fitted model. This unstructured

form of model means that availability of a large sample size is important for useful

inference to be possible.

The distribution of Y conditional on the configuration Cγj of the predictors is spec-

ified to be multinomial for each configuration, with j = 1, . . . , qγ , and with an

r-dimensional parameter vector θγ,j ∈ Θγ , each component of which corresponds to

a category of Y.

Y | Xγ , θγ,j ,Mγ ∼ Mult(θγ,j,1, . . . , θγ,j,r) for j = 1, . . . , qγ

The likelihood for y under a model Mγ is a function of the random variable Nγ,j,k

given by the number of times that the predictors take the jth configuration Cγj and

the outcome variable has the kth category, for j = 1, . . . , qγ and k = 1, . . . , r.

p(y | Xγ , θγ ,Mγ) =

qγ∏
j=1

r∏
k=1

θ
Nγ,j,k
γ,j,k

The conjugate prior distribution for θγ,j,1, . . . , θγ,j,r | Mγ is Dirichlet, for each j =
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1, . . . , qγ .

θγ,j,1, . . . , θγ,j,r ∼ Dir(αγ,j,1, . . . , αγ,j,r) with θγ,j,1, . . . , θγ,j,r ≥ 0,
r∑

k=1

θγ,j,k = 1

We assume that θγ,j are a priori independent. This assumption, when taken with

the assumption that the distribution of y is independently parameterised, is called

local independence (Spiegelhalter and Lauritzen, 1990). The joint prior for

(θγ,1, . . . , θγ,qγ ) is thus the product of Dir(αγ,j,1, . . . , αγ,j,r) distributions.

π(θγ,1, . . . , θγ,qγ |Mγ) =

qγ∏
j=1

Γ(αγ,j,1 + · · ·+ αγ,j,r)

Γ(αγ,j,1) . . .Γ(αγ,j,r)

r∏
k=1

θ
αγ,j,k−1
γ,j,k

For each j = 1, . . . , qγ , unless otherwise stated, we take the hyperparameters αγ,j,k =

(riqγ)−1 for all k = 1, . . . , r, following Buntine (1991) and Heckerman et al. (1995).

Given observations nγ,j,k of the contingency table random variables Nγ,j,k, formed

from observations y and x, the posterior distribution for each θγ,j is Dir(αj,1 +

nγ,j,1, . . . , αj,r+nγ,j,r), for each j = 1, . . . , qγ . Defining the collection of counts nγ =

{nγ,j,k : j = 1, . . . , qγ and k = 1, . . . , r} under a model Mγ , and the corresponding

collection of hyperparameters αγ = {αj,k : j = 1, . . . , qγ and k = 1, . . . , r}, the

marginal likelihood can be written in closed-form.

p(y |Mγ , nγ , αγ) =

qγ∏
j=1

Γ(αγ,j,1 + · · ·+ αγ,j,r)

Γ(
∑r

k=1 nγ,j,k +
∑r

k=1 αγ,j,k)

r∏
k=1

Γ(nγ,j,k + αγ,j,k)

Γ(αγ,j,k)

2.4.2 Linear regression

The second model we consider is for a normally-distributed random variable Y

taking values in R. We again assume that Y is dependent on a subset Xγ of ran-

dom variables {X1, . . . , Xp} that defines the model Mγ , but we now assume that

these variables are continuous. The strong independence assumptions between the
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different configurations of Xγ that we made in the previous section do not trans-

late sensibly into a continuous setting. Instead we make the usual assumption that

p(Y | Xγ) is a smooth function of Xγ , and in particular assume that the expectation

of Y is a linear function in the model parameters.

In linear regression settings, it is convenient to redefine Xγ to be the n × (pγ + 1)

design matrix. All of the linear regressions that we consider include an intercept

term, and so we include a column of 1s in the design matrix.

Xγ =

[
1 Xγ1 . . . Xγpγ

]

We assume the rank of Xγ is pγ + 1.

The normal linear regression model for Y is specified conditional on Xγ for a model

Mγ .

Y | β, σ,Xγ ,Mγ ∼ MVN(Xγβ, σ
2Ipγ )

Normal inverse-gamma

The general joint conjugate prior for β, σ | Mγ is normal inverse-gamma (e.g.

O’Hagan and Forster, 2004). Let mγ be the prior mean for the regression coef-

ficients β, and σ2Vγ their prior variance.

β | σ2,Xγ ,Mγ ∼ MVN(mγ , σ
2Vγ) σ2 > 0

σ2 ∼ IG(a, b) a, b > 0
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As before, a and b are the shape and scale parameters of an inverse-gamma distri-

bution. The joint prior for β, σ2 |Mγ is thus NIG(mγ , σ
2Vγ , aγ , bγ).

π(β, σ2 | Xγ ,Mγ) =
1

(2πσ2)(pγ+1)/2 |Vγ |1/2

× exp

{
− 1

2σ2
(β −mγ)TV−1

γ (β −mγ)

}
× b

aγ
γ

Γ(aγ)
(σ2)−(aγ+1) exp(−bγ/σ2)

The posterior distribution for β, σ2 | Mγ is NIG(m?
γ ,V

?
γ , a

?
γ , b

?
γ), with parameters

defined as follows.

V?
γ = (V−1

γ + XT
γXγ)−1 (2.3)

m?
γ = (V−1

γ + XT
γXγ)−1(V−1

γ mγ + XT
γ y)

a?γ = aγ + n/2

b?γ = bγ + {mT
γV−1

γ mγ + yTy − (m?
γ)T (V?

γ)−1m?
γ}/2

The marginal likelihood takes the following form.

p(y |Mγ) =

∣∣V?
γ

∣∣1/2 baγγ Γ(a?γ)

|Vγ |1/2 πn/2Γ(aγ)
(b?γ)−a

?
γ

It can be difficult to specify the hyperparameters of the normal inverse-gamma

formulation, particularly the matrix Vγ of prior variances between the coefficients,

and so we turn to a special form of the normal inverse-gamma formulation.

Zellner g-prior

The Zellner g-prior (Zellner, 1986) specification for a Bayesian linear model is a

special case of the normal inverse-gamma formulation that is easier to specify. The

specification has been widely used (Smith and Kohn, 1996; Fernández et al., 2001b)
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and discussed (e.g. Laud and Ibrahim, 1995; Fernández et al., 2001a; Clyde and

George, 2004). The g-prior takes the following form.

β | σ2,mγ ,Xγ ,Mγ ∼ MVN(mγ , gσ
2(XT

γXγ)−1)

π(σ2) ∝ σ−2

The prior for σ2 is the improper Jeffrey’s prior.

The prior for β | σ2,Mγ has mean mγ , and variance that depends on the predictor

variables X. At first glance, this suggests that the prior is dependent on the data.

However, because we assume that the predictor variables are observed without error,

the dependence is only on a part of the structure of the data that we assume is ‘fixed’.

The procedure is thus not an empirical Bayes estimator.

The term XTX is the sample second moment of the predictors, and so the prior

variance of β is greater if the observations are close together, as is natural. Dividing

by the second moment also has the advantage of making the prior invariant to scale.

Using a prior variance of this form has the additional benefit of combining naturally

with the posterior variance (2.3), which enables the parameter g to be interpreted

as determining the relative weight assigned to the information in the prior and the

sample. For example, taking g = 1 assigns equal weight to the prior information

and the sample, whereas g = n assigns equal weight to the prior information and a

single unit of the sample. The latter specification is particularly widely used (e.g.

Kass and Wasserman, 1995). Alternatives include calibrating g by an empirical

Bayes procedure (George and Foster, 2000). These and other choices are reviewed

and empirically compared by Liang et al. (2008).

The relevant posterior distributions and the marginal likelihood are defined in terms
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of MLE β̂ for the regression coefficients and the residual sum of squares s2.

β̂ = (XT
γXγ)−1XT

γ y

s2 = (y −Xγ β̂)T (y −Xγ β̂)

Given these definitions, the posterior distributions for β and σ2 are as follows under

a g-prior specification.

p(β | y,mγ ,Xγ ,Mγ) ∼ MVN

(
g

g + 1
(mγ/g + β̂),

σ2g

g + 1
(XT

γXγ)−1

)
p(σ | y,mγ ,Xγ ,Mγ) ∼ IG

(
n

2
,
s2

2
+

1

2(g + 1)
(mγ − β̂)TXT

γXγ(mγ − β̂)

)

The marginal likelihood for a model Mγ takes the following form when a g-prior is

chosen.

p(y |Mγ) ∝ (g + 1)−(pγ+1)/2

×
(

yTy − g

g + 1
yTXγ(XT

γXγ)−1XT
γ y

− 1

g + 1
mT
γXT

γXγmγ

)−n/2

This marginal likelihood has a closed-form and is straightforward to compute.

2.4.3 Model priors

The model prior should be a discrete distribution over the 2p possible regression

models. A simple choice is a uniform distribution over the models.

π(Mγ) =
1

|Mγ |
for Mγ ∈Mγ
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This choice is widely used (e.g. Smith and Kohn, 1996; Raftery et al., 1997), but

has some unsatisfactory attributes that we discuss in Chapter 7.

2.4.4 Posterior distribution over models

The posterior distribution P (Mγ | X) is a discrete distribution over these models.

P (Mγ | X) =
p(X |Mγ)π(Mγ)∑

Mγ∈Mγ
p(X |Mγ)π(Mγ)

The maximum a posteriori model is a single model MMAP
γ from Mγ . In contrast,

model averaging reflects an aspect of the complete posterior distribution. For ex-

ample, we might consider the inclusion probabilities, defined for each predictor Xi

as the posterior probability that Xi is in the model for y.

2.5 Model selection for Bayesian networks

The aim of model selection for Bayesian networks is to understand the dependence

structure of the random variables. We will consider on an equal footing all of the

random variables for which we have observations. We thus assume we simply have

a n× p matrix of independent observations of p variables, which are from a random

vector X = (X1, . . . , Xp). Note that we refer to a particular subset of the random

vector X by XA for a set A ⊆ {1, . . . , p}.

We wish to determine which Bayesian network G best describes the joint distribution

of the random variables X1, . . . , Xp. Recall that we refer to the set of possible

Bayesian networks with p nodes by G, which is a finite set, each member of which

identifies a family of models for X1, . . . , Xp.

The models that we consider for the local distributions in the Bayesian networks

are straightforward generalisations of those that we consider for Bayesian variable
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selection. Rather than regarding a single random variable as the response and the

remainder as predictors, we now consider all of the random variables X1, . . . Xp

as responses, and, for each random variable, we consider which of the remaining

variables should be selected as predictors. The local model for a variable Xi is thus

specified conditionally on its parents XGi in the Bayesian network. The complete

model must be a Bayesian network; in particular, it must correspond to an acyclic

directed graph.

We aim to make inference about this using statistical model selection. These meth-

ods have been widely adopted in molecular biology (Husmeier, 2003; Friedman, 2004;

Needham et al., 2007; Mukherjee and Speed, 2008), and have been used in some ar-

eas of medical sciences (Acid et al., 2004). In this chapter, we focus on the structure

of the model, as given by the graph. The structure of the model suggests how the

different components of the system interact, which may be helpful in understanding

the system as a whole.

2.5.1 Independence assumptions

We assume that the parameters θG ∈ ΘG for the complete Bayesian network G

can be broken into components θG,i ∈ ΘG corresponding to the individual random

variables.

ΘG =
p

×
i=1

ΘG,i

In addition, we assume that the θG,i, i = 1, . . . , p, are a priori independent for a

particular Bayesian network G. This assumption is called global independence

(Spiegelhalter and Lauritzen, 1990).

We also assume parameter modularity. This assumptions states that if a ran-

dom variable Xi has the same parents in two Bayesian networks G(1) and G(2), then
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the priors for the parameters θG(1),i and θG(2),i are the same.

p
(
θG(1),i

)
= p

(
θG(2),i

)

This assumption is normally sensible, except in settings in which detailed prior in-

formation is available that suggests that dependence exists between the parameter

prior of a node and the structure of the graph beyond the immediate parents of the

node. This scenario is different to the focus of this thesis: if such detailed informa-

tion is available, the analysis is considerably less exploratory than the settings we

consider. In addition, typically only when there are a small number of variables un-

der consideration is it practical to elicit such a prior. To make no assumption about

the equality of prior parameters would necessitate specifying the prior parameters

for each parameter under every possible Bayesian network; with a large number of

variables this is impractical.

2.5.2 Multinomial-Dirichlet

Consider a particular Bayesian network G. We label the configurations of XGi for

a random variable Xi by CG,ij , with j ∈ {1, . . . , qG,i}, where qG,i is the number of

configurations of the parents in G of Xi.

As in multinomial regression, we assume that the parameters of the multinomial

models for different configurations are independent. In addition to this local inde-

pendence assumption, we make the global independence assumption described in

Section 2.5.1. Together these mean that we can describe separately the models for

each node, and for each configuration of the parents of that node. Each of these

models, we assume, has the following form, with j = 1, . . . , qG,i.

Xi | θG,i,j ,XGi = CG,ij ∼ Mult(θG,i,j,1, . . . , θG,i,j,ri)
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Thus, the conditional distribution of each Xi has the following form.

p
(
Xi | θG,i,j ,XGi = CG,ij

)
= θG,i,j,k for k = 1, . . . , ri

We denote by θG the collection of all θG,i,j,k for i = 1, . . . , p, j = 1, . . . , qG,i and

k = 1, . . . , ri. Let NG,i,j,k be the cells of a contingency table for X that counts the

number of Xi in the ith category when XGi = CG,ij , for i = 1, . . . , p, j = 1, . . . , qG,i,

k = 1, . . . , ri. The joint distribution of X is thus

p(X | G, θG) =

p∏
i=1

qG,i∏
j=1

ri∏
k=1

θ
NG,i,j,k
G,i,j,k .

The assumptions of local and global independence mean that θG,i,j are assumed a

priori independent. For each i = 1, . . . , p and j = 1, . . . , qG,i, the prior for θG,i,j is

the conjugate Dirichlet prior.

θG,i,j,1, . . . , θG,i,j,ri | G ∼ Dir(αG,i,j,1, . . . , αG,i,j,ri)

The joint prior for θG is thus the product of Dirichlet distributions, with θG,i,j,k ≥ 0

and
∑ri

k=1 θG,i,j,k = 1 for all i = 1, . . . , p and j = 1, . . . , qG,i.

p (θG) =

p∏
i=1

qG,i∏
j=1

Γ(αG,i,j,k + · · ·+ αG,i,j,ri)

Γ(αG,i,j,k) . . .Γ(αG,i,j,ri)

ri∏
k=1

θ
αG,i,j,k−1
G,i,j,k

For each i = 1, . . . , p and j = 1, . . . , qG,i, unless otherwise stated, we take the hy-

perparameters αG,i,j,k = (riqG,i)
−1 for all k = 1, . . . , ri, following Buntine (1991)

and Heckerman et al. (1995). The choice of hyperparameters can be important: the

maximum a posteriori graph is very sensitive to the specification of the hyperpa-

rameters (Silander et al., 2007). The most satisfactory way to reduce this sensitivity

is to treat the effective sample size α as an unknown parameter, and choose for it

a suitable prior distribution. Our choice of hyperparameter corresponds to α = 1
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(Heckerman et al., 1995). Silander et al. (2007) propose a discrete, uniform prior

distribution on the range 1 to 100, and are able to implement this approach for

networks with a small number of nodes (p < 15). For larger networks, however, the

considerable extra computational effort required precludes this approach, and so we

do not investigate this further. Instead, we take the approach described by Silander

et al. (2007) as “being Bayesian about the structure”, and use model averaging ap-

proaches (Section 2.1.1), for which the sensitivity to the hyperparameters is likely

to be not as strong as it is for MAP estimation, since the focus on not on a single

model.

Suppose we have an observation x of X, and from this we form the cells of the

contingency table nG,i,j,k. Then the marginal likelihood can be written in closed-

form.

p(X | G,nG,i,j,k) =

p∏
i=1

qG,i∏
j=1

Γ(
∑ri

k=1 αG,i,j,k)

Γ(
∑ri

k=1 nG,i,j,k +
∑ri

k=1 αG,i,j,k)

ri∏
k=1

Γ(nG,i,j,k + αG,i,j,k)

Γ(αG,i,j,k)

2.5.3 Normal linear regression

The generalisation of the normal linear regression model to Bayesian networks is

straightforward when global independence (Section 2.5.1) is assumed. Consider a

particular Bayesian network G. For its computational convenience, we will use a

g-prior for the regressions at each variable.

βi | σ2
i ,XGi , G ∼ MVN(mG,i, gσ

2
i (X

T
GiXGi)

−1)

π(σ2
i ) ∝ σ−2

i
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The form of these priors is given in Section 2.4.2 above. The marginal likelihood for

a Bayesian network G is

p(X | G) ∝
p∏
i=1

(g + 1)−(qG,i+1)/2

×
(
XT
i Xi −

g

g + 1
XT
i XGi(X

T
GiXGi)

−1XT
GiXi

− 1

g + 1
mT
G,iX

T
GiXGimG,i

)−n/2
.

When the variables are centred, so that m = 0, the final term of the marginal

likelihood is zero.

2.5.4 Model priors

The simplest prior π(G) for Bayesian networks is a uniform prior over the space of

DAGs.

π(G) =
1

|G|
G ∈ G

This prior is used in most discussions of structural inference for Bayesian networks

(e.g. Cooper and Herskovits, 1992; Madigan and Raftery, 1994). However, the un-

satisfactory aspects of uniform priors for regression models (Chapter 7) may well also

apply to these priors. In addition, a uniform prior such as this may not match prior

beliefs, and so other priors have been proposed. In molecular biology applications

informative priors are popular (Mukherjee and Speed, 2008; Werhli and Husmeier,

2007) because useful prior information is often available. Their use has also been

proposed in other contexts (e.g. Angelopoulos and Cussens, 2008).
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2.5.5 Posterior distribution over models

The posterior distribution P (G | X) is a discrete distribution over these models.

p(G | X) =
p(X | G)π(G)∑
G∈G p(X | G)π(G)

(2.4)

As with regression, we may consider either the MAP model or consider averaging

over all (or some) of the models. A drawback using the MAP graph is that it is

very sensitive to the specification of the hyperparameters (Silander et al., 2007).

However, evaluating the posterior distribution in Equation 2.4 is often not straight-

forward, and so in the next section we focus on evaluation and approximation for

the posterior.

2.6 Posterior distribution computation

Evaluating the posterior distribution over models (Equation 2.4) is in principle

straightforward, but in practice is extremely challenging when many random vari-

ables are under consideration. When conjugate local models are used, the marginal

likelihood is straightforward to compute. The challenge arises when the cardinal-

ity of M is large. A large cardinality makes the summation in the denominator

of Equation 2.1 intractable. Instead, we seek an approximation to the posterior

distribution. This thesis focuses on approximations that use Markov chain Monte

Carlo, the details of which in this context are described in Section 2.6.4. Before

describing this, we describe the procedure for evaluating the posterior exactly when

this is tractable.

As shown by Robinson (1973), the cardinality of G grows super-exponentially in p,

and so when p > 6, say, direct enumeration is not practical.
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2.6.1 Exact evaluation of the posterior distribution

When the cardinality of the model space is small, we can evaluate the posterior

distribution (Equation 2.1) exactly by exhaustive enumeration. The procedure is

the straightforward in principle.

1. Make a list of all DAGs G ∈ G with correct number of nodes

2. Evaluate p(G | X) for each G ∈ G.

For Bayesian networks, this algorithm runs without difficulty on modern computers

when p ≤ 6. Adding even a couple of extra variables vastly increases the computa-

tional burden of the algorithm, but the maximum of p = 6 can be exceeded slightly

when a large cluster is available because the algorithm is trivially parallelisable.

Another method that reduces the computational burden is to apply an in-degree

restriction κ that specifies that only Bayesian networks G = 〈G1, . . . , Gp〉 with

|Gi| ≤ κ for all i = 1, . . . , p are allowed.

2.6.2 MAP-finding methods

The difficulty in approximating the full posterior distribution led many authors to

focus on finding the MAP Bayesian network. Greedy (local) searches (Heckerman

et al., 1995), or transforming the problem into a MAX-SAT (Cussens, 2008) or into

a linear programming problem (Jaakkola et al., 2010; Cussens, 2011) are among the

many proposals for finding the MAP Bayesian network. However, in this thesis we

focus on methods that allow model averaging, which is not directly possible using

these methods.
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2.6.3 Markov chain Monte Carlo

Computational methods, including Markov chain Monte Carlo (MCMC), have in

the last 20 years transformed Bayesian statistics (see e.g. Gilks et al., 1996; Brooks

et al., 2011). While MCMC methods had existed for at least 25 years before, the full

potential was not realised until the early 1990s when the generality of the methods

in Bayesian statistics was highlighted by Gelfand and Smith (1990) and others.

The aim of MCMC is to estimate properties of a probability distribution that is not

easily analytically tractable. Most of the key properties of interest of a probability

distribution can be estimated by obtaining a large sample from the distribution,

even if the samples are not independent. The idea is to construct a Markov chain

on the sample space of the target distribution in such a manner that the equilibrium

distribution of the Markov chain is the target distribution. Constructing a Markov

chain with the correct equilibrium distribution is remarkably straightforward be-

cause generic frameworks are available.

Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is one

such framework that enables a vast range of distributions to be approximated. Sup-

pose we wish to approximate a distribution p(x), which we call the target dis-

tribution, and in which x ∈ X may be a vector. To do this, we draw samples

{x(t) : t = 1, . . . , N} from a Markov chain with each sample drawn conditional on

the previous sample according to a transition kernel K(x′ | x), samples from which

are drawn as follows. Given a current state x(t−1), the algorithm uses a proposal

distribution q(x′ | x(t−1)) to draw a proposal for the next state. Then, either the

proposal is accepted so that x(t) = x′, or the proposal is rejected and the current

state retained so that x(t) = x(t−1). The decision whether to accept the proposal is
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Algorithm 1 A Metropolis-Hasting sampler (Metropolis et al., 1953; Hastings,
1970)

Initialise at an arbitrary starting point x(0)

for t in 1 to N do

Draw x′ ∼ q(x′ | x(t−1))

Set

x(t) =


x′ with probability α(x′, x(t−1))

x(t−1) with probability 1− α(x′, x(t−1)),

where α(x′, x(t−1)) = min
{

1, p(x′)
p(x(t−1))

q(x(t−1)|x′)
q(x′|x(t−1))

}
.

end for

made probabilistically in the manner detailed in Algorithm 1.

The original algorithm by Metropolis et al. (1953) used a symmetric proposal, which

means the Hastings factor q(x|x′)
q(x′|x) is unity. In this case, the ability to evaluate

the ratio of q(x(t−1) | x′) and q(x′ | x(t−1)) is not required.

Gibbs sampling

Gibbs sampling (Ripley, 1979; Geman and Geman, 1984) is a particular form of

the Metropolis-Hastings algorithm, but leads to rather different samplers. A Gibbs

sampler uses samples from the conditional distribution of the components of a mul-

tivariate distribution to approximate the complete joint distribution.

We again consider p(x) = p(x1, . . . , xp) to be the target distribution for which we

seek an approximation. The Gibbs sampler forms its transition kernel from the full

conditional distributions p(x′k | x−k), where x−k = (x1, . . . , xk−1, xk+1, . . . , xp) for

k = 1, . . . , p. Given a current state x(t−1) = (x
(t−1)
1 , . . . , x

(t−1)
p ), the algorithm draws

a sample x′k from p(x′k | x−k), for some k ∈ {1, . . . , p}. Then x(t) = x′ where x′ =

(x
(t−1)
1 , . . . , x

(t−1)
k−1 , x′k, x

(t−1)
k+1 , . . . , x

(t−1)
p ) resulting in x(t−1) and x(t) differing in only
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Algorithm 2 A Gibbs sampler (Ripley, 1979; Geman and Geman, 1984)

Initialise at an arbitrary starting value x = (x
(0)
1 , . . . , x

(0)
p ).

for t in 1 to N do

for k in 1 to p do

Draw x′ ∼ p(xk | x
(t−1)
−k )

Set x(t) = (x
(t−1)
1 , . . . , x

(t−1)
k−1 , x′k, x

(t−1)
k+1 , . . . , x

(t−1)
p )

end for

end for

the kth component. There is no accept-reject decision; all draws from p(x′k | x−k)

are used.

Algorithm 2 describes a systematic scan Gibbs sampler, in which each component of

x is sampled in turn. An alternative is a random-scan sampler, in which k is drawn

from {1, . . . , p} at random, typically uniformly. There are few theoretical results

to guide the choice between random- and systematic-scan Gibbs samplers (Roberts

and Sahu, 1997). In this thesis, random-scan Gibbs samplers are used throughout.

