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Forward 

This thesis presents experimental and theoretical investigation of highly oriented 

pyrolytic graphite (HOPG) and graphene as electrode materials for electrochemistry and 

utilization of electrochemistry in graphene technology. Because of the novelty of graphene 

and controversial results of prior research of graphite electrochemistry, the choice of redox 

mediators was focused mostly on outer-sphere redox mediators - established probes for 

testing electrode performance.  

Rates of interfacial electron transfer of several outer-sphere redox mediators and 

adsorption of some ferrocene derivatives on HOPG have been investigated. Experimental 

methodologies were based on conventional macroscopic voltammetry and high-resolution 

droplet-based electrochemical imaging. The latter gave rise to some highly important 

observations unattainable from macroscopic measurements. Interpretation of imaging as 

well as macroscopic voltammetry data was greatly helped by using numerical modelling 

and theorizations. A theory aiming at coherent explanation of multitude of macro- and 

microscopic data on electrode performance of graphene and graphite has been proposed. 

Additionally, and as an example of the usefulness of numerical modelling for 

electrochemical imaging, a chapter on high-resolution imaging of oxygen reduction 

reaction on polycrystalline platinum was included. It was intended to present a balanced 

view on interpretations and theorizations through general discussions and general 

assessment of experimental data. 
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Abstract 

The redox behaviour of several couples on highly oriented pyrolytic graphite (HOPG) 

and graphene has been studied using both micro- and macroscopic measurements 

supported by detailed analysis. The ET kinetics of Ru(NH3)6
3+/2+

, 

(ferrocenylmethyl)trimethylammonium (FcTMA
2+/+

), and ferrocenylcarboxylic acid 

(FcCOO
-/0

) was found fast, on the time-scale of voltammetric measurements, on a freshly 

cleaved HOPG surface, but on “aged” one, Ru(NH3)6
3+/2+

 exhibited sluggish ET, showing 

quite unusual macroscopic cyclic voltammograms. The other two couples retained their 

fast response on an “aged” surface. The surface of “aged” HOPG is proposed to consist of 

graphene layers of different thicknesses, which, from graphite to monolayer graphene, 

have progressively diminishing capacity to support fast ET specifically for Ru(NH3)6
3+/2+

. 

Such a redox-selectivity correlates with the position of formal potentials of the three redox 

couples relative to the band structure of graphene, with Ru(NH3)6
3+/2+

 being most close to 

the minimum in density of states (DOS) of undoped monolayer graphene. 

Based on macroscopic voltammetry, low grade HOPG, whose surface is abundant with 

step edges, was found not to be redox-selective in the sense described above, meaning that 

its “aged” surface was as good as fresh one. It is highly likely that step edges being a type 

of crystal lattice defects, retain their capacity for fast ET, which correlates with their 

elevated DOS, and, thus, secure fast voltammetric response of low grade HOPG in 

macroscopic experiments on these complex “aged” surfaces.  

IrCl6
2-/3-

, Fe(CN)6
3-/4-

 and the three couples discussed above were all found to have fast 

electrochemistry on freshly cleaved surfaces of high grade HOPG. Estimated 

heterogeneous rate constants were > 0.1 cm s
-1

 for Ru(NH3)6
3+/2+

 and > 1.7 cm s
-1

 for 
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IrCl6
2-/3-

 and Fe(CN)6
3-/4

. This suggests that basal planes of graphite have, though low, but 

sufficient DOS to perform ET at a rate comparable with that on some metals. Furthermore, 

these results unarguably defy those opinions, that have been long circulating in the 

published literature, stating that basal plane of HOPG (and also sidewalls of carbon 

nanotubes) are nearly inert towards ET and that the defects were solely responsible for the 

observed electrochemical activity of this material. 

The study of adsorption of three ferrocene derivatives on HOPG revealed FcTMA
+
 and 

FcCOO
-
 adsorb weakly and approximately equally whereas zero-charged FcCH2OH 

adsorbs notably more strongly. The adsorption was studied with cyclic voltammetry and 

quantitative information was extracted from the experimental data basing on a simple 

dedicated theory developed in this thesis. The “aged” surface of high grade HOPG 

exhibited enhanced adsorption as compared to fresh one, but low grade HOPG did not 

show the difference. It is suggested that the highly flat surface of high grade HOPG (large 

terraces widths) facilitates formation of airborne contaminating film made of hydrocarbons 

on, which serves as a “trap” for ferrocene derivatives owing to their largely non-polar 

ferrocene moieties. 
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4-CBD 4-carboxybenzenediazonium tetrafluoroborate 

a.u. arbitrary units 

AC Alternating Current 

ads Adsorbed 

AFM Atomic Force Microscopy 

approx Approximate 

BLG Bilayer Graphene 

C-AFM Conducting Mode Atomic Force Microscopy 

CE Counter Electrode 

CNT Carbon Nanotube 

CV Cyclic Voltammetry (Voltammogram) 
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DOS Density of States 

EBSD Electron Backscatter Diffraction  

EDL Electrical Double Layer 

ET Electron Transfer 

FcCH2OH Ferrocenemethanol 

FcCOOH Ferrocenylcarboxylic acid 

FcTMA
+
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FDM Finite Difference Method 

FEM/FEA Finite Element Method/Analysis 

FWHM Full Width as Half-Maximum 
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LSV Linear Sweep Voltammetry (Voltammogram) 

ME (graphene) Mechanically Exfoliated (graphene) 

MWR Method of Weighted Residuals 

OD Outer Diameter 

Ox Oxidized Form 

PZC Potential of Zero Charge 

QRCE Quasi-Reference Counter Electrode 

RE Reference Electrode 

Red Reduced Form 

RG ratio of radius of glass sheath to the radius of metallic disc in a UME 

RHE Reversible Hydrogen Electrode 

SECCM Scanning Electrochemical Cell Microscopy 

SECM Scanning Electrochemical Microscopy 

SEM Scanning Electron Microscopy 

SICM Scanning Ionconductance Microscopy 

SLG Single Layer Graphene 

sol Solution 

STM/STS Scanning Tunnelling Microscopy/Spectroscopy 

UME Ulra-Microelectrode 

WE Working Electrode 
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Glossary of symbols 

This is not an exhaustive list of all symbols and all their definitions used throughout this 

work. Local definitions override main ones listed below. Some symbols were allowed to 

have multiple definitions occurring in independent parts of the work. 

A i) Pre-exponential factor in transition state theory of chemical kinetics 

ii) Amplitude of sinusoid of oscillation of SECCM tip 

iii) Droplet area 

a Radius of a UME 

c Concentration 

C Parameter defined as c0K0 

c0 Initial or bulk concentration 

D Diffusion coefficient 

d Tip diameter (SECCM) 

d1 and d2 Distances defining position of the septum (SECCM) 

E Electrode potential 

e Elementary charge 

E
0 

Standard electrode potential of a given redox couple vs indicated reference 

electrode 

E
0
′ Formal electrode potential of a given redox couple 

E1/2 Half-wave potential on a LSV or the average potential of peak potentials 

on a CV 

E2 Potential difference applied between the ground and one of QRCEs 

(SECCM). 

E3/4 – E1/4 Difference in electrode potentials corresponding to ¾ and ¼ of the limiting 
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current of an LSV 

Ea/c Potential of anodic/cathodic peak current in cyclic voltammetry 

EC Voltage driving conductance (ionic) current between the barrels of the 

pipette in SECCM 

Eeff “Effective” voltage applied to the modelled domain of SECCM model 

Efin Final potential (of the electrode) 

Ein Initial potential (of the electrode) 

ES “Surface potential” or “substrate potential” is the potential driving 

electrochemical reaction on the substrate electrode (SECCM) 

F i) Faraday constant 

ii) a function 

f i) a function 

ii) Fermi function 

iii) Molar activity coefficient 

iv) Combination of parameters nF/RT 

v) Objective function 

g Parameter characterizing lateral interaction of adsorbed species in Frumkin 

isotherm of adsorption 

grad φ Gradient of a scalar function φ 

i Electric current 

iAC Alternating component of ionic current (SECCM) 

iads Current due to adsorbed species 

iC Conductance (ionic) current driven by EC (SECCM) 

iM Kinetic current at an electrode (not necessarily metal one) 

ip Peak current in cyclic voltammetry 

iS “Surface current” or “electrochemical current” driven by ES (SECCM) 
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j Density of electric current 

K i) Equilibrium adsorption constant 

ii) (acid) Dissociation constant 

K0 Potential-independent equilibrium adsorption constant 

k Boltzmann constant 

k0 Standard heterogeneous rate constant of electron transfer  

kb Generalized rate constant of loss of diazonium radical to side reactions 

ki Heterogeneous rate constant of reaction of a diazonium radical with 

electrode surface 

kr Effective potential-dependent constant of oxygen reduction reaction on Pt 

l Circumference of a half-cylinder imitating a step edge in FEM model of 

SECCM imaging experiments on HOPG or graphene 

mh Meniscus height (SECCM) 

mT Mass transfer coefficient 

mW Diameter of meniscus bottom (“meniscus width” in SECCM)  

n Number of transferred electrons per one turnover of a redox reaction 

nY Amount of adsorbed Y, mol 

nY,max Maximum possible amount of adsorbed Y, mol 

pKa Negative log10 of an acid dissociation constant  

R Universal gas constant 

Ru Uncompensated (ohmic) resistance of a solution 

s i) Thickness of the tip septum (SECCM) 

ii) “sticking coefficient”, efficiency of grafting of diazonium radicals 

T Absolute temperature 

V (Electric) potential difference, voltage 
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v Scan rate 

Vsol Voltage applied between counter and working electrode outside of double 

layer of both electrodes 

Vu Loss of potential associated with Ru 

W Probability density function of redox electrons 

zi Charge of an ion 

α Transfer coefficient, symmetry factor of transition state 

Γ Amount of adsorbed species per unit area
 

Γin Amount of adsorbed species per unit area of an electrode prior the 

commencement of potential sweep 

Γmax Amount of adsorbed species per unit area corresponding to a monolayer 

coverage
 

Γrecov Amount of adsorbed species per unit area recovered by the dedicated 

model developed herein  

Δ When occurring as a standalone symbol it is energy of electronic coupling, 

resonance integral 

  Differential operator Nabla or Del 

ΔEEDL Potential difference across electrical double layer 

ΔEp Peak-to-peak separation on a cyclic voltammogram 

ΔG Gibbs energy, free energy at constant temperature and pressure 

ΔG°ads Standards Gibbs energy of adsorption 

ΔG
0 

Standard Gibbs energy of a reaction 

ΔG
≠
 Gibbs energy of activation, energy of transition state 

Δip Difference between peak currents of the forward wave of CV with weak 

reactant adsorption and purely diffusion-controlled CV 

ε i) Energy 
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ii) Dielectrical permittivity 

ε0 Dielectrical permittivity of free space 

ε°F(RedOx) Standard Fermi energy level of redox electrons 

εF(M) Fermi energy level in an electrode 

εF(RedOx) Fermi energy level of redox electrons 

η Overpotential, overvoltage 

θ i) Tapered angle of SECCM tip 

ii) Fractional surface coverage with an adsorbed layer 

λ i) Reorganization energy of a solvation shell 

ii) Equivalent molar conductivity at infinite dilution 

μ Mobility of an ion in electric field 

ρ Density of electronic states 

σ Electric conductivity 

φ Electric potential being a function of spatial coordinates 

φbf Band-filling potential 

ψ Dimensionless parameter of reversibility of a redox reaction, introduced by 

Nicholson 
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CHAPTER 1. INTRODUCTION 

This chapter describes the importance of the electrochemistry of highly oriented 

pyrolytic graphite and graphene, its relevance for graphene-based technology and 

fundamental understanding of electrochemical processes. Several theories of interfacial 

electron transfer are described, of which, Gerischer-Marcus theory is presented at a more 

detailed level necessary for its semi-quantitative application in this thesis. 

1.1 Significance of electrochemical studies of graphene and 

graphite 

New sp
2
 carbon materials for electrochemistry have been attracting considerable and 

ever increasing interest from the scientific community in the past 20 years, starting from 

the rise of carbon nanotube research in 1990s
1,2

 and up to now when the research into the 

fundamentals and applications of graphene is very intensive.
3–5

 Another member of the sp
2
 

group is graphite. Although, investigation of its fundamental properties relevant for 

electrochemistry started back in 1970s-1980s (ref
6–10

) and significant progress of 

understanding of its behaviour has been made since then,
11–15

 there are questions yet to be 

answered. Graphite has secured its place as a conductive support in a number of 

applications e.g. electrodeposition studies,
16,17

 imaging of biomolecules,
18–20

 surface 

modification and electrocatalysis,
21,22

 but mostly it is considered as a model material for 

understanding properties of graphene and CNTs.
14,22–24

 Indeed, it is absolutely imperative 
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to build a concept of electrochemical behaviour of sp
2
 carbon materials as close to reality 

as possible.  

Graphene has a multitude of spectacular and unique physical properties,
3,5,25

 like high 

charge carrier mobility, ambipolarity of conductance,
26

 ballistic transport, room 

temperature quantum Hall effect,
27

 that guarantee its place in electronics of the future. 

Electrochemical research of graphene is significant in two aspects. First, it can serve other 

graphene based technologies by e.g. introducing a band gap in single layer graphene 

through (local) modification/ functionalization of the bulk of the graphene sheet or its 

edges.
28

 Second, electrochemical research serves (naturally) electrochemically based 

applications which include (bio)sensors,
29–32

 electrocatalysis,
33

 fuel-cells,
34

 batteries,
35,36

 

supercapacitors,
37

 and electrochemically top-gated field emission transistors.
38

 The design 

of such devices seems imponderable without a solid model of the kinetics of interfacial 

charge transfer at graphene (intrinsic material, modified material, dependency on the 

number of layers, role of the edges) and the relation between electronic structure and 

capacitance in electrolyte solutions. 

1.2 Overview of electrochemical properties of graphene 

The diversity of electrochemical properties of graphene stems from various ways in 

which graphene can be prepared as an electrode material. First of all, one should 

distinguish mechanically exfoliated (ME) and synthetic graphene (here only chemically 

vapour deposited (CVD)). ME graphene is obtained by scotch tape exfoliation of HOPG or 

natural graphite
14

 and deposition of the peeled flakes on a target substrate/support (this was 

historically first method of obtaining graphene).
25,26

 A ME graphene sample is made up of 

regions of graphene of different thicknesses and typically of the size of tens of microns 

across, but the successful preparation of predominantly single layer 1 mm large sample 

was also reported.
5
 The graphene thus obtained is considered to possess/represent 
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reference/intrinsic properties of this material and fundamental physical properties were 

measured on ME samples.
5,39

 

Although, notable progress in preparation of single layer CVD graphene has been 

made,
40–42

 there are a few challenges to overcome before this material can become a 

complete alternative to ME graphene. Apparently, two main problems are (i) the transfer of 

graphene film from a substrate it was grown on onto a target substrate (frequently it is 

oxidized silicon wafer), which is currently done with various types of polymer 

supports,
43,44

 and (ii) the polycrystalline nature of CVD graphene samples.
41,42,40

 This 

needs to be taken into account when investigating and comparing reported/measured 

properties (physical and electrochemical) of various graphene samples. 

ET kinetics of oxidation of two ferrocene derivatives - FcCH2OH and FcTMA
+
 - at 

single layer CVD graphene was measured with conventional CV
45

 and with high-

resolution electrochemical imaging
46,47

 and found to be not as fast (k0 = 0.02 – 0.1 cm s
-1

) 

as on some metals (see Section 4.1.7), indicating that electrode material may be a limiting 

factor as ferrocences are known to have faster ET kinetics.
48–52

 The kinetics of oxidation of 

FcTMA
+
 on multilayered CVD graphene as measured by SECCM was found to increase 

with the number of layers, reaching a value limited by the technique (k0 > 0.5 from six 

layers forwards).
47

 Similarly, another redox couple – Fe(CN)6
3-/4-

 – was found to have slow 

kinetics (k0 = (9-12) × 10
-4

 cm s
-1

) on single layer ME graphene.
53,54

 Moreover the same 

study
54

 reported no difference in ET kinetics with the number of layers for ME graphene 

for three fast
12,18,55–57

 redox mediators: Fe(CN)6
3-/4-

, Ru(NH3)6
3+/2+

 and IrCl6
2-/3-

. The results 

were discussed in the light of inner sphere vs outer sphere mechanisms of ET for a given 

couple and surface contamination, with the ruthenium and iron complexes being suggested 

as inner sphere redox mediators and DOS of graphene was said not to play a role in the 

observed kinetics. The fastest redox couple was IrCl6
2-/3-

 with k0 ~ 3 × 10
-2

 cm s
-1

, which is 

apparently the limit of the technique employed. 
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Lattice defects within the graphene sheet and along the edges were found to facilitate 

ET kinetics of Fe(CN)6
3-

 reduction
58

 and FcCH2OH oxidation
59

 at CVD graphene. The 

theory proposing that ET activity of sp
2
 carbons occurs almost entirely on the defects was 

elaborated based on experiments with HOPG and CNTs in the past (1990s) and will be 

discussed in the next section. 

Reactivity of graphene towards redox reactions seems to be significantly affected by the 

underlying substrate. Thus, reduction of a diazonium molecule was reported to proceed at 

higher rate at monolayer graphene and decreasingly slower on multilayers, which is 

opposite to what can be expected based on the overlap of electronic states of the graphene 

and the diazonium compound.
60

 This was attributed to the formation of electron and hole 

puddles on the substrates like SiO2 and Al2O3,
61

 which modifies the electronic structure of 

graphene in favour of the said reaction. 

1.3 Overview of electrochemical properties of HOPG 

As was said before, HOPG is significant as a modelling material for the studies of ET 

kinetics in general and on sp
2
 carbons, in particularly due its much lower and strongly 

potential-dependent DOS as compared to metals.
6,7,11

 A large amount of literature 

published in the last two decades, resulted in affirmation of the theory stating that step 

edges were responsible for all, or nearly all, of the observed electrochemical activity of 

HOPG.
11,23,62–69

 Some studies reported little (k0 < 10
-6

 cm s
-1

)
70

 to no (k0 < 10
-9

 cm s
-1

)
62,64

 

ET activity of the basal plane of HOPG towards Fe(CN)6
3-/4-

. The step edges were assigned 

the k0 values seven orders of magnitude higher than for the basal plane and this stark 

difference was attributed to enhanced local DOS
64,71

 at step edges or catalytic activity of 

some functional groups (even for outer-sphere redox couples).
72

 This view became a 

“textbook theory”
73,74

 and was extrapolated to explain the electrochemical activity of 

CNTs and graphene.
67,75,76

 To re-affirm this view, in some studies the HOPG surface was 
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blasted with a laser
62

 or mechanically damaged to deliberately introduce a lot of lattice 

defects,
68,69

 which imparted the samples with markedly improved ET rate. It is worth 

noting that the same procedures were also used to “clean” the HOPG surface (were it 

contaminated at all?) or to rid it of peeling-off flakes that might be accidentally produced 

in the cleavage process. 

In contrast to this theory, researches published by various groups
12,18,24,28,56,77–81

 

presented formidable experimental evidence that the sp
2
 basal plane of both HOPG and 

low defect CNTs
50,82–85

  exhibited fast ET, particularly for outer-sphere redox reactions. 

Significantly, high-resolution electrochemical methods
86,87

 allowed access to the basal 

plane without the influence of step edges.
12,18,28,56,88

 The freshly cleaved basal plane was 

shown to support fast (at the mass-transport limit of the techniques) ET kinetics for 

Fe(CN)6
3-/4-

 (ref
12,56

) and Ru(NH3)6
3+/2+

 (ref
12,18,56

). Subsequent macroscopic studies 

showed that several electrochemical processes – outer sphere and electron-proton coupled 

reactions – were fast at the basal plane of HOPG samples of wide-ranging 

quality.
12,24,77,78,88,89

 

1.4 HOPG 

HOPG is synthetic analogue of naturally occurring graphite and is prepared by stress-

annealing of pyrolytic graphite. The latter is obtained by pyrolysis of hydrocarbons (CH4, 

C2H6, C2H2) at temperatures varying from 300 to 1400°C and pressures usually below 1 

atm, depending on the type of precursor. This material is characterized by low size of 

crystallites (few of tenths of a micron), turbostratic structure,
*
 and multiple lattice 

disorders. The structure acquires much better order, approaching characteristics of 

graphite, under heat-treatment at 2500°C – this process is known as graphitization. 

                                                 

*
 random stacking of parallel planes 
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Subsequent annealing at 2700°C under a pressure of several atm yields HOPG – a material 

characterized of high degree of alignment of the constituent basal planes (or, equivalently, 

their c-axis).
90

 

Graphite has a laminar structure made of parallel planes (basal planes) of carbon atoms 

arranged in a honeycomb structure. Each atom has four valence electrons and is sp
2
 

hybridized. It forms three in-plane σ-bonds with three neighbouring atoms and the forth 

electron of non-hybridized 2pz orbital is spent to form co-planar and interplanar bonding 

and contributes to electrical conduction. Normally the planes are stacked in hexagonal 

(Bernal or ABAB...) type. However, rhombohedral structure (non-Bernal or ABCABC...) 

may also form (Figure 1.1). Graphite is anisotropic material: its thermal and electrical 

conductivities are notably higher along the direction parallel to the basal planes. Its basal 

plane is one of the most mechanically robust materials (Young modulus is ~1000 GPa)
4
 

but the single crystal of graphite is very soft and weak due to small shear modulus. The 

quality of HOPG is commonly characterized by mosaic spread which is a measure of 

average deviation of orientation of c-axis from ideal, perpendicular to the sample plane 

direction.
91

 

Graphite is classified as a semimetal
11,92

 due to slight (0.041 eV) overlap of the valence 

and conduction π-bands.
93

 The DOS at the (intrinsic) Fermi level amounts to 0.0022 states 

atom
-1

 eV
-1

, which is < 1% of that on gold. DOS increases rather rapidly around this 

energy level as was concluded from the experimental dependency of interfacial 

capacitance on the potential. Low interfacial capacitance of basal plane of graphite
8
 (as 

compared to metals) is attributed to its low DOS. A model of interfacial capacitance of 

graphite was proposed by Gerischer et al
6
 and is based on the theory of interfacial 

capacitance of a semiconductor. 



CHAPTER 1. INTRODUCTION 
 

7 

 

 

a b 
 

 

 

c  

Figure 1.1. Structure of graphite. a) ABAB... arrangement of the basal planes. b) ABCABC... arrangement 

of the basal planes. c) Arrangement of two adjacent basal planes: A atoms (grey) are in exact register in 

both layers, B atoms (black) fall in the middle of the rings. This explains non-equivalency of surface 

carbon atoms of graphite and multi-layer graphene. 

1.5 Graphene 

Graphene is a two-dimensional flat monolayer of carbon atoms arranged in a 

honeycomb structure and is actually a different name for the basal plane of graphite. It was 

argued that strictly 2D crystals could not exist due to large thermal fluctuations that would 

disrupt a 2D structure until graphene and single-layer boron nitride were isolated and 

placed on non-crystalline substrate like SiO2, on top of a liquid layer or prepared as a 

suspended membrane.
25
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Of numerous special properties of graphene mentioned in the beginning of this section, 

DOS around the K-point for bulk of graphene and of its edges deserves special attention 

when considering electrochemical behaviour of graphene. Graphene is classified as a zero-

gap semiconductor
25

 due to the fact that its valence and conduction bands touch each other 

at one common point named the Dirac point. It is unique in having (to a good 

approximation) linear dependency of DOS,
*
 denoted ρ, on energy around the K-point:

25,39
  

2

F

2 1
( )

( )


v
  


 (1.1) 

where vF is the Fermi velocity and energy ε is counted from the Dirac point. Graphene 

owes its special band structure to the fact that it is made of identical atoms. Its nearest 

analogue is boron nitride which also has a flat honeycomb arrangement of the atoms but it 

is an insulator with the gap of 6 eV.
39

 

 

 

Figure 1.2. Schematically shown are DOS of pristine undoped graphene (dashed black) and “dull” DOS 

around the Dirac point of graphene on SiO2 (solid blue). Adapted with modifications from ref
39

 

In all electrochemical measurements done on graphene, a solid substrate was used to 

support extremely fragile graphene film. It is difficult to imagine electrochemistry on a 

suspended graphene membrane. As mentioned earlier in this chapter, the substrate was 

                                                 

*
 unlike semiconductors that typically have parabolic-like DOS profile around the band edges. 
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shown to have an effect on redox properties of graphene. Frequently used oxidized silicon 

wafers, are covered with a layer of amorphous SiO2 that has on its surface regions of 

positive and negative charges (charged impurities), which makes the electrical potential to 

vary over the surface. The concentration of charge carriers in graphene is very sensitive to 

the external electric field since the conduction and valence bands just tough each other. 

Thus, variable surface potential of SiO2 induces local variations of the doping level in 

graphene that overall smears the Dirac point, effectively making it “duller” as 

schematically shown in Figure 1.2.
39

 Whether this effect is critical for the electrochemistry 

of graphene electrodes in general or limited to only some of redox reactions is yet to be 

established. 

Graphene’s low DOS around the intrinsic Fermi level leads to the appearance of 

quantum capacitance in this material. This term was introduced by S. Luryi when 

graphene was still a theoretical model and figured as a two-dimensional electron gas in that 

early work.
94,95

. Quantum capacitance originates from the Pauli’s exclusion principle 

applied to a quantum model of 2D electron gas. Specifically, it states that filling the 

quantum well with electrons requires extra energy.
94

 Also, capacitance of the systems 

composed of low-DOS materials cannot be explained entirely by considering the geometry 

and potential difference across the plates; the electronic structure needs to be taken into 

account as well.  

In the case of graphene, the effect of quantum capacitance can be schematically 

explained as follows.
96

 Consider an electrolyte top-gated graphene electrode (Figure 1.3). 

Its Fermi level sits exactly at the Dirac point when the electrode is held at the potential of 

zero charge (PZC)
*
 and is EPZC volts below the level of a reference electrode. When it is 

                                                 

*
 this is idealized presentation and doping of graphene due to contact with solution and/or substrate is 

assumed not to occur. 
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negatively biased relative to the PZC (potential difference is E1), the electrode takes 

electrons that fill the conduction band from the bottom. The upper level of electron energy 

counted from the bottom of the conduction band is called band filling potential of 

graphene, φbf.
97

 Since the electrode acquired negative charge, it changed all the levels of 

electron energy viz the band structure “went up” on the energy scale. This shift of the band 

structure can easily be seen in the figure as a displacement of the Dirac point. The 

magnitude of this displacement equals exactly the potential drop across the double layer, 

ΔEEDL, since it has pure electrostatic origin. When graphene is positively biased relative to 

the PZC, the whole band structure shifts down the energy scale also by ΔEEDL and 

additionally holes fill the valence band. The potential difference between the reference 

electrode and the graphene (the difference between the Fermi levels of the two electrodes) 

is E2 in this case. It differs from pure electrostatic potential difference by φbf.  

 

Figure 1.3. Schematic presentation of quantum capacitance in electrolyte top-gated graphene. Adapted from 

ref
96

 with modifications. RE = reference electrode and Gr = graphene. 

In the case of metal electrodes, DOS is so large that filling/empting energy levels with 

electrons does not really alter Fermi level and it changes only due to electrostatic potential 
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difference. If q is the charge (per unit area) that the graphene electrode acquired then 

quantum capacitance is defined by eq (1.2):
96,97

 

bf

Q

q
C

φ





 (1.2) 

From this equation, it is clear that, because for metals Δφbf ~ 0 for any finite Δq, CQ is 

large and its contribution to the total capacitance is effectively zero. 

Another feature of graphene (and graphite) important for electrochemical studies 

(especially in view of the earlier introduced theory overemphasizing the significance of 

step edge in electrochemical activity) is the edge state. It was predicted theoretically
98

 and 

corroborated experimentally with STS/STM measurements
99

  that DOS is significantly 

enhanced at the Fermi level along the zigzag edges and to some extent mixed (more real) 

edges also have this property (more on this in the ‘Results and Discussion’). 
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1.6 Theories of heterogeneous electron transfer 

Михаил Алексадрович, […] все сбылось, не правда ли? 

[…] Голова отрезана женщиной, заседание не состоялось и 

живу я в вашей квартире. […] Вы всегда были горячим 

проповедником той теории, что по отрезании г оловы жизнь 

в человеке прекращаeтся, он превращается в золу и уходит 

в небытие. Мне приятно сообщить вам в присутствии моих 

гостей, хотя они и служат доказательством совсем другой 

теории, что ваша теория и солидна и остроумна. Впрочем, 

ведь все теории стоят одна другой.  

‒Михаил Булгаков, Мастер и Маргарита , 1928-1940 

 

Mikhail Alexandrovich, [ ...] everything came to pass, did it 

not? [...] The head was cut off by a woman, the meeting did 

not take place, and I am living in your apartment. [...] You 

have always been an ardent preacher of the theory that, on the 

cutting off of his head, life ceases in  a man, he turns to ashes 

and goes into non-being. I have a pleasure of informing you, 

in the presence of my guests, though they serve as a proof of 

quite a different theory, that your theory is both solid and 

clever. However, one theory is as good as another.  

‒Mikhail Bulgakov, Master and Margarita,  1928-1940 

1.6.1 Introduction 

Electron transfer (ET) plays very important role in many homogeneous and 

heterogeneous chemical reactions occurring in nature or caused by man. Of a number of 

scenarios of ET relevant for electrochemistry, the content of this thesis focuses on the ET 

from a solid electrode onto a species residing in the solution phase of the interface. 

Quantitative description of the speed of electrochemical reactions is not possible without a 

theoretical framework detailing such a fundamental physical event as electron exchange 

between an electrode and solution species. 

The first quantitative phenomenological description of the rate of electrochemical 

reactions based on systematic generalization of large experimental work dates back to 1905 

when J. Tafel presented his famous equation (1.3) that linearly relates overpotential to the 

logarithm of current density.
100

 

lna b i    (1.3) 

This equation received theoretical justification much later in 1920s-1930s owing to the 

works of Butler, Volmer and Erdey-Gruz
101

 who formulated what is now known as the 
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Butler-Volmer equation and is sometimes referred to as “phenomenological” in some 

textbooks
101,102

 although it has a concrete theoretical basis. Further ET theories were 

developed increasingly on the basis on quantum mechanics and quantum chemistry and 

some hallmarks of this development are the theories by Marcus (Nobel Prize in Chemistry, 

1992), Gerischer, Levich-Dogonadze and Schmickler.
102,103

 The following sections will 

detail the Butler-Volmer and Gerischer theories as the most relevant for this thesis and 

others will be presented briefly/mentioned essentially to amplify the overall description of 

heterogeneous ET. 

1.6.2 Butler-Volmer theory104–106 

This theory is fundamentally based on the activated complex theory of chemical 

kinetics. Consider a redox couple (R1) that exchange one electron through an electrode that 

is treated here as just a sink or source of electrons: 

Ox Red e  (R1) 

“Ox + e” and Red can be considered as two states of the reacting system each 

characterized by its own free energy, ΔG. The profile of ΔG vs generalized reaction 

coordinate q, presents as a parabola
*
 due to modelling the reacting states as harmonic 

oscillators. In order to proceed from a ‘reactant state’ into a ‘product state’, the reactants 

have to overcome an energy barrier termed activation energy ΔG
≠
 (Figure 1.4).  Both 

products and reactants share a common configuration - an activated complex – that has 

sufficient energy to proceed to the product state. So far this is a typical scheme for a 

chemically reacting system and not much can be done to accelerate a given reaction. In the 

                                                 

*
 Generally it should be a paraboloid in multidimensional space of all reaction coordinates but to keep the 

presentation simple, only one reaction coordinate is introduced and is thought of as representing all others. 
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case of electrochemistry, one can control free energy of the system “Ox + e” by changing 

the electrode potential E as per eq (1.4):
*
 

eq

Ox OxG G FE     (1.4) 

 

 
 

a b 

Figure 1.4. a) Free energy profiles of a redox system as per R1. Initially both “Ox + e” and Red are at 

equilibrium (black curves). After a positive potential E (relative to equilibrium potential) is applied to the 

electrode, energy of the state “Ox + e” decreased by EF (blue curve). This resulted in a decrease in activation 

energy ΔG
≠

oxidation and an increase of activation energy ΔG
≠

reduction by some fraction of EF. b) Free energy 

profiles approximated to straight lines with slopes a1 and a2 around the transition state. This is to show 

asymmetry of the transition state and explain the meaning of α. 

where Δ eq

OxG  is the free energy without externally applied potential (equilibrium). For 

positive E, ΔGOx is lowered and the activation energy of oxidation process is lowered as 

well by some fraction of the overall energy applied to the electrode, which is denoted 1-α, 

                                                 

*
 Energy of Ox cannot be changed as it may well be a dissolved molecule outside of the double layer 

region but energy of electron is identified with Fermi level and this obviously can be controlled by the 

electrode potential; the energy of “Ox + e” is the sum of the two. 
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but the activation energy of the reduction process is increased by the fraction α as given in 

eq 1.5a and b. 

eq

oxidation Red (1 )G G FE      (1.5a) 

eq

reduction OxG G FE     (1.5b) 

The coefficient α was introduced by Erdey-Gruz and Volmer for the hydrogen evolution 

reaction and was meant to characterize the symmetry of the transition state: whether it is 

more product-like or reactant-like. It can be easily shown that if parabolas are 

approximated as straight lines with slopes a1 and a2 in the region around the transition state 

and one of the lines is lowered/brought up by EF then the interception point of the lines 

relative to the initial level will change by a1/(a1 – a2)EF.
*
 For the three situations depicted 

in Figure 1.4b, the corresponding changes in the position of the interception point are ½FE, 

⅓FE, ⅔FE (top to bottom), reflecting the symmetry of transition state (top) or more Red-

like (middle), or more Ox-like (bottom) transition state. 

