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Abstract

Legacy code performance has failed to keep up with that of modern hardware.

Many new hardware features remain under-utilised, with the majority of code

bases still unable to make use of accelerated or heterogeneous architectures.

Code maintainers now accept that they can no longer rely solely on hardware

improvements to drive code performance, and that changes at the software en-

gineering level need to be made.

The principal focus of the work presented in this thesis is an analysis of the

changes legacy Inertial Confinement Fusion (ICF) codes need to make in order to

e�ciently use current and future parallel architectures. We discuss the process of

developing a performance model, and demonstrate the ability of such a model to

make accurate predictions about code performance for code variants on a range

of architectures. We build on the knowledge gained from such a process, and

examine how Particle-in-Cell (PIC) codes must change in order to move towards

the required levels of portable and future-proof performance needed to leverage

the capabilities of modern hardware. As part of this investigation, we present

an OpenCL port of the legacy code EPOCH, as well as a fully featured mini-app

representing EPOCH. Finally, as a direct consequence of these investigations,

we directly apply these performance optimisations to the production version

EPOCH, culminating in a speedup of over 2⇥ for the core algorithm.
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CHAPTER 1
Introduction

Computational experimentation is a vital tool of modern scientific investigation.

It allows for full-resolution reproduction of real world phenomena, including

events which cannot be investigated closely enough through observation alone.

The computational simulation of such events o↵ers a safe and practical method

to perform initial scientific investigation, even into areas in which experimenta-

tion could be extremely dangerous or prohibitively expensive. Such simulations

are often so complex in nature that they cannot be completed on desktop com-

puters alone, and researchers have to rely on the computational power o↵ered

by supercomputing facilities. Supercomputers are large machines, maintained

specifically to facilitate such complex calculations and are typically many orders

of magnitude more powerful than desktop computers. An entire research field

has been formed around the e�cient use and development of powerful super-

computers and the algorithms to support them; today, this field is commonly

referred to as High Performance Computing (HPC).

Supercomputing was first realised in the early 1960s, and has continued to

develop ever since. The delivery of machines such as the Atlas Computer in

1962, and the CDC 6600 in 1964 were amongst the first landmark events in su-

percomputing’s long history [65, 108]. Despite the lack of similarities between

such machines and current supercomputers, they undeniably played a strong

role in the development of computational simulation, and shaped what we know

today as HPC. Modern supercomputers are able to perform around 10 orders of

magnitude (1010) more Floating-Point Operations per Second (FLOP/s) than

their historic counterparts, and have increasingly been able to incorporate o↵-

the-shelf commodity components in their design [109]. Current supercomputers

1
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Figure 1.1: Accelerated Supercomputing architecture from the perspective of
(a) Hardware; and (b) Data Movement.

typically feature vast numbers of compute nodes, interconnected with a high-

speed network specifically designed for inter-process communication. Histori-

cally, such compute nodes have typically featured traditional Central Process-

ing Units (CPUs), with any inter-process communication handled explicitly by

the programmer via message-passing. This, however, will likely change with

the increased adoption of heterogeneous computing. Hardware manufacturers

have started to pair traditional CPU architectures, with specialised accelera-

tor (or co-processor) architectures to which the CPU can o✏oad computation.

These accelerators can either be in the form of commodity Graphics Processing

Units (GPUs), or more specialised hardware such as the Intel Xeon Phi product

range. Figure 1.1 highlights this paradigm, with work being o✏oaded (typically

over a PCIe bus) to the accelerator from the host CPU.

As of June 2015, 90 of the TOP500 supercomputers utilised heterogeneous

accelerators to increase their computational performance – including four of the

top ten [110]. Figure 1.2 provides a summary of the increase in accelerator

use amongst the worlds fastest supercomputers over the last ten years. Since

2006, the use of heterogeneous accelerators has increased steadily; a trend which

is predicted to continue as more supercomputing centers seek the increased
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Figure 1.2: Accelerator count in the TOP500 Rankings from 2006 to 20151.

performance and power e�ciency o↵ered by heterogeneous computing [58].

The demand for more accurate and complex simulation is one of the major

driving forces behind the evolution of supercomputers. Given su�cient compute

resources, current scientific simulations are often accurate enough to simulate

physical reactions at the atomic level, and can include direct particle interaction.

As the need for more detailed simulations continues, hardware designers are

being faced with the increasingly di�cult task of delivering supercomputer per-

formance which can match this. As we move into the so-called ‘exascale era’ [27],

compute hardware is more complex than it has ever been and the hardware im-

provements delivered by increasing transistor counts are less impactful than ever

before. This forces developers to invest more heavily in software-level improve-

ments to achieve increased code performance. Application engineers strive for

maximum performance through code optimisation and algorithmic research, but

achieving peak performance is made increasingly more di�cult by the diverse

range of hardware available in modern HPC platforms and by the large scale of

the codes which need to be changed in order to leverage it.

This thesis presents an investigation into developing an understanding of how

to overcome these issues in the context of Inertial Confinement Fusion (ICF)

simulations. It aims to o↵er techniques to enable such codes to run well on both

1The decrease in accelerator count in Figure 1.2 can be accounted for by the aging and
decommission of systems featuring the popular NVIDIA Tesla 2090 GPU
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current and future generations of hardware, ensuring that as supercomputers

move forward, so too do the codes which they need to support.

1.1 Motivations

Recent decades have seen vast improvements to compute hardware; improve-

ments which have historically been very challenging for code developers to fully

utilise. Large bodies of work have been formed over decades focusing solely

on performance optimisation [9, 10, 16, 102]. Such optimisation procedures are

often highly complex, requiring extensive domain knowledge and an in-depth

understanding of the code. As CPU complexity grows, so too does the gap

between current code performance and that which is attainable. Often, sim-

ulations which use such CPUs were developed in such a way that they were,

perhaps unintentionally, closely related to the hardware available at their in-

ception. In order to exploit the increase in CPU performance and functionality

a↵orded by modern CPU design, it is first essential to understand existing code

performance; a task most typically done through profiling, benchmarking, and

modelling.

The work in this thesis focuses on the major challenges facing legacy ICF

codes to deliver performance on both modern and future hardware. Specifi-

cally this includes the changes required to multiple legacy plasma physic sim-

ulation codes, including those in the areas of Particle-in-Cell (PIC) simulation

and Magnetohydrodynamics (MHD) simulation. ICF is an important area of

computational research, driving real-world scientific discovery and o↵ering the

possibility of solving the world’s energy crisis. ICF experiments are typically

high-power in nature, with select sites being able to deliver petawatt focused

beams with approximately 10,000 times more power than the UK National Grid

(during pico-second pulses). Any e↵ort to better understand and improve the

performance of such simulations not only stands to save computational time

and energy, but also reduces time to scientific solution and discovery. Such
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optimisations are key to this thesis, in which the ability of performance mod-

els to provide important insights into code performance is demonstrated. The

development of a mini-app is presented, which represents their ability to guide

code optimisation and to be a powerful research tool. Throughout, the funda-

mental problems with classical techniques are highlighted, motivating the need

for either a change in the core algorithm or an alternative way of expressing

parallelism to be developed.

1.2 Thesis Contributions

This thesis makes the following specific contributions to ICF code performance

engineering and optimisation:

• A novel performance model for the MHD code Lare is presented. It is

the first known predictive performance model for Lare, and allows for the

prediction of runtime across a range of current and future architectures

based on minimal parameter inputs. It is validated on two HPC systems

with an accuracy of greater than 90% for both weak and strong scaled

problems on over three thousand cores. This model is then extended to

investigate the e↵ects of modifying the Lare code-base to include aspects

of Arbitrary Lagrangian-Eulerian (ALE) methods, a change which would

further extend the range and depth of the physical phenomena simulated

by Lare, to better facilitate ICF research. The techniques used for this

modelling processes are applicable to other ICF codes, including those

codes discussed later in this thesis, such as the PIC code EPOCH;

• The development of the first documented port of the EPOCH code-base

to accelerator architectures is shown. An Open Computing Language

(OpenCL) mini-benchmark which represents the key compute kernel of

the PIC algorithm used in EPOCH is developed. The use of accelerator

specific optimisations to EPOCH is explored, including the e�cient use

of Single Instruction, Multiple Thread (SIMT) computation and explicit
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shared memory. A benchmarking comparison is then performed across

a variety of hardware, including a range of CPUs, and three generations

of NVIDIA GPUs (Tesla, Fermi and Kepler). This work culminates in

a discussion about the code changes needed for EPOCH and other ICF

codes to successfully utilise accelerated heterogeneous hardware;

• A fully featured mini-application which represents the PIC code EPOCH

is developed. It is the first publicly recorded mini-app explicitly targeting

a Finite-Di↵erence Time-Domain (FDTD) PIC plasma physics code. The

mini-app is then validated and verified as being able to fully recreate a

range of physical simulations available within EPOCH, with a particu-

lar focus on Laser-Plasma Interaction (LPI). The mini-app is then used

to investigate known performance issues within EPOCH, including poor

time-step scaling of long runs, and high levels of cache misses due to par-

ticle store fragmentation;

• Finally, as a direct impact of the knowledge gained through all previous

work, the previously discovered optimisations for PIC codes are mapped

back to the legacy EPOCH code base. This allows EPOCH to scale lin-

early in a time-step basis, exhibit improved particle per cell scaling, and

demonstrate vastly improved cache hit rates and memory locality. Overall

this culminates in a speedup of over 2⇥ for the production EPOCH algo-

rithm, an improvement which will decrease the time to solution for novel

scientific discovery.

1.3 Thesis Overview

Chapter 2 presents an account of the basic underlying computational the-

ory that underpins all of the work contained within this thesis. It details the

governing laws and equations of parallel computing, provides a background to

benchmarking and profiling, and introduces the concepts required for perfor-

mance modelling.
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Chapter 3 discusses the theoretical and practical aspects of parallel computing.

It highlights the di↵erent types of parallelism available in modern hardware, and

discusses the mapping between theory and implementation, as well as outlining

some of the challenges that arise when trying to fully exploit the available par-

allelism o↵ered by modern hardware. Much of the work in this thesis focuses on

overcoming such challenges which arise as a direct consequence of the complex

interactions between levels of parallelism.

Chapter 4 presents a background to ICF codes and the typical structure of

such scientific simulations. It describes the operation of two codes: EPOCH, a

PIC plasma physics code; and Lare, an MHD code – both of which represent key

components of typical ICF research workflows. Further, Chapter 4 highlights

key areas of the codes which dominate their performance profile; and provides

intuition into how the codes operate.

Chapter 5 presents a performance model of the MHD code, Lare. The model

can accurately predict runtimes for both current and future generations of com-

pute hardware. It details the processes of producing such a model, and vali-

dates it on two HPC systems. The model is then used to make performance

predictions about an optimised version of Lare which includes aspects of ALE

methods. The processes presented can be applied to all similar codes, with the

most applicable being other codes relating to ICF research.

Chapter 6 documents the initial investigation into the use of accelerators to en-

hance PIC simulations. Specifically, it presents a case study of porting EPOCH

to OpenCL in the form of a mini-benchmark, and o↵ers conclusions about how

such a process applies to other plasma physics codes. It highlights key problems

in the legacy PIC algorithm which limit its suitability for accelerator hardware,

and o↵ers solutions and techniques to overcome these.
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Chapter 7 presents the development of the first known FDTD PIC mini-app,

known as miniEPOCH. It builds on the understanding gained in Chapter 6 to

show how such an investigation can culminate in improved code performance of

the parent application. The mini-app is used to investigate a variety of novel

optimisations, at each step showing how they map back to the original code,

ultimately culminating in improved application performance.

Chapter 8 concludes this thesis with a discussion of the implications of the

work presented. The limitations of the research presented are outlined, with

final remarks about possible opportunities for future work being outlined, as

well as the inclusion of some preliminary results.
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CHAPTER 2
Performance Analysis and Modelling

Increased computational performance has always been at the forefront of sci-

entific development [72]. For centuries, theorists have sought algorithmic im-

provements to reduce computational complexity, with the terms algorithm and

algebra having been established over 1200 years ago. The pursuit of increased

computational performance is most commonly motivated by the desire for in-

creasingly complex and accurate scientific simulation. As the prominence of

High Performance Computing (HPC) and scientific computing increases, so too

does the importance of developing new algorithms and methodologies for achiev-

ing e�cient computation. In this Chapter an overview of the current state of

HPC is provided, as well as introducing the fundamental concepts that underpin

both the work in this thesis and computational simulation as a whole.

2.1 The Laws of Parallel Computing

While parallel computing is often perceived to be a very practical domain, it is

underpinned by a rich background of theory. The following equations govern the

behaviour and limits of all computation, and most importantly can be applied

to give an accurate insight to application performance.

2.1.1 Speedup

Speedup o↵ers a measure of scalability for an application; it demonstrates how

well an application makes use of increasing numbers of processing elements

through a comparison of runtimes. Conceptually it is the ratio of serial runtime
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(T
s

) to parallel runtime (T
p

). This can formally be expressed as:

S

p

=
T

s

T

p

(2.1)

This is a useful metric, most commonly used to quickly assess how a code will

scale with increasing compute resource and has gained popularity because of

the ease in collecting the required numbers. A code which exhibits a near linear

speedup is said to scale well.

2.1.2 Parallel E�ciency

Parallel e�ciency leverages the concept of speedup, and uses it to measure the

proportion of the available parallel improvement a code is able to obtain when

running on N parallel processors.

E

p

=
S

p

N

(2.2)

Typically the measure of parallel e�ciency has a value between 0 and 1, with

1 representing ideal parallel e�ciency. Any number smaller than one shows a

loss in parallel e�ciency. It is important to note, however, a value of greater

than one is possible to obtain, and is referred to as a super-linear speedup. Such

speedups are not typical for complex algorithms, and are often a side e↵ect of a

change exploiting machine-specific architecture, causing a discrepancy with the

theoretical improvement.

2.1.3 Amdahl’s Law

In 1967, Gene Amdahl proposed Amdahl’s law [2]. An equation which governs

how parallelism can a↵ect overall code performance and describes the maxi-

mum speedup achievable through increasing parallelism. The theory states that

for a parallel code with serial fraction F

s

and parallel fraction F

p

(equivalent

to 1� F

s

), the speedup for n processors will always be dominated by F

s

for
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increasingly large values of n. This can be more formally expressed as:

S

N

6 1

F

s

+ Fp

N

(2.3)

For many years the HPC industry has benefited from increasing numbers

of processors (N), whilst the time to complete the serial code portion (F
s

)

has simultaneously benefited from increasing single core performance and more

complex Central Processing Units (CPUs). The trend of increasing single core

performance has diminished, meaning that further improvements to serial code

runtime must come from algorithmic changes. Parallels are often drawn be-

tween Amdahl’s law and the practice of strong scaling, during which additional

processors are added in an attempt to decrease the time to solution for a given

scientific simulation.

2.1.4 Gustafson’s Law

Gustafson’s law [39] states that despite the bounds provided by Amdahl’s law,

increasingly large data sets can be e�ciently parallelised, as the parallel work

fraction increases. This can be most easily conceptualised by considering a

fixed time window, and observing how the amount of work solvable in that time

changes with the increased availability of parallel hardware. As more processors

(N) are made available, larger problem sizes can be solved within the fixed time

window despite the presence of a serial code portion (F
s

). This can formally be

expressed as:

S

N

= N � F

s

⇥ (N � 1) (2.4)

Gustafson’s law is often compared to the practice of weak scaling, where more

processors are added to the system to solve a proportionally larger problem in

the same time frame. This provides a direct counterpoint to Amdahl’s law and

the strong scaling it represents.
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2.2 Benchmarking

The performance of compute hardware has historically been measured in Floating-

Point Operations per Second (FLOP/s); a metric which is intended to represent

the bottleneck in scientific computation. The theoretical peak FLOP/s figures

quoted by hardware manufacturers provide an upper bound on application per-

formance. These figures, however, are not representative of how well real-world

applications can exploit the power of compute hardware; as many applications

only achieve a fraction of this quoted rate.

