

warwick.ac.uk/lib-publications

Original citation:
Lozin, Vadim V. (2016) From matchings to independent sets. Discrete Applied Mathematics.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78744

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42621713?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/78744
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:wrap@warwick.ac.uk

From matchings to independent sets

Vadim Lozin

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK.

Abstract

In 1965, Jack Edmonds proposed his celebrated polynomial-time algorithm to find a
maximum matching in a graph. It is well-known that finding a maximum matching in G
is equivalent to finding a maximum independent set in the line graph of G. For general
graphs, the maximum independent set problem is NP-hard. What makes this problem easy
in the class of line graphs and what other restrictions can lead to an efficient solution of
the problem? In the present paper, we analyze these and related questions. We also review
various techniques that may lead to efficient algorithms for the maximum independent
set problem in restricted graph families, with a focus given to augmenting graphs and
graph transformations. Both techniques have been used in the solution of Edmonds to the
maximum matching problem, i.e. in the solution to the maximum independent set problem
in the class of line graphs. We survey various results that exploit these techniques beyond
the line graphs.

Keywords: maximum matching; maximum independent set; polynomial algorithm

1 Introduction

In a graph, a matching is a set of edges no two of which share a vertex. The maximum
matching problem asks to find in a graph a matching of maximum size. The key idea to
solve the problem was proposed in 1957 by Claude Berge [9] who showed that a matching M
in a graph G is maximum if and only if G contains no augmenting path with respect to M .
However, the question of the complexity of finding augmenting paths remained open until 1965,
when Jack Edmonds proposed a polynomial-time algorithm to solve this problem [14]. Lovász
and Plummer in their book “Matching Theory” refer to the solution of Edmonds as “one of
the most involved of combinatorial algorithms” [28].

The maximum matching problem is a special case of a more general problem, known as
maximum independent set. In a graph, an independent set is a set of vertices no two of
which are adjacent, and the maximum independent set problem is the problem of finding in
a graph an independent set of maximum size. A relationship between the two problems can be
established through the notion of line graph. The line graph of a graph G, denoted L(G), is the
graph whose vertices represent the edges of G with two vertices being adjacent if and only if
the corresponding edges of G share a vertex. Therefore, a set of vertices of L(G) is independent
if and only if the corresponding edges of G form a matching. This correspondence between the
two problems together with the matching algorithm of Edmonds show that finding a maximum

1

independent set in a line graph is a polynomially solvable task. On the other hand, for general
graphs the maximum independent set problem is known to be NP-hard.

What makes the maximum independent set problem easy in the class of line graphs and
what other restrictions can lead to an efficient solution for this problem? We analyze these
and related questions in Section 3. Then in Section 4 we review various techniques that may
lead to efficient algorithms for the maximum independent set problem in restricted graph
families, with a focus given to augmenting graphs and graph transformations. Both techniques
have been used in the solution of Edmonds to the maximum matching problem, i.e. in the
solution to the maximum independent set problem in the class of line graphs. We survey
various results that exploit these techniques beyond the line graphs.

We start our journey to the maximum independent set problem in Section 2 with some
preliminary information and conclude it in Section 5 with a number of open questions.

2 Preliminaries

In this section, we introduce basic definitions and notation used in the paper and present some
information about the maximum independent set problem and about hereditary classes of
graphs.

2.1 Definitions and notation

Given a graphG, we denote by V (G) and E(G) the vertex set and the edge set ofG, respectively.
The neighbourhood N(x) of a vertex x ∈ V (G) is the set of vertices adjacent to x and the degree
of x is the size of its neighbourhood. Graphs all of whose vertices have degree 3 are known as
cubic and graphs of vertex degree at most 3 are known as subcubic.

If U ⊂ V (G), then G[U] is the subgraph of G induced by U , i.e. the graph with vertex set
U in which two vertices are adjacent if and only if they are adjacent in G. Also, N(U) is the
neighbourhood of U , i.e. the set of vertices outside of U that have at least one neighbour in U .

As usual, Cn, Pn and Kn denote the chordless cycle, the chordless path and the complete
graph with n vertices, respectively. Also, Kn,m denotes the complete bipartite graph with parts
of size n and m. The graph K1,3 is known in the literature as the claw. For two graphs G and
H, we denote by G+H their disjoint union. Also, mG is the disjoint union of m copies of G.

A clique in a graph is a set of pairwise adjacent vertices. In other words, a set U ⊆ V (G)
is a clique in G if and only if U is an independent set in the complement of G. The size of a
maximum clique in G is called the clique number of G.

A vertex cover in G is a subset of vertices containing at least one endpoint of each edge of the
graph. Clearly, U ⊆ V (G) is a vertex cover if and only if V (G)−U is an independent set. The
size of a minimum vertex cover in G is denoted τ(G) and the size of a maximum independent set,
known as the independence number of G, is denoted α(G). Therefore, τ(G) + α(G) = |V (G)|.

The subdivision of an edge is the operation of introducing a new vertex on the edge.

2

2.2 The maximum independent set problem

Finding a maximum independent set in a graph is one of the central problems of combinatorial
optimization and theoretical computer science with numerous applications and various connec-
tions to other problems. For instance, as we mentioned already, maximum clique, minimum
vertex cover, maximum matching admit easy reductions to maximum independent set.
Also, finding a maximum induced matching (also known as a 1-regular graph) in G is equiva-
lent to finding a maximum independent set in the square of the line graph of G. In addition,
in [13] it was shown that the weighted version of the maximum independent set problem,
also known as vertex packing, is equivalent to maximizing a pseudo-Boolean function, i.e.
a real-valued function with Boolean variables. Notice that pseudo-Boolean optimization is a
general framework for a variety of problems of combinatorial optimization such as MAX-SAT
or MAX-CUT [10].