In transition state theory, the elementary rate constant is proportional to the exponent of 

activation energy: 

exp[ ]
G

k A
RT


   (1.6) 

The reaction rate for Ox and Red can be written as follows, following convention that the 

anodic current is positive:  

oxidation Red reduction Oxv k C k C   (1.7) 

Now combining eqs 1.5-1.7, accounting for n electrons per elementary act and taking into 

account that current density is j = nFv, one obtains eq (1.8), which is one of the forms of 

the Butler-Volmer equation. 

                                                 

*
 The derivation of this relation is a little bulky but in essence is too elementary to be included here. 
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0 0

0 Red Ox

(1 )
( exp[ ( )] exp[ ( )])

nF nF
j nFk C E E C E E

RT RT

 
       (1.8) 

In this equation k0 is termed the standard heterogeneous rate constant and it includes terms 

of activation energy independent of potential and frequency factors.
*
 At sufficiently 

driving potentials, one of the terms in the brackets can be neglected and eq (1.8) reduces to 

eq (1.3), provided surface concentrations do not deviate significantly from their values in 

the bulk. 

1.6.3 Discussing Butler-Volmer theory104,107 

In spite of significant development of ET theories after Butler-Volmer, the latter still 

remains very popular when it comes to electrode kinetics. This may be partially due to the 

simplicity of the expression for current and partially due to good conformity of many 

experimental data, at least under some limiting conditions, to this theory. Also, the theory 

is a limiting case of some other, more complex, theories: at moderate overpotentials they 

converge to eq (1.8) and/or eq (1.3). 

The main problems of this early model of ET are: i) the electronic structure of the 

electrode is not considered; ii) the influence of environment of the redox couple is not 

considered; and finally iii) the theory predicts unlimited exponential growth of kinetic 

current, which does not conform to reality especially when techniques providing high 

mass-transport rate and methods of tethering redox groups to the electrode surface (to 

eliminate mass-transport limitations) became available.  

Significant advancement of ET was achieved in Marcus’s model which strongly 

emphasized the role of internal and external environment of a redox centre and the role of 

fluctuations (of the solvent molecules and inner coordination sphere) in creating an 

                                                 

*
 The transition from E to E-E

0
′ under the exponent is not explained here but it is not difficult to logically 

present it as in ref
104
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appropriate configuration of the reacting system for ET. ET is said to occur 

isoenergetically and following the Frank-Condon principle: the electron is transferred at a 

time scale much smaller than the time scale of nuclear motion. 

The influence of the inner and outer environment of the redox centre is expressed 

through the reorganization energy, λ, that enters the expression for activation energy, eq 

(1.9). 

2
0( )

1
4

F E E
G






 

   
 
 

 (1.9) 

Total reorganization energy is the sum of the internal and external components (eq 1.10)  

o i     (1.10) 

both of which can, in principle, be calculated and, coupled with calculation of the pre-

exponential factor, A, in eq (1.6), one can obtain a theoretical value for k, but the strength 

of the theory lies in the predictions it makes as it is put in ref.
104

  

In particular, the theory predicts the existence of an inverted region: reaction rate will 

start decreasing after a certain sufficiently negative value of ΔG
0
 or F(E – E

0
′). Indeed, the 

activation energy is a quadratic function of the overpotential that has minimum at F(E – 

E
0
′) = -λ. At more negative values of the overpotential, ΔG

≠
 increases again – a quite 

unexpected turn. Apparently, experimental evidences of the existence of such a region 

have been obtained and there are theoretical considerations, other than Marcus’s formula 

(1.9), in support of such a possibility. However, the inverted region is not to be observed 

with metal electrodes due to the continuity of the electronic states.
104,105,107

 Also, some 

other theories predict a limiting kinetic current rather than inversion or unlimited 

exponential growth
102

. 

Second, the theory predicts a value for transfer coefficient as it is understood in Butler-

Volmer theory for there is nothing as such in Marcus’ model. Opening the brackets of eq 

(1.9) gives eq (1.11a), and for low values of overpotential, the quadratic term can be 
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omitted, eq (1.11b). The latter, if compared with eq (1.5b), gives a value for α = ½. At 

higher overpotentials when quadratic term cannot be neglected, the expression for α is 

given by eq (1.12), which is obtained in a similar fashion. It shows that α is potential-

dependent. Experimental proof of this relation is complicated by limitations imposed by 

the mass-transport at high-driving potentials.
105

 

0 2 0 2( ) ( )

4 2 4

F E E F E E
G






  

     (1.11a) 

0( )

4 2

F E E
G




    (1.11b) 

01 ( )
1

2 2

F E E




 
  

 
 

 (1.12) 

In spite of the success of Marcus theory, electrode structure is still not accounted for 

and it is essentially a “one-state” theory, meaning that the theory implies that ET occurs 

only to/from the Fermi level in the electrode.
104,108,109

 Since graphene is an electrode with 

non-trivial electronic structure that may play a role in the kinetics of ET, a theory 

accounting for the electrode’s electronic structure is needed for the purposes of importance 

in this thesis. One of such theories is due to H. Gerischer and is described in some detail 

below, but before that some notes on important aspects of ET are presented. 

1.6.4 Adiabatic vs non-adiabatic ET and inner sphere vs outer sphere 

mechanisms 

Heterogeneous ET is said to proceed through an outer sphere mechanism if: i) 

“chemical arrangement” remains almost intact, that is, new bonds do not form and existing 

ones do not break; ii) the redox molecule is not specifically adsorbed; and iii) no catalytic 

effects are involved. If at least one of these conditions is not met, then ET is said to 

proceed through inner sphere mechanism.
102
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If the electronic coupling (resonance integral) between the reactant and products (or the 

electrode) configurations is sufficiently high (Δ > kbT), the ET is said to happen 

adiabatically. On the free energy diagrams, this is depicted as a split between otherwise 

continuous profiles of “Ox + e” and Red states (Figure 1.5). Two new energy surfaces ΔG1 

and ΔG2 are separated by the value of the electronic coupling energy, Δ. The consequences 

of this are: lowered activation energy barrier and high probability for the system to cross 

from one side of the surface to another and relax into a product configuration. When the 

process occurs non-adiabatically the split is small and the probability that the system will 

“jump” into excited state and remain in the reactant configuration is rather high.
104,110

 

 

Figure 1.5. Towards the explanation of adiabatic ET. Electronic coupling between reactant and product states 

results in the split Δ between individual energy surfaces, yielding two other surfaces ΔG1 and ΔG2. 

Theories of outer sphere ET are considered to be quite well-developed
102

 owing to the 

possibility to make generalizations of this type of mechanism, whereas inner sphere 

transfer requires more individual approach in each case. Butler-Volmer and Marcus 

theories are not meant to describe inner sphere ET. Even if a redox system follows 

formally the Butler-Volmer equation, one should test the temperature dependence of α, 

which is either weak or absent, in the case of an outer sphere mechanism. An inner sphere 
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mechanism can still be compatible with the Butler-Volmer formula if the rate determining 

step is of an outer sphere nature. 

In adiabatic ET, it does not matter to which level in the electrode the electron is 

transferred, therefore, theories that consider only the Fermi level are suitable for this case. 

In contrast, in the case of non-adiabatic ET, it matters which level of electron energy of the 

electrode exchanges electrons. Thus, Gerischer’s and Schmikler’s theories are more 

general as they can account for non-adiabaticity of ET (they both include integration of 

partial reaction rates over all energy scale as will be presented below). In the limiting case 

of small overpotentials, kinetics for both types of ET exhibits behaviour compatible with 

the Butler-Volmer equation with α = ½, but the rate constant for non-adiabatic case is 

smaller due to a small value of the pre-exponential factor that is proportional to Δ.
102

 

1.6.5 Gerischer-Marcus theory of ET104,111,112 

This theory was mainly developed by Gerischer for semiconductor electrodes but it is 

also sometimes referred to as the Gerischer-Marcus theory.
113

 The main idea is that ET 

occurs by tunnelling not only to and from the Fermi level but across the overlap of 

occupied and unoccupied states in the electrode and redox species. The total anodic or 

cathodic currents are obtained by integration across the whole energy range. 

The net microscopic current of ET is given by the sum of anodic and cathodic 

components: 

M M Mi i i    (1.13) 

Here, the anodic and cathodic components at a certain energy level, iM(ε), are integrated 

with respect to all energy levels: 

M M ( )i i d 


 



   (1.14a) 
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M M ( )i i d 


 



   (1.14b) 

Currents at energy level, ε, are defined in eq(1.15a) and (1.15b) for anodic and cathodic 

components, respectively. They represent the product of unoccupied states in the electrode 

and occupied states of redox species in solution for the case of oxidation and vice versa for 

reduction. The prefactor can be different in different treatments, but should include the 

nuclear frequency factor, transmission coefficient and the so-called proportionality 

function with units of energy×length
3
 (e.g. eV cm

3
). Strictly speaking, this function and 

transmission coefficient depends on energy but usually they are considered as constants in 

a narrow energy range. It is not the aim in this thesis to calculate the exact value for the 

current, but rather to obtain the relative difference in the response of the bulk of graphene 

sheet and its edge (see section 4.1.6). Therefore, prefactors can be omitted and the current 

will be expressed in arbitrary units. 

 

 

 M M F(M) RedOx F(RedOx)( ) ( ) ( ) 1 ( ) ( ) ( )Ti ek f f               (1.15a) 

 M M F(M) RedOx F(RedOx)( ) ( ) ( ) ( ) ( ) 1 ( )Ti ek f f               (1.15b) 

 

 

Here M ( )   is density of states on the electrode and f(ε) is the Fermi function defined by 

F(M) F(M)( ) 1/ (1 exp[( ) / ])f kT        (1.16) 

RedOx ( )   is the density of solution states, / ( )Tk    is the transmission coefficient for anodic 

(“+”) or cathodic (“-“) reaction, 
F(M)  is the Fermi level in the electrode, 

F(RedOx)  is the 

Fermi level of redox electrons in solution, e is the elementary charge. 

occupied states in 

metal 
unoccupied states in 

redox particles 

occupied states in 

redox particles 

unoccupied states 

in metal 
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The DOS for the redox species in solution is the sum of contributions from the Red and 

Ox components (1.17) that, in turn, are related to the probability density, W, through the 

concentration of each form, eq (1.18): 

RedOx Re Ox( ) ( ) ( )d        (1.17) 

Red Red Red( ) ( )c W    (1.18a) 

Ox Ox Ox( ) ( )c W    (1.18b) 

The probability density of redox electrons, eq (1.19a) and (1.19b), is a Gaussian 

distribution due to the fluctuations of energy in redox particles that follow a Boltzmann 

distribution. 

2

Red Red Red

Red

1
( ) exp[ ( ) / 4 ]

4
W kT

kT
   


    (1.19a) 

2

Ox Ox Ox

Ox

1
( ) exp[ ( ) / 4 ]

4
W kT

kT
   


    (1.19b) 

Here, εRed and εOx are the most probable levels of redox electron energy in the solution and 

are centred around standard Fermi level of redox electrons o

F(RedOx) . λRed and λOx are 

reorganization energies for the Red and Ox forms, respectively. The relation between these 

quantities is given by: 

o

Red F(RedOx) Red=    (1.20a) 

o

Ox F(RedOx) Ox=    (1.20b) 

o o

F(RedOx) eE   (1.20c) 

The formulas for currents at energy level ε (1.15a and 1.15b) include the energy level of 

the redox electrons, 
F(RedOx) , which is determined by the concentrations of Red and Ox 

through an “energy form” of the Nernst equation (1.21). 

o Red
F(RedOx) F(RedOx)

Ox

ln
c

kT
c

    (1.21) 
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When the electrode is in equilibrium with redox particles in solution, its Fermi energy is 

equal to that of redox electrons, but under polarization the Fermi level in the electrode 

shifts away by the overpotential η: 

F(M) F(RedOx) e     (1.22) 

with η > 0 for anodic and < 0 for cathodic processes. All said above is visualised in Figure 

1.6. 

 

a b 

Figure 1.6. Towards an explanation of the overlap of electronic states of an electrode with those of redox 

species in Marcus-Gerischer theory. a) In equilibrium, Fermi level of the metal (or any other) electrode is 

aligned with that of redox species in the solution part. Both anodic and cathodic fractions of the overall current 

are equal to each other and to the exchange current. b) Negative overpotential η is applied between the bulk of 

the solution and the electrode. This causes the Fermi level in the metal to raise by eη. Cathodic component has 

increased and anodic one has decreased. Overall current is the sum of the areas (with proper signs) under the 

curves on the current axes. 
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CHAPTER 2.  METHODS 

This chapter introduces experimental and theoretical methods and models that were 

utilized for research projects undertaken in this thesis. Theoretical aspects of the 

electrochemical techniques are given at a rather detailed level whereas complementary 

experimental techniques are presented at the basic level only. Finite element method 

modelling deserved a separate section due to its foundational significance for the model of 

scanning electrochemical cell microscopy. Some of the modelling described is a review of 

earlier methods, but some original modelling results are also reported. 

2.1 SECCM as a new tool for high-resolution electrochemistry 

Scanning Electrochemical Cell Microscopy (SECCM) emerged as a novel technique for 

high-resolution electrochemical imaging in 2010.
1
 It is a successor of a number of probe- 

and pipette-based electrochemical techniques developed in the past. The path to high-

resolution imaging based on electrochemical principles was paved in late 1980 with the 

advent of SECM
2
 and SICM

3
. Later on, a number of pipette-based methods, in which 

electrochemical interrogation of the surface under study was confined within a small liquid 

meniscus formed at the tip, emerged and were utilized e.g. for corrosion studies
4
 in the 

micrometer range and for probing electrochemical activity of basal plane of HOPG in 

submicrometer range.
5
 A methodology utilizing double barrel probes with positional 

feedback (based on z-oscillations of the probe) for delivery of biomolecules
6
 and 
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deposition of extremely small droplets
7
 was perhaps a step away from turning into SECCM 

as it is known today. 

The technique surpasses previously developed imaging methods in a number of 

aspects.
8,9

 Thus, in contrast to SECM and SICM, the sample does not have to be immersed 

in an electrolyte solution, which is significant for prevention of any possible changes in the 

surface properties due to prolonged contact with the solution. Maintenance of constant tip-

to-substrate distance (positional feedback) was not part of conventional version of SECM 

and still remains problematic in spite of modernizations of this technique. In this respect, 

SECCM, has straightforward way of controlling tip-to-substrate distance, not 

involving/interfering with the current due to interfacial ET. Also, SECCM allows for 

simultaneous acquisition of topographical information and ionic transfer. Finally, the 

measurements are confined within a small meniscus with the size determined by the size of 

the tip in use and in this sense the measurements are direct or, put differently, are carried 

out in an extremely small electrochemical cell. In SECM, the measurements are said to 

have remote character because they originate from a rather complex relation between the 

tip and the substrate through diffusion of electroactive species and this relation strongly 

depends on the tip-to-substrate distance. 

SECCM is still a very young technique and its use has been limited to essentially one 

research group so far, though there are other groups using similar techniques and HEKA 

(Harvard Bioscience Inc.)
*
 produced the first commercial version of SECCM setup. The 

new technique has already shown substantial potential in tackling many challenging topics 

of modern electrochemistry that is moving into smaller and smaller scale. Thus, it was 

successfully applied to probe electrochemical activity of carbon nanotubes,
10–12

 imaging 

                                                 

*
 http://www.heka.com/products/products_main.html#echem, retrieved on 24/11/2015 
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surface of HOPG,
13,14

 mechanically exfoliated graphene,
14

 polycrystalline Pt,
15,16

 activity 

of single Pt nanoparticles,
17

 heterogeneity of ET rate at CVD graphene
18

 and was adapted 

for the studies of crystal dissolution kinetics.
19

 

2.1.1 Principles of SECCM8,9 

A schematic of the SECCM setup is presented in Fig 2.1. A double barrel pipette pulled 

on a laser puller to a fine tapered tip of desired size (1) is filled with an electrolyte solution 

and attached to a z-piezo positioner (not shown) that provides uniform motion and 

oscillations of the pipette with frequency in the z-direction. Two quasi-reference counter 

electrodes (QRCEs) (2) are immersed in each barrel of the pipette and connect it to a 

voltage source EC that drives conductance current iC. EC is always kept constant during a 

scan. Another voltage source E2 connects to the specimen (3) through the ground and 

provides potential difference for interfacial ET at the specimen surface that is in contact 

with the meniscus; the current in this circuit is referred to as the surface current, iS. The 

specimen is firmly attached to a pedestal (4) surrounded by water pool (5) to reduce 

evaporation from the meniscus by providing increased humidity around it. Two pairs of 

piezo positioners (not shown) move the stage (7) in the xy-plane, enabling the pipette to 

scan the surface laterally, whereas a z-piezo moves the pipette perpendicularly to the 

specimen surface. The setup described is enclosed in a grounded metallic box (Faraday 

cage) to reduce electromagnetic interferences. Lastly, the box and electronics are placed on 

a dedicated vibration isolation table to reduce the influence of building vibrations. 

One of the key features of SECCM is the superposition of an oscillatory motion in z of 

the pipette on its uniform motion. Oscillations cause the meniscus at the tip to contract and 

enlarge periodically, which results in oscillating conductance current, denoted iAC, due to 

the periodic change in the overall conductivity across the pipette. This current was found to 
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be very sensitive to the tip-to-substrate distance and positional feedback mechanism of 

SECCM is built upon keeping this current constant (at a predefined value) during imaging. 

The potential difference, ES, that drives interfacial ET (surface current) is given by 

formula (2.1) for a perfectly symmetrical pipette. 

ES = E2 + ½ EC (2.1) 

 

Figure 2.1. Schematic of the SECCM setup. 1 – theta pipette filled with an electrolyte solution, 2 – a pair of 

quasi-reference counter electrode, 3 – surface of a material under study, 4 – Teflon support, 5 –water pool 

surrounding the specimen to reduce evaporation from the meniscus; 6 – symbolic presentation of piezo-

positioners that move sample in xy-plane and the pipette in z. 

So far, several modes of SECCM imaging have been developed. The basic one is  raster 

scan imaging at a fixed potential (ES = const) with the pipette moving laterally (quasi-

continuously along x for a given y then changing y in stepwise manner) and maintaining a 

preset value of iAC.
1,13,18

 A recent modification of SECCM in which the pipette scans the 

surface laterally (stepwise in both x and y) and potential ES is swept linearly at each pixel, 

yielding a CV or LSV per pixel, brings much more data that is not achievable with fixed 
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potential mode. The pipette position is also controlled through constancy of iAC. This 

modification proved to be of high significance in elucidating of observation of enhanced 

surface current along the edges of graphene and HOPG in fixed potential images.
13,12

 

Compared to the basic fixed potential mode, the huge amount of generated data can be 

technically challenging to acquire and store. Also such scan takes much longer time and 

would not be suitable if the sample properties may change within this time. Two other 

variations of imaging with SECCM are based on hopping mode where the pipette (actually 

meniscus) is made contact and retracted at each pixel of the image with ES being constant
20

 

or swept linearly.
21

  

2.2 Finite Element Method (FEM) 

2.2.1 Introduction22 

Many fundamental physical phenomena are described by partial differential equations. 

For example, Fick’s law of diffusion, heat conduction, wave propagation, motion of a 

fluid, to name a few. Moreover, in practical situations, these equations can form a complex 

system of equations, being time-dependent, and coupled to other physical phenomena. 

Analytical solutions, whose great value lies in their generality, are usually available in a 

very limited number of situations when e.g. the geometry is simple or a separation 

variables is possible, or only stationary solutions are sought, where Fourier or Laplace 

transformations are possible. Of several approaches to finding approximate solutions to 

differential equations, numerical solutions, although usually lacking generality, remain 

perhaps the only means to handle complex problems. The methods relevant for our 

discussion are finite difference method (FDM), finite element, method of weighted 

residuals (MWR) and Ritz method.  
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The development of FEM or Finite Element Analysis (FEA), as it is also referred to, 

originated in the works from three different fields: applied mathematics, physics and 

aerospace engineering. All three sought how to represent a continuous function that was a 

solution to a differential equation or a system of thereof in a piecewise manner, as a 

coherent sequence of simple continuous functions. Conceptually the method can be derived 

from purely physical considerations when applied to engineering problems. As the method 

was becoming more popular, it received solid mathematical foundation regarding 

convergence of solution, uniqueness, discretization error, stability etc. Formulation of FEA 

consists of the following steps. 

Discretization of continuum. The continuous domain where the solution is sought for is 

split in a finite number of elements that overall approximate it – hence the name of the 

method. The ensemble of the elements is called mesh. Higher number of elements will 

yield increasingly better approximate solution. There is a great variety of elements, 

depending on the dimensionality of the problem and actual shape of the domain. Each 

element has a number of nodes. The approximate solution within a given element is based 

on its nodal values – points at which a field variable (a generic term for the unknown, 

sought function) is introduced. Some examples of the elements are given in Figure 2.2. In 

1D, the element is only a line segment, however it may have more than two nodes. The 

simplest element for 2D geometry is triangle; this element was historically first one in 

FEA. 
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Figure 2.2. Examples of basic shapes of the elements with different number of nodes, depending on 

dimensionality. 

Selection of interpolation functions. Interpolation or shape functions will represent a 

solution within a given element. The choice can sometimes be dictated by the physical 

problem under consideration, however this is not always the case. Usually shape functions 

are polynomials with the degree depending on the number of nodes, number of unknown 

functions to be solved for and continuity requirements consisting in appropriate degree of 

differentiability. The type of interpolation function, along with element shape, number of 

nodes and types of nodal variables, fully characterize the element. Obviously, a parabola 

will give a better approximation to a segment of a curve, than a straight line does, and 

cubic function may work even better, however polynomials of higher orders contain 

rapidly increasing number of coefficients to be determined and this will incur higher 

computational effort. Examples of polynomials of one and two variables up to second 

order, for different dimensions, together with the number of coefficients are given below. 
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 Linear Quadratic 

1D 
0 1y a a x   2 2

0 1 2y a a x a x    3 

2D 
0 1 2z a a x a y    3 2 2

0 1 2 3 4 5z a a x a y a xy a x a y       6 

3D 
0 1 2 3z a a x a y a z     4 

0 1 2 3 4 5 6

2 2 2

7 8 9

u a a x a y a z a xy a xz a yz

a x a y a z

       

 
 

10 

 

Determination of the element properties. Properties of the element are expressed as a 

system of algebraic equations in a matrix form with nodal field values being the unknowns. 

Derivation of the element properties can be performed in several ways. One way could be 

based on physical principles and the requirement of minimum of potential energy for an 

element, for example. Mathematically this could mean taking partial derivatives of the 

expression for potential energy with respect to nodal displacements and set them to zero. 

This yields a system of algebraic equations from which the displacements can be found. 

However, element properties may be more complicated and not necessarily imply a 

specific physically meaningful principle. Two other commonly used approaches for 

deriving the element properties are based on the variational principle and the above 

mentioned MWR. 

It is proved that a solution to a boundary value problem can be found by solving an 

equivalent variational formulation. The function(s) that is (are) a solution to the boundary 

value problem will extremize (minimize or maximize) the respective functional or make it 

stationary. Variational formulation of the boundary value problem has several advantages 

in terms of seeking an approximate solution, some of which are lower order of derivatives, 

easier handling of complicated boundary conditions and that the existence of a solution can 

sometimes be proved. In the Ritz method of trial functions, the unknown function is 
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approximated with a trial function that is a linear combination of known functions each 

with its own coefficient. The trial function is substituted into the functional that is then 

differentiated with respect to each of the coefficients and the derivatives are set to zero 

(note the similarity with the above-mentioned derivation based on the principle of 

minimum energy). The ensuing system of algebraic equations is solved for the unknown 

coefficients. The Ritz method is global, that is, it can offer an approximate solution for the 

entire domain. However, in FEM, Ritz’s idea is applied to each element separately. Trial 

functions must obey certain continuity requirements, but not global boundary conditions, 

which immensely simplifies the problem. 

Using a variational approach requires the existence of equivalent variational 

formulation of the boundary value problem. This requirement is not always fulfilled, 

rendering the method inapplicable. A more general method of finding approximate solution 

to a differential equation is MWR developed by Bubnov and Galerkin and sometimes 

called the Galerkin method. In essence, the difference between an exact and approximate 

solution is to be minimized in this approach. If A is some differential operator, η is the 

unknown function and f is a known function of independent variables, the differential 

equation for η can be written: 

( ) 0A η f   (2.2) 

The solution is sought in the domain Ω, with boundary conditions specified on the 

boundary Γ. Let the approximate solution ῆ be a linear combination of m known functions 

Ni: 

0

1

m

i i

i

η N N C


   (2.3) 
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where Ci are unknown parameters or unknown functions of independent variables. Since ῆ 

is an approximation it won’t make the equality when substituted in eq (2.2), yielding some 

residual or error R: 

A(ῆ) – f ≠ 0 

(2.4) 

A(ῆ) – f = R 

MWR finds Ci such that R is minimized throughout the whole domain by trying to satisfy 

the following condition 

∫η (A(ῆ) – f )Wi dΩ = ∫Ω RWi dΩ = 0,    i = 1,2, ... , m 

 

(2.5) 

where Wi are weighting functions and in Bubnov-Galerkin formulation Wi = Ni. 

Whichever method is used for deriving the element properties, the result will be a 

stiffness matrix K
(e)

 and forcing vector F
(e)

 related with the vector of the unknown values 

of field variable in nodal points u
(e)

 through eq (2.6): 

K
(e)

 u
(e)

 = F
(e)

 (2.6) 

The subscript (e) denotes that the quantities are defined at the element level. By the way, 

the established terminology of FEM clearly indicates its engineering origin. 

Assembling the element properties. Each element shares its nodes with a certain number 

of neighbouring elements and therefore element properties at these common/shared nodes 

should be the same. This forms the basis of linking the elements. This assemblage of the 

whole from individual elements is considered a unique feature of FEM. Mathematically the 

assembling consists in formation of a large matrix by summation of individual element 

matrices K
(e)

, which is also called stiffness matrix. Boundary conditions are introduced by 

replacing respective rows in u and F. Overall the matrix equation now describing the 

properties of the whole system is obtained and formally is the same as eq (2.6): 

K u = F (2.7) 



CHAPTER 2.  METHODS 

 

43 

 

Solving the system of equations. Eq (2.7) is essentially a system of algebraic equations 

where column-vector u contains unknown nodal variables. In many practical situations in 

electrochemistry, the system will be non-linear due to either boundary conditions or the 

differential equation itself. Examples are the Butler-Volmer boundary condition, inclusion 

of ohmic loss of potential in boundary condition and inherently non-linear equation when 

convective terms are added. Whether the system is linear or non-linear affects the choice of 

an algorithm or a solver, as it is called in FEM, to solve eq (2.7).  

A linear direct solver is suitable for linear problems as the name implies. A direct solver 

finds exact solution and copes with the task in a finite number of steps. The trouble with 

direct solvers is that they can be very demanding for computer memory and time-

consuming to solve a large system of equations originating in a practically important 

problem.  

An iterative solver, like a preconditioned conjugate gradient method, also deals with 

linear systems but attempts to reach the solution in a shorter number of steps and return an 

approximate solution. Its success depends on the initial guess of the solution. Generally, 

the method’s merits are lower demand for computer memory, time-efficiency and easier 

software development. As with any iterative solver, it stops when the convergence criterion 

(error) is satisfied. This parameter has to be chosen carefully as too high tolerance may 

lead to a wrong solution and too low tolerance will be a waste of time. 

A popular method for non-linear systems is that of Newton-Raphson. Its success also to 

a great extent depends on how good the initial guess is. It can be computationally 

expensive as the Jacobian is re-computed at each iteration. With the modified Newton 

method, the Jacobian is generated only once at the beginning of the process, which means 

that each iteration is less demanding, however more iterations per step, as compared to 

Newton-Raphson, may be needed to satisfy convergence criterion. 
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2.2.2 FEM in electrochemistry 

Application of FEM to electrochemical problems acquires increasing popularity 

nowadays possibly due to availability of commercial FEM packages. Some examples of 

these problems are Scanning Electrochemical Microscopy (SECM)
23–25

,  Scanning 

Electrochemical Cell Microscopy (SECCM) for investigation of ET at nanotubes
10,12

 and 

graphene,
14,18

 electrophoretic nanoparticle capture,
26

 ohmic loss of potential study,
27

 ET at 

defected graphene
28

 and i-V characteristics of a single nanopore.
29

 

The first use of FEM in 2D in electrochemistry apparently dates back to 1989 when 

Kwak and Bard applied it for modelling SECM approach curves.
23,24

 In the past, FDM was 

widely used for electrochemical problems and is now perhaps at a state of perfection when 

it comes to 1D computations. Although some problems can be reduced to a 1D geometry, 

there is increasing demand to solve transport equations for complex geometry shapes that 

cannot be reduced to 1D. The weakness of the FDM is that it is not particularly suitable for 

domains with complex and/or fast changing geometry.
30

 As mentioned in the previous 

section, engineers made significant advances with FEM long before it first appeared on the 

“electrochemical stage”. So the FEM becomes an indispensible tool for computations in 

electrochemistry in 2D and 3D but using it for 1D, which is generally okay given power of 

modern (desktop) computers and ready-made commercial FEM packages, seems to be 

overkill. 

Again, it seems likely that the availability of commercial FEM packages has facilitated 

the spread of this method in electrochemical community as one does not have to be a 

specialist in numerical solutions of systems of partial differential equations or trained as an 

applied mathematician to be able to apply them. But it has two sides to it. One is obvious: 

ease of use. Even complex problems coupling multiple physical phenomena can be 

handled without tedious code writing and the need to master significant amount of 
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specialized literature. The other side is that the process of obtaining a solution is sealed in 

the “black box” of the software package and the output can be taken without much 

analyzing, as long as it seems physically acceptable. In this respect, a custom-made or 

purpose-built code/algorithm is generally more advantageous as it takes into account 

particularities of a given problem.
25

 Hence, one has to carefully test a new model and 

compare, where possible, the predictions with either solutions obtained by other 

(established) methods, or with analytical solutions which can be obtained as some limiting 

cases of the new model. These types of precautions were partly realized in this work, as it 

was not always possible to have a relevant comparison/reference point. 

Of the extensive list of commercial and freeware FEM packages, Swedish product 

Comsol Multiphysics
®
 seems to be the most popular and was used in this study for all the 

modelling problems, but one. Having been initially criticized in 2010 as an “off-the-shelf” 

engineering software package
31

, it was praised as a very useful tool in electrochemical 

research later on in 2014.
32*

 

Apparently, a comprehensive review of strengths and limitations of the application of 

FEA in general and of various FEM packages, in particular to electrochemical problems, is 

currently missing in the literature. Some general considerations and precautions can be 

learnt from engineers’ experience.
33

 

                                                 

*
 Of course, the software changed over the years but still it is worth noting that the co-author of 2010 

publication is the first author of 2014 mini-review and was at that time an employee in the COMSOL Group 

already, indicating that such change of heart might be dictated by whom one works for. Such a review could 

hardly represent a balanced view as this may negatively impact the commercial interest of the company. 
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2.3 Mathematical model of SECCM 

2.3.1 General FEM model of SECCM 

SECCM is an example of a technique in which modelling of the mass transport and 

other phenomena cannot be reduced to 1D domain and actually requires full 3D 

computations due to lack of axial symmetry of theta pipettes. The complex geometry 

where the physical phenomena should be modelled dictates the choice of FEM. 

Interpretation of SECCM experiments gains much more meaning if modelling is employed 

as not all experimental/imaging results “speak for themselves” or simple analysis is 

possible.
13,15

 This is especially true if one is interested in estimation of the rate of 

interfacial ET
18

, quantification of ion transport within the pipette and/or substrate 

dissolution kinetics
19

. 