In order to achieve maximum FLOP/s performance, all functional units of

the CPU must be consistently used. Typically this means that at any point

in time, the CPU must make full use of the Single Instruction, Multiple Data

(SIMD) width, whilst simultaneously dispatching a Fused Multiply-Add (FMA)

every clock cycle, per core. Any operation which deviates from this represents

a reduction in performance, including any stalls caused by operations such as

reading from memory. It is widely understood that although theoretical FLOP/s

rates serve as a good single metric indicating potential performance, it is a

poor measure of real-world application performance [25, 36, 109]. The process

commonly known as benchmarking seeks to address this issue.

Benchmarks are specialised applications designed to measure some aspect or

property of a computational system. Benchmarks are often designed to collect

performance data which is representative of real world applications, and to

provide metrics which can then be compared and used to evaluate the suitability

of the hardware. A variety of benchmarks exist to try and categories the absolute

performance of a supercomputer, each targeting very specific hardware features.

These results can then be collated and used to rank supercomputers, as seen in

schemes such as the TOP500 [109] and the Graph500 [36]. Such benchmarks

include: LINPACK [26], a linear algebra benchmark used to rank supercomputer

performance in the TOP500 list; STREAM [71], a memory benchmark used to

evaluate sustained memory bandwidth throughput; and SkaMPI [96], a network
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benchmark used to evaluate the performance of the Message Passing Interface

(MPI) library and the machine interconnect.

Despite the availability of these component-specific benchmarks, it is di�-

cult to combine the metrics in order to make conclusions about more complex

algorithms which rely on their combined behaviour. One possible solution is

the development of domain or application specific benchmarks, which exhibit

analogous computational behaviour to production applications. These bench-

marks can be more light weight and portable, and even represent commercially

sensitive code. It is common to see benchmark suites which represent the most

prominent areas of scientific investigation, examples include the NAS parallel

benchmark suite [6]; the Rodinia benchmark suite [20]; the SPEC benchmark

suite [111]; and the NESRC benchmark suite [3, 77]. Such benchmarks suites

can play an important role in procurement procedures, as they can capture a

set of metrics which represent the workload of the relevant supercomputing cen-

tre. The NERSC benchmarks are designed specifically for this purpose, whilst

many of the other suites are intended for more general use in the classification

of machine performance.

2.3 Profiling

Whilst benchmarking provides powerful insights into how codes may perform

on di↵erent machine configurations, their use only goes part way into explaining

code performance for specific applications. Benchmarks often fail to capture suf-

ficiently low-level detail to identify the root cause of application improvement,

instead only showing how runtimes vary. Profilers are tools which address this

issue by monitoring an application as it runs, and collecting a range of per-

formance metrics during its execution. These metrics can then be analysed,

to gain an insight and understanding into the program’s behaviour. Common

metrics include multi-level execution time tracking [35], memory behaviour anal-

ysis [78, 93], network communication pattern identification [47], and I/O oper-
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ation tracing [18, 115].

It is important to understand code performance for a given application, and

profilers are a powerful way to achieve this. Throughout this thesis, the inves-

tigations rely heavily on the profiling of codes, and predominantly on the hand

instrumentation of source code after an initial investigation has been carried

out using traditional profiling tools such as those previously described. The

information gained from these profiling e↵orts provides great insight into code

performance, and allows future endeavors to be better directed. The concept of

performance modelling discussed in Section 2.5, and used throughout Chapter 5,

relies heavily on the concept of profiling.

2.4 Representative Applications

Representative applications are a set of small, self-contained, programs which

directly correspond to a parent application, whilst having reduced complexity.

They act as highly specialised benchmarking tools, targeted specifically at a

sub-component of the parent application. Broadly, representative applications

can be divided into two major subgroups: mini-applications (mini-apps); and

proxy applications (proxy-apps). Mini-apps represent their parent application

by performing the same algorithmic computation as the parent application (per-

haps with di↵erent input), whilst proxy-apps represent their parent application

by performing analogous computation that is expected to replicate the same

stress the parent application would put on the machine. There are many fac-

tors which may motivate the development of a representative application, the

most prominent being benchmarking, optimisation, and architecture evaluation.

Additionally, proxy-apps can represent closed source or classified codes without

giving away any intellectual property.

Figure 2.1 shows how representative applications relate to both production

applications and traditional benchmarks (micro-benchmarks). The closer a

benchmark is to the original production application, the more representative
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Figure 2.1: Representativeness and Simplicity of Application Scale.

it is, but this comes at the cost of increased complexity. Mini-apps are impor-

tant as they occupy a good balance of representativeness, without being overly

complex. They allow ideas to be tested in a more manageable environment

than a production code, but still allow the findings to be su�ciently meaningful

that they can then be transferred back into the parent application. Given their

significantly smaller size, mini-apps are ideally suited for testing new techniques

or programming models, which would otherwise be intractable if attempted in

the parent code.

Despite the benefits of mini-apps being identified as early as 1991 [6], the re-

emergence and use of mini-apps has gained greater traction in recent years [44].

There are now examples of mini-app use in co-design, code optimisation and

porting, and in the exploration of new programming languages and paradigms.

The use of mini-apps for code optimisation is exemplified in the work by

Karlin et al., in which the authors use the mini-app LULESH (Livermore Un-

structured Lagrangian Explicit Shock Hydrodynamics) to demonstrate the opti-

misation of multi-material hydrodynamics simulations. By using their mini-app
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to better focus optimisation e↵orts, they increase LULESH’s vector instruction

utilisation by a factor of 8, reduce the number of memory reads by 62%, and

reduce the overall application memory footprint by 19%. These improvements

were then mapped back to ALE3D to achieve a 20% reduction in overall appli-

cation runtime [53, 54, 66, 80], performance gains that had remained undetected

until the mini-app investigation.

Further studies demonstrate the use of mini-apps to rapidly investigate both

hardware platforms and programming paradigms. Lavallée et al. demonstrate

how the mini-app HYDRO was used to investigate multiple hardware platforms

available through the PRACE Tier-0 Research Infrastructure [64]; similarly, the

size of the mini-app greatly aided their development of several code variants of

HYDRO, including those employing MPI, OpenMP, CUDA, OpenCL, HMPP

and UPC – a task that would have been infeasible using the full production

application. The availability of such a diverse range of code implementations

allowed the authors to evaluate a variety of heterogeneous hardware and assess

its viability as a future platform for the parent application RAMSES [107], an

EU-funded computational astrophysics package used for the study of large-scale

structure and galaxy formation. Such studies demonstrate the importance of

mini-apps as a tool to enable studies in code portability, scaling and perfor-

mance.

Mini-apps are increasingly being developed within open source frameworks,

thus allowing the HPC community to benefit from their development. Projects

such as Mantevo [7, 44] and the UK Mini-App Consortium (UKMAC) [92] exist

to provide centralised repositories where collections of mini-applications can

exist, selected to represent key scientific areas supported by HPC simulation.

2.5 Performance Modelling

Performance modelling refers to a set of techniques which allow computer sci-

entists to reason about code performance through the invocation of a model.
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Typically this involves the development of a conceptual model to represent the

code, with the aim of o↵ering highly accurate runtime predictions. Such mod-

els can only be developed once a good understanding of the code is formed, a

task which relies heavily on the previously outlined techniques of profiling and

benchmarking.

Once a model has been established, it can be used to make predictions about

how algorithmic changes might a↵ect the performance of an application, and

also to predict how architectural di↵erences may impact code runtime. The use

of modelling has been demonstrated to identify performance bottlenecks [46],

evaluate algorithmic changes [8], predict application performance when ported

to new architectures [24], and to quantify the e↵ect of improved communication

behaviour on code performance [45]. The concept of performance modelling is

key to this thesis, and is discussed further in Chapter 5. Broadly, the tech-

niques for developing a performance model used in this thesis can be split into

two categories: (i) analytical models which capture application performance as

a set of equations; and (ii) simulation, where a code model is run on simulated

hardware. A third category of performance models exists, which capture math-

ematical modelling languages such as Petri nets [76], and Markov chains [12].

2.5.1 Analytical Model

The general runtime of a parallel application can be described by Equation 2.5,

which states that the total runtime is a combination of the compute time,

communication time, synchronisation time, and any time lost during overhead

operations. Each term can be constructed from a series of observations and

sub-models which capture the aggregate contributions of each application sub-

component which, when combined, represent the overall application runtime.

T

total

= (T
compute

+ T

comms

� T

overlap

)

+ T

synchronisation

+ T

overhead

(2.5)
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Compute costs are typically obtained during empirical investigation using bench-

marks, along with custom timers. Message costs are typically captured by a

communication model parameterised for a given network, combined with mes-

sage counts and sizes. Equation 2.5 is often simplified to assume negligible

communication overlap and application overhead, as described in Equation 2.6.

T

total

= T

compute

+ T

comms

(2.6)

When developing a performance model it is usual to start with the simplistic case

of a serial run, as it contains no communications. In doing this, Equation 2.6 can

be further simplified to only include terms relating to the cost of computation.

This can then be expanded as shown in Equation 2.7 to present the per work

unit function costs, known as grind times (w
g

).

T

compute

=
X

w

g

(2.7)

To obtain these grind times, timing data must be gathered. This can either

be done using a profiler such as gprof [35] or scalasca [31], or alternatively

the code can be instrumented manually. Once these grind times have been

calculated, they can be put back into Equation 2.7 to obtain the total compute

time. A per platform communication model must then be generated based on

empirical machine latency and bandwidth, for varying message sizes to account

for protocol changes. The communication and computation terms can then

be combined to satisfy Equation 2.6. Finally, where possible, any additional

synchronisation and overhead costs must be established. In practice however,

these costs are often represented in the compute and communication costs. The

purely mathematical nature of analytical models brings both clear advantages

and disadvantages. Their simplicity means that they can be evaluated near

instantaneously, where new configurations can be re-evaluated by substituting

di↵erent parameters into the model equations. This, however, comes at the cost

of reduced complexity and accuracy for complex simulations.
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A great deal of literature exists showcasing the success of performance mod-

elling e↵orts for assessing both current and future architectures [1, 23]. Ham-

mond et al. show how performance modelling can be used to provide a compar-

ison between two di↵erent systems, and use this comparison to aid procurement

decisions [42]. They show that the ability to make predictions at scale can

be more valuable than the information obtained from small scale benchmarks.

Herdman et al. use a performance model of an industry strength hydrodynamics

benchmark to provide guidance for the procurement of future systems [43]. The

authors use their performance model to generate a range of predicted values

for comparison, spanning multiple architectures and compiler configurations.

In addition to allowing the assessment of current architectures, performance

modelling also plays a vital role in enabling us to look at the performance of

applications on future architectures at scale. Pennycook et al. show how per-

formance modelling can be used to provide an insight into how applications will

perform on a variety on architectures, highlighting the potential benefits of using

many-core architectures [90]. Finally, Mudalige et al. show that performance

modelling can be applied to emerging distributed memory heterogeneous sys-

tems to provide an analysis of the performance characteristics and to accurately

predict runtimes for an application [32, 75].

2.5.2 Simulation

Simulators aim to further improve on the prediction accuracy of analytical mod-

els by simulating hardware interactions to capture additional system-behaviour

details. The concept of simulation covers a broad range of possible scenar-

ios, from a full featured hardware simulation, to combining simulating network

events with an analytical compute model. The most common form of per-

formance model simulation is a ‘macro’ level simulation, in which computation

times are collected empirically and communication costs are derived from a fully

simulated topology primed with an empirical baseline. This approach tends to

give compute results with comparable accuracy to that of an analytical model,
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but o↵ers improved communication accuracy. If desired, the network infrastruc-

ture used in the simulation can be changed to investigate how di↵erent networks

may a↵ect the runtime, perhaps even simulating theoretical network topologies

and contention. Such improvements do not come without a cost, as simula-

tions tend to take significantly more time to return their predictions as they

run through the control flow code of the simulation. By having this closeness

between software and hardware it allows for greater performance optimisation

of both, as seen in the co-design approach that is being used to move towards

exascale [41, 48, 98].

The simulation work presented in this thesis makes use of Structural Simula-

tion Toolkit (SST)/macro [48]. This is just an example of one such toolkit, with

others such as the Warwick Performance Prediction (WARPP) [40, 41] toolkit

o↵ering similar functionality. SST was chosen because it is well established in

the field, and has been shown to o↵er a range of accurate and useful features. In

addition to this a tool to generate un-primed SST/macro models from Fortran

source code was also developed in order to facilitate the development of multiple

models.

2.5.3 Modelling Languages and Queuing Theory

The aforementioned techniques only represent a small portion of those avail-

able in the HPC literature. Other common techniques include the use of Petri

nets [76] and Markov chains [76]. A Petri net is a bipartite graph in which

the nodes represent transitions or places. Directed arcs connect these nodes,

describing pre and post conditions for the transitions. Distributed systems can

be modeled as transitions and places, connected with weighted arcs. Their op-

eration is not dissimilar to that of Markov chains, in which a statistical model

is built from interconnected state spaces to represent a distributed system. A

Markov chain, however, is a stochastic process which is ’memory-less’.
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2.6 Summary

This Chapter presents a description of the governing equations that have pro-

vided a theoretical basis for evaluating application performance for over 50

years. These equations can be combined with the techniques of profiling and

benchmarking in order to aid in real world performance evaluation and code un-

derstanding. These techniques can also be combined to develop powerful tools

for understanding code performance, such as performance models.

In this thesis we use the described techniques as the foundation for our op-

timisation e↵orts and show the importance of understanding code performance

through the development of a performance model. This high level of code under-

standing is crucial for Inertial Confinement Fusion (ICF) simulations to make

e↵ective use of modern and heterogeneous hardware.
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CHAPTER 3
Parallel Hardware and Programming Models

Modern hardware is highly parallel, and seeks to employ parallelism at every

level of its design. This can range from very low-level parallelism, such as

Instruction Level Parallelism (ILP), to higher levels of parallelism, such as task-

based threaded execution. In order for good code performance to be achieved,

each level of parallelism must be utilised to its maximum potential. Not only

does this require high levels of understanding, it often represents great e↵ort re-

quired by code specialists. In this Chapter we discuss modern hardware features

and programming models, and describe how these practical areas correspond to

the theory. We also detail the benchmarking platforms used to gather the data

presented in this thesis.

3.1 Flynn’s Taxonomy

In 1966 Michael Flynn introduced a classification for computer architectures

with the goal of allowing a distinction to be made between di↵erent theoretical

models for parallel hardware, and the ways in which they consume data [30].

The taxonomy is centered around the idea that under di↵erent schemes of op-

eration, it is possible for both data and instructions to be executed in parallel.

By considering these as either serial (single) or parallel (multiple), a four-way

classification arises commonly known as Flynn’s taxonomy. Figure 3.1 shows

Flynn’s taxonomy, and highlights the possible combinations of single and paral-

lel execution of both data and instructions. In the context of Flynn’s taxonomy,

an instruction can be thought of as a basic data operation such as an add or a

multiply, and data can be visualized as one or more floating point numbers to

which an instruction can be applied.
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Figure 3.1: Flyyn’s Taxonomy, showing the application of parallel processing
elements (PEs) to instructions and data.

Single Instruction, Single Data (SISD) represents the most basic form of

computation, in which at most a single instruction operates on a single piece of

data. This is typical of the very first computers that emulated the behaviour

of a person performing arithmetic. It was not until the demand for increased

computational speed outstripped the performance o↵ered by SISD processors

that parallelism became commonplace.

Single Instruction, Multiple Data (SIMD) describes a mode of parallel

operation whereby a single operation, such as an addition, can be applied to

multiple values or items of data at once. This can most commonly be seen in

vector calculus, which represents many of the core algorithmic operations be-

hind the calculations required by computational simulations. An example im-
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plementation of SIMD computation in current hardware is the Advanced Vector

Extensions (AVX) instruction set. It includes the support for instructions such

as VADDPD, in which a single instruction (add) is applied to multiple data points

simultaneously to achieve n-way data parallelism. Under the SISD paradigm,

these instructions would be processed sequentially, one data element at a time.