Among various applications of the maximum independent set problem we distinguish
two examples. The origin of the first one is the area of computer vision and pattern recognition,
where one of the central problems is the matching of relational structures. In graph theoretical
terminology, this is the graph isomorphism, or more generally, maximum common sub-
graph problem. It reduces to the maximum clique problem by associating with a pair of
graphs G1 = (V1, E1) and G2 = (V2, E2) a special graph G = (V,E) (known as the association
graph [32]) with vertex set V = V1 × V2 so that two vertices (i, j) ∈ V and (k, l) ∈ V are
adjacent in G if and only if i 6= k, j 6= l and ik ∈ E1 ⇔ jl ∈ E2. Then a maximum common
subgraph of the graphs G1 and G2 corresponds to a maximum clique in G and hence to a
maximum independent set in the complement of G.

Another example comes from information theory. The graph theoretical model arising here
can be roughly described as follows. An information source sends messages in the alphabet
X = {x1, x2, . . . , xn}. Along the transmission some symbols of X can be changed to others
because of random noise. Let G be a graph with V (G) = X and xixj ∈ E(G) if and only
if xi and xj can be interchanged during the transmission. Then a noise-resistant code should
consist of the symbols of X that constitute an independent set in G. Therefore, a largest
noise-resistant code corresponds to a largest independent set in G.

As we mentioned earlier, computationally the maximum independent set problem is
difficult, i.e. it is NP-hard. This motivates looking at restricted versions of the problem, such
as finding an approximate solution or solving the problem for graphs in particular classes. In
the present paper, we focus on the second issue. All classes studied here are hereditary. A brief
overview of this notion is given in the next section.

2.3 Hereditary classes of graphs

A class X of graphs is hereditary if it is closed under taking induced subgraphs. In other
words, X is hereditary if G ∈ X implies G− v ∈ X for every vertex v ∈ V (G). The family of
hereditary classes includes many classes of theoretical or practical importance, such as planar
graphs, perfect graphs, line graphs, etc. Many important classes that are not hereditary have
natural hereditary extensions. For instance, the minimal hereditary extension of the set of
trees consists of all forests, i.e. graphs without cycles, and the minimal hereditary extension of

3

the cubic graphs consists of all subcubic graphs.
An important feature of hereditary (and only hereditary) classes is that they admit so called

induced subgraph characterizations. To make things more precise, let us denote by

Free(M) the class of all graphs containing no induced subgraphs from the set M .

It is not difficult to see that a class X is hereditary if and only if X = Free(M) for a set M , in
which case graphs in M are called forbidden induced subgraphs for the class X. In general, all
graphs that are not in X are forbidden induced subgraphs for X. However, to describe X it
is sufficient to indicate only minimal forbidden induced subgraphs. It is known that for every
hereditary class the set of minimal forbidden induced subgraphs is unique. For instance, for
the class of forests this set consists of all chordless cycles.

Of particular interest in this paper are classes defined by finitely many forbidden induced
subgraphs. We call such classes finitely defined. If M consists of a single graph, then the class
Free(M) is called monogenic. Examples of finitely defined classes include subcubic graphs and
line graphs. For the class of subcubic graphs, the set of minimal forbidden induced subgraphs
consists of 11 graphs and for the class of line graphs the set of minimal forbidden induced
subgraphs consists of 9 graphs [8]. It is an easy exercise to verify that one of the minimal
non-line graphs is the claw.

The induced subgraph characterization of hereditary classes provides a uniform tool to
describe them, and hence, a systematic way to study various problems on hereditary classes.
In the next section, we study the maximum independent set problem.

3 The maximum independent set problem on hereditary classes
of graphs

Being NP-hard in general, the maximum independent set problem remains difficult under
substantial restrictions, for instance for triangle-free, subcubic or planar graphs. On the other
hand, for graphs in some particular classes the problem admits polynomial-time solutions. One
of the most remarkable results of this type is the matching algorithm that solves the maximum
independent set problem in the class of line graphs. This solution raises the following natural
question.

3.1 What makes the maximum independent set problem easy in the class
of line graphs?

We claim that the answer to this question is the claw-freeness of line graphs. Indeed, if we
remove the claw from the set of minimal non-line graphs, we obtain a class containing all
triangle-free graphs (since each of the remaining minimal non-line graphs contains a triangle),
where the problem is known to be NP-hard (see e.g. [31]). Therefore, the claw-freeness is a
necessary condition for polynomial-time solvability of the problem in the case of line graphs.
On the other hand, this condition is also sufficient, because by forbidding the claw alone we
obtain a class where the problem can be solved in polynomial time, which was proved by
Minty [29] and Sbihi [33] independently of each other. This discussion explains what makes the

4

maximum independent set problem easy in the class of line graphs, but it does not explain
why.

3.2 Why the claw and what other restrictions can make the problem easy?

To answer these questions, we need to recall a couple of facts about the complexity of the
maximum independent set problem in particular classes of graphs.

Fact 1. The maximum independent set problem is NP-hard for graphs of vertex degree at
most 3.

Fact 2. A double subdivision of an edge increases the independence number of the graph by
exactly 1.

Both facts are well-known. However, what is less known is that both of them can be derived
from the same argument proposed by Alekseev in [2]. To explain this argument, let us introduce
the following operation.

Definition 1. For a graph G and a vertex x ∈ V (G), vertex splitting is a transformation shown
in Figure 1, where Y ∪ Z is an arbitrary partition of the neighbourhood of x into two subsets,
and y and z are new vertices.

�� ��Y
�� ��Z

�� ��Y
�� ��Z

b b bb
L
L
L
L
LL

�
�
�
�
��

�
�

�
�
�

@
@
@
@
@

�
�
�
�
�
�

D
D
D
D
D
D

�
�
�
�
��

L
L
L
L
LL

G G′

x y x z

−→

Figure 1: Vertex splitting

The importance of this operation is due to the following claim, which is easy to see.

Claim 1. If G′ is a graph obtained from a graph G by vertex splitting, then α(G) = α(G′)− 1.