The SECCM model relevant to this study takes into consideration three phenomena: 

movement of ions in the electric field of the pipette, transport of species due to 

concentration gradients (Fickian diffusion), and interfacial ET. Additional levels of 

complexity would include homogeneous reactions in solution or moving boundary of the 

substrate as occurs during crystal dissolution. Generally, to describe these processes one 

needs to solve Nernst-Planck equation (2.8) for concentrations of all species and the 

electric field
34

: 

( ) ( )i
i i i i i i i

c
D c z μ c φ c R

t


      


u  (2.8) 

Here ci is the concentration of i
th

 species, φ is the electrical potential, Di is the diffusion 

coefficient, μi is the ionic mobility in electric field, u is the velocity of the solution and Ri 

denotes homogeneous reactions in solution in which i
th

 species participates. Computational 

effort to solve numerically the ensuing system of equations rapidly increases with the 

number of unknown concentrations. Therefore, some simplifying assumptions are 
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important. Firstly, in the absence of homogeneous reactions, Ri = 0. Secondly, net motion 

of the liquid (electroosmotic effect) may be neglected, thus u = 0.
35

 This is acceptable for 

sufficiently large pipettes and/or not very high ionic strength so that the double layer is 

kept compact. Thirdly, a steady-state solution is frequently sufficient. Indeed, high rate of 

flux towards the electrode surface in SECCM guarantees that imaging is performed under a 

steady-state condition, provided the voltammetric scan rate is not very high. This is 

confirmed by the fact that typically SECCM produces steady-state well-defined S-shape 

voltammograms. One also needs to ensure that the ratio of a redox mediator to a 

background electrolyte is sufficiently low to keep the change in conductivity of the pre-

electrode region, owing to charge transfer, negligible. After all these simplifications what 

is left is expressed by eq (2.9): 

( ) 0i i i i iD c z μ c φ       (2.9) 

With N species in solution, eq (2.9) can be written for each of them, but an additional 

equation is needed for the electrical potential. This can be the Poisson equation, but 

frequently an electroneutrality condition, given by eq (2.10), is used. This condition is 

realized in the ‘Nernst-Planck interface’ in Comsol.
36

 With this condition applied, one 

needs N equations (2.9) and eq (2.10) to fully specify the system (of course, with 

appropriate boundary conditions). 

1

0
N

i i

i

z c


  (2.10) 

When several species are present (several unknown ci) in solution, solving the Nernst-

Planck equations can be a computationally demanding task, especially in 3D. Typically 

there are no concentration gradients in the initial state of a system and conductivity is 

uniform throughout the domain. Then, the electric potential can be easily found by solving 

the Laplace equation (2.11) numerically,
37

 which requires much less computational effort 
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than solving the Nernst-Plank equations for all unknown ci even in the absence of 

concentration gradients. In the case of SECCM, boundary conditions for Laplace equation 

will specify potential difference, Eeff, applied to the solution between the barrels (eq 2.12a) 

and the behaviour of electric field strength vector at insulating surfaces (eq 2.12b)  

2 0φ   (2.11) 

φ = Eeff on the left barrel, φ = 0 on the right barrel (2.12a) 

n grad φ = 0 (2.12b) 

where n is the unit normal vector. Once the electric field is defined, eq (2.9) can be solved 

only for the species of interest, e.g. Red and Ox forms of a redox mediator, but not for 

electrolyte ions.  

This facile approach is only applicable under the conditions stated above. However, 

these conditions are met in many practically important situations. Only when one has to 

consider the evolution of the system state in time and/or significant local change in the 

conductivity, which occurs concomitantly with the ET reaction at the electrode, is a more 

rigorous approach required as presented in the publication on FEM model of SECCM.
35

 

A note on the electrical potential at the substrate. The boundary conditions for the potential in the more 

rigorous approach are the same as for the facile one (eq 2.12a and 2.12b) and this is how the model is 

formulated in ref
35

 that currently is a foundational published work on FEM model of SECCM. The model 

was validated in two ways. Theoretical ionic current and alternating current responses were matched to their 

experimental counterparts by adjusting two model parameters – meniscus height and potential difference 

across the simulated domain (Eeff) because both of these parameters are not measurable experimentally. Good 

agreement between theoretical and experimental current profiles supports the validity of the theoretical 

model. Limiting current due to interfacial ET from oxidation of FcTMA
+
 at HOPG surface was also 

corroborated by theoretical computations.  

One can notice that, maybe strangely, but the substrate, in general formulation of the model, was not 

assigned a value of electrical potential thus rendered as an insulator. In many cases, SECCM is used for 

imaging continuous conducting surfaces that are electrically connected to the ground, thus having a definite 

value of potential. However, a model with working electrode considered as electrically conducting was tested 

and was shown to give practically the same conductance current (and therefore alternating component) as the 

model with working electrode rendered insulating behaviour (not published). For this, electroneutrality 

condition (2.10) was lifted and eqs (2.9) was solved simultaneously with Poisson equation (2.13). 

2

0

1 N

i i

i

φ z c
εε

     (2.13) 
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Distribution of electric field was nearly the same as in the case of non-conducting substrate except that a 

very thin layer of solution adjacent to the substrate (effectively a double layer region) contained more or less 

steep variation in potential, depending on the difference between 1/2 Eeff (for symmetrical pipette) and the 

value of potential imposed on the substrate. If charge neutrality condition was retained a completely different 

potential distribution ensued, which seemed extremely unrealistic physically. 

 

Boundary conditions for the concentrations for redox mediator are different from those 

for the background electrolyte. Generally, when species i cannot go through a given 

boundary of the domain, no-flux boundary conditions (eq 2.14) are applied along/to that 

boundary. For example, glass walls are impermeable to all the solution species, but the 

working electrode is not permeable for all but redox active species. 

n grad ci = 0 (2.14) 

Bulk boundary conditions (eq 2.15) are specified for the opening of each barrel in the 

upper part of the modelling domain and it is stated that concentration of all the species are 

kept constant at that boundary at their bulk level in solution. 

ci = ci,0 for i = 1, 2..., N (2.15) 

Interfacial ET is represented in the model as a concentration or flux boundary condition. 

The first type takes place when the concentration of electroactive species at the electrode is 

constant, including zero for the case of limiting current (eq 2.16), or an equation relates to 

one or more concentrations of electroactive species, like in the case of reversible redox 

reaction where Nernst equation is at work (eq 2.17). 

ci(z =0, t) = const (2.16) 

0

Red Ox/ exp[ ( ) / ]c c nF E E RT    (2.17) 

The second type occurs when the current is specified, and in this work it was mostly 

Butler-Volmer formula (eq 2.18). Other, more specialized cases are described in the 

sections dedicated to applications of SECCM. 
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0 0Ox
Ox 0 Red Ox

0

(1 )
exp[ ( )] exp[ ( )]

z

c αnF α nF
D nk c E E c E E

z RT RT

         
  

 (2.18) 

2.3.2 More specific aspects of modelling SECCM experiments 

All the above provides a general foundation of the theoretical model and more specific, 

practical details follow. The modelled domain, naturally, embraces only a fraction of the 

real pipette, typically it is 40 – 60 μm of the pipette tip and liquid meniscus (Figure 2.3). 

As mentioned above, SECCM pipettes do not have axial symmetry and one has to build a 

full 3D modelled domain. Owing to symmetry perpendicularly to the septum (Figure 2.3b), 

only half of the pipette makes up the modelling domain eventually. Geometrically the 

domain is characterized by a number of parameters: tapered angle θ, pipette diameter d, 

thickness of the septum s, pipette asymmetry d1/d2, meniscus height or tip-to-substrate 

distance mh, width of meniscus bottom mw. θ, d, s and d1/d2 can be obtained from SEM 

image of the pipette. Depending on the wetting properties of the substrate, meniscus may 

have to be presented as a tapered cone rather than a cylinder. This can be easily 

incorporated in the model, but requires an independent measurement of mw. Since the 

pipette is “cut” at some length, the voltage at the top the modelled domain, Eeff, is 

obviously a fraction of EC, which is, along with mh is not an experimentally measured 

quantity and is to be determined from the analysis. 
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a b 

Figure 2.3. 2D projections of the modelled domain of SECCM tip. a) Side projection of the domain depicts 

the walls of glass pipette and the septum running through the middle and electrolyte solution (blue). The 

actual modelled domain is within this blue area. b) Bottom projection of the lower part of modelled domain. 

Outer dashed circle depicts meniscus bottom circumference that generally is larger than the tip diameter. 

Light blue colour is to show mainly the “meniscus part” of the domain. 

Although theta-pipettes typically possess elliptical rather than circular cross-section 

(perpendicularly to the longitudinal pipette axes), and this has been included in the 

SECCM model,
35

 it seems fairer not to account for this subtlety for two reasons. First, one 

has to introduce second tapered angle as the tapered cone of this type is characterized by 

two tapered angles.
*
 The precision of SEM measurements does not allow to distinguish the 

two angles. Second, practical precision of the measurements based on imaging is also not 

as high (drift in iC and iS, fluctuations in iAC, variation in the meniscus shape during 

scanning and the very way the model is “tuned” to the experiment). 

                                                 

*
 ratio of tangents of these angles depends on the ratio of major and minor semi-axis of bottom (or top) 

ellipse: tgθ1/tgθ2 = rmajor/rminor. Clearly this ratio is unity for a truncated cone with circular bottom (top). 
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The solution returned by the model is for a fixed geometry or, to put it differently, fixed 

meniscus height and fixed Eeff. Real pipette oscillates with a certain frequency and 

generally changes its average position above the substrate. The approach to finding two 

unknown model parameters – Eeff and mh – and linking experimental data with theoretical 

model was essentially laid out in ref
35

 and is presented here with some (small but valuable) 

additions.  

Thus, one performs a series of computations covering a range of Eeff and mh, computing 

the ionic current for each pair (mh, Eeff) and effectively generating a 3D surface (eq 2.19). 

C,st st eff( , )hi f m E  (2.19) 

This is the so-called stationary tip conductance current. Owing to the tip oscillation, an 

alternating conductance current is generated with average, denoted iC,osc (experimentally 

measured as direct component of conductance current), generally differing from iC,st as mh 

decreases. If A is amplitude of oscillations (not peak-to-peak distance but the factual 

amplitude of the sinusoid) then the direct current can be calculated from iC,st according to 

formula (2.20): 

C,osc st h eff st h eff1/ 2( ( , ) ( , ))i f m A E f m A E     (2.20) 

Figure 2.4 gives a graphical presentation of the above said, sketching how the stationary 

approach curve would differ from non-stationary/oscillatory one. 

The alternating component of conductance current, iAC is obtained through expression 

(2.21). The factor 1/ 2 2  relates peak-to-peak amplitude (expressed by the difference 

under the modulus sign) to the amplitude of alternating current as measured by the 

equipment in use, which is RMS. 

AC st h eff st h eff

1
( , ) ( , )

2 2
i f m A E f m A E     (2.21) 
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Both currents – iC,osc and iAC – have their experimental counterparts and are schematically 

plotted in Figure 2.5a and b. Intersection of experimental and computed surfaces occurs 

along a 3D curve but one needs only its projection on (mh, Eeff)-plane, which is referred to 

as common line for the given type of current. If direct and alternating currents are 

consistent with the model than the common lines for each of them intersect at one point 

that is the sought pair of the two model parameters – (mh, Eeff). 

 

Figure 2.4. Schematic presentation of conductance current during approach plotted vs average meniscus 

height: stationary approach curve iC,st (black) as is and with sinusoidal oscillations superimposed (gray), direct 

current iC,osc (red). 
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a b 
 

 

c 

Figure 2.5. Schematic presentation of determination of Eeff and mh from the theoretical model and 

experimental values of iC,osc and iAC. a) Computed iC,osc surface (orange) and plane (gray) corresponding to 

experimental value of this quantity. b) The same as in a but for iAC. c) The common lines (1 for iAC, 2 for 

iC,osc) along which experimental and computed surfaces intersect. The common point of the common lines 

corresponds to a singular pair (mh, Eeff) consistent for both direct and alternating current components. 

 

2.4 Cyclic voltammetry (CV) 

CV is perhaps the most basic electrochemical technique widely used in fundamental and 

applied electrochemistry. It can be considered as an extension of classical polarography to 

stationary electrodes and used  to be called “stationary electrode polarography”.
38

 This 
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technique possesses a number of advantages over its predecessor (dropping mercury 

electrode polarography) all originating from non-steady state nature of the measurements 

and reversal of potential sweep.
38,39

 The technique with one-way sweep of potential is 

termed linear sweep voltammetry (LSV) and is applicable mainly when the system 

assumes steady state in the course of measurements. 

In CV, a potential difference applied between a working electrode (WE) and a reference 

electrode (RE) is varied linearly with time from initial value Ein to a final value Efin at scan 

rate v and usually the scan rate is the same for the reverse sweep. Generally the shape of 

potential sweep can be more complex but the relation between E and t remains linear 

(Figure 2.6). 

When using macroscopic electrodes, a three-electrode configuration is necessary to 

drive the current between WE and a counter electrode (CE) otherwise large currents 

passing through the RE will result in its polarization (a deviation from equilibrium 

potential due to the concentration gradients of potential-determining species in the pre-

electrode zone). With microelectrodes, a two electrode configuration is okay to use since 

the current at such electrodes in the range of nanoamperes, making iR term negligible. 

The term CV usually implies that measurements are performed on a flat macroscopic 

electrode in a quiescent solution.
40–42

 However, linear/cyclic sweep of potential can be 

performed on any electrode with or without forced convection. The shape of i-E profile 

strongly depends on the mass-transport of redox species to the electrode as exemplified in 

Figure 2.7. 
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Figure 2.6. Linear sweep of potential used in CV (solid line - one cycle). 

 

  

a b 

Figure 2.7. CVs at a planar macro electrode in quiescent solution (transient voltammogram) (a) and a current 

trace characteristic of, for example, rotating disc electrode or a microelectrode (steady-state voltammogram) 

(b) 

2.4.1 CV of species diffusing from solution 

The theory of stationary electrode polarography was significantly contributed to by 

Nicholson and Shain
38

 and finally wrapped up by Nicholson
39

 where he analysed the 

general case of quasi-reversible ET reaction. Computations of CVs were needed rather 

frequently in this thesis, hence the need to explain this theory at some length, mainly 

following ref.
39,40
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In the most basic case of CV experiment, two phenomena are considered in the 

mathematical model that describes the evolution of current with potential: diffusion of 

redox active species from solution to the electrode surface and ET reaction at the electrode 

surface. The first phenomenon is described by Fick’s second equation of diffusion that for 

1D case is given by eq (2.22) that is written for Red species only for the sake of being 

specific. 

2

Red Red
Red 2

c c
D

t x

 


 
 (2.22) 

The second one depends on the nature of the ET reaction. Generally Red and Ox forms 

exchange n electrons with the electrode:  

Red Ox ne  (R2.1) 

For fast electron exchange (compared to the rate of mass-transport), Red and Ox forms are 

at thermodynamic equilibrium at any instant and Nernst equation (2.23) sets boundary 

condition at the electrode. 

0

Red Ox/ exp[ ( ) / ]c c nF E E RT   , x = 0 (2.23) 

If the ET occurs at a measurably finite rate, a general formulation is required and in this 

thesis only Butler-Volmer expression for heterogeneous ET rate was employed as a 

boundary condition (eq 2.24a). Lastly, for totally irreversible ET reaction, one applies eq 

(2.24b) as a boundary condition, which is the same Butler-Volmer formula but with e.g. 

cOx = 0. 

0 0Red
Red 0 Red Ox

0

(1 )
exp[ ( )] exp[ ( )]

x

c αnF α nF
D nk c E E c E E

x RT RT

          
  

 (2.24a) 

0Red
Red 0 Red

0

exp[ ( )]
x

c αnF
D nk c E E

x RT

  


 (2.24b) 
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Fick’s first equation of diffusion is used to express mass balance at the electrode surface 

(eq 2.25): 

Ox Red
Ox Red

c c
D D

x x

 
 

 
, x = 0 (2.25) 

Formulation of the boundary value problem is completed by specifying bulk boundary 

conditions (2.26), initial conditions (2.27) and potential function per cycle (2.28). Lastly, 

the current density is calculated according to eq (2.29). 

0

Red Red

0

Ox Ox

c c

c c




, x → ∞, any t (2.26) 

0

Red Red

0

Ox Ox

c c

c c




, x ≥ 0, t = 0 (2.27) 

inE E vt  , 0 ≤ t < tturn 

fin in2E E E vt   , tturn ≤ t ≤ 2tturn 

(2.28) 

Red
Red

0x

c
j nFD

x 





 (2.29) 

Here c
0

Red and c
0

Ox are initial/bulk concentration of the redox mediator, tturn = (Efin – Ein)/v 

with v > 0 for initially anodic scan and < 0 for initially cathodic one. Strictly speaking, the 

initial concentration of only one form needs to be specified as the other one follows from 

eq (2.23) otherwise boundary conditions will be inconsistent with initial conditions, which 

may cause numerical instabilities. 

The boundary value problem formulated above does not have an analytical solution. 

Nicholson converted it into a dimensionless integral equation which he solved numerically. 

The significance of Nicholson’s work was that the solution was a generic one, in spite of 

being obtained numerically. It is summarized in the dependency of parameter of 

reversibility, ψ, introduced by him (eq 2.30) on the difference between anodic and cathodic 
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peak potentials ΔEp = Ea – Ec. ψ includes k0 thus opening a way to calculate this quantity 

simply from ΔEp. The actual relation between ψ and ΔEp is tabulated in ref
39

 for ΔEp from 

61 to 212 mV but can be easily extended by solving eqs (2.22), (2.24a) and (2.26)-(2.29) 

numerically. 

ψ  2Ox Red 0 Ox/ /
α nF

D D k π vD
RT

  (2.30) 

2.4.2 CV of weakly adsorbed species 

Extensive mathematical analysis of the theory of stationary electrode polarography 

complicated by adsorption was carried out by Wopschall and Shain
43

 back in 1967 and, as 

in the previously described case, the boundary value problem was converted into the 

equivalent integral equation that was solved numerically. In this model, it was assumed 

that (i) electron exchange is fast, (ii) adsorbed species do not exchange electrons, (iii) 

adsorption equilibrium holds at the electrode surface at any instant and follows Langmuir 

isotherm, with equilibrium constant of adsorption being allowed to depend on potential. Of 

four cases of adsorption considered in ref
43

, only the case of weak adsorption of reactant is 

relevant for this thesis and the reactant is Red in this case. Thus, “the chemistry” of the 

model is made up of reaction R2.1 (see previous section) and reaction R2.2: 

ads solRed Red  (R2.2) 

Redsol corresponds to the concentration of Red in the diffusion layer immediate to the 

electrode surface and effect of the double layer on the distribution of concentrations is not 

accounted for herein. 

Voltammetric signature of weak adsorption of reactant is a notable enhancement of 

forward peak and slight enhancement of the reverse peak (Figure 2.8) as compared to the 

peaks for a CV uncomplicated by adsorption. The peak potential also experiences some 

shift towards more driving potentials. The actual peak current depends on a number of 
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factors and becomes larger as the following parameters increase: concentration of reactant, 

equilibrium adsorption constant, maximum surface concentration and scan rate. Analysis 

of CVs with adsorption is complicated because the signal due to adsorbed species totally 

overlaps with the diffusional wave. A simple methodology of extracting the amount of 

initially adsorbed species, which was developed in this thesis, is presented and applied to 

the case of adsorption of ferrocene derivatives at HOPG. Unlike the integral equation 

approach by Wopschall and Shain, here the differential formulation was retained and 

boundary value problem was solved numerically. Full details of the theoretical approach 

and application to the experimental data are provided in Section 4.4 of ‘Results and 

Discussions’. 

 

Figure 2.8. Characteristic CV for the case of weak adsorption of reactant (bold line) is compared to the 

uncomplicated “ordinary” CV (dashed line). 

2.4.3 Special case of voltammetry in a droplet of solution 

A droplet of solution placed on the WE and connected to perform electrochemical 

measurements represents a tiny electrochemical cell, termed here droplet-cell and has a 

number of significant advantages over conventional large glass cells. Here it was applied in 

two studies dedicated to ET kinetics at HOPG and the adsorption of ferrocene derivatives 

on HOPG. 
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A significant feature of the droplet-cell is that the droplet can be assembled on the 

working electrode within a short time (~ 3 s), after HOPG surface cleavage, followed by 

the rapid placement of counter and reference electrodes into the droplet. This allows 

electrochemical measurements to be carried out on a very short time scale, minimizing the 

time that elapses between cleavage and electrochemical measurement and reducing 

possible sources of contamination. Of importance is the fact that the fresh HOPG surface 

can be contaminated when exposed to the air (atmospheric contaminants),
44,45

  although the 

effect (if any) of these on electrochemical processes is not known. The droplet-cell 

approach overcomes such problems in a straightforward and easy way. This is particularly 

advantageous for some couples, such as Fe(CN)6
4-/3-

, which may be complicated by side 

processes in certain situations and susceptible to changes in the HOPG surface after 

cleavage.
46

 Although macroscopic CV measurements do not offer access to the highest 

electrode kinetics, the mass transport rates attainable are sufficient to draw meaningful 

conclusions on the lower limit for ET kinetics at HOPG and to allow comparison of data to 

that on other electrode materials. 

It is also important to point out that the three-electrode droplet-cell (Figure 2.9a) is 

rather different from more conventional electrochemical cells. One of the consequences of 

such an arrangement, as shown from the modelling developed in this thesis, is a greater 

possible effect of ohmic drop, which may have an important influence on the 

electrochemical response, especially if the concentration of supporting electrolyte is not 

sufficiently large compared to the concentration of the redox species. Modelling and test 

measurements allowed to identify conditions where ohmic effects can be minimized for 

subsequent kinetic analysis. 

Comprehensive analyses of uncompensated resistance and practical measures to reduce 

it in conventional electrochemical cells have been presented in literature.
27,37

 However, to 
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the best of my knowledge, a droplet-cell configuration has not yet been studied in this 

respect. In order to estimate the effect of ohmic drop in a droplet electrochemical cell 

(Figure 2.9a),  the distribution of the electric field was modelled by solving the Laplace 

equation numerically for the electric potential φ (eq 2.37), within the domain defined by 

the droplet size, with the boundary conditions defined by eq (2.38): 

2 0φ   (2.37) 

φ = Vsol on the anode  (2.38a) 

φ = 0 on the cathode (2.38b) 

n grad φ = 0, on the air/water interface (2.38c) 

where Vsol is the  part of the overall potential difference applied between the CE and WE to 

carry the electrochemical current between the WE and CE, due to the WE reaction. Eqs 

(2.37) and (2.38) were solved using Comsol Multiphysics. 

    The size of the droplet was estimated from the peak current on CVs of oxidation of 

Ru(NH3)6
3+

. Size of the CE employed was measured under an optical microscope and these 

dimensions were used in the computations, but the depths of immersion of the CE and RE 

in the droplet-cell were more difficult to define and control precisely as they could vary in 

each experiment. To account for this, several possible (relative) configurations of these 

electrodes that cover important experimental situations were considered: the RE is far 

away from or close to the CE (Figure 2.9b, positions 1, 2 and 3). Ohmic loss of potential, 

denoted Vu, will be a fraction of Vsol determined by the position of the RE with respect to 

WE.
27

  

       The situation was idealized by assuming that the RE is dimensionless and thus 

samples the potential from a point (in the cell), and so does not perturb the electric field of 

the cell. Placing the CE so that it coincides with the cylindrical axis of the WE/cell 

geometry (Figure 2.9a), and rendering the RE dimensionless, significantly reduces 



CHAPTER 2.  METHODS 

 

63 

 

computational effort by allowing the solution of the Laplace equation in cylindrical 

coordinates with axial symmetry (2D geometry) and adequately represents the 

experimental situation. 

 
 

a b 

Figure 2.9. a) Schematic of the droplet-cell setup: WE-working electrode; CE-counter electrode; RE-

reference electrode. b) Distribution of the electric potential inside the droplet-cell (radius r = 0.26 cm and 

height h = 0.16 cm, volume = 20 μL). A point-size RE probe was placed at three different positions indicated 

with dots: r/2, h/2 (1); r/4, 3h/4 (2); r/8, 7h/8 (3), and the CE was immersed by h/20 (I) and h/4 (II). 

Distribution of equipotential surfaces is given for position II of the CE. Numbers around the domain indicate 

the fractions of Vsol. 

As seen from Table 2.1, Vu can be significant and strongly depends on the relative 

position of the CE and RE in the cell. Two positions of the CE inside the droplet-cell were 

considered – 1/20 (position I) and 1/4 (position II) of the droplet height, measured from the 

top liquid/air boundary (Figure 2.9b). Values for Vu along with the corresponding 

uncompensated resistance, Ru, were estimated on the basis that the peak current, ip, on a 

typical experimental CV recorded at 10 V s
-1

 amounts to ca. 120 μA . It was determined 

from the simulation that the magnitude of Vsol required to pass this current through the 

droplet-cell containing 0.1 M KCl (σ(25°C) = 0.013 S cm
-1

)
47

 was 78 mV for the CE 

placed at position I and 43 mV for CE at position II. Then Ru is simply Vu/ip. 
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In general, as the RE is moved from position 1 to 3 (move away from the WE towards 

the CE), the ohmic loss increases significantly, for both CE positions considered, as 

expected based on the field lines shown in Figure 2.9b. Interestingly, as evident from Table 

2.1, when the CE is held at position I (further from the WE), the total cell resistance 

increases dramatically and, thus, a higher voltage between the CE and WE, Vsol, would be 

required to overcome it. However, Vu is smaller for all positions of the RE considered than 

for the CE at position II (closer to the WE). This is because the gradient in Vu with distance 

is steepest close to the CE, and the CE-to-RE separation is always larger for CE position I 

than for CE position II. This overrides the effect of the increase in net cell resistance for 

CE position I. 

 

Table 2.1. Ohmic loss of potential and respective uncompensated resistance at 

different positions of CE and RE, for a current of 120 µA passing through the cell of 

geometry shown in Figure 2.9b, with 0.1 M KCl. 

 

                  CE pos. 

   RE pos.   

I 

Vsol = 78 mV 

II 

Vsol = 43 mV 

 Vu / mV Ru / Ω Vu / mV Ru / Ω 

1 3 22 5 38 

2 9 73 15 125 

3 20 167 31 258 

 

Thus, the RE should be kept as far away as possible from the CE but close to the WE. 

This is in agreement with the conventional electrochemical cell arrangement, which 

ensures that RE intercepts with equipotential lines corresponding very closely to the 

potential difference that actually drives an electrochemical reaction.
27

 In general, in 
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contemporary studies in aqueous electrolyte solutions at typical cell current,
48

 the 

electrochemical response is relatively immune to the RE placement. However, it is 

particularly important for the droplet-cell arrangement where ohmic effects are clearly 

magnified.   

2.5 Complementary techniques 

2.5.1 Optical microscopy for graphene research 

It is remarkable that atomically thin graphene can be made visible in an optical 

microscope. This technique makes the characterization of graphene a quick and easy 

process, with access to large areas of a sample, unlike AFM. 

Although graphene is visible via OM the contrast and colour strongly depend on the 

substrate it lays on and commonly used oxidized silicon (SiO2/Si) may not be the best one 

for this purpose.
49

 The colour contrast is thought to be due to the modulation of relative 

amplitudes of interfering light paths within sandwich made of a graphene layer, silicon 

oxide, and silicon and the fact that graphene and thin graphite are good electrical 

conductors.
50

 Reflection in the sandwich depends on the wavelength of the incident light. 

More detailed analysis of reflection spectrum of graphene/graphite on SiO2/Si substrate 

showed that green component of white light exhibited the highest contrast of reflection 

with the number of layers when the thickness of oxide layer constituted 465 nm. Contrasts 

calculated and measured in ref
51

 showed that the most suitable thickness of SiO2 layer lies 

between 90 – 280 nm when green light filter is used.  

2.5.2 Raman spectroscopy of graphene 

Raman spectroscopy is based on inelastic scattering of incident light by matter. 

Consider a molecule in a ground state. When a photon of monochromatic light interacts 
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with it and does not excite the molecule to an actual vibrational or electronic state, the 

molecule is said to be perturbed to a virtual state. The molecule and the quantum of light 

can be considered as one system during such very short (~ 10
-12

 s) interaction.
52

 The 

probability that the molecule will return to its ground state is very high and thus the 

scattered photon will retain its original energy. This is an elastic (Rayleigh) scattering. 

With much smaller probability, the molecule can return to one of the excited (rotational or 

vibrational) state. In this case the released photon will have less energy corresponding 

precisely to the energy of that excited state over the ground state. This type of scattering of 

light is termed inelastic scattering and is accountable for the Raman effect. The energy of 

this scattered light is smaller than that of the incident light and the corresponding spectral 

bands are called Stokes lines. Even less likely is the situation when the molecule resides in 

an excited (vibrational or rotational) state prior to the interaction with the photon and 

returns to the ground state. In this case, the scattered light will have higher energy than the 

original incident light and corresponding spectral bands are termed anti-Stokes lines. The 

intensity of these latter lines is much smaller than the Stokes lines, and normally Raman 

spectrum consists of Stokes lines. The difference between the wave number of the incident 

light and resulting Stokes lines is termed the Raman shift (units: cm
-1

) and is the quantity to 

which the intensity of the signal in the Raman spectrum is referred. Lastly, for the Raman 

effect to take place for a given bond in a molecule or a crystal, this bond must possess 

certain degree of polarizability that characterizes the ease with which electronic cloud of 

this bond can be perturbed by the photon.
53

 

Raman spectrometry proved to be a very useful tool for graphene research for several 

reasons. Firstly, the Raman spectrum of graphene and graphite has several characteristic 

peaks that inform on thickness, amount of defects and stacking order of the layers. 

Secondly, it is non-destructive technique. Thirdly, the analysis can be done quite fast and, 
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e.g. single layer graphene (SLG) can be distinguished from bilayer graphene (BLG) and 

multilayers simply by the shape of G′ band. Fourthly, it demonstrates very high sensitivity 

since the signal from just one layer of carbon atoms is easily measurable. Lastly, laser spot 

from which the spectrum is sampled can be as small as 0.5 μm, which allows to 

characterize samples with high spacial resolution (including Raman mapping) that is 

important for mechanically exfoliated graphene samples and CVD graphene. 

Figure 2.10 exemplifies Raman spectrum of graphene. Peak at 520 cm
-1

 is attributed to 

Si. The peak near 1350 cm
-1

 is referred to as the D band and it shows the presence of lattice 

defects. Estimation of the level of defects can be done by comparing its integrated intensity 

with that of the peak near 1600 cm
-1

 (G band).
54

 The peak situated around 2700 cm
-1

, 2D 

band, carries information about the number of layers. It is high and sharp for SLG, as 

compared to other peaks, but wide and low for BLG and slightly decreases further for 

multilayers. However, its shape is not unambiguous when N ≥ 2 (N is the number of 

layers).
54

  

In this thesis, Raman spectroscopy was employed to determine the number of graphene 

layers in various regions of samples. Most authors agree that SLG gives FWHM of 2D 

band 24 - 30 cm
-1

 and BLG ~ 55-60 cm
-1 

(ref
55–57

) consisting of four individual 

components (2D1B, 2D1A, 2D2A, 2D2B) with each being a single Lorentzian.
58

 To 

distinguish between BLG and three or more graphene layers, the position of the peak 

maximum (x0) was used, which shifts towards higher values for thicker graphene layers 

with concomitant progressive broadening of the peak width. 
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Figure 2.10. Raman spectrum of single layer graphene. 

2.5.3 Atomic force microscopy (AFM) 

AFM is a highly versatile technique from the family of scanning probe microscopy for 

high resolution topographical and functional imaging of various surfaces. It came into 

being in 1980s as a new technique overcoming a significant limitation of scanning 

tunnelling microscopy (STM) that could only be applied to imaging of conducting 

samples. As AFM relies on the measuring forces between a sharp tip and a sample, this 

limitation, as well as some others, were overcome, opening access to the imaging of a 

broad spectrum of samples in a variety of modes.
59

 

In AFM, a flexible cantilever with an atomically sharp probing tip at the end bends 

(deflects) in response to an interaction with the surface, depending on the nature of the 

forces involved and the average distance to the surface. Long range forces acting on the tip 

(average distance to the surface within 10 – 100 nm or more) are van der Waals, magnetic, 

electrostatic and capillary forces, which are generally attractive. When the tip is in very 

close proximity to the surface (≤ 1 nm) chemical forces are at work, which have attractive 

and repulsive regions and play important role in tip-surface interaction.
60
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In non-contact mode AFM, the cantilever is made to oscillate at its base with a certain 

frequency and amplitude. Even in vacuum there is a damping factor that diminishes the 

oscillation amplitude. Dynamics of the cantilever not interacting with the surface can be 

described by the model of a damped driven harmonic oscillator. When AFM operates in 

frequency modulation or amplitude modulation modes, the model of harmonic oscillator 

can still be applied in some limiting cases. However, the imaging used in this thesis was 

done in tapping mode (or intermittent contact mode) and in this case the cantilever 

dynamics follow a model of unharmonic oscillator (that has rather difficult theoretical 

description), although the actual oscillations are very close to a sinusoid. One of the 

significant advantages of tapping mode is that the oscillation amplitude depends linearly on 

the average tip-to-surface distance, which greatly helps to stabilize feedback based on 

maintenance of the amplitude constant. There are other advantages of this mode of 

operation. For example, unlike contact mode, soft samples can be imaged without damage, 

owing to short contact of the tip with the sample and complete avoidance of lateral 

frictional forces. Also, (water) contaminating film that easily builds up on surfaces exposed 

to ambient air “shields” the properties of the surface to study as the tip interacts with the 

surface through this layer in a non-contact mode of operation. In tapping mode, the tip 

swiftly dips through the layer making short direct contact with the surface thus probing its 

properties but not those of a covering layer.
61

 

AFM has been routinely used for high-resolution imaging of graphene samples.
55,62–65

 

Compared to optical microscopy, it covers much smaller areas of the sample (tens of 

microns) and has low throughput. But the position and height of atomic step edges can be 

accessed with high accuracy, which is critical for detailed analysis of the surface. AFM is 

an excellent complimentary technique for graphene research, as will be seen from the 

results on SECCM imaging of mechanically exfoliated graphene (section 4.1). 
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2.5.4 Scanning electron microscopy (SEM)66 

Optical microscopy is limited in resolution down to parts of micron due to the 

wavelength of visible light. Electrons travel as waves and the associated wavelength can be 

much lower, thus greater resolution is available. SEM is designed to investigate the 

topography of surfaces. 