Multiple Instruction, Single Data (MISD) is the least frequently seen type

of parallel computer architecture. Whilst it is theoretically possible to perform

multiple instructions on a single data item, it is realistically challenging for

hardware to manipulate a single data value in parallel. These di�culties mean

MISD computers are used to fulfill special use cases only, and are not typically

found within the scope of High Performance Computing (HPC).

Multiple Instruction, Multiple Data (MIMD) is the most ubiquitous form

of parallelism seen today, and it is the category into which most distributed

supercomputers fall. The MIMD paradigm represents a grouping of process-

ing elements each of which can process di↵erent instructions on multiple data

elements concurrently. The MIMD paradigm also includes an important sub-

category known as Single Program, Multiple Data (SPMD); in which the tasks

that form a single program are explicitly subdivided and run simultaneously on

multiple processors.

3.2 Moore’s Law

In 1965 Gordon Moore put forth the observation that the number of transistors

in dense integrated circuits doubles approximately every two years, a projection

we commonly know today as Moore’s Law [74]. This observation has held true

for decades, and has been one of the driving reasons behind increased Central

Processing Unit (CPU) performance. These additional transistors allow for on-
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Figure 3.2: Levels of parallelism in theory, hardware, and software.

chip complexity to be added, giving rise to increased ILP, improved cache sizes,

and additional arithmetic units.

Despite the continued trend for increasing transistor counts, concerns are

growing that this rate of improvement may begin to slow, as transistor size

begins to approach the physical limits of current techniques. The increasing

consideration for power e�ciency means that clock frequencies have also begun

to stagnate, with hardware manufactures and consumers alike unwilling to pay

the power cost required to drive clock rates further. Now that application

developers can no longer rely on this increasing performance driven by Moore’s

law, a new era of algorithmic research has started. Algorithmic changes are now

being recognised as the most important way to drive forward code performance

and to get increased utilisation of machine features [29, 63].

3.3 Hardware Parallelism

Figure 3.2 provides an overview of how di↵erent types of theoretical parallelism

are manifested in hardware and software. It highlights the range of parallelism
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available, each level of which needs to be exploited to its fullest in order to

achieve optimal performance for a given code.

3.3.1 Instruction-Level Parallelism

ILP is a measure of how many of the operations in a computer program the

compute-hardware can perform simultaneously. Historically, ILP has been closely

associated with instruction pipelining, however advances in processor design

have begun to expose alternative ways to introduce parallelism at the instruc-

tion level. This includes techniques such as: super scalar dispatch, speculative

execution, and out-of-order execution. Super-scalar dispatch allows multiple

instructions to be dispatched to di↵erent functional units on a processor con-

currently. This is exemplified by processors which employ instruction pipelin-

ing, where by multiple instructions are partially overlapped to hide instruction

throughput latency. Out-of-order execution is a technique which allows the pro-

cessor to perform operations in any order that does not violate dependencies,

often reducing the e↵ect of stalls caused by unfulfilled data dependencies. Spec-

ulative execution allows for the issuing of instructions from di↵erent code paths

which the processor predicts may be required. This allows the processor to per-

form computation when it may otherwise be idle. This does, however, come at

the risk of the work being wasted should the result of the instruction not being

needed.

The introduction of hardware level ILP often comes at the cost of increased

CPU design complexity. Techniques such as super-scalar dispatch can often be

determined in software by dependency analysis at compile time. This removes

the need for dedicated CPU silicon, at the expense of increased compilation

and software complexity. This is the approach used by Very Long Instruction

Word (VLIW), to introduce increased levels of ILP and to facilitate increased

CPU performance without increasing hardware complexity. Doing this allows

the transistors saved to be used to improve other areas of functionality.
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3.3.2 Vectorisation

Vectorisation is the theoretical concept represented by SIMD processing in

Flynn’s taxonomy (Section 3.1). A vector processor can be thought of as a

CPU which supports an instruction set allowing for the operation of instruc-

tions directly on vectors of data (one dimensional arrays).

The idea of vector processing was introduced in the 1970s and was a staple

of the supercomputing landscape until the 1990s, after which commodity com-

ponents, that lacked vector processing capabilities, were widely adopted for use

in HPC machines. Current implementations of vectorisation include Streaming

SIMD extensions (SSE), and AVX, the utilisation of which is key to achieving

high Floating-Point Operations per Second (FLOP/s) performance on the ma-

jority of commodity CPU components today. When first introduced, SSE sup-

ported the operation of a single instruction on two 64-bit floating point values.

AVX has since expanded this to four 64-bit floating point values, with acceler-

ated hardware such as the Intel Xeon Phi supporting 512-bit AVX. As SIMD

width increases, so too does the importance of fully utilising it; if a code does

not, each time the vector width doubles, 50 percent of the potential performance

is lost. In order to achieve maximum performance, programmers often rely on

intrinsic instructions. These instructions give programmers explicit control over

how the hardware’s vector registers are used, and which assembly instructions

are generated. However, this increased control does not come without cost, as

the code generated by programmers in this way is often complex, platform spe-

cific, and may not run well on alternative hardware. The code is typically harder

to read, and therefore less maintainable than traditional scalar code. For this

reason auto-vectorisation is often preferred, whereby the compiler takes scalar

code and automatically generates comparable vector code, respecting any data

dependencies.

Many of the most important scientific simulations in use today were written

with little consideration for vector processing, and subsequently exhibit poor

performance on current generations of hardware. This is also true of many
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Inertial Confinement Fusion (ICF) codes, and is one of the issues the work in

this thesis seeks to address.

3.3.3 Multi-Threading

As hardware manufactures and consumers alike are no longer willing to pay

the increasing power costs associated with rising clock frequencies, they are

instead opting to favour increasing numbers of cores per processor as a means

to achieve greater computational performance. Many-core architectures have

decreased per-processor clock-speeds, whilst o↵ering greater performance per

Watt. However, this assumption only holds true if programs are able to make

e↵ective use of the additional processor cores, which can be accomplished by

programming in a multi-threaded capable language. In so doing, a program can

use many threads (typically one per processing element) to distribute application

workloads, with each thread responsible for some sub-task working towards the

global application goal. Many modern architectures also support Simultaneous

Multi-Threading (SMT), often referred to as ‘hyper-threading’. This allows

multiple threads to share the resources of a single physical core, with 2-way SMT

being typical on CPUs. SMT is also commonly found on Graphics Processing

Unit (GPU) architectures, where the degree of SMT is typically much greater

than that of CPU architectures. Historically, such threading was achieved using

pthreads, a library which provides a standard way of writing threaded POSIX

software [81].

Despite the low level explicit control o↵ered by pthreads, the most prominent

way of programming multi-threaded scientific applications, is through the use

of OpenMP – a library which abstracts the use and programming of threads.

It employs the fork-join model (Figure 3.3), where the master thread creates

(forks) additional threads which are used to complete parallel code sections,

once each thread completes its task, it joins the master thread again before

execution is continued. OpenMP is programmed through the use of pragmas,

which allow the programmer to mark regions of code with additional information
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Figure 3.3: Fork-Join Model for Thread-Level Parallelism.

1 #pragma omp p a r a l l e l for schedu le ( dynamic )
2 for ( int i = 0 ; i < num par t i c l e s ; i++)
3 {
4 x [ i ] += ux [ i ] ⇤ weight ;
5 y [ i ] += uy [ i ] ⇤ weight ;
6 }

Figure 3.4: OpenMP Pragma Example to Distribute Work.

about valid ways to run the program in parallel. An example of such pragma

based programming is shown in Figure 3.4. At the start of the loop threads are

forked; the loop iterations can then be distributed between the threads, until

finally the work has concluded and the threads can join again.

CPUs which feature multiple cores of slower clock speeds come with a variety

of advantages, but are not without complication. Typically the CPU chips

which exploit the highest degree of multi-threading feature multiple sockets,

each with an individual processor containing many cores. These may appear

to the operating system as a single processor with many cores, but such multi-

socket designs feature regions of Non-Uniform Memory Access (NUMA). This

means that any cross-socket (or cross memory-controller) memory accesses pay

an increased latency and bandwidth cost, which represents a major performance

penalty. Typically programs need to be written and executed in a NUMA aware

way to get the best performance from modern hardware and to avoid cache

coherency problems such as false sharing. Coherency issues arise when two
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threads share write access to the same data region. When a thread writes to

a shared cache line, all processors must invalidate this row and re-fetch it from

main memory. This can drastically increase memory tra�c and, if undetected,

can cause a serious performance bottleneck.

Programming models like the Compute Unified Device Architecture (CUDA)

and the Open Computing Language (OpenCL) also employ multi-threading by

grouping threads together in work-groups. These work-groups have strict guar-

antees about synchronisation and memory access within a work-group, but of-

fer no guarantees of synchronisation beyond that. Multi-threading in this way

shares many similarities with the approach used by OpenMP, but the implemen-

tation specific details di↵er greatly. The use of OpenCL for multi-threading is

covered in detail in Section 3.4, and exemplified in Chapter 6 where an account

of developing an OpenCL mini-benchmark is presented.

3.3.4 Message Passing

Whilst multi-threaded applications can communicate through shared memory,

this is not typically possible for inter-node communication. Instead, communica-

tion is usually done through explicitmessage passing via standard libraries (such

as the Message Passing Interface (MPI) library). In this paradigm, messages

are sent between nodes over a dedicated communication network; it is on top of

this that many programming models have been built, including Charm++ [52],

HPX [51], Intel’s Concurrent Collections (CnC) [60, 61], and COMP Super-

scalar [106]. These o↵erings are trying to move programmers away from ex-

plicit message passing communication and instead encourage a more conceptual

implementation whilst o↵ering functionality such as fault tolerance and data

partitioning. While MPI is the dominant standard for current inter-node com-

munication, it is also heavily used for intra-node communication. Despite the

advantages of multi-threading, the popularity of message passing for intra-node

communication can be attributed to its general ubiquity and high levels of pro-

grammer familiarity. Some studies have gone as far as showing that this use
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of MPI for intra-node communication is harmful to program runtimes. These

performance penalties come from such factors as the ine�cient use of the avail-

able shared memory, and increased MPI overheads [49, 95]. This has led to the

development of hybrid applications, which use MPI for inter-node communica-

tion, and use OpenMP within a node to fully exploit shared memory. This can

be combined with SIMD execution to fully exploit all levels of parallel execu-

tion [97].

Message passing is often contrasted with the idea of distributed shared mem-

ory; in which physically separated memory architectures can be addressed using

single address space, giving access to all available memory on the machine. This

means explicit memory passing is no longer needed, as the data sharing between

nodes can be done implicitly using the common address space.

3.4 Performance Portability

Performance portability refers to the ideology of having a single application ca-

pable of running successfully across a range of hardware architectures, whilst

still o↵ering reasonable guarantees about application performance. This is-

sue is becoming increasingly important as commodity hardware designs are

begging to diverge and heterogeneous computing is becoming commonplace.

Many researchers have demonstrated the importance of fully utilising accel-

erated architectures, achieving speedups of greater than an order of magni-

tude [5, 79, 104, 114]. It is likely that any code which is unable to exploit this,

will also fail to exploit the increased computational power o↵ered by exascale

systems.

Despite the benefits of portable performance being clear, the ideology has

not yet been widely adopted. The majority of current o↵ering choose to develop-

ment a single source code capable of targeting many platforms. Such a solution

requires maintenance of only a single codebase, irrespective of the number of

platforms being targeted. This means that multiple hand-tuned code versions

31



3. Parallel Hardware and Programming Models

are not required, as may have been typical previously. Some tools are beginning

to support compilation for wider range of hardware, exemplified by the inclusion

of o✏oad support in the OpenMP 4 standard [84].

OpenCL [57] is often thought to be synonymous with portable computing,

as it o↵ers a single source solution whose runtime supports the ability to run

on a range of hardware. During code execution, work-item and work-group

allocation can be tuned at runtime, meaning the granularity of parallelism can be

changed to ensure it is suitable for the target hardware. This model of platform

agnostic execution avoids a dependency being formed between a codebase and

a single hardware technology or vendor. It is this approach that is used for the

accelerator work in this thesis, covered in detail in Chapter 6.

3.5 Benchmarking Platforms

The research discussed in this thesis makes use of a wide variety of di↵erent

hardware and architectures. This Section gives a detailed account of the hard-

ware used and outlines the fundamental di↵erences between them. It was not

possible to use the same hardware for every investigation because of limited

availability, incompatibility issues between hardware and programming tech-

niques, and the general development of hardware over the time span of this

investigation. Whilst performing all experiments on the same hardware may be

desirable, this variety strengthens the work and demonstrates the e↵ectiveness

of the findings on multiple platforms. All reported experiments were repeated

multiple times, with any deviations from the mean being commented on. The

data for the graphically presented results in Chapters 6, 7, and 8 can be found

in Appendices A, B, and C respectively.

3.5.1 Single Nodes

Here we distinguish between the supercomputers used during experimentation,

and the individual hardware components which compose them. Table 3.1 shows
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Intel
X5550 X5650 X5660 E5-2670 E5-2697v2

Cores 4 6 6 8 12
Clock Speed (GHz) 2.66 2.66 2.80 2.6 2.70
Peak GFLOP/s 42.56 63.984 67.2 332.8 518.4
Bandwidth (GB/s) 32 32 32 51.2 59.7
TDP (Watts) 95 95 95 115 130
Instruction Set SSE 4.2 SEE 4.2 SSE 4.2 AVX AVX
Micro-architecture Nehalem Nehalem Nehalem Sandy Bridge Ivy Bridge

Table 3.1: Hardware specifications of the CPUs used in this thesis.

the CPUs used in this thesis, and Table 3.2 shows the GPUs used. Throughout

the peak Giga-Floating-Point Operations per Second (GFLOP/s) performance

for single precision computation is reported, and bandwidth is given as the

peak transfer rate in Gigabytes per Second (GB/s) – as quoted by the manu-

facture. These figures serve as an upper bound for performance, and are rarely

achievable during code operation. The power of each machine is reported as

Thermal Design Power (TDP) in Watts and the clock speed is reported in Gi-

gahertz (GHz). For the OpenCL work which treats a CPU like a GPU, we can

consider the number of cores to be both the number of compute units and pro-

cessing elements. For the work described in Chapter 6 we used a variety of the

CPUs and GPUs described in Tables 3.1 and 3.2 respectively. When comparing

performance results across di↵erent hardware types, it is essential that every

e↵ort is taken to ensure a fair comparison is made. Various works highlight the

importance of such fair comparisons, yet no single metric being accepted as the

universally correct solution [13, 14, 67, 113]. In instances in this thesis where

hardware is directly compared, a combination of age, TDP and cost is used.

3.5.2 Supercomputers

For the work described in Chapter 5 we use two di↵erent supercomputers in the

validation of the model. Minerva, the resident supercomputer at the University

of Warwick; and Sierra, a large scale capability resource located at the Lawrence

Livermore National Laboratory (LLNL). The specification of the two machines

33



3. Parallel Hardware and Programming Models

NVIDIA
C1060 C2050 K20

Compute Units 30 14 14
Processing Elements 240 448 2496
Peak GFLOP/s 933 1288 3520
Bandwidth (GB/s) 102 144 208
TDP (Watts) 189 238 225
Micro-architecture Tesla Fermi Kepler

Table 3.2: Hardware specifications of the GPUs used in this thesis.

Sierra Minerva

Processor Intel Xeon 5660 Intel Xeon 5650
Cores/Node 12 12
Nodes 1849 258
Memory/Node 24 GB 24 GB
Interconnect QLogic TrueScale 4X QDR InfiniBand

Table 3.3: Hardware specifications of Sierra and Minerva.

used in this study are summarised in Table 3.3. For the work described in

Chapter 7 we use ARCHER; a 1.6 Peta-Floating-Point Operations per Second

(PFLOP/s) Cray XC30, housed at the UK National Supercomputing Centre at

EPCC.