If x is a vertex of degree more than 3 in a graph G, then the application of vertex splitting
with |Y | = 2 and Z = N(x) − Y replaces x with three new vertices each of which has degree
less than the degree of x. Repeated applications of this operation allow us to transform G into
a graph of degree at most 3. Clearly, this transformation can be implemented in polynomial
time, which shows Fact 1. Also, it is not difficult to see that the application of vertex splitting
with |Y | = 1 is equivalent to a double subdivision of an edge incident to x, which shows Fact 2.
From these two facts we derive the following natural conclusion.

5

Proposition 1. For every fixed k, the maximum independent set problem restricted to the
class of (C3, C4, . . . , Ck)-free graphs of vertex degree at most 3 is NP-hard.

Indeed, if a graph G of vertex degree at most 3 contains short cycles (i.e. cycles of length at
most k), then by subdividing the edges of these cycles we can reduce the problem (in polynomial
time) to a graph without short cycles. This simple fact was observed by many researchers
including, for instance, Murphy [31]. What was not observed by Murphy and by many other
researchers is that with the very same transformation we can get rid of small induced copies of
the graph Hk represented in Figure 2. This observation allows us to strengthen Proposition 1
as follows.

b b b ` ` ` b b
b

b

b

b
1 2 k

Figure 2: Graph Hk

Proposition 2. For every fixed k, the maximum independent set problem restricted to the
class of (C3, C4, . . . , Ck, H1, H2, . . . ,Hk)-free graphs of vertex degree at most 3 is NP-hard.

Let us denote by

Sk the class of (C3, C4, . . . , Ck, H1, H2, . . . ,Hk)-free graphs of vertex degree at most 3.

This defines an infinite sequence of graph classes S3 ⊃ S4 ⊃ . . . ⊃ Sk ⊃ . . ., and by
Proposition 2, the maximum independent set problem is NP-hard in each class of this
sequence. Throughout the paper, we denote by

S the intersection of all classes of the sequence S3 ⊃ S4 ⊃ . . . ⊃ Sk ⊃

We will say that the sequence S3 ⊃ S4 ⊃ . . . ⊃ Sk ⊃ . . . converges to S and that S is the limit
class of the sequence.

It is not difficult to see that any graph G either belongs to all classes of the sequence
converging to S, in which case it belongs to S, or to at most finitely many (possibly to no)
classes of this sequence. Therefore:

Proposition 3. If X = Free(M) is a finitely defined class of graphs containing S, then the
maximum independent set problem is NP-hard in X.

Indeed, if X = Free(M) contains S, then none of the graphs in M belongs to S. Therefore,
if M is finite, then graphs in M belong to at most finitely many classes of the sequence
converging to S and hence there must exist a class Sk contained in X, in which case the
problem is NP-hard in X by Proposition 2.

6

The same is true for any other limit class, i.e. for the limit of any other sequence of graph
classes in each of which the problem is NP-hard. Therefore, to solve the problem efficiently
in a finitely defined class, one needs to destroy (to forbid at least one graph from) each limit
class. In other words, limit classes play the role of “forbidden elements” for the family of
finitely defined classes with polynomial-time solvable independent set problem. Similarly to
the induced subgraph characterization of hereditary classes, only minimal limit classes are of
interest, which justifies the following definition introduced in [3].

Definition 2. A minimal limit class is called a boundary class.

The importance of this notion for the maximum independent set problem is due to the
following theorem.

Theorem 1. Unless P = NP , the maximum independent set problem can be solved in
polynomial time in the class defined by a finite set M of forbidden induced subgraphs if and
only if Free(M) contains none of the boundary classes (or equivalently, M contains at least
one graph from each of the boundary classes).

This theorem was proved by Alekseev in [3]. Moreover, in the same paper Alekseev proved
that the class S is a minimal limit class, i.e. a boundary class for the problem.

From Theorem 1 it follows, in particular, that the problem can be solved in polynomial
time in a finitely defined class Free(M) only if M contains at least one graph from the class
S. This motivates us to look at the structure of graphs in the class S.

Let us repeat that S is the limit of the sequence S3 ⊃ S4 ⊃ . . . ⊃ Sk ⊃ Since Sk does
not contain cycles of length up to k, the limit contains no cycles at all. Therefore, S is a class
of forests. Since each class in the sequence converging to S contains graphs of vertex degree
at most 3, S is a class of forests of vertex degree at most 3. Finally, the limit contains no
graphs of the form Hk, and hence every connected graph in S has at most one vertex of degree
3. Therefore, S is the class of graphs every connected component of which has the form Si,j,k
represented in Figure 3.

bb
bb
b
`̀̀
bbbb ``` ��

�

b b b b` ` `HH

H

1

2

i−1
i

1
2

j−1
j

1
2

k−1
k

Figure 3: The graph Si,j,k

One of the smallest non-trivial graphs of this form is S1,1,1, i.e. the claw. This explains
what is so special about the claw as a forbidden subgraph. Namely, it belongs to the boundary
class S. In the case of finitely many forbidden induced subgraphs, excluding a graph from S is

7

a necessary condition for polynomial-time solvability of the problem. Whether this necessary
condition is sufficient is a big open question, and an answer to this question depends on whether
the class S is the only boundary class for the problem. We conjecture that

Conjecture 1. The class S is the unique boundary class for the maximum independent set
problem.

To prove this conjecture, one has to show that by forbidding any graph from S we obtain
a class where the problem is polynomial-time solvable. Up to date, this was verified only for
a few graphs in S, the claw being one of them. But the class of claw-free graphs is not a
maximal monogenic class, where the problem admits a polynomial-time solution. The result
for claw-free graphs was generalized in a number of ways and below we present the most recent
list of all maximal monogenic classes, where the maximum independent set problem can be
solved in polynomial-time.