A positivity condition is required for the Gibbs sampler to be useful in the manner

described in the next section; we discuss this in a particular context in Section 4.3.3.

Using the samples

The samples {x(t) : t = 1, . . . , N} are useful because, under weak conditions, the

probability that the Markov chain is at a particular state will match that probability

of that state in the target distribution.

We first consider the stationary (or invariant or equilibrium) distribution of

the Markov chain. A stationary distribution of a Markov chain is a distribution

such that if the current value of the Markov chain is a draw from the stationary
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distribution, the subsequent values of the Markov chain retain this distribution. We

want the stationary distribution to be the target distribution. We can establish

that this holds by checking that the detail balance condition holds. The transition

kernel K of the Markov chain and target distribution p are said to be in detailed

balance if

p(x)K(x | y) = p(y)K(y | x) for all x, y ∈ X .

The construction of the Markov chain associated with the Metropolis-Hastings al-

gorithm or the Gibbs sampler means that detailed balance will hold.

We also require that the Markov chain is irreducible and aperiodic. A Markov chain

is irreducible if the probability of making a transition between any two states is

positive. A state in a Markov chain has period k if any return to that state must

occur in multiples of k time steps. If the period of a state is 1, the state is said

to be aperiodic. If all states are aperiodic, then the Markov chain is said to be

aperiodic.

When the Markov chain is irreducible and aperiodic, even if we start the Markov

chain at an arbitrary initial value, the samples drawn from the Markov chain will

tend to draws from the stationary distribution as the number of samples N → ∞.

Thus, after a suitable ‘burn-in’ period of, say, T iterations, the points {x(t) : t ≥ T}

can be regarded as dependent samples from the target distribution.

In Bayesian inference, the quantities of interest (means, variances, quantiles etc) can

all be expressed in terms of a posterior expectation. Thus, in general, we seek an

approximation to E(S(X)), for some function S(x) of the distribution p, that uses

the MCMC samples {x(t) : t ≥ T}. An appropriate estimator is the sample mean.

E(S(X)) =
1

N

N∑
t=1

S(x(t)) (2.5)

Recall that the MCMC samples will be dependent, and so the usual law of large
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numbers does not apply to this estimator. However, the ergodic theorem for Markov

chains reassures us that, for an irreducible Markov chain with stationary distribution

p, the sample average converges to E(S(X)) as N →∞, when E(S(X)) <∞.

A less dependent set of samples is given by using only every kth sample in Equa-

tion 2.5. This is called thinning. Usually thinning is not beneficial because the

associated estimator has a larger variance than the estimator that uses all of the

samples (Geyer, 1992; MacEachern and Berliner, 1994). However thinning can be

necessary when equilibrium is only reached with N large, but storing all N samples

is not feasible for computational reasons.

Convergence diagnostics

Assessing when the dynamics of the MCMC sampler follow those of the equilibrium

regime is not straightforward. Although some theoretical results are available (e.g.

Roberts and Rosenthal, 1998) the results mostly relate to settings that are elemen-

tary relative to typical practical uses of MCMC, and so in practice convergence

is assessed using statistical methods based on the samples themselves. Numerous

methods for assessing convergence statistically have been proposed; a review is given

by Brooks and Roberts (1998).

The most straightforward method for assessing convergence is to examine the se-

quential ‘trace-plot’ of a statistic of the samples, against iteration. Yu and Mykland

(1998) argue however, that a plot of cumulative sums of statistics enable a better

test of convergence: when the sampler is mixing well, there will be regular excursions

around the mean in each statistic, which will be represented by a ‘spiky’ cumula-

tive sum plot. Brooks (1998) develop the idea further with a related quantitative

measure of convergence.

Convergence diagnostics are only necessary to assess how long the burn-in period
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should be. However, burn-in is simply a method for finding a starting point for the

Markov chain, and so if we have an alternative method that gives a starting point

that is representative of the target distribution then using a burn-in period is waste-

ful of samples, a point emphasised by Geyer (2011). Indeed, the ergodic theorem

shows that the sample averages will converge to the true expectation regardless of

the starting value. In the setting considered here, it would be possible to choose a

starting point from the result of a MAP estimation method (Section 2.6.2), which

may give a representative point of the target distribution.

We prefer the alternative approach in which multiple chains are run, initialised at

disparate, over-dispersed points in the sample space. Using multiple runs provides

more reassurance that the asymptotic regime has been reached, rather than the

sampler simply being ‘stuck’ in a local mode. Thus, using multiple runs reduces the

chances of being unaware of significant areas of mass in the target distribution. If

convergence has been reached in all of the runs, then all statistics of the samples

should be similar across the runs. When using this approach it is clear that a burn-

in period is required. For example, it is clear from Figure B.1 that in all cases the

first part of each run is not representative of the target distribution.

The advantage of this approach is that these multiple runs can be run simultaneously

in parallel, and if sufficient computing resources are available, in the same amount

of time we can be more confident in our result. There is not an accepted answer

as to how many independent chains should be run. Gelman and Shirley (2011)

recommend running at least three chains in parallel. A formal numerical diagnostic

using multiple chains has been proposed by Gelman and Rubin (1992).

Mixing rate

The mixing rate (or time) of a Markov chain is informally the rate at which (or

time until) dependence on the initial conditional is forgotten, and the rate at which
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passage between the areas of significant posterior mass occurs. The mixing times of

an MCMC sampler depend on the relationship between the target distribution and

the transition kernel. When the transition kernel takes a form that allows the sam-

pler to move freely in and between the areas of mass in the target distribution, the

sampler will mix quickly. The transition kernels given by the most simple MCMC

samplers, however, may corner themselves into unrepresentative local modes, espe-

cially in high dimensions. Disastrous results from MCMC samplers are certainly

not limited to the contrived textbook examples of bad behaviour.

2.6.4 Approximations for the posterior distribution

In the case of approximating the posterior distribution over the space of models,

Markov chain Monte Carlo is required because the cardinality of the space of models

|G| is large.

The standard form of MCMC that is used for structural inference for Bayesian

networks is MC3 (Madigan and York, 1995), a simple Metropolis-Hastings sampler.

This sampler moves through the space of DAGs G by drawing proposals from the

neighbourhood of a graph G, defined as the DAGs that can be formed by adding

or removing a single edge from G.

ν(G) = {G′ : G and G′ differ by a single edge}

The size of the neighbourhood can vary because certain edge additions may intro-

duce a cycle, and so are not allowed.

Given a current state G(t−1), which is a DAG, a proposal G′ is drawn uniformly

at random from ν(G(t−1)), the neighbourhood of the current state. The proposal

distribution is thus

q(G′ | G) =
1

|ν(G)|
.
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Algorithm 3 MC3 (Madigan and York, 1995)

Initialise initial Bayesian network G(0)

for t in 1 to N do

Evaluate ν(G(t−1))

Draw a proposal G′ uniformly at random from ν(G(t−1))

Evaluate the acceptance probability α(G′, G)

Draw u ∈ [0, 1] uniformly at random

if u < α(G′, G) then

Set G(t) = G′

else

Set G(t) = G(t−1)

end if

end for

The proposal is accepted according to the usual Metropolis-Hastings acceptance

probability.

α(G′, G) = min

1,
P (G′ | X)π(G′)

P (G(t−1) | X)π(G(t−1))

1
|ν(G′)|

1

|ν(G(t−1))|


The complete algorithm is detailed in Algorithm 3.

In many situations, MC3 works surprisingly well, but if the posterior distribution

is not unimodal, the local moves may fail to explore the space fully because the

sampler may become ‘trapped’ in one mode. This issue becomes more severe as the

sample size increases because the posterior distribution becomes more concentrated.

We examine this issue in more detail in Chapter 4.
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2.7 Constraint-based methods

An alternative class of methods for structural inference is constraint-based ap-

proaches. These methods determine the structure of the Bayesian network by mak-

ing firm decisions about the structure of the Bayesian network through a series of

tests of conditional independence. The conditional independence structure is re-

turned as a CPDAG (Section 2.2.3), which specifies an equivalence class of Bayesian

networks which with the data are consistent.

In this section, we survey some constraint-based methods, and then describe in

detail one such method, the PC-algorithm (Spirtes and Glymour, 1991).

2.7.1 Survey of available methods

Several constraint-based methods have been proposed. The earliest methods, such

as the IC algorithm (Verma and Pearl, 1990) and the SGS algorithm (Spirtes et al.,

2000), test the independence of each pair of random variables, conditional on each

set of other variables. More recent proposals, such as the PC-algorithm (Spirtes

and Glymour, 1991) and the recursive method of Xie and Geng (2008), are more

selective in the conditional independencies that they consider and are thus more

efficient.

The frequentist constraint-based methods have mostly been developed separately

from the Bayesian methods that we focus on, but recently Tsamardinos et al. (2006)

proposed a method that combines constraint-based methods with the score-based

methods, such as the Bayesian posterior.
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2.7.2 PC-algorithm

The PC-algorithm (Spirtes and Glymour, 1991) works in two stages. First, an

undirected graphical model, called the skeleton is constructed. Then as many of

the edges on the graph as possible are assigned directions (‘oriented’).

The first part of the procedure constructs an undirected model by initially assuming

that there are no independencies or conditional independencies between any of the

variables. This assumption corresponds to initialising G as the complete undirected

graph. Standard frequentist tests of independence are then made; when the p-value

of the tests suggest an independence, the relevant edge of the undirected graph is

removed. For example, if variable i is discovered to be independent of variable j,

given some variables in a set S, then the edge i − j will be removed. The tests

are made in increasing order of cardinality of S. Testing in this order reduces the

number of independence tests that are required, because if, for example, i ⊥⊥ j then

we do not need to test whether i ⊥⊥ j | S for any S ⊆ V .

In this thesis, we use the default cut-off p-value 0.05 that is commonly used with

the PC-algorithm (e.g. Tsamardinos et al., 2006; Buhlmann et al., 2010) so that our

comparisons with alternative methods correspond to common practice. Meinshausen

and Bühlmann (2010) describe an approach that may lead to a more principled

choice of cut-off parameter, but we do not investigate this approach in this thesis.

In the second stage of the algorithm, the undirected edges that can be unambigu-

ously assigned a direction are oriented. First, we identify v-structures by considering

all triples (i, j, k) such that i − j, j − k but with i and k not linked. Then the v-

structure i → j ← k is present if and only if there is no conditional independence

i ⊥⊥� k | j, which we ascertained in the first stage. Further edges can be oriented if a

particular orientation would induce a cycle in the graph, or if a particular orienta-

tion would introduce a v-structure that had been rejected in the previous stage. The
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final section of the algorithm follows the method introduced by Verma and Pearl

(1992). Correctness was proved by Meek (1995).

The full outline is described in Algorithm 4. The PC-algorithm has been shown to

be asymptotically consistent (Kalisch and Bühlmann, 2007).

The conditional independence tests in the algorithm (line 7) are made using standard

likelihood ratio tests. For example, the G2 statistic is used in the case of discrete

data, with nabcijk denoting the number of occurrences of Xi = a, Xj = b, Xk = c; nabij

denoting the number of occurrences of Xi = a, Xj = b; and nds is the number of

occurrences of Xs = d.

G2 = 2
∑
a,b,c

nabcijk log

(
nabcijkn

c
k

nacikn
bc
jk

)

This statistic is asymptotically χ2-distributed with rirj
∏
l∈k rl degrees of freedom.

The null hypothesis is i ⊥⊥ j | k, indicating conditional independence between i and

j given k.
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Algorithm 4 PC-algorithm (Spirtes and Glymour, 1991)

Initialise initial graph G as the complete undirected graph.

Initialise a = 1

while pairs (i, j) with neighbours of large enough cardinality remain do

while suitable pairs (i, j) remain do

Choose an ordered pair of nodes (i, j) such that i− j and |adj(i) \ {j}| ≥ a

Choose a set S ⊆ adj(i) such that |S| = a

if i ⊥⊥ j | S then

Set G to the graph G with the edge i− j removed.

Add S to SepSet(i, j) and SepSet(j, i)

end if

end while

a = a+ 1

end while

for triples (i, j, k) in which i− j − k but i not adjacent to k do

if j /∈ SepSet(i, k) then

Orient i→ j ← k

end if

end for

while orientable edges remain do

Rule 1 Orient j − k as j → k if there exists an edge i → j, but no edge links

nodes i and k.

Rule 2 Orient i− j as i→ j if there a node k such that i→ k → j

Rule 3 Orient i − j as i → j if there exist nodes k and l such that i − k → j

and i− l→ j

Rule 4 Orient i − j as i → j if there exist nodes k and l such that i − k → l

and k → l→ j, and no edge links nodes j and k, but an edge does link nodes i

and l.

end while



Chapter 3

Subjective well-being and

risk-avoiding behaviour

Measures of subjective well-being aim to encapsulate the human experience of ‘hap-

piness’, ‘well-being’, and ‘satisfaction with life’. These terms are thus often used

interchangeably. Subjective well-being has been discussed since at least the 1970s

(e.g. Easterlin, 1974), but the subject has developed considerably in recent years

(e.g. Easterlin, 2003; Oswald and Wu, 2010). A particular focus of recent work has

been on identifying factors that affect subjective well-being (e.g. Diener et al., 1995;

Fowler and Christakis, 2008). This work has motivated, and in part been motivated

by, recent political adoption of the aim of increasing ‘gross national happiness’, which

proponents argue is a more relevant indicator of the success of a country (or policy)

than gross domestic product (GDP). Oswald (1997) argues that economic measures

of performances are only relevant as a means to an end, and that end is well-being.

In particular, nobody has any real concern with the standard economic indicators

(inflation, growth, unemployment, etc) except as proxies for the well-being of the

population.
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While factors that influence subjective well-being have been widely-studied, the

effects of happiness are relatively unstudied. In this chapter, we propose and provide

empirical evidence that supports the idea that subjective well-being influences the

risk taking characteristics of individuals. We investigate this by considering seatbelt-

wearing as a proxy for avoidable risk taking. We find that individuals who describe

themselves as happier are more likely to wear a seatbelt.

We use data on reported well-being and seatbelt use in a sample of 300,000 Ameri-

cans, and find evidence strongly consistent with this theory. That is, the less satisfied

people are with life, the less conscientious they are in taking action to preserve their

life by the wearing of a seatbelt. The result is obtained with various methodological

approaches, with an emphasis on Bayesian model-selection. We find evidence that

none of the confounders, either singly or jointly, can explain the observed connection

between seatbelt use and subjective well-being (even after accounting for non-linear

effects). To the best of our knowledge, the principal finding has not been established

in this manner before, although simple correlations consistent with the result have

been reported by Kirkcaldy and Furnham (2000), in the psychology literature.

The remainder of this chapter is organised as follows. We first detail the background

to the study. We then present details of the data and methods used in the study, be-

fore presenting the main results. Finally, we discuss shortcomings and implications,

as well as directions for further work.

3.1 Background

3.1.1 Risky behaviour

Understanding the reasons why individuals take risks, particularly avoidable risks,

is an important open question in economics (Barsky et al., 1997; Dohmen et al.,
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2011). Some researchers argue that in the industrialised world—where affluence has

become the norm—the key question for policy-making has become that of how to

understand risky health behaviours (Offer, 2006; Offer et al., 2010).

Decision processes involving risk are complex. They are affected by a wide range of

factors—including underlying risk preferences, perceptions, framing, level of involve-

ment in the outcome-generating process, previous outcomes, and biological factors

(Kahneman and Tversky, 1979; Zeckhauser and Viscusi, 1990; Thaler and Johnson,

1990; Kimball, 1993; Fong and McCabe, 1999; Sapienza et al., 2009).

We use the use of seatbelts as an indicator of risk-taking because it represents an

interesting indicator of self-preserving behaviour. In a modern industrialised nation,

there are few widespread activities in which people are at risk of instantaneous death

or serious injury. However, driving is one activity that carries with it the risk of

serious physical harm. The wearing of seatbelts is a demonstrably effective measure

in reducing this risk (Wild et al., 1985). There is little cost associated with seatbelt

use and so, rationally, the wearing of seatbelts should be universal.

Yet seatbelt use in the United States is far from universal. Only 83 percent of

individuals in the data used in this study state they always use a seatbelt. This

figure is corroborated by the National Occupant Protection Use Survey by National

Highway Traffic Safety Administration (Pickrell and Ye, 2008), which directly also

observed that 83 percent of individuals actually used a seatbelt. Thus, there remain

as yet unexplained patterns of variation in this key risk behaviour.

3.1.2 Subjective well-being

In recent years, an increasing number of authors (e.g. Easterlin, 1974; Oswald, 1997;

Frey and Stuzer, 2002) have argued that subjective well-being should play an impor-

tant role in the study of human behaviour. However, while the concept of evaluating
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policy by its effect on well-being may be an incontestably worthy aim, using this

idea in practice invariably involves relying on self-assessed measures of subjective

well-being. There has been considerable debate in the literature about whether

self-reported measures of well-being are meaningful (Argyle, 2001; Bertrand and

Mullainathan, 2001), specifically whether they accurately reflect the true state of a

respondent’s well-being. It may seem that relying on self-assessed measures leads

to a lack of scientific objectivity, but as Easterlin (1974) notes, “If one is interested

in how happy people are—in their subjective satisfaction—why not let each person

set his own standard and decide how closely he approaches it”. In fact, substantial

new evidence suggests that these measures are correlated with biological and other

indicators (Udry, 1998; Steptoe and Wardle, 2005; Fliessbach et al., 2007), and thus

do provide meaningful information in an objective sense. It has also recently been

demonstrated that there is a close spatial match between U.S. life satisfaction scores

and objective well-being indicators (Oswald and Wu, 2010).

A diverse literature is emerging on the determinants of human happiness (e.g. Di-

ener, 1984; Diener et al., 1995; Oswald, 1997; Radcliff, 2001; Clark, 2003; Easterlin,

2003; Di Tella and MacCulloch, 2005; Layard, 2005; Luttmer, 2005; Dolan and

White, 2007; Dolan and Kahneman, 2008; Fowler and Christakis, 2008; Stevenson

and Wolfers, 2008; Pittau et al., 2009), how its changes over a lifespan (Blanchflower

and Oswald, 2004, 2008; Pischke, 2011), and its relationship to utility (Kimball and

Willis, 2006; Benjamin et al., 2010). One of the notable claims is that subjective

well-being is ‘U-shaped’ over the course of a life (Blanchflower and Oswald, 2008);

that is, individuals are satisfied in youth, but become less satisfied in middle-age,

and then recover satisfaction in old age. Another interesting claim is that subjective

well-being at a country level is disconnected from economic growth; in particular,

subjective well-being in the U.S. has not increased as it has become richer (Oswald,

1997; Stevenson and Wolfers, 2008). Less is known, however, about the influence of

people’s well-being on their actions: that is, on what happiness ‘does’, rather than
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the factors that shape it.

3.2 Data and methods

This section describes the two data sources and briefly outlines Bayesian variable

selection and joint confounding methods. Importantly, these Bayesian techniques

allow a relaxation of the assumption of linearity.

3.2.1 Behavioural Risk Factor Surveillance System Survey

We draw data from the publicly available Behavioural Risk Factor Surveillance

System Survey (BRFSS). This is a household-level random-digit telephone survey,

collected by the U.S. Government’s National Center for Chronic Disease Prevention

and Health, that has been conducted throughout the United States since 1984.

Seatbelt-use statistics were collected in 2006 and 2008, but to avoid a discontinuous

time-period, we use only 2008 data (results using 2006 data are similar). Following

previous work (Oswald and Wu, 2010), we restrict our analyses to those between

18 and 85 years old, not residing in unincorporated U.S. territories, and exclude

respondents who refused or were unsure of their response, or whose response is

missing, for any of the 19 variables included in our analyses (Tables 3.1 and 3.2).

The resulting sample size is 313,354.

Our measure of life satisfaction is the response, on a 4-point scale ranging from

‘Very satisfied’ to ‘Very dissatisfied’, to the question, “In general, how satisfied are

you with your life?”. Seatbelt use is recorded as self-reported frequency of use when

driving or riding in a car, on a 5-point scale. Respondents were also able to declare

that they do not use a car. These questions were separated in the survey by at least

4 other questions. Table 3.3 (page 72) lists the questions from which the covariates
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Table 3.1: The main covariates used from BRFSS in Chapter 3. The discretisation
in Column 2 (‘Levels’) is used in the linear analyses, while the analyses based upon
model selection use the discretisation in Column 3 (‘Collapsed Levels’). (The addi-
tional covariates used in the model selection analyses are detailed in Table 3.2 on
page 71.)

Variable Levels Collapsed categories
Seatbelt Always (coded 5) Always

Nearly always (4) Not always
Sometimes (3) Not always
Seldom (2) Not always
Never (1) Not always

Subjective well-being Very satisfied (4) Very satisfied
Satisfied (3) Not very satisfied
Dissatisfied (2) Not very satisfied
Very dissatisfied (1) Not very satisfied

Gender Male Male
Female Female

Race White only, non-Hispanic White only, non-Hispanic
Black only, non-Hispanic Black only, non-Hispanic
Asian only, non-Hispanic Asian only, non-Hispanic
Other/Multiracial, non-Hispanic Other/Multiracial, non-Hispanic
Hispanic Hispanic

Age (Age in years) Young (18–34 years)
Middle-aged (35–64 years)
Old (65 years or older)

Marital Status Never Married Never Married
Married In couple
Divorced Formerly in couple
Separated Formerly in couple
Widowed Widowed
Unmarried couple In couple

Education No high school Not a high school graduate
Some high school Not a high school graduate
High school graduate High school graduate
Some college/technical school High school graduate
College graduate College graduate

Employment Employed for wages Employed
Self-employed Employed
Unemployed Unemployed
Homemaker Not in workforce
Student Not in workforce
Retired Not in workforce
Unable to work Not in workforce

Annual Income $10,000 or less Low income
$10,000 – $15,000 Low income
$15,000 – $20,000 Low income
$20,000 – $25,000 Medium income
$25,000 – $35,000 Medium income
$35,000 – $50,000 Medium income
$50,000 – $75,000 High income
$75,000 or more High income

State of residence (State of residence)
Month of interview (Month of interview)
Number of children (Number of children in household) No children

1 child
2 or more children



C1 C2 . . . Cp−1

Cp = X Y

Figure 3.1: A graphical representation of the form of the models used in variable
selection for joint effects of multiple covariates. The variable selection formulation
explores subsets of {C1, . . . , Cp−1, X} as joint explanatory factors for response Y .

are derived.

3.2.2 Bayesian methods

Bayesian variable selection

We fit standard regression models to the data. We additionally consider Bayesian

variable selection, which is useful in this context because it accounts for the pos-

sibility of non-linearity and interactions. This framework provides a more rigorous

test of the importance of a covariate because a larger number of possible alternative

explanations are considered, including interaction effects that are sometimes key

(e.g. in Gelman et al., 2007) and yet are often overlooked.

The models Mγ for seatbelt use that we consider are a particular form of the

multinomial-Dirichlet Bayesian variable selection introduced in Section 2.4.1. The

models describe the distribution of seatbelt use Y in terms of a collection of po-

tential predictors C1, . . . , Cp−1 and well-being X, which we refer to collectively as

the covariates C1, . . . , Cp for simplicity. Recall that the models are defined by an

indicator variable γ = (γ1, . . . , γp), so that {Ci : γi = 1} is the subset of covariates

included in model Mγ . We let the number of covariates pγ = ITγ included in the

model be such that pγ ≤ 9 (Figure 3.1). Suppose each of the p covariates consists

of ri categories, 1 ≤ i ≤ p. For a model Mγ , let C = {Cγ1 , . . . , C
γ
q } be the set
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containing all qγ =
∏p
i=1 r

γi
i combinations of values of the covariates included in

the model. Note that this is equivalent to defining C as the sample space of the

included covariates. To control complexity in this setting, we simplify the data by

reducing the levels of some variables with many categories, as shown in Tables 3.1

and 3.2 (on pages 59 and 71), and binarise the response, enabling a simple contrast

between those who always wear seatbelts with those who do not. For each of the

n individuals, let yi be the indicator of whether individual i always uses a seatbelt,

and ci be the p-dimensional vector of covariates that incorporates an indicator of

well-being. We use a binomial model for the responses, with parameter θj depen-

dent on the configuration Cγj ∈ C of the covariates. Thus the joint probability for

vector of responses y depends on nj , the number of observed individuals who have

covariates Cγj , and mj , the number of these individuals who use a seatbelt.

The posterior distribution over models Mγ , given the data, provides a measure of

the fit of each model that incorporates a preference for simpler models of lower

dimension. The posterior, up to proportionality, is given by the product of the

model prior π(Mγ), and, using the standard assumption of independent beta(α, β)

parameter priors (Cooper and Herskovits, 1992), the closed-form marginal likelihood

p(y | c1, . . . , cp,Mγ) =

qγ∏
j=1

Γ(mj + α)Γ(nj −mj + β)Γ(α+ β)

Γ(nj + α+ β)Γ(α)Γ(β)
,

where c1, . . . , cp are the vectors of observations of the covariates.