3.6 Summary

In this Chapter we have considered the history of parallel hardware, how it is

classified, and how it has evolved. We present a summary of the key features

needed to understand the work in this thesis, with a strong emphasis on hard-

ware parallelism. Exploiting this parallelism is one of the major challenges faced

Archer (Cray XC30)

Processor Intel Xeon E5-2697v2
Cores/Node 24
Nodes 4920
Memory/Node 64 GB
Interconnect Cray Aries Interconnect

Table 3.4: Hardware specifications of ARCHER.
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by HPC, with many current codes failing to fully exploit either multi-threading

or vectorisation – instead solely employing message passing paradigms to utilise

a subset of the parallel computing topology. In the remainder of this thesis we

build on our knowledge of compute hardware and ICF simulation to develop

techniques to help address these issues, with a particular focus on Magnetohy-

drodynamics (MHD) and Particle-in-Cell (PIC) simulations.
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CHAPTER 4
Inertial Confinement Fusion Simulations

Whilst the work detailed in this thesis applies to a range of areas of Inertial

Confinement Fusion (ICF) research, it focuses most strongly on Particle-in-

Cell (PIC) and Magnetohydrodynamics (MHD) simulations. Many of the tech-

niques described are applicable to other simulation types, as demonstrated by

the performance model in Chapter 5. The work in Chapter 6 and Chapter 7

focuses more specifically on PIC codes, but is representative of a wide range of

codes.

4.1 Motivation

In September 2013, the large laser-based inertial confinement fusion device

housed in the National Ignition Facility at the Lawrence Livermore National

Laboratory (LLNL), was widely acclaimed to have achieved a milestone in con-

trolled fusion – successfully initiating a reaction that resulted in the release of

more energy than the fuel absorbed. Despite this success, the ICF community

remains some distance from being able to create controlled, self-sustaining, fu-

sion reactions. ICF represents one leading design for the generation of energy

by nuclear fusion. Since the 1970s ICF has been supported by computer simu-

lations, providing the mathematical foundations for pulse shaping, lasers, and

material shells needed to ensure e↵ective and e�cient implosion.

The UK has a long history of research into high-intensity laser plasma in-

teractions. The UK’s Central Laser Facility is home to some of the world’s

most advanced high power lasers, which can deliver petawatt focused beams,

with approximately 10,000 times more power than the UK National Grid during

picosecond pulses. Developments in the deployment of relativistically intense
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‘long’ laser pulses (to compress fuel) and fast ‘short’ pulses (for ignition) present

significant challenges in computational plasma physics. Plasmas with intense

electromagnetic fields require fully kinetic models of particle distribution in

seven dimensions (three representing space, three representing momentum and

one representing time); and point design for targets requires the coupling of rel-

ativistic kinetic models with long time-scale radiation hydrodynamics codes. As

future fusion codes continue to develop to support plasma turbulence studies, in

order to exploit facilities such as ITER and the National Ignition Facility (NIF),

so too does the complexity of these simulations and the increasing demands on

the supporting supercomputers. Any e↵ort which improves code performance is

valuable; as not only will it facilitate faster scientific discovery, but it will also

aid e�cient use of both experimental laser facilities and simulation equipment.

This Chapter presents a summary of two such simulation codes used ex-

tensively in the UK’s ICF e↵orts, and throughout this thesis: EPOCH, a fully

relativistic particle-in-cell plasma physics code, developed by a leading network

of over 30 UK researchers; and Lare, a leading UK MHD code. A significant

challenge in developing large codes is maintaining e↵ective scientific delivery on

successive generations of high-performance computing architectures. To support

this process, the use of mini-applications, mini-benchmarks, and performance

models is adopted.

4.2 Background

This Section provides a background to scientific simulations in general, and

the specific grid based codes used in this thesis. Both Lare and EPOCH use

an n-dimensional spatial grid to track discretised quantities (such as magnetic

fields). These groupings of points can then be treated as vector fields if required.

The typical way of describing such grids is to track their size in grid cells per

dimension, denoted as N

d

, where d represents a given dimension in a two or

three dimensional space (e.g. N
x

to represent the x dimension). Each grid cell,
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Figure 4.1: A comparison of Array-of-Structs, Struct-of-Arrays, and Array-of-
Structs-of-Arrays data layouts.

typically of type double, represents a configurable region of real space, with the

size and number of grid cells being a runtime parameter which determines the

amount of work the simulation will undertake and the physical domain being

simulated. These codes are run iteratively for a fixed number of timesteps, after

which the simulation completes.

Such simulations are decomposed to run on N processing elements by em-

ploying a spatial decomposition, most typically using the Message Passing Inter-

face (MPI) library. During the decomposition, the physical domain is initially

split between the processors to give even workloads using an algorithm which

minimises the surface-area to volume ratio, as the size of the surface area is

typically strongly correlated with the scale of inter-process communication. Ex-

tra cells of storage are then added to each edge of these decomposed regions,

in which temporary data from neighbouring regions can be stored. This is a

common technique in scientific simulation, and is known as storing ghost cells

(or halo cells). These ghost cells can then be exchanged during communication

phases to resolve any data dependencies.

One consideration for such simulations is the way in which they store the data

required for their operation. Many legacy simulations rely heavily on linked lists

to store data, especially in instances where the data ordering frequently changes,

as linked lists provide a good conceptual fit o↵ering easy insertion and deletion.

While the use of a linked list does not necessarily present a problem, a näıve
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implementation of a linked list may o↵er no guarantees of contiguous memory

accesses, and often lead to a fragmented memory space. This fragmentation

can significantly impact code performance, as modern hardware is optimised

for contiguous memory loads, with each issued memory load fetching an entire

cache line. If data is not tightly packed in memory, non-required data will be

brought in from main memory – thereby wasting memory bandwidth.

The most common way to avoid this problem, is to use array-based data

stores. As an array has strong guarantees on the memory-use being contigu-

ous, fragmentation is unable to occur in the same way. Typically, this means

storing an array of custom objects (or structs), a technique known as an Array-

of-Structs (AoS). By storing program data as an AoS, a single memory stream

is required by the prefetcher, as well as providing a simplified programming

interface. This may, however, come at the cost of decreased Single Instruction,

Multiple Data (SIMD) e�ciency; when processing data from multiple objects

in AoS, memory accesses will be strided causing non contiguous memory ac-

cesses. Two alternative approaches to array-based storage include a Struct-of-

Arrays (SoA) and a more complex hybrid, Array-of-Structs-of-Arrays (AoSoA))

(which aims to combine the benefits of both SoA and AoS). A brief overview

of these memory layouts is found in Figure 4.1. For the SoA data layout, sin-

gle properties for multiple data elements are stored together in an array. This

means that under SIMD operation, single properties from multiple elements

can be loaded in one contiguous and aligned load, at the expense of tracking a

di↵erent memory stream per property required. This eliminates any potential

for gather/scatters, and is often favourable when only a few data properties are

required. With AoSoA, groups of N elements of each property are stored to-

gether, in order, where N is typically a function of vector length. This approach

attempts to combine the benefits of both SoA and AoS with aligned loads and

few memory streams, but comes at the expense of vastly increased complexity

and an indexing overhead.
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4.3 Lare

Lare is a multidimensional MHD code, the core solver of which focuses on solv-

ing the idealistic MHD equations (given in Equations 4.1–4.4) using a predictor-

corrector scheme based on control volume averaging. This scheme uses a stag-

gered Eulerian grid in order to accurately reproduce the shocks found in MHD

reactions. The equations which define MHD describe the relationship between

electrically conducting fluids and the e↵ects they have on surrounding magnetic

fields. In these equations the magnetic field is represented by B, the mass

density is represented by ⇢, velocity is represented by v, thermal pressure is rep-

resented by P , resistivity is represented by ⌘, and the specific heat ratio (with

a typical value of 5/3) is represented by �.

D⇢

Dt

= �⇢r · v (4.1)

Dv

Dt

=
1

⇢

(r⇥B)⇥B � 1

⇢

rP (4.2)

DB

Dt

= (B ·r)v �B(r · v)�r⇥ (⌘r⇥B) (4.3)

D"

Dt

= �P

⇢

r · v +
⌘

⇢

j

2 (4.4)

Additionally, the current density (j) and internal energy (") are defined as:

j = r⇥B (4.5)

" =
P

⇢(� � 1)
(4.6)

In solving these equations, Lare first takes a second-order accurate Lagrangian

step to update the velocities, the magnetic fields, and the artificial viscosities;

a process performed by evaluating derivatives on the original grid.

An additional step is then required to remap the properties back to the

Eulerian grid. This step is known as the original Eulerian Remap, during which

a series of one-dimensional sweeps map the system properties back onto the
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1 DO
2 IF ( s tep .GT. n s t ep s ) EXIT
3 . . .
4 CALL s e t d t
5 CALL l a g r ang i an s t ep
6 CALL eu l e r ian remap ( i )
7 CALL boundar ies
8 . . .
9 ENDDO

Figure 4.2: The main compute loop of Lare, operated over for a fixed number
of iterations.

original Eulerian grid using a van Leer [112] piecewise linear reconstruction. In

so doing, this remap fully conserves mass, internal energy, and momentum –

ensuring simulation accuracy is maintained.

This method shares many similarities with Arbitrary Lagrangian-Eulerian

(ALE) codes, a technique used in both ICF research, as well as other fields such

as hydrodynamics and finite volume simulation. ALE attempts to o↵er the

benefits of both Lagrangian and Eulerian schemes, typically allowing for mesh

movement to be of arbitrary velocity. Like the scheme used in Lare, ALE codes

typically split the time update into a Lagrangian step to advance the simulation,

and then later remap the grid. Unlike the scheme used in Lare however, this can

be to an arbitrary grid and does not have to be done every time step; instead

the remap can be deferred until the grid is deemed to be su�ciently distorted.

An ALE extension to Lare is currently under development, henceforth referred

to as ODIN. The development of ODIN would allow the costly remap step to be

done less frequently, whilst also expanding the set of physical simulations the

two codes are able to reproduce. Some initial performance predictions for the

operation of ODIN are presented in Chapter 5.

4.3.1 Computational Overview

As with all computational simulation, it is highly important to gain a good

understanding of their operation to ensure all decisions and changes are well in-

formed. In addition to understanding the physics used in Lare, this Section also
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Subroutine Percent Runtime

remap y 27.81
remap x 22.33
lagrangian step 18.89
energy account 15.94
set dt 8.38
eulerian remap 1.50
remap z 0.75
other 4.40

Table 4.1: A profile of Lare runtime composition.

provides the information needed to gain an understanding of how Lare is ex-

pressed as code, and how it operates. In so doing we can gain valuable insight

into how it may perform on current and future generations of compute hardware,

as well as understand how certain changes may a↵ect its operation.

The main loop of Lare is shown in Figure 4.2, and highlights the Lagrangian

step and the Eulerian remap at the heart of the algorithm which, when com-

bined, dominate the application runtime. During code operation, a fixed size

grid of size N

x

⇥N

y

is run for a given number of iterations. As previously de-

scribed in Section 4.2 and as is typical with most grid based simulations, work

is distributed through an MPI domain decomposition to ensure each processing

element has a comparable workload.

As may be expected, the Lagrangian step contains the majority of the com-

putationally intensive physics, and subsequently representing a significant pro-

portion of the runtime and the majority of the floating point operations. The

Eulerian remap also involves a significant amount of computation, data move-

ment and a series of near-neighbour exchanges needed to ensure neighbouring

cells hold the appropriate values. Table 4.1 shows typical runtimes for each Lare

sub-component, with 34.83% of the time being attributed to Lagrangian step

(composed of lagrangian step and energy account), and 52.39% attributed to the

Eulerian remap (composed of remap x, remap y, remap z and eulerian remap).

This timing data gives us insight into how changes to di↵erent code segments

may influence the overall application runtime.
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In Chapter 5 we build on this knowledge of Lare and present the development

of a performance model capable of accurately predicting both compute and

communication times to greater than 90 percent accuracy, as well as making

predictions about the runtime performance of the ALE based code variant,

ODIN. Not only does this work highlight the importance of code understanding

for ICF simulations, but also underlines the power of performance modelling.

4.4 EPOCH: Extendable PIC Open Collabora-

tion

EPOCH [4] is a nationally funded, fully relativistic Electromagnetic PIC plasma

physics code, developed by a network of over 30 UK researchers. It is the

UK’s leading PIC code, a class of codes which are amongst the most widely

used computational tools in plasma physics research, and are crucial for further

understanding of both ICF and the field of laser-plasma interactions in general.

At the core of the EPOCH codebase are particle push and field update algo-

rithms developed by Hartmut Ruhl, first seen in the PSC code [100]. These have

then been extended to include advanced features such as particle collisions, ioni-

sation and Quantum Electrodynamics (QED) driven coherent radiation. During

code operation, EPOCH tracks the electric and magnetic fields generated by the

motion of (pseudo)particles, and is capable of reproducing the full range of clas-

sical microscale behaviour required to accurately simulate a collection of charged

particles. To do this, EPOCH uses the Finite-Di↵erence Time-Domain (FDTD)

method to solve Maxwell’s equations numerically. This scheme uses a modified

leapfrog method, in which the field is updated at both the full timesteps (n), and

the half timestep (n + 1
2 ). Initially, the magnetic fields (B) and electric fields

(E) are advanced to the half timestep by using currents calculated at timestep

n. Once the particles have been pushed (Equation 4.11), the fields can then be

updated to the full timestep (Equations 4.7–4.10). During this field update the

electrical current is represented by J , and the speed of light is represented by
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c. �t is the Courant-Friedrichs-Lewy (CFL) limited time-step used to advance

the simulation [22].

En+ 1
2 = En +

�t

2

✓
c

2r⇥Bn � Jn

✏0

◆
(4.7)

Bn+ 1
2 = Bn � �t

2

⇣
r⇥En+ 1

2

⌘
(4.8)

Bn+1 = Bn+ 1
2 � �t

2

⇣
r⇥En+ 1

2

⌘
(4.9)

En+1 = En+ 1
2 +

�t

2

✓
c

2r⇥Bn+1 � Jn+1

✏0

◆
(4.10)

In order to push the particles, the particle pusher solves the relativistic equation

of motion under the Lorentz force [69] for each particle in the simulation. The

particle trajectory is calculated to second order accuracy using the electric and

magnetic fields at the half time-step (as above). Each particle is then updated

(pushed) according to:

p

n+1
i

= p

n + q�t

h
En+ 1

2 (xn+ 1
2 + v

n+ 1
2 ⇥Bn+ 1

2 (xn+ 1
2 )
i

(4.11)

Where p is the particle momentum, q is the particle charge, x is the particle

position, and v is the particle velocity.

4.4.1 Computational Overview

Conceptually, the collisionless PIC algorithm implemented in EPOCH can be

thought of as performing the following four discrete steps (shown as pseudocode

in Figure 4.3):

1. Move the particle across the physical domain, proportional to particle

momentum;

2. Update the particle’s momentum, based upon the local electric fields, mag-

netic fields, and particle shape;

3. Deposit the generated current onto the grid, to act as an intermediary for
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for all species do
for all particles do

⇤ Move particles.
position  position + momentum

⇤ Update momentum based on field e↵ects.
e cell  bpositionc
for all neighbours of e cell do

calculate electric field e↵ects
end for

b cell  bposition + 0.5c
for all neighbours of b cell do

calculate magnetic field e↵ects
end for

momentum  momentum + electric and magnetic field e↵ects

⇤ Calculate and deposit currents.
for all neighbour cells do

calculate current
deposit current

end for

end for
end for

Figure 4.3: Pseudocode depiction of EPOCH’s core PIC algorithm.