3.3 Maximal monogenic classes with polynomial-time solvable independent
set problem

Before we present the list, let us make the following observation. It is not difficult to see that
if the maximum independent set problem can be solved in polynomial time in a monogenic
class Free(G), then it also admits a polynomial-time solution in the class Free(G+K1). There-
fore, any monogenic class Free(G) can be trivially extended to a larger class by adding isolated
vertices to G. Taking into account this observation, in what follows, we avoid monogenic classes
where the only forbidden induced subgraph contains isolated vertices.

3.3.1 S1,1,2-free graphs

The first non-trivial extension of the solution for claw-free graphs was proposed by Alekseev
in [4]. It deals with the class of S1,1,2-free (also known as fork-free or chair-free) graphs.
What is important is that the solution of Alekseev generalizes not only the class but also the
technique. Similarly to the claw-free and line graphs, Alekseev exploits the idea of augmenting
graphs, but he goes beyond augmenting paths. He identifies other augmenting graphs in the
class Free(S1,1,2) and shows how to find them in polynomial time.

In addition to claw-free graphs, the class Free(S1,1,2) extends another important monogenic
class, where the maximum independent set was known to be solvable in polynomial time,
namely, P4-free graphs. Also, the solution of Alekseev generalizes polynomial-time algorithms
for some non-monogenic subclasses of S1,1,2-free graph, such as (chair, bull)-free graphs [11].

An entirely different approach to the problem in the class of S1,1,2-free graphs was proposed
in [25]. It solves the problem in the more general setting where the vertices of the input graph
are equipped with weights and the problem asks to find an independent set of maximum total
weight.

3.3.2 S0,2,2-free graphs

It is not difficult to see that S0,2,2 is a P5. Therefore, the S0,2,2-free graphs are precisely the
P5-free graphs. The class of P5-free graphs does not generalize the claw-free graphs, but for

8

several decades the complexity of the maximum independent set problem in this class was an
open problem. Moreover, P5 was the only minimal connected graph G such that the complexity
of the problem in the class Free(G) was open. It was solved for P5-free graphs in [22]. This
solution was preceded by numerous partial results dealing with subclasses of P5-free graphs.
One of them is the class 2K2-free graphs, where the problem was solved by Farber [16]. Later
Farber’s solution was extended to a more general class, which is the subject of the next section.

3.3.3 mS1,0,0-free graphs

In more convenient notation, this is the class of mK2-free graphs, where m is a fixed constant.
A solution to the maximum independent set problem for mK2-free graphs is based on two
results. First, graphs in this class have only polynomially many maximal (with respect to set
inclusion) independent sets [7], and second, all of them can be enumerated in polynomial time
[34].

3.3.4 S1,1,1 + S1,0,0-free graphs

The graph S1,1,1+S1,0,0 is another extension of the claw and hence the class of S1,1,1+S1,0,0-free
graphs is one more extension of the class of claw-free graph. In this class, the problem was
solved in [26].

3.3.5 2S1,1,0-free graphs

For 2S1,1,0-free (or 2P3-free) graphs a solution to the maximum independent set problem was
proposed in [27]. With a simple induction (not described in [27]) this solution can be extended
to mP3-free graphs for any value of m, generalizing both 2P3-free and mK2-free graphs.

3.3.6 What is next?

There are several minimal monogenic classes of graphs for which the complexity of the problem
is open. These are S1,2,2-free graphs, S1,1,3-free graphs, P4 +P2-free graphs and P6-free graphs.
The first two classes are of special interest, because they extend simultaneously two monogenic
classes with polynomial-time solvable independent set problem, namely, the fork-free and P5-
free graphs.

4 Algorithmic techniques for the maximum independent set
problem

The celebrated solution of the maximum matching problem includes two main ingredients:
augmenting paths and cycle shrinking. The first of them is a special case of the general approach
to solve the maximum independent set problem known as augmenting graphs. We review
basic results related to this notion in Section 4.1.

Cycle shrinking is a graph transformation that applies to certain cycles of odd length 2k+1
and reduces the size of a maximum matching by exactly k. Various other helpful reductions

9

for the maximum independent set problem can be found in the literature. We review many
them in Section 4.2.

4.1 Augmenting graphs

Let G be a graph, S an independent set in G and R = V (G) − S. We say that the vertices
in S are white and the vertices in R are black. Consider two subsets W ⊆ S and B ⊆ R.
Note that W is an independent set. If B also is an independent set such that |B| > |W | and
N(B)∩ S ⊆W , then we say that the bipartite graph H = G[W ∪B] is augmenting for the set
S.

Clearly, if G contains an augmenting graph H = G[W ∪B] for S, then S is not maximum,
because T := (S −W) ∪ B is an independent set larger than S, in which case we say that
T is obtained from S by H-augmentation. On the other hand, if S is not maximum and T
is a larger independent set, then the bipartite subgraph of G induced by T − S and S − T is
augmenting for S. This discussion leads to the following well-known result.

Theorem 2 (Augmenting Graph Theorem). An independent set S in a graph G is maximum
if and only if there are no augmenting graphs for S.

This theorem suggests the following general approach to find a maximum independent set in
a graph G: begin with any independent set S in G and as long as S admits an augmenting graph
H, apply H-augmentations to S. Unfortunately, the problem of finding augmenting graphs is
generally NP-hard, as the maximum independent set problem is NP-hard. However, for
graphs in some special classes this approach can lead to polynomial-time algorithms.

Example. Consider, for instance, the class of claw-free graphs. By definition, every
augmenting graph is bipartite. Clearly, bipartite claw-free graphs have vertex degree
at most 2. Therefore, every connected claw-free bipartite graph is either a path or an
even cycle. Even cycles can never be augmenting, since they have equally many black
and white vertices. For the same reason, paths with an even number of vertices cannot
be augmenting. Therefore, every connected claw-free augmenting graph is a path Pk

with odd k. Since the line graph of Pk is Pk−1, we conclude that the Augmenting
Graph Theorem restricted to the class of line graphs coincides with Berge’s Lemma on
augmenting paths.