As usual and following previous authors (Heckerman et al., 1995), we set the hyper-

parameters α = β = (2qγ)−1 for each θj . We choose a flat prior π(Mγ) ∝ 1, but the

large sample results in insensitivity to this choice. Penalised likelihood approaches

offer an alternative to the Bayesian approach taken here: indeed, here we find that a

BIC-based analysis (with pγ ≤ 5, for computational reasons) in this setting selected

the same model.
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C1 C2 . . . Cp−1

Cp = X Y

Figure 3.2: The form of the model used in model selection for joint confounding
by multiple factors. A graphical representation of family of models for considering
the influence of conjectured explanatory variable X on response Y with potential
observed confounders C1, . . . , Cp−1. A model selection approach is used to explore
evidence in favour of a direct link from X to Y in light of subsets of {C1, . . . , Cp−1}
which may jointly explain both X and Y .

Joint confounding

An alternative to regression approaches, which model risk-taking behaviour con-

ditional on the observed covariates and life-satisfaction, is additionally to model

life-satisfaction conditional on the observed covariates (Robins et al., 1992; Senn

et al., 2007). This approach has the advantage of explicitly modelling the unbal-

anced distribution of subjective well-being among individuals, for which we must

account to compare meaningfully how seatbelt-use varies with life-satisfaction. We

can restore balance by identifying covariates that explain both subjective well-being

and seatbelt use, and examining the effect of life-satisfaction within particular values

of these covariates.

We take a model selection approach to discovering such covariates (Robins and

Greenland, 1986) that is similar to Bayesian variable selection, but as shown in

Figure 3.2 we now mirror dependences between covariates Ci and seatbelt use (Y )

with corresponding direct dependences, for i ≤ p−1, between Ci and subjective well-

being (X). This approach can be thought of as exploring different stratifications for

a model of the effect ofX on Y . Any residual relationship after stratification between

subjective well-being and seatbelt use represents the controlled effect (Rosenbaum,

2002). The approach taken here can also be regarded as a special case of structural
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inference in Bayesian networks (Heckerman et al., 1995; Madigan and York, 1995;

Mukherjee and Speed, 2008).

Each model Mγ,δ is defined by a set of confounders (a subset of the covariates

C1, . . . , Cp−1 defined by γ, excluding subjective well-being X, and with pγ ≤ 9

for computational tractability) and an indicator variable δ for whether the direct

dependence between X and Y is present. We redefine C to be the set containing all

combinations of values of the confounders alone (i.e. excluding subjective well-being)

in Mγ,δ, and, with q′γ = qγr
δ
p, denote by D = {Dγ

1 , . . . , D
γ
q′γ
}, the corresponding set

including subjective well-being. We denote the number of observed individuals with

confounding variables Cγj ∈ C by wj , and number of these individuals who are ‘very

satisfied’ by vj . Similarly defining nl to be number of observed individuals with

covariates Dγ
l ∈ D and the number of these who always use a seatbelt by ml, we

have the following marginal likelihood for seatbelt use y, subjective well-being x,

and confounders c1, . . . , cp−1.

p(y,x | c1, . . . , cp−1,Mγ,δ) =

q′∏
l=1

Γ(ml + α)Γ(nl −ml + β)Γ(α+ β)

Γ(nl + α+ β)Γ(α)Γ(β)

×
q∏
j=1

Γ(vj + α)Γ(wj − vj + β)Γ(α+ β)

Γ(wj + α+ β)Γ(α)Γ(β)

We again choose beta priors for α, β, with α = β = (2qγ)−1 for X, and α = β =

(2q′γ)−1 for Y . Note that the result of adding extra dependencies is simply an

additional term in the marginal likelihood, and so the computation time is identical

to variable selection.
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Figure 3.3: Frequency of seatbelt use cross-tabulated by subjective well-being
(SWB). Each category contains at least 101 individuals. Pearson’s chi-squared
statistic is 3242 (p-value p < 2.2× 10−16).

3.3 Results

3.3.1 Raw data

By analysing the 313,354 individuals with complete relevant data in a random sam-

ple in the United States, the study finds evidence that an individual’s life-satisfaction

(subjective well-being) is an important determinant of their attitude to taking risks,

even when a wide range of other factors are accounted for. Figure 3.3 shows that,

in raw data, subjective well-being and seatbelt use are strongly associated.

The main idea of the chapter is visible in the raw uncorrected data. Across the

entire sample of n = 313, 354 U.S. residents used here we find that, while 86.7

percent of individuals who are ‘very satisfied’ with their life report always using their

seatbelt, only 77.2 percent of adults who are ‘very dissatisfied’ do so. Moreover,

4.7 percent of individuals who are ‘very dissatisfied’ with their life report never

using their seatbelt, whereas only 1.2 percent of adults who are ‘very satisfied’

do so. The differences across all the levels in this large sample corresponds to a

statistically highly significant association (Figure 3.3), yielding a Chi-squared p-
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value with p < 2.2× 10−16.

3.3.2 Regression for seatbelt use

To try to investigate this more fully, and to understand the influence of other ex-

planatory factors, we employed a range of analyses. First, we carried out a logistic

regression that predicts whether an individual always wears a seatbelt. This regres-

sion includes sex, age, race, marital status, educational achievement, employment

status, income, month of interview, and state of residence as independent variables.

The resulting fitted odds ratio for always wearing a seatbelt in favour of very sat-

isfied individuals is large at 1.383 (Table 3.4 on page 73). This result shows that

subjective well-being remains a quantitatively important determinant of seatbelt

use after inclusion of a wide range of social, economic and demographic factors.

The same conclusion, that subjective well-being is substantively important, is given

when predicting the level of seatbelt use by OLS, as shown in Table 3.5 on page 74.

After allowing for a range of covariates, an increase of one level (out of four) in

subjective well-being is associated with an increase by a factor of 1.383 in the odds

ratio of wearing a seatbelt.

3.3.3 Bayesian variable selection

A more rigorous test of the hypothesis can be performed by allowing non-linearity

and interactions into the model, as detailed in Section 3.2.2 above, to check that

the result is robust to such deviations in the modelling assumptions. This approach

addresses the possibility that in combination, and potentially through a non-linear

relationship, other covariates may adequately describe seatbelt use, without any

dependence on subjective well-being. To consider this possibility, we use a vari-
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Sex State

Well-being Seatbelt

Figure 3.4: The model selected by variable selection for seatbelt use for joint effects
of multiple covariates, with selection occurring from 19 covariates, including sub-
jective well-being (Tables 3.1 and 3.2 on pages 59 and 71). The approach accounts
for interactions and non-linear effects, and so provides a more stringent test of the
influence of subject well-being on seatbelt use. The (posterior) probability of the
model shown was close to unity: this shows that subjective well-being appears as
a salient influence on seatbelt use even when interactions and non-linear effects of
other explanatory factors are allowed.

able selection framework to explore all possible subsets Sγ of covariates (up to and

including 9 covariates jointly, for computational tractability) to quantify the joint

explanatory ability of those subsets in terms of probability scores. We find that,

with probability 0.99, the subset of predictors that jointly best describe seatbelt

use are state of residence, sex and life satisfaction (Figure 3.4). Fitted posterior

probabilities from this model are shown in Figure 3.5 by state, arranged into groups

defined by seatbelt legislation. It can be seen in Figure 3.5 that seatbelt-wearing

rates vary widely across U.S. states and that differing legislation at the state-level

explains some of this variation. Females are more likely to use a seatbelt than males.

These patterns are expected and fairly well-known, but it is the high rate of seatbelt

use in very satisfied individuals that, to the best of our knowledge, is a new one in

social science. This model estimates that the probability of an individual who is

very satisfied always wearing their seatbelt is 0.067 higher.

3.3.4 Joint confounding

The regression approaches described above focus on factors associated with seatbelt

use. However, it is factors that explain, possibly in combination, both subjective
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Fig. 2. Bayesian variable selection for joint effects of multiple covariates. (A) A variable selection formulation explores subsets of {X, C1, . . . , Cn} as joint
explanatory factors for response Y (for details see Main Text). (B) The model selected using data from n = 313, 354 individuals from the 2008 BRFSS (see
Main Text for details), treating seatbelt as response and a panel of 19 factors (Tables S4 and S5), including subjective well-being (“Well-being"), as covariates. This
approach permits fully general interplay between covariates (including non-linear effects) and accounts for both fit-to-data and model complexity. The Bayesian
posterior probability of the model shown was close to unity: this shows that subjective well-being appears as a salient influence on seatbelt use even when considered
alongside other explanatory factors in a fully general, non-linear multivariate formulation.

Fig. 3. Fitted (posterior) probabilities of always wearing a seatbelt given subjective well-being. (A) For each state, the probability of always wearing a seatbelt for
very satisfied residents against the probability of always wearing a seatbelt for residents who are not very satisfied. The colors denote U.S. Census Bureau Regions.
(B) Probability of always wearing a seatbelt (Bayesian posterior probabilities, with bars indicating 95% highest probability density region), given subjective well-being,
stratified by gender. (C) As (A), but stratified by state of residence and gender (these covariates were identified as influential by a variable selection approach; see
Main Text for details and Fig. 2). States are grouped by legislation type, and the adjacent colors denote U.S. Census Bureau Regions. Both state/legislation and
gender effects are important, but the association between subjective well-being and seatbelt use remains clear under stratification.

Fig. 4. Bayesian model selection for joint confounding by multiple factors. (A) Graphical representation of family of models for considering the influence of conjectured
explanatory variable X on response Y with potential confounders C1, . . . , Cn. A Bayesian model selection approach is used to explore evidence in favor of a direct
link from X to Y in light of subsets of {C1, . . . , Cn} which may jointly explain both X and Y (see Methods for details). (B) The model selected using data from
n = 313, 354 individuals from the 2008 BRFSS (see Main Text for details), treating seatbelt as Y , subjective well-being (“Well-being") as X and potential confounders
Ci as shown in Tables S4 and S5. The model shown was selected with high confidence (Bayesian posterior probability of model was close to unity); it includes five
factors, but retains the link from subjective well-being to seatbelt use, showing that well-being remains an important influence on seatbelt use even when all possible
joint stratifications are considered in a fully general non-linear model.

Footline Author PNAS Issue Date Volume Issue Number 7

Figure 3.5: Fitted (posterior) probabilities of always wearing a seatbelt given subjective well-
being. (A) For each state, the probability of always wearing a seatbelt for very satisfied residents
against the probability of always wearing a seatbelt for residents who are not very satisfied. The
colours denote U.S. Census Bureau Regions. (B) Probability of always wearing a seatbelt (Bayesian
posterior probabilities, with bars indicating 95 percent highest probability density region), given
subjective well-being, stratified by gender. (C) As (A), but stratified by state of residence and
gender (these covariates were identified as influential by a variable selection approach; see the main
text for details and Figure 3.1). States are grouped by legislation type, and the adjacent colours
denote U.S. Census Bureau Regions. Both state/legislation and gender effects are important, but
the association between subjective well-being and seatbelt use remains clear under stratification.
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Figure 3.6: The model selected for joint confounding by multiple factors of the
relationship between well-being and seatbelt use, treating seatbelt as Y , subjective
well-being as X and selecting potential confounders Ci from Tables 3.1 and 3.2 on
pages 59 and 71. The model shown was selected with high confidence (posterior
probability of model was close to unity); it includes five factors, but retains the
link from subjective well-being to seatbelt use, showing that well-being remains an
important influence on seatbelt use even when all possible joint stratifications are
considered in a fully general non-linear model.

well-being and seatbelt use that may bias the result; this can happen through the

unbalancing of the distribution of subjective well-being. We consider this problem

explicitly with models of form shown in Figure 3.2, so that the covariates explain

both subjective well-being and seatbelt use. This approach makes it possible to

isolate the fully controlled relationship between subjective well-being and seatbelt

use.

The best model (Figure 3.6), in which the Bayesian posterior probability of the

model is close to unity, retains the link from subjective well-being to seatbelt use.

This model is preferred to the corresponding model—without such a link—with high

confidence (Bayes factor ≈ 1033). Applying the back-door theorem (Pearl, 2009),

which here implies taking the weighted average of the effect over the strata defined

by the model, the probability of always wearing a seatbelt is estimated to be 0.053

higher in individuals who report themselves very satisfied with their life.
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3.4 Discussion

Economists and behavioural scientists currently lack a full understanding of why

some people take extreme risks with their lives. This chapter provides some of the

first evidence of a powerful link between life-satisfaction and risk-avoiding behaviour.

The study finds that the less happy an individual is with life, the less conscientious

that person is in taking action to preserve their life by the wearing of a seatbelt.

Goudie et al. (2011) provide further evidence: using widowhood at 60 years old

or younger as an instrument, they show that an exogenous increase of one class of

subjective well-being category increases seatbelt use by 0.188 categories. In addition,

longitudinal data from Add Health shows that the less happy an individual is with

life, the more likely they are to be involved in a motor vehicle accident later in life.

Our results are consistent with a rational-choice account of extreme risk-taking. It

can be shown that standard expected-utility theory predicts that ‘happier’ people

will be more cautious in their risk-taking and invest more in safety (Goudie et al.,

2011). Put informally, this is because humans who greatly enjoy life have a lot to

lose. By contrast, people who gain only a small utility premium from life have less to

lose; thus, on an expected-utility calculation, they will rationally take greater risks

(with their lives), in the sense that they are less willing to pay the costs associated

with safety-seeking.

We have used seatbelt use as an indicator of individual propensity for risky be-

haviour. Although relatively little-studied by economists and social scientists, driv-

ing is one of the few mainstream activities that even in developed countries remains

potentially life-threatening. In contrast to behaviours like smoking and drug-taking,

seatbelt use is probably habitual rather than addictive. For this reason, it is less

likely that current seatbelt-wearing behaviour is strongly affected by long-past at-

titudes to risk. In contrast, current smoking status, for example, may relate to
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decision-making processes of an individual some decades previously. Additionally,

the ‘passive’ effects on others brought about by the non-use of seatbelts are arguably

smaller, or at least less well appreciated, than for smoking, and so seatbelt use may

reflect a more personal indication of propensity for risk than other measures. Seat-

belt use has in addition been demonstrated to be associated with risk preference as

elicited by a lottery choice experiment (Anderson and Mellor, 2008).

The chapter’s conceptual account potentially has implications for science and policy.

If a government wants to alter the dangerous actions chosen by citizens, it may

need to change its citizens’ intrinsic happiness with their lives rather than, as now,

concentrating policy upon detailed behavioural symptoms themselves.
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Table 3.2: Additional covariates from BRFSS used in model selection analyses in
Chapter 3.

Variable Raw categories Collapsed categories

Body Mass Index (BMI) (Height and weight)
BMI < 2500 Neither overweight or obese
2500 < BMI < 3000 Overweight
BMI > 3000 Obese

Heavy alcohol (Number drinks of drinks/month)
Men > 2 drinks/day Heavy drinker
Women > 1 drinks/day Heavy drinker
Men ≤ 2 drinks/day Not heavy drinker
Women ≤ 1 drinks/day Not heavy drinker

Physical Activity Do exercise Do exercise
Don’t exercise Don’t exercise

Diabetes Have diabetes Have diabetes
Had diabetes when pregnant Had diabetes when pregnant
No diabetes No diabetes
Only pre- or borderline Only pre- or borderline

Heart Attack Had heart attack Had heart attack
Not had heart attack Not had heart attack

Special Equipment Use special equipment Use special equipment
Don’t use special equipment Don’t use special equipment

Current Smoker Current smoker Current smoker
Not current smoker Not current smoker

Asthma Currently have asthma Currently have asthma
Do not currently have asthma Do not currently have asthma



Table 3.3: Questions used in the study from BRFSS in Chapter 3.

Variable Question
Seatbelt How often do you use seat belts when you drive or ride in a car?
Life Satisfaction In general, how satisfied are you with your life?
Gender (Noted by interviewer)
Race Are you Hispanic or Latino?

Which one or more of the following would you say is your race? [Mark
all that apply.] (from White, Black or African American, Asian, Na-
tive Hawaiian or Other Pacific Islander, American Indian or Alaska
Native, Other.)

Age What is your age?
Marital Status Are you: Married, Divorced, Widowed, Separated, Never married, A

member of an unmarried couple?
Education What is the highest grade or year of school you completed?
Employment Are you currently: Employed for wages, Self-employed, Out of work

for more than 1 year, Out of work for less that 1 year, A homemaker,
A student, Retired, Unable to work

Income Is your annual household income from all sources: (from Less than
$25,000, $10,000 – $15,000, $15,000 – $20,000, $20,000 – $25,000,
$25,000 – $35,000, $35,000 – $50,000, $50,000 – $75,000, $75,000 or
more)

Number of children How many children less than 18 years of age live in your household?
Body Mass Index About how much do you weigh without shoes?

About how tall are you without shoes?
Heavy alcohol One drink is equivalent to a 12-ounce beer, a 5-ounce glass of wine,

or a drink with one shot of liquor. During the past 30 days, on the
days when you drank, about how many drinks did you drink on the
average? [A 40 ounce beer would count as 3 drinks, or a cocktail drink
with 2 shots would count as 2 drinks.]

Physical Activity During the past month, other than your regular job, did you partic-
ipate in a activities or exercises such as running, calisthenics, golf,
gardening, or walking for exercise?

Diabetes Have you ever been told by a doctor that you have diabetes?
Heart Attack Has a doctor, nurse, or other health professional ever told you that

you had a heart attack, also called a myocardial infarction?
Special Equipment Do you now have any health problem that requires you to use special

equipment, such as a cane, a wheelchair, a special bed, or a special
telephone? (Include occasional use or use in certain circumstances.)

Current Smoker Do you now smoke cigarettes every day, some days, or not at all?
Current Asthma Have you ever been told by a doctor, nurse, or other health profes-

sional that you had asthma?
Do you still have asthma?



Table 3.4: Logistic regression equations for seatbelt use. The model predicts seatbelt
use from a panel of covariates (Table 3.1 on page 59), including subjective well-being.
We show the estimated coefficients β, and their standard errors and p-values, and
the odds ratios (OR), for the model as fitted to data from n = 313, 354 individuals
from the BRFSS in 2008. Subjective well-being has p-value p < 2 × 10−16. All
estimates have controlled for state of residence and interview month.

Effect Coefficient, β Std. err. p value Odds ratio, exp(β)

Subjective well-being 0.324 0.008 < 0.001 1.383
Gender (baseline Male)
Female 0.716 0.011 < 0.001 2.047

Race (baseline White)
Black -0.009 0.021 0.668 0.991
Asian 0.593 0.060 < 0.001 1.809
Hispanic -0.038 0.026 0.149 0.963
Other race 0.353 0.026 < 0.001 1.424

Age 0.032 0.002 < 0.001 1.032
Age2 0.000 0.000 < 0.001 1.000

Marital Status (baseline Never Married)
Married 0.230 0.018 < 0.001 1.259
Divorced 0.110 0.020 < 0.001 1.116
Widowed 0.182 0.025 < 0.001 1.200
Separated 0.159 0.037 < 0.001 1.173
Unmarried couple 0.006 0.034 0.855 1.006

Educational achievement (baseline No High School)
Attended High School -0.090 0.038 0.017 0.914
Graduated High School -0.033 0.034 0.325 0.967
Attended College 0.100 0.034 0.004 1.105
Graduated college 0.410 0.035 < 0.001 1.506

Employment status (baseline Employed)
Self-employed -0.477 0.016 < 0.001 0.620
Unemployed 0.023 0.025 0.374 1.023
Homemaker 0.219 0.025 < 0.001 1.245
Student 0.172 0.042 < 0.001 1.187
Retired 0.198 0.019 < 0.001 1.219
Unable to work 0.177 0.023 < 0.001 1.193

Income (baseline Less than $10,000)
$10,000 – $15,000 -0.047 0.031 0.125 0.954
$15,000 – $20,000 -0.022 0.029 0.460 0.978
$20,000 – $25,000 0.007 0.029 0.795 1.007
$25,000 – $35,000 -0.054 0.028 0.054 0.947
$35,000 – $50,000 -0.064 0.028 0.022 0.938
$50,000 – $75,000 -0.004 0.029 0.895 0.996
More than $75,000 0.158 0.029 < 0.001 1.171

Number of children 0.001 0.001 0.262 1.001
Constant -0.873 0.086 < 0.001 0.418



Table 3.5: Ordinary Least Squares (OLS) equations for seatbelt use. The model
predicts seatbelt use from a panel of covariates (Table 3.1 on page 59), including
subjective well-being (shown in bold). We show the estimated coefficients β, the
standard error and the p-value for the model as fitted to data from n = 313, 354 indi-
viduals from the 2008 Behavioral Risk Factor Surveillance System Survey (BRFSS).
Subjective well-being has p-value p < 2 × 10−16. All estimates have controlled for
state of residence and interview month.

Effect Coefficient, β Standard error p value

Subjective well-being 0.081 0.002 < 0.001
Gender (baseline Male)
Female 0.196 0.003 < 0.001

Race (baseline White)
Black 0.016 0.005 0.003
Asian 0.059 0.008 < 0.001
Hispanic -0.032 0.008 < 0.001
Other race 0.084 0.006 < 0.001

Age
Age 0.007 0.001 < 0.001
Age2 -4.4×10−5 <0.001 < 0.001

Marital Status (baseline Never married)
Married 0.086 0.005 < 0.001
Divorced 0.028 0.006 < 0.001
Widowed 0.064 0.007 < 0.001
Separated 0.050 0.011 < 0.001
Unmarried couple 0.025 0.010 0.015

Educational achievement (baseline No High School)
Attended High School -0.016 0.012 0.193
Graduated High School 0.016 0.011 0.138
Attended College 0.077 0.011 < 0.001
Graduated college 0.160 0.011 < 0.001

Employment status (baseline Employed)
Self-employed -0.144 0.005 < 0.001
Unemployed -0.008 0.008 0.276
Homemaker 0.024 0.005 < 0.001
Student 0.070 0.011 < 0.001
Retired 0.023 0.004 < 0.001
Unable to work 0.003 0.007 0.670

Income (baseline Less than $10,000)
$10,000 – $15,000 -0.002 0.010 0.871
$15,000 – $20,000 0.007 0.009 0.473
$20,000 – $25,000 0.019 0.009 0.034
$25,000 – $35,000 0.005 0.009 0.538
$35,000 – $50,000 0.010 0.009 0.239
$50,000 – $75,000 0.026 0.009 0.004
More than $75,000 0.051 0.009 < 0.001

Children
Number of children -0.001 0.000 0.016

Constant
Constant 3.997 0.023 < 0.001



Chapter 4

An efficient Gibbs sampler for

structural inference

In this chapter we propose a Gibbs sampler for structural inference in Bayesian

networks. The standard Markov chain Monte Carlo (MCMC) algorithms used for

this problem are random-walk Metropolis-Hastings samplers, but for problems of

even moderate dimension, these samplers often exhibit slow mixing. The Gibbs

sampler proposed here conditionally samples the complete set of parents of a set of

nodes in a single move, by blocking together particular components. The resulting

MCMC algorithm mixes more rapidly.

In Chapter 5, we will examine the performance of the sampler using data simulated

from the ALARM network, and on real datasets from a social science survey and a

multi-variable single-cell molecular assay. We find that the existing approaches are

unsatisfactory because they give results that are highly unstable across Monte Carlo

replications, and across bootstrap replications of the data. In contrast, the proposed

approach permits robust structural inference across a wide range of settings.

In this chapter, we introduce the Gibbs sampler, and describe how it can be im-
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plemented efficiently. We start by introducing structural inference for Bayesian

networks. We then describe a näıve Gibbs Sampler for this problem, which moti-

vates the development of an improved Gibbs sampler, which makes larger moves by

considering multiple parent sets together. We then describe how these algorithms

can be implemented efficiently.

4.1 Introduction

4.1.1 Problems with small local moves

Most MCMC algorithms for model selection rely on small ‘local’ moves, based on

the heuristic that models that are ‘close’ to each other will be similar and that the

target distribution is at least very loosely locally monotonic. In many settings such

algorithms converge to their target distribution rapidly and mix freely.

The standard random-walk Metropolis-Hastings algorithms used for structural in-

ference of Bayesian networks, including MC3 (Madigan and York, 1995) and variants

that improve its efficiency (Giudici and Castelo, 2003), propose small, local changes

to the current state. These proposals are accepted according to the usual acceptance

probability. In some settings, in which the sample size of the observations is small,

and the number of variables p in the Bayesian network is small, such samplers work

well. Unfortunately, there are many settings in which using samplers that make

small local moves of this kind will yield a sample with undesirable properties. This

occurs particularly when the target distribution is ‘peakier’ than anticipated.