Bx

Ey

Ex

Ez

Bz

By

Figure 4.4: An example of a Yee staggered grid.
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particle-particle interactions;

4. Update the electric and magnetic fields according to the current deposited.

Using this approach it is possible to reproduce the full range of classical micro-

scale behaviours of a collection of charged particles. Like many codes of this

type, EPOCH is Fortran-based and parallelised using MPI. Dynamic load bal-

ancing options exist and MPI-IO allows checkpoint restart on an arbitrary num-

ber of processors. Legacy simulation codes designed and implemented in this

way are now exhibiting poor utilisation of modern hardware features such as

vector operations, and fail to fully exploit all levels of available parallelism – a

problem which is exacerbated by the energy-e�cient benefits available through

heterogeneous computing. In EPOCH, particles are densely packed, with a

single particle spanning multiple grid cells (typically 3⇥3). EPOCH repre-

sents electrical and magnetic fields on a staggered Yee grid [116], as shown

in Figure 4.4. During the momentum update (step 2), a 25-point stencil in each

of 3 dimensions is read per field, and used to update the particle momentum;

the scale of these memory operations are a significant contributor to the overall

application runtime. Once the current contributions have been calculated (step

3), they are then stored into a global array at indices determined by the grid

vertices touched during particle movement. This write to multiple indices of a

global array limits the possibility of particles simultaneously depositing current

without the need for atomics or other concurrency control. It is this current de-

position that most strongly di↵erentiates PIC from alternative methods; unlike

molecular dynamics, for example, PIC features no particle-particle interactions,

instead approximating these using the Yee grid as an intermediary.

Table 4.2 shows the distribution of runtimes for a typical EPOCH run. We

can see that the large kernel which represents the core push algorithm dominates

the runtime, as this includes: the movement of the particles (step one); the

update of the particles (step two); and the current deposition (step three). The

next biggest contributor is the field updates, which represents the final step of
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Code Segment Percent Runtime

Particle Push 81.63
Electric / Magnetic Field Update 11.49
Boundary Conditions 4.02
Other 2.86

Table 4.2: A profile of EPOCH runtime composition.

the algorithm.

Finally, as point of clarification, a range of PIC codes exist, and the work pre-

sented here most closely applies to fully relativistic PIC codes such as EPOCH,

where Maxwell’s equations are solved using FDTD methods. Other classes of

code include those which utilise gyrokinetic equations, or those which employ

Fourier transforms to operate in the time domain. Whilst many of the findings

presented here may apply to these, no special consideration is made for them.

4.5 Summary

This Chapter o↵ers some background into the importance of ICF simulation

codes and their operation. It shows the importance of the UK’s role in both ICF

research and in shaping the face of renewable energy. We present an overview

of the relevant simulations (Lare and EPOCH), and give a background to how

such simulations typically operate. We detail the governing equations, and give

a conceptual overview of their implications with a focus on how this a↵ects the

codes computational performance. A key theme throughout this thesis is the

importance of understanding code performance, and this Chapter hopes to give

an insight for the codes in question. By applying the knowledge of the codes

presented here, combined with the theory laid out in Chapters 2 and 3, a good

understanding of code performance, and changes needed to improve it can be

gained.
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CHAPTER 5
Performance Modelling of Magnetohydrodynamics

Simulations

Performance modelling is the prediction of code runtime based on inferences

about the behaviour of the application, and the performance characteristics of

the underlying computing system. This concept becomes more important with

the increasing complexity of modern architectures, and the rise of heterogeneous

computing. It is important to ensure that such resources are used e↵ectively,

and given the highly parallel Single Instruction, Multiple Data (SIMD) nature

of many-core units, such as Graphics Processing Units (GPUs) and the Intel

Xeon Phi product line, this may not be a straight forward task [38, 85, 101].

By being able to accurately predict the runtime of a code for a given archi-

tecture, it is not only possible to make more e�cient use of the hardware, but

code performance can also be rapidly compared for a variety of di↵erent archi-

tectures. Furthermore, results can be extrapolated past existing core counts to

make predictions and to reason about code performance at scale. In order to

predict runtime performance, application behaviour must be analysed and the

performance characteristics of the target system must be well understood.

This Chapter describes the development of a performance model for the 2-

dimensional variant of Lare, a representative plasma physics application used

in Inertial Confinement Fusion (ICF) research. Performance models are a vital

tool used by the High Performance Computing (HPC) community in order to

predict the runtime of an application. These predictions can then be used to

aid procurement decisions, identify optimisation opportunities, or to predict

the behaviour of an application running on a hypothetical future architecture

at scale [56].
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5.1 Development of a Performance Model

We directly build upon the process discussed in Section 2.5 to develop a perfor-

mance model capable of fully representing Lare. In order to fully understand the

runtime characteristics of Lare, the code was profiled for both serial and parallel

runs. This quantifies the time spent in each subroutine, and provides a metric

which guides the appropriate level of e↵ort for each code section during the cre-

ation of the simulation. To construct a model using SST/macro, a skeleton of

the code that includes the main areas of compute and communication has to be

constructed. As the generation of a comprehensive skeleton application can be a

non-trivial process, a small tool was written to facilitate this. The tool performs

static analysis on the Fortran source code, and transforms this information into

a SST/macro skeleton model. The tool parses the Fortran source code line by

line, splitting the line into tokens based on whitespace. These tokens are then

matched against an in-built list of keywords, identifying areas such as subroutine

declarations and invocations. Once a keyword is matched, the line is processed

and added to the model. Subroutine declarations are parsed and replicated in

the skeleton code. These subroutines are then populated by any function calls

made within them. One of the key benefits of the tool is that it identifies

Message Passing Interface (MPI) communications and is able to flag these to

the user and input them into the skeleton. The tool is able to auto-complete

much of the information about the MPI call needed by the SST/macro API,

leaving only the size of the communication bu↵er to be provided by the user.

In addition to the skeleton, SST/macro requires machine specific details to be

specified, such as: topology, network bandwidth, and on and o↵-node latencies.

In order to accurately populate the skeleton application, the main contributors

of runtime need to be identified. By profiling Lare and combining this with

our existing understanding, it is clear that the two most significant contributors

are the Lagrangian step and the Lagrangian remap (as previously discussed in

Table 4.1). By combining these two steps, an equation that accurately and
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File Name Subroutine w
g

Term

diagnostics.f90 energy account w

energy account

lagran.f90 lagrangian step w

lagrangian step

lagran.f90 predictor corrector step w

predictor corrector

xremap.f90 remap x w

remap x

yremap.f90 remap y w

remap y

zremap.f90 remap z w

remap z

remap.f90 eulerian remap w

remap remainder

diagnostics.f90 set dt w

set dt

Table 5.1: The grind times used in modeling Lare, including their relative loca-
tion in the source code.

concisely summarises the total runtime of Lare can be developed, as shown in

Equation 5.1.

T

total

=
iterationsX

i=0

(t
lagrangian step

+ t

remap

) (5.1)

In order to make use of this equation, an incremental approach to building a

model was taken, starting with the construction of a serial model.

5.1.1 Serial Model

For a serial run of Lare, there is no inter-process communication – the runtime

is singularly representative of the compute, allowing us to apply Equation 5.2,

which can be derived from Equation 2.6 (Section 2.5) by reducing the T

comms

term to 0.

T

total

= T

compute

(5.2)

This equation can be decomposed further. The term T

compute

can further be

broken up into its subcomponents, as shown in Equation 2.7. A table listing the

relevant grind times for Lare can be found in Table 5.1. The relevant w
g

times

can be derived by running a version of Lare instrumented with timers. Using

these values, a model can be developed which is capable of predicting serial

runtime to an exceptionally high level of accuracy, using only Equation 5.1.
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5.1.2 Parallel Model

Once a serial model has been developed, a parallel model can then be considered

in the form shown in Equation 2.6. Lare’s communication is dominated by two

MPI function types: send-receives, and all reduces. The send-receive func-

tions are used to swap neighbour cells, whilst the reduction operations collate

data. By taking the sum of the time taken by these operations, the communi-

cations time can be represented as:

T

comms

=
X

t

Sendrecv

+
X

t

Allreduce

(5.3)

During the point-to-point communications, the amount of data sent is dependent

on the grid size set at compile time. The grid undergoes a coarse decomposi-

tion in two dimensions, and is distributed among the processors. This method

of decomposition is performed with the aim of minimising the surface-area-to-

volume ratio, which in turn increases the ratio of computation to communi-

cation. This decomposition strategy is replicated in the model by an explicit

surface-area-to-volume calculation, with SST/macro simulating an exact copy

of the communications. Once all the required terms have been identified, they

can be incorporated into the model. In order for SST/macro to accurately sim-

ulate communications, it requires values for the latency and bandwidth of the

target system. These values can be found experimentally with a set of micro-

benchmarks that are distributed with SST/macro.

Figure 5.1 shows elements of both the model and original Lare source code

for two methods, dm x bcs and remap x. It compares the original source to the

equivalent representation in the model. In Figure 5.1 (a) we see the dm x bcs

subroutine that features anMPI Sendrecv. In (b) we can see this has been trans-

lated to the equivalent SST/macro MPI call, to be dealt with by the simulated

network. Similarly (c) shows an area of compute performed by the original

source, which is then replaced by a grind time (w
g

) based calculation in (d)

(represented as compute(t) in Figure 5.1).
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(a) Original Fortran dm x bcs Subroutine

1 SUBROUTINE dm x bcs
2 . . .
3 CALL MPI SENDRECV(dm(nx�1, 0 : ny+1) , ny+2, mpireal , &
4 proc x max , tag , dm(�1 , 0 : ny+1) , ny+2, mpireal , &
5 proc x min , tag , comm, status , e r r code )
6 . . .
7 END SUBROUTINE dm x bcs

(b) Model dm x bcs Subroutine

1 void dm x bcs ( int rank ) {
2 . . .
3 mpi�>sendrecv (ny + 2 , sstmac : : sw : : mpitype : : mpi rea l , \
4 proc x max , tag , ny + 2 , sstmac : : sw : : mpitype : : mpi rea l , \
5 proc x min , tag , world ( ) , s t a t ) ;
6 . . .
7 }

(c) Original Fortran remap x Subroutine

1 SUBROUTINE remap x ! remap onto o r i g i n a l Euler ian g r i d
2 . . .
3 DO i y = �1, ny+2
4 iym = iy � 1
5 DO i x = �1, nx+2
6 ixm = ix � 1
7 . . .
8 ENDDO
9

10 ENDDO
11 . . .
12 END SUBROUTINE remap x

(d) Model remap x Subroutine

1 void remap x ( int rank ) {
2 . . .
3 sstmac : : timestamp t ( remap x w ⇤ nx ⇤ ny ) ;
4 compute ( t ) ;
5 . . .
6 }

Figure 5.1: Code examples comparing original source code with its representa-
tion in the model, including a w

g

based compute call and a SST/macro MPI
call.
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5.2 Validation

In order to validate the model, application runtimes are compared with the

predicted simulation runtimes across a variety of grid sizes and processor counts

on 2 di↵erent machines: Minerva and Sierra; the specifications of which are

summarised in Section 3.5. For Sierra, version 12.0 of the Intel compiler was

used in conjunction with MVAPICH2 version 1.7. For Minerva, version 12.0 of

the Intel compiler was used in conjunction with OpenMPI 1.4.3.

5.2.1 Weak Scaled Problem

In the practice of weak scaling, the grid size is increased with the processor

count with the aim of keeping the compute-per-processor cost fixed. This is

the approach taken for solving increasingly di�cult problems in a fixed amount

of time. As the processor count increases, more communication between grid

cells is required, leading to a general increase in communication time. As the

compute per processor remains the same throughout, it can be expected that

the w

g

values will not change, allowing us to be confident of the predictions for

compute time.

Table 5.2 presents a comparison of the experimental runtimes against predi-

cated run-times for a weak scaled problem with 3,000,000 cells per core, running

for 100 iterations. The table shows that the model is able to accurately pre-

dict the runtime to an accuracy of greater than 90%. The predicted runtime

being consistently slightly lower than the experimental time can be attributed

to a small percentage of the runtime behaviour not being incorporated in the

prediction, such as the set up costs, which are not captured by the model.

As the processor counts increase, it is possible that the model may begin to

over-predict, but for reasonable node count the current model exhibits su�cient

accuracy. The accuracy of the models presented in this Chaptercould be further

improved by the inclusion of all elements from the parent code, as well a more

detailed exploration of values used to prime the models.
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Nodes Grid Size Time (s) Prediction (s) Error (%)

1 6000 543.10 527.03 -3.05
4 12000 554.90 528.57 -4.98
9 18000 560.63 541.55 -3.52
16 24000 569.41 549.06 -3.71
21 30000 570.08 551.14 -3.44
36 36000 578.24 558.15 -3.60

(a) Minerva

Nodes Grid Size Time (s) Prediction (s) Error (%)

1 6000 480.70 465.46 -3.29
4 12000 485.26 466.17 -4.10
9 18000 493.59 466.83 -5.73
16 24000 498.32 476.30 -4.62
21 30000 499.07 478.43 -4.31
36 36000 499.01 480.49 -3.85
49 42000 499.47 481.98 -3.63
64 48000 499.15 483.68 -3.20
81 54000 499.31 487.22 -2.48
100 60000 499.58 488.59 -2.25
121 66000 500.00 490.12 -2.02
144 72000 500.57 491.54 -1.84
169 78000 500.29 492.91 -1.50
196 84000 500.27 495.44 -0.98
225 90000 500.85 496.88 -0.80
256 96000 500.29 499.44 -0.17

(b) Sierra

Table 5.2: A comparison of the runtimes and simulation times of Lare on (a)
Minerva and (b) Sierra for a weak scaled problem.

5.2.2 Strong Scaled Problem

Strong scaling describes the process of solving a fixed problem size with an

increasing number of processors. As the processor count increases the aim is

to decrease the runtime. A comparison between experimental runtime and pre-

dicted runtime is shown in Table 5.3 for a 16,800 ⇥ 16,800 strong scaled problem,

running for 100 iterations. This problem size was chosen to give a su�ciently

long runtime, but still fit in the available memory.
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Nodes Time (s) Prediction (s) Error (%)

8 518.01 532.85 2.78
12 348.16 364.61 4.51
16 262.74 277.77 5.41
24 172.01 189.51 9.24
32 128.67 133.48 3.61

(a) Minerva

Nodes Time (s) Prediction (s) Error (%)

16 251.06 236.00 -6.38
32 119.60 121.78 1.79
64 61.02 64.16 4.90
128 33.38 35.55 6.12

(b) Sierra

Table 5.3: A comparison of the runtimes and simulation times for Lare on (a)
Minerva and (b) Sierra for a strong scaled problem.

For all problems sizes, across both weak and strong scaling, the performance

model is able to predict the runtime to an accuracy of greater than 90% for a

range of core counts. This is a significant contribution which gives us confidence

in our model when using it to make further predictions.

5.3 Evaluation of Future Optimisations

An Arbitrary Lagrangian-Eulerian (ALE) generalisation of Lare is currently

under development (ODIN). This would mean the requirement to remap each

iteration will no longer hold, and instead a move to an ALE method would allow

the remap step to only be done once the grid becomes su�ciently deformed. By

performing an investigation into the expected performance of a hypothetical

ALE variant of Lare, a valuable insight into the potential performance can be

gained.

By moving to an ALE code, the frequency of the remap can now be varied.

A metric could be developed to formally determine the optimum value of this

frequency (F
r

), but initial indications show that remapping will be required, on
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average, once every tenth iteration (F
r

= 0.1) over the course of the simulation.

By varying the frequency of the remap, the code will be a↵ected in two main

ways. Firstly, it will significantly reduce the general cost per iteration in terms

of compute, as the remap step will no longer be present. Secondly, reducing the

frequency of the remap step reduces the frequency of inter-process communica-

tion. In changing the code in this way, the total cost is no longer as described

in Equation 5.1, but instead includes a term to denote the new remap, as in

Equation 5.4.

T

total

= T

lagrangian step

+ T

remap new

(5.4)

This equation can then be reduced further, as shown in Equation 5.5.

T

total

=
iterationsX

i=0

(t
lagrangian step

) +
iterations⇤FrX

j=0

t

remap new

(5.5)

In order to express the new total cost, relative to the old, Equation 5.1 can be

extended to include terms for the relative costs, as shown in Equation 5.6.