The above example shows that the structure of augmenting graphs in a particular class can
be rather simple. However, the problem of finding (detecting) augmenting graphs is generally
far from being trivial even for graphs of simple structure. As we mentioned earlier, in the case
of augmenting paths, this problem was first solved in 1965 by Edmonds, but only within the
class of line graphs. Later, in 1980, this solution was extended to claw-free graphs by Minty
and Sbihi. Much later, in 2006, a polynomial-time algorithm for detecting augmenting paths
was developed for S1,2,3-free graphs [19]. This class provides a vast generalization of claw-
free graphs, but the algorithm for detecting augmenting paths does not solve the maximum
independent set problem for S1,2,3-free graphs, because this class contains other types of
augmenting graphs.

10

u
e
u
e
u
e
u
�

�
�

@
@
@

�
�
�

. . .

. . .

T1

u
e
u
e
u
e
u
@
@
@

�
�
�

�
�
�

. . .

. . .

e
u
e
u
e
u

ue@
@
@

�
�
�

B
B
B

. . .

. . .

T2

u
e
u
e
u
e

. . .

. . .

u
e
u
e
u
e

. . .

. . .

u
e
u
e
u
e

. . .

. . .

. . .

. . .

��
���

���
���

�
�
�
�
��

B
B
B
B
BB

,
,

,
,

,
,,

"
"

"
"

"
"
"

"
""

HH
HHH

HHH
HHH

Q
Q
Q
Q
Q
Q
Q
Q

l
l
l
l
l
ll

u

e
u

e
u

@
@
@

L
LL

�
�
�

e
e
e

B
B
B

%
%
%

T3

u
e
u
e
u
e

. . .

. . .

u
e

u
e
u
e

u
e
u
e

u
e

. . .

. . .

. . .

. . .

u������� �
����

�
��

PPPPPPP

Z
Z
ZZ

A
AA

T4

e
u
e
u
e
u
e
u
e
u
e
u
e
u

. . .

. . .

. . .

. . .

e
HHH

HHH
HH

Q
Q
Q
Q
QQ

A
A
A
A

�
�
�
�

�
�
�

�
��

���
���

��

u u
�

�
��

Z
Z
ZZ

J
J
J

�
�

��

Z
Z
ZZ

J
J
J

T5

u
e
u
e
u
e
u
�

�
�

@
@
@

�
�
�

. . .

. . .

e
u
e
u
e
u
e

�
�
�

@
@
@

�
�
�

@
@
@

�
�
�

B
B
B

. . .

. . .

u@@@ �
�
�

B
B
B

T6

Figure 4: Some augmenting graphs

It is important to emphasize that augmenting paths constitute just one particular family
of augmenting graphs. However, for several decades, since the solution of Edmonds, the idea
of augmenting graphs did not see any development beyond augmenting paths. A breakthrough
result was obtained in 1999 by Alekseev, who applied the idea of augmenting graphs to solve
the problem for S1,1,2-free graphs [4]. This result generalizes the solution of Minty and Sbihi
for claw-free graphs (and hence the matching algorithm of Edmonds). But most importantly,
it generalizes the technique. Alekseev showed that the class of S1,1,2-free graphs contains
two types of augmenting graphs (augmenting paths and so called complexes) and proposed
polynomial-time algorithms to detect both of them.

One more type of augmenting graphs was discovered by Mosca [30], also in 1999. These
are the graphs obtained from a star K1,s by subdividing each edge exactly once (the graph
T1 in Figure 4). Mosca called them simple augmenting trees and showed that this is the only
family of augmenting graphs containing neither P6 nor C4. He also proposed a polynomial-time
algorithm for detecting simple augmenting trees within (P6, C4)-free graphs, thus solving the
maximum independent set problem for (P6, C4)-free graphs.

Since 1999, many more types of augmenting graphs have been discovered in the literature

11

(some of them are represented in Figure 4) and the augmenting graph technique has been
repeatedly applied to solve the maximum independent set problem in particular classes of
graphs (see e.g. [5, 24]). Still, the area of augmenting graphs remains largely unexplored and its
potential is far from being exhausted. We conclude this section with a couple of open questions
in this area.

Question 1. Characterize the structure of S1,2,2-free and S1,1,3-free augmenting graphs.

We repeat that the complexity of the maximum independent set problem in the classes
of S1,2,2-free and S1,1,3-free graphs is an open question and characterizing the structure of
augmenting graphs is the first step in resolving this question by means of augmenting graphs.
The second step is developing algorithms for detecting all types of augmenting graphs in these
classes. Clearly, both of them contain augmenting paths and, fortunately, in both of them
augmenting paths can be detected in polynomial time, since augmenting paths can be found
efficiently in S1,2,3-free graphs [19]. Determining the complexity of finding augmenting paths in
Si,j,k-free graphs for larger values of i, j, k is another open questions that would be interesting
to investigate.

Question 2. Determine the complexity of detecting augmenting paths in Si,j,k-free graphs
containing S1,2,3.

4.2 Graph transformations

We have seen already a graph transformation helpful for the maximum independent set
problem, namely, the vertex splitting in Section 3.2. Now, let us look at this transformation
in the reverse order, in which case it consists in deleting a vertex x of degree 2 with two non-
adjacent neighbours and “folding” the neighbours of x. Implemented in this direction, the
transformation is known as vertex folding. In spite of its simplicity, vertex folding is of great
practical and theoretical importance. In particular, it was used in [17], along with two other
reductions, to develop a simple and fast exact algorithm for the maximum independent set
problem. Even more importantly, the idea of vertex folding leads to a general approach to
solve the problem known as struction.

4.2.1 Struction

Let G = (V,E) be a graph, v0 an arbitrary vertex of G and {v1, . . . , vp} the set of neighbours of
v0. The struction centered at v0 is the graph transformation consisting of the following steps:

– remove the vertices v0, v1, . . . , vp from G and denote the rest of the graph by R,

– add to R a set of new vertices W = {vi,j : 1 ≤ i < j ≤ p and vivj 6∈ E},

– join two new vertices vi,j and vk,l by an edge whenever i 6= k or vjvl ∈ E,

– join every new vertex vi,j ∈ W to a vertex u ∈ R by an edge whenever u is adjacent to
vi or to vj in G.