4.1.2 Methods for improving mixing

The fundamental shortcoming with making only small changes is that it leaves the

algorithms incapable of ‘escaping’ local modes. Particularly in high dimensions,
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this means that the MCMC sampler converges slowly to its target distribution, and

does not mix well. A variety of general techniques is available to improve mix-

ing. For example, methods that introduce an auxiliary variable can often improve

convergence. However, the most successful methods, for example Hybrid/Hamilto-

nian Monte Carlo (Duane et al., 1987), the Metropolis adapted Langevin algorithm

(Roberts and Tweedie, 1996) and further developments (Girolami and Calderhead,

2011), use knowledge of the derivatives of the log target distribution. However,

useful derivatives are clearly not directly available for discrete distributions.

A simple idea for improving mixing in these settings is to consider larger moves.

However, to do this, we need to be able to identify large moves that focus on areas

of significant posterior mass. This is often not straightforward. Even when it is, it

is not clear precisely how large the moves should be. Some guidance in the discrete

case for Metropolis-Hastings algorithms is given by Roberts (1998), who shows that

the usual optimal acceptance rate of 0.234 applies. However this is only proved for

a very specific example.

4.1.3 A Gibbs sampler

In this chapter we propose a method for constructing Gibbs samplers for structural

inference of Bayesian networks. Gibbs samplers make moves that are tailored to

the local form of the distribution by using the conditional distribution, and thus

identify areas of significant posterior mass. The Gibbs sampler we consider here is

also able to make large moves by using ‘blocking’.

Specifically, the Gibbs sampler proposed here considers the parents of a set of nodes

as a single component, and conditionally samples parents of each node in the set from

the appropriate joint distribution. These moves are formed by ‘blocking’ together

the parents of the set of nodes. Blocking allows the sampler to make ‘large’ moves

that are sampled exactly from the local conditional posterior distribution, enabling
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the sampler to locate and explore the areas of significant posterior mass efficiently.

The method exploits the simple heuristic that the parents of a node are similar to

the independent variables chosen in Bayesian variable selection, with the node as the

dependent variable. The deficiency in the heuristic is that the acyclicity requirement

of Bayesian networks is ignored. The Gibbs sampler is constructed around this idea,

but exactly accounts for acyclicity so that the target distribution is indeed the true

posterior distribution over Bayesian networks.

4.1.4 Constraints on in-degree

Typically it is not useful in applications to consider Bayesian networks in which

random variables have many parents (large in-degree) because there is usually not

enough data to estimate the parameters of extremely complex models, especially for

discrete models. In addition, if a model averaging approach is taken, a constraint

on in-degree is not as restrictive as it may at first seem; we discuss this further in

Section 5.6 (page 127).

For these reasons, most methodologies for structural inference (e.g. Friedman and

Koller, 2003; Koivisto and Sood, 2004) take advantage of the reduction in the car-

dinality of the space of Bayesian networks that is given by imposing a maximum

in-degree (fan-in) restriction on the Bayesian networks. We adopt this restriction

for the sampler introduced here, enabling dramatic improvements in mixing for this

class of problems. As we show below, better mixing has clear practical consequences

because it means that in finite compute time there is a much reduced chance of see-

ing extreme Monte Carlo artefacts (which might otherwise be reported as the output

of inference).
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4.2 Background and notation

4.2.1 Graphs and Bayesian networks

We first recall the definition of Bayesian networks (introduced in Section 2.2.3), and

the related notation. A Bayesian network G is a directed, acyclic graph (DAG) with

nodes V = (1, . . . , p), and directed edges E ⊂ V × V .

Particularly in this chapter, we will make use of the specification of the edge set E

of the graph G in terms of the parents Gj of each node j, for j ∈ {1, . . . , p}. The

parents Gj of node j are the subset of nodes V such that i ∈ Gj ⇔ (i, j) ∈ E. We

refer to Gj as a parent set and use XGj to refer to the set of random variables that

correspond to the parents Gj of node j in the graph G.

We will use the collection of parent sets 〈G1, . . . , Gp〉 to specify a graph G. Subsets

thereof are denoted by GA = 〈Gk : k ∈ A〉, and the subset given by the complement

AC = {1, . . . , p} \ A of a set A is denoted by G−A = 〈Gk : k ∈ AC〉. In particular,

note that any graph G can be specified as 〈Gi, G−i〉 = 〈G1, . . . Gp〉 = G for any

i ∈ {1, . . . , p}.

4.2.2 Joint distribution and priors

The joint distribution of X is specified in terms of p(Xi | XGi , θi), the conditional

distribution with parameters θi of each Xi, given the parents XGi of node i in the

Bayesian network. For structural inference our interest focuses on the posterior

distribution on Bayesian networks P (G | X), which is proportional to the product

of the marginal likelihood p(X | G), and a prior π(G) for the Bayesian network

structure.

In principle we do not need to assume that the graph prior π(G) takes any partic-

ular form, but the required computation is simplified if we assume the graph prior
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factorises as π(G) =
∏p
i=1 πi(Gi) across the nodes of the graph. A prior satisfying

this condition is called modular (Friedman and Koller, 2003). Both flat priors over

graph space, and informative priors that penalise or reward the presence or absence

of particular edges (Werhli and Husmeier, 2007; Mukherjee and Speed, 2008) can

be formulated in this manner. Note that the prior is not specified over the space

of orders and so does not suffer from the difficulties involved in doing so (Ellis and

Wong, 2008; Eaton and Murphy, 2007), in contrast to the methods used in Friedman

and Koller (2003) and Koivisto and Sood (2004).

We will assume that conjugate priors for the parameters θi | G have been chosen,

and assume that local parameter independence and modularity (Heckerman et al.,

1995) holds. Under the assumptions we have made, we can obtain a closed-form

marginal likelihood. In addition, the marginal likelihood factorises across the nodes

of the graph, and the posterior distribution on Bayesian networks is

P (G | X) ∝
p∏
i=1

p(Xi | XGi)πi(Gi),

where p(Xi | XGi) is the marginal likelihood for node i given the graph G =

〈G1, . . . , Gp〉. This is the target distribution for our sampler.

4.3 Preliminaries

To introduce the Gibbs sampler, we first recall the standard MC3 sampler, and

an analogous näıve Gibbs sampler. Usually convergence of Gibbs samplers follows

from the Hammersley-Clifford theorem (Besag, 1974), but this does not apply in

this context. An alternative argument is outlined.
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4.3.1 MC3 sampler

The standard sampler for structural inference for Bayesian networks is MC3 (Madi-

gan and York, 1995), which is a Metropolis-Hastings sampler that explores G by

proposing to add or remove a single edge from the current graph G, subject to

acyclicity. Each proposal G′ is drawn uniformly at random from the neighbourhood

ν(G) of the current graph, defined as the set of DAGs that differ from G by the

addition or removal of a single edge. The proposal G′ is accepted with probability

min(1, α(G′, G)), where

α(G′, G) = min

{
1,
P (G′ | X) |ν(G′)|−1

P (G | X) |ν(G)|−1)

}
.

4.3.2 A näıve Gibbs sampler

Constructing a Gibbs sampler that is analogous to MC3 is straightforward. To

do this, we consider the posterior distribution on Bayesian networks to be a joint

distribution for the off-diagonal entries in the adjacency matrix, which is a p × p

matrix whose elements Gij are indicator variables for whether G includes an edge

from i to j, and whose diagonal elements Gii = 0 for all i. We thus have p(p − 1)

random variables Gij , each of which takes the value 1 or 0. The proposal distribution

of MC3 can be viewed as proposing to toggle the value of Gij of the adjacency matrix

for some i 6= j, subject to the restriction that the proposal must be acyclic. A simple

Gibbs sampler works in a similar way. At each step of the Gibbs sampler a sample

from the conditional distribution of Gij is drawn, for some i, j ∈ {1, . . . , p}, i 6= j,

given the rest of the graph GCij = {Guv : 1 ≤ u ≤ p, 1 ≤ v ≤ q} \ {Gij}. Define

G+
ij as the graph G with an edge from i to j, and G−ij as the graph G with no edge

from i to j. If G+
ij is cyclic, G−ij is sampled with probability 1. If G+

ij is acyclic, the

81



conditional distribution of Gij is Bernoulli.

P (G′ij = g | GCij) =



1 g = 0, G+
ij cyclic

0 g = 1, G+
ij cyclic

P (G−ij | X)

P (G−ij | X) + P (G+
ij | X)

g = 0, G+
ij acyclic

P (G+
ij | X)

P (G−ij | X) + P (G+
ij | X)

g = 1, G+
ij acyclic

(4.1)

The choice of i and j can either be made sequentially (systematically) or randomly.

There are few theoretical results to guide the choice of random- and systematic-scan

Gibbs samplers (Roberts and Sahu, 1997); here, random-scan Gibbs samplers are

used throughout.

This näıve Gibbs sampler offers no advantages over MC3. However, thinking of

structural inference from a Gibbs sampling perspective opens up the possibility of

drawing on ideas from the Gibbs sampling literature to improve the mixing rate of

the MCMC algorithm, which we discuss in Section 4.4.

4.3.3 Convergence conditions for Gibbs samplers

Convergence of a Gibbs sampler for Bayesian networks does not follow from the

usual justification of Gibbs sampling that relies on the Hammersley-Clifford theorem

(Besag, 1974). The theorem gives a positivity condition that is sufficient to prove

that the univariate conditional distributions, used by the Gibbs sampler, uniquely

define the joint distribution. The required condition is that the support of the

joint distribution is given by the Cartesian product of the supports of the marginal

distributions. An example of when this condition does not hold is the density p(x, y)

with support only on [0, 1]× [0, 1] and [2, 3]× [2, 3]. Clearly p(x) and p(y) are both

positive on [0, 1] and [2, 3] but neither [0, 1]× [2, 3] or [2, 3]× [0, 1] are in the support
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of the joint distribution (Hobert et al., 1997; O’Hagan and Forster, 2004).

The acyclicity requirement of Bayesian networks means that this positivity condition

is not satisfied. Consider a Bayesian network consisting of two correlated random

variables X1 and X2. The correlation means that both the graph with a single edge

1 → 2 and the graph with a single edge 2 → 1 have positive probability. Thus

P (G12 = 1) > 0 and P (G21 = 1) > 0 in the marginal distributions. However, the

joint distribution P (G12 = 1 and G21 = 1) = 0 because the corresponding graph

(the complete graph) is cyclic. The complete graph is thus not in the support of the

joint distribution but is in the Cartesian product of the supports of the marginal

distributions.

An alternative sufficient condition for uniqueness of the joint distribution and con-

vergence of the Gibbs sampler when positivity is not satisfied is given by Besag

(1994) in a discussion of Tierney (1994), which was expanded upon in continuous

settings by Hobert et al. (1997). The condition requires that for every G(0) ∈ G

and G ∈ G there exists a finite sequence G(1), . . . , G(d), with G(d) = G and d ∈ N,

such that G(i) and G(i−1) differ in only a single component, and that the joint dis-

tribution P (G(i)) > 0 for all i = 1, . . . d. When the graph prior π(G) > 0 for all

G, this condition is clearly satisfied: one such finite sequence removes every edge of

G(0), one at a time, and then adds every edge of G, one at a time. Each graph in

the sequence is clearly acyclic, since the sequence is composed of subgraphs of the

acyclic G(0) and G, and so has positive probability in the joint distribution when

the graph prior is positive everywhere in G. A similar proof follows if the graph

prior has support on all subgraphs of graphs with support in the graph prior, as is

true for most widely used priors.
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4.4 Optimising Gibbs samplers

The mixing of Metropolis-Hastings algorithms depends strongly upon the choice of

proposal distribution, which is often chosen for convenience to be a local random-

walk. Gibbs samplers make moves according to the full conditional distributions.

These distributions have the attractive property that they exactly reflect some local

structure of the target distribution.

Nonetheless, Gibbs sampling is not always efficient. Inefficiency occurs when there

is strong correlation between the components of the random vector. To see this,

consider a Gibbs sampler for a multivariate continuous distribution with highly

correlated components. At each step, a single component of the random vector

is sampled according to its conditional distribution, but since this component is

strongly correlated with another component, the conditional distribution is concen-

trated on only a small part of its support. This means that the sampler is likely to

make only small moves, and thus explore the sample space slowly. The same issue

arises with discrete distributions.

For Bayesian networks, there is strong dependence between the edge indicator

variables Gij , particularly for the collections {Gij : i ∈ {1, . . . , p}} for each j ∈

{1, . . . , p} that correspond to parent sets. For example, there may be random vari-

ables Xr and Xs that do not individually predict Xj well, but do when taken in

combination. In this case, Grj and Grs will be correlated. Another possibility is of

two pairs of random variables Xr, Xs and Xu, Xv that in combination both predict

Xj well, but such that any of the four random variables individually do not. In this

case, the probability of transitioning from a graph in which the parents of Xj are

Xr and Xs to a graph in which the parents of Xj are Xu and Xv may be extremely

low when using a sampler that only makes single edge changes, such as MC3.

In addition to this local form of dependence, the acyclicity restriction creates strong
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Figure 4.1: Illustrative graphs of when small local moves may fail to enable tran-
sitions between two regions of high probability. If both (a) and (b) have high
probability, the near-cyclic nature of the graphs makes transitions between (a) and
(b) difficult.

dependence between the parents of separate nodes. For example, suppose two ran-

dom variables Xi and Xj are strongly correlated so that both the edge (i, j) and the

reversed edge (j, i) have high probability. If the edge (i, j) is present, the probability

of it being removed is low, but its presence precludes the reversed edge (j, i) from

ever being added. It is this possibility that motivates the ‘edge reversal’ move that

is commonly used in variants of the MC3 algorithm.

More complex dependence is also possible. If three nodes are strongly correlated

then many of the ‘almost cyclic’ graphs will have high probability. For example,

suppose both graph (a) and (b) in Figure 4.1 have high probability. Since reversing

the edge i → k forms a cycle in (a), moves that consider only the parents of a

pair of nodes i and k at the same time will not move between graphs (a) and (b)

easily. Samplers that alter only a single edge indicator, such as MC3, will also fail.

However, if the parents of all three nodes are sampled jointly, the sampler is able to

move between graphs (a) and (b) easily.

One method for alleviating this problem is to transform the distribution so that

the components of the random variable are not correlated. In general, finding a

suitable transformation can be very difficult, and for Bayesian networks would need

to encapsulate the requirement for acyclicity.

Instead we propose to group a number of the components together and sample from

their joint conditional distribution. In Gibbs sampling, this is known as ‘block-
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ing’. The method is widely thought to be beneficial in settings such as this in

which there is strong correlation between components of the random variable. In

the case of multivariate normal distributions, Roberts and Sahu (1997) have shown

that for random-scan Gibbs sampling, convergence improves when components of

the random vector are sampled as blocks. By sampling from the joint conditional

distribution of a group of components we avoid the issues caused by any correla-

tion between these components because the joint conditional distribution naturally

incorporates the correlation structure, and so can account for it.

4.5 A Gibbs sampler for Bayesian networks

As we noted above, the efficiency of a Gibbs sampler can be improved by blocking

together a group of components, and sampling from their joint conditional distri-

bution. In theory, any group of components can be taken as a block, but sampling

from their joint conditional distribution needs to be possible, and ideally simple.

The blocks that we consider correspond to the parent sets of a set of nodes, so that

the parent sets of several nodes to be considered simultaneously, ameliorating the

problems caused by the correlations described in Section 4.4.

Let W ⊆ V denote a subset of ρ = |W | nodes whose parent sets are sampled together

as a block. Let FW = 〈Fw1 , . . . , Fwρ〉 denote the collection of parent sets for the

nodes in W . We propose to group these nodes and sample Fw1 , . . . , Fwρ jointly so

that in each Gibbs step the algorithm selects the set W = (w1, . . . , wρ) of nodes

uniformly at random, and samples new parents for all nodes in W . Each block

{Gij : i ∈ {1, . . . , p}, j ∈ {w1, . . . , wρ}, i 6= j} consists of the indicator variables

that determine the parents of the nodes in W . Note that for computational reasons

|W | must be small.

It is natural that each block is a collection of parent sets because we can parameterise
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both G and its marginal likelihood p(X | G) by parent sets G1, . . . , Gp. The marginal

likelihood factorises across nodes into conditionals p(Xj | XGj ), each of which is a

function of parents Gj of that node.

P (G1, . . . , Gp | X) ∝
p∏
i=1

p(Xi | XGi)π(Gi)

At each Gibbs step, new parent sets FW for nodes in W are sampled, whereas

the parent sets G−W for nodes not in W remain the same. The new graph G′ =

〈FW , G−W 〉 is thus formed by changing the parents of the nodes inW to Fw1 , . . . , Fwρ ,

and leaving the parents of nodes not in W unchanged.

To be able to construct a Gibbs sampler using these blocks, we need to find the

conditional distribution on FW , given the parent sets G−W of nodes not in W . For

parent sets FW such that G′ = 〈FW , G−W 〉 is cyclic, the conditional probability

is 0. Let FW be the set of collections FW of parent sets Fw1 , . . . , Fwρ such that

G′ = 〈FW , G−W 〉 is acyclic. For FW ∈ FW , the conditional posterior distribution

is multinomial, with weights given by the posterior distribution of the graph G =

〈FW , G−W 〉.

P (FW | G−W ,X) =
P (FW , G−W | X)

P (G−W | X)

=
P (G′ | X)∑

FW∈FW P (FW , G−W | X)
(4.2)

Algorithm 5 (below) outlines the algorithm. The correctness of the sampler can

be easily proved using the condition given by Besag (1994) in the same way that

correctness of the näıve Gibbs sampler is proved in Section 4.3.3, and in fact the

requirements on the graph prior will be weaker than for the näıve sampler.

We need to be able to sample from P (FW | G−W ,X) and so its normalising constant

poses a problem. Since Bayesian networks with large in-degree are rarely of interest

in applications (see Section 4.1.4 on page 78), we can reduce this problem by intro-
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ducing a restriction on the maximum in-degree κ of each node. We constrain the

in-degree to a maximum of κ = 3 in the examples in Chapter 5. We view this as

only a minor restriction, because even higher order interactions are visible when a

Bayesian model averaging approach is taken (see further discussion in Section 5.6).

We investigate the computational aspects of sampling from P (FW | G−W ,X) in

Section 4.6, where we describe a two-stage approach to sampling.

Any choice of |W | is in principle possible. However, when |W | is large, the com-

putational requirement for evaluating the conditional distribution in Equation 4.2

is unmanageable. The parameter can be used to tune the algorithm. Throughout

Chapters 4 and 4, we use |W | = 3, which ensures that all scenarios described in

Section 4.4 are avoided.

When |W | = 1, it is interesting to note that if all choices of parent set do not induce

a cycle, FW equals the power set ℘(V \ {w1}), with W = w1. When this occurs the

conditional distribution (Equation 4.2) can be viewed as the posterior distribution

of a standard Bayesian variable selection problem with dependent variable w1, and

the other variables as independent variables. If the addition of particular nodes

would introduce a cycle, we have a constrained Bayesian variable selection problem.

Suppose that a cycle would be created by adding nodes b1, . . . , bk ∈ V , k ∈ {1, . . . , p}

as parents of node w1. In this case FW = ℘(V \{w1, b1, . . . , bk}) and the conditional

distribution in Equation 4.2 is a constrained Bayesian variable selection in which

the variables corresponding to the nodes b1, . . . , bk are excluded.

4.6 Computational aspects

Up to this point we have not discussed the computational aspects of the algorithm.

In this section, we describe how the algorithm described above can be implemented

efficiently. A key bottleneck for many MCMC algorithms for structural inference for
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Algorithm 5 A Gibbs sampler, with blocks

Initialise starting point G(0) = 〈G(0)
1 , . . . , G

(0)
p 〉

for t in 1 to N do

Sample W from V

Draw FW ∼ P (FW | G(t−1)
−W ,X)

Set G(t) ← G = 〈FW , G(t−1)
−W 〉

end for

Bayesian networks is checking for cycles, and so we first describe how these checks

can be made quickly and efficiently. Sampling efficiently from the conditional distri-

bution in Equation 4.2 is also not straightforward because FW has large cardinality.

We introduce a two-stage approach to sampling that reduces this problem. We use

these methods together to efficiently implement the Gibbs sampler described above.

4.6.1 Online cyclicity checking

Bayesian networks are described by DAGs, and so any algorithm that explores the

space of Bayesian networks must ensure that each graph considered does not include

a cycle. This constraint must be considered at each step of the algorithm, and so

this is often a key bottleneck in algorithms for structural inference. There are

various methods of checking for cycles. In the following section, we describe how

such checks can be made using the transitive closure. We then describe an online

algorithm for updating the transitive closure. An online algorithm greatly improves

efficiency because, at each MCMC iteration, many parts of the Bayesian network

do not change.
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Checking for cycles

The most straightforward method for checking for cycles is depth-first search, which

takesO(p+ε) time, where ε is the number of edges in the graph. For MC3, to evaluate

the acceptance probability we must consider all possible single-edge changes to a

directed graph of which there are O(p2), and so checking for cycles at each iteration

takes O(p3) time in the worst case.

Using a O(p3) algorithm at each step creates a bottleneck in the algorithm, but we

can avoid this by using ideas first proposed in this context by Giudici and Castelo

(2003). We describe an alternative method that was proposed in the dynamic al-

gorithms literature by King and Sagert (2002). Let TG be the transitive closure

of the current state of the sampler, which for a graph G = (V,E) is defined as

the directed graph TG = (V,ET ), where (i, j) ∈ ET if and only if a path (obeying

edge directions) from i to j exists in G. Knowing the transitive closure is of use

because its adjacency matrix TG = (TGij ) immediately reveals which alterations can

be made to G without introducing a cycle. The addition of an edge (i, j) introduces

a cycle if and only if TGji = 1. Removing an edge from G never introduces a cycle.

The adjacency matrix of the transitive closure therefore enables graphs created by

single-edge additions to be screened for cycles in O(1) time.

Online transitive closure updates

The transitive closure for an arbitrary directed graph can be determined in O(pω)

time (Munro, 1971), where ω is the best known exponent for matrix multiplication

(Coppersmith and Winograd, 1990, show ω < 2.376). However, only incremental

changes are made to the current state G of the sampler, so a dynamic algorithm

can be used to compute the transitive closure more efficiently. We need a fully

dynamic transitive closure algorithm, so that both insertion and deletion of edges
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are supported. This problem has been the subject of significant interest in the

dynamic algorithms literature; for an overview see Demetrescu et al. (2010).

Algorithms for this problem provide a procedure for querying the transitive closure,

and procedures that update the transitive closure when an edge is added or removed

from the graph. A trade-off exists between the performance of these two operations

(Demetrescu and Italiano, 2005). We choose to implement the algorithm introduced

by King and Sagert (2002), which allows queries to be performed in O(1) time, and

updates in O(p2) worst-case time, assuming a word size of O(log p). This bound

is thought to be the best bound possible for updates that retains O(1) queries

(Demetrescu and Italiano, 2005), yet the algorithm is simple to implement.

The algorithm maintains a path count matrix CG = (CGij ), where CGij is the number

of distinct paths from node i to node j in G. Clearly, TGij = 1 if and only if CGij > 0,

and so query operations are performed in O(1) by simply checking whether the

relevant component of CG is positive.

The routines for updating CG when an edge is added or removed are also straight-

forward. We first consider adding an edge (i, j) to a graph G to form a graph G′.

Denote the ith column of CG by CG•i, and the jth row by CGj•. The increase in the

number of distinct paths between any two nodes a and b is given by the (a, b) element

of the outer product of CG•i and CGj•. The path count matrix for G′ is thus formed

by adding this outer product, denoted by ⊗, to the existing path count matrix.

CG
′

= CG + CG•i ⊗ CGj•

Updating CG when an edge (i, j) is removed from the graph is performed analo-

gously.

CG
′

= CG − CG•i ⊗ CGj•

This algorithm is simple to implement, and provides a fast method for determining
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which edges can be added to a DAG without introducing a cycle.

4.6.2 Efficient implementation of a Gibbs sampler

The key part of an implementation of the Gibbs sampler in Algorithm 5 (above)

is the method of sampling from the conditional distribution P (FW | G−W ,X) in

Equation 4.2. To do this exactly, we need to be able to evaluate its normalising

constant. This is not straightforward for two reasons. First, we need to be able

to identify the collection of parent sets FW ∈ FW for which the graph 〈FW , G−W 〉

is acyclic. Second, the cardinality of FW may be large. The methods described in

Section 4.6.1 enable identification of the collection of parent sets FW ∈ FW that

form acyclic graphs.