In an electron microscope, the beam of electrons is usually generated by a tungsten 

filament and directed through a magnetic condensing system of objective lenses; the size 

of the beam is reduced down to 2 – 10 nm. Two electromagnetic coils control the (x,y)-

position of the beam. The chamber is kept at high vacuum (~ 10
-6

 Torr) otherwise electrons 

would be easily absorbed by any gaseous species. 

Interaction of the beam with a specimen gives rise to several types of signal. 

Backscattered electrons are the ones that experience elastic collision with the sample and 

do not change their kinetic energy, but only direction, and are detected by the detector. The 

beam of these electrons is larger than the original one and it is one of the limiting factors of 

SEM. Secondary electrons arise from non-elastic interactions and provide conduction 

electrons that are more weakly bound others; they have energy of 50 eV or less and are 

ejected from the surface layer of 5 – 50 nm. Although the depth of penetration of the beam 

is about 1.5 m, backscattered electrons cannot escape from the sample if they are deeper 

than parts of micron from the surface. 

SEM can be a destructive technique when high energy electrons are used. The sample 

must be electrically conductive to avoid accumulation of charge otherwise more or less 

blurred image ensues. This, and the requirement of high vacuum, put limitations on the 

samples that can be studied, especially if they become volatile or are not dry.  
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CHAPTER 3. EXPERIMENTAL 

This chapter provides details of experimental methods, chemicals and materials utilized. 

3.1 SECCM imaging of graphene and HOPG 

Double barrel pipettes used for imaging were fabricated from borosilicate glass capillaries 

(ID = 1.0 mm, OD = 1.5 mm, Harvard Apparartus, UK) or quartz capillaries (ID = 0.9 mm, 

OD = 1.2 mm, Intracel, UK) by pulling the capillaries on a laser puller (P-2000, Sutter 

Instrument Co., USA) to a desirable diameter of the sharp tip (from 0.1 to 0.5 μm at the end). 

The exact shape and dimensions were determined from the images of the tips obtained with a 

scanning electron microscope (Supra 55-VP, Zeiss). To prevent leaking of aqueous solutions 

on the outer walls of pipettes, and thus have a more confined/well-defined meniscus, the 

pipettes were silanized by immersing their tips into dimethyltrichlorosilane for 2 min. A 

pressure of argon of 5-8 bars was applied to the pipette to avoid the silane leaking inside. 

Finally, the pipettes were dried in air and filled with the solution of interest. 

Chloridized silver wires or H2-saturated palladium wires served as quasi-reference counter 

electrodes (QRCEs) that were inserted in each barrel and connected to the voltage source, E1 

(see Figure 2.1) supplying 0.2 - 0.5 V (exact value will be quoted for each imaging 

experiment in the ‘Results’) . The pipettes and samples (described below) were mounted on 

the in-house-built Warwick Electrochemical-Scanned Probe Microscopy setup so that z-piezo 

positioner controlled the pipette and the x,y-piezo moved the sample laterally. The pipette 
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was oscillated in the vertical direction with a frequency of 233 or 266 Hz, using the AC 

signal from a lock-in amplifier (SR830, Stanford Research Systems).  

For fixed potential imaging, the following parameters were used. The amplitude of the 

oscillation (as defined in Section 2.3.2) was 20 nm for borosilicate tips and 12 nm for the 

quartz ones. The data were recorded at a speed of 10 μs per data point that were averaged 

over 512 points to yield one datum every 5.12 ms. For imaging in SECCM-CV/LSV mode, 

the tip was held at each pixel of the image for as long as needed for a potential scan (CV or 

LSV) to be complete and then was moved in x direction by 0.4 μm. The potential was swept 

at a rate of 0.2 V s
-1

 for imaging with Ru(NH3)6
3+

  (200 data points in LSV) and 0.3 V s
-1

 for 

imaging with FcTMA
+
 (230 data points per CV). Total time per entire image scan was around 

2.5 h. 

The following solutions were utilized for the imaging. For graphene samples, the solution 

was 5 mM Ru(NH3)6
3+

 in 25 mM KCl with 50 mM phosphate buffer (pH = 7.2). HOPG was 

imaged with three redox mediators: i) 1 mM Ru(NH3)6
3+

 in 100 mM KCl; ii) 1 mM FcTMA
+
; 

and iii) 0.4 mM FcCOOH, both in 25 mM KCl with 50 mM phosphate buffer (pH = 7.2). 

3.2 Preparation of graphene and HOPG samples 

HOPG samples for imaging or CV were prepared by scotch tape exfoliation as routinely 

done in the literature,
1,2

 in which top layers were taken by the scotch tape, leaving behind the 

fresh pristine surface. HOPG of different grades – from high to low – was used in this study: 

ZYB, SPI-3 and ungraded but of high quality sample referred to as AM HOPG was courtesy 

of Prof. R. L. McCreery (University of Alberta, Canada). 

To prepare ME graphene samples, AM HOPG was peeled off with the scotch tape as just 

described and the layers (flakes) stuck to the tape were pressed against a SiO2/Si substrate 

and removed after a while, producing occasionally micrometer-sized graphene flakes suitable 
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for imaging. Electrical contact between a copper wire and a graphene flake was made with 

conducting silver paint. Apart from electrochemical imaging, the samples were characterized 

with an optical microscope, AFM and (micro-)Raman spectroscopy. 

3.3 Macroscopic CV on HOPG 

All CV measurements, except for the grafting diazonium radicals, were carried out using a 

droplet-cell arrangement and 760 C potentiostat (CH Instruments). Specifically, a droplet of 

an electrolyte solution with a redox couple of interest (volume = 20 μL) was placed on either 

a freshly cleaved surface (within seconds after cleavage) or one “aged” in air, or aged in a 

glove box (nitrogen atmosphere) for a certain time (to be specified in the Results and 

Discussion). The droplet was contacted with two electrodes: chloridized silver wire (a bare 

wire or a wire with PTFE cladding that was coated with AgCl at the exposed disc-shape end) 

that served as a reference electrode (RE) and platinum wire that served as a counter electrode 

(CE). An HOPG block, firmly glued to a piece of gold-coated silicon wafer with silver paste 

and contacted by a copper wire, was connected as a working electrode (WE). The 

voltammetric scan rate varied between 0.05 and 10 V s
-1

. Redox mediators used for kinetic 

and adsorption studies on HOPG were Ru(NH3)6
3+

, Fe(CN)6
4-

, IrCl6
2-

, FcTMA
+
, FcCH2OH 

and FcCOOH in various concentrations in sub-mM range in either 0.1 M or 1 M KCl (to be 

specified in the ‘Results’). FcTMA
+
 in the form of FcTMA

+
PF6

-
 was prepared by exchange 

reaction of FcTMA
+
I
-
 with AgPF6. All the solutions were prepared with Millipore Mili-Q 

water (18.2 MΩ cm) and used on the day of preparation. 

For the diazonium radical grafting experiments, a three electrode configuration was also 

employed but the solution containing 1 mM 4-CBD (synthesized in-house according to ref
3
) 

in 50 mM H2SO4 was placed inside a rubber o-ring (area = 0.32 cm
2
) that was placed on a 



CHAPTER 3. EXPERIMENTAL 

 

80 

 

freshly cleaved HOPG surface. A H2-saturated Pd wire served as a RE and Pt wire as a CE. 

The scan rate was 0.2 V s
-1

. 

3.4 Micro-Raman analysis 

Raman measurements were performed using a HeNe 633 nm micro-Raman spectrometer 

(inVia micro-Raman, Renishaw, UK) equipped with an automated piezo-stage and a 100x 

lens (Leica NA 0.85). For Raman mapping, the laser beam was raster-scanned across the area 

of interest, acquiring spectra every 0.5 μm. To determine the number of graphene layers, the 

signal at the 2D band region (around 2650 cm
-1

) was used. 

3.5 Chemicals and materials 

Chemicals and materials used in this thesis are listed. 

Table 3.1. Chemical reagents 

Name, purity grade Formula/Acronim Commercial source 

Chlorotrimethylsilane, 98% (CH3)3SiCl ACROS Organics 

(Ferrocenylmethyl)trimethylammonium 

hexafuorophosphate 

FcTMA
+
 prep. in-house (see text) 

(Ferrocenylmethyl)trimethylammonium 

iodide, 99% 

FcTMA
+
I
-
 Strem Chemicals 

Ferrocenylcarboxylic acid, 98% FcCOOH Alfa-Aesar 

Ferrocenylmethanol, 97% FcCH2OH Sigma-Aldrich 

Potassium chloride, 99% KCl Sigma-Aldrich 

Potassium hexachloroirridate (IV), 

99.99% 

K2IrCl6 Aldrich 



CHAPTER 3. EXPERIMENTAL 

 

81 

 

Potassium hexacyanoferrate (II), 99.99%  K4Fe(CN)6·3H2O Sigma-Aldrich 

Ruthenium (III) hexamine chloride, 99% Ru(NH3)6Cl Aldrich 

Silver hexafluorophosphste, 99%  Ag[PF6] Strem Chemicals 

Sulfuric acid, 99.999% H2SO4 Aldrich 

4-carboxybenzenediazonium 

tetrafluoroborate 

4-CBD prep. in-house (see text) 

 

Table 3.2. Materials 

Materials Commercial source 

Ag wire with PTFE cladding, 0.25mm, 

99.99% 

Goodfellow 

Ag wire, 0.25 mm, 99.99% Goodfellow 

Conductive silver paint RS Components 

HOPG, AM GE Advanced Ceramics 

HOPG, SPI-3 SPI Suppliers, West Chester, PA 

HOPG, ZYA GE Advanced Ceramics 

HOPG, ZYB  NT-MDT (Moscow, Russia) 

Pd wire, 0.25 mm, 99.9% VWR International 
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CHAPTER 4. RESULTS AND DISCUSSION 

This chapter discusses all four different projects undertaken in this thesis. High-

resolution electrochemical imaging and macroscopic voltammetric measurements of the 

rate of redox reactions of several outer-sphere redox couples on graphene and graphite 

revealed the complex nature of these electrode materials, which receives some support 

through application of a theory of ET taking into consideration the electronic structure of 

an electrode material. Efficiency of grafting of HOPG with diazonium radicals was 

estimated based on modelling and cyclic voltammetry. The usefulness of FEM modelling 

for high-resolution imaging experiments was demonstrated on the example of the oxygen 

reduction reaction on polycrystalline platinum. Finally, a voltammetric study of adsorption 

of several ferrocene derivatives on HOPG is presented and a simple (mathematical) model 

helpful in quantification of adsorption from voltammetric data is proposed. 

4.1 ET at graphene and graphite 

This section details the experimental evidence of specificity of electrochemical 

behaviour of HOPG and graphene towards several outer-sphere redox mediators. Results 

of high-resolution electrochemical imaging will shed light on the peculiar enhancement of 

current along step edges of graphene and HOPG samples, which was observed for 

Ru(NH3)6
3+/2+

 couple, but not for other redox couples. Some aspects of this enhancement 

will be rationalized within a FEM model of SECCM experiments. Time elapsed after 

exfoliation of HOPG, exposing a fresh surface, will be shown to critically affect the 
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electrochemical response of this material towards Ru(NH3)6
3+/2+

 but not IrCl6
3-/4-

, Fe(CN)6
3-

/4-
, and FcTMA

+2/+
, regardless of the ambient conditions to which the surface was exposed. 

Results obtained from high-resolution imaging will be generally in agreement with 

macroscopic voltammetry data. A unifying theory that attempts to explain diverse 

experimental findings on graphene and HOPG, based on the concept of density of states in 

ET kinetics and the possibility of spontaneous delamination of the topmost layers of 

HOPG, is presented and discussed. Also, the role of DOS for ET with outer-sphere redox 

couples will be discussed in light of the results of voltammetry of four aforementioned 

redox couples on fresh surface of HOPG. 

4.1.1 High-resolution electrochemical imaging of ME graphene  

As described in the Introduction (Section 1.3), it was believed that graphite edges, 

almost exclusively, provide all electrochemical activity of this material. Evidences 

supporting an alternative theory have been emerging relatively recently and those that 

leave no doubts that the basal plane is capable of ET (even fast ET) originate from high-

resolution measurements in which the basal plane was accessed directly and independently 

of step edges. In particular, pipette-based methods like SMCM and, later, SECCM 

measurements unequivocally demonstrated significant activity of the basal plane of HOPG 

towards ET for FcTMA
+
 (ref

1
) and Ru(NH3)6

3+
 (ref

2
). The ET rate for FcTMA

+
 oxidation 

at CVD graphene was also probed and found to increase quite significantly with the 

number of layers,
3
 – a fact important for this study. The research results reported in this 

thesis complement these previous works in a number of ways: i) measurements were done 

on ME graphene, meaning that they represent the properties of a reference material without 

measurable lattice defects; ii) imaging of HOPG with three redox mediators (FcTMA
+
, 

FcCOOH and Ru(NH3)6
3+

) and ME graphene with one (Ru(NH3)6
3+

); iii) the situation over 

step edges of graphene and HOPG was carefully investigated with the help of SECCM in 
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CV/LSV mode; iv) the graphene samples imaged with SECCM were thoroughly 

characterized by complementary techniques (Raman spectroscopy, optical microscopy, and 

AFM) – a multimicroscopy approach, which allowed conclusions to be drawen on 

structure-property relationship; v) systematic macroscopic CV measurements essentially 

corroborated what was revealed with high-resolution imaging; and vi) modelling with ET 

theories provided some qualitative support to the experimental data from high-resolution 

electrochemical imaging. 

A high-resolution image (30 x 30 μm
2
) of electrochemical activity of the reduction of 

Ru(NH3)6
3+

 at a ME graphene sample along with AFM, and optical micrographs of the 

same area of the sample are presented in Figure 4.1. As seen from the microscopy results, 
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a b 

 

  

c d 

Figure 4.1. Multi-microscopy approach to imaging of the graphene sample obtained by exfoliation of ZYA 

HOPG. a) Optical micrograph. Dashed line shows the boundaries with the SiO2/Si substrate. b) AFM 

micrograph. Boxed regions are analyzed in details below. c) SECCM image of reduction of Ru(NH3)6
3+

 (5 

mM in 25 mM KCl and phosphate buffer) recorded at ES = -0.46 V (η = -0.20 V) with a pipet of ~0.3 μm in 

tip diameter. d) CV acquired at the topmost leftmost pixel of the SECCM image, v = 0.05 V s
-1

. Scanning 

parameters: tip speed = 2 μm, iAC = 0.1 nA, EC = 0.5 V. 

the sample is heterogeneous, containing regions of mono-, bi-, multilayer graphene, and 

multiple step edges. By examining all three micrographs, it is not difficult to see that only 

some step edges exhibited enhanced currents, and electrochemical activity appeared to be 

lower on mono- and bilayer graphene. This difference is most easy to see in regions A and 
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B, which will be analysed in greater detail later in the text. CV recorded at the topmost 

leftmost pixel of the SECCM image possessed a rather drawn-out shape (E3/4 – E1/4 = 110 

mV; Figure 4.1d), indicating quite kinetically hindered ET at the time scale of the imaging 

experiment (mass transfer coefficient mT ≈ 0.2 cm s
-1

). Based on the AFM and optical 

micrographs, the CV was recorded on a layer of thin graphite. Further, it will be shown 

that such kinetically sluggish behaviour of graphite towards this redox couple was also 

observed in macroscopic voltammetry of aged HOPG. 

To obtain more information on kinetics of the processes under study, it would be of 

interest to produce Tafel plots and analyse the slopes, which may inform on the rate-

determining step (solvent coordination can be significantly different for Red and Ox 

forms), as proposed by S. Fletcher.
4
 However, voltammetry presented here is close to 

reversible limit in practically all the cases, making Tafel analysis impossible. Different 

experimental design would be needed to reliably produce Tafel plots: i) both Red and Ox 

forms should be present simultaneously and in approximately equal concentrations; ii) 

faster mass transport is required to ensure sufficiently large region controlled by the 

kinetics. 

Regions A and B of the sample from Figure 4.1b were imaged with micro-Raman to 

accurately determine the number of graphene layers. Several criteria were used to assign a 

particular number of graphene layers at each spectrum (pixel) of the map. The full width at 

half maximum (FWHM) of the 2D-band was used to distinguish between monolayer 

graphene and multilayers (≥ 2 graphene layers). For a monolayer, the 2D-band is presented 

as a sharp Lorenztian peak with FWHM of about 24 – 30 cm
-1

 (ref
5–7

). The 2D-band of 

bilayer graphene has a characteristic signature,  with FWHM of about 55 – 60 cm
-1

 and has 

four components (2D1B, 2D1A, 2D2A, 2D2B) with each being a single Lorentzian.
8
 To 

distinguish between bi- and three- or more graphene layers, one relies mainly on the 

position of the peak maximum (x0) that shifts towards higher values for thicker graphene 
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layers, but also on the progressive broadening of the peak with the number of layers. Note 

that x0 reaches saturation towards approximately five-layer stacks.
8
 

  

a b 

Figure 4.2. a) Set of representative Raman spectra of 2D band (black dots) with fits (black lines) and Lorentzian 

components of the fits (red lines). b) Set of Raman maps of region A of the sample that is outlined in Figure 4.1b, 

showing FWHM, peak intensity, and peak maximum of the 2D-band. The bottom image is a categorized map 

obtained by combining the upper three maps. 

Thus, each spectrum was fitted to one (for monolayer), four (for bilayer) or two 

Lorentzians (more than two layers suspected) as demonstrated in Figure 4.2. By combining 

the maps of FWHM and x0, it was possible to distinguish mono-, bi- and multilayers (even 

with some contrast between multilayers). The intensity map was used to determine regions 
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of bare Si/SiO2, as sometimes there was a small contribution from the signal of the area 

surrounding graphene (in regions where a narrow segment of Si/SiO2 was exposed). 

Regions A and B outlined in Figure 4.1b are particularly suitable for demonstrating the 

difference in current on graphene of different thicknesses and “two types” of steps. Figure 

4.3 shows zoomed-in AFM, micro-Raman and SECCM micrographs of these regions. As 

revealed by micro-Raman there are mono- and bilayer stacks having a common step edge 

separating them (indicated with arrows in Figure 4.3a) both in regions A and B. However, 

SECCM image shows enhanced current along the step edge in A region but not in B. It is 

proposed that the step edges “visible” by SECCM are exposed, “open to air” edges. Such 

step edges are in direct contact with the meniscus when the pipet scans over them. In 

contrast, other step edges are covered by a layer of graphene, and will not be in direct 

contact with the meniscus, therefore, are “invisible” to the electrochemical microscope as 

schematically presented in Figure 4.3b. Existence of thus-covered step edges was proved 

with STM and STS measurements on HOPG
9
 where a step edge separated two different 

regions on the surface. In one region, the top layer was coupled to the underlying layer(s) 

and, thus, showing under STM a triangular pattern characteristic of Bernal graphitic lattice. 

STM of the other region had a characteristic honeycomb pattern, thus identifying the 

monolayer graphene on top of HOPG surface. Current on mono- and bilayer stacks in 

regions A and B constituted 8 ± 1 pA and 15 ± 1 pA, respectively, pointing at the 

possibility of different electrochemical activity of graphene of different thicknesses. 
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a 

 

b 

Figure 4.3. a) Multi-microscopy of regions A and B outlined in Figure 4.2b. Arrows indicate the boundary between 

mono- and bilayer graphene. Enhanced current is seen along this boundary in regions A but not region B. AFM 

“sees” both steps. Scale bar shows 4 μm. b) Schematics of the steps “visible” and “invisible” to the electrochemical 

microscope. 

Quantitative analysis of current along step edges was performed for the SECCM image 

shown in Figure 4.4a. It is exactly the same sample that has been just discussed but this 

image was recorded at less driving potential η = -0.10 V. All the step edges were 
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thoroughly examined to determine the peak electrochemical current on the line profiles of 

step edges (from SECCM image; see Figure 4.4c) and step heights (from the AFM image) 

but not all of them were suitable for analysis. Specifically, step edges near the sample 

boundary with the silicon substrate were excluded from analysis due to variation in 

wettability across these borders, which perturbs the meniscus. When two or more step 

edges were located very close to each other, giving rise to a complicated group of peaks on 

the SECCM line scan, they (the step edges) were not analyzed, either. In Figure 4.4b, the 

step edges that were examined but not considered in the analysis are marked with grey 

colour; other colours mark the step edges whose step heights were measured from the 

AFM image and correlated with peak currents measured from the SECCM image. 

Monoatomic step was assigned a value of 0.335 ± 0.05 nm, and other step heights were 

expressed as multiples of this value.
10

 

Figure 4.4c shows a fragment of the SECCM image outlined in Figure 4.4a. Also, 

shown are line scan profiles within this fragment along the black dashed line (shown in 

that fragment). Forward and reverse line scan profiles are practically the same, suggesting 

stable meniscus and good surface tracking during imaging. Peak current along each 

category of step edges marked on Figure 4.4b was averaged and related to the step heights 

as follows: monolayer – 26 ± 4 pA, bilayer – 34 ± 2 pA, threelayer – 39 ± 3 pA, and 

sixlayer – 42 ± 2 pA. 
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a b 

 
 

  c d 

Figure 4.4. a) SECCM image of reduction of Ru(NH3)6
3+

 (5 mM in 25 mM KCl and phosphate buffer) 

recorded at ES = -0.36 V (η = -0.10 V); b) “edge component” of the AFM image of the graphene sample  

shown in Figure 4.1b. Colour bar indicates step height in terms of the number of monoatomic steps. Grey 

colour marks step edges that were not suitable for analysis. c) Fragment of the SECCM image outlined with 

white dashed line in a and the line scan profiles (forward is red and reverse is black) along the black dashed 

line. d) Averaged peak current over step edges made up of different number of monoatomic steps: 

experimental data (points with error bars), prediction by the model for the same range of step edge 

thicknesses (continuous line), and predicted limiting behaviour for 10 layers (dashed line). 

 

 

From the foregoing, it is clear that higher step edges exhibit higher currents. Then the 

following question arises: did step current increase exclusively due to geometry of the step 

or were other effects also at work? If one tentatively admits that elevated DOS of a 
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monoatomic step edge facilitates kinetics of ET, then it would not be unreasonable to 

assume that electronic states of a multilayer step edge are not a mere sun of the states of 

constituting monoatomic steps. It was quite straightforward to test the first part of the 

question and the results suggested that increase in current over higher step edges could be 

satisfactorily explained by purely geometrical factor, thus, giving a negative answer to the 

second part. A FEM model used for testing the hypothesis of geometrical factor is detailed 

below, followed by the results of its application. 

The model can be considered as a simplified version of the full SECCM model given in 

the Methods (Section 2.3) or as an adaptation of another previously developed model of 

scanning micropipette contact method (SMCM).
1
 Since precise quantification of kinetics 

on the step edges was not a purpose here (and there was not enough experimental data for 

this), the simplifications described below seemed quite admissible.  Transport by migration 

that takes place in a real SECCM pipette was replaced with an increased (effective) 

diffusion coefficient, denoted Deff. As a result, one may remove the septum dividing the tip 

from the modelled domain. A step edge was approximated with as a half-cylinder crossing 

the bottom of the meniscus, which is a smooth easy-to-mesh feature and has no edge-effect 

unlike
*
 a plane band. The circumference of the half-cylinder was set equal to the step 

height. The model was built in 3D and the modelled domain included only half of the tip 

due to symmetry (Figure 4.5). Dimensions used to define the modelled domain are also 

shown. Radius of the half-cylinder was such that its circumference, l, equalled the effective 

height of a given step. STM/STS measurements suggested that monoatomic graphene edge 

                                                 

*
 It is well known that current density is very high at the edges of a micoring or microdisc electrodes, 

which requires extreme care in meshing that region.
118

 A cylinder is a uniformly accessible electrode when is 

placed in an infinite volume. In the case being discussed here, the mass transport towards the half-cylinder 

may be somewhat impeded from the sides as compared to the case when diffusion occurs from a (semi) 

infinite volume. 
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has its special electronic structure (elevated DOS) “stretched” by ~4 nm counted from the 

geometrical edge and also exhibits some curvature,
11

 therefore, l was given values that 

were multiples of 4 nm. Based on this, it is sensible to represent the step edge as a half-

cylinder or a band in the model rather than actual sharp topographical edge as could be 

seen by e.g. AFM. 

One of the main conclusions of the research for which this modelling was carried was 

that Butler-Volmer formulation of ET kinetics was not applicable for reasons detailed later 

on. As a consequence, general, non-specific, suitable for a fixed overpotential formulation 

of ET kinetics was set on the basal plane (eq 4.1a) and the step edge (eq 4.1b), simply 

stating that ET rate is proportional to pre-electrode concentration of Ox (initially present 

form). 

Ox
Ox,eff bp,eff Ox

bp

c
D k c

z

 
 

 
 (4.1a) 

Ox
Ox,eff st,eff Ox

st

c
D k c

z

 
 

 
 (4.1b) 

where kbp,eff and kst,eff are the effective potential-dependent rate constants for the basal 

plane and the step edge, respectively. 

Meniscus and pipet walls were assigned no-flux boundary conditions as detailed in the 

Mathematical Model of SECCM (Section 2.3). Thus, one only had to solve Fick’s second 

equation of diffusion in Cartesian coordinates for cOx: 

2Ox
Ox,eff Ox


 



c
D c

t
 (4.2) 
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a b 

Figure 4.5. a) Modelled domain (2D presentation, not to scale) for modelling current over step edges. Bottom 

of the figure shows the bottom view of the meniscus (“st” is for step edge, “bp” – basal plane, l is 

circumference of the half-cylinder representing the step edge). b) The same modelled domain as in a but in 

3D, which is presented here to facilitate visualizing the domain. 

The model contained initially three unknown parameters – DOx,eff, kbp,eff and kst,eff – that 

were determined separately. Effective diffusion coefficient DOx,eff = 9.2 × 10
-6

 cm
2
 s

-1
 was 

found by fitting the computed current to the experimental value of limiting current (63 pA) 

with the boundary condition cOx(z=0) = 0 in place of that by eq 4.1. Based on the average 

current of 4.3 ± 0.5 pA on the basal plane only, it was found that kbp,eff  = (3.4 ± 0.4) ×10
-3

 

cm s
-1

 by fitting the current returned by the model to the experimental value. After the 

effective diffusion coefficient and kbp,eff had been established, kst,eff = 7 ± 3 cm s
-1

 was 

found by matching the computed current to the value of the peak current (26 ± 4 pA) when 

the tip was scanning across a monoatomic step (see, for example, peaks shown in Figure 

4.4c). Two significant conclusions were made based on these results. 
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First, the rate constant at the step edge is approximately 2000 times that at the basal 

plane (at least when η = -0.10 V). The actual values of rate constants do not have meaning 

but their ratio does. With great degree of confidence, one can say that ET at step edges is 

far more facile than at the basal plane exposed to air long enough. Due to technical 

difficulties of preparation and preliminary characterization of a sample of ME graphene, 

the imaging did not start until after 3 h of the exfoliation, with the surface of the sample 

exposed to ambient environment for all this time. The great significance of the effect of 

time elapsed after exposing a fresh surface of graphite on electrochemical properties of this 

surface will be discussed in sections 4.1.3 and 4.1.4. 

Second, by changing l one can compute peak currents and compare it to the 

experimentally observed dependency. As can be appreciated from Figure 4.4d, the model-

predicted peak currents (continuous line) are in good agreement with experimental ones, 

thus supporting the supposition that the enhancement of current on step edges scales only 

due to incrementally higher step size. It should be stressed that the model was adjusted (in 

terms of effective ET rate constants) using only the peak current for a monoatomic step 

edge, thereby the curve representing computed currents originates from the first data point 

on the graph. The curve was not fitted to the rest of the data points but is a “prediction” of 

the change in peak current with step edge size. That it passes so closely to other 

experimental points shows how accurate the model/“prediction” was. 

From imaging ME graphene with Ru(NH3)6
3+

, the most significant message is 

enhancement of current along the step edges. Similar experiments were carried out on 

“aged” surfaces of HOPG and the same enhancement of the current along step edges was 

observed only for Ru(NH3)6
3+/2+

. These experiments are introduced in the next two 

sections. 
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4.1.2 High-resolution electrochemical imaging of “aged” HOPG 

Initially, the results of SECCM imaging of “aged” HOPG in a fixed-potential mode 

with two other redox mediators – FcTMA
+
 and FcCOOH – are presented, which will be 

followed by the results of imaging in SECCM-CV/LSV mode. In contrast, ME graphene 

samples, it was possible to commence measurements on HOPG as soon as 10 min after 

exposing its fresh surface, however, this section is concerned with “aged” HOPG surface – 

a surface which was exfoliated at least ½ h prior to the beginning of imaging and fresh 

HOPG is a subject of the section that follows.  

The SECCM data for the two aforementioned redox couples are shown in Figure 4.6 

and are: surface current, complementary images of conductance current (see definitions in 

the Methods, Section 2.1), and the CVs typically acquired at the topmost, leftmost pixel 

(the last acquired pixel) of the image. Although some features do appear on the iS images, 

they are only a tiny perturbation compared to the values of iS of the basal planes. Upon 

examination of complementary images of conductance current (iC), some minor 

perturbations are seen along step edges, which can be attributed to the variation in 

meniscus shape due to heterogeneity in wettability  when a step edge crosses the path of 

the pipette (step edges  retain their good wettability with time
12

). Therefore, it seems 

reasonable to admit that these small variations are reflected as slight amplification of the 

current on iS images. 
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FcTMA2+/+ FcCOOH-/0 

 

 

 

 
  

 

 

 

 
  

 
 

a b 

Figure 4.6. SECCM data of “aged” HOPG with FcTMA
+
 (1 mM in 25 mM KCl and phosphate buffer) in plot 

group a, and with FcCOOH (0.4 mM in 25 mM KCl with phosphate buffer) in plot group b. From top to 

bottom in each group: surface current image and profile along the dashed line recorded at η = -0.01 V for 

FcTMA
+
 and at η = 0.00 V for FcCOOH, conductance current image and profile along the dashed line 

followed by the CV recorded at the topmost leftmost pixel of the image. Scanning parameters: tip speed = 2 

μm, iAC = 0.1 nA, EC = 0.5 V. Rate of potential sweep on CVs was 0.05 V s
-1

. 
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Another observation that voltammetry for both redox mediators was close to reversible 

limit (E3/4 – E1/4 = 60-62 mV for both redox couples) signifies that ET was fast on the time 

scale of the imaging experiment (mT ≈ 0.2 cm s
-1

 for FcTMA
+
 and ≈ 0.1 cm s

-1
 for 

FcCOOH)
*
. This contrasts to notably sluggish ET for Ru(NH3)6

3+
 based on voltammetry 

data described in the previous section (see also Figure 4.1d). One might object that the 

CVs for ferrocene couples were recorded when the tip was positioned on a step edge and 

that this is the reason behind reversible behaviour on voltammetric curves whereas in the 

case of Ru(NH3)6
3+

 the tip might have been landed on the basal plane only. However, this 

can be rebutted, because any “improvement” in voltammetry when the meniscus includes a 

step edge can be expected only if there is a notable enhancement of the surface current 

along step edges on the fixed potential images. Since this is not the case for the ferrocene 

derivatives under consideration, one would not expect a different voltammetric response 

whether the tip included a step edge or not and, moreover, this also means that the basal 

plane of “aged” graphite is fully capable of quite fast ET as well – its activity is 

indistinguishable from that of step edges (at least towards these redox couples). Further 

confirmation of this view point was received from the imaging results in SECCM-CV/LSV 

mode whose description follows. 

It will not be an exaggeration to say that without SECCM in CV/LSV mode, the 

enhancement of surface current along step edges would remain a complete conundrum. 