T

total new

= (T
lagrangian step

⇥ C

lagrangian step

) +

(T
lagrangian remap

⇥ C

remap new

⇥ F

r

) (5.6)

If no change to the cost of the Lagrangian step (C
lagrangian step

= 1) is assumed,

an investigation into how the frequency of remap and the cost of remap a↵ect the

overall performance can be performed. Table 5.4 shows the percentage decrease

in runtime obtained for di↵erent values of F
r

and C

remap new

for an 8,192 ⇥

8,192 problem on 36 processors performing 100 iterations, in which the remap

step contributes just under 65% of the runtime.

From Table 5.4 it can clearly be seen that reducing the remap frequency

o↵ers large performance gains as the remap frequency decreases for reasonable

values of C
remap new

. Optimistic projections for this optimised code suggest
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F

r

1 0.5 0.25 0.2 0.1 0.001

C

r
e
m

a
p
n
e
w

1 0.00 32.15 48.22 51.44 57.87 64.24
2 -64.30 0.00 32.15 38.58 51.44 64.17
4 -192.90 -64.30 0.00 12.86 38.58 64.04
5 -257.20 -96.45 -16.07 0.00 32.15 63.98
10 -578.69 -257.20 -96.45 -64.30 0.00 63.66

Table 5.4: Percent decrease in runtime for di↵erent values of F
r

and C

remap new

for a 8,192 square problem on 36 processors performing 100 iterations.

that it will have a similar cost for the lagrangian step (C
lagrangian step

= 1), a

remap cost that is around twice as large (C
remap new

= 2) and allow the remap

to be performed on average every ten steps (F
r

= 0.1). Table 5.4 shows that

this may o↵er a speedup greater than 50%.

5.4 Summary

This Chapter presented a predictive performance model for Lare, a Magneto-

hydrodynamics (MHD) code developed by, and maintained at, the University

of Warwick. This model allows for the accurate prediction of Lare’s runtime

on a variety of platforms; it has been demonstrated to be accurate to within

10% of the observed runtime on two clusters, a commodity cluster located at

the University of Warwick and a 360 TFLOP/s capability resource located at

the Lawrence Livermore National Laboratory (LLNL). The model was shown

to perform well for both weak and strong scaling over a wide range of core

counts. The model has also been used to provide a forward look at possible

optimisations in the Lare code base, with an evaluation of the gains that may

be expected. This model could easily be extended to cover the 3-dimensional

variant of Lare, with the techniques used being applicable to all such similar

codes.

A key theme for this Chapter is understanding the operation of a code and

the ability to determine how di↵erent hardware architectures will a↵ect this.

As the range of diverse hardware continues to increase, it is important to un-
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derstand the ways which code can make e�cient and e↵ective use of it. An

increasing trend in HPC research is the need for portable performance, some-

thing which is nearly impossible without a solid understanding of both the code

and how it is likely to map to the underlying hardware.
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CHAPTER 6
Performance-Portable Plasma Physics Simulations

The plasma physics applications required by many High Performance Comput-

ing (HPC) centres are expensive to produce, in part due to the highly complex

nature of the mathematics involved, as well as the desired ability to support a

wide range of simulations within a single software package. Developing such an

application (a process which can be spread over many years, or even decades)

also represents a significant investment, often including the creation of novel

algorithms which must be rigorously tested by domain experts and computer

scientists before the application can be deployed into a production environment.

It is therefore important to such centres that codes remain usable for as long as

possible, to maximise the return on their investment.

Many such codes were written to target traditional HPC clusters comprised

of a large number of high-performance serial cores connected via some network-

ing interface. As such they have been engineered to ensure e�cient inter-node

message passing patterns and scaling behaviours, but are not likely to be well

prepared for the many forms of on-node parallelism that typify the most recent

and future architecture designs [27]. It is therefore crucial that codes are re-

visited to ensure both: portability between the di↵erent architectures available

today; and continued scalability on the architectures of tomorrow.

Since it is not feasible to rewrite an entire production application from

scratch for each new technology, it is important to understand how to intro-

duce the desired portability and future-proofing in an incremental manner,

and to do so without becoming tied to a proprietary language or program-

ming interface. To this end, a case study detailing the porting of a production

plasma physics code to accelerator architectures using the Open Computing
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Language (OpenCL) [57], one of many available open standards for targeting

accelerators [82, 83, 84], is presented.

In this Chapter we aim to develop an understanding of techniques which

allow legacy Fortran codes (that are typically serial in nature), particularly

Particle-in-Cell (PIC) plasma physics applications, to benefit from the increasing

amounts of on-node parallelism present in emerging HPC architectures. The

utility of OpenCL for future-proofing a production application, and the extent

to which accelerator hardware can lead to application speedups in the PIC

domain is presented.

6.1 Background

As previously discussed in Chapter 4, the core algorithm of EPOCH features

a large amount of inherent parallelism: the calculations for the position and

momentum of each particle are independent, and the electric and magnetic fields

remain constant between loop iterations. However, the current accumulation

step contains a write-conflict; any number of particles (which are close in space)

may attempt to update the charge for the same grid point. This conflict prevents

the loop from being parallelised in a näıve fashion (e.g. via the insertion of

pragmas, or source-to-source translation), and necessitates some form of global

synchronisation between work-items, in order to ensure that no two work-items

can update the same cell simultaneously.

When EPOCH (and many similar codes) were originally developed, such fac-

tors did not need consideration – during single threaded scalar execution, the

grid updates of multiple particles cannot conflict with one another. As hard-

ware designs have become increasingly focused on parallel execution, inherently

serial algorithms such as this will become more of a performance bottleneck.

Indeed, the issues we encounter with EPOCH’s current accumulation step are

not specific to OpenCL, or to accelerators: the write-conflict complicates the

use of parallelism on CPU and GPU architectures alike.
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The extensible nature of EPOCH constrains the set of allowable algorithmic

implementations, limiting the extent to which it is allowable to change the core

algorithm, a consideration not held by other PIC applications. An example of

this is that EPOCH’s algorithm is required to ensure that the electric fields

satisfy Poisson’s equation, a condition that many non-relativistic codes do not

have to meet. In this Chapter, we seek to determine whether these relativistic

algorithms can benefit from the levels of parallelism present in accelerator ar-

chitectures, or whether it will be necessary to adopt a fundamentally di↵erent

approach.

Open standards such as OpenMP [83], OpenCL [57], and OpenACC [82]

provide application developers a greater level of portability than third-party

libraries and languages, since they are supported by multiple compilers and on

multiple architectures. Such standards may also provide some level of future-

proofing, with each updated specification introducing new constructs required

to exploit recent architectural changes (e.g. OpenMP is adding support for the

vectorisation of loops [59] and o✏oading computation to accelerators [84]). How-

ever, a common criticism of these standards is that although they guarantee

functional portability, they make no guarantees of performance portability (i.e.

the ability of a single source code to achieve good levels of performance on a wide

variety of hardware). The development of performance-portable OpenCL codes

has been the subject of previous work [28, 62]; including work in which OpenCL

is utilised for the acceleration of wavefront [89] and molecular dynamics [88]

codes.

The use of Graphics Processing Unit (GPU) architectures in the PIC domain

has been explored in previous work. The importance of carefully partitioning the

grid space has been discussed by Joseph et al., concluding that an e�cient GPU

PIC solution requires fine tuning and extended programmer e↵ort [50]. They

also discuss the importance of e�cient use of shared memory on GPUs – this

feature is not available on x86-based platforms (e.g. Central Processing Units

(CPUs) and Intel Xeon Phi coprocessors), and may therefore negatively impact
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the ability to o↵er portable performance. Stantchev et al. present a range of

algorithms to perform grid interpolation, and discuss a range of potential issues

including shared memory and thread contention [105]; whilst Burau et al. also

show that PIC solutions have been shown to scale across multiple accelerators

while maintaining numerical stability [17].

6.2 OpenCL Implementation

In the original EPOCH code base, and as shown in Figure 4.3 (Section 4.4), the

push particles subroutine consists of a deep loop nest spanning around 600

lines of code. This is reasonably typical of large legacy codes that have been

optimised for serial execution, exhibiting several properties that map well to

traditional CPU architectures – in EPOCH’s case, particle data are stored in a

linked list of structs, and are read/written only once in the entire loop, in order

to improve cache performance. Such optimisations may actually be detrimental

to performance on modern, parallel architectures: large kernels typically require

many registers, and may cause register spilling; grouping dependent and inde-

pendent operations in a single loop may completely prevent parallelisation (as

explained in Section 6.1). Typically, array based data stores are better suited

to SIMD execution. To address these concerns, the main kernel is fissioned into

three code portions, corresponding to the algorithmic steps discussed previously

in Section 4.4.1:

1. Moving the particles;

2. Updating particle momenta;

3. Updating the current.

The overhead of kernel fission in this case is relatively low. It requires only a

small number of values to be recalculated between kernels, and allows the appli-

cation of di↵erent optimisations to the three di↵erent kernels. It also separates
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the update conflict from the majority of the compute, and the same fissioning

process could therefore enable the use of auto-vectorisation/OpenMP on CPUs.

6.2.1 Particle Move

After loop fission, the particle move step is simple to represent in OpenCL. A

single particle is assigned to each OpenCL work-item, and the OpenCL runtime

is allowed to decide upon the best work-group size for a given device. Since

there is no explicit use of shared memory, or other architecture-specific features,

such a kernel design is expected to exhibit portable performance across various

hardware types. The kernel is memory bound – it simply reads in particle

positions and momenta, performs a small number of floating-point operations,

and then writes out the new positions – and would therefore be expected that

its performance will scale with memory bandwidth.

The only optimisations employed in this kernel concern the original particle

data layout used by EPOCH. Whereas the original Fortran code uses a linked list

of particle structs, the OpenCL implementation stores particle data in a Struct-

of-Arrays (SoA) layout and thereby ensure that memory accesses to particle

data are coalesced. Figure 6.1 shows an example of an OpenCL kernel, the

structure of which is representative for all kernels used in this investigation,

with an instance of the kernel being launched per work item.

6.2.2 Field Calculation

The second step of the particle push, in which particle momenta are updated

based on the surrounding electric and magnetic fields, is also data-parallel fol-

lowing fission. However, unlike the particle move step, there are many opti-

misation opportunities. Each particle must read field information from the 27

cells surrounding its own (i.e. a 27-point stencil), and the optimisation of such

kernels for GPU architectures is well-studied [73].

In the original Fortran implementation of EPOCH, particles are not stored

in any particular order. Therefore, these stencil operations additionally become
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1 k e r n e l void pu sh pa r t i c l e i nn e r move kn l ( . . . )
2 {
3 for ( s i z e t i p a r t = g e t g l o b a l i d (0 ) ; i p a r t < g e t g l o b a l s i z e

(0 ) ; i p a r t += g e t g l o b a l s i z e (0 ) )
4 {
5
6 const double ipart mc = 1 / part mc ;
7
8 const double cmratio = part q ⇤ dt f a c ⇤ ipart mc ;
9 const double ccmrat io = c ⇤ cmratio ;

10
11 const double part we ight = pa r t i c l e a r r a y we i g h t [ i p a r t ] ;
12 const double f cx = id tyz ⇤ part we ight ;
13 const double f cy = id txz ⇤ part we ight ;
14 const double f c z = idtxy ⇤ part we ight ;
15
16 double a r t x = pa r t i c l e a r r a y p a r t p o s ( ipar t , 1 ) �

x min l o ca l ;
17 double part y = pa r t i c l e a r r a y p a r t p o s ( ipar t , 2 ) �

y min l o ca l ;
18 double pa r t z = pa r t i c l e a r r a y p a r t p o s ( ipar t , 3 ) �

z m in l o c a l ;
19
20 const double part ux = pa r t i c l e a r r a y p a r t p ( ipar t , 1 ) ⇤

ipart mc ;
21 const double part uy = pa r t i c l e a r r a y p a r t p ( ipar t , 2 ) ⇤

ipart mc ;
22 const double part uz = pa r t i c l e a r r a y p a r t p ( ipar t , 3 ) ⇤

ipart mc ;
23
24 const double root = dtco2 / sq r t ( part ux ⇤part ux + part uy ⇤

part uy + part uz ⇤ part uz + 1 . 0 ) ;
25
26 part x = part x + part ux ⇤ root ;
27 par t y = part y + part uy ⇤ root ;
28 pa r t z = par t z + part uz ⇤ root ;
29
30 p a r t i c l e a r r a y p a r t p o s ( ipar t , 1 ) = part x ;
31 p a r t i c l e a r r a y p a r t p o s ( ipar t , 2 ) = part y ;
32 p a r t i c l e a r r a y p a r t p o s ( ipar t , 3 ) = par t z ;
33
34 }
35 }

Figure 6.1: OpenCL Kernel code example.
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gather operations (i.e. uncoalesced loads); a collection of W particles (assigned

to W work-items), may lie in W di↵erent cells and access 27 ⇥ W memory

locations. In order to improve this memory access pattern, domain-specific

knowledge is exploited to reorder the particles before computing their momenta.

Specifically, particles are sorted using a simple binning kernel, based upon a

combination of their position and half-cell shifted position (to account for the

Yee staggered grid described prevously in Section 4.4)

Although sorting in this way increases the probability that W particles will

read from the same cells, it does not guarantee it; this prevents us from exploring

other optimisations (such as using shared memory to cache cell data). In order

to address this issue, three alternate levels of parallelism are considered: (i)

assigning one work-item per particle (the default); (ii) assigning one work-group

per cell; and (iii) assigning one work-group to some set of cells (henceforth

referred to as a ‘super-cell’). Each of these three levels of parallelism maps

intuitively to di↵erent distributions of particles: (i) a very sparse distribution,

with a small number of particles per cell; (ii) a very dense distribution, with

many particles per cell; and (iii) a distribution somewhere in between, where

the size of the super-cell is set so as to contain a specific number of particles. In

cases (ii) and (iii), shared memory can be used to reduce the number of accesses

to global memory.

6.2.3 Current Accumulation

In order to overcome the write-conflict present in the current accumulation step

of the particle push, some form of global synchronisation between work-items

must be introduced to ensure that no two work-items can update the same

memory location simultaneously. There are a number of well-known approaches

of this kind: critical sections; cell-wise (or super-cell-wise) locking; and atomic

operations. However, implementing any of these approaches in a portable man-

ner is challenging: di↵erent hardware has di↵erent levels of support for atomics

(e.g. 32-bit, but not 64-bit integers); and all three depend on extensive use of
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OpenCL’s atom cmpxchg routine, careless use of which can lead to deadlocks

on some hardware (e.g. NVIDIA GPUs, where work-items are scheduled for

execution in lock-step).

A further complication influencing the performance of atomic locks is the

data access pattern. If two work-items attempt to update the same cell si-

multaneously, then one must wait until the other has finished – performance

can therefore be increased by maximising the temporal distance between two

accesses to the same memory location, in order to avoid contention between

work-items. The end result is a performance trade-o↵ between the field calcu-

lation and current accumulation kernels: the best case for one is the worst for

the other. This is discussed further (alongside full performance results for the

di↵erent approaches) in Section 6.3.

As an alternative to the current implementation, it is possible to replace

EPOCH’s current accumulation step with one more suitable for accelerator ar-

chitectures. For example, one approach referred to as ‘classic PIC’ does not

accumulate current densities at all, instead calculating the current density in a

later step by summing over particles. However, this leads to the electric fields

no longer satisfying Poisson’s equation, and requires a corrector step which dis-

torts the electromagnetic wave dispersion relation – this scheme is unsuitable

for relativistic problems.

6.3 Results

The configuration of the experimental hardware is given in Tables 3.1 and 3.2.