In this section, we describe the details of how the difficulty in sampling from a

distribution with large cardinality can be managed. First, the scale of the problem

is reduced by enforcing a maximum in-degree, as described in Section 4.1. Then we

use a two-stage approach that first samples a component of a partition of FW , and

then samples a member of FW in that component. In the remainder of this section

we detail the partition of FW used, and then describe how this can be used in a

two-stage sampling procedure.

The key idea is to choose the partition of FW so that, conditional on a component

of the partition, the parents of each node are independent. This enables the efficient

two-stage sampling method described in Section 4.6.2. The partition is specified

through a DAG on the nodes in W . Membership of a particular component of the

partition of FW is specified through separate conditions on the parent set of each

node in W . This gives the desired property: that conditional on a component of the

partition, any choice of parent sets (allowed by the component of the partition) for

each node yields an acyclic graph and the parents of each node are independent.
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Forming the partition

It is convenient to consider partitioning F = {〈FW , G−W 〉 : FW ∈ FW }, rather

than partitioning FW directly. The set F consists of all the acyclic graphs that can

be formed from the set of collections of parent sets FW . The partition of F will

take the form F = {FH1
, . . . ,FH

η}. We describe the form of the components FH
h
,

h = 1, . . . , η, in the following.

The partition of F is formed by considering DAGs H = (W,F ) on the set of nodes

W , with edges F ⊂ W ×W defined by the parent sets 〈Hw1 , . . . ,Hwρ〉. Let H =

{H1, . . . ,Hη}, with cardinality η, be the set of all DAGs on the nodes in W . Each

graph H is associated with a set FH of graphs in F and the components of the

partition {FH1
, . . . ,FH

η} are these sets. We will show that {FH1
, . . . ,FH

η} is a

partition of F in Lemma 1 below.

We now describe the relation between a DAG H ∈ H and the associated set FH of

graphs. For a particular H, the set FH is formed in the following manner, starting

from a graph G.

First, we form the reduced graph G− = 〈G−w1
, . . . , G−wρ , G

−
−W 〉 by removing any edges

that are directed into W , so that G−wj = ∅, for all j ∈ 1, . . . , ρ, and G−i = Gi for all

nodes i such that i /∈W .

To define FH we will require notation for the following sets. We define Dj =

{i : TG
−

wji
= 1} for each node wj ∈ W to be the nodes that are descendants in

G− of node wj , and Kj = {i : TG
−

wji
= 0} to be the nodes that are not descen-

dants (non-descendants) in G− of node wj ∈ W . Note that node wj ∈ Dj but that

wj /∈ Kj by definition. In addition we make the following definitions, in which we

use the definition that the edges of H are specified by the parent sets 〈Hw1 , . . . ,Hwρ〉

of each node in W .

• The set of nodes K =
⋂
k=1,...,ρKk that are not descendants in G− of any node
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Figure 4.2: An illustrative example of the relevant graphs and sets, with W =
{w1, w2, w3} = {3, 4, 7} shown in red. From the original graph G, the edges into
W are removed to form G−. If we choose H as shown, we get K = {1, 2}, and for
w3 = 7 we get DH

3 = {4, 6} and DH
−3 = {3, 5, 6, 7, 8}.

in W .

• The descendants DH
j =

⋃
{wk : wk∈Hwj }Dk in G− of the parents in H of node

wj .

• The descendants DH
−j =

⋃
{wk : wk /∈Hwj }Dk in G− of nodes in W that are not

parents in H of node wj .

Figure 4.2 illustrates the notation.

We now describe the conditions that define membership of the set FH of graphs,

for some H ∈ H. A graph F = 〈FW , G−W 〉 is a member of FH , where H =

〈Hw1 , . . . ,Hwρ〉, if and only if the collection FW of parent sets Fw1 , . . . , Fwρ satisfies

the following two conditions for all j = 1, . . . , ρ.

(A) Fwj ⊆
(
K ∪DH

j

)
\DH
−j

(B) Fwj ∩
(
Dk \DH

−j
)
6= ∅ for all nodes wk ∈ Hwj

Note that (B) depends on Dk not DH
k .

The condition (A) ensures that no cycle is formed in the graph. The condition pre-

vents cycles because each parent of a node wj ∈W must either be a non-descendant

in G− of any node in W , or a node whose ancestors in G− are all parents in H of

wj . In particular, no descendant of wj is added as an ancestor of wj , which would

allow a cycle to be formed.
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The condition (B) ensures that there is a unique H ∈ H such that F ∈ FH . Unique-

ness is required for {FH1
, . . . ,FH

η} to be a partition of F. The condition enforces

uniqueness by ensuring each edge in H is ‘used’, by checking that for a node wj ∈W ,

at least one descendant vl ∈ V of each of its parents in H is in Fwj and that vl is

not a descendant in G− of a node wk ∈ W that is not a parent in H of wj . An

example of the need for this condition is the graph F = 〈FW , GW 〉 with FW such

that Fwj = ∅ for all j = 1, . . . , ρ. Without condition (B), F would be in FH for all

H ∈ H, and thus {FH1
, . . . ,FH

η} would not be a partition of F.

Lemma {FH1
, . . .FH

η} form a partition of F.

Proof. We show that the graphs form a partition by showing

(i)
⋃
h=1,...η F

Hh
= F, and

(ii) FH
h1 ∩ FH

h2 = ∅ for Hh1 6= Hh2 with Hh1 , Hh2 ∈ H.

(i)
⋃
h=1,...,η F

Hh ⊆ F

We proceed by showing that FH
h ⊆ F for all h = 1, . . . , η. To show this, start-

ing from a DAG G, we need, for each h = 1, . . . , η, that each F = 〈FW , G−W 〉 ∈

FH
h

is such that

(a) The parents in F of nodes not in W match those in G, and

(b) F is acyclic.

By definition of FH
h
, (a) is true.

To prove (b), first note that G− is acyclic because G− is a subgraph of the

acyclic G. We proceed by contradiction.

Suppose some graph F ∈ FH
h

is cyclic. Since F differs from the acyclic G−

only in the parents of nodes in W , any cycle in F must include at least one

node in W . Let c1, . . . , cd ∈ W , d ∈ {1, . . . , ρ}, be the (minimal) complete set
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of nodes in W included in some cycle in F . Denote the existence of a path

(that obeys the edge directions) in F from node wa ∈ W to node wb ∈ W

that does not include any nodes in W (except wa and wb) by wa  wb, and

without loss of generality suppose that c1  c2  · · ·  cd in F . Note that

since c1, . . . , cd is the complete set of nodes in W in the cycle, no node between

ci and ci+1 in the path can be in W , i ∈ {1, . . . , d− 1}.

We now show that for wa, wb ∈W , wa  wb only if an edge wa → wb links node

wa to wb in Hh. Since wa  wb, there must exist a node vl ∈ V that is a parent

of wb in F such that vl is a descendant in F of wa. Note that in some cases

vl = wa. Since vl is a parent of node wb in the graph F , vl ∈
(
K ∪DHh

b

)
\DHh

−b ,

since wb ∈ W . Also since wa  wb does not include any nodes in W , vl is

also a descendant in G− of wa. We proceed by contradiction. Suppose no edge

wa → wb exists in Hh. Then vl is a descendant of wa in the graph G−, but wa

is not a parent of wb in the graph Hh. So vl ∈ DHh

−b , which is a contradiction.

Thus wa  wb only if wa → wb in Hh, for wa, wb ∈W .

Now, recall that c1  c2  · · ·  cd. Since a cycle is formed we must in

addition have a path in F from node cd to node c1. Since c1, . . . , cd is the

complete set of nodes in W involved in the cycle, no node on the path from cd

to c1 can be in W . Thus cd  c1. However, this implies that c1 → c2 → · · · →

cd → c1 in Hh, which implies Hh is cyclic. But Hh is acyclic by assumption,

and so we have a contradiction. Thus F is acyclic.

F ⊆
⋃
h=1,...,η F

Hh

Suppose we start from a graph G = 〈GW , G−W 〉. We want to show that for

each DAG G′ that is identical to G in its parents of nodes in W , there is

some H ∈ H such that G′ ∈ FH . Thus consider G′ = 〈G′W , G′−W 〉, with the

collection of parent sets G′−W = G−W and with G′W any collection of parent
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sets such that G′ is a DAG.

We will show that G′ ∈ FH
′
, where H ′ = 〈H ′1, . . . ,H ′ρ〉 ∈ H is a DAG on nodes

in W . For each node wj ∈ W , the parents H ′wj of wj in H ′ are defined as

follows.

H ′wj = {wk ∈W : there exists some vl ∈ G′wj such that vl ∈ Dk}

As usual, G′wj is the parent set in the graph G′ of the node wj ; and Dk is the

descendants in (G′)− of the node wk.

Note that H ′ is a subgraph (on the nodes in W ) of the transitive closure TG
′
.

By definition, G′ is a DAG, so TG
′

is also a DAG, and thus H ′ is a DAG.

We show that G′ = 〈G′1, . . . , G′p〉 ∈ FH
′

by showing that for each node wj ∈W ,

both conditions (A) and (B) that specify membership of FH
′

are satisfied.

(a) G′wj ⊆
(
K ∪DH′

j

)
\DH′
−j

Let vl ∈ G′wj meaning that vl is a parent of the node wj in the graph G′.

First we show that vl /∈ DH′
−j , and then show that vl ∈ K ∪DH′

j .

To see that vl /∈ DH′
−j , note that if vl ∈ DH′

−j then vl must be a descendant

in (G′)− of some node wk ∈ W that is not in H ′wj . However, every such

wk is in H ′wj by the definition of H ′wj , thus vl /∈ DH′
−j .

To see that vl ∈ K ∪DH′
j , we suppose vl /∈ K and show this implies that

vl ∈ DH′
j . This follows because if vl /∈ K then it must be the descendant

in (G′)− of some node wk ∈ W . Then wk ∈ H ′wj by definition of H ′.

Therefore vl ∈ DH′
j , as required. Thus vl ∈ K ∪DH′

j .

(b) G′wj ∩
(
Dk \DH′

−j
)
6= ∅ for all wk ∈ H ′j

Consider wk ∈ H ′wj . By the definition of H ′wj , this means that there exists

some node vl ∈ G′wj such that vl ∈ Dk.
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Additionally, any vk′ ∈ W such that vl ∈ Dk′ is such that vk′ ∈ H ′wj , by

definition of H ′wj . Thus vl is not a descendant in (G′)− of any node in W

that is not in H ′wj . Then vl ∈ G′wj ∩ (Dk \DH′
−j), and thus the condition

is satisfied.

(ii) FH
h1 ∩ FH

h2 = ∅

Since Hh1 6= Hh2 , there must be at least one node that has a different parent

in H. Suppose that the node wj is such a node, and that wk is a parent of wj

in Hh1 but not in Hh2 .

Consider a graph G(1) = 〈G(1)
wj , G

(1)
−wj 〉 ∈ FH

h1 . Recall that, in particular,

G(1)
wj ∩

(
Dk \DH

−j
)
6= ∅ for wk ∈ Hh1

wj .

Since this condition must be satisfied, there must exists some vl ∈ Dk \ DH
−j

such that vl ∈ G
(1)
wj .

We will show that for every graph G(2) = 〈G(2)
wj , G

(2)
−wj 〉 ∈ FH

h2 , it is the case

that vl /∈ G
(2)
wj , meaning that no graph is in both FH

h1 and FH
h2 .

This follows because vl ∈ Dk and so is a descendant in (G′)− of wk, which is

not a parent of wj in Hh2 . Thus vl ∈ DHh2

−j , and so vl /∈
(
K ∪DH

j

)
\ DH

−j .

Therefore vl cannot be a parent of wj in G(2).

We need to be able to find FH easily so that we can draw samples easily. First

define FHW , for a graph H ∈ H, to be the collection of parent sets of nodes wj ∈ W

such that for all FW ∈ FHW graphs 〈FW , F−W 〉 ∈ FH . Then, for a given H ∈ H and

for each node wj ∈W , define FHj as the set of parent sets that satisfy both (A) and

(B). Note that, since membership of FH is defined by a property of the each parent

set of nodes in W , FHW is simply the Cartesian product of the parent sets FHj for
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wj ∈W .

FHW = ×
wj∈W

FHj

This simplicity to the structure of FHW is the key to the efficiency of the method.

It is straightforward to find FHj directly from (A) and (B), by noting that nodes in

DH
−j may not be parents of wj , but that at least one node in Rk = Dk \DH

−j for each

wk ∈ Hwj must be a parent. Let Gj be the complete set of all parent sets of node

j (subject to a maximum in-degree κ), and create look-up tables Gi
j , i ∈ {1, . . . , p}

that list the parent sets that contain i.

The set FHj can be found by considering the set of parent sets that include nodes

that cannot be parents of wj

Qj =
⋃

l∈DH−j

Gl
j ,

and the set of parent sets that include at least one descendant of all parents of wj

in H

Sj =
⋂

wk∈Hwj

⋃
r∈Rk

Gr
j .

Satisfying (A) requires that FHj ⊆ Gj \Qj and, when the parents Hwj 6= ∅, we need

FHj ⊆ Sj to satisfy condition (B). These conditions give the following expression for

FHj , which can be evaluated efficiently.

FHj =


Sj \Qj if Hwj 6= ∅

Gj \Qj if Hwj = ∅

We fix |W | to be a small constant for all p so that
∣∣Hwj

∣∣ does not increase and

enforce a maximum in-degree κ. In this setting FHj can be evaluated in O(pκ+1)

time by storing the lookup-tables Gi
j as a bit map.
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Two-stage sampling of new parent sets

The partition is used in the two-stage approach to sampling in the following manner.

We first sample a component FH of the partition from P (FH | G−W ), and then

sample new parents FW from P (FW | FH , G−W ).

We can sample a component of the partition using the following identity.

P (FH
h | G−W ,X) =

P (FH
h
, G−W | X)

P (G−W | X)

=

∑
FW∈FHhW

∏
wj∈W p(Xwj | XFwj

)πwj (Fwj )∑
H∈H

∑
FW∈FHW

∏
wj∈W p(Xwj | XFwj

)πwj (Fwj )
(4.3)

The structure of the partition of F means that we are able to interchange the sum

and products in Equation 4.3, in a similar way to the interchange used in Friedman

and Koller (2003).

Lemma The following identity holds.

∑
FW∈FHhW

∏
wj∈W

p(Xwj | XFwj
)πwj =

∏
wj∈W

∑
Fwj∈FH

h
j

p(Xwj | XFwj
)πwj

Proof. To show this, we first simplify notation. Define

p(i)
wj = p(Xwj | XFwj

)πwj (F
(i)
wj ), i ∈ {1, . . .F},

where F is the cardinality of FH
h

W , and where F
(i)
wj is the parent set of node wj for

the ith member of FH
h

W .

FH
h

W =
{
〈F (1)

w1
, . . . , F (1)

wρ 〉, . . . , 〈F
(F)
w1
, . . . , F (F)

wρ 〉
}

We similarly introduce notation for each member of FH
h

j . We let Fj denote the
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cardinality of this set.

FH
h

j =
{
F (1)
wj , . . . , F

(Fj)
wj

}
As mentioned previously, the key observation is that FH

h
is the Cartesian product

of the parent sets FH
h

j for wj ∈W .

FH
h

W = ×
j=1,...,ρ

FH
h

j

Thus,

∏
wj∈W

∑
F

(i)
wj
∈FHhj

p(i)
wj =

∏
wj∈W

(
p(1)
wj + · · ·+ p

(Fj)
wj

)

=
∑

i1∈{1,...,F1}, ..., iρ∈{1,...,Fρ}
p(i1)
w1

. . . p
(iρ)
wρ

=
∑

〈F (i)
w1
,...,F

(i)
wρ 〉 ∈FH

h
W

p(i)
w1
. . . p(i)

wρ

=
∑

〈F (i)
w1
,...,F

(i)
wρ 〉 ∈FH

h
W

∏
wj∈W

p(i)
wj .

We can thus sample a partition using the following expression.

P (FH
h | G−W ,X) =

∏
wj∈W

∑
Fwj∈FH

h
j

p(Xwj | XFwj
)πwj (Fwj )∑

H∈H
∏
wj∈W

∑
Fwj∈FHj p(Xwj | XFwj

)πwj (Fwj )
(4.4)

The inner sums in Equation 4.4 can thus be evaluated separately for each node, for

each graph H ∈ H. This makes evaluation of the expression more efficient.

Once we have sampled a component of the partition, we can sample parent sets for

each node in W in the following manner. The parents of each node, conditional on
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Hh, are independent, and so can be sampled separately using the following identity.

P (Fwj | FH
h
, G−W ,X) =

p(Xwj | XFwj
)πwj (Fwj )∑

Fwj∈FH
h

j

p(Xwj | XFwj
)πwj (Fwj )

Sampling new parent sets FW given FH
h

is thus straightforward because this density

is simply the posterior distribution of a constrained Bayesian variable selection with

response wj and with FH
h

j as the set of possible predictor sets.

Complete algorithm

The complete algorithm is described in Algorithm 6 (below). The algorithm uses

the two-stage sampling procedure (Section 4.6.2), which depends on the descendants

Dj and non-descendants Kj . Fast access to these sets is maintained by updating

the path count matrix CG as described in Section 4.6.1.

The run-time of the algorithm depends on the number of nodes p, the maximum

in-degree κ of each node, and the number of nodes in W . We fix |W | to be a small

constant for all p, and so the run-time is determined by the evaluation of FHj . As

described earlier, this is O(pκ+1).
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Algorithm 6 An efficient Gibbs sampler, with general blocks

Initialise starting point G(0) = 〈G(0)
1 , . . . , G

(0)
p 〉

Compute initial path count matrix CG
(0)

for t in 1 to N do

Sample W from V

Generate G−, update CG
−

for wj ∈W do

Retrieve Dj = {k : CG
−

jk ≥ 1}

Retrieve Kj = {k : CG
−

jk = 0}

end for

for H ∈ H do

for wj ∈W do

Evaluate FHwj

ZHj =
∑

Fwj∈FHj p(Xwj | XFwj
)πwj (Fwj )

end for

ZH =
∏
wj∈W ZHj

end for

Sample H, according to P (H) = ZH∑
H∈H Z

H

for wj ∈W do

Sample Fwj from P (Fwj | FH
h
)

end for

Set G(t) ← G = 〈FW , G(t−1)
−W 〉

Update CG
(t)

end for



Chapter 5

Evaluation of the Gibbs sampler

In Chapter 4, we introduced a Gibbs sampler for structural inference of Bayesian

networks. In this chapter, we present empirical results comparing the Gibbs sampler

to several widely used existing methods using simulated data and two real datasets:

a social science survey (Centers for Disease Control and Prevention, 2008) and single-

cell molecular data from a study of immune responses (Bendall et al., 2011).

Accuracy and stability are two key characteristics by which an algorithm for struc-

tural inference of Bayesian networks can be assessed. A good algorithm provides

accurate results that are consistent with the true underlying system, and its results

are stable in the sense of not being overly sensitive to perturbations in the initial

conditions of the algorithm, or the dataset. Badly mixed MCMC applications are

not stable because the results depend on initial conditions.

We will investigate the performance of the Gibbs sampler according to both of

these aspects, and compare its performance to some existing methods. We start by

considering synthetic data generated from the widely-studied ALARM network. We

then consider two recent real datasets, the first from a large social science survey and

the second from a molecular biology study in which multiple variables were measured
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in thousands of individual cells. Both datasets are from areas of current scientific

interest and enjoy relatively large sample sizes, facilitating objective comparison of

results, as detailed below.

5.1 Setup

In this section, we first outline the alternative methods that we compare to the

Gibbs sampler, and then describe the simulation setting in which we compare the

methods.

5.1.1 Alternative methods

We compare the performance of our Gibbs sampler with MC3 (Section 2.6.4) and

the REV sampler of Grzegorczyk and Husmeier (2008), which is a variant of MC3

that uses a more extensive edge reversal move.

We also provide a comparison with two constraint-based methods: the PC-algorithm

(Spirtes et al., 2000), which we described in Section 2.7.2, and another constraint-

based approach introduced by Xie and Geng (2008), who demonstrate it can out-

perform the PC-algorithm.

REV sampler

The REV sampler (Grzegorczyk and Husmeier, 2008) augments the simple moves

in MC3 with a more extensive edge reversal move. The algorithm chooses an edge

uniformly at random, and then samples new parents for both the node at the head

and then, conditionally, the node at the tail. We describe the REV sampler in more

detail in the discussion of Chapter 5.
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Xie-Geng algorithm

The method introduced by Xie and Geng (2008) is a constraint-based approach

that resembles the PC-algorithm. It utilises a clever decomposition that means

that the inference problem can be split recursively into smaller problems. Suppose

that A ⊥⊥ B | C. Then Xie and Geng (2008) show that the local skeleton can

be constructed by amalgamating the local skeletons in the following manner. Let

GA∪B = (VA∪B, EA∪B) and GB∪C = (VB∪C , EB∪C) be the local skeletons of A ∪ B

and B ∪C respectively. Then the local skeleton GA∪B∪C of A∪B ∪C has edge set

EA∪B∪C , where

EA∪B∪C = EA∪B ∪ EB∪C \ {(u, v) : u, v ∈ C, (u, v) /∈ EA∪B ∩ EB∪C}.

The algorithm uses this decomposition to break the problem into smaller problems,

and so starts by seeking a decomposition V = A∪B∪C such that A ⊥⊥ B | C. Local

skeletons are then constructed for both A∪B and B∪C, by seeking a decomposition

of A∪B and B∪C, and then combining the local skeletons using the formula above.

Orientation of the edges of the graph is performed using the same procedure used

by the PC-algorithm. The full algorithm is described in Algorithm 7.

5.1.2 Simulation setup

In all of the examples, we use the default settings for all of the methods. This means

that comparisons with alternative methods correspond with common practice. In

particular, we use the default significance level α = 0.05 for the constraint-based

methods. Meinshausen and Bühlmann (2010) describe an approach that may lead

to a more principled choice of cut-off parameter, but we do not investigate this

approach here.
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Algorithm 7 Recursive decomposition (Xie and Geng, 2008)

Initialise initial graph G as the complete undirected graph.

Seek a decomposition (A,B,C) such that A ⊥⊥ B | C

if a decomposition exists then

Save C to SepSet(a, b) for all a ∈ A, b ∈ B

LA∪C ← recursively decompose A ∪ C

LB∪C ← recursively decompose B ∪ C

LA∪B∪C ← combine LA∪C and LB∪C

else

Construct LA∪B∪C using IC- or PC-algorithm.

end if

The Gibbs sampler we use is a random-scan sampler, with |W | = 3 so that the parent

sets of three nodes are sampled jointly at each step. To provide a fair comparison,

our implementation of MC3 implements the fast updating of the transitive closure

described in Section 4.6.1, and the pre-computation and caching of local marginal

likelihoods used in our Gibbs sampler.

We use a flat graph prior π(G) ∝ 1 and constrain all of the MCMC samplers to

graphs with in-degree κ ≤ 3.

5.2 Evaluation metrics

In this section, we introduce the metrics by which we evaluate the accuracy and

stability of the methods of structural inference. We will focus on different aspects

of accuracy and stability for the experiments using synthetic and using real data.

To make structural comparisons, we use completed partially directed acyclic graphs

(e.g. Chickering, 2002) to make comparisons, so that these are on a common scale

across the various methods.
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5.2.1 Synthetic data

When using synthetic data, the true graph is known and so the accuracy of structural

learning algorithms can be assessed using ROC (receiver-operating characteristic)

curves. ROC curves compare the graphs given by each method to the true graph.

While, from a Bayesian perspective, the main aim is to approximate the posterior

distribution accurately, it is informative to compare the regions of high posterior

probability to the data-generating graph for two reasons. First, the true graph

should be close to the regions of high posterior probability in large sample size

settings, such as many of the scenarios considered here. This means that, in the set-

tings considered here, the data-generating graph may provide a reasonable proxy for

the true posterior distribution. Second, because the exact distribution is intractable

it is simply not possible to compare the results to the true distribution except in

trivial examples with p < 6, say. Such trivial examples are not especially interesting

because there is little reason to assume that MCMC samplers that perform well

when p is small will also perform well when p is large.

The Bayesian (MCMC) and frequentist (constraint-based) methods return different

forms of result and so their representation on the ROC plot differs. The Bayesian

methods return estimates for the posterior distribution on Bayesian networks P (G |

X), from which the posterior probability of any edge P (e), e ∈ E can be computed.

With a threshold τ , 0 ≤ τ ≤ 1, we define Eτ ⊂ V × V as the set of edges with

posterior probability P (e) ≥ τ . Since we know the true graph, we can compare the

true graph to the edges Eτ and in particular count true and false positive edges.

These counts can be placed on a standard scale by defining the true and false

positive rates as the proportion of true and false edges present in Eτ , compared to

the true graph. An ROC curve for an MCMC algorithm is then given by plotting the

true positive rate against the false positive rate, for a range of values of thresholds

0 ≤ τ ≤ 1. The frequentist constraint-based methods return a point estimate, so
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these appear as a single point on the ROC plane.