Although the detailed nature of this enhancement is not known equivocally, some answers 

have been obtained. Carrying out voltammetric measurement at every pixel of the image of 

electrochemical activity of Ru(NH3)6
3+

 on “aged” HOPG revealed that voltammograms 

obtained when the tip was over the basal plane only were shifted along the potential axis 

                                                 

*
 This estimate is based on the averaged tip diameter of 0.3 μm and concentrations of redox mediators 

indicated in the figure caption. 
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towards more driving potentials as compared to those when a step edge crossed the 

meniscus, with the shape of the voltammograms not being noticeably different. For 

brevity, the tip position for the latter case will be referred to as “on a step edge”. Figure 

4.7a (lower part) shows what can be termed a potential-slice of the 4D image (x, y, ES, and 

iS) recorded with SECCM-CV/LSV for ES = -0.32 V. Given the slow sweep rate of 

potential (0.3 V s
-1

), the imaging can be considered as performed in a steady-state and 

therefore, the ”slice” in question is equivalent to imaging the sample in a fixed-potential 

mode at the same surface potential of -0.32 V. The voltammetry presented in Figure 4.7a, 

shows two “extreme” LSVs that are the average of, in total, 35 individual LSVs recorded 

on the basal plane only or “on a step edge”. Also shown are one LSV for the 

“intermediate” position of the step edge, that is, when the step edge crosses the meniscus 

not at the centre, and, for reference, a reversible LSV corresponding to a reduction of some 

Ox with the same formal potential as that of Ru(NH3)6
3+/2+

 couple (E
0
′ = -0.24 V vs 

Ag/AgCl, 1 M KCl) and the same limiting current as on the experimental LSVs.  The 

bands of lighter colour around each curve show standard deviations for each curve. The 

limiting currents of both LSVs are the same within the error, as expected. The 

characteristic steepness of each LSV in terms of E3/4 – E1/4 is also the same within 

experimental error, 70 - 72 mV. Thus, the two waves appear identical except that they are 

shifted with respect to each other by ~ 70 mV. The LSVs corresponding to less than 

maximal exposure of a step edge to the meniscus have - not surprisingly - intermediate 

position on the potential scale and practically the same steepness (fine blue curve on Figure 

4.7a). With this is mind, it is not difficult to imagine how current along the step edges 

appears enhanced on the fixed potential images. 

Clearly higher exposure of the step edge to the meniscus moves the voltammetric curve 

to less driving potentials. The limit of this shift would obviously correspond to a reversible 

voltammetric wave (fine dashed line in the same figure). It is proposed herein that low 
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DOS of graphene and special position of E
0
′ of Ru(NH3)6

3+/2+
 couple with respect to the 

DOS profile may be responsible for this shift. An expression for ET kinetic based on 

Butler-Volmer formula but with potential-dependent pre-exponential factor can be 

implemented in a FEM model to back up this idea. The role of DOS in the observed 

voltammetric behaviour of this and other redox couples on HOPG and how graphene may 

form on top of HOPG block are discussed in details in Sections 4.1.5 and 4.1.6. 

Undoubtedly, the theory based on potential-dependent pre-exponential factor is reasonable 

and deserves special attention, but, apparently, is only a first step towards understanding of 

this peculiar behaviour. 

In contrast to the imaging results with Ru(NH3)6
3+

, SECCM-CV/LSV imaging with 

FcTMA
+
 revealed no shift of voltammetric wave as can be seen from Figure 4.7b. This is 

highly consistent with imaging data at a fixed potential, which was described above. Also, 

the “slice” of the imaging data for E = 0.29 V (near E1/2 on the CVs in the same figure), is 

essentially featureless. Both CVs are at the reversible limit, having E3/4 – E1/4 ≈ 60 mV and 

half-wave potential is closed to E
0
′ = 0.33 V vs Ag/AgCl (0.1 M KCl) deduced from 

macroscale measurements (see Section 4.1.4). This value (60 mV) is somewhat smaller 

than the one for Ru(NH3)6
3+

, but since the mass transport was not necessarily equal in both 

cases, it would not seems correct to affirm that kinetics of ET is faster in the case of 

FcTMA
+
. 

It is clear from the forgoing that electrochemical performance of “aged” HOPG depends 

on the redox mediator that is employed to investigate it. The following sections will give 

some idea of the time scale on which HOPG becomes “aged”, taking advantage of 

additional microscale imaging and classical voltammetry. 
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Ru(NH3)6
3+/2+ FcTMA2+/+ 

 
 

  

a b 

Figure 4.7. Imaging “aged” HOPG by SECCM in CV/LSV mode. a) reduction of  Ru(NH3)6
3+

 (1 mM in 0.1 

M KCl). Voltammetry data shown in the upper part are: an average of 15 LSVs recorded on basal plane (bold 

black), an average of 20 LSVs recorded on “a step edges” (bold orange), an LSV corresponding to an 

intermediate position of the step edge in the meniscus (fine blue), and the hypothetical LSV for a reversible 

reaction with E
0
′ = -0.24 V, given for comparison. The inset schematically shows the positions of a step edge 

in the meniscus. Sweep rate for experimental LSVs was 0.2 V s
-1

. Bands of lighter colour around each 

averaged curve display standard deviation for that curve. The lower part shows an image for ES = -0.32 V, 

being a potential-slice of the full 4D image acquired by SECCM-CV/LSV technique. b) oxidation of 

FcTMA
+
 (1 mM in 0.1 M KCl). CVs shown in the upper part were sampled from two most dissimilar pixels 

(marked with crosses) of the potential-slice (ES = 0.29 V) image shown in the lower part of the figure. Sweep 

rate was 0.3 V s
-1

. For both imaging data sets EC = 0.4 V. Slight smoothing was applied to voltammetric data 

in a for clarity of presentation. 
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4.1.3 Time scale of electrochemically important surface modification of 

HOPG based on high-resolution imaging 

Since ME graphene samples can be made ready for imaging with SECCM only several 

hours after the parental material was cleaved, it is not possible to investigate behaviour of 

ME graphene at shorter times after exfoliation. Thus, one has to be satisfied with 

experimental results obtained from imaging HOPG that can be started as soon as 10 min 

after exfoliation. The results expounded in the Section 4.1.1 permit, at least to some extent, 

the findings made on graphene to be transferred on HOPG and vice versa. 

Figure 4.8 shows the images of reduction of Ru(NH3)6
3+

 at the HOPG sample cleaved 

10 min (Figure 4.8a) or 3 h (Figure 4.8b) prior to the commencement of the experiment. 

The iS image recorded on the fresh HOPG surface is featureless and actually shows, 

together with the iC image, homogeneous surface and stable meniscus during imaging. In 

contrast to this, the HOPG surface exfoliated 3 h prior to the imaging experiment, revealed 

already familiar enhancement of surface current, forming the pattern unmistakably 

reminiscent of step edges on HOPG.
*
The image of ionic current serves as a proof of 

extremely stable meniscus, definitely confirming that the features of the iS image are not 

due to perturbation of the meniscus when it passes over step edges. Therefore, it appears 

that fresh HOPG surface undergoes modification within first 10-30 min and so far only 

Ru(NH3)6
3+/2+

 was shown to act as a (redox) probe sensitive to this modification. 

                                                 

*
 An AFM image of the same area would be an ideal proof that the pattern seen on electrochemical image 

is the same as that of step edges. However, previously shown results on ME graphene are sufficiently 

convincing that the pattern seen on this and similar images is due to step edges. Although different areas of 

the sample were imaged in Figure 4.8a and b, it is very unlikely that the tip accidentally landed on the area 

free from step edges, given that the density of step edges on ZYA grade HOPG is 0.1 – 0.7 μm μm
2
 (ref

18
) 
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a b 

Figure 4.8. Imaging ZYA grade HOPG with Ru(NH3)6
3+

 (2 mM in 25 mM KCl with phosphate buffer, pH = 

7.2), using 0.09 μm tip. ES = -0.414 V (η = -0.17 V) vs Ag/AgCl (1 M KCl). a) Surface (top) and 

conductance (bottom) current images of HOPG exfoliated 10 min prior to the beginning of imaging. b) 

Surface (top) and conductance (bottom) current images of HOPG exfoliated 3 h prior to the beginning of 

imaging. 

4.1.4 Macroscopic CV of freshly cleaved and “aged” HOPG: Ru(NH3)63+/2+ and 

FcTMA2+/+ couples 

Another set of data corroborating the results from high-resolution imaging, came from 

macroscale CV. All measurements were carried out in a droplet-cell arrangement that is 

described in great details in ‘Methods’, Section 2.4.3. CV of Ru(NH3)6
3+/2+

 and FcTMA
2+/+

 

was studied on HOPG of two different grades with different surface conditioning. AM 

grade HOPG is characterized by very low step edge density (~0.09%), as seen from the 
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AMF image in Figure 4.9a, and can be considered as mainly representing properties of the 

basal pane. SPI-3 grade HOPG is on the other end of the scale, having ~30% of its surface 

covered by step edges (Figure 4.9b).
13,14

 The two materials are suitable for studies of 

effects of step edges on electrochemical properties of HOPG. 

  

a b 

Figure 4.9. AFM images of AM (a) and SPI-3 (b) grade HOPG. 

HOPG surface was reported to accumulate airborne contaminants when exposed to 

ambient air, which represent a thin film of polyaromatic hydrocarbons.
15–17

 These 

conclusions were based on spectroscopic and contact angle measurements. The latter was 

found to have changed from ~60º on freshly cleaved surfaces (as measured within 10 s 

after exfoliation) to ~90º after 15 min of exposure of HOPG surface to ambient air. To 

address this issue, voltammetric measurements were performed both in ambient air and 

under protected atmosphere. 

Voltammetry of Ru(NH3)6
3+/2+

 on AM grade HOPG is presented in Figure 4.10a. 

Freshly cleaved surface supports nearly reversible ET with this redox couple. Peak-to-peak 

separation, denoted ΔEp, on the CVs with ν = 10 V s
-1

 was on average 70 ± 0.9 mV, which 

increased from ~60 mV at v = 0.5 V s
-1

. Nearly all voltammetric data with well-defined 

CVs have this increase in ΔEp with v, which could suggest that ET becomes a limiting step 

at the time-scale of these measurements, however, the analysis of ohmic resistance in a 
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droplet-cell detailed in ‘Methods’, Section 2.4.3 suggested that this type of electrochemical 

cell is prone to some ohmic loss of potential. Even though the experimental conditions 

reported herein are optimised in a number of aspects such as supporting electrolyte 

concentration, placement of the electrodes and the use of coated reference probe instead of 

a bare wire, the ohmic losses could not be completely ruled out and therefore the observed 

trend in ΔEp probably should not be attributed entirely to kinetic manifestations, but rather 

considered as a consequence of not fully eliminated ohmic loss of potential. With this in 

mind, the ΔEp at the highest scan rate used (10 V s
-1

) can be used for estimation of the 

lower limit of the rate of ET. Quantitative treatment of extracting minimal k0 for 

Ru(NH3)6
3+/2+

  and some other redox couples will be given later in the text but for now 

qualitative statements will suffice. 
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Ru(NH3)6
3+/2+ FcTMA2+/+ 

  

  

a b 

 

Figure 4.10. Macroscopic CV of a) Ru(NH3)6
3+/2+

 (c0,Ox = 0.25 mM in 1 M KCl) and b) FcTMA
2+/+

 (c0,Red = 

0.25 mM in 1 M KCl) on two significantly different grades of HOPG (AM and SPI-3 grade) under three 

different conditions of HOPG surface: freshly cleaved, aged in air for 8 h, and aged in a glove box under 

nitrogen atmosphere for 8 h. Scan rate was 10 V s
-1

. Numbers on the plots show the peak-to-peak 

separation. 

In contrast to freshly cleaved surfaces, voltammetry of Ru(NH3)6
3+/2+

  on aged surfaces 

of AM grade HOPG appears very distorted. The CVs of the samples aged in air or glove 

box for 8 h have either broad poorly defined peaks or don’t exhibit peaks at all, 

approaching somewhat an S-shape voltammogram characteristic of an array of 

microelectrodes without overlap of their diffusion profiles. The fact that a protected 
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environment did not significantly influence the HOPG response from losing its fast 

kinetics with respect to Ru(NH3)6
3+/2+

 might suggest that surface contamination is not a 

factor in such a behaviour. However, a glove box provides primarily a protection from 

atmospheric oxygen, carbon dioxide and moisture, whereas with HOPG one is to be 

concerned with hydrocarbon content (in comparison to air) of the atmosphere in the glove 

box and so long as such data is not available, disregarding the role of surface 

contamination based on this measurements would be pre-emptive. Perhaps, a simple test 

for surface purity under the glove box environment would be a measurement of the contact 

angle of a water droplet on an aged HOPG surface. 

Voltammetry of the same redox couple on SPI-3 grade HOPG shows close to reversible 

rate of ET on either fresh or aged in air samples (Figure 4.10a). Apparently, the abundance 

of step edges is essential for preserving the fast voltammetric response. This could be 

enhanced activity at the edges and/or that this surface prevents the extensive adsorption of 

impurities (see also Section 4.4). 

Voltammetry of FcTMA
2+/+

 on both grades is complicated by reactant adsorption (in 

this case Red form) that is manifest as the notable increase of the peak current on the 

forward wave (Figure, 4.10b). The detailed study of adsorption of FcTMA
+
 and other 

ferrocene derivatives on HOPG, based on CV, is differed to Section 4.4 and for now peak 

current values will be ignored and only peak-to-peak separation considered. Thus, ΔEp for 

FcTMA
2+/+

 was typically ~58 mV at the lowest scan rates (0.1 – 0.5 V s
-1

) and reached 38-

39 mV on freshly cleaved surface and 46-57 mV on aged surface at v = 10 V s
-1

, showing 

no difference between AM and SPI-3 grades in this sense. The trend in ΔEp with v is, 

overall, in opposite to the one observed with Ru(NH3)6
3+

 on fresh AM grade HOPG, but it 

was also non-monotonous (exhibiting a decrease followed by an increase of this quantity). 

Whether this is a manifest of kinetic limitation or ohmic losses is not possible to know 
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from the available data, but it seems that there is no evidence of any significant kinetically 

hindered ET for FcTMA
+
 under all the conditions tried. 

Based on the data described above, a broad conclusion could be made that voltammetric 

response of FcTMA
2+/+

 on HOPG surface is not sensitive to the (abundant) presence or 

(nearly) absence of step edges and remains fast, whereas that of Ru(NH3)6
3+/2+

 does. This is 

in strong agreement with the data obtained from high-resolution imaging: contrast on the 

SECCM images of aged HOPG or ME graphene was seen only with Ru(NH3)6
3+/2+

 

whereas two ferrocene derivatives produced images of practically uniform activity. 

However, macro- and microscopic experimental findings do not seem to be in such a 

good agreement in some other respect. Microscopic measurements unequivocally 

demonstrated that the meniscus contact of a step edge (and the basal surface) causes a shift 

of the voltammetric wave for reduction of Ru(NH3)6
3+/2+

 on “aged” HOPG towards less 

driving potentials compared to the basal surface, but the ferrocene derivatives are 

insensitive in this sense, showing classical reversible behaviour. Consider AM grade 

HOPG whose surface is almost entirely represented by the basal planes. Based on the 

microscopic voltammetry, one might expect that the macroscopic voltammetric wave 

would also appear at higher driving potentials, possessing characteristics of a fast ET rate. 

Although, the reduction on step edges will start at less driving potentials, their contribution 

should not be considerable on this grade of HOPG. And even if it were quite considerable, 

one would expect to see a voltammogram that is a convolution of two reversible waves 

with two formal potentials differing by approx 0.14 V (at the most), as can be seen from 

the separation of ideal reversible LSV and LSV on the pure basal plane (Figure 4.7a). In 

other words, AM grade HOPG might be expected to exhibit a macroscopic voltammetric 

response reminiscent to a microscopic one. Instead, significantly lowered limiting currents 

on the “aged” surface are indicative of only partial activity of the surface. It would be 

useful, of course, to have as much proof as possible (or otherwise) that the “aged” surface 
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is complicated by spatially distributed ohmic loss of potential. This is, in fact, seen in the 

C-AFM measurements on a surface that is aged with time.
18,19

 In electrochemical 

experiments, minute (several pA) currents measured with SECCM are not enough to 

induce significant iR drop from the sample, but macroscopic currents (μA) could be 

enough in that sense. 

It seemed more appropriate to place further discussion on macroscopic voltammetry of 

HOPG expanded to two other fast redox couples in a later section and the two following 

ones attempt to coherently present the multitude of findings described and discussed so far 

in the light of a new proposed concept. 

4.1.5 A hypothesis of delamination 

An interesting hypothesis is that freshly exposed (after mechanical cleavage with Scotch 

tape) topmost layers of an HOPG block can spontaneously delaminate with time, becoming 

electronically decoupled from the layers underneath. These top delaminated layers 

effectively represent graphene layers of different thicknesses, residing on the block of 

graphite and still being in some contact with it; therefore the electrochemical response of 

such a material will be conditioned by some averaged electrochemical properties of 

graphene of different thicknesses (for not only single layer graphene can form as a result) 

and graphite (regions unaffected by the delamination). 

Based on the high-resolution SECCM imaging of ME graphene described in great detail 

in this chapter, the rate of ET for Ru(NH3)6
3+/2+

 was found to be slow/sluggish on single 

layer graphene, progressively increasing on multi-layers. For the ferrocene derivatives, as 

concluded based on the lack of contrast along the step edges and imaging ME graphene 

from Kish graphite, there should not be a difference between graphene and graphite in that 

sense. Macroscopic CV of the redox couples in question, described in the previous section, 

appears to corroborate this inference to some extent. However, imaging of aged HOPG 
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with Ru(NH3)6
3+/2+

 in fixed potential mode did not reveal regions of different activity, as 

can be expected from the delamination theory, instead of this, consistently showing only 

the contrast along the step edges. Indeed, the surface of aged graphite could be expected to 

have the “islands” of graphene of different thickness along with “islands” of “survived” 

graphite. One might expect this to produce an image with distinct current, although (multi-

layer)graphene will exhibit substrate effects and delamination may involve multiple layers, 

for which such effects would be dampened. 

If spontaneous delamination of HOPG surface does take place, it should be a well-

known fact as this material was a subject of multiple and different researches and, in 

particularly, was investigated by a number of techniques like scanning tunnelling 

microscopy, scanning tunnelling spectroscopy and atomic force microscopy in several 

modes of operation. STM will only be sensitive in identifying the exfoliation of a 

monolayer graphene and there is, in fact, only one source where single layer graphene left 

behind on top of a cleaved HOPG block was identified by  STM, based on distinctive 

honeycomb pattern.
20

 However, the authors did not specify what fraction of HOPG surface 

could be covered by graphene layers, only indicating that they were able to readily find a 

graphene flake. 

Unlike the just-cited work where graphene layers were unequivocally identified, other 

workers found heterogeneity in surface conductivity/resistivity with conducting mode 

AFM (C-AFM)
18,19,21

 and proposed decoupling of the topmost layers as an underlying 

cause. Specifically, it was found in all cases that top layers of HOPG had higher 

conductivity when topography images were compared with current images. The authors of 

ref
21

 suggested that weaker interlayer binding “frees” π electrons in the top layer, making 

them more mobile, which manifest as a higher electrical conductance through this layer (as 

compared to fully coupled layers). The consequences of this heterogeneity for 

electrochemistry are not quite clear. Thus, as was shown in the previous section, 
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macroscopic voltammetry of AM grade and SPI-3 grade HOPG for Ru(NH3)6
3+/2+

 is vastly 

different on aged samples, yet, both grades show the same pattern in surface conductivity 

with time: the conductivity decreases.
19

 However, if one accepts that step edges are capable 

of fast ET (including special redox couple Ru(NH3)6
3+/2+

) and preserve this capacity even if 

basal planes delaminate, then the surface abundant in step edges (i.e. surface of SPI-3 

grade HOPG) will not show diminished electrochemical activity on the macroscale 

voltammetric measurement due to overlap of diffusion fronts along the steps. 

The surface of HOPG appears to be more complicated than one might think. From the 

forgoing results and discussions, it became clear that factors such as source of this surface 

(grade of HOPG) and time after exposition of a fresh surface influence electrochemical 

behaviour that manifest itself as “redox sensitivity” even with respect to benchmark outer-

sphere couples. There were a number of reports on inhomogeneity of electrical potential of 

grounded surface of HOPG – an unimaginable phenomenon for a conductive material like 

graphite.
22,23

 The observed variation of potential was attributed to occluded gas for samples 

cleaved in air
23

 or unequal current paths arising due to anisotropy of graphite.
22

  The 

interpretation of C-AFM measurements as given in work
22

 was essentially refuted,
24

 

proposing surface contamination as a likely reason for the observed heterogeneity 

(alternating conducting/insulating behaviour of the HOPG surface). Variation in surface 

potential, regardless of its origin, should have a direct affect on interfacial ET, however, 

the reported pattern of this variation was never seen on SECCM images for any redox 

couple tried.
*
  

The theory of delamination relies on the postulate that the rate of ET depends on the 

number of graphene layers in stacks for specific redox couples (reaching the maximum on 

                                                 

*
 This variation of (interfacial) potential may itself be potential-dependent and, thus, seen only for certain 

redox couples (more on this in Section 4.1.6). 
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graphite), with lattice defects being intrinsically, at least, as capable for fast ET as the 

intact basal planes of graphite. This proposition receives some theoretical support, which is 

addressed in the following section. 

4.1.6 ET at graphene and graphene edge: a DOS perspective 

Of three redox couples used for high-resolution electrochemical imaging of HOPG and 

ME graphene, only Ru(NH3)6
3+/2+

 showed enhancement of surface current along the step 

edges. This couple was found to have fast rate of ET on fresh AM grade HOPG but not on 

aged one. Two ferrocene derivatives were indifferent in all those respects, being always 

fast on the time-scale of the measurements. An interesting observation is proposed in this 

thesis, regarding the relation of the formal potentials of redox couples tested with the DOS 

of graphene, graphite, and edge state.
*
 Specifically, formal potential of Ru(NH3)6

3+/2+
 is 

located close to minimum of DOS of graphite and Dirac point of undoped graphene, with 

the E
0
′ of the ferrocene derivatives being away from this “critical” region (see schematic 

presentation in Figure 4.11). Remarkably, the edge state has a maximum in DOS in the 

“critical” region of graphene (see below and Section 1.5). If DOS of the electrode material 

becomes a “corner stone” in the rate of ET then this relation may bind all the experimental 

observations together, giving a great support to the delamination theory. Since Marcus-

Gerischer theory accounts for electronic structure of the electrode and the redox couple in 

solution and is, perhaps, the next quantitative theory of ET after the Butler-Volmer theory 

in terms of accessibility to scientists not specializing in theoretical (solid state) chemistry,   

it was applied to back the delamination theory. This theory has been applied in some 

earlier works for explanation of graphene reactivity towards aryl diazonium radicals.
25–27

 

As the formalism of the theory was, in essence, presented in ‘Introduction’ (Section 1.6.5), 

                                                 

*
 This observation is reminiscent of that by McCreery et al., who plotted ET rate constants of a number of 

redox couples they investigated and DOS of graphite vs formal potential of those couples.
31
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one next proceeds to the specification of the input data, like the values of various model 

parameters, and the results. 

 

Figure 4.11. Relation between formal potential of three redox couples  in question (shown with vertical bars) 

and DOS profile for graphene basal plane (black) and the lattice defect of the type V1(5-9) (reconstructed 

monovacancy, red). DOS profile of graphene and the representative defect state were re-drawn from ref.
28

 

Calculations of the current begin with the state of equilibrium wherein Fermi level of 

the electrode and the redox electrons are aligned and equal to the standard Fermi level of 

redox electrons: 

F(M) F(Redox) F(RedOx) ε ε ε  (4.3) 

In particularly, this implies that concentrations of Red and Ox forms are equal, cRed = cOx,
*
 

and overpotential is zero, eη = 0 eV. Actual values of concentrations are immaterial so 

long as one is not concerned with the absolute values of kinetic current, but the ratio of 

concentrations is important. First, it determines the position of Fermi level of redox 

electrons as per eq 1.21. Secondly, it is not difficult to see, by examining eq 1.14, 1.15, 

1.17, and 1.18, that the concentrations determine the kinetic current so that iM ~ cRedcOx. 

                                                 

*
 herein, for calculation of ET rate, one does not distinguish near-interface and bulk concentrations as 

transport of matter is not considered. Or, putting it differently, mass transport can be thought of as 

sufficiently fast to effectively defeat concentration gradients. 
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This product does not depend on ε and, thus, can be taken out of the integral, being only a 

proportionality constant/coefficient. The driving force for the ET arises when the Fermi 

levels of electrons in the electrode and in the solution differ by eη (eq 1.22). 

Formal potentials of the redox couples in question were identified with half-wave 

potentials, E1/2 = (Ep,a + Ep,c)/2, deduced from macroscopic CV of these redox couples 

(presented in this thesis) on HOPG of different grades and are given in Table 4.1. Although 

the actual experiments were conducted using 1M KCl as a supporting electrolyte and a 

source of potential-determining ions for the reference electrode, the potentials quoted here 

are converted into the scale of Ag/AgCl (0.1 M KCl) reference electrode for the sake of 

consistency with the published work
19

 and imaging results presented in the previous 

sections. 

 

Table 4.1 Formal potentials of the three couples vs Ag/AgCl (0.1 M) 

redox couple E
0
′, V eE

0
′, eV 

   

Ru(NH3)6
3+/2+

 -0.24 0.24 

FcTMA
2+/+

 0.33 -0.33 

FcCOOH 0.24 -0.24 

 

Reorganization energies λ needed for calculation of redox electronic states were found 

by averaging values of λ obtained for moieties, containing ruthenium amino complex or 

ferrocene, tethered through alkanethiol monolayers.
29

 λ = 0.82 eV was assigned to 

Ru(NH3)6
3+/2+

  and λ = 0.95 – to FcTMA
+2/+

. 

It was not possible to retrieve a certain (reliable) value for PZC of graphene from 

literature, especially that, to the best of my knowledge, ME graphene has not been studied 

in that respect, yet. Since the DOS profiles of graphene and graphite share the common 
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minimum on the energy scale,
20

 the PZC of graphite, 0.29 eV vs Ag/AgCl (0.1 M),
30,31

 was 

identified with that of graphene.  

The DOS profile of graphene and the defect of the type V1(5-9) (reconstructed 

monovacancy), chosen to represent the edge state due to strong resemblance with the edge 

state of graphene,
11

 were re-drawn from theoretically computed profiles in ref.
28

 Although 

the DOS profiles were available in arbitrary units only, this is not essential for the same 

reasons as explained for the concentrations. However, it is important that DOS profiles of 

both graphene and edge state are accurate relative to each other. Now that all the input data 

and parameters have been defined, one proceeds to the results of calculations. 

Relative kinetic currents due to ET on a graphene electrode or a hypothetical edge state 

electrode for the case of Ru(NH3)6
3+/2+

 and FcTMA
2+/+

 were calculated using eq 1.13 – 

1.22 (see ‘Introduction’) and are shown in Figure 4.12 along with more detailed 

presentation of DOS profiles of the electrodes under discussion and the redox electronic 

states. From those plots, it is obvious that the difference in ET kinetics between the edge 

state and graphene basal plane electrodes is very profound for the case of Ru(NH3)6
3+/2+

 but 

not FcTMA
2+/+

, with the edge state electrode being capable of much faster rate of ET for 

Ru(NH3)6
3+/2+

. This result can be interpreted as supporting one to experimentally observed 

enhancement of current along the step edges of aged HOPG and ME graphene on high-

resolution SECCM images with Ru(NH3)6
3+/2+

 and the lack of thereof (the enhancement) 

on the images with FcTMA
+2/+

. However, at this point it is hard to say how exactly this 

difference translates into real voltammograms, specifically whether it accounts for the 

observed shift of the voltammetric waves on SECCM-CV/LSV images with Ru(NH3)6
3+/2+

. 

Calculations of absolute rate constants for each case would be needed along with accurate 

modelling of the SECCM experiment. Therefore, the calculations presented here can be 

considered as, perhaps, a first approximation, a first step towards theoretical explanation of 

“redox sensitivity” of aged HOPG and ME graphene. 
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Ru(NH3)6
3+/2+ FcTMA2+/+ 

  

  

a b 

Figure 4.12. DOS profile of graphene and a defect representing the edge state (detailed in the text), overlaid 

on DOS of redox electrons, and calculated kinetic currents for Ru(NH3)6
3+/2+

 (a) and FcTMA
2+/+

 (b) on 

graphene (black) and hypothetical edge state (red) electrodes. Occupied electronic states for η = 0 V are 

shown with blue colour and unoccupied ones - with grey. 

 It is important to note that the formalism of calculations of ET used in this thesis was 

originally intended to be applied to the case of ET on metal electrodes.
32

 From eq 1.22, it 

follows that Fermi level in the electrode changes by the value eη relative to the Fermi level 

of redox electrons. When dealing with metal electrodes that have large amount of 



CHAPTER 4. RESULTS AND DISCUSSION 

 

117 

electronic states around the intrinsic Fermi level, the population or depopulation of 

electronic states owing to charge transfer is not significant and the Fermi level of metal 

electrode shifts along the energy/voltage scale together with the band structure in accord 

with the potential acquired by the metal electrode.
33

 Since electrochemical events occur in 

a relatively narrow range of energies/potentials (at least for not very slow reactions), the 

DOS of a metal can be considered constant within these limits
33

 and it is not critical to be 

accurate in  conceiving how the Fermi level changes: with the whole band or only at the 

expense of filling/emptying electronic states. This situation is schematically depicted in 

Figure 4.13. Though, the following content somewhat reiterates material from the Section 

1.5, it seems justified since this material is presented in a different, more specific context. 

 

a b c 

Figure 4.13. (a) A metal electrode initially in equilibrium with a redox couple in solution: εF(M),in = ε(redox). 

(b) An oxidizing overpotential η is applied between the metal and solution phases, shifting the whole band 

structure of the meal electrode down the energy scale by eη. The Fermi level of the metal electrode travels 

from εF(M),in to εF(M),fin  (c) Fermi level in the electrode is shifted by the same quantity but at the expense of 

vacating electronic states: a situation imponderable for a metal electrode but may occur to some extent in 

electrodes with low DOS around intrinsic Fermi level. 

Electrodes with low DOS will adjust to a new charged state (from neutral state) by both 

emptying/filling electronic states and by the shift of the band structure as a whole. Suppose 
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that a graphene electrode is in contact with a redox couple whose formal potential is 

exactly at the PZC of graphene in a given solution as shown in Figure 4.14a. When 

overpotential η is applied between the graphene and solution phases, the Fermi level in the 

graphene shifts by eη relative to its equilibrium position. This can be done in one 

hypothetical scenario exclusively at the expense of vacating electronic states (Figure 4.14b; 

suppose that η > 0), which is somewhat true given very low DOS around PZC. In the other 

scenario (Figure 4.14c) - more realistic one - the shift of the Fermi level occurs by partial 

emptying electronic states and some shift of the whole band structure. In this second 

scenario, only a fraction ΔEEDL of η builds up in the double layer (see Section 1.5) and the 

rest of the applied overpotential is stored as the band filling potential φfb. Importantly, the 

formalism applied here for calculation of ET corresponds to the schematics in Figure 

4.14b. Therefore, it covers only one extreme that can be termed a case of pure quantum 

capacitance. If this extreme case can be somewhat useful for graphene with its very low 

DOS around the PZC, the use of this calculations for the edge state is less reliable because 

the edge state has much higher DOS at the PZC and will probably behave more like a 

metal electrode in the sense that almost all η will be spent on building ΔEEDL with only 

very minor fraction on φfb. It is sensible to propose that the shift in voltammograms on the 

images of aged HOPG with Ru(NH3)6
3+/2+

 is due to that the edge state behaves more like a 

metal and all applied η is stored as ΔEEDL whereas for delaminated graphene sheets only 

some fraction of η is stored in the double layer, thus providing smaller driving force for 

interfacial ET in comparison with the edge state. This difference will be somewhat levelled 

for the redox couples that are remote from the PZC of graphene, as explained in the 

following paragraph. 
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a b c 

Figure 4.14. (a) A situation when graphene electrode is equilibrium with a hypothetical redox couple that 

have formal potential same as PZC of graphene  (b) An oxidizing overpotential η is applied at the interface, 

the Fermi level in graphene adjusts by vacating electronic states (pure quantum capacitance case). (c) Fermi 

level in graphene adjusts at the expense or partially at the expense of vacating electronic states (quantum 

capacitance) and partially due to the shift of the whole band structure that builds up as potential drop in the 

electrical double layer (EDL). There is no potential drop in the EDL in case b. 

When an electrode is brought in contact with a redox couple in solution, its Fermi level 

aligns with that of redox species regardless of the actual mechanism of this process 

(quantum capacitance or metal-like behaviour). Therefore when the graphene electrode is 

in contact with, for example, FcTMA
2+/+

 couple (assume cRed = cOx), it will acquire some 

positive charge causing the Fermi level to shift by the sum of φfb and eΔEEDL. The formal 

potential of this couple will become closer to the “critical” point of graphene by eΔEEDL, 

thus diminishing the difference between its E
0
′ and the PZC of graphene electrode. In other 

words, in general, it seems that placing formal potentials of various redox couples relative 

to the DOS profile of graphene electrode (or any other electrodes) is somewhat inaccurate, 

since DOS is not a fixed thing but shifts along the energy scale in accord with interfacial 

potential difference (and the redox couple in the solution phase). 

In order to obtain more informative answer from the theoretical calculations, even 

within the framework of the approach presented herein, one would need to take into 
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account quantum capacitance of graphene and the edge state quantitatively to evaluate both 

φfb and ΔEEDL for equilibrium and when the overpotential is applied. This can be 

endeavoured in further theoretical research. 