The reader’s attention is drawn to the presence of two CPUs: the X5550 (which

is based on the Nehalem microarchitecture) is used to compare the performance

of the original Fortran code to that of the OpenCL implementation; and two

E5-2670 sockets (based on the newer Sandy Bridge microarchitecture) are used

as the baseline for comparisons between CPU and GPU architectures. For all

code variants the Intel 13 compiler (with -O3) was used in conjunction with
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Approach X5550 C1060 C2050 K20

Crit. Section 0.003 – 0.260 0.855
Lock (Face) 0.001 6.118 0.054 0.088
Lock (Row) 0.001 0.396 0.016 0.011
Lock (Cell) 0.002 0.041 0.011 0.003
Atomic Add 0.002 0.026 0.008 0.002

Table 6.1: Comparison of execution times (in seconds) for di↵erent mutual
exclusion approaches.

IMPI version 4.1.0.030. For the CPU based OpenCL runs, the AMD APP 2.8

Software Development Kit (SDK) was used, and the NVIDIA GPUs used the

CUDA Toolkit 5.0. The OpenCL runtime was not available to us on the Sandy

Bridge system (E5-2670) used later during CPU-GPU comparisons.

For the following experiments, EPOCH was used to simulate the interaction

of two densely packed electron streams, with runtime options typical of normal

conditions: each particle is assumed to have an individual mass; and a triangular

pseudo-particle shape function. A modest problem size of 25 million particles

(128 particles per cell, for a 583 cell problem) is used, with periodic boundary

conditions. The CPU code was setup to issue manual prefetches between loop

iterations (on account of particles being stored in a linked list), and loop fission

is employed to facilitate a more accurate comparison between the three di↵erent

kernel components. This fissioned version of the loop is ⇡5–10% slower than the

original Fortran code, due to the introduction of additional memory accesses. To

avoid artificially inflating any claims about the performance of our accelerator-

based solutions we include all known overheads (such as PCIe transfers) and

acknowledge the importance of considering the impact of kernel-level speedups

in the context of overall application time.

67



6. Performance-Portable Plasma Physics Simulations

6.3.1 E↵ects and Portability of Optimisations

Mutual Exclusion

Table 6.1 compares the performance of three alternative mutual exclusion ap-

proaches (global critical sections, selective locking, and atomic adds), used to

prevent write-conflicts within the current accumulation kernel. Execution times

for multiple granularities of locking are reported, including: locking a face (i.e.

using one lock per z co-ordinate); locking a row (i.e. using one lock per pair

of y and z co-ordinates); and locking individual cells. All locks make use of a

32-bit atomic cmpxchg operation.

There are several interesting trends in the data. On the CPU, we see that

although using locks or atomic adds is faster than using a global critical section,

the locking granularity has little e↵ect on kernel performance. This is due to the

low number of work-items (relative to GPU hardware) that are able to contend

for any given lock. On the GPUs, performance improves as the mutual exclusion

becomes finer, with atomic adds providing the best runtime in all cases; this

is a somewhat surprising result, since it could be expected that the overhead

of acquiring locks (via atomic operations) would be more expensive than the

writes to memory. Also of interest is that NVIDIA’s Kepler architecture is out-

performed by the older Fermi architecture in the presence of coarse locks – this

is likely to be a reflection of the greater levels of parallelism present in Kepler,

and the increased lock contention this may cause.

To investigate the overhead of atomic adds on di↵erent architectures, the

experiments were repeated using normal writes (allowing the kernel to write to

conflicting memory addresses, and achieve the wrong answer). Although this

baseline is unrealistic, it is used here merely to represent a “best case” for writing

to global memory. The results (Figure 6.2) show that the overhead of atomics is

inconsistent across di↵erent hardware: 2⇥ on the CPU; 14⇥ on the Tesla; 16⇥

on the Fermi; and 2⇥ on the Kepler. The performance of the atomics have been

greatly improved with the introduction of new GPU architecture features, most
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Figure 6.2: Overhead introduced by atomic operations.

prominently the Kepler architecture, but a 2⇥ overhead is still undesirable for

such an expensive kernel.

Since atomic adds provide the best performance on the architectures consid-

ered here, this version of the current accumulation kernel in used for all of the

experiments that follow. However, it should be noted that this kernel has very

weak guarantees on performance portability since, as noted previously, some

OpenCL runtime platforms do not feature support for 64-bit atomics. This is

an issue in software, rather than hardware. Due to software comparability it

is not possible to run the OpenCL kernel on the X5550 processor using Intel’s

runtime, but it is possible using AMD’s. Combined with the varying overhead of

atomics on di↵erent architectures (and the inherent serialisation that will arise

as parallelism, and hence lock contention, increases) there is clear motivation

for further investigation of alternative algorithms in the future.

Particle Ordering

The graphs in Figure 6.3 present runtimes for (a) the field calculation kernel; and

(b) the current accumulation kernel, using atomic adds. Three di↵erent particle

orderings are compared: the default ordering used by EPOCH (Default); an

ordering based on the particle’s cell ID (Sorted); and a pseudo-random ordering
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(a) Field calculation kernel.
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(b) Current accumulation kernel.

Figure 6.3: Impact of sorting schemes on kernel runtimes.

(Random).

As discussed in Section 6.2, such orderings are expected to have a significant

impact on the performance of both kernels, and this is reflected in the GPU

results. On the CPU, however, we see very little e↵ect. This is because the ker-

nels do not make use of vector instructions, and thus the stencil operation is not

a gather on this platform – the biggest bottleneck for the scalar implementation

is cache performance. The size of the electric and magnetic field data is small

(12 MB) in comparison to the size of the particle data (1.5 GB), but accessed
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Figure 6.4: Best kernel performance across platforms.

more frequently, and therefore good cache behaviour is exhibited regardless of

particle ordering. Also of note is that the impact of particle ordering decreases

with each generation of the CUDA architecture – this may be attributed to the

introduction and improvement of hardware caches.

Since current accumulation is so much more expensive than field accumu-

lation, random particle ordering is used henceforth – taking a 2⇥ performance

penalty on the field accumulation has a smaller e↵ect on overall runtime than

a 4⇥ performance penalty on the current accumulation.

6.3.2 Hardware Comparison

The graph in Figure 6.4 compares the runtime of the final kernel configuration

(atomic adds, with a random particle ordering) on each platform. In addition

to the performance of each individual kernel, any overheads (e.g. PCIe data

transfers) are also listed, to facilitate a fairer comparison between architectures.

The performance of the OpenCL code on the X5550 almost matches that

of the native Fortran code. The di↵erence in performance is caused not by the

current accumulation kernel (as might be expected) but by the field calculation

kernel. This is due to the change in data layout from Array-of-Structs (AoS) to
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SoA. This change spreads the data for a given particle over several cache lines.

That the performance di↵erence is so low is a positive result for the maintainers

of EPOCH, suggesting OpenCL will provide a good route to explore accelerator

performance without a significant negative impact on CPUs.

What is most clear from the results is that the current accumulation kernel

is an issue, dominating the runtimes of all implementations on all hardware.

The other kernels perform well, and in line with our expectations. However,

the overhead is much larger than running the kernels themselves – hiding PCIe

communication costs via pipelining, or making more kernels resident on the

device, will clearly be a critical direction for future work following the acceler-

ation of the current accumulation step. Something not considered here is how

the performance of EPOCH on di↵erent hardware changes with the number of

particles per cell. This impacts simulation accuracy, and current simulations

are bounded by performance – running more particles per cell is desirable, but

too expensive. It may be that GPU implementations only begin to o↵er greater

performance for these larger, more complicated, simulations.

6.4 Summary

In this Chapter, the development of an OpenCL implementation of EPOCH,

a production PIC code developed by the University of Warwick, is reported.

The PIC algorithm is highly parallel, and should map well to accelerator ar-

chitectures. However, as shown in this study, there are two issues that first

need to be addressed in EPOCH: the highly serial nature of its legacy Fortran

implementation; and the presence of write-conflicts in its current accumulation

step.

Despite the promising initial results demonstrated in this work, the findings

presented in this Chapter confirm that the current accumulation step (and in

particular, its use of atomics) is the biggest barrier to both performance and

portability – suggesting that a fundamental change to the algorithm is necessary
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to fully utilise the massive levels of parallelism supported by emerging paral-

lel architectures. The work in this Chapter directly motivates a use case for

the development of a mini-app for EPOCH, which could directly build on the

knowledge gained during this mini-benchmark investigation.
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CHAPTER 7
Optimisation of Particle-in-Cell Simulations

Through the development of mini-applications, rapid investigation into known

performance deficiencies can be performed. In this Chapter, the development

and use of miniEPOCH is presented. The mini-app is specifically used to inves-

tigate a known time-step scaling issue within EPOCH and explore the following

possible optimisations: (i) employing loop fission to increase levels of vectorisa-

tion; (ii) enforcing particle ordering to allow the exploitation of domain specific

knowledge; and (iii) changing underlying data storage to improve memory local-

ity. When applied to EPOCH, these improvements represent a 2.02⇥ speedup

in the core algorithm and a 1.55⇥ speedup to the overall application runtime,

when executed on EPCC’s Cray XC30 ARCHER platform.

The continued development, maintenance and future-proofing of EPOCH

represents a significant software engineering challenge. EPOCH is the result of

decades of development by skilled domain experts – the code is feature rich, but

equally large and complex. Code porting to explore the potential benefits of new

compute architectures represents a significant undertaking, and the resulting

benefits of this e↵ort may indeed be small. Mini-applications – small code prox-

ies that encapsulate important computational properties of their larger parent

counterparts are often used to investigate these problems [6, 44]. The existence

of mini-apps is built on the premise that, (i) although simulation codes may have

millions of lines of source code, their performance is often dominated by a small

subset of the code and, (ii) simulation codes may contain many physics models

that are mathematically distinct, but in many cases exhibit similar performance

characteristics. Mini-apps operate by encapsulating the most important com-

putational operations and consolidating physics capabilities that have the same
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performance profiles; they will typically be orders of magnitude smaller than

their parent code, and as a result be easier to port, easier to improve, easier to

extend, and less likely to be subject to restrictive licensing governing their use

or distribution.

Section 4.4 provides background information about EPOCH, including a

full description of the core PIC algorithm , which typically accounts for over

80% of the application runtime. The core algorithm represent a considerable

computational workload and is currently expressed as a single code kernel in

which the particle loop spans approximately 600 lines of source code. While

particle-in-cell codes are well understood [11, 15, 17, 99], the application of the

mini-app software engineering methodology to the field of plasma physics and

PIC remains largely unexplored.

Previous work has been undertaken with the aim of providing flexible, con-

cise environments for the development of PIC codes [21, 87]. GTC [68], at only

8,000 lines of code, is one such example of this; however, GTC is not associ-

ated with any parent code per se, and any findings associated with this code

must still be translated to larger production codes in this code class through

additional research. The research presented in this thesis is the first to develop

and apply a PIC mini-app, which is associated with a large, production-code

equivalent.

A known performance issue observed during the operation of EPOCH is

that the duration of each time step increases as the simulation progresses. This

problem is demonstrated in Figure 7.1, where a sharp increase in time-step

duration can be seen until approximately 4,000 steps, after which the time-step

duration stabilises. This observation is counter-intuitive, as there is no change to

the kernel during runtime. This issue has persisted through many generations of

EPOCH; in Section 7.2 we build on our knowledge and understanding gained in

previous research [9] to address this time-step scaling problem, as well as using

the new EPOCH mini-app to explore further code optimisation opportunities.
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Figure 7.1: The duration of each time step in EPOCH as a simulation progresses.
Each simulation window, of which there are 100 in total, contains 100 steps.

7.1 Implementation and Optimisation

As discussed previously, the publicly available version of EPOCH uses a linked

list to store its particles. While this itself does not present a problem, näıve

implementations of linked lists o↵er no guarantees of contiguous memory access.

This means that as data elements are inserted and deleted, memory allocations

take place without consideration for locality of existing data, and considerable

memory fragmentation can occur. This fragmentation can significantly impact

performance, as modern hardware is optimised for contiguous memory loads,

with each issued memory load fetching an entire cache line. By aligning data

and promoting the grouping of data within cache lines, memory locality can

be improved and one can reduce the e↵ective bandwidth required to load the

same amount of data from main memory. This e↵ect can be seen when particles

move across physical processor boundaries; as particles exit they are deleted and

new particles added at arbitrary memory addresses. This means that although

the initial particle allocation may be contiguous, the memory access pattern

degrades over time, as a function of particle movement.

A second method for improving memory locality and, as a result, e↵ective

memory bandwidth, is to group data in memory such that it will cause sub-

sequent loads to common addresses. In so doing, memory is more likely to be
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resident in cache when it is required and will reduce cache eviction and thrash-

ing. To achieve this in miniEPOCH, we build on the idea of particle sorting first

used in Chapter 6, and implement a particle sort to group spatially local par-

ticles in memory. Specifically, domain specific knowledge is exploited to group

particles together in memory which will be accessed in the same way. Any set of

particles which share a common grid-point mapping during the particle location

update will share identical global memory access patterns, and have common

intermediate values. By processing these particles simultaneously better cache

re-use can be promoted, whilst simultaneously avoiding the need to recalculate

redundant values. The grouping of particles is shown in Figure 7.2, with (a)

representing the Yee grid rounding before the particle location move, and (b)

representing it after.

A further performance limiting factor in EPOCH, is in its ine�cient use of

vector instructions. Typically, it is desirable to vectorise over the most computa-

tionally intense code regions in order to fully exploit Single Instruction, Multiple

Data (SIMD) width. In EPOCH this means vectorising over the particles loop.

However, in the current expression of the algorithm, such auto-vectorisation of

particles is not possible due to a classical update dependency within the cur-

rent deposition. This update dependency is key to the Particle-in-Cell (PIC)

algorithm, so where the original code expresses the kernel as a single large loop,

this is adapted in favour of expressing the code as three discrete steps. This is

explored in the mini-app using loop fission, with pseudocode for this shown in

Figure 7.3. As well as promoting vectorisation, splitting the code in this way

also allows us to sort particles directly after they have been moved, giving us a

stronger guarantee regarding particle reuse during the field-e↵ect stencil. Here-

after these three components are referred to as the move-, stencil- and current-

kernels.

While the sort itself does increase the amount of computation required for

the execution, this is mitigated by two factors: (i) much of the computation for

the sort can be done while the particle is in cache from the particle move; (ii)
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(a) Pre-move

(b) Post-move

Figure 7.2: A diagram depicting the particle sort implementation in the context
of the Yee grid rounding.
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for all species do

for all particles do
⇤ Move particles.
position  position + momentum

end for

⇤ Optional Particle Sort.
for all particles do

⇤ Update momentum based on field e↵ects.
e cell  bpositionc
for all neighbours of e cell do

calculate electric field e↵ects
end for

b cell  bposition + 0.5c
for all neighbours of b cell do

calculate magnetic field e↵ects
end for

momentum  momentum + electric and magnetic field e↵ects
end for

for all particles do
⇤ Calculate and deposit currents.
for all neighbour cells do

calculate current
deposit current

end for
end for

end for

Figure 7.3: Pseudocode depiction of EPOCH’s modified PIC algorithm.

79



7. Optimisation of Particle-in-Cell Simulations

for particles that are grouped together, recomputing shared properties can be

avoided, which was not previously possible. Further to this, it is also possible to

employ the sort after the stencil kernel, allowing us to place guarantees on the

order in which the current kernel updates global memory, which can in turn be

exploited to remove the classical update dependency and achieve vectorisation.

As auto-vectorisation of all three kernels is possible, vector e�ciency can be

further increased by performing scalar replacement on arrays where possible,

and employing SIMD lane indexing to ensure all SIMD temporary arrays have

coalesced data accesses.

7.1.1 Experimental Setup

Throughout this Chapter numerical results for the periodic interaction of two

densely packed electron streams are reported. Each pseudoparticle is assumed to

have an individual mass, and wide spanning third order b-spline stencil. Particle

probes are disabled and, unless otherwise stated, a typical problem size of 1282

grid-cells per core is used, with 32 particles per species, per cell, on a fully

packed node. The results detailed in Section 7.2 were obtained from ARCHER,

using the Intel 15.0 compiler, with the highest level of code optimisation enabled

(-O3) with platform specific code generation (-xHost) enabled. PAPI 5.3.2.1

was used to gather the results of selected performance counters, including those

used for recording cache misses and vector instruction counts.