Naturally, we seek to maximise the number of true positives for a given number of

false positives, and so the algorithms with the greatest area under the curve are

preferred. For this reason, we will additionally compare the areas under the ROC

curves directly. We will particularly focus on the region of the ROC curve corre-

sponding to a small false positive rate because in many applications, for example in

molecular biology, high-scoring edges may be used to design validation experiments.

In such settings, it is important that the methods return almost no false positives

so that validation of artifactual edges is not attempted.

In addition to considering ROC curves, we can also examine the accuracy of the

methods by computing the distance between the graph returned by each method

and the true graph. To assess the distance between the graphs we use the structural

Hamming distance (SHD; Hamming, 1950), defined as the number of edge additions

and removals needed to change one graph into the other. We will particularly focus

on the number of true edges that are not detected. For the Bayesian methods, we

define an edge as ‘not detected’ if it has a posterior edge probability of less than

0.5. For the frequentist constraint-based methods we assess this directly by counting

true edges that are not returned.

The threshold 0.5 corresponds to selecting edges that are a posteriori more likely to

be present than not present. This threshold gives the ‘median probability model’.

For selection among normal linear models, in some settings it can be shown this is

the optimal model for prediction (Barbieri and Berger, 2004). This gives the choice

an appeal even when optimality is not known.

The aspect of stability that we focus on with synthetic data is Monte Carlo stability.

A good MCMC sampler gives consistent results regardless of the initial conditions

of the sampler. We will assess this by comparing the posterior edge probabilities

of 10 independent runs of the samplers, initialised at disparate initial graphs. The
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consistency of the runs can be examined using a convergence diagnostic plot, in

which the posterior edge probabilities of each edge in two independent runs are

plotted against each other. When the edge probabilities of the two runs agree, all

of the points in the scatter plot will lie on the y = x line.

We will consider two different convergence diagnostic plots. In this first of these, we

compare all 10 independent runs of each sampler. We do this by plotting two panels,

each of which consists of a 10-by-10 matrix of plots, in which each cell compares

the edge probabilities between the corresponding pair of runs. The lower triangle of

both panels shows the Gibbs sampler runs, which are to be contrasted with the MC3

and REV runs shown in the upper half of top and bottom panels respectively. Each

point plotted is an individual edge probability. The colour represents the distance

of the point from the line y = x. The orange points are the furthest from the y = x

line.

We additionally consider a convergence diagnostic plot in which the points are

binned into hexagonal areas, to avoid over-plotting. This plot makes clear the

number of edges that have, for example, posterior probability of 1 in one run and 0

in another. We also consider such edges by plotting the number of ‘major discrep-

ancies’ between independent runs for each MCMC sampler, at a range of sample

sizes. A major discrepancy is defined as an edge with posterior probability greater

than 0.9 in one run, and less than 0.1 in another run.

5.2.2 Real data

For the real data, we focus on assessing the stability of the methods. We first

consider Monte Carlo stability, using the same diagnostics as for the synthetic data.

We then consider the sensitivity of the methods to small perturbations in the data.

One method for assessing this property is to consider bootstrap samples of the data.
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Since bootstrap replicates of a dataset when n is large are similar, the estimate of the

Bayesian network associated with each replicate should be similar. We measure the

similarity of two Bayesian networks with the structural Hamming distance (SHD),

which measures the number of edges that are present in one network and absent in

the other. The result of the MCMC methods is an edge probability matrix rather

than a point estimate of the Bayesian network that is given by the constraint-

based methods, and so we will consider three methods for choosing the graph to

compare with the constraint-based methods: thresholding the edge probabilities to

match the number of edges given by the PC-algorithm, by the Xie-Geng method,

and thresholding at 0.5 posterior edge probability (giving the ‘median probability

model’).

5.3 Synthetic data

We first analysed the performance of the methods using synthetic data, generated

from the ALARM network (Beinlich et al., 1989). This network is widely used

to examine the performance of methods of structural learning (e.g. Friedman and

Koller, 2003; Grzegorczyk and Husmeier, 2008). In this section, we describe the

details of the simulations, and then assess the performance of the methods. We

consider the accuracy, Monte Carlo stability and finally the trace plots of the MCMC

runs.

5.3.1 Simulation setup

There are 37 random variables and 46 edges in the ALARM network. Each variable

has a multinomial distribution, and so we use the natural multinomial-Dirichlet

formulation (Heckerman et al., 1995).

We drew 10 independent samples from the ALARM network, with sample sizes
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n = 100, 500, 1000, 2500, 5000 respectively. To ensure a fair comparison, we fixed

compute time, running each of the MCMC samplers for 30 minutes (on a single core

of a cluster computer), and performed 10 independent runs starting from different

initial graphs. In this time, MC3 drew 800,000 samples; REV drew 7,500 samples;

and our Gibbs sampler drew 20,000 samples. In all three cases, we discard the first

quarter of the samples as burn-in.

5.3.2 Accuracy

We first assess the accuracy of the methods using ROC curves. Figure 5.1A is a

plot of ROC curves at each sample size for the Gibbs sampler, MC3, REV sampler,

Xie-Geng’s constraint-based method and the PC-algorithm. We see that some of

the methods of inference have different properties at different sample sizes. The

MC3 sampler is particularly sensitive to the sample size. For smaller sample sizes

(n = 100, 250) the MC3 results are close to the most consistent of the methods

with the true ALARM network, but for large sample sizes (e.g. n = 2500, 5000), the

performance of MC3 is extremely poor. The area under ROC curves decreases as

the sample size increases (Figure 5.2), from 0.91 (n = 100) to 0.42 (n = 5000). This

decrease is clearly unsatisfactory because increasing the sample size should improve

the quality of the estimates. Indeed an area under the ROC curve less than 0.5

corresponds to a success rate that is worse than random.

The relationship between sample size and performance of the REV sampler is less

clear. As shown in Figure 5.2, the area under the ROC curve for the REV sampler

varies considerably between sample sizes, but no clear pattern emerges in the range

of sample sizes considered here. The area under the ROC curve for the Gibbs

sampler shows a slight pattern of increase with sample size, but is essentially stable

at around 0.96.
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Figure 5.1: ROC curves given by estimated posterior distributions from 10 replica-
tions of our Gibbs sampler, MC3, and the REV sampler for the synthetic data from
the ALARM network. Point estimates from Xie-Geng’s constraint-based method
and the PC-algorithm are also shown. These plot the true positive rate (y-axis)
against the false positive rate (x-axis) for a range of values of τ . In (A) the entire
ROC curves are shown; in (B) a reduced range of false positives is shown.
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Figure 5.2: The distribution of the areas under the ROC curves, for n =
100, . . . , 5000 for the synthetic data from the ALARM network.

The constraint-based methods (PC-algorithm and the Xie-Geng method) are also

sensitive to the sample size. These methods give a point estimate, which is indicated

on the ROC plot by a circle (PC-algorithm) and a cross (Xie-Geng). We see that

these methods perform poorly when n = 100, but, as anticipated by the consistency

of the PC-algorithm (Kalisch and Bühlmann, 2007), work well for large sample sizes.

For n = 5000, the Xie-Geng method performs particularly well. It predicts 45 true

positives, and 16 false positives.

Figure 5.1B shows that there is wide variation in the performance of the methods

at low false positive rates. For example, for n = 100 for a false positive rate of

0 (corresponding to no incorrect edges), the Gibbs predicts 28.1 ± 0.74 (mean ±

standard deviation) true edges; REV sampler 1.2± 1.8; and MC3 14.4± 15.25. For

n = 5000, for a false positive rate of 0, the Gibbs sampler finds 38.3±4.00 true edges;

the REV sampler 1.0± 2.82; and MC3 never predicts any true edges. Since the true

graph has 46 edges, these differences correspond to very important differences in the

practical usefulness of the results given by the different methods.

We can also compare the accuracy of the methods by considering the SHD between

the true graph and the graphs given by each of the estimators, at each sample size.
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Table 5.1: Structural Hamming distances (SHDs) between the graph given by each method
(MAP graph for MCMC method) and the true graph. The standard deviation of the SHDs is
shown for the Bayesian Monte Carlo methods.

Method n = 100 250 500 1000 2500 5000

Gibbs 20.1± 8.0 20.1± 8.0 30.3± 3.4 30.6± 11.2 19.91± 6.0 20.1± 8.0

REV 48.2± 10.7 48.2± 10.7 56.2± 11.9 54.3± 11.3 52.23± 16.9 48.2± 10.7

MC3 90.7± 12.3 90.7± 12.3 55.8± 10.7 62.6± 13.4 76.92± 11.2 90.7± 12.3

Xie-Geng 50.0 40.0 34.0 43.0 32.0 17.0

PC 47.0 39.0 38.0 28.0 22.0 14.0

Table 5.1 shows the means and standard deviations of the SHDs. We see that the

MAP estimator given by the Gibbs sampler is consistently the closest graph to the

true graph, except in two cases in which the PC-algorithm is closer. The mean SHD

across all sample sizes for the Gibbs sampler is 23.5, whereas for the REV sampler it

is 42.8 and for MC3 it is 51.0. We also see again that the constraint-based methods

perform well with large sample sizes.

The number of edges not detected (as defined in Section 5.2.1) by each method also

varies by sample size. For n = 100, the Gibbs sampler does not detect 1.5 ± 0.53

edges, the REV sampler 9.8± 3.46 edges and MC3 2.8± 1.23 edges. For n = 5000,

the Gibbs sampler does not detect 1.5±0.53 edges, the REV sampler 4.9±3.38 edges

and MC3 25.9 ± 3.31 edges. Again, by this metric it is clear that the results from

the REV sampler and MC3 is significantly less useful in practice. At large sample

sizes, the constraint-based methods detect almost all of the edges. For the mid-sized

samples, the Xie-Geng method detects most of the edges, but for the same number

of true positives the Gibbs sampler gives far fewer false positives. For example, for

n = 1000, the Xie-Geng method has 29 true positives and 12 false positives. To

reach 29 true positives, no false positives are given by any of the 10 runs of the

Gibbs sampler.
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Figure 5.3: Convergence diagnostics for the MCMC samplers, for the ALARM data
with n = 1000. The posterior edge probabilities given by two independent runs
are plotted against each other. When the two runs give the same estimates of the
posterior edge probabilities, all of the points appear on the line y = x. To avoid
over-plotting, the points are binned into hexagonal areas (Carr et al., 1987). When
using the REV sampler or MC3, for many edges there are extreme discrepancies
between the two runs, in the sense that there are many edges have high probability
in one run and low in the other. This pair of runs was typical of all the pairs of runs
and sample sizes.

5.3.3 Monte Carlo stability

A good MCMC sampler gives consistent results across independent runs. The in-

consistency of the REV and MC3 samplers across independent runs is shown in

Figure 5.3, which compares the posterior edge probabilities of two independent runs

of the sampler for n = 1000. We see that there are many edges that have zero

posterior probability in one run, but far greater than 0 posterior probability in the

other. In contrast, there is close agreement between the two independent Gibbs

runs. The run shown is typical of all runs, as shown in Figure 5.4.

The inconsistency of MC3 and the REV sampler is highlighted by Figure 5.5. The

figure shows that in almost all cases, there are no major discrepancies (as defined

in Section 5.2.1) with the Gibbs sampler. In contrast, on average 5 major discrep-

ancies are given by the REV sampler, at all sample sizes. The number of major
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Figure 5.4: Convergence diagnostics for all 10 runs of each MCMC sampler for the
ALARM data, with n = 1000. In each cell, the posterior edge probabilities given by
two independent runs are plotted against each other. Each point represents a single
edge. The lower half of both panels compares runs of the Gibbs sampler; the upper
half compares runs of the MC3 and the REV sampler respectively. When the two
runs give the same estimates of the posterior edge probabilities, all of the points
appear on the line y = x. The blue to orange colour scale represents the distance
from this line, with orange points the furthest away.



N
um

be
r 

of
 m

aj
or

 d
is

cr
ep

an
ci

es

0

10

50

100

Gibbs REV MC3

●

●
●

100

Gibbs REV MC3

●

●

●

●●

●●●

●

250

Gibbs REV MC3

●

●

●

●

●

●

500

Gibbs REV MC3

●

●

●

●

1000

Gibbs REV MC3

●

●

●

●●●●●●●

●

●

2500

Gibbs REV MC3

●

●

●

●

●

5000

Figure 5.5: Major discrepancies between pairs of the 10 independent runs, for each
MCMC sampler. For each pair of independent runs, the number of major discrep-
ancies is the number of edges that have estimated posterior edge probability above
0.9 in one run and estimated posterior edge probability below 0.1 in the other run.
The boxplot shows the range of discrepancies between runs. Each panel corresponds
to one of the sample sizes n = 100, 250, 500, 1000, 2500, 5000.

discrepancies for MC3 increases rapidly with sample size, from an average of 8 ma-

jor discrepancies when n = 100 to an average of 90 when n = 5000. Results as

variable as these are almost unusable because, with this instability, results that im-

ply an edge has even very high probability are likely to be simply artefacts of the

initial conditions of the sampler.

The area under the ROC curve (Figure 5.2) gives another indicator of the stability

of the methods. It is clear that the area under the ROC curve for both the REV

sampler and MC3 varies considerably between runs. In contrast, the Gibbs sampler

is very consistent between runs.

5.3.4 Marginal likelihood trace plot

The Gibbs sampler reaches a plateau of high posterior probability far more rapidly

than the MC3 or REV samplers. With n = 1000 it takes around 5,000 samples for the

Gibbs sampler to reach a plateau on which it settles. The Gibbs sampler finds graphs
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with higher log score than the REV sampler and MC3, and does so consistently

across independent runs. The maximum log score found by the Gibbs sampler across

runs is −10499.34± 1.08, whereas for the REV sampler it is −10581.50± 82.12 and

for MC3 it is −11311± 341.69. The full trace plot of the marginal likelihoods, with

n = 1000, is shown for all 10 independent runs in Figure B.1 on page 157.

5.4 Behavioral Risk Factor Surveillance System Survey

data

The second data set we consider is the publicly available Behavioral Risk Factor

Surveillance System Survey (BRFSS) (Centers for Disease Control and Prevention,

2008). This is a household-level random-digit telephone survey, collected by the U.S.

Government’s National Center for Chronic Disease Prevention and Health, that has

been conducted throughout the United States since 1984. We consider the responses

from New York in the 2008 survey. In this section, we describe the details of the

simulations, and then assess the performance of the methods. We consider Monte

Carlo stability, bootstrap stability, and finally the trace plots of the MCMC runs.

The network given by thresholding the posterior edge probabilities from the Gibbs

sampler at 0.5 (for the reasons described in Section 5.2) is shown in Figure B.6 on

page 162.

5.4.1 Data and setup

We analysed the responses to 24 questions, which spanned most of the topics covered

in BRFSS. All respondents who refused or were unsure of their response, or whose

response is missing, to any of the 24 questions were removed from the analysis. The

resulting sample size is 4,197.

We ran each MCMC sampler for 30 minutes. In this time, the Gibbs sampler drew
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54,000 samples, the REV sampler 50,000 samples, and MC3 1.8 million samples. In

each case, the first quarter of the samples were discarded as burn-in. In addition,

we ran the PC-algorithm and the Xie-Geng method on the BRFSS data.

5.4.2 Monte Carlo stability

The convergence of the three MCMC samplers is considered in Figures 5.6 and 5.7

by examining the agreement in edge probabilities between the runs. In Figure 5.6

the edge probabilities of two runs are compared. We see that there is considerable

agreement between the edge probabilities given by the two Gibbs runs, but there is

considerable disparity in the results from the REV sampler and MC3. While both

MC3 and the REV sampler have 38 edges for which there is a disparity of 0.1 in

posterior edge probability between the two runs, there are only 4 such edges for

the Gibbs sampler. There are no edges with a disparity of 0.3 in posterior edges

probability for Gibbs, but there are 33 for REV and 32 for MC3. This pair of runs is

typical of all pairs of runs, as shown in Figure 5.7. It is clear that in all pairs of runs,

the REV and MC3 runs have many edges in which there is a strong disagreement

about edge probabilities. In contrast, there is good agreement between all of the

runs of the Gibbs sampler. Indeed, there are no major discrepancies (Section 5.2.1)

between any of the pairs of runs of the Gibbs sampler, whereas there are on average

11 majors discrepancies for REV sampler and 17 for the MC3 sampler (Figure B.2

on page 158).

5.4.3 Marginal likelihood trace plot

The maximum log marginal likelihoods (log scores) found by each of the three

MCMC samplers varies considerably. The maximum log score (mean ± standard de-

viation) encountered in each run reached by the samplers is −82121.81± 0 (Gibbs),
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Figure 5.6: Convergence diagnostics for the MCMC samplers for the BRFSS data.
The posterior edge probabilities given by two independent runs are plotted against
each other. When the two runs give the same estimates of the posterior edge proba-
bilities, all of the points appear on the line y = x. To avoid over-plotting, the points
are binned into hexagonal areas (Carr et al., 1987). We observe that the two Gibbs
runs gives comparable posterior edge probabilities, but the MC3 and REV sampler
runs do not. This pair of runs was typical of all pairs.

−82172.7 ± 27.6 (REV) and −82198.43 ± 77.5 (MC3). The highest scoring graph

found by any of the runs of the REV sampler has log score −82139, which is 17 below

the highest scoring graph (which was obtained consistently in all runs of the Gibbs

sampler). This difference corresponds to a large difference in posterior probability:

if the posterior distribution contained only (with a uniform graph prior) the modal

graph from the Gibbs runs with log score -82121.81 and the modal graph from the

REV runs with log score -82139, the Gibbs mode would have probability of unity

(to 8 decimal places).

The number of samples until each sampler reaches a plateau also varies considerably.

The Gibbs sampler reaches in all runs a plateau after around 500 samples, although

in one run it is not reached until 10,000 samples have been drawn. The REV sampler

takes longer to settle on a plateau, but even after doing so it does not reach a region

with log score comparable to the plateau reached by the Gibbs sampler. Despite

drawing an order of magnitude more samples, the MC3 sampler becomes stuck in a

region with yet lower log score.
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Figure 5.7: Convergence diagnostics for all 10 runs of each MCMC sampler for the
BRFSS data. In each cell, the posterior edge probabilities given by two independent
runs are plotted against each other. Each point represents a single edge. The lower
half of both panels compares runs of the Gibbs sampler; the upper half compares
runs of the MC3 and the REV sampler respectively. When the two runs give the
same estimates of the posterior edge probabilities, all of the points appear on the
line y = x. The blue to orange colour scale represents the distance from this line,
with orange points the furthest away.



A complete trace of the log score of each graph drawn by each sampler in each of

10 independent runs, initialised at disparate starting graphs, is shown in Figure B.3

on page 159.

5.4.4 Bootstrap stability

We drew 10 bootstrap replicates of the dataset, and for each estimated the Bayesian

network using each inference method. We first threshold the edge probabilities

of the MCMC methods such that the resulting Bayesian network has the same

number of edges as the Bayesian network given by the PC-algorithm. For each of

the MCMC methods and for the PC-algorithm the SHD between pairs of bootstrap

replicates is shown in Figure 5.8. The Gibbs sampler has a mean SHD of 22 between

pairs of replicates. This is the lowest mean among any of the methods. The next

lowest mean of 30 is given by the PC algorithm. For a network with 24 nodes,

this is a considerable increase in the number of edges that differ between bootstrap

replications from a dataset with over four thousand samples. The results from

thresholding the edge probabilities at 0.5 (for the reasons described in Section 5.2)

and thresholding to match the number of edges in the graph given by the Xie-Geng

procedure are shown in Figure B.5 (on page 161 in Appendix B).

5.5 Flow cytometry data

Single-cell data in molecular biology are often obtained using a technology called flow

cytometry. Using this technique the number of variables that can be interrogated

is severely limited for technical reasons (spectral overlap in relevant fluorophores).

Recently, technology has been developed that applies atomic mass spectrometry

to single-cell analysis, thereby allowing interrogation of larger numbers of variables

than previously possible (Bendall et al., 2011). We used single-cell data from Bendall
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Figure 5.8: Stability of estimators of the BRFSS data across bootstrapping, as
measured by SHDs, with the graph density made to match the graph given by the
PC-algorithm. Using data from BRFSS, 10 bootstrap samples were drawn. Each
estimator was run on each bootstrap sample. The structural Hamming distance
(SHD) between the graphs from each bootstrap sample is shown for each estimator.
Smaller SHD means that the graphs are structurally more similar and therefore the
estimator is more stable.

et al. (2011) to infer Bayesian network structures. In this section, we describe the

details of the data and simulations, and then assess the performance of the methods.

We again consider Monte Carlo stability, bootstrap stability and finally the trace

plots of the MCMC runs. We also give the resulting Bayesian network.

5.5.1 Data and setup

The single-cell nature of the data provided a large multi-variate sample over n =

21, 691 cells that can reasonably be regarded as a random sample. We consider

p = 34 measured cellular variables. We treat the data as independent replications,

and model using a normal model with g-prior, as described in Section 2.5.3, with

g = n−1. A full specification of the data used is detailed in Appendix A.

We ran the Gibbs sampler until all 10 runs had essentially converged, which took

8.5 hours. In this time, the Gibbs sampler drew 480,000 samples. We ran MC3 and
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the REV sampler for the same amount of time, in which time the samplers drew 16

million and 4.5 million samples respectively. To reduce the computational demand

of handling so many samples, we thin the samples drawn from both MC3 and REV

sampler so that only every 100th sample is retained.

5.5.2 Monte Carlo stability

We examine the convergence properties of the samplers by examining the agreement

in edge probabilities between the runs. For the flow cytometry data, there is again

considerable agreement between the edge probabilities given by runs of the Gibbs

sampler, but there is considerable disparity in the results from the independent runs

of the REV sampler and MC3, as shown for one pair of runs in Figure 5.9. Figure B.8

(on page 163) shows this comparison for each pair of runs of each MCMC sampler.

This figure shows that there is little agreement between pairs of independent runs

of both the MC3 and REV samplers. In contrast all runs of the Gibbs samplers

are consistent with each other, except for run 3. In fact, the figure shows that run

3 and the other runs of the Gibbs sampler are more in agreement that any pair

of runs of either the MC3 and REV samplers. Figure 5.9 shows the number of

edges for which there is a considerable disagreement in two of the runs. On average,

across the 45 pairs of runs, there are 12.9 edges for which there is a disparity of

at least 0.1 in posterior edge probability between runs of the Gibbs sampler. For

the REV sampler, the average is 50.4 edges, and for MC3, the average is 151.4

edges. Comparing disparities of least 0.2 in posterior edge probability, an average

of 6.1 edges differ between Gibbs runs, whereas the number of differences are 42.6

edges for the REV sampler and 138.3 for MC3. The Gibbs sampler has no major

discrepancies (as defined Section 5.2.1) between pairs of runs, while there are on

average 25 majors discrepancies for REV sampler and 111 for the MC3 sampler

(Figure B.7 on page 162).
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Figure 5.9: Convergence diagnostics for the MCMC samplers, for the flow cytometry
data. The posterior edge probabilities given by two independent runs are plotted
against each other. When the two runs give the same estimates of the posterior edge
probabilities, all of the points appear on the line y = x. To avoid over-plotting, the
points are binned into hexagonal areas (Carr et al., 1987). When using the REV
sampler or MC3, for many edges there are extreme discrepancies between the two
runs, in the sense that there are many edges have high probability in one run and
low in the other. This pair of runs was typical of all pairs of runs and sample sizes.

5.5.3 Marginal likelihood trace plot

The Gibbs sampler for the flow cytometry data, as for the synthetic and BRFSS

data, consistently finds a region of higher log marginal likelihood than the MC3

and REV samplers. The maximum log marginal likelihood reached by the Gibbs

sampler is −3, 641, 282, and this was reached in all 10 independent runs. In contrast,

mean (standard deviation) of the maximum reached across the 10 runs of the MC3

sampler is −3, 658, 408±8091, and for the REV sampler is −3, 642, 879±4725. The

maximum log marginal likelihood reached by any of the 10 runs of the REV sampler

is −3, 641, 294, which is 11 lower than the maximum log marginal likelihood that

was reached in all 10 runs of the Gibbs sampler. The Gibbs sampler reaches a region

of high log marginal likelihood after around 5, 000 samples in contrast to the REV

sampler which, when it does reach such a region, only does so near the end of its 16

million samples. The full trace of the log marginal likelihood is shown in Figure B.4

on page 160.
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5.5.4 Bootstrap stability

We finally studied stability of the methods under bootstrap replications for the flow

cytometry data. We drew 10 bootstrap replicates of the dataset, and estimated the

Bayesian network for each using each of the inference methods, thresholding the

edge probabilities of the MCMC methods such that the resulting Bayesian network

has the same number of edges as the Bayesian network given by the PC-algorithm.