12

We observe that the result of struction depends on the choice of vertex v0 and the order of its
neighbours. However, regardless of these choices, struction reduces the independence number
by exactly 1.

Theorem 3. [13] Let Gs be a graph obtained from G by struction, then α(Gs) = α(G)− 1.

Clearly, if v0 is a vertex of degree 2 with two non-adjacent neighbours, then struction
coincides with vertex folding. Therefore, struction generalizes vertex folding. The crucial
importance of this generalization is that it is applicable to any graph. Therefore, applying
this transformation repeatedly to an n-vertex graph, in at most n iterations we can compute
the independence number of the graph. Moreover, it is not difficult to see that every single
application of struction can be implemented in time bounded by a polynomial in the number of
vertices of the graph it applies to. This, however, does not lead to a polynomial-time algorithm,
because with each application of struction the number of vertices can increase leading, in the
worst case, to an overall exponential growth. This resembles the idea of resolution developed
for the satisfiability problem. In the next section, we show that there is more in common
between struction and resolution than a resemblance.

4.2.1.1 Struction versus resolution

Given a CNF formula, the resolution rule with respect to a variable x applies to two clauses
C1 and C2, one containing x positively and the other containing x negatively. The resolvent
of C1 and C2 is a new clause containing all literals of C1 and C2, except for x and x.

The idea of resolution was proposed by Davis and Putnam in [12] and its importance can
be seen through the following proposition.

Proposition 4. Let F be a CNF formula and x a variable in F . If F r is a CNF obtained from
F by

• adding a resolvent for each pair of clauses one of which contains x positively and the
other negatively,

• removing all clauses containing x (positively or negatively),

then F r is satisfiable if and only if F is.

Now let us translate Proposition 4 to the language of graph theory by means of the notion
of incidence graph, which is defined as follows. Given a CNF formula F , we denote by GF the
graph containing a vertex for each clause and for each variable of F , and the edges connecting
variables to clauses containing them (positively or negatively). We call GF the incidence
graph of F . In terms of incidence graphs, the transformation of a CNF formula presented in
Proposition 4 can be described as follows.

Let GF be the incidence graph of a CNF formula F , x a variable vertex of GF and
{C1, . . . , Cp} the neighbourhood of X (i.e. the set of all clauses containing x, positively or
negatively). Denote by GF r the graph obtained from GF as follows:

– remove the vertices x,C1, . . . , Cp from GF and denote the rest of the graph by R,

13

– add to R a set of new vertices W = {Ci,j : Ci contains x and Cj contains x},

– join every new vertex Ci,j ∈ W to a vertex u ∈ R by an edge whenever u is adjacent to
Ci or to Cj in GF .

It is not difficult to see that F transforms into F r if and only if GF transforms into GF r , i.e.
the transformation GF → GF r is a graph-theoretic description of the transformation F → F r.

This graph-theoretic interpretation of Proposition 4 reveals an amazing similarity (but not
identity) between struction and resolution. Moreover, if we apply resolution on a variable
which appears in the formula exactly twice, once positively and once negatively, then in terms
of graphs resolution coincides with struction, in which case it becomes vertex folding.

4.2.1.2 Total struction

In [6], the idea of struction was generalized under the name total struction as follows.
Assume the vertices of a graph G are labelled by integers 1, 2, . . . , n, where n = |V (G)|. The

vertex with maximum label in a subset A is denoted m(A), and A− is defined to be A−{m(A)}.
Given a graph G = (V,E), an induced subgraph H of G, and a positive integer p ≤ α(H),

we define R := V − N [V (H)] and associate with the triple (G,H, p) a graph S(G,H, p) as
follows:

• the vertex set of S(G,H, p) is R ∪W , where W is the family of all independent sets of
cardinality p+ 1 in the subgraph of G induced by the vertices of N [V (H)];

• the edge set of S(G,H, p) consists of

– the edges of the subgraph G[R],

– the edges linking vertices A ∈W and B ∈W whenever A− 6= B− or (m(A),m(B)) ∈
E(G),

– the edges linking a vertex A ∈ W to a vertex v ∈ R whenever v has a neighbor in
the subset A in the graph G.

The transformation of G into S(G,H, p) is called the total struction. An example of the
total struction is given in Figure 5. The importance of this notion is due to the following
theorem proved in [6].

Theorem 4. α(S(G,H, p)) = α(G)− p.

It is not difficult to see that if H consists of a single vertex and p = 1, then total struction
coincides with ordinary struction. Therefore, the total struction is a generalization of the
ordinary struction.

Moreover, the total struction also generalizes the crown reduction proposed to develop fixed-
parameter tractable algorithms for the minimum vertex cover problem. A crown C in G
consists of an independent set I, its neighbourhood S (i.e. the set of vertices adjacent to at
least one vertex of I) and a matching between I and S covering all vertices of S. It is known
(see e.g. [1]) that if G has a crown as above, then

τ(G) = τ(G− C) + |S|.

14

������������
���� ������������
����

HH
HH

��
��

HHH
H

���
�

PPPPPPPP

6 7 8

2 543

1 ��
��
��
��
��
��

��
��

���� ����

�
�
�
�
�
�
��

A
A
A
A
A
A
AA

HH
H

HH

��
�
��

��
���

HH
HHH

2,3,4 2,4,5 2,3,5

3,4,5

7 8

Graph G Graph S(G,H, p)

Figure 5: Total struction of G with H = G[1, 2, 3] and p = 2

Let us show that in this case the crown reduction coincides with total struction centered at
I, i.e. G − C = S(G, I, |I|). Indeed, if C = (I, S) is a crown in G, then I is a maximum
independent set in G[I ∪ S], because if B is the bipartite graph obtained from G[I ∪ S] by
deleting all edges from S, then |I| + |S| = |S| + α(B) (since for any bipartite graph, the
size of a minimum vertex cover coincides with the size of a maximum matching), and hence
|I| = α(B) ≥ α(G[I ∪ S]). Therefore, C has no independent sets of size |I| + 1 and thus the
graph S(G, I, |I|) coincides with G− C. By Theorem 4,

α(G− C) = α(G)− |I|,

which, together with τ(G) + α(G) = |V (G)|, immediately implies τ(G) = τ(G− C) + |S|.