ET on graphene is a new area of research and solid and ample experimental data on 

kinetics of various redox couples on graphene has not been collected yet, thus, making it 

difficult to make generalizations and theorizations. Still, the delamination theory put 

forward in work
19

 and presented here with its strong and weak sides can make a positive 

contribution towards understanding ET on graphene and HOPG. 

4.1.7 More on ET at fresh surfaces of HOPG: IrCl62-/3- and Fe(CN)63-/4- couples 

The reasons to conduct studies of ET on HOPG hopefully appear justified based on the 

material delivered on this topic in Section 1.3. Here, in this section, experimental data on 

voltammetry of other redox couples and more analysis of the data reported above are 

presented and discussed. 

Two other redox couples – IrCl6
2-/3-

 and Fe(CN)6
3-/4-

 - have been tested on freshly 

cleaved surfaces of AM and SPI-3 grades HOPG, using the same experimental conditions 

as for the couples reported in Section 4.1.4. The CV for v = 10 V s
-1

 are presented in Figure 

4.15 along with some diagnostic plots: ip of the forward and reverse waves vs v
1/2

 (only for 

AM grade data as SPI-3 data is exactly the same in this respect) and ΔEp vs v. Peak-to-peak 

separation at slow and fast scan rates remains reasonably within the reversible limit of 59 

mV (ref
34

; within experimental error) and ratio of the peak current of the forward to 

reversed waves is ~ 1.03. Only the data for IrCl6
2-/3-

 couple on SPI-3 grade HOPG is 

somewhat more complicated: ΔEp starts at 50 ± 5 mV and ratio of the peak currents is 1.16 

± 0.06. However, given that linear background subtraction was done for reversible waves 

and general difficulty of accurate background subtraction, to the first approximation, this 

slight abnormality can be ignored and the process considered as essentially reversible. ip 
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scales linearly with v in all the cases for both forward and reverse waves, suggesting 

diffusion-controlled reaction. Therefore, from the analysis presented, it is difficult not to 

agree that both redox couples operate at the reversible limit on both grades of HOPG. 

CV data on the four redox couples described in detail in this chapter (Ru(NH3)6
3+/2+

, 

FcTMA
2+/+

, IrCl6
2-/3-

, and Fe(CN)6
3-/4-

), are summarized in Table 4.2 (except for the 

ferrocene couple; see below). ΔEp column shows two values for each redox couple on each 

grade of HOPG. These are lowest and highest registered values of peak-to-peak 

separations. Given that droplet-cell arrangement has somewhat variable configuration for 

each assembly and that it is prone to some ohmic loss of potential (see Section 2.4.3, 

Methods), it is reasonable to state that variation in ΔEp, at least partially, is caused by 

variable uncompensated resistance for each assembly. Based on this, it seems justifiable to 

choose a replicate experiment with the smallest ΔEp for the estimation of lower limit of 

kinetics of ET as such a measurement is associated with the lowest contribution of ohmic 

loss of potential. 
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IrCl6
2-/3- Fe(CN)6

3-/4- 

  

  

a b 

 

Figure 4.15. Macroscopic CV of a) IrCl6
2-/3-

 (c0,Ox = 0.25 mM in 1 M KCl) and b) Fe(CN)6
3-/4-

 (c0,Red = 0.25 mM 

in 1 M KCl)  on freshly cleaved AM and SPI-3 grades HOPG at scan rate of 10 V s
-1

. The insets show peak 

current of forward and reverse waves on AM grade HOPG plotted vs v
1/2

. Shown underneath the CVs are the 

plots of ΔEp vs v with linear fits and confidence intervals (P = 0.9). 

As noted above, Table 4.2 does not include FcTMA
2+/+

. This is due to strong 

complication associated with reactant adsorption, but ET kinetics of this redox couple is 
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tentatively considered fast on the time scale of the CV measurements as was discussed in 

Section 4.1.2.  

As for the ruthenium complex, had the ΔEp values from CV been due to kinetically 

hindered ET only, k0 for Ru(NH3)6
3+/2+

 could have been easily calculated by Nicholson 

method
35

 (eq 2.30, Section 2.4.1). Since one cannot exclude uncompensated resistance 

from contributing to experimental ΔEp values, making them only larger, k0 determined 

from these ΔEp will be underestimated. In other words, one can only find lower limit of ET 

kinetics. This applies also to two other redox couples whose ΔEp remained within 

reversible limit. In this case the lower limit on k0 is imposed only by the scan rate used. 

Formally, one expresses k0 from eq 2.30 as follows: 

0 p(Δ )
nF

k ψ E π vD
RT

  (4.2) 

where D = DRed = DOx due to approximate character of this calculations, n = 1, and notation 

ψ(ΔEp) signifies that parameter ψ is a function of peak-to-peak separation, which can be 

either computed or retrieved from Nicholson’s work for ΔEp < 210 mV. Since highest scan 

rate used (v = 10 V s
-1

) obviously gives the largest ΔEp, only these data will be used for 

calculations by eq 4.2. The results of the calculations of k0 are also collected in Table 4.2. 
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Table 4.2 Summary of the results of the CV experiments: maximal and minimal 

ΔEp (mV) from CVs at 10 V s
-1

 on freshly cleaved HOPG, and lower limit values of 

k0* 

 

HOPG  

grade 

redox  

couple 

AM SPI-3 

ΔEp, mV ψ < k0, cm s
-1 

ΔEp, mV ψ < k0, cm s
-1 

Ru(NH3)6
3+/2+

 67 ± 1.9 

72 ± 1.6 

(3)
‡
 

1.22 

 

0.1 

 

65.0 ± 1.2 

67.4 ± 1.4 

(2) 

1.60 0.1 

IrCl6
2-/3-

 58.0 ± 1.2 

64 ± 3 

(2) 

rev
†
 

 

1.9 

 

57 ± 2 

62 ± 3 

(2) 

rev 1.9 

Fe(CN)6
3-/4- 

59.6 ± 2.5 

64 ± 1.8 

(4) 

rev 

 

1.7 

 

61.7 ± 1.3 

64.0 ± 1.2 

(2) 

rev 1.7 

 

* Diffusion coefficients used were: for the ruthenium complex D = 5.5 × 10
-6

 cm s
-1

 (ref
36

), for 

iridium complex D = 7.5 × 10
-6

 cm s
-1

 (ref
37

), and for iron complex D = 6 × 10
-6

 cm s
-1

 (ref
38

). 

 
‡
 Numbers in brackets indicate amount of replicate experiments. 

†
At the reversible limit ψ = 20.

35
 

 

From this analysis, it becomes clear that all four redox couples are fast on fresh surfaces 

of two very dissimilar grades of HOPG. The abundant presence of the step edges on SPI-3 

grade HOPG makes no difference for the rate of ET at least within the kinetics measurable 

with macroscopic CV in here. It appears that DOS is unimportant for ET kinetics of these 

outer-sphere couples as DOS of SPI-3 grade should be higher than that of AM grade due to 

much larger amount of step edges on its surface. Fe(CN)6
3-/4-

 was used for “validation” of 

HOPG surfaces and extremely slow ET kinetics was reported for this couple on basal plane 

of HOPG (see Section 1.3). The results reported here indicate that ET kinetics for this 
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redox couple is at least 10
6
 – 10

9
 times higher. This undoubtedly defeats the theory stating 

that lattice defects are responsible for all or nearly all electrochemical activity of HOPG. 

Relative unimportance of DOS for the rate of ET kinetics for outer-sphere redox 

couples was investigated before. Specifically, it was found that k0 for Ru(NH3)6
3+/2+

 (in the 

range 0.67 – 1.29 cm s
-1

) did not correlate with DOS of nine different metals that varied by 

an order of magnitude.
38–41

 The results presented here indicate that electrode with DOS of 

about 1-2 orders of magnitude lower than that of metals is capable of at least as fast ET 

kinetics as the metals. Another lack of correlation between DOS and measured ET kinetics 

of FcCH2OH and Ru(NH3)6
3+/2+

 was registered using SECM with nano-sized electrodes.
42

 

For FcCH2OH on Au, the k0 = 8 ± 1 cm s
-1

 and on Pt the k0 = 6.8 ± 0.7 cm s
-1

 with DOS of 

Au being 7.5 times smaller than that of Pt.
43

 Similarly, for Ru(NH3)6
3+/2+

 couple, the 

difference in k0 on the two metals was much smaller than expected from the difference in 

DOS. However, these results should be taken with care as nano-sized electrodes that were 

not characterized by independent microscopic techniques like SEM and/or AFM can 

produce misleading results. Such electrodes are prone to accidental damage (due to 

accumulation of static charge and/or electrochemical etching)
44

 that is not detectable on 

voltammetric data used to deduce electrode geometry. Without solid evidence of correctly 

established electrode geometry, results of measuring kinetics are not as reliable. 

4.2 Modelling grafting of diazonium radicals onto HOPG basal 

plane 

As was said in the Introduction, electrochemistry can be of use in graphene technology, 

serving as a tool for graphene modification with high spatial resolution with appropriate 

nanoscale techniques, which is highly desirable in device making.
45

 Specifically, grafting 

of diazonium radicals onto graphene disrupts locally the sp
2
 lattice, introducing sp

3
 centres. 
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This results in the formation of a band gap in otherwise zero-gap material, which is 

necessary for controlling electronic properties of graphene in electronic circuits.
27,46,47

 

  Physico-chemical events occurring at the interface during the grafting process are 

rather complex, but, in principle, are as follows.
46,48

 A diazonium molecule undergoes 

irreversible electroreduction at an electrode surface, forming a diazonium radical. The 

highly reactive radical may react with the surface of the electrode, forming a covalent sp
3
 

bond in the case of graphene or graphite electrode, or react with water molecules from the 

solvation shell, or recombine with other radicals, 
48

 or adjoin to the ring of already grafted 

radical, forming multilayers.
45

  Of these competitive processes, only the first one results in 

desirable reaction while other can be generally considered as a loss of the radical as 

schematically presented in Figure 4.16. The model developed in earlier works
49,50

 and 

adapted here for estimation of grafting efficiency considers two competitive processes 

occurring with the diazonium radical: the one that results in formation chemical bond with 

the electrode surface, characterized by rate constant ki, and all other reactions bundled as 

one with rate constant kb. 

 

Figure 4.16. Schematics of transformation of a diazonium compound upon electroreduction. 
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A parameter characterizing the competition between surface and side (bulk) reactions of 

the radical species (denoted hereon as ‘s’) was originally introduced by Savéant et al.
50

 and 

has been used to study electrode functionalization by diazonium compounds:
49

  

i

i b

k
s
k k D




 (4.3) 

where D is the diffusion coefficient of the radical. The boundary value problem describing 

such a reacting system was solved numerically in this thesis, instead of using original 

approach based on integral equations.
49

 

Since the aim was to obtain a reasonable estimation of s, a number of simplifying 

assumptions have been made. Only the first cycle of CV for 4-CBD - a diazonium 

compound used in this work - is treated, thereby focussing on the formation of the initial 

monolayer (see more details in Section 3.3, ‘Experimental’). The grafting resulting in 

blocking electrode surface is assumed not to affect ET on the unmodified part of the 

electrode. The kinetics of electroreduction of the diazonium molecule is considered fast on 

the time scale of CV measurement with k0 = 1 cm s
-1

 – a value typical for small rigid 

molecules of this type.
33

  

A value of D = 7.6 x 10
-6

 cm s
-1

 was calculated for the diazonium molecule of interest 

using the Wilke-Chang method
45,51

 and was assumed to be the same for both the diazonium 

molecule and resultant aryl radical. The mathematical formulation of the model is as 

follows. 

For species A (see notation in the scheme above) diffusing from solution one writes 

Fick’s equation of diffusion 

2

A A

2

c c
D

t x

 


 
 (4.4) 

and for species B, taking into account the solution reactions (useless loss of radicals): 



CHAPTER 4. RESULTS AND DISCUSSION 

 

128 

2

B B
b B2

c c
D k c

t x

 
 

 
 (4.5) 

Species A is assumed to undergo irreversible electron transfer, essentially because of the 

rapid loss of N2 to produce B, so that back electron transfer becomes negligible at the 

potentials of interest. In accordance with Butler-Volmer kinetics, this can be presented as a 

boundary condition at the electrode surface for A, eq 4.6. Species B is derived from A, but 

can also react with the electrode. Thus, the boundary condition for B is eq 4.7. 

At 0x  

oA
A 0 exp[ ( )]

c F
j FD Fc k E E

x RT

        
 


 (4.6) 

B A
i B

c c
D D k c

x x

 
  

 
 (4.7) 

where j is current density, oE   is formal potential of the ET reaction, and other symbols 

have their usual meaning. 

As grafting reaction proceeds, the amount of available surface for reduction of the 

diazonium molecule diminishes, resulting in a decrease in the average current density, jav 

(compared to an uninhibited process). In the following, an expression for jav will be 

obtained and its difference from the analogous expression used previously
49

 will be 

highlighted. 

At any moment the surface coverage, θ, is the ratio of the number of moles of deposited 

material, nY, to the maximum possible amount for monolayer formation, nY,max 

Y Y,max/n n   (4.8) 

thus: 

Y
i B 0

Y,max Y,max

1 1
( )x

dnd
k c S

dt n dt n
 


 (4.9) 

where S is the available surface area. 
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The average current density can be related to the surface coverage according to eq 4.10, 

taking into account that S = (1 – θ)S0: 

A A
0

0 0

(1 )
x x

c c
i SFD S FD

x x 

    
     

    


 

thence 

A
av

0

(1 )
x

c
j FD

x 

 
   

 
  (4.10) 

where S0 is the initially available electrode surface and i is the current. (1 – θ) entering eq 

4.10 can easily be obtained by substituting the expression S = (1 – θ)S0 and the formula for 

the maximum surface excess Γmax = nY,max/S0 into eq 4.9, followed by integration: 

i B 0

max 0

1
1 exp[ ( ) ]

Γ

t

xk c dt      (4.11) 

Upon substituting eq 4.11 into eq 4.10, a final expression for the average current density 

(eq 4.12) is obtained: 

A
av i B 0

0max 0

1
exp[ ( ) ]

Γ

t

x

x

c
j k c dt FD

x




 
   

 
  (4.12a) 

or in more compact form: 

av i B 0

max 0

1
exp[ ( ) ]

Γ

t

xj j k c dt    (4.12b) 

The remaining boundary conditions are given in eq 4.13 and eq 4.14 

At x  

A A,0c c  (4.13) 

B 0c   (4.14) 

and the initial conditions are 

A A,0( ,0)c x c  (4.15) 

B( ,0) 0c x   (4.16) 
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where cA,0 is the bulk concentration of A. 

For linear sweep voltammetry (LSV), the potential excitation function is: 

0E E t   (4.17) 

where E0 is the starting potential. 

As seen experimentally, the observed current density is smaller than that for the 

uninhibited electrode reaction, according to the amount of available surface. Differential 

equations eq 4.4 and eq 4.5 combined with equations eq 4.13 – eq 4.17 were solved 

numerically, and the average current density was then computed from eq 4.12a using the 

solution for (cB)x=0. 

To obtain a numerical solution, one should specify values for other parameters: Γ
0
, oE  , 

α, ki and kb. A value of 1.30 x 10
-9

 mol cm
-2

 was used for Γmax (within the 1.2 – 1.35 x 10
-9

 

mol cm
-2

 range quoted in the literature)
52,53

 and transfer coefficient was set α = 0.5, close to 

the value used previously.
50

 Thus, one needed to determine E°′, ki and kb based on the 

LSV.  

To quantify the difference between the theoretical and experimental LSV, the following 

objective function (eq 18) was employed: 

1/2

o 2

i

1

av exp av exp

( , , )

( ) ( ) ,  if ( ) ( ) STD

0,  otherwise

N

b i

i

i i i i i

i

f E k k d

j j j j
d



 
  
 

   
 



 (4.18) 

where jav is computed from (4.12a), jexp is experimentally measured current density, STDi 

is standard deviation for i-th data point and N = 24 is the number of data points covering 

voltage range of 0.35 – 0.9 V on the forward wave. In other words, if theoretical curve 

goes within the error for a given experimental data point then the distance di is set to zero 

for this point. Ideally, the best fit parameters should correspond to the global minimum of 
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function 4.18 if it exists at all. The following constrains dictated by physical meaning and 

reasonable estimations were imposed on the fitting parameters: 

i

3

b

0

0 6

0 25 10

0.15 0.30

k

k

E

 

  

 

 

A theoretical LSV computed with best-fit parameters is shown in Figure 4.17a along 

with corresponding experimental data. As can be seen, the simple model considered in this 

work is capable of providing a good fit to the experimental data presented. The analysis of 

the optimization procedure showed that reliable estimation was achieved only for formal 

potential ( oE  )opt = 0.238 V. If one fixes the formal potential at this optimal value and plots 

f((E
o
)opt, ki, kb) values as a function of kb and ki, in a form of a contour plot, it becomes 

apparent that all ki and kb values associated with the “best-fit” are located in a shallow 

canyon corresponding to the lowest values of f in that range of the parameters. This 

indicates that f does not have a global minimum in the sought parameter space and the 

inverse problem that was attempted here cannot be solved. Yet, the purpose of this study 

was to find value for s from the experimental voltammogram. This proved to be possible in 

spite of uncertainty in ki and kb. If one plots ki vs kb from the canyon, the points form a line 

that was be fitted very well to eq 4.19, which is a simple re-arrangement of eq 4.3 (Figure 

4.17c). 

i b
1

D
k k

s



 (4.19) 

Eq 4.19 has effectively one fitting parameter / (1 )D s , from which one can easily 

find s as D is known. Thus, it was found that s = 0.92, that is, 92% of the aryl radicals 

generated at the electrode surface react with it, and only a small fraction (8%) are lost to 

side reactions. 
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a 

  

b c 

Figure 4.17. a) Forward sweep of representative experimental voltammogram of reduction of the diazonium 

compound (v = 0.2 V s
-1

, c0,diaz = 1 mM) on the surface of freshly cleaved AM HOPG (continuous line) and 

the model fit (dots). b) Contour plot of the objective function f (eq 4.18) plotted vs two of its arguments ki 

and kb, with the third one - Eº′ - set to its optimized value (see text). c) Data points (dots) from the canyon of 

the objective function for f ≤ 1.502 as shown in b, which give equally good fit to the experimental 

voltammogram, with the fit (continuous line) as per eq 4.19. 
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4.3 Modelling SECCM experiment on oxygen reduction on 

platinum 

Oxygen reduction is a key reaction on the cathode of fuel cells (R 4.1), which is an 

overall four-electron process occurring in two non-elementary steps that in acidic medium 

are R 4.2 and 4.3:
54

 

O2 + 4H
+
 + 4e

-
 = 2H2O (R 4.1) 

O2 + 2H
+
 + 2e

-
 = H2O2 (R 4.2) 

H2O2 + 2H
+
 + 2e

-
 = 2H2O (R 4.3) 

The overall reaction R 4.1 is kinetically sluggish and requires the use of a catalyst to 

produce useful currents. The most efficient catalysts for this reaction, so far, have been 

based on Pt, being some composites of Pt with other materials/elements such as carbon 

(supporting role)
55

 or metals (alloys).
56,57

 Pure Pt is also used as a catalyst and it was 

realized that its reactivity depends on the acidity/alkalinity of the electrolyte and, most 

importantly, crystallographic orientation of the crystallites making up the surface of the 

catalyst.
57,58

 It is natural to study the effects of crystallographic orientation using single 

crystal electrodes,
59

 but such electrodes are difficult to prepare and to sustain for multiple 

experimental runs. High-resolution electrochemistry offers a shortcut for this type of works 

as the properties of a polycrystalline sample can be mapped within a single imaging 

experiment. Tip sizes routinely used in SECCM are small enough to accurately access 

individual crystal grains on the sample surface. Of course, to establish a structure-activity 

relation, another technique would be needed to determine which crystallographic planes 

make up the surface of the imaged region. Moreover, SECCM imaging also accesses grain 

boundaries whose role in catalysis needs to be investigated. 

This study, based on the success of the previous one wherein reactivity of Fe
3+/2+

 

(aqueous) system was investigated on polycrystalline Pt foil, explores O2 reduction 
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reaction also on polycrystalline Pt. A tiny liquid meniscus in contact with both ambient air 

and the metal substrate imitates in SECCM imaging setup “a three-phase boundary” 

playing great role in fuel cells. Indeed, in SECCM configuration O2 diffuses to the catalyst 

not only through the electrolyte in the pipette but also, more directly, entering the meniscus 

from the interface with ambient air. High flux of oxygen to the electrode surface will cause 

high generation of reaction products that have only one escape route – diffusion down the 

pipette. Accumulation of hydrogen peroxide in a fuel cell is not desirable due to its 

capacity to damage the separating membrane,
60

 and change in pH due to depletion of H
+
 

will affect optimal operating conditions (speed of the reaction, reaction mechanism). With 

help of modelling, the concentration of H
+
 near the electrode was estimated and shown to 

be significantly lower than the bulk value at higher current densities. The consequence of 

this is that formal potential of R 4.1 decreases and higher driving force/overpotential needs 

to be applied to compensate this effect. Unfortunately, this can become a significant 

problem in fuel cells performance. 

The modelled domain was a typical one for SECCM experiments as shown in Figure 

2.3 (Section 2.3.2). Owing to high wettability of Pt, the meniscus was presented as a 

truncated cone. Meniscus footprint size, mw, was determined experimentally by carefully 

landing the pipette filled with 0.05 M KCl on Pt foil. The spot of left behind, dried KCl 

crystals was imaged with SEM to determine its exact dimensions so that mw ~ 1.2 μm. The 

tip imaged with SEM had its opening size of about twice as small, d = 0.59 μm. Tapered 

angle was assigned a value typical for pipettes pulled for this experiment, θ = 8°, and the 

septum thickness was s = 0.09 μm. Based on experimentally measured iC = 12 nA, iAC = 

0.2 nA, the effective voltage at the modelled domain and meniscus height were estimated 

to be Eeff = 0.18 V and mh = 0.15 μm, respectively, following the methodology described in 

‘Methods’, Section 2.3.2. More specifically, in calculating Eeff, one had to calculate the 

distribution of electric field in the pipette, which was done by solving Laplace equation 
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(see eq 2.11 and 2.12). To calculate the actual ionic current through the pipette, the value 

for conductivity of 0.05 M H2SO4, serving as a supporting electrolyte and a source of H
+
, 

was required. The speciation of three major components, needed to calculate conductivity 

and set up initial conditions for the boundary value problem, was established as follows. 

Since sulphuric acid dissociates entirely at the first stage, one has to find the degree of 

dissociation of the second stage: 

0.05-x 0.05+x x  

(R 4.4) 
- + 2-

4 4HSO H + SO  

From the expression for equilibrium constant, the amount of dissociated HSO4
-
, denoted x, 

can be easily found: 

4HSO

( 0.05)

0.05

x x
K

x





 (4.20) 

With KHSO4 = 1.15 × 10
-2

 / 0.44, where 0.44 is activity coefficient of SO4
2-

 (ref
61

), x = 

0.014. Conductivity of H2SO4 was calculated as conductivity at infinite dilution according 

to eq 4.21:  

i i i

i

σ c z λ  (4.21) 

σ = 0.026 S cm
-1

  

where i = H
+
, HSO4

-
, and SO4

2-
. λH = 350 cm

2
 S mol

-1
, λHSO4 = 52 cm

2
 S mol

-1
 and λ1/2SO4 = 

80 cm
2
 S mol

-1
 are equivalent molar conductivities at infinite dilution.

62
 

Boundary value problem generally followed the formulation given in Section 2.3, but 

some aspects (named below) were specific to this problem. Nernst-Planck equations (eq 

2.9) were written for three ionic species: H
+
, HSO4

-
 and SO4

2-
 and only diffusion equation 

eq 4.22 for the concentration of oxygen (since it is a neutral molecule): 

2 2

2

O O 0D c   (4.22) 

Since change in the concentration of H
+
 near the electrode can be significant owing to the 

reaction, it was necessary to use Nernst-Planck equations to account for the respective re-
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distribution of electric field; simple Laplace equation for electric field may yield erroneous 

results. Diffusion coefficients were DO2 = 2.1 × 10
-5

 cm
2
 s

-1
 (ref

63
), DH+ = 7.91 × 10

-5
 cm

2
 

s
-1

 (ref
64

), DHSO4 = 1.39 × 10
-5

 cm
2
 s

-1
, DSO4 = 1.07 × 10

-5
 cm

2
 s

-1
 (ref

62
). Mobilities in 

electric field for ionic species were calculated using eq 4.23:
65

 

/μ λ F  (4.23) 

The model considered reaction R 4.1 as the only one occurring (irreversibly) on the 

electrode surface. Tentatively the rate of this reaction was assumed to be proportional to 

+
2O H

c c , therefore based on this and the stoichiometry of the reaction, one can write 

expression for the fluxes of O2 and H
+
: 

2

+
2 2

O

O r O H

c
D k c c

z

 
 

 
 (4.24) 

+
2

+
2

O H
O H

1

4

c c
D D

z z

    
   

   
 (4.25) 

where kr is the effective potential-dependent heterogeneous rate constant for reaction R 4.1 

to be determined from modelling. Supplementation of oxygen through the air-water 

interface was set as a Derichlet boundary condition at the meniscus walls (eq 4.26) and is 

schematically shown in Figure 4.18. 

2 2O 0,Oc c  (4.26) 

The current through the electrode was calculated according to eq 4.27: 

2

2

O

O

Ω

8
c

i F D dS
z

 
  

 
  (4.27) 

where the surface integral is taken across the area of the meniscus bottom, Ω, and factor 8 

arises due to (overall) four-electron reduction of O2 (n = 4) and the symmetry of the 

modelled domain (×2, see Section 2.3, ‘Methods’). It should be noted that in this first-

approximation modelling, homogeneous equilibrium R 4.4 was not included in the 

boundary value problem but only served to calculate the initial concentrations. 



CHAPTER 4. RESULTS AND DISCUSSION 

 

137 

 

Figure 4.18. Meniscus side wall forming the water-air interface where boundary condition by eq 4.26 is 

applied. 

An estimate of kr = 9 × 10
-3

 cm s
-1

 was obtained by matching the experimental current 

obtained by averaging iS across entire area of the SECCM image (Figure 4.19a) recorded at 

ES = 0.55 V vs RHE (Pd-H2) with the value returned by the model. If the system had 

followed Butler-Volmer kinetics, the value of exponential factor for this overpotential (η = 

0.55 - 1.23 = -0.68 V) would have been exp[-αfη/RT] ≈ 5 × 10
5
, which implies that k0 

would be of the order of 10
-7

 cm s
-1

. For a range of surface currents observed in the 

imaging experiments, a near-electrode proton concentration was computed from the model 

as shown in Figure 4.19b. It proved to be that the depletion of protons becomes very high 

at higher current densities: by a factor of five comparing to its bulk value for iS = 100 pA. 

As mentioned above, this will slow down the reaction due to the shift of formal potential 

that depends on pH. Moreover, if the rise in pH is even more severe, this would favour the 

reaction pathway through hydrogen peroxide - an undesirable intermediate product. 

With the help of modelling, it was possible to show how the three-phase boundary 

affects the limiting current. When concentration of oxygen on the meniscus walls was set 

to zero, effectively making meniscus wall impermeable to oxygen, the computed limiting 

current amounted to 27 pA, which is about 2.5 times less than measured on the most active 

grains of Pt.
66
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a b 

 

c 

Figure 4.19. a) SECCM image of reduction of O2 on polycrystalline Pt at ES = 0.55 V vs RHE in 0.05 M H2SO4. 

Rome numbers denote crystal orientations deduced from EBSD imaging. The correspondence to low index 

crystal planes is shown in the colour map in b. c) A plot of near-electrode concentration of protons vs surface 

current as obtained from modelling. 
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4.4 Electrochemistry of Ferrocene Derivatives at Highly Oriented 

Pyrolytic Graphite (HOPG): Quantification and Impact of Surface 

Adsorption 

This section is almost an exact copy of the research paper submitted to the Physical 

Chemistry Chemical Physics journal (RSC publishing) under the same title in October 

2015 and at the moment of writing this thesis was under review. It is co-authored with G. 

Zhang and P.R. Unwin. 

4.4.1 Abstract 

Cyclic voltammetry of three ferrocene derivatives – (Ferrocenylmethyl) 

trimethylammonium (FcTMA
+
), ferrocenecarboxylic acid (FcCOOH), and 

ferrocenemethanol (FcCH2OH) – shows that the reduced form of the first two redox 

species weakly adsorbs on freshly cleaved surfaces of highly oriented pyrolytic graphite 

(HOPG), with the fractional surface coverage being in excess of 10% of a monolayer at a 

bulk concentration level of 0.25 mM for both compounds. FcCH2OH was found to exhibit 

greater and stronger adsorption (up to a monolayer) for the same bulk concentration. 

Adsorption of FcTMA
+
 on freshly cleaved surfaces of high quality (low step edge density) 

and low grade (high step edge density) HOPG is the same within experimental error, 

suggesting that the amount of step edges has no influence on this process. The amount of 

adsorption of FcTMA
+
 is the same (within error) for low grade HOPG, irrespective of 

whether the surface is freshly cleaved or left in air for up to 12 hours, while – with aging – 

high quality HOPG adsorbs notably more FcTMA
+
. The formation of an air-borne 

contaminating film is proposed to be responsible for the enhanced entrapment of FcTMA
+
 

on aged high quality HOPG surfaces, while low quality surfaces appear less prone to the 

accumulation of such films. The impact of the adsorption of ferrocene derivatives on 
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graphite on voltammetric studies is discussed.  Adsorption is quantified by developing a 

simple methodology to process cyclic voltammetry data from peak current measurements. 

The applicability and limitation of the approach is demonstrated for various adsorption 

isotherms. 

4.4.2 Introduction 

Carbon electrodes, especially graphene, carbon nanotubes and pyrolytic graphite as 

representatives of the sp
2
 carbon family, acquire increasing significance in fundamental 

and applied electrochemistry.
67

 A range of properties, such as the inherent conductivity, 

biocompatibility, chemical inertness, low background current, capacitance density in 

solutions and low cost make this family of carbons particularly attractive for applications 

spanning from biosensors
68–70

 and electronics
47

 to fuel cell electrodes.
71,72

 On the other 

hand, high specific surface area of functionalized nanocarbons also make very powerful 

electrochemical supercapacitors.
73,74

 

Electrochemical reactions of fundamental and practical importance for sp
2
 carbon 

electrodes range from complex multi-step electron-proton coupled reactions (e.g. oxygen 

reduction,
75,76

 and the oxidation of neurotransmitters in aqueous solutions
14,77

), to outer-

sphere reactions (e.g. simple one-electron processes
2,13,18

, and the reduction of diazonium 

salts
45,50

). Moreover, various benchmark redox systems have been considered as a general 

means of assessing the electroactivity and quality of carbon electrodes, among which 

ferrocene derivatives, which are known to undergo fast outer-sphere ET on (noble) 

metals
42,78,79

 are particularly popular. Examples of the use of ferrocene derivatives are 

numerous and some of them are briefly discussed herein. (Ferrocenylmethyl) 

trimethylammonium (FcTMA
+
) was used to demonstrate the dependence of ET kinetics on 

the number of layers of CVD graphene,
80

 to test the redox-dependent electroactivity of 

graphene
19

 and graphite edges,
81

 and for characterizing the electrochemistry of networks of 



CHAPTER 4. RESULTS AND DISCUSSION 

 

141 

single-walled carbon nanotubes (SWNTs).
3,82,83

 Other frequently used derivatives are 

ferrocenemethanol (FcCH2OH) and ferrocenecarboxylic acid (FcCOOH) that, along with 

FcTMA
+
, were employed for ET kinetic studies at SWNTs and multi-walled carbon 

nanotubes,
84–86

 pristine and defected graphene,
28,87–89

 and HOPG.
90–92

 

However, it is not always sufficiently recognized in the literature that ferrocene 

derivatives can adsorb on carbon electrodes from aqueous solutions. This aspect needs to 

be appreciated in voltammetric studies, both to fully understand the processes involved and 

in the analysis of the response. One of the few studies in this area is from Bond and co-

workers
93

 who examined the applicability of ferrocene as a standard voltammetric 

reference in aqueous media. Evidence for weak adsorption was found on all electrode 

materials tested with various supporting electrolytes, with glassy carbon showing the 

strongest adsorption effect on the voltammetric response in several techniques (cyclic 

voltammetry, differential pulse voltammetry and normal pulse voltammetry). Strong 

(irreversible) adsorption of FcCH2OH onto CVD graphene has also been reported,
87

 with 

an estimation of surface coverage of 1.1 x 10
-11

 mol/cm
2
 (from a bulk solution of 1 mM in 

this redox mediator) that constituted ~ 2% of a monolayer. The significance of electrode 

adsorption (particularly of ferrocene derivatives) has also been recognized in single 

molecule studies.
94,95

 

Here, we present a cyclic voltammetry study of the electrochemistry of ferrocene 

derivatives at HOPG, mainly focused on FcTMA
2+/+

 but also including FcCOOH
+/0

 and 

FcCH2OH
+/0

. We show that the reduced forms of all of these compounds adsorb on the 

HOPG surface (FcTMA
+
 ~ FcCOO

-
 < FcCH2OH), whereas the oxidized forms do not. We 

extract the surface concentration of adsorbed FcTMA
+
 quantitatively at different bulk 

concentrations, based on a simple theoretical model, which can be used to obtain an 

empirical isotherm in the case of FcTMA
+
 adsorption at HOPG. Additionally, the 

adsorption of FcTMA
+
 on low grade HOPG (high step edge density) was measured and 
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found not to differ from that on high grade HOPG (low step edge density), although 

differences emerge when these samples are left to age in air. The significance of 

accounting for the surface adsorption when considering the electrochemistry of ferrocene 

derivatives in fundamental voltammetric studies is discussed, particularly in light of recent 

investigations aimed at understanding the electrochemistry of sp
2
 carbon electrodes. 