Figure 5.10 shows the SHD between pairs of bootstrap replicates for each of the

MCMC methods and for the PC-algorithm. The Gibbs sampler has the lowest

mean SHD (120) among any of the methods between pairs of replicates. The next

lowest mean of 142 is given by the REV sampler. For a network with 34 nodes,

this is a considerable increase in the number of edges that differ between bootstrap

replications from a dataset with over four thousand samples. Note that the SHD

are particularly high here because the PC-algorithm prefers a network with a high

density. The results from thresholding the edge probabilities at 0.5 (for the reasons

described in Section 5.2) and thresholding to match the number of edges in the

graph given by the Xie-Geng procedure are shown in Figure B.10 (on page 165 in

Appendix B).

5.6 Discussion

We have introduced a Gibbs sampler for structural inference of Bayesian networks.

The sampler uses the idea of blocking to improve its rate of convergence, and we

demonstrated empirically its utility on data from a large social science survey, and

from molecular biology, as well as for simulated data, across a wide range of sample

sizes. At low sample sizes, the MC3 sampler performs reasonably. At large sample

sizes the constraint-based methods perform well, and the computation required is

quick. However, the existing methods are particularly unstable across Monte Carlo
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Figure 5.10: Stability of estimators for the flow cytometry data across bootstrapping,
as measured by SHDs, with the graph density made to match the graph given by the
PC-algorithm 10 bootstrap samples were drawn. Each estimator was run on each
bootstrap sample. The structural Hamming distance (SHD) between the graphs
from each bootstrap sample is shown, for each estimator. Smaller SHD means that
the graphs are structurally more similar, and so the estimator is more stable.

replications or across bootstrap resamples. The instability of the PC-algorithm

has been discussed before by Spirtes et al. (2000). In contrast, the Gibbs sampler

consistently performs well and gives more stable results across the whole range of

examples considered here.

In the Gibbs sampler introduced here, we used the exact posterior distribution

from Bayesian variable selection to compute the required conditional probabilities.

When evaluating the exact posterior, it has been noted previously that for some

local models, it is advantageous to evaluate the marginal likelihoods in Gray code

ordering (George and McCulloch, 1997). Nonetheless, for the exact posterior to be

computationally tractable requires a maximum in-degree constraint to be enforced,

as used by many other authors (e.g. Friedman and Koller, 2003; Koivisto and Sood,

2004). This requirement is not a significant drawback because in general models

with a large in-degree are rarely useful in applications, and this is particularly true

in a Bayesian setting in which the result accounts for model uncertainty. In this
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setting, the effect of the constraint on the result is reduced because the Bayesian

averaging over models reduces the rigidity of the constraint. For example, suppose

an in-degree restriction of 3 is enforced, but the true in-degree of a particular node

is 4. In this case, even though no model including all 4 parents can be considered,

the posterior edge probability of all of the 4 nodes is likely to be high, unless there

are particularly difficult non-linearities. Thus any form of model averaging will take

heed of the influence of all 4 parents.

The Gibbs sampler builds on the simple heuristic that the parents of a node in

a Bayesian network are similar to the independent variables chosen in Bayesian

variable selection, with the node as the dependent variable, but adjusts this heuristic

exactly to ensure acyclicity. By exactly adjusting for acyclicity, there is no need

for heuristic choice of candidate parents in the manner of the Sparse Candidate

algorithm (Friedman et al., 1999).

However, the Gibbs sampler does have some similarities with the edge reversal

proposal that the REV sampler (Grzegorczyk and Husmeier, 2008), a Metropolis-

Hastings sampler, mixes with MC3 proposals. The edge reversal proposal in the

REV sampler reverses the direction of a particular edge i → j, which is drawn

uniformly at random from the set of edges in G. Then a new graph G� is created

from G by removing all edges {(a, b) : a ∈ V, b ∈ {i, j}}, so that in G� neither i nor

j have any parents. A proposal graph G′ is constructed from G� by sampling new

parents for both nodes i and j in the following manner. First, a parent set for node

i—that is required to include node j—is sampled from the appropriate conditional

distribution. Then, conditional on the choice of parents from i, a new parent set

is sampled for node j, from the appropriate conditional distribution. The proposal

G′ is accepted according to the appropriate acceptance probability, as detailed in

Grzegorczyk and Husmeier (2008).

The use of conditional distributions makes the REV sampler similar in one respect
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to the Gibbs sampler proposed here. However, as we showed in this chapter, across

a range of empirical examples the Gibbs sampler substantially outperforms the REV

sampler. There are various possible explanations for this. The REV sampler does

not use the natural conditional distribution and so requires an accept-reject step. An

accept-reject step may be wasteful in settings in which evaluating the proposal dis-

tribution is relatively computationally expensive. Additionally, the proposal made

by the REV sampler requires an existing edge whose direction is reversible in the

posterior distribution. This requirement makes the REV sampler less flexible than

the Gibbs sampler, which uses the full joint conditional distribution. The REV

sampler is also unable to make moves considering more than two nodes simultane-

ously and in situations in which there are three highly correlated random variables,

proposals that consider the three parent sets simultaneously are crucial in realising

fast convergence of the MCMC sampler. Finally at least some MC3 proposals must

be used when using the REV sampler because the REV proposal is not irreducible

by itself (Grzegorczyk and Husmeier, 2008), and these simple MC3 forms are not

tailored to the local shape of the posterior distribution. Grzegorczyk and Husmeier

(2008) make REV proposals with probability 1/15, and so the majority of steps are

based on simple MC3 proposals. Using such small proposals is likely to make the

sampler less efficient.

An appealing aspect of this approach is that it harnesses the connection between

Bayesian variable selection and structural inference of Bayesian networks. This

connection has been widely studied and exploited for undirected graphs (e.g. Mein-

shausen and Bühlmann, 2006), but for directed graphs the connection is complicated

by the acyclicity requirement. The Gibbs sampler accounts for this, enabling it to

exploit the relationship with variable selection. The Gibbs sampler thus may ease

the adaption of theoretical results about Bayesian variable selection (e.g. Scott and

Berger, 2010) to the case of Bayesian networks.
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Chapter 6

Exploratory network analysis of

large social science

questionnaires

There are now many large surveys of individuals that include questions covering

a wide range of behaviours. Such surveys contain a vast amount of information.

Surprisingly, not many studies have taken advantage of the availability of such rich

data to investigate the possibility of unexpected and complex relationships in the

data. In this chapter, we describe how structural inference for (dynamic) Bayesian

networks can be used to explore relationships between variables in such data and

present this information in an interpretable format for subject-matter practitioners.

The remainder of this chapter is organised as follows. We first introduce the aim of

the study. We shall focus the study particularly on adolescent depression. We then

introduce the Add Health dataset that we use. We finally present and discuss the

resulting Bayesian network, focusing on depression, and provide estimates of how

different variables affect the probability of depression via the overall probabilistic
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structure given by the Bayesian network.

6.1 Introduction

6.1.1 Aims and background

Hypotheses that correspond to complex, multifactorial causes of symptoms and

outcomes play an important role in the social sciences and in public health. The

usual approach to exploring such hypotheses is through regression-based approaches.

Considerable insight can be gained through such approaches, but it is sometimes

overly constraining to fix a particular quantity as the dependent variable, especially

if the goal is to explore the possibility of unexpected relationships between the data.

Instead, we can consider a number of variables on an equal footing, and study the

possibility of unexpected relationships in the data.

Consideration of unexpected relationships between factors requires datasets that

incorporate a wide range of topics. Here, we investigate longitudinal data from the

Add Health survey of adolescents in the US. However, such data are now widely

available for representative samples of populations in many countries, and for many

sub-groups of interest. Many of these datasets are derived from surveys that are

general in scope, and are not collected to study any one particular question. For

example, in the US, the health of the whole population is representatively sampled

annually for the Behavioral Risk Factor Surveillance System (BRFSS) survey, and

the Add Health study, which we use here, followed a cohort of young people from

1994 until 2008. Data from both of these have been used in scores of studies, but

these commonly focus on one specific aspect, often using the data to evaluate existing

hypotheses. Given the wide scope inherent in the design of these studies and the

large samples available in many cases, we can broaden the scope of the analysis by

considering richer structures. In this chapter, we discuss the potential that such a
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more explorative approach yields. We do not seek to make conclusive causal claims,

but instead suggest that a broader approach may uncover important aspects that

have been neglected.

6.1.2 Adolescent depression

Our focus will be on depression among adolescents in the US, drawing on data

from the National Longitudinal Study of Adolescent Health (Add Health). It is

estimated that around 1–6% of adolescents each year are affected by depression

(Costello et al., 2003, 2006). The effects of depression in this age-group are wide-

ranging (Thapar et al., 2010), and include the stigma associated with poor mental

health more generally (Patel et al., 2007). There is considerable evidence that

there is a wide range of causal factors for depression amongst adolescents, spanning

biological, psychological and social domains. Understanding these causal factors

and separating them from the consequences of depression has been recognised as an

important aim (Barnett and Gotlib, 1988). Some of the relevant causal factors may

interact and the approach taken here accounts for this.

6.1.3 Graphical models

As throughout this thesis, we use graphical models as the statistical framework

within which the relationship between variables is studied, and focus on the struc-

ture of the model, as given by the graph. The use of graphs helps to make the

interpretation of the model simpler. The structure of the model suggests how the

different components of the system interact, which may be helpful in understanding

the system as a whole.

Surveys often have a large sample-size. This clearly increases the precision of infer-

ence. However, it may mean that the posterior distribution over Bayesian networks
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(or graphs) is concentrated on disparate graphs. In such situations, the standard

MC3 sampler converges very slowly to the posterior distribution. Instead, we use

the Gibbs sampler introduced in Chapter 4, which moves more freely through graph

space. Whilst the PC-algorithm (Spirtes et al., 2000; Korb and Nicholson, 2011),

as described in Section 2.7.2, has properties that often make it attractive in such

contexts, we found that the results in this situation were not robust (see Section 6.4).

6.2 Data and methods

6.2.1 Add Health

The data that we use are drawn from the National Longitudinal Study of Adolescent

Health (Add Health) that explores health-related behaviour of adolescents (Harris

et al., 2009) in the US. The questionnaire contains over 2000 questions that cover

many aspects of adolescent behaviours and attitudes. We consider the representative

sample of adolescents from Waves I and II of the in-home section, and the parental

questionnaire from Wave I of the study. The analysis is not feasible when the data

is not complete (see Section 7.2), and so individuals with missing data were removed

from the study. Removing incomplete samples leaves 5975 individuals in the study.

Our measure of depression is a self-assessed scale based upon the Centre for Epidemi-

ologic Studies Depression Scale (CES-D) (Radloff, 1977). Two questions from the

20-item scale are omitted from Add Health, and two are modified, and so we scale

the score given by the available questions (Goodman, 1999). A Receiver Operating

Characteristic (ROC) analysis showed that thresholds of 24 for females and 22 for

males provided the best agreement with clinical assessments of depression (Roberts

et al., 1991). We use this threshold to create a binary indicator of depression status.

Many of the remainder of the variables that we consider (Table 6.1) are drawn from
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the risk factors described in the depression literature, and the mental health litera-

ture more generally. A recent review (Patel et al., 2007) described a wide range of

factors that are associated with poor mental health in young people, including gen-

der, poverty, violence and the absence of social networks in the local neighbourhood.

The quality of relationships with parents is also thought to be important, especially

with the mother (Holt et al., 2008), as are parental alcohol problems (Obot and

Anthony, 2004) and parental discord (Holt et al., 2008). The individual’s use of al-

cohol, drugs, smoking and HIV/AIDS are all also associated with depression (Brown

et al., 1996; Battles and Wiener, 2002). Physical exercise has been proposed in some

studies as a useful intervention for the management of depression, but many of these

studies have been deemed to be poor quality (Larun et al., 2006).

Table 6.1: The labels used in the plots below, the number of categories (r), and the
exact wording of the question. The ID(s) of the relevant variables in the Add Health
dataset are in parentheses. See www.cpc.unc.edu/projects/addhealth for full details
of all of these questions.

Label r Question

Female 2 Interviewer, please confirm that R’s sex is (male) fe-
male. (BIO SEX)

Hispanic/Latino 2 Are you of Hispanic or Latino origin? (H1GI4)
White 2 What is your race? [White] You may give more than

one answer (H1GI6A)
Black/African
American

2 What is your race? [Black or African American] You
may give more than one answer (H1GI6B)

American Indian/
Native American

2 What is your race? [American Indian or Native Amer-
ican] You may give more than one answer (H1GI6C)

Asian/Pacific
Islander

2 What is your race? [Asian or Pacific Islander] You may
give more than one answer (H1GI6D)

Other race 2 What is your race? [Other] You may give more than
one answer (H1GI6E)
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Skips school 4 [If SCHOOL YEAR:] During this school year [If SUM-
MER:] During the 1994–1995 school year how many
times HAVE YOU SKIPPED/DID YOU SKIP school
for a full day without an excuse? (H1ED2; H2ED2)

Experiences
prejudice

3 [If SCHOOL YEAR:] Students at your school are prej-
udiced [If SUMMER:] Last year, the students at your
school were prejudiced. (H1ED21; H2ED17)

In physical fights 4 In the past 12 months, how often did you get into a
serious physical fight? (H1DS5; H2FV16)

Didn’t present
to doctor

2 Has there been any time over the past year when you
thought you should get medical care, but you did not?
(H1GH26; H2GH28)

Severely injured 3 Which of these best describes your worst injury during
the past year? (H1GH54; H2GH47)

Have HIV/AIDS 2 Have you ever been told by a doctor or a nurse that
you had. . . HIV/AIDS (H1CO16D; H2CO19D)

Seen shooting 3 During the past 12 months, how often did each of the
following things happen? You saw someone shoot or
stab another person. (H1FV1; H2FV1)

Mother warm/loving 4 Most of the time, your mother is warm and loving to-
ward you. (H1PF1; H2PF1)

Been suspended 2 Have you ever received an out-of-school suspension from
school? (H1ED7; H2ED3)

Been expelled 2 Have you ever been expelled from school? (H1ED9;
H2ED5)

Good health 3 In general, how is your health? Would you
say. . . (H1GH1; H2GH1)

Talks to neighbours 2 In the past month, you have stopped on the street
to talk with someone who lives in your neighborhood?
(H1NB2; H2NB2)

Age 5 Age at interview, computed from date of birth, and
date of interview (Constructed from IYEAR, IMONTH,
IDAY, H1GI1Y, H1GI1M)

Live with mother 2 Indicator variable (Constructed from H1HR3A-T;
H2HR4A-Q)

Live with father 2 Indicator variable (Constructed from H1HR3A-T;
H2HR4A-Q)

Smoker 4 Frequency of smoking (Constructed from H1TO1/2/5;
H2TO1/5)
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Drinks alcohol 4 Frequency and amount of drinking alcohol (Con-
structed from H1TO12/15/18; H2TO15/19/22)

Exercises 3 Amount of exercise (Constructed from H1DA4/5/6;
H2DA4-6)

Depressed 2 Rescaled CES-D, following (Goodman, 1999) (Con-
structed from H1FS1-18; H2FS1-18)

Victim of violence 2 Indicator variable (Constructed from H1FV2-6;
(H2FV2-5)

Family bereavement 3 Number of bereavements (Constructed from
H1NM2/F2, H1FP24A1-5; H2NM4/F4, H2FP28A1-3)

Strong academically 4 Quartiles (Constructed from H1ED11-4; H2ED7-10)
Drug user 2 Indicator variable (Constructed from

H1TO30/34/37/41; H2TO44/50/54/58)

Family poor 5 Census Bureau measure of poverty (Constructed from
H1HR2/3/7/8, PA55)

Parents unhappy
together

4 (Parent asked.) Do you and your partner argue/talk of
separating? (Constructed from PB19/20)

Parent drinks 4 (Parent asked.) Number/frequency of drinks (Con-
structed from PA61/2)

Householder smokes 3 (Parent asked.) Either parent or others in household
smokes (Constructed from PA63/4)

Has learning
disability

2 (Parent asked.) Does (he/ she) have a specific learning
disability, such as difficulties with attention, dyslexia,
or some other reading, spelling, writing, or math dis-
ability? (PC38)

Parents aid decisions 5 (Parent asked.) How often would it be true for you to
make each of the following statements about {child’s
name}? {Child’s name} and you make decisions about
(his/ her) life together. (PC34B)

6.2.2 Methods

We will use structural inference of Bayesian networks to explore the relationships

between variables in the Add Health study. We use the usual multinomial-Dirichlet

formulation (Section 2.5.2). We choose a graph prior π(G) ∝ 1 that is flat across the

space of graphs, and we will approximate the posterior distribution using MCMC.
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Gibbs sampler

Figure 6.1: Convergence diagnostics for MC3 (left) and the Gibbs sampler (right)
for the Add Health data. The posterior edge probabilities given by two independent
runs are plotted against each other. When the two runs give the same estimates
of the posterior edge probabilities, all of the points appear on the line y = x. The
two Gibbs runs give similar posterior edge probabilities, but the MC3 runs do not.
(5 runs of 750,000 samples (MC3) or 100,000 samples (Gibbs) of each sampler were
performed; the first half of the samples were discarded as burn-in; mean Pearson
correlation between runs was 0.9999 ± 0.0002 (standard deviation) for Gibbs and
0.6322± 0.0477 for MC3.)

6.3 Results

The variables that we consider are detailed in Table 6.1. As is common when using

graphical models (Cox and Wermuth, 1996), all of these variables were grouped,

initially into ‘Background’, ‘Wave I’ and ‘Wave II’, and then refined into whether the

question asked about the long- or short-term, as shown in Table 6.2. These groups

define constraints on the Bayesian networks that are considered. Specifically, no

edges can be directed backwards through the groups. Edges, however, are allowed

within groups. For example, no edge is allowed to be directed into ‘Gender’, and

no edge can pass backwards in time, for example, from Depression at Wave II to

Depression at Wave I. Additionally, no edge can pass from a short-term variable to

a long-term variable in the same wave, for example, from Depressed at Wave I to

Have HIV/AIDS at Wave I.
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We precomputed the local scores, and then drew 100,000 samples (the first half

of which were discarded as burn-in) using the Gibbs sampler (Chapter 4), which

took 30 minutes (on a single core of a cluster computer). The graph space was

constrained such that no node had more than 3 parents, to ensure Equation 1 could

be evaluated.

We ran 5 independent samplers, with disparate initial states. This enables a simple

test of convergence to be performed that compares the posterior edge probabilities

obtained from each of the independent runs (Robert and Casella, 2004). The agree-

ment between runs can be examined graphically by plotting the edge probabilities

against each other (Figure 6.1). Mean Pearson correlation coefficients between edge

probabilities from pairs of runs were 0.9999 ± 0.0002 (standard deviation) for the

Gibbs sampler and 0.6322± 0.0477 for MC3. The agreement between the indepen-

dent runs of the Gibbs sampler gave us confidence in our results, in contrast to the

large disagreements between MC3 runs. In addition, cumulative edge probability

plots for each edge showed regular excursions around the mean (Yu and Mykland,

1998), and a numerical diagnostic (Gelman and Rubin, 1992) monitoring the num-

ber edges in the sampled graph also clearly suggested that sufficient samples had

been drawn (R̂ ≈ 1.0).

The samples drawn using MCMC allow the posterior distribution of Bayesian net-

works to be approximated. In particular, the samples can be used to estimate the

posterior edge probability P (e | X) with e ∈ E. Figure 6.2 displays all edges with

posterior probability of at least 0.5.

Our focus is on depression, the parents of which in Figure 6.2 we observe are “Didn’t

present to doctor” and “Gender”. It is important, however, to note that the model

does not imply that these are the only factors that are important. For example,

“Drug user” at Wave I is related to depression through “Didn’t present to doctor”
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Figure 6.2: Summary network for the Add Health variables considered. The edge
colours are given by the Kendall correlation coefficients between the two variables,
with green edges corresponding to positive correlation, and red edges to negative
correlation. The strength of the correlation is indicated by the transparency of
the line, with greater transparency indicating weaker correlation. The variables
‘Depressed (1)’, ‘Depressed (2)’ and their parents are shown in bold.
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Figure 6.3: Conditional probability of depression. The conditional probability of be-
ing depressed at Wave II given the variable indicated is changed to the level indicated
by the colours, conditional on the DAG shown in Figure 6.2. For binary variables,

is true, and is false; shades of grey indicate intermediate levels. Wave number
(time point) is indicated in parentheses. Only variables for which the conditional
probability differed between levels by at least 0.005 are displayed.

at Wave I and II (Figure 6.2).

These effects are shown in Figure 6.3, which gives the conditional probability of

being depressed at Wave 2 when a particular variable is set to a specific value.

We see that general health, violence, academic performance and drug use all affect

the conditional probability of depression at Wave II. To compute this probability,

links from the parents of the variable in which we ‘intervene’ are removed; this is

equivalent to the ‘do-operator’ in the terminology of Pearl (Pearl, 2009).

The analysis reveals the interaction between the many aspects of life that have an

impact on depression. The connection between the depression and its two parents

in Figure 6.2 have been previously discussed in the literature. The importance of

gender in depression is particularly extensively documented in the literature (Patel

et al., 2007). The connection to a failure in seeking medical care even when the

individual thinks they should has also been discussed in the literature, often in
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terms of poor accessibility of health care services for young people (Rickwood et al.,

2007; Patel et al., 2007). Several decades of research have revealed the complex

causation of depression in young people, as suggested by this study (Patel et al.,

2007).

6.4 Discussion

There is a large amount of information held in large social science questionnaires.

In this chapter we have examined a graphical model approach to inferring structure

amongst the variables in such questionnaires. In contrast to the standard regression-

based approaches, a graphical model approach forgoes the need to specify a partic-

ular variable as the response. Instead, a more comprehensive estimate of the entire

structure of the underlying system can be obtained. Regression approaches posit

a particular conditional-independence structure, while graphical approaches allow

consideration of more general structures.

The limitations of this study include those of all similar studies using observational

data that are collected for multiple audiences. These forms of data, including the

longitudinal data used here, do not permit strong causal conclusions to be drawn.

In particular there may be important variables that we have not included in the

analysis. However, the results are consistent with studies that have used other

research approaches including experimental designs. The connection between an

individual not seeking medical care when they think they should and depression

supports current practice guidance in the UK (National Institute for Health and

Clinical Excellence, 2005) where there is an emphasis on providing access to health

care through the school system rather than expecting young people to seek health

care themselves. Not seeking medical care despite believing it should be sought is

a complex factor because it captures both barriers to receiving medical care within
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the individual, such as lacking motivation to seek care, and barriers within the

individual’s environment, such as poor access to care. This complexity may mean

that the variable encapsulates various different characteristics related to depression,

and thus may form a ‘marker’ for depression. However, the use of a form of the

question “Has there been any time over the past year when you thought you should

get medical care, but you did not?” as a screening question in different contexts

needs further consideration.

This method of analysis clarifies the complexity of depression and suggests why

when using traditional methods of analysis it can be difficult to clarify whether or

not factors such as experiences in the family, in the wider community and at school

impact on the experience of depression for young people. It may also suggest why

interventions for prevention of depression have not yet been demonstrated to be cost

effective (Merry, 2007).

We performed structural inference for the Bayesian network using a Gibbs sampler

(introduced in Chapter 4), because MC3 did not mix in a reasonable time. We have

also found the Gibbs sampler to be superior to the REV sampler (Grzegorczyk and

Husmeier, 2008), and it has the advantage of avoiding the need to consider an order

prior as required by order MCMC methods (Ellis and Wong, 2008; Friedman and

Koller, 2003), which induces a bias that can only be corrected exactly by NP-hard

computation of a correction factor.

An alternative to the MCMC method used here is the PC-algorithm (Spirtes et al.,

2000; Korb and Nicholson, 2011), described in Section 2.7.2. This method is com-

putationally efficient and is asymptotically consistent. However, to test whether the

sample size available here is sufficient to reach the asymptotic regime, we applied

the PC-algorithm (without constraints) to 10 different subsamples, each containing

90% of the data. We found that these results differed significantly, with a mean 84

in structural Hamming distance between the pairs of completed partially directed
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acyclic graphs (CPDAGs) given for the subsamples.
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Chapter 7

Discussion

In this thesis we have applied and developed statistical methods that manage uncer-

tainty about the structure or form of models. We have demonstrated the application

of structural inference of Bayesian networks and related models for large social sci-

ence datasets, and have developed a new method for approximating the relevant

posterior distribution. In Chapter 3 we compared models for flexible discrete mod-

els of risk taking. Then in Chapters 4 and 5, we developed and tested a novel MCMC

sampler for structural inference of Bayesian networks. In Chapter 6 we used this to

investigate depression in adolescents.