In addition to crown reduction, the total struction has connections to some other important
transformations, which we discuss in the next section. To conclude the present one, we raise
the following open question:

Question 3. Does resolution admit a generalization similar to total struction?

4.2.2 Beyond struction and related transformations

The literature contains various other useful transformations of graphs for the maximum inde-
pendent set and related problems. In the present section, we review many of these trans-
formations and reveal some connections between them. We start with transformations for
problems closely related to maximum independent set.

4.2.2.1 Transformations for related problems

Some transformations that can be helpful for the maximum independent set problem
have been developed for related problems. We mentioned already in Section 4.2.1.2 crown
reduction for the minimum vertex cover problem. Now let us consider other examples.

A transformation which preserves the clique number was proposed by Gerber and Hertz
in [18]. This transformation can be described as follows: let x be a vertex in a graph G and

15

H1, . . . ,Hk the connected components of the subgraph of G induced by N(x). If we replace x
by k new non-adjacent vertices x1, . . . , xk, each xi being linked to all vertices in Hi (1 ≤ i ≤ k),
then the clique number of G does not change. Observe that the graph changes only if k > 1.

Even pair contraction is another graph transformation that preserves the clique number.
A pair of non-adjacent vertices is called an even pair if every induced path between them has
an even number of edges. If a graph G has an even pair, then by contracting it into a single
vertex, we do not change the clique number of G. Moreover, under this transformation the
chromatic number of G does not change as well (see e.g. [15]).

4.2.2.2 Local transformations for the maximum independent set problem

Let us repeat that struction and total struction are universal in the sense that they do
not require any particular structure of the graph. The transformations described below are
applicable only to graphs that satisfy some specific conditions.

Neighbourhood reduction. This transformation applies to a pair of adjacent vertices x and y
such that every neighbour of x (different from y) also is a neighbour of y. Under this condition,
every independent set I containing y contains neither x nor any neighbour of x, and hence y
can be replaced in I by x. Therefore, the removal of y from the graph does not change its
independence number.

Magnet. Let x and y be two adjacent vertices in a graph. Denote by X the set of private
neighbours of x (i.e. the neighbours of x that are non-adjacent to y) and by Y the set of private
neighbours of y. If every vertex ofX is adjacent to every vertex of Y , then the deletion of y along
with the edges connecting x to its private neighbours does not change the independence number
of the graph. This transformation is known as magnet or magnetic procedure [21]. Clearly if X
is empty, then the magnetic procedure coincides with the neighbourhood reduction. Therefore,
the magnetic procedure generalizes the neighbourhood reduction. Moreover, an attentive reader
can also observe that the magnetic procedure generalizes the even pair contraction applied to
the complement of the graph.

BAT-reduction is one more transformation that does not change the independence number
of the graph. It was proposed in [20] and then generalized in [23]. The importance of this
example is that it was originally derived from some pseudo-Boolean arguments. In this sense,
it was motivated by the idea of struction, as struction was also derived from pseudo-Boolean
arguments.

Clique reduction was proposed by Lovász and Plummer in [28]. It consists in deleting a
maximal clique K from the graph and connecting any two non-adjacent vertices x and y in
the neighbourhood of K whenever K ⊆ N(x) ∪N(y). Lovász and Plummer showed that if G
is a claw-free graph and the independence number in the neighbourhood of K is at most 2,
then the clique reduction applied to K decreases the independence number of G by exactly 1.
This reduction together with one more transformation described in [28] was used by Lovász
and Plummer in order to transform any claw-free graph into a line graph.

16

4.2.2.3 Beyond struction

In [6], in addition to generalizing struction, the authors introduce one more transformation
as follows.

An induced subgraph H of G is α-maximal if α(G[V (H) ∪ {x}]) = α(H) + 1 for every
vertex x 6∈ H. The H-reduction consists in deleting H and connecting any two non-adjacent
vertices x and y in the neighbourhood of H such that α(G[V (H) ∪ {x, y}]) = α(H) + 1. The
H-reduction is said to be α-perfect if it decreases the independence number of G by α(H).

Clearly, if H is a clique, then the H-reduction coincides with the clique reduction of Lovász
and Plummer. Moreover, similarly to the clique reduction, the H-reduction becomes α-perfect
whenever the independence number in the neighbourhood of H is at most 2. Furthermore, in
this case the H-reduction followed by a sequence of magnet transformations coincides with the
total struction. Even more importantly, it was shown in [6] that the cycle shrinking of Edmonds
is nothing but an α-perfect H-reduction when translated to the language of independent sets.
This returns us to the maximum matching problem and completes our journey.

5 Conclusion: back to matchings

In 1965, Jack Edmonds proposed his celebrated polynomial-time solution to the maximum
matching problem, which is equivalent to the maximum independent set problem restricted
to the class of line graphs. In the present paper, we looked at possible extensions of this result
beyond the line graphs. We also discussed various extensions of algorithmic techniques used
by Edmonds in his solution. In particular, we made a short tour through the world of graph
transformations. This world includes the cycle shrinking of Edmonds, as well as more advanced
tools (struction, total struction) that allow to solve the problem for arbitrary graphs. Clearly,
for general graphs these tools do not provide efficient solutions. However, for graphs with
particular properties they may become efficient. Determining the area of efficiency of struction,
total struction and related transformations is an interesting open question. We do not even
know whether this area includes the line graphs.