4.4.3 Experimental 

Materials and chemicals 

FcTMA[PF6] was synthesized in-house via an exchange reaction of FcTMA
+
I
-
 (Strem 

Chemicals, Ltd.) with AgPF6 (Strem Chemicals, Ltd.).
96

 FcCH2OH (97%) and KCl (99%) 

were purchased from Sigma-Aldrich, and FcCOOH (98%) was from Alfa Aesar. All were 

used as received. All solutions were freshly prepared using Millipore Milli-Q water, with a 

resistivity ca. 18.2 MΩ cm at 25 ºC. 

Sample preparation 

SPI-3 grade HOPG was purchased from SPI Supplies (West Chester, PA). An HOPG 

block of high quality, but ungraded, was kindly provided by Prof. R. L. McCreery 

(University of Alberta, Canada), originating from Dr. A. Moore, Union Carbide (now GE 

Advanced Ceramics), and so referred to as AM grade herein. A fresh surface of HOPG was 

exposed prior to each experiment by peeling off the top layers with Scotch tape as 

routinely done in the literature,
2,13,18,31,97–102

 and shown to be equivalent to mechanically 

cleaved HOPG.
13,18

 These HOPG materials differ in step edge coverage, as thoroughly 

characterised elsewhere.
14,18,103

 

Electrochemistry 

CV was carried out using a standard three-electrode configuration with a 760C 

potentiostat (CH Instruments, Inc.) and was essentially as described in our recent study.
13

 

Briefly, the HOPG sample was connected as the working electrode, a Pt wire served as the 
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counter electrode and an insulated Ag wire (0.25 mm diameter), with AgCl deposited at the 

exposed disc-shaped end, acted as the reference electrode. In each experiment, a 20 μL 

droplet of solution containing the redox mediator of interest in 1 M KCl was placed on the 

HOPG surface (either within seconds of being freshly cleaved or after exposure to air for 1 

or 12 h) with the other electrodes carefully immersed in the droplet. The droplet area was 

typically 0.18 – 0.21 cm
2
, but precisely determined in each experiment as described in the 

Section 4.4.4. Scan rates spanned from 0.1 to 10 V s
-1

. 

The diffusion coefficients of FcTMA
+
 (1.5 mM in 1 M KCl) and FcTMA

2+
 were 

determined from double potential step chronoamperometry at a Pt disc UME that served as 

the working electrode and a chloridized Ag wire as the quasi-reference counter electrode. 

More details are given in Section 4.4.5. 

4.4.4 Determination of droplet area 

We determined the droplet area for each experiment from voltammetric data as 

described below. According to the basic assumption of the treatment suggested herein, the 

total current, itot, is the sum of diffusional, idiff, and adsorptional, iads, components: 

tot diff adsi i i   (4.28) 

or considering that peak current ip,diff is proportional to v
1/2

 (Randles-Sevcik equation
34

) 

and ip,ads to v, one can write 

 1/2

,p toti aAv bv    

or 
, 1/2

1/2

p toti
A b v

av
   (4.29) 

where a = 2.69 × 10
5
 n

3/2
 D

1/2
 c0, A is droplet area, b´ = b/a and b is a coefficient of 

proportionality as defined in eq 4.30 (see below). Thus according to eq 4.29, ip,tot/av
1/2

 vs 

v
1/2

 should yield a straight line with the intercept giving droplet area. In Figure 4.20, we 

exemplify several “droplet area plots” for FcTMA
+
 and FcCOOH. Some are linear 
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throughout the range of scan rates, while others deviate from expected behaviour rather 

soon so only initial part corresponding to slow scan rates was fitted to a straight line. 

 

Figure 4.20. Representative linearization plot for determination of droplet area according to eq 4.29 with 

fitting lines for FcTMA
+
 (blue and orange) and FcCOOH (green). 

4.4.5 Diffusion coefficients 

The diffusion coefficients of FcTMA
+
 and FcTMA

2+
 (FcTMA

+
 initially present with c0 

= 1.5 mM) in 1 M KCl were determined via double potential-step chronoamperometry at a 

Pt UME (radius, a = 14.2 μm, RG > 10, as measured with an optical microscope). A 

typical chronoamperometric transient of the first potential step (full-driving oxidation of 

FcTMA
+
) is shown in Figure 4.21a along with background transient recorded in (pure) 1 M 

KCl. The experimental data were fitted to function 4.30 (ref
33

) that describes the diffusion-

limited current at a UME (Figure 4.21b). The value obtained from this fit is D = 6.7 × 10
-6

 

cm
2
 s

-1
. The diffusion coefficient of the oxidized form was found by modelling the 

diffusion-limited response of the system after the potential was stepped back to fully drive 

reduction of FcTMA
2+

 generated during the first step, as described elsewhere.
64

 In our 

laboratory, as a part of another project in progress, the diffusion coefficient for this species 

was also determined via the combination of scanning electrochemical microscopy in 

feedback mode with substrate-generation/tip-collection mode (results to be published), 
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following the methodology described in ref.
104,105

 The average value from the two 

aforementioned techniques was 6.2 × 10
-6

 cm
2
 s

-1
, which is used in the present work. The 

values for diffusion coefficient of the Red form are broadly in agreement with previously 

published in the literature.
82,83,106

 

The diffusion coefficient for FcCH2OH (c0 = 0.5, 0.75 and 1 mM in 1 M KCl) was 

determined from the limiting current at the same electrode and amounted to D = 6.5 × 10
-6

 

cm
2
 s

-1
. The value for FcCOOH (D = 6.4 × 10

-6
 cm

2
 s

-1
) was taken from the literature

107
. 

1/2 1/2 3/2

0 1/2 1/2 1/2 1/2

1 / 2 4 1
( ) 4 / 4 (1 / 4)exp

2 2 1 / 4 2

π a π π a
i t nFaDc π π

D t π D t

  
      

  
 (4.30) 

 

  

a b 

Figure 4.21. a) Chronoamperometric transients in solution containing 1.5 mM FcTMA
+
 in 1 M KCl (black) 

and in pure KCl (blue). b) Background-subtracted transient with the fit according to eq 4.30. 

4.4.6 Theory: model and analysis 

The model developed for this study was adapted and developed from that formulated by 

Wopschall and Shain,
108

 which we present here with an appropriate level of detail. For 

simplicity, it is assumed that only solution redox molecules undergo ET. This 

simplification was introduced to limit the number of adjustable parameters in the 
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simulation, i.e. we did not wish to introduce a parallel set of kinetics for surface bound 

species. It does not affect the broad conclusions of the simulation results for a redox couple 

characterized by fast kinetics (see below). Furthermore, only the reduced form, Red, 

present in bulk solution adsorbs at the electrode surface, which is relevant to our study, and 

is in equilibrium with its solution counterpart in the near-electrode layer at any instant 

(rapid adsorption/desorption). The surface processes are: 

sol ads

Ox+e Red

Red Red




 

We employed a Butler-Volmer formulation for the electrode kinetics with a high ET 

rate constant so that the ET kinetics was essentially reversible, which is reasonable for the 

fast FcTMA
2+/+

 system (see below). A Langmuirian adsorption isotherm was assumed, 

however, in some cases we also considered allowing the equilibrium adsorption constant to 

depend on potential to cover more complex adsorption cases. With this, the boundary value 

problem can be formulated as follows. 

The diffusion equation (eq 4.31) to be solved for Red and Ox is of the form 

2

2

i i
i

c c
D

t x

 


 
 (4.31) 

where i = Red or Ox. Boundary conditions at the electrode surface (x = 0) are formulated 

in eq 4.32 – 4.34: 

0 0Red
Red 0 Red Ox

(1 )
exp[ ( )] exp[ ( )]

c α F αF dΓ
D k c E E c E E

x RT RT dt

         
  

 (4.32) 

0 0Ox
Ox 0 Red Ox

(1 )
exp[ ( )] exp[ ( )]

c α F αF
D k c E E c E E

x RT RT

         
  

 (4.33) 

max Red Red( ) / (1 ( ) )Γ Γ K E c K E c   (4.34) 

Boundary conditions in the bulk of solution (x → ∞) are formally the same as the initial 

conditions and are given in eq 4.35 and 4.36. 
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Red 0c c  (4.35) 

0

Ox Red inexp[ ( )] 0
F

c c E E
RT

    (4.36) 

Here, k0 is the standard heterogeneous rate constant (set to be high; see below), α = 0.5 is a 

reasonable transfer coefficient for a fast outersphere redox couple, Γ is the surface 

concentration of adsorbed species at a given time (potential), Γmax is the (maximum) 

surface concentration corresponding to a monolayer, c0 is the initial/bulk concentration of 

the reduced form, E
0
´ is the formal potential, and Ein is the initial potential, with other 

symbols, F, R and T, being the Faraday constant, the universal gas constant, and absolute 

temperature.  

The potential-dependent equilibrium adsorption constant is defined by eq 4.37 – 4.39:
108

 

0

1( ) exp[ ( ) / ]K E K σnF E E RT    (4.37) 

1 0 exp[0.4 / ]K K σnF RT  (4.38) 

where K0 is a potential-independent equilibrium constant: 

0 adsexp[ Δ / ]K G RT   (4.39) 

The parameter σ sets the potential dependency of K; when σ = 0, K simply becomes K0. 

Potential dependency of K was introduced for two reasons: i) it is plausible that the 

potential may influence the adsorption constant. For example, during the forward potential 

sweep (oxidation of FcTMA
+
), the electrode acquires more positive charge, and that could 

cause the equilibrium constant to decrease due to electrostatic repulsion of adsorbed 

FcTMA
+
; ii) it helped to demonstrate the applicability and the limits of the analytical 

approach presented herein for more complex adsorption scenarios. 

We retained the differential formulation and solved the boundary value problem 

numerically using Comsol Multiphysics 4.4 (Comsol AB, Sweden). The analysis of the 

voltammetric results focused on a value that could easily be extracted from the experiment: 
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the difference between the peak current ip,tot of the forward wave with adsorption in the 

theory (or in experimental data)  and the theoretical one due to diffusion only, ip,diff, which 

we denote as Δip. Of course, one has to know the diffusion coefficient of adsorbing species 

to calculate ip,diff, which we discuss below. The approach is reasonable for the redox 

couples of interest because the electrode kinetics are fast and the peaks well-defined. 

It turned out (see below) that Δip scales linearly with the scan rate v. This is, of course, 

expected for the peak current for a system comprising only a reversible surface-confined 

redox species, with the slope of ip vs v being n
2
F

2
Γ0/4RT.

34
 Within good practical precision 

(its limits are discussed below) the plot of Δip vs v proved to have the same slope, so we 

can write 

2 2

recovΔ
4

p

n F Γ
i v

RT
  (4.40a) 

recov inΓ Γ  (4.40b) 

We use subscript “in” to denote initial surface concentration or initial fractional coverage 

(E = Ein) and it is the input/known value used in the modelling. The subscript “recov” 

refers to the value of the initial surface concentration (or initial fractional coverage) that 

were found (recovered) from the analysis of modelling or experimental data. 

The simple functional relation conveyed in eq 4.40 does not seem necessarily obvious 

when one considers the redox reaction of adsorbed species that are in equilibrium with 

their solution counterparts at any instant and thus the amount of adsorbed molecules 

changes as the potential sweep proceeds. In the following, we present a simple formalism 

explaining this coincidence for the case of potential-independent K. 

To simplify the analysis herein, we assume that the overall process is simply the sum of 

the two discrete components: adsorption and diffusion. Clearly, this assumption holds 

under the conditions that favours low coverage like low bulk concentration and/or low 

equilibrium constant (weak adsorption). 
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For this aspect of the analysis, we consider that a Langmuirian equilibrium holds at any 

moment of time between adsorbed Red and Red in the immediate vicinity of the electrode. 

To underline that the equilibrium constant does not depend on potential in this part of the 

treatment we re-write eq 4.34 as follows: 

0 Red
Red Red,max

0 Red1

K c
Γ Γ

K c



 (4.41) 

A Nernstian relation also holds at any time for the concentrations of Ox and Red at, and 

just near, the electrode surface (eq 4.42): 

Red

Ox

fηc
e

c

  (4.42) 

where f  = nF/RT and η = E – E
0
′. 

With the assumption above, at, and immediately close to, the electrode surface (by 

electrode surface we imply the plane where the concentration gradients, owing to diffusion, 

originate) the sum of concentrations of redox molecules is equal to the total concentration 

c0 that in our case is the bulk concentration of Red (eq 4.43). 

Red Ox 0c c c   (4.43) 

Therefore eq 4.42 can be expressed as 

0
Red

1

fη

fη

c e
c

e







 (4.44) 

During the potential sweep, cRed obviously changes according to the electrode potential, 

however, the assumption we make is that there is no “stripping” of Redads from the 

electrode surface, rather it is converted to Ox (which diffuses away). In reality, in our 

system, the total current increases due to “stripping” adsorbed Red but, the goodness of the 

assumption made is tested and shown to be reasonable in the following section. With this 

in mind, cRed from eq 4.44 can be substituted into eq 4.41 to get 
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0 0
Red Red, max

0 01 (1 )

fη

fη

K c e
Γ Γ

K c e






 
 (4.45) 

To obtain the expression for current due to adsorbed species, one takes the time 

derivative of eq 4.45: 

ads Red 0 0
Red, max 2 1 2

0 0 0 0(1 ) ((1 ) )

fη

fη

i dΓ K c fve
Γ

nF dt K c K c e



 


  

  
 (4.46) 

where v, the scan rate, appears outside the exponent as a result of differentiating η with 

respect to time. By noting that 
Red, in Red, max 0 0 0 0/ (1 )Γ Γ K c K c  , where 

Red, inΓ  is the surface 

concentration prior to the potential sweep, eq 4.46 can be re-written as 

1ads Red
Red, in 0 0 1 2

0 0

(1 )
((1 ) )

fη

fη

i dΓ fve
Γ K c

nF dt K c e




 


   

 
 (4.47) 

However, we are not interested directly in the expression for current, rather we want to 

obtain the formula for the peak current. Differentiating eq 4.47, setting it to zero and 

solving the resulting algebraic equation, one finds: 

p 1

0 0(1 )
f

e K c
  


 (4.48) 

where ηp is the peak overpotential. Substituting this in the equation for the current (eq 

4.47) one finally obtains the formula for peak current (eq 4.49), which is identical to that of 

surface-bound reversibly reacting redox molecules as mentioned in the text above: 

2 2

Red,in

ads,p
4

n F Γ v
i

RT
  (4.49) 

This derivation serves as a proof that the initial coverage can be found by the method 

proposed in this paper under the conditions when the assumptions made hold. Attempting 

to apply a similar strategy to the case of potential-dependent K is more complicated (and is 

not considered) because one has to account for “stripping” of Redads during the potential 

sweep and its accumulation in the pre-electrode layer, but “the stripping” of Redads follows 

not only the change in cRed near the electrode but also the change in K with applied E. In 
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the following, we present the results of numerical modelling first for the case of potential 

independent K to corroborate the simple theory just described and then the case of potential 

dependent K will be considered. 

CVs both with the adsorption of Red and without (pure diffusional process) were 

computed at different scan rates by solving eq 4.31 – 4.36 (obviously Γ was set to zero for 

diffusion-controlled case). The CVs with adsorption are shown in Figure 4.22a (diffusional 

CVs, which are well-known, are not shown for clarity). The difference plot for the forward 

waves obtained by subtraction of CVs without adsorption from those with adsorption (itot - 

idiff) is given in Figure 4.22b. The charge Q under each difference curve and Δip are plotted 

in Figure 4.22c and d, respectively. The model parameters were assigned the following 

numerical values: DRed = 6.7 × 10
-6

 cm
2
 s

-1
, DOx = 6.2 × 10

-6
 cm

2
 s

-1
, c0 = 0.25 mM, k0 = 5 

cm s
-1

, α = 0.5, E
0
´ = 0.38 V, Ein = 0 V, n = 1, Γmax = 5 × 10

-10
 mol cm

-2
 (close to an earlier 

estimate
93

), and ΔG°ads = -14.2 kJ mol
-1

 (a reasonable value for physisorption
109

). This 

corresponds to an initial surface concentration Γin = 2.2 × 10
-11

 mol cm
-2

 (4.4% of a 

monolayer) and K0 = 305. The quantities Γin, K0 and ΔGºads are correctly related with each 

other (their numerical values and units) if one takes into account that activity, aRed = fcRed, 

must be used in place of concentration in eq 4.34, where f is activity coefficient of Red. f 

was assigned a value of 0.604 that is mean molar activity coefficient of 1 M KCl.
62

  

In order to recover Γin, in principle, one can use either the charge under the 

(voltammetric) difference curve or Δip. At first glance, the former might appear a more 

attractive quantity for analysis as it “accounts” for the whole difference between the two 

waves (with and without adsorption) and does not necessitate making model assumptions 

about adsorption (like the isotherm type), as long as the assumption about decoupled 

diffusion and adsorption holds. However, the coverage recovered from the charge data 

resulted in an underestimate of the actual amount by about 11% (Γrecov = 1.96 × 10
-11

 mol 

cm
-2

). Moreover, given that the difference curves obtained from the experimental data 
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would be less ideal in shape than depicted in Figure 4.22b, an analysis based on charge 

would very likely increase the error. 

 

  

a b 

  

c d 

Figure 4.22. a) A series of computed CVs complicated by adsorption of Red at scan rates of 1, 2, 4, 6 and 8 

V s
-1

 (values of all parameters are listed in the text); b) Difference plot for the forward waves (smaller 

currents) of CVs shown in a (Δi = itot - idiff); c) Charge under each difference curve shown in b plotted vs 

scan rate. d) Peak current difference (as defined in the text) for the forward wave  plotted vs scan rate for 

each CV shown in a. 

For the case presented in Figure 4.22, eq 4.40 was used to determine the coverage (in 

particularly the data from Figure 4.22d), resulting in Γrecov = 2.15 × 10
-11

 mol cm
-2

, which 
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is only slightly different (2.2% less) from Γin. Both methods underestimate the actual 

surface coverage, but evidently, charge is worse for the analysis of the full voltammetric 

wave. It is impressive that the peak current is so accurate but, of course, under different 

conditions the error might become higher and so we further explored the capability of the 

model to recover Γin for a broad range of fractional coverages (θin = Γin/Γmax). 

The analysis just-described was extended to bulk concentrations of Red varying from 

0.25 mM to 55 mM, which covered the range of θin from 0.04 to 0.91, with the values of 

other model parameters given above remaining unchanged. The deviation of Γrecov, or 

equivalently θrecov, from its set value was measured with the quantity log2 θrecov/θin. A unit 

of this quantity corresponds to a two-fold deviation of θrecov from θin and it is convenient to 

compare errors that go on both sides of a reference quantity (as will become clear below). 

As can be appreciated from Figure 4.23, curve 1, the error remains rather small up to θin ~ 

0.7 but rapidly increases beyond this point, indicating approx. a two-fold underestimate of 

θin when θin ~ 0.9. Evidently, at higher coverages, diffusion is more significantly affected 

by the adsorption/desorption process occurring at the electrode surface and the overall 

process can no longer be represented as the mere sum of the two. 

We further tested the applicability of eq 4.40 for the case of potential-dependent K, 

relying on the results of the numerical calculations. As mentioned above, the parameter σ 

determines the sensitivity of K towards the change in potential but it also affects the 

magnitude of K (eq 4.38) so Γin changes with σ even for the same Ein. For σ in the range of 

0 – 0.5, θin covered a similar range of values as in the previously treated potential-

independent K case (with c0 = 0.25 mM). CVs were computed for each value of σ by 

solving eq 4.31 – 4.39 at different scan rates and Γrecov was determined from Δip. As in the 

case of potential independent K, Δip proved to scale linearly with v, however, in this case 

Γrecov obtained from eq 4.40 deviated more strongly from Γin. The error in terms of 

recovered θin is presented in Figure 4.23, curve 2. Unlike the previous case, the error 
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increases significantly with σ, even for small σ, and reaches a maximum at intermediate 

values of σ. At the maximum, θrecov overestimates θin by more than three times. The fact 

that the error diminishes at higher σ is probably due to that θin approaches a limit of unity 

with increasing σ, whereas θrecov scales at a slower pace with σ. It should be emphasized 

that Δip followed the linear relation with v for all the conditions tested (with K being or not 

being a function of potential), regardless of the error in the estimation of Γin. 

We imitated an experiment of generating an isotherm of adsorption for σ = 0.13 (close 

to the maximal error in Γin) by plotting Γrecov vs c0. The obtained curve followed Langmuir 

equation (perfect straight line of 1/Γrecov vs 1/c0 coordinates) but, of course, the slope and 

the intercept were different from the respective input values. Thus, unfortunately, it is not 

possible to distinguish when K is and when it is not a function of potential based on the 

proposed methodology.  

 

Figure 4.23. Error in θin, as defined in the text, recovered by the model for the case of potential-independent 

K (curve 1) and potential-dependent K (curve 2). The arrows indicate that curve 2 is plotted vs σ and θin but 

curve 1 only vs θin. The lines serve only for eye-guidance. 

In the course of our experimental work, it turned out that the isotherm of adsorption of 

FcTMA
+
 on HOPG is not strictly Langmuirian, but is more reminiscent of the Frumkin 

isotherm with attractive lateral interaction, especially noticeable at higher bulk 
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concentrations. Naturally, a question was whether it is possible to obtain reasonable initial 

coverages if the system follows a different, not Langmuir, isotherm. The detailed 

discussion of the experimental results will follow in the next section and here, in the last 

part of the theoretical section, we treat the case where the system follows the Frumkin 

isotherm with potential-independent K. 

The treatment is similar in principle to the one for the case of the Langmuir isotherm. 

The equation for the adsorption of the Red species now reads:
110

 

Red

Red

0 Red
Red

0 Red1

gθ

gθ

K c e
θ

K c e







 (4.50) 

where g is a parameter characterizing the lateral interaction of the adsorbate molecules. It 

is attractive when g < 0 and repulsive when g > 0. Assuming a fast electron transfer 

kinetics and combining eq 4.44 and eq 4.50, we have: 

Red

Red

0 0
Red

0 01

fη gθ

fη gθfη

K c e
θ

e K c e

 

 


 
 (4.51) 

The expression for adsorption current is obtained by differentiating eq 4.51 

Red

Red

Red 0 0 Red

2

0 0

( (1 )( / ) )

(1 )

fη gθ fη

fη gθ fη

dθ K c e g e dθ dt fv

dt e K c e

  

  

 
 

 
 (4.52) 

and solving the resulting eq 4.52 for dθRed/dt. For clarity, the notation can be simplified by 

putting q = e
-fη

, r = e
gθ

, K0c0 = C and removing the subscript “Red”. Thus, the equation for 

the current reads: 

2 2 2 2ads

max

/ ( (1 ) (2 ) (1 ) )
i dθ

Cfvrq r q C g rq q C q
nFΓ dt

         (4.53) 

Next, eq 4.53 needs to be differentiated and set to zero (in fact, only the numerator). It 

contains dθ/dt that can be excluded by invoking eq 4.52. The result is eq 4.54 that includes 

not only η but also θ; both are in the exponent. To ease handling large symbolic 

expressions and avoid accidental errors, we employed Mathematica 10.
111
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 

 

2
4 2 3 3 4 2 2

3 3 2 2 3

2 2 ( ) (2 )

2 2 (3 2 ) (6 (4 )) 2 0

r Cq gr qr p C q r C g r C

q r r C g r C r g g C

       

      
 (4.54) 

Thus, one has to solve simultaneously eq 4.54 and 4.51 to obtain η and θ for the peak 

current. This system can only be solved numerically due to the complicated and 

transcendental form of these equations. Before we proceed with the numerical solutions 

and analysis, it is worthwhile to show that the peak current is always proportional to the 

scan rate (as in the case of the simple Langmuir isotherm). The current, as defined by eq 

4.53, can be presented as a product of v and some function of r = r(θ), q, C, and g: 

ads
1

max

( ( ), , , )
i

fvF r θ q C g
nFΓ

  (4.55) 

It is worthwhile re-writing eq 4.51 with newly introduced symbols: 

1

1

( )

1 ( )

Cqr θ
θ

q Cqr θ






 
 (4.56) 

The system of simultaneous equations 4.54 and 4.56 can be solved, in principle, for q and 

θ, with the solution being dependent only on C and g, as the equations in question contain 

only these two parameters and integers. This fact can be written in a general form: 

p 2

p 3

( , )

( , )

q F C g

θ F C g




 (4.57) 

where the subscript “p” refers to the peak values of the quantities. When these are 

substituted in eq 4.55, it is easy to see that F1 will only contain C and g (eq 4.58) and not v 

or any parameters depending on it. Therefore, the peak current is always proportional to v 

as we pointed above. 

ads,p

1 p p 1 3 2 4

max

( ( ), , , ) ( ( ( , )), ( , ), , ) ( , )
i

fvF r θ q C g fvF r F C g F C g C g fvF C g
nFΓ

    (4.58) 

When examining eq 4.53, this result is not obvious as each differentiation of q 

“releases” v as a factor only for the terms containing q. v becomes a common factor in the 
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resulting expression when dθ/dt is substituted in it (as was already mentioned above) and 

in this way v plays no role when this expression is set to zero. 

The expression for peak current is, in general form, given by eq 4.58, which can be 

given in slightly different form: 

ads,p

4

max

4
4 ( , )

i
vF C g

fnFΓ
  (4.59) 

It follows from eq 4.59 that 4F4 is a slope of the adsorption current (as normalized) when 

plotted vs v. By comparing eq 4.59 with eq 4.40, we can identify 4F4 with θrecov. Thus θrecov 

can be found for every pair, C and g.  

It is convenient, as in the case with the Langmuir isotherm, to explore how the 

recovered initial coverage deviates from the set initial coverage by plotting the error as log2 

(θrecov/θin) with θin determined by solving eq 4.50 numerically and bearing in mind that, in 

this case, K0cRed = K0c0 = C. The error plot for a range of C and g, along with recovered 

isotherms are given in Figure 4.24. Frumkin isotherms have an inflexion point for g < 0 

and this appears on the slices of the surface plotted in Figure 4.24. Therefore, the 

methodology and analysis suggested in this paper (essentially based on eq 4.40 and its 

elaboration) allows one to restore the Frumkin isotherm to some degree. The precision with 

which this restoration can be achieved depends on particular values of C and g. By 

examining the plot in Figure 4.24b, one can notice that the error becomes significant on the 

negative side of g and generally at higher C. At the extreme of low C (< ~ 0.25) the 

isotherm can be recovered with great precision. This region lies approximately before the 

inflexion point on the recovered isotherm. Therefore, one generally expects much better 

recovery of the initial coverage (and the isotherm) before the inflexion point of the 

recovered isotherm. Note that there is little error in recovery θin when g = 0, which 

confirms the previously treated case for the Langmuirian isotherm, with potential-

independent K. 
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a b 

Figure 4.24. a) Recovered Frumkin isotherms for a range of g values. Red dashed border delineates the 

shape of the isotherm for g = -3. b) Error in recovery θin for Frumkin isotherms, as defined in the text. 

4.4.7 When do equations 4.41 – 4.43 hold true? 

Equations 4.41 – 4.43 given above in the text are the basis of the derivation of the 

equation for the adsorptional current in the case of the Langmuirian isotherm (eq 4.49); 

equally they are foundational for the analysis with Frumkin isotherm. It thus seemed 

important to provide a more detailed explanation of their applicability. Below, we focus on 

the case of Langmuir isotherm to exemplify the principle we seek to convey. 

First, consider the case when the error in recovery of θin is very small. As mentioned in 

the main text, this necessitates low bulk concentration of reactant and low coverages: for c0 

= 0.53 mM, corresponding θin = 0.089, the error in recovery of this value is ~2%. This 

means that eqs 4.41 – 4.43 should hold with high precision. Since we postulated that near-

electrode concentrations do not differ to any significant extent between the case of a purely 

diffusional system and the one with weak reactant adsorption, it is sensible to compare this 

quantity for these two situations. Near interface concentrations of both Red and Ox were 

obtained through COMSOL simulations of the voltammetric responses for these cases.  

Figure 4.25a plots cRed and cOx at x = 0 (origin of diffusional layer; near electrode surface) 
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for the cases in question for a scan rate of 6 V s
-1

. The concentration of Red is only slightly 

enhanced with adsorption, confirming the validity of the assumption made in the main text. 

Note, however, that of Ox is much larger with adsorption as a consequence of the 

conversion of Redsol and Redads to Ox which diffuses from the electrode. This is especially 

true for E > ~ 0.4 V. The exact difference between the concentration-potential profiles for 

the pure diffusional case and the case with adsorption is given in Figure 4.25b. Note that 

the difference for Red reaches ~ 0.045 mM, which, in relative terms, is ~16 %. Whether 

this is significant or not becomes clear when the case of large error in θin is considered. 

For c0 = 21.7 mM, corresponding θin = 0.80, the error in the recovery θin is more 

considerable, constituting ~16% (see also error plot in the main text, Figure 4.23). In a 

similar fashion, we plotted the Red and Ox profiles and their difference in Figure 4.25c and 

d. Surprisingly, both cRed and cOx for the pure diffusional case and the one with adsorption 

are in closer agreement, compared to the previous case. This may initially seem 

counterintuitive as the error in θin is eight times larger than for the case outlined above. The 

relative difference in the Red concentration-potential profile reaches only ~2%. In fact, 

such a behaviour is understandable since with higher c0 the diffusional contribution 

dominates much more over the adsorptional one. Clearly eq 4.42 and 4.43 are more precise 

in this case (relative error decreases). However, the validity (or accuracy) of eq 4.41, when 

the true cRed is approximated by the diffusion-controlled quantity, decreases for higher c0 

(and higher θin). What is important is not the relative accuracy of interfacial cRed (for it is 

this quantity that enters eq 4.41) with respect to bulk, but the absolute one and the accuracy 

decreases for higher bulk concentration as can be easily seen by comparing Figure 4.25b 

with d. If this statement is not obvious from the form of eq 4.41, we prove the point by 

taking a finite difference of eq 4.41 between the pure diffusional case and the one with 

adsorption: 
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max
Red Red2

Red Red

Δ Δ Δ
(1 )

Γ KdΓ
Γ c c

dc Kc
 


 (eq 4.60) 

where ΔΓ = Γexact – Γapprox, and ΔcRed = (cRed)exact - (cRed)approx. By “exact”, we mean that the 

quantity from exact solution of the boundary value problem (eq 4.31 – 4.36), which 

includes adsorption. “Approx” means that the numerical solution is taken from the pure 

diffusion-controlled problem. The first multiplier from the product in the right-hand side, 

ΓmaxK/(1+KcRed)
2
, becomes more accurate with increasing c0 since (cRed)approx → (cRed)exact 

but the second one, ΔcRed is the absolute difference between the approximate and exact 

solutions, which, as discussed above, increases for larger c0. This is sufficient to explain 

larger error in recovery of θin with increasing bulk concentration. 

All that is outlined in this section above can be summarized very simply: the amount of 

adsorbed reactant is measured as a difference between the current profiles (peak currents) 

and this difference is progressively less accurate with increasing c0 as clearly seen from the 

exemplified profiles of Red and Ox. 
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a b 

  

c d 

Figure 4.25. Near-electrode (x = 0) concentration-potential profiles of Red and Ox species are 

compared for the case of purely diffusional electrode reaction and that complicated by weak adsorption 

of a reactant (Red). a) Red and Ox profiles for c0 = 0.53 mM, corresponding θin = 0.09: Red for pure 

diffusional case (solid black), Red for adsorption case (dashed blue), Ox for pure diffusional case (soft 

red), Ox for adsorption case (green dashed). b) Difference in concentration-potential profiles between 

pure diffusional and adsorption cases for Ox and Red species (same bulk concentration as in a. c) Red 

and Ox profiles for c0 = 21.7 mM, corresponding θin = 0.80: Red for pure diffusional case (solid 

black), Red for adsorption case (dashed blue), Ox for pure diffusional  case (soft red), Ox for 

adsorption case (green dashed). d) Difference in concentration-potential profiles between pure 

diffusional and adsorption cases for Ox and Red species (same bulk concentration as in c). 