There are various extensions and further areas in application, modelling, and es-

timation that would be interesting to investigate in future work. We first discuss

extensions that are particularly relevant to Chapter 3 and then to Chapter 6. We

then consider extensions of the modelling framework that we use throughout the

thesis. Finally we consider developments of the MCMC methodology, and other

alternative approaches.
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7.1 Well-being and risky behaviour

In Chapter 3, we gave evidence in support of a relationship existing between well-

being and risk taking. There is further work that could be done to extend the results.

Some of the evidence in the chapter is not definitive because happiness cannot

be randomly assigned by an experimenter. Even assuming the direct relationship

between the factors exists, without randomly assigning happiness, we can not be

sure whether subjective well-being affects risk taking behaviour, or vice-versa, or

whether there are effects in both directions.

One approach to investigating this further is through a simple experiment, that as-

sesses the risk taking characteristics of individuals when they are induced to be more

and less satisfied. The selection of the method by which satisfaction is controlled

exogenously (i.e. by the experimenter) would clearly be key. In particular, the dif-

ference between short-term and long-term well-being would need consideration. It

is likely that only short-term satisfaction could be controlled, but the effects of this

may be unlike the effects of long-term satisfaction.

7.2 Depression in adolescents

In Chapter 6 we highlighted the importance of an adolescent’s feeling they should

have seen a doctor, but did not. This effect has been mentioned before in the

literature (as described in Section 6.4) but has not been highlighted before.

Our finding came from an exploratory analysis of observational data, from which

it is not usually possible to draw strong causal conclusions. Two areas of particu-

lar concern are the removal of samples with missing data and the possibility that

important variables that have been omitted, so are latent. It is possible to handle

missing data formally, for example by using structural EM (Friedman, 1998), and
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similarly consider latent variables (e.g. shared genetics driving both child and parent

behaviour). However, doing so whilst robustly exploring large model spaces remains

an open challenge. Tackling these computational and inferential issues is a key area

for future research.

Another area for future research is to consider the complementary predictive model.

The model that we consider in Chapter 6 includes within-time-slice edges, for exam-

ple from “Didn’t present to doctor (wave 2)” to “Depressed (wave 2)”. The model

is thus explanatory, rather than predictive. A predictive model can be constructed

by including only the depression indicator at Wave 2. This model may be useful

when the aim is early identification of adolescents at risk of future depression, as

might be the case in clinical practice.

7.3 Model enhancements

In the following section, we consider generalisations and issues with the likelihood,

priors and posterior summaries that we use in this thesis.

7.3.1 Errors-in-variables models

In regression, the predictor variables are typically assumed to be observed without

error. However, in a Bayesian network model variables act as both predictors and

outcomes. In using a regression model for the local likelihood, we are thus assuming

that the variables are observed without error when they act as predictors, but are

observed with a form of error or randomness when they act as outcomes. Errors-in-

variables models (e.g. Dellaportas and Stephens, 1995), which acknowledge errors in

the observation of predictors, may thus provide an improved method for modelling

in this setting.
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7.3.2 Parameter priors

In the applications we used a multinomial-Dirichlet model for the local conditional

distributions, which yields a closed-form marginal likelihood. This specification has

the advantage of being a very flexible model; it is non-parametric in the sense that

no constraints are placed on the distribution, allowing its form to be guided by

the data. However, the number of parameters in the local distributions for this

model increases exponentially with the number of parents, which may mean that

overly-sparse models are preferred. This increase in the number of parameters is

particularly problematic when the sample size of the available data is small, be-

cause models with many parameters cannot be assessed adequately without a large

dataset. The large sample size of the datasets used here minimises this issue, but

it would nonetheless be worthwhile to consider more compact parameterisations.

However, estimating such models (Friedman and Goldszmidt, 1996) significantly

increases the complexity of the model space, which makes such an approach com-

putationally challenging in this setting.

There are also unsatisfactory aspects to the g-prior when it is used for model se-

lection. These relate to when the improper prior with g → ∞ is used, and the

bounded nature of the associated Bayes factors when overwhelming evidence im-

plies one particular model. These are discussed in Liang et al. (2008) and Berger

and Pericchi (2001). Various alternatives to the g-prior that ameliorate some of its

unsatisfactory aspects have been advanced, including using a mixture of g-priors

(Liang et al., 2008), an approach that has been generalised by Deltell (2011).

7.3.3 Model priors

In this thesis, we used a prior that is flat over the space of DAGs. An unsatisfactory

aspect of this prior is that it places higher prior probability on models that include
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more variables. Consider regression with p covariates. The problem arises because

there are more models with pγ+1 variables than with pγ variables, when pγ+1 < p/2.

This has been noted by various authors, including Scott and Berger (2010). Taking

a uniform prior on the number of variables in the model gives the following prior.

π(Mγ) =
1

p+ 1

(
p

pγ

)−1

Alternatively, a beta prior can be used for the inclusion probability of each possible

predictor (Ley and Steel, 2009). Where there is particular knowledge of interac-

tions, the prior developed by Chipman (1996) that assigns differing prior weight to

particular interactions may be useful.

7.4 Posterior approximation

In this section, we consider improvements to the MCMC methodology used in this

thesis, and discuss the merits of other approaches.

7.4.1 Convergence diagnostics

Assessing convergence of Markov Chains on a space as large as the space of Bayesian

networks is not straightforward. In the thesis, we focused on comparisons of poste-

rior edge probabilities across runs.

One of the most satisfactory methods in general for assessing convergence is to

examine regeneration times. Regeneration in Markov Chain occurs at times {τt : t =

1, . . . , T} when, conditioned on τt for some t ∈ {1, . . . , T}, the sample paths of the

Markov Chain before and after τ are independent. While the usual Central Limit

Theorem does not apply to Equation 2.5, if we observe the Markov chain until a

fixed number of regenerations have occurred, the usual sample mean based upon the
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samples drawn between the first and last regeneration is a consistent estimator for

the mean. This idea was proposed as a convergence assessment method by Mykland

et al. (1995); see also Robert (1995).

On discrete spaces, regenerations are easy to define: incursion into any subset of the

state space can be defined to constitute a regeneration. We would like regenerations

to occur frequently, and so it is sensible to choose the regeneration set to be of

significant posterior mass. The posterior mode is a good choice, if a good estimate

of it is available.

7.4.2 Order approaches

An alternative MCMC sampler for structural inference in Bayesian networks is

MCMC in order-space (Friedman and Koller, 2003; Ellis and Wong, 2008; Eaton

and Murphy, 2007). This approach samples total orders rather than Bayesian net-

works directly. Often this improves the mixing of the sampler. However, to use this

sampler, a prior over the space of order must be constructed. Unfortunately, the

number of total orders with which a Bayesian network is consistent is not constant,

and so only an approximation to standard graph priors can be used in this approach

(Ellis and Wong, 2008; Eaton and Murphy, 2007). In contrast, no prior over order

space is required for the REV sampler, or for the Gibbs sampler used here. Given

this, and results in Grzegorczyk and Husmeier (2008) that suggest that the REV

sampler matches the performance of order MCMC, we view the REV sampler and

Gibbs sampler as more satisfactory.

These approaches have more recently led to exact methods (Koivisto and Sood, 2004;

Parviainen and Koivisto, 2009; Tamada et al., 2011) using dynamic programming.

However, the exact methods are extremely computationally demanding, and the

same form of graph priors is required for these methods as for order space MCMC.
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7.4.3 Improvements to the Gibbs sampler

Highlighting the connection to Bayesian variable selection, as the Gibbs sampler

does, suggests further possibilities. Evaluation of the exact posterior of the associ-

ated variable selection problem is required for exact sampling from the conditional

distribution P (FW | G−W ,X). When this is computationally prohibitive, alterna-

tives are possible. In particular, we can substitute a Metropolis step in place of the

Gibbs step when the required conditional distribution is not available. This form

of sampler is known as Metropolis-within-Gibbs (Müller, 1991). When |W | = 1,

the conditional distribution P (FW | G−W ,X) is identical to the posterior distribu-

tion of the corresponding Bayesian variable selection. This correspondence means

that the Metropolis-within-Gibbs move can exploit algorithms designed for variable

selection. The most straightforward move is a component-wise Gibbs move of the

form used by Smith and Kohn (1996). However, using such a ‘small’ move negates

the advantages of the Gibbs sampler introduced here. Instead, a blocked Gibbs

move for the variable selection, as discussed by George and McCulloch (1997) and

Kohn et al. (2001), is more appropriate. Other alternatives include the version of

the Swendsen-Wang algorithm proposed by Nott and Green (2004). When |W | > 1

there are more complications.

A drawback of all of these variations is that the exact form of the conditional

distribution is no longer used. Instead, a single draw from a random-walk type

Metropolis proposal is made. As is often the case with random-walk Metropolis

proposals, it is difficult to make large moves without the acceptance probability

becoming small. One approach that may be useful in this context is Multiple-try

Metropolis (Liu et al., 2000), in which a set of proposals is drawn, and then a final

proposal is sampled from the set of proposals. While such a sampler will usually

make proposals with larger acceptance probabilities, the extra computation required

to draw the set of proposals may mean that, adjusting for computation time, it is
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not an improvement.

Throughout Chapter 5, we used |W | = 3 and found this yielded a sampler with

attractive properties. In some settings it may be advantageous to use |W | as a

tuning parameter for the algorithm. There is clearly a trade-off: increasing |W |

increases the time taken to evaluate P (FW | G−W ,X), but also increases move size,

which should improve the convergence rate of the sampler. Another possibility is

to choose |W | at each step according to some distribution, so that a mixture of

different block sizes is used.

Another marginal improvement in the properties of the sampler may be possible

by converting the Gibbs sampler into a Metropolised Gibbs sampler, in which the

graph sampled at each step is always different from the current graph. As noted by

Liu (1996), the asymptotic variance of an estimator based upon such a sampler will

be lower than a Gibbs sampler. However, sometimes the Gibbs sampler converges

faster (Frigessi et al., 1993).

The Gibbs sampler does not work in all situations. In Chapter 5 we gave an example

of the Gibbs sampler using data from the New York part of the BRFSS study. The

Gibbs sampler converges well for this example, but does not converge rapidly for

the corresponding variables for the full BRFSS study. The difficulty stems from the

large sample size, which makes the posterior distribution ‘peaky’ to such an extent

that even the Gibbs sampler does not mix well. There are number of possible ap-

proaches that help. Tempering, as in Barker et al. (2010), may be another approach

that would help in this situation, because it would reduce the ‘peakiness’ of the

distribution being explored.
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7.4.4 Generalising the approach

A key part of the thesis is an improved MCMC sampler for structural inference

of Bayesian networks. The Gibbs sampler works by considerably increasing the

variance of the proposal distribution. In a Metropolis-Hastings framework, this

would usually be undesirable because of the concomitant decrease in the acceptance

rate. Instead, we consider the appropriate conditional distribution of large blocks

of random variables, thus constructing a Gibbs sampler. Approximating discrete

distributions with enormous sample spaces is a common problems in many areas of

statistics. Using a Gibbs sampler on discrete spaces with large blocks may also be

useful in these contexts.
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Appendix A

Data used in Chapter 5

The following variables from the BRFSS data were used in the analysis.

SEX, _AGE_G, _RACEGR2, MARITAL, _CHLDCNT, _INCOMG, USEEQUIP,

_HCVU65, MEDCOST, _SMOKER3, _ASTHMST, _RFDRHV3, _RFBING4,

QLREST2, _RFSEAT3, _TOTINDA, _BMI4CAT, DIABETE2, EMTSUPRT,

LSATISFY, _EXTETH2, _AIDTST2, _DENVST1, IMONTH

The following quantities were included in our analysis of the flow cytometry data,

including the binding of antibodies, viability, DNA content. Full details can be

found in Bendall et al. (2011).

191-DNA, 193-DNA, 103-Viability, 115-CD45, 139-CD45RA, 141-pPLCgamma2,

142-CD19, 144-CD11b, 145-CD4, 146-CD8, 148-CD34, 150-pSTAT5, 147-CD20,

152-Ki67, 154-pSHP2, 151-pERK1/2, 153-pMAPKAPK2, 156-pZAP70/Syk, 158-CD33,

160-CD123, 159-pSTAT3, 164-pSLP-76, 165-pNFkB, 166-IkBalpha, 167-CD38,

168-pH3, 170-CD90, 169-pP38, 171-pBtk/Itk, 172-pS6, 174-pSrcFK, 176-pCREB,

175-pCrkL, 110_114-CD3
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Additional figures for Chapter 5
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Figure B.1: Log scores of the graphs visited by the three MCMC samplers in 10
independent runs on the ALARM data, with n = 1000, initialised at disparate initial
conditions. Iteration number is displayed on a log10 scale. Each sampler was run
for 30 minutes. In this time, MC3 drew the most samples. However, neither MC3

nor the REV sampler routinely reach the plateau reached by the Gibbs sampler.
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Figure B.2: Major discrepancies between pairs of the 10 independent runs, for each
MCMC sampler on the BRFSS data. For each pair of independent runs, the number
of major discrepancies is the number of edges that have estimated posterior edge
probability above 0.9 in one run and estimated posterior edge probability below 0.1
in the other run. The boxplot shows the range of discrepancies between runs.



Figure B.3: Log scores of the graphs visited by the three MCMC samplers in 10
independent runs on the BRFSS data, initialised at disparate initial conditions.
Iteration number is displayed on a log10 scale. Each sampler was run for 30 minutes.
In this time, MC3 drew the most samples. However, neither MC3 nor the REV
sampler reach the plateau reached by the Gibbs sampler.



Figure B.4: Log scores of the graphs visited by the three MCMC samplers in 10
independent runs on the flow cytometry data, initialised at disparate initial condi-
tions. Iteration number is displayed on a log10 scale. Each sampler was run for 8.5
hours. In this time, MC3 drew the most samples, but never breached −3646099 in
log score, and so is not shown. The REV sampler also does not reach the plateau
reached by the Gibbs samplers.
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Figure B.5: Stability of estimators across bootstrapping. 10 bootstrap samples were
drawn from the BRFSS data. The structural Hamming distance (SHD) between the
graphs given by each estimator on each bootstrap sample is shown. Smaller SHD
means that the graphs are structurally more similar, and so the estimator is more
stable. In (A) the edge probabilities were thresholded so that the resulting graphs
had the same edges as the point estimate graph given by the Xie-Geng method. In
(B) the graphs are given by thresholding at 0.5 the edge probabilities from the 3
MCMC samplers.
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Figure B.6: The edges with posterior edge probability greater than 0.5, as given by
the Gibbs sampler for the BRFSS data. The gray-to-black scale gives an indication
of the posterior edge probability. Note that no hard constraints were specified to
ensure, for example, an indegree of 0 for ‘Age Group’; such constraints were omitted
to keep the implementations of the various methods simple.
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Figure B.7: Major discrepancies between pairs of the 10 independent runs, for each
MCMC sampler on the flow cytometry data. For each pair of independent runs, the
number of major discrepancies is the number of edges that have estimated posterior
edge probability above 0.9 in one run and estimated posterior edge probability below
0.1 in the other run. The boxplot shows the range of discrepancies between runs.



Figure B.8: Convergence diagnostics for all 10 runs of each MCMC sampler for the
flow cytometry data. In each cell, the posterior edge probabilities given by two
independent runs are plotted against each other. Each point represents a single
edge. The lower half of both panels compares runs of the Gibbs sampler; the upper
half compares runs of the MC3 and the REV sampler respectively. When the two
runs give the same estimates of the posterior edge probabilities, all of the points
appear on the line y = x. The blue to orange colour scale represents the distance
from this line, with orange points the furthest away.
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Figure B.9: The edges with posterior edge probability greater than 0.5, as given by
the Gibbs sampler for the flow cytometry data. The gray-to-black scale gives an
indication of the posterior edge probability.
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Figure B.10: Stability of estimators for the flow cytometry data across bootstrap-
ping, as measured by SHDs. 10 bootstrap samples were drawn from the flow cy-
tometry data. The structural Hamming distance (SHD) between the graphs given
by each estimator on each bootstrap sample is shown. Smaller SHD means that the
graphs are structurally more similar, and so the estimator is more stable. In (A)
the edge probabilities were thresholded so that the resulting graphs had the same
edges as the point estimate graph given by the Xie-Geng method. In (B) the graphs
are given by thresholding at 0.5 the edge probabilities from the 3 MCMC samplers.



Appendix C

Software

The software developed for this thesis is structmcmc1, a R-package (R Development

Core Team, 2011) for performing Bayesian structural inference for Bayesian networks

using Markov chain Monte Carlo (MCMC). The software implements both MC3

(Section 2.6.4), and the Gibbs sampler (Chapter 4). Exact posterior distributions

can also be computed for small networks (p ≤ 6, or so), as described in Section 2.6.1.

The analyses using the REV sampler, PC-algorithm and the Xie-Geng method were

conducted using versions of existing software. Marco Grzegorczyk and Dirk Hus-

meier provided their reference implementation of the REV sampler, which is im-

plemented in MATLAB. We used a modified (faster) version of the implementation

of the PC-algorithm (Section 2.7.2) contained in pcalg (Kalisch et al., 2011). The

implementation of Xie and Geng (2008) used is that which accompanies the original

paper2.

1Available at http://go.warwick.ac.uk/rgoudie/structmcmc
2Available at http://www.mathworks.com/matlabcentral/fileexchange/20678
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Meinshausen, N. and Bühlmann, P. (2010) Stability selection. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 72, 417–473.

Merry, S. N. (2007) Prevention and early intervention for depression in young people

— a practical possibility? Current Opinion in Psychiatry, 20, 325–329.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. and Teller, A. H. (1953)

Equation of state calculations by fast computing machines. The Journal of Chem-

ical Physics, 21, 1087–1092.

Mukherjee, S. and Speed, T. P. (2008) Network inference using informative priors.

Proceedings of the National Academy of Sciences of the United States of America,

105, 14313–14318.

181



Müller, P. (1991) A generic approach to posterior integration and Gibbs sampling.

Technical report, Purdue University.

Munro, I. (1971) Efficient determination of the transitive closure of a directed graph.

Information Processing Letters, 1, 56–58.

Mykland, P., Tierney, L. and Yu, B. (1995) Regeneration in Markov chain samplers.

Journal of the American Statistical Association, 90, 233–241.

National Institute for Health and Clinical Excellence (2005) Depression in Children

and Young People. London: NICE.

Needham, C. J., Bradford, J. R., Bulpitt, A. J. and Westhead, D. R. (2007) A primer

on learning in Bayesian networks for computational biology. PLoS Computational

Biology, 3, e129.

Nott, D. J. and Green, P. J. (2004) Bayesian variable selection and the Swendsen-

Wang algorithm. Journal of Computational and Graphical Statistics, 13, 141–157.

Obot, I. S. and Anthony, J. C. (2004) Mental health problems in adolescent children

of alcohol dependent parents: Epidemiologic research with a nationally represen-

tative sample. Journal of Child & Adolescent Substance Abuse, 13, 83–96.

Offer, A. (2006) The Challenge of Affluence: Self-Control and Well-being in the

United States and Britain Since 1950. Oxford: Oxford University Press.

Offer, A., Pechel, R. and Ulijaszek, S. (2010) Obesity under affluence varies by

welfare regimes: the effect of fast food, insecurity, and inequality. Economics and

Human Biology, 8, 297–308.

O’Hagan, A. and Forster, J. (2004) Kendall’s Advanced Theory of Statistics:

Bayesian Inference. Chichester: John Wiley and Sons.

Oswald, A. J. (1997) Happiness and economic performance. Economic Journal, 107,

1815–1831.

182



Oswald, A. J. and Wu, S. (2010) Objective confirmation of subjective measures of

human well-being: evidence from the USA. Science, 327, 576–579.

Parviainen, P. and Koivisto, M. (2009) Exact structure discovery in Bayesian net-

works with less space. In Proceedings of the Twenty-Fifth Annual Conference on

Uncertainty in Artificial Intelligence (UAI-09), pp. 436–443. Corvallis, OR: AUAI

Press.

Patel, V., Flisher, A. J., Hetrick, S. and McGorry, P. (2007) Mental health of young

people: a global public-health challenge. The Lancet, 369, 1302–1313.

Pearl, J. (2009) Causality: Models, Reasoning, and Inference. New York: Cambridge

University Press, 2nd edition.

Pickrell, T. M. and Ye, T. J. (2008) Traffic safety facts: seat belt use in 2008 –

overall results. Research Note DOT HS 811 036, National Highway Traffic Safety

Administration, Washington, DC.

Pischke, J. S. (2011) Money and happiness: evidence from the industry wage struc-

ture. NBER Working Paper 17056.

Pittau, M. G., Zelli, R. and Gelman, A. (2009) Economic disparities and life satis-

faction in European regions. Social Indicators Research, 96, 339–361.

R Development Core Team (2011) R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN

3-900051-07-0.

Radcliff, B. (2001) Politics, markets, and life satisfaction: the political economy of

human happiness. American Political Science Review, 95, 939–952.

Radloff, L. (1977) The CES-D scale: A self-report depression scale for research in

the general population. Applied Psychological Measurement, 1, 385–401.

183



Raftery, A. E. (1995) Bayesian model selection in social research. Sociological

Methodology, 25, 111–163.

Raftery, A. E., Madigan, D. and Hoeting, J. A. (1997) Bayesian model averaging

for linear regression models. Journal of the American Statistical Association, 92,

179–191.

Raiffa, H. and Schlaifer, R. (1961) Applied Statistical Decision Theory. Cambridge,

MA: MIT Press.

Rickwood, D. J., Deane, F. P. and Wilson, C. J. (2007) When and how do young

people seek professional help for mental health problems? The Medical Journal

of Australia, 187, S35–S39.

Ripley, B. D. (1979) Algorithm AS 137: Simulating spatial patterns: Dependent

samples from a multivariate density. Journal of the Royal Statistical Society:

Series C (Applied Statistics), 28, 109–112.

Robert, C. P. (1995) Convergence control methods for Markov chain Monte Carlo

algorithms. Statistical Science, 10, 231–253.

Robert, C. P. (2007) The Bayesian Choice: From Decision-Theoretic Foundations

to Computational Implementation. New York: Springer.

Robert, C. P. and Casella, G. (2004) Monte Carlo Statistical Methods. New York:

Springer.

Roberts, G. O. (1998) Optimal Metropolis algorithms for product measures on the

vertices of a hypercube. Stochastics and Stochastics Reports, 62, 275–283.

Roberts, G. O. and Rosenthal, J. S. (1998) Markov-chain Monte Carlo: Some prac-

tical implications of theoretical results. Canadian Journal of Statistics, 26, 5–20.

184



Roberts, G. O. and Sahu, S. K. (1997) Updating schemes, correlation structure,

blocking and parameterization for the Gibbs sampler. Journal of the Royal Sta-

tistical Society: Series B (Methodological), 59, 291–317.

Roberts, G. O. and Tweedie, R. L. (1996) Exponential convergence of Langevin

distributions and their discrete approximations. Bernoulli, 2, 341–363.

Roberts, R. E., Lewinsohn, P. M. and Seeley, J. R. (1991) Screening for adolescent

depression – a comparison of depression scales. The Journal of the American

Academy of Child and Adolescent Psychiatry, 30, 58–66.

Robins, J. M. and Greenland, S. (1986) The role of model selection in causal in-

ference from nonexperimental data. American Journal of Epidemiology, 123,

392–402.

Robins, J. M., Mark, S. D. and Newey, W. K. (1992) Estimating exposure effects by

modelling the expectation of exposure conditional on confounders. Biometrics,

48, 479–495.

Robinson, R. (1973) Counting Labeled Acyclic Digraphs. In New Directions in

Graph Theory (ed. F. Harary), pp. 239–273. New York: Academic Press.

Rosenbaum, P. R. (2002) Observational Studies. New York: Springer-Verlag.

Rubin, D. B. (2005) Causal inference using potential outcomes. Journal of the

American Statistical Association, 100, 322–331.

Sapienza, P., Zingales, L. and Maestripieri, D. (2009) Gender differences in financial

risk aversion and career choices are affected by testosterone. Proceedings of the

National Academy of Sciences of the United States of America, 106, 15268–15273.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics, 6,

461–464.

185



Scott, J. and Berger, J. (2010) Bayes and empirical-Bayes multiplicity adjustment

in the variable-selection problem. Annals of Statistics, 38, 2587–2619.

Senn, S., Graf, E. and Caputo, A. (2007) Stratification for the propensity score

compared with linear regression techniques to assess the effect of treatment or

exposure. Statistics in Medicine, 26, 5529–5544.

Silander, T., Kontkanen, P. and Myllymäki, P. (2007) On sensitivity of the MAP
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