Question 4. Is it possible to solve the maximum matching problem in polynomial time by
means of graph transformations?

A positive answer to this question could suggest a uniform approach to tackle the maximum
independent set for graphs with various properties. This approach could be based on a
universal tool, total struction, combined with some specific reductions. The advantage of total
struction is that it possesses a high level of flexibility and adaptability to various properties
of the input graph, both local and global. But the problem of learning and exploiting these
abilities is a very challenging task.

Acknowledgements

This work was supported by EPSRC, grant EP/L020408/1.

17

References

[1] F. N. Abu-Khzam, M.R. Fellows, M.A. Langston, W.H. Suters, Crown structures for
vertex cover kernelization, Theory Comput. Syst. 41 (2007) 411-430.

[2] V.E. Alekseev, The effect of local constraints on the complexity of determination of the
graph independence number, Combinatorial-algebraic methods in applied mathematics,
Gorkiy University Press, (1982) 3–13 (in Russian).

[3] V.E. Alekseev, On easy and hard hereditary classes of graphs with respect to the inde-
pendent set problem, Discrete Appl. Math. 132 (2003) 17-26.

[4] V.E. Alekseev, Polynomial algorithm for finding the largest independent sets in graphs
without forks, Discrete Appl. Math. 135 (2004) 3-16.

[5] V.E. Alekseev, V.V. Lozin, Augmenting graphs for independent sets, Discrete Appl. Math.
145 (2004) 3-10.

[6] G. Alexe, P.L. Hammer, V.V. Lozin, D. de Werra, Struction revisited, Discrete Appl.
Math. 132 (2003) 27-46.

[7] E. Balas, C.S. Yu, On graphs with polynomially solvable maximum-weight clique prob-
lem, Networks 19 (1989) 247-253.

[8] L.W. Beineke, Characterizations of derived graphs, J. Combinatorial Theory 9 (1970)
129-135.

[9] C. Berge, Two theorems in graph theory, Proc. Nat. Acad. Sci. USA 43 (1957) 842–844.

[10] E. Boros and P.L. Hammer. Pseudo-Boolean optimization. Discrete Applied Mathematics,
123 (2002) 155–225.

[11] C. De Simone, A. Sassano, Stability number of bull- and chair-free graphs. Discrete Appl.
Math. 41 (1993) 121–129.

[12] M. Davis, H. Putnam, A Computing Procedure for Quantification Theory, Journal of the
ACM 7 (1960) 201-215.

[13] Ch. Ebenegger, P.L. Hammer, D. de Werra, Pseudo-Boolean functions and stability of
graphs, Annals of Discrete Math. 19 (1984) 83–97.

[14] J. Edmonds, Paths, trees and flowers, Canad. J. of Mathematics 17 (1965) 449-467.

[15] H. Everett, C.M.H. de Figueiredo, C. Linhares-Sales, F. Maffray, O. Porto, B.A. Reed,
Path parity and perfection, Discrete Math. 165/166 (1997) 233-252.

[16] M. Farber, On diameters and radii of bridged graphs, Discrete Math. 73 (1989) 249-260.

[17] F.V. Fomin, F. Grandoni, D. Kratsch, A measure and conquer approach for the analysis
of exact algorithms, J. ACM 56 (2009) Art. 25, 32 pp.

18

[18] M.U. Gerber, A. Hertz, A transformation which preserves the clique number, J. Combi-
natorial Theory B 83 (2001) 320–330.

[19] M.U. Gerber, A. Hertz, V.V. Lozin, Augmenting chains in graphs without a skew star,
J. Combin. Theory B 96 (2006) 352-366.

[20] A. Hertz, On the use of Boolean methods for the computation of the stability number,
Discrete Appl. Math. 76 (1997) 183–203.

[21] A. Hertz, D. de Werra, A magnetic procedure for the stability number, Graphs Combin.
25 (2009) 707–716.

[22] D. Lokshantov, M. Vatshelle, Y. Villanger, Independent Set in P5-Free Graphs in Polyno-
mial Time, Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), 570–581.

[23] V.V. Lozin, Stability preserving transformations of graphs, Annals of Operations Re-
search, 188 (2011) 331–341.

[24] V.V. Lozin, M. Milanič, On finding augmenting graphs, Discrete Appl. Math. 156 (2008)
2517–2529.

[25] V.V. Lozin, M. Milanič, A polynomial algorithm to find an independent set of maximum
weight in a fork-free graph. J. Discrete Algorithms, 6 (2008) 595–604.

[26] V.V. Lozin, R. Mosca, Independent sets in extensions of 2K2-free graphs, Discrete Appl.
Math. 146 (2005) 74–80.

[27] V.V. Lozin, R. Mosca, Maximum regular induced subgraphs in 2P3-free graphs, Theoret.
Comput. Sci. 460 (2012) 26–33.

[28] L. Lovász, M.D. Plummer, Matching theory. Annals of Discrete Mathematics, 29. North-
Holland Publishing Co., Amsterdam; Akadémiai Kiadó (Publishing House of the Hun-
garian Academy of Sciences), Budapest, 1986. xxvii+544 pp.

[29] G.J. Minty, On maximal independent sets of vertices in claw-free graphs, J. Combina-
torial Theory B, 28 (1980) 284–304.

[30] R. Mosca, Stable sets in certain P6-free graphs, Discrete Appl. Math. 92 (1999) 177–191.

[31] O.J. Murphy, Computing independent sets in graphs with large girth, Discrete Appl.
Math. 35 (1992) 167–170.

[32] M. Pelillo, K. Siddiqi, S.W. Zucker, Matching hierarchical structures using association
graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (1999)
1105–1120.

[33] N. Sbihi, Algorithme de recherche d’un stable de cardinalité maximum dans un graphe
sans étoile, Discrete Math. 29 (1980) 53–76.

19

[34] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for generating all the
maximal independent sets, SIAM J. Comput. 6 (1977) 505–517.

20