4.4.8 Experimental Results and Discussion 

It was not the purpose of this study to perform detailed mechanistic research of the 

adsorption of ferrocene derivatives on HOPG. Rather, we intend to present an account of 
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the relative extent of adsorption of various ferrocene derivatives on HOPG under several 

experimental conditions so as to draw general conclusions as to such effects in 

contemporary studies of carbon electrodes. Based on the analysis above, voltammetric 

measurements suffice for this purpose and provide robust numbers for the surface 

coverages.  

The model presented in this article is based on the relation of the difference between the 

experimental and theoretical peak currents as the function of scan rate and, to the best of 

our knowledge, there has not been a similar simple and straightforward method of 

quantitative processing of CVs complicated by weak adsorption. An approach for 

extracting surface coverage from a single CV measurement, based on semi-integration, has 

been suggested,
112

 however, a fundamental premise of this method was a concomitant 

presence of both the reduced and oxidized forms in the adsorbed state in equilibrium. 

Apparently the formalism developed for this approach is applicable only when this 

assumption holds. We tested this method for the conditions relevant to our case and found 

that the initial concentration of Redads returned by this model was almost five times higher 

than the input/expected value (details of this test were differed to the auxiliary section 

4.4.10 to avoid cluttering the ‘Discussion’ part). 

Typical voltammetry of FcTMA
+2/+

 at HOPG at a bulk concentration of 0.25 mM, for a 

range of scan rates, from 0.1 V s
-1

 to 10 V s
-1

, is presented in Figure 4.26a. It is noticeable 

that the peak currents of the forward waves are higher than those of the reverse waves and 

far exceed the values expected for pure diffusional waves. The inset in Figure 4.26a 

contrasts the experimental forward wave with the computed one for a pure diffusional 

response at 10 V s
-1

. This voltammetric behaviour, where the experimental peak current is 

more than twice that predicted for a simple diffusion-limited process (no adsorption), is a 

clear signature of some adsorption of the reactant,
108

 with the product diffusing into 

solution. 
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a b 

Figure 4.26. a) CVs for the oxidation of 0.25 mM FcTMA
+
 in 1 M KCl at a freshly cleaved AM grade 

HOPG with a scan rate of 0.1, 0.5 and 1 – 10 V s
-1

  (with an increment of 1 V s
-1

). The inset shows the 

experimental forward wave at 10 V s
-1

 (black) compared with the corresponding computed diffusional wave 

(blue). b) Peak current difference Δip plotted vs scan rate. Filled circles are for FcTMA
+
 data from the CVs 

presented in a with the fit to a second-order polynomial y(x) = C1x + C2x
2
. Open circles are for FcCOOH 

(0.25 mM in 1 M KCl) with the fit to a straight line. 

The peak current difference plotted vs scan rate for the voltammetric data shown in 

Figure 4.26a is given in Figure 4.26b. The diffusion coefficients used to calculate ip were 

either determined experimentally or adopted from the literature (Section 4.4.5). The 

obtained dependency between Δip and v was not quite linear for FcTMA
+
, but all FcCOOH 

experiments yielded the expected straight lines (the same figure). Strictly, we cannot 

extract surface concentrations from non-linear plots. However, the behaviour at higher 

scan rates may be more complicated by background/capacitative charging (see auxiliary 

section 4.4.11), which may have a coverage-dependent character and therefore not 

manifest in a standard background/blank voltammogram (for pure electrolyte solution). 

Because the Δip vs v plot for FcTMA
2+/+

 was not quite linear, it was fitted to a second-order 

polynomial of the type y(x) = C1x + C2x
2
 and the coefficient C1 was identified with the 

slope as defined by eq 4.40. In other words, only slow scan rates were employed to extract 

surface concentrations. 
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The surface concentration of FcTMA
+
 determined for bulk concentrations in the range 

0.05 – 0.25 mM is summarized in Figure 4.27, which represents an empirical isotherm of 

adsorption of FcTMA
+
 at the fresh surface of HOPG. As expected, Γrecov increases with c0 

but it seems to have a convex shape instead of a concave one – typical for Langmuir or 

Temkin isotherms. This is suggestive of a Frumkin type isotherm with attractive 

interaction between adsorbate molecules. Although, at first glance, this might appear 

unlikely for positively charged FcTMA
+
 that should experience repulsive coulombic 

interaction, counter anions could promote such an interaction. For example, attractive 

lateral interaction between neutral ferrocene molecules adsorbed on Ag(100) surface has 

been reported.
113

 Also, co-adsorption of counteranions or anions of an indifferent 

electrolyte are known to take place in the case of metal deposition,
110

 and in the surface 

chemistry of noble metals.
114,115

 It is also worth pointing at adsorbent-adsorbate 

interactions and consequently isotherms relevant to electrochemical studies are not entirely 

satisfactory.
110

 

 

Figure 4.27. Empirical adsorption isotherm of FcTMA
+
 at freshly cleaved AM HOPG surfaces. 

We have shown previously that exposure of cleaved HOPG to the atmosphere can have 

a significant impact on the voltammetry of several redox processes,
1,2,18,19

 which we 
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attributed to surface contamination, delamination and other factors.
2,18,19

 We were 

interested in elucidating whether such effects were manifest in FcTMA
+
 adsorption. 

Exposure of AM HOPG to air for 1 h prior to electrochemical measurements produced a 

notable effect on the degree of adsorption. Representative voltammetry of such samples is 

shown in Figure 4.28. Thus for c0 = 0.25 mM, the amount of weakly adsorbed FcTMA
+
 

constituted Γrecov = 1.1 × 10
-10

 mol cm
-2

, which is almost twice the amount adsorbed on 

freshly cleaved AM HOPG. This could be attributed to the accumulation of FcTMA
+
 in 

(the layer of) airborne contaminating film at HOPG.
2,15,17,18

 Also, a small “hump” appeared 

at more driving potentials, suggesting the stripping of strongly adsorbed FcTMA
+
, the 

amount of which was estimated to be 1 × 10
-11

 mol cm
-2

. It appears that, under these 

conditions, the HOPG surface has places with different adsorption energies. This could be 

due to some non-uniformity of the contaminating film and/or delamination of the topmost 

layers, the significance of which for electrochemistry was established in our previous 

work.
18,19

 Although a range of techniques are routinely applied to understand the quality of 

HOPG surfaces,
2,15,17–19

 the adsorption of ferrocene derivatives could provide a simple 

probe of surface contamination, although extensive experiments would be needed to 

conclusively prove the link between surface contamination and ferrocene adsorption, 

above that for a pristine surface that we have mainly focused on for this paper (see also 

below). 
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Figure 4.28. CVs for the oxidation of 0.25 mM FcTMA
+
 in 1 M KCl at a sample of AM HOPG “aged” in air 

for 1 h. The scan rates were 0.1, 0.5 and 1 – 10 V s
-1

 (with increment of 1 V s
-1

).  

Although SPI-3 HOPG has much higher density of step edges than AM grade (by at 

least two orders of magnitude
18,97,103

), this had no effect on the degree of adsorption of 

FcTMA
+
 on a freshly cleaved surface. For 0.25 mM FcTMA

+
, the measured adsorption 

coverage was Γrecov = (5.5 ± 0.9) × 10
-11

 mol cm
-2

 at a freshly cleaved SPI-3 surface. 

Furthermore, this value was practically unchanged at a sample exposed to air for 12 h 

(Γrecov = 5.6 ± 0.6) × 10
-11

 mol cm
-2

).  

Two highly significant points can be made from these results. First, the adsorption of 

FcTMA
+
 on freshly cleaved (pristine) HOPG surface does not depend on the amount of 

step edges present. Indeed, the coverages on both AM and SPI-3 grades are the same 

within experimental error. This is in line with our previous work on the adsorption of 

anthraquinone-2,6-disulfonate.
97

 Second, the surface of SPI-3 grade HOPG appears less 

prone to the formation of airborne contaminating films, with fresh and “aged” surfaces 

exhibited the same degree of FcTMA
+
 adsorption. This behaviour may be due to the fact 

that SPI-3 grade HOPG is characterized by extremely short terrace widths (31% of surface 

being step edges
97

), which impedes the formation of continuous contaminant films. 
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Voltammetry of the other two ferrocene derivatives on freshly cleaved HOPG also 

indicated adsorption that is summarised in Table 4.3 along with FcTMA
+
 data. The data for 

FcCH2OH at the freshly cleaved AM HOPG suggest strong adsorption of the reduced 

molecular form, which is indicated by a very high current of the forward wave in CV 

measurements. A few key features can be extracted from these data without over-analysis. 

The shape of the forward waves due to adsorption can be made clearer by subtracting the 

computed diffusion CVs from the experimental ones as is done in Figure 4.29. The 

resulting current-potential difference plots have narrow peaks (the full width at half-

maximum for 1 V s
-1

 wave is ~ 30 mV compared to 90.6 mV for non-interacting redox-

active molecules in a monolayer, undergoing fast (reversible) electron transfer
33

).  This 

indicates some potential-dependent character of adsorption and/or attractive lateral 

interaction between the adsorbate molecules.
33

 The estimated charge under the forward 

profiles amounted to 5.5-7.0 μC cm
-2

, depending on the scan rate, which gives a Γrecov ~ 3.4 

× 10
-10

 mol cm
-2

. With the value for a monolayer of ferrocene rings estimated to be 4.6 × 

10
-10

 mol cm
-2

 (ref
93

) and the very approximate character of our value, we can say that 

adsorbed FcCH2OH forms almost a complete monolayer at HOPG for a bulk concentration 

of 0.25 mM. This is reasonable, given the zero charge of this species, and one may well 

expect higher adsorption as compared to single-charged FcTMA
+
 or FcCOO

-
. 
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Figure 4.29. a) Difference plot (Δi = itot - idiff): forward waves for 0.25 mM FcCH2OH at a freshly cleaved 

AM HOPG with a scan rate of 0.1, 0.5 and 1 – 10 V/s  (with increment of 1 V/s). The inset shows a full 

experimental CV (black) and a computed diffusional one (blue) for v = 1 V s
-1

. 

FcCOOH existing in solution mostly in ionised form under the experimental conditions 

used  herein (pKa of the Red form
116

 is 6.1) exhibited a voltammetric response typical for 

weakly adsorbed reactant. The value for surface concentration (Table 4.3) proved to be 

similar to FcTMA
+
 for the same bulk concentration (0.25 mM). Given the negative charge 

on FcCOO
-
 and that the potential of zero charge for graphite

30
 is ca. -0.24 V vs Ag/AgCl, 1 

M KCl, this suggests that coulombic effects between the electrode and ferrocene 

derivatives are not significant in determining the amount of adsorption of this species, and 

that intermolecular repulsion is more important, which limits the amount of adsorption of 

charged ferrocene derivatives compared to, for example, FcCH2OH. 

As mentioned in the introduction, adsorption phenomena can cause complications in the 

proper use of voltammetric standards and its consideration is essential in the interpretation 

of voltammetric data. Adsorption is not always obvious in macroscale CV measurements 

unless the scan rate is appropriately set, but may impact such voltammetric measurements 

in other situations. For example, a recent study
91

 on the ET kinetics and surface 

contamination effects, carried out with scanning electrochemical microscopy, did not 
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consider the adsorption of FcTMA
+
 on the HOPG used. Yet, its significance is clear and 

could have an important impact on the correct analysis of such data. 

Lastly, it is important to point out that recognition of the adsorption of ferrocene 

derivatives is important in the mechanistic interpretation of heterogeneous ET kinetics. 

Surface-confined ferrocenes are known to be able to exchange electrons with their solution 

counterparts:
117

 

1

ads solOx Red  z ze  

Thus, if a ferrocene molecule MOx sits on the surface (in Ox state) it can exchange an 

electron with another ferrocene molecule M′Red in the Red state from the solution and, thus, 

become MRed, i.e. ET between the electrode and solution species is mediated by the 

adsorbed species (see schematic in Figure 4.30). With ferrocene derivatives evidently 

adsorbing on carbon (HOPG) electrode surfaces, one cannot easily separate mediated from 

direct ET using standard voltammetric measurements and one must recognize that such a 

mechanism may occur, may even dominate, and its extent will be potential-dependent and 

in competition with conventional heterogeneous outer sphere ET between the electrode and 

solution species. The competition between these different pathways will also change as the 

surface coverage changes with potential. 
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Table 4.3. Adsorption of ferrocene derivatives at HOPG, c0 = 0.25 mM. 

Sample Mediator Γrecov / 10
-11

 mol cm
-2

 Number of replicates 

Fresh AM HOPG 

FcTMA
+
 6 ± 2 12 

FcCOO
-
 6 ± 1.1 10 

FcCH2OH 34 1 

    

AM HOPG aged for 1 h FcTMA
+
 11.0 ± 0.2 3 

Fresh SPI-3 HOPG FcTMA
+
 5.5 ± 0.9  3 

SPI-3 HOPG aged for 12 h FcTMA
+
 5.6 ± 0.6 4 

 

 

Figure 4.30. Schematic of mediated ET shows electron exchange between a molecule in the solution side and 

the one in adsorbed one. The latter undergoes ET with the electrode. 

4.4.9 Conclusions 

In this work, a simple methodology that allows the determination by cyclic voltammetry 

of the amount of weakly adsorbed redox species at an electrode has been developed and 

applied to the voltammetric study of adsorption of ferrocene derivatives on HOPG. 

Specifically, the difference in peak current of an experimental forward voltammetric wave 

and the peak current calculated based on diffusion-controlled redox reaction, serves as a 

measure of the amount of adsorbed reactant and is related to it through a well-known 

equation for surface-confined redox active species (eq 4.40 and 4.49). The applicability of 
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this methodology was investigated for the case of Langmuirian and Frumkin isotherms of 

adsorption. Low amount of adsorbed molecules, which can be achieved by keeping the 

bulk concentration of the adsorbate at a low level, was shown to impart the method with 

good practical precision for both types of the isotherms. However, if the system follows the 

Frumkin isotherm, the error is generally larger as compared to the Langmuir isotherm case 

under essentially the same conditions. The case of a potential-dependent equilibrium 

constant was also investigated. Unfortunately, the error can be very large even at low 

surface coverages and one cannot distinguish whether the system exhibits potential-

dependency of the equilibrium constant, or not, within the proposed methodology. 

The adsorption of three ferrocene derivatives has been studied on fresh and “air-aged” 

surfaces of two very different grades of HOPG. The freshly cleaved surface of AM grade 

HOPG adsorbs the reduced forms of ferrocene derivatives in the following order: FcTMA
+
 

~ FcCOO
-
 < FcCH2OH. The fact that both positively and negatively charged species 

adsorb to the same extent may suggest the co-adsorption of counteranions of the 

supporting electrolyte that somewhat screen the charge of the adsorbed species. An 

empirical adsorption isotherm of FcTMA
+
 on fresh surfaces of AM grade HOPG was 

found to have convex shape, suggesting possible attractive lateral interaction of this 

reactant in the adsorbed state. 

Adsorption of FcTMA
+
 on fresh AM grade HOPG and SPI-3 grade HOPG was found to 

be the same within experimental error for the bulk value of FcTMA
+
 c0 = 0.25 mM. The 

“aged” surface of AM grade HOPG demonstrated notably higher capacity (by about a 

factor of two) to weakly adsorb this redox molecule, along with a fraction of strongly 

adsorbed FcTMA
+
 - a feature absent on the fresh surface. This result may be understood in 

light of the formation of an air-borne contaminating film on the basal plane of AM grade 

HOPG that “traps” more of these redox molecules than the pristine surface. In contrast, 

“aged” SPI-3 grade HOPG did not manifest any increase in weakly adsorbed FcTMA
+
 or 
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any amount of strongly bound FcTMA
+
, tentatively suggesting that the SPI-3 surface is 

much less prone to the formation of contaminating films, although further work is needed 

to prove this idea. 

Lastly, we have outlined the importance and implications of considering the adsorption 

of ferrocene derivatives in studies of their ET kinetics at carbon electrodes. In one sense, 

the voltammetric response may well be influenced by the amount of adsorbed redox 

species, and if this is not recognized one may deduce incorrect physical parameters of the 

system. In another sense, adsorbed ferrocene derivatives can also mediate ET, which has to 

be recognized when analyzing data and deducing kinetic parameters. 

4.4.10 Auxiliary section: Testing the semi-integration approach 

The semi-integration approach for evaluating adsorption of electroactive species on an 

electrode, suggested in the literature,
112

 is based on several premises: i) concomitant 

adsorption of both the reduced and oxidized form during the sweep of the potential, ii) 

Nernstian (fast) electron transfer, iii) bulk concentration of redox species is low, and iv) 

adsorption is weak. This allowed the use of a simple expression for dΓ/dt by implementing 

the Nernstian process for surface-bound species in the equation for flux, which finally led 

to a simple formula (in the limit of t → ∞)  for the semi-integrated current, I  (eq 4.61; 

written with relevant  adaptations) as a function of time, known experimental parameters, 

and surface concentration.  

Red
0,Red Red( )

Γ
I nF c D

πt
   (4.61) 

When t → ∞ or, equivalently, t
-1/2

 → 0, ΓRed can be found from the slope of an I vs t
-1/2

 

plot. For a CV without adsorption, the slope should be zero and the intercept is 

0,Red RednFc D , which is indeed what one obtains from semi-integration of purely 

diffusional wave.
33
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We computed an LSV complicated by weak adsorption of only reactant (Red in our 

case), shown in Figure 4.31a, curve 1. The model parameters were given the following 

numerical values: DRed = 6.7 × 10
-6

 cm
2
 s

-1
, DOx = 6.2 × 10

-6
 cm

2
 s

-1
, c0 = 0.25 mM, k0 = 5 

cm s
-1

, α = 0.5, E
0
´ = 0.38 V, v = 1 V s

-1
, n = 1, Γmax = 5 × 10

-10
 mol cm

-2
, K0 = 735. This 

corresponds to initial coverage Γin = 5 × 10
-11

 mol cm
-2

 (10 % of a monolayer) and the 

effect of adsorption is fairly pronounced as can be appreciated by comparing this wave 

with the one uncomplicated by adsorption (curve 2; computed using the same parameters 

except for those relevant for adsorption). If we perform semi-integration as given by eq 

4.62 (ref
33

) 

0

1 ( )
t
j u

I du
π t u




  (4.62) 

where j is the current density, and plot I vs t
-1/2

 for both LSVs then the ensuing curves do 

show linear behaviour as expected from eq 4.61 but surface coverage recovered for the 

profile of I complicated by adsorption (curve 1 in Figure 4.31b) is 2.4 × 10
-10

 mol cm
-2

, 

which is ~5 times larger than the actual value used to create the simulated result. The value 

for DRed calculated from the intercept of purely diffusional I (curve 2 in Figure 4.31b) is 

6.86 × 10
-6

 cm
2
 s

-1
, which corresponds to an error of only 2.4%, showing that the procedure 

was performed correctly. 
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a b 

Figure 4.31. a) LSVs in the presence of reactant adsorption (curve 1) and without such (curve 2). b) Semi-

integrated current plotted vs t
-1/2

 for the curves shown in a. The straight lines correspond to a limiting 

behaviour of both semi-integrated curves (1: y = 49.8 + 13.3x; 2: y = 63.2 – 0.537x). 

4.4.11 Auxiliary section: Background currents 

As mentioned in the main text, background current in the absence of redox and surface 

active FcTMA
+
 differs appreciably from the one in pure electrolyte solution. This can be 

easily seen from the Figure 4.32 where the regions of the CVs before the beginning of the 

faradaic process in solutions with and without the redox mediator are compared. 

Significantly, the slopes of the non-faradaic regions on CVs with the redox molecule are 

different from, and steeper than, those in pure KCl. Clearly, the double layer capacitance 

depends on the potential and presence of the adsorbate and thus extrapolation of the 

background current from this non-faradaic region to the region where the faradaic current 

flows is not the most reliable procedure, but perhaps the only option to account for 

background/capacitative currents. 
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Figure 4.32. Forward wave of CVs in solutions containing 0.25 mM FcTMA
+
 (continuous lines) and 1 M 

KCl only (dashed lines) at scan rates of 0.1 (blue), 0.5 (yellow), 1 (green) and 2 V/s (red). 
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CHAPTER 5. CONCLUSIONS AND 

GENERALIZATIONS 

This thesis had two main unifying themes covering the kinetics of interfacial ET on 

graphene and graphite, on the one hand; and modelling, theorization for electrochemistry, 

on the other hand. Except for the chapter on oxygen reduction on Pt, which here serves as 

an example of application of numerical modelling, the two themes work together tightly in 

the other three projects. 

It is not an an exaggeration to say that SECCM imaging brought hitherto unattainable 

insights into electrochemical response of HOPG and graphene towards a number of outer-

sphere redox couples. An etalon of quality of graphene – a graphene obtained through 

mechanical exfoliation of HOPG – was accessed for measuring its electrochemical 

response towards reduction of Ru(NH3)6
3+

 with high spatial resolution for the first time, 

using this technique. The main messages from the imaging data were: i) significant 

enhancement of electrochemical current along some, not all, step edges, and ii) sluggish, 

on the time-scale of imaging experiment, kinetics of ET. That only some step edges 

appeared active on SECCM images was attributed to the presence of covering graphene 

layers that isolated some step edge from the direct contact with the meniscus, thus, making 

them “invisible” to the electrochemical microscope. 

Meticulous analysis of SECCM and AFM data led to the establishment of a quantitative 

correlation between the degree of the current enhancement and the height of step edges.  A 

simplified FEM model of SECCM enabled this correlation to be explained as resulting 

from the fact that higher (broader) step edge draws higher current through itself, being 
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effectively a more kinetically-capable electrode as compared to the surrounding basal 

plane. 

The same experiments also pointed at the possibility that graphene of different 

thicknesses has different rates of ET with the redox couple under discussion, with a 

monolayer being the slowest in this respect. However, this needs further experimental 

corroboration. Such vital observations on structure-activity relationships became possible 

owing to multilateral characterization of the same sample with complementary techniques 

like micro-Raman, AFM and optical microscopy.  

Imaging “aged” HOPG in fixed-potential mode, like ME graphene, using FcTMA
+
 and 

FcCOOH revealed no enhancement of current along step edges. Clearly, this indicates 

redox-sensitive character of electrochemical activity of “aged” HOPG and ME graphene 

towards outer-sphere couples. It should be stressed that the samples of ME graphene under 

discussion were also “aged” due to unavoidable time lapse between the exfoliation and the 

commencement of imaging.  

 Applying SECCM in CV/LSV mode corroborated what was observed on the fixed-

potential images of all three redox couples and gave invaluable experimental insight as to 

how current becomes enhanced in the case of the ruthenium complex, and remains at the 

level of its value on the basal plane in the case of the two ferrocene derivatives. 

Specifically, what appeared as enhancement on the fixed-potential images, presented itself 

as a shift of voltammetric wave towards less driving potentials when the meniscus included 

a step edge for the case of Ru(NH3)6
3+

, but no such a shift was observed for FcTMA
+
. 

Particularly puzzling was that the steady-state voltammograms appeared as fast in terms of 

their characteristic width (E3/4 – E1/4 ≈ 70 mV), but commenced notably more cathodically 

than expected for a close-to-reversible process, which means significant negative 

overpotential for reduction of Ru(NH3)6
3+

 – a picture quite contradictory to the classical 

presentation of a kinetically hindered reaction. 
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Sluggish ET on mono- and bilayer graphene and “aged” HOPG towards the reduction of 

Ru(NH3)6
3+/2+

, and the known decrease in the surface conductivity of HOPG with time 

(measured with C-AFM) were the main facts contributing to the development of theory of 

delamination of HOPG which states that the topmost layers of freshly cleaved HOPG 

spontaneously exfoliate with time, losing their coupling with the layers underneath and 

effectively becoming layers of graphene of different thicknesses on top of the HOPG 

block. In other words, the theory presents “aged” surface of HOPG as made up of graphene 

layers of different thickness and possibly some “survived” graphite. It has a great potential 

to logically explain all the experimental findings obtained so far. Fast, on the time scale of 

macroscopic CV (v = 10 V s
-1

), ET kinetics of Ru(NH3)6
3+/2+

 reduction observed on low 

grade HOPG such as SPI-3 grade HOPG, complies with the theory as well, for even if 

basal planes get decoupled, edges, that do not lose activity with time, support fast ET. 

Owing to abundance of step edges on the surface of this type of HOPG, the macroscopic 

voltammetry appeared as if the whole electrode were fully active. 

There is no doubt that this theory deserves earnest attention and further elaboration, 

which may assure its future success. However, it is important to bear in mind that more 

experimental evidence is needed for the possibility of the existence of graphene on top of 

HOPG as a result of spontaneous delamination of this material. Also, a foundational 

premise of this theory that kinetics of ET progressively diminishes from basal plane of 

graphite to monolayer  graphene, needs further experimental support as was mentioned 

above. 

Calculations performed in Section 4.1.6, based on the Gerischer-Marcus theory of ET, 

confirmed that kinetic current is to be higher on the step edge than on the basal plane for 

the case of Ru(NH3)6
3+/2+

  - a couple whose formal potential is close to the region of very 

low density of electronic energies in graphene (theoretically zero DOS). And the same 

calculations indicated little difference in that sense for FcTMA
2+/+

 - a couple whose formal 
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potential is fairly remote from the “critical” region of graphene. Since the DOS at intrinsic 

Fermi level is known to increase progressively from graphene to graphite (basal plane), 

support the main idea proposed. In this case, the positioning formal potentials of different 

redox couples relative to the minimal DOS of graphene should be able to predict relative 

rate of interfacial ET for these couples. Though such a diagram could be highly 

informative and, in the final analysis, may point in the right direction, one needs to bear in 

mind that band structure is not fixed on the energy scale and will adjust for a given couple 

by shifting as a whole due to acquired charge (potential) and filling/emptying levels of 

electronic energy (for low DOS material like graphene), bringing the Fermi level of the 

electrode to that of redox electrons (in the case of equilibrium). This shift will, to greater or 

smaller extent, defy the (original) difference between the Dirac point and the formal 

potential as depicted by the diagram (see Section 4.1.6). With this in mind, one can 

imagine that the step edge state (the defect state) with its elevated DOS will respond 

differently when equilibrating with a redox couple in solution and to the change of the 

potential between the solution and the electrode phases, with the edge state exhibiting more 

metal-like character and storing the greater part of applied potential difference at the 

interface whereas graphene basal plane would store more or less greater part of this 

potential as a band filling potential. Such a possibility may be considered for explaining 

the observed shift in the voltammograms of reduction of Ru(NH3)6
3+

 on “aged” HOPG. 

Macroscopic CV of freshly cleaved HOPG, presented in this thesis, confirmed (again) 

that this low DOS material is, at least, as fast as some metals in terms of rate of interfacial 

ET. The k0 values in excess of 0.1 cm s
-1

 for Ru(NH3)6
3+/2+

 and 1.7 cm s
-1

 for IrCl6
2-/3-

 and 

Fe(CN)6
3-/4-

 were obtained. This kinetics exceeds previously reported values for Fe(CN)6
3-

/4-
 by 6-9 orders of magnitude. With graphite’s DOS at Fermi level being 1-2 orders of 

magnitude less than that of metals, the importance of DOS for ET kinetics with outer-

sphere redox couples ought to be re-considered. 
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Macroscopic CV indicated that the reduced form of the three investigated ferrocene 

derivatives adsorbed on HOPG in the following order: FcTMA
+
 ≈ FcCOO

-
 < FcCH2OH, 

with the first two compounds exhibiting weak adsorption with fractional coverage ~ 10% 

of a monolayer at the bulk concentration of 0.25 mM. That both positively and negatively 

charged ions adsorb to approximately the same extent suggest that the charge, at least in 

the lateral directions, is screened, which could be due to co-adsorption of counterions from 

solution. Significantly, adsorption studies also indicated that the surface of HOPG 

undergoes changes with time. Thus, the coverage of FcTMA
+
 on “aged” surface of AM 

grade HOPG is approximately double that of the fresh surface. In contrast, SPI-3 grade 

HOPG exhibited the same degree of adsorption irrespective of the time after exfoliation. 

This is somewhat reminiscent of voltammetry of Ru(NH3)6
3+/2+

 on these types of HOPG. It 

is possible that the same factor or phenomenon that makes it appear slow and distorted on 

“aged” surface, is responsible for the increased adsorption. One such factor could be an 

airborne contaminating film that is known to form on graphite surfaces and is made up of 

polyaromatic hydrocarbons. The fact that SPI-3 grade is immune to the effects of “aging”, 

at least based on the data gathered herein, in both aspects – voltammetry and adsorption – 

could be tentatively attributed to the fact that its surface remains cleaner, being made of 

multiple irregularities unlike highly flat surface of high grade HOPG that facilitates the 

formation of condensed films. 

The adsorption was quantified with the help of a dedicated model developed in this 

study. The great advantage of the model is that it enables the determination of the amount 

adsorbed redox species based on an easily obtainable parameter – the peak current 

difference between measured current and theoretical diffusion-controlled current under the 

same conditions. A plot of this quantity vs scan rate yields a straight line with the slope 

depending on known experimental parameters and surface coverage. This makes the 

measurement of weak adsorption a simple task. Two isotherms of adsorption were 
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explored and the limits of applicability of the model were established for each type of 

isotherm. In particular, with the system following the Langmuir isotherm, the recovery of 

the surface coverage was very reliable up to ~70% coverage. Recovery of the surface 

coverage in the case of Frumkin isotherm is more complicated, but generally is also 

reliable before the inflexion point (low coverages) on the isotherms with negative lateral 

interaction. Thus, carefully performed CV experiment should provide quite accurate 

quantitative information on the reactant adsorption at an electrode. 

Additional analysis of the case complicated by potential-dependency of the equilibrium 

constant of adsorption (the system follows Langmuir isotherm), demonstrated that the error 

in estimation of surface coverage can be very high, which makes then the approach 

inapplicable. Unfortunately, it is not possible to establish, based on the peak current 

difference data alone, whether the equilibrium constant depends or not on the applied 

potential. Additional information (experimental or theoretical) would be needed to rule out 

this complication for a given system if the model is desired to be applied for analysis. 

The analysis presented for the case of Frumkin isotherm showed the limits of 

applicability of the main equation used in analysis – the equation relating peak current 

difference to scan rate and coverage (eq 4.40, Section 4.4.6). The strength of this analytical 

approach lies in its generality as the error in recovery of the surface coverage was mapped 

vs the only two independent parameters of the system. However, this analysis, strictly 

speaking, does not entirely substitute numerical analysis, which, albeit lacking this 

generality, could in some cases establish the total error in recovery of surface coverage as 

was done for the case of Langmuirian isotherm. This is quite a subtle concept, but can be 

readily understood upon examining the error plot (Figure 4.24, Section 4.4.6). For g = 0 

(Frumkin isotherm is reduced to Langmuir isotherm) the error is zero for any C, which 

cannot be based on the analysis of Langmuir case. However, using the same precautions as 

elaborated for the Langmuir case, the equation in question (eq 4.40) should hold and 
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therefore, the mapped error would be the total one. Lastly, it would be quite desirable to 

extend the model by considering other types of isotherms (Freundlich, Temkin), which can 

become the subject of further theoretical development. 

With the help of numerical modelling of SECCM experiment on oxygen reduction on 

Pt, it was shown that the presence of three-phase boundary enhanced the reaction rate by 2-

3 times owing to much higher flux of oxygen through it. Also, modelling revealed approx 

5 times depletion in concentration of H
+
 near the electrode due to high rate of the reaction. 

This finding should be considered in designing fuel cells as lowering pH leads to switching 

on a different reaction mechanism on Pt, involving the undesirable formation of peroxide 

species. However, the extent of depletion could be somewhat overestimated in this first-

approximation model as the additional dissociation of HSO4
-
 in a response to the drop in 

pH was not account for in that model. 

Numerical modelling enabled to estimate the efficiency of grafting diazonium radicals 

onto HOPG surface. Although the model of this process, in principle, had been developed 

before, the approach used here (solving boundary value problem) permitted to address the 

inverse problem. Not surprisingly, as with other ill-posed problems, there was no unique 

solution, however, this did not prevent the task of finding the grafting efficiency. There 

was a multitude of combination of parameters (specifically, two rate constants) that gave 

equally good fit to the experimental data. However, the grafting efficiency was recovered 

from these data due to a known relationship between the grafting efficiency and the 

parameters. It would be desirable to vary experimental parameters (like bulk concentration 

of the diazonium salt, scan rate) and obtain information on the factors determining the 

efficiency in more detail. 

The last example of theoretical development was the investigation of ohmic loss of 

potential in the droplet-cell. It was shown that such arrangement, although extremely 

convenient and practically indispensible in some cases, is prone to the deleterious effects 
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of ohmic losses. The main reason is that counter electrode is extremely close to the 

reference electrode – unlike classical electrochemical cells whose design places counter 

electrode at a significant distance. Recommended measures to mitigate the effect were 

quite standard: to increase solution conductivity, to use coated reference electrode instead 

of bare wire, and, finally, to keep reference electrode as close as possible to the working 

one. However, complete elimination of ohmic losses is difficult to guarantee and its 

possible influence on kinetic measurements by means of cyclic voltammetry should not be 

ignored. 
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