7.2 Results

During the initial investigation of the increasing duration of time-steps in an

EPOCH execution, it was believed that the primary contributor to the poor

time-step scaling was increasing fragmentation of the linked list. As the particles

move between MPI ranks, it was expected that the particle store would become

more fragmented. As previously discussed, this was due to new particles being

added to the store as they entered the domain, whilst others were removed as

80



7. Optimisation of Particle-in-Cell Simulations

0 20 40 60 80 100

0.00

0.50

1.00

1.50

2.00
·107

Window Number (100 steps)

C
ac
h
e
M
is
se
s

L1 Misses (LinkedList) L1 Misses (Array)
L2 Misses (LinkedList) L2 Misses (Array)
L3 Misses (LinkedList) L3 Misses (Array)

Figure 7.4: Cache misses during a simulation consisting of 100 simulation win-
dows (each window containing 100 steps).
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Figure 7.5: Normalised cache misses during a simulation consisting of 100 sim-
ulation windows (each window containing 100 steps).
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Figure 7.6: Time-step duration for a simulation consisting of 100 simulation
windows (each window containing 100 steps).

they leave. Figure 7.4 shows the typical cache miss rates for an unsorted, linked-

list implementation of EPOCH, while Figure 7.5 shows this data expressed as

relative di↵erences. We can clearly see that as the simulation progresses, the

cache-miss-rate increase is strongly correlated with overall runtime, and peaks

at approximately 4,000 steps. After 4,000 steps, the cache miss rates increase

at a much reduced rate. While this data strongly suggests that the increase in

runtime is caused by the change in cache miss rates, it provides no clue as to

its origin.

To investigate this further, the mini-app was used to implement an alterna-

tive, array-based, particle store. This allows for contiguous access to particles,

avoiding any fragmentation. This greatly improves the time-step scaling of the

mini-app, with Figure 7.4 showing the representative changes in cache misses for

a version of EPOCH with these changes applied. It is clear that this change in

implementation only partially addresses the problem, with cache hit rates still

scaling poorly as time-steps progress. The readers attention is however drawn to

the marked decrease in L3 cache misses, which explains the substantial benefit

to runtime scaling seen in Figure 7.6 for the array version of EPOCH. Whilst

it is clear from Figure 7.6 that an array version of EPOCH benefits the overall

runtime, the cache miss figures in Figure 7.4 identify that a secondary prob-
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lem still exists. Further analysis of the cache miss rates directed attention to

the large stencil required when applying electromagnetic e↵ects to the particle

momenta. Increasing disorder in the particle list may explain the poor cache

and memory behaviour, it would increase the probability of cache pressure, and

the probability of spilling during this stencil-gather. The strategy here was to

periodically sort the particle store, and in so doing investigate the e↵ect particle

disorder had on both cache misses and runtime. Such a sort remedied the prob-

lem, and allowed for near perfect time-step scaling with a maximum deviation

of 0.03% over ten thousand time-steps.

7.2.1 Vectorisation

Having arrived at a significantly improved array-based version of miniEPOCH,

e↵orts could then be focused on optimising EPOCH to ensure that it was better

able to utilise current and future hardware. At the outset of this study, EPOCH

was unable to exploit vector operations in its main kernel. The reason for this

was a classic update dependency when accumulating currents, with multiple

particles possibly having to write to the same array location concurrently. Given

the large size of the initial kernel (approximately 600 lines of code), loop fission

could be used to great e↵ect in order to separate out much of the non-dependant

computation which was SIMD-parallel safe. The previously mentioned sort,

combined with iterating over particles on a per vertex basis, allows us to hoist

loop invariant calculations so that they could be performed once per vertex.

This o↵ered a decrease in the overall required computation, and allowed the

compiler to better predict memory access patterns into global memory.

Through code modifications, which were first tested in the mini-app, we were

able to ascertain that the restructured fissioned kernel was able to successfully

exploit vector instructions. Figure 7.7 shows the SIMD scaling of kernel run-

time for 256-bit AVX (4 doubles), 128-bit AVX (2 doubles), and for the code

operating without vectorisation. Reasonable SIMD scaling is seen for all ker-

nels, except for move. This is because of its memory-stream-like structure, and
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Figure 7.7: SIMD scaling of miniEPOCH AoS kernels for 256-bit AVX, 128-bit
AVX and for the code operating without vectorisation.
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Figure 7.8: SIMD scaling of miniEPOCH SoA kernels for 256-bit AVX, 128-bit
AVX and for the code operating without vectorisation.

84



7. Optimisation of Particle-in-Cell Simulations

the lack of Floating-Point Operations per Second (FLOP/s) to hide the mem-

ory accesses. The stencil and current kernels represent the majority of the time

spent in miniEPOCH, and demonstrate significantly improved performance with

SIMD width. Such improvements will yield further gains if the current trend of

increasing SIMD width continues.

7.2.2 Memory Layout

Code performance can be improved further through the consideration and im-

plementation of alternate memory layouts used for the particle-array storage.

Not only does this change how data is accessed, it also determines the number of

concurrent memory streams the processor has to track during pre-fetching. Typ-

ically, particles are stored in an Array-of-Structs (AoS). By storing particles as

an AoS, a single memory stream is required, with each particle loaded bringing

with it all particle properties from main memory. This e↵ect holds regardless of

the number of properties used in the given kernel, and can represent a significant

overhead for kernels which require fewer fields. When processing multiple array

elements, as is typical in SIMD, loads must be gathered from memory, and any

writes scattered, incurring a performance cost and increasing the latency of the

memory operations. Alternative approaches include a Struct-of-Arrays (SoA)

and a more complex hybrid, Array-of-Structs-of-Arrays (AoSoA) (which aims to

combine the benefits of both SoA and AoS). A brief overview of these memory

layouts is found in Figure 4.1 (Section 4.2), where in our experiments SIMD

width was typically 4, as is typical when operating on doubles with 256-bit

AVX.

For the SoA data layout, single particle properties for multiple particles are

stored together in an array. This means that under SIMD operation, single

properties from multiple particles can be loaded in one contiguous and aligned

load, at the expense of tracking a di↵erent memory stream per property required.

This eliminates any potential for gather/scatters, and is often favourable when

only a few particle properties are required. With AoSoA, groups of N elements
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Figure 7.9: Normalised instruction counts per kernel for di↵erent SIMD widths
for the SoA memory layout.

of each property are stored together, in order, where N is typically a function of

vector length. This approach attempts to combine the benefits of both SoA and

AoS, but comes at the expense of vastly increased complexity and an indexing

overhead.

In the current kernel configuration, a particle has 6 properties and stores 1

intermediary value (all types are doubles). The move kernel requires 5 such

properties, the stencil kernel requires 6 and the current kernel requires 4. To

investigate enhanced SIMD scaling, the mini-app was ported to each of the alter-

native memory layouts – this provides an excellent example of where mini-apps

allow rapid code exploration, which might not otherwise be possible on full pro-

duction codes. Figure 7.8 shows the vector scaling of the SoA implementation,

which compared to Figure 7.7 shows that the performance is favourable in the

kernels requiring fewer particle field accesses, and generally favourable overall.

This result is largely due to the more e↵ective use of data loaded using SoA, as

no bandwidth is wasted. Figure 7.9 shows the relative di↵erence in instruction

counts for varying SIMD widths, as recorded by PAPI. For good vector scaling

one would expect to see the number of instructions executed decrease as a func-

tion of SIMD width. Both the move and current kernels scale as expected, but
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Figure 7.10: Kernel runtime for di↵erent data layouts.

the stencil kernel is only able to partially benefit from the increase in SIMD

width.

Figure 7.10 shows the overall performance as a result of each memory lay-

out. SoA performs better as fewer particle properties are required, but as more

particle properties are required, AoS outperforms SoA. AoSoA pays the cost of

masked hardware instructions due to the sparse particle grouping used, a cost

which will be much reduced in future hardware generations and has already

been much reduced on the Intel Xeon Phi product range. Each kernel benefits

di↵erently from the change in array layout, largely due to cache pressure and

required memory bandwidth.

7.2.3 Parent Code Optimisation

As is typical of mini-app optimisation studies, the goal of the investigation was

to map the improvements back to the parent code in order to facilitate improved

scientific investigation. Figure 7.11 shows the overall runtime for an optimised

version of EPOCH, as well as a comparison against the original EPOCH code

base and an array based implementation. The array version shows a small

increase in performance over the original implementation due to the lack of

memory fragmentation and increased memory locality. The optimised version
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Figure 7.11: Overall runtime for the original and optimised versions of EPOCH
for a 10,000 step run. The additional sort cost is highlighted for clarity.

of EPOCH represent a considerable improvement in code performance. It in-

cludes all previously discussed improvements, including spatial sort, increased

vectorisation, loop-invariant code hoisting, array scalarisation and, coalesced

temporary SIMD arrays. These optimisations deliver a notable improvement to

production code, and successfully demonstrate the value of a mini-app-based in-

vestigation. These improvements, recorded on ARCHER demonstrate a 2.02⇥

speedup in the core EPOCH algorithm and a 1.55⇥ speedup to the overall

application runtime.

7.2.4 Particle-Per-Cell Scaling

As part of the future proofing of EPOCH, a portion of this work looks to improve

its Particle-Per-Cell (PPC) scaling. In PIC simulation, the accuracy of the result

is most strongly governed by the number of particles in the simulation, typically

described as the number of PPC. By increasing this number, pseudo-particles

can represent fewer real world particles, and the gap between simulated and

real world particle counts decreases. This allows for more complex interactions,

as more bodies are involved. As the number of PPC increases, the amount of

work also increases, typically linearly. In this Section we discuss a technique

to enhance the way in which EPOCH can deal with these increasing workloads
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needed for successful future operation, and provide a performance analysis in

the context of miniEPOCH. To do this, we build directly on top of the previous

sorting work which exploits the spatial ordering of the particles, and implement

a specialised kernel for regions of particles which do not cross grid boundaries

during the particle push. In so doing, the particles only need to be sorted once

after the initial half timestep update in the move kernel, with the sort cost not

needing to be paid again after the stencil kernel as was the case previously.

The specialised kernel can then be written knowing the particles do not cross

any grid boundaries, meaning some simplifying assumptions can be made. In

the default kernel, two arrays of coe�cients need to be matched based on the

movement of the particle. In a kernel with the assumption of no particle move-

ment, this matching is entirely deterministic. This can be leveraged to decrease

both the memory and compute needed to perform this, reducing the stencil from

7⇥ 7 to 5⇥ 5. Whilst this may only seem like a modest reduction, it decreases

the amount work by near 30% in each direction. Furthermore this stencil is

iterated across fully in a tight two dimensional loop, representing a reduction in

work by nearly 50%. A range of additional benefits to this technique also exist,

including but not limited to: reduced memory footprint; reduced data initiali-

sation; lower e↵ective memory bandwidth; and, better exposure of information

to the tool-chain during compilation. Finally, by establishing a tighter bound

on the physical domain each particle can interact with (implemented as shared

global memory), this can give more control and flexibility when multi-threading,

as it increases the maximum amount of concurrency without overlap.

By inspecting Figure 7.12, it can be seen that the PPC scaling of the original

EPOCH code is perfectly linear, with an increase in PPC work being mirrored

exactly in runtime. This can be directly contrasted with the optimised version

of the mini-app, which when comparing 32 PPC to 512 PPC takes only 9.91⇥

as long to do a 16-fold increase in work. This scaling represents a time increase

between 1.61⇥ and 1.87⇥ compared to the expected 2⇥, with an average of

1.78⇥ over the sampled data. This super-linear scaling indicates that increased
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Figure 7.12: The PPC time scaling of the original EPOCH code base and the
optimised mini-app.
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workloads are not only possible, but in fact favourable.

The root cause of these improvements is identified in Figure 7.13, which anal-

yses the executed instruction counts for both EPOCH and miniEPOCH. We can

see that with vectorisation disabled for miniEPOCH, the instruction through-

put of both codes is very similar. However with vectorisation of miniEPOCH

enabled, we can see that as the number of particles per cell increases, the vec-

torisation e�ciency increases, leading to super-linear scaling in the number of

instructions executed relative to the amount of work to be done.

7.3 Summary

Despite recent successes at the large laser-based Inertial Confinement Fusion

(ICF) device at the National Ignition Facility at Lawrence Livermore National

Laboratory (LLNL), the community remains some distance from being able

to create controlled, self-sustaining fusion reactions. ICF represents one leading

design for the generation of energy by nuclear fusion and computing simulations

supporting ICF continue on some of the world’s most powerful supercomputers.

The research presented in this Chapter focuses on EPOCH, a fully relativistic

PIC plasma physics code, developed by a leading network of over 30 UK re-

searchers. A significant challenge in developing large codes like EPOCH is main-

taining e↵ective scientific delivery on successive generations of high-performance

computing architecture. To support this process, the use of mini-applications

was adopted – small code proxies that encapsulate important computational

properties of their larger parent counterparts.

Through the development of miniEPOCH, we investigate known time-step

scaling issues within EPOCH and explore possible optimisations. Not only

have we developed a novel mini-app for the parent code EPOCH, we all ad-

dress two key issues of: (i) the increasing time-step duration during simulation

runtime and, (ii) high levels of cache miss rates due to particle-store fragmen-

tation. Overall, these improvements demonstrate a 2.02⇥ improvement to the
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core EPOCH algorithm and a 1.55⇥ speedup to the application runtime.

In future work it is hoped that the performance impact of the additional

particle sort, highlighted in Figure 7.11, can be reduced. Whilst the current

implementation of the sort remains largely unoptimised, an algorithmic change

would likely yield a considerable improvement. The current implementation

performs a full particle sort despite large portions of the data remaining sorted.

A sorting algorithm which exploits this feature could greatly improve overall ap-

plication performance. Additionally, a trade o↵ between sort-cost and the per-

formance improvement could be achieved, by tracking sorted data regions and

sorting periodically, rather than requiring a fully ordered sort every timestep.

Unfortunately such investigation fell outside of the scope of this work and is

this reserved for future work

Finally, as part of this work an OpenMP port of EPOCH has also been

developed. The results of this port demonstrate good on-node scaling, and

future work will build on this code-base to develop an Intel Xeon Phi code

version. This version of miniEPOCH would be able to utilise the increased SIMD

width o↵ered by the Intel Xeon Phi, and could facilitate a study assessing the

viability of heterogeneous and accelerated hardware platforms for PIC codes.
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CHAPTER 8
Discussion and Conclusions

The work presented in this thesis highlights the importance of understanding

code performance as a key component of a successful optimisation e↵ort. It

highlights the importance of Inertial Confinement Fusion (ICF) research, and

demonstrates the possibility of improving ICF code performance on both cur-

rent and future architectures. Here this is expressed through the development of

performance models, mini-apps, and portable code variants; each guided by the

advice of domain experts. Whilst the work in this thesis focuses on ICF simu-

lation the message it carries can be applied to many areas of High Performance

Computing (HPC), only becoming more pertinent as code development initia-

tives are accepted as a requirement to prepare current simulations for future

compute platforms.

Chapter 5 shows the power of performance modelling to achieve high levels

of code understanding. A novel performance model for the code Lare is devel-

oped, and the model is shown to provide performance predictions for optimised

code on both future and current hardware. Such predictions can guide procure-

ment, help target optimisation e↵orts and allow users to better understand code

performance. This trifecta of benefits is only set to become more important,

as compute hardware begins to diversify, and heterogeneous hardware becomes

commonplace.

Chapter 6 documents the process of developing portable code which is able

to utilise both current and future hardware. A novel Open Computing Lan-

guage (OpenCL) code variant of EPOCH is developed, which is the first known

version of EPOCH able to successfully make use of accelerated architectures.

We provide a performance comparison, and o↵er our thoughts on how the code
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may need to change in order to e↵ectively utilise emerging hardware.

Finally, Chapter 7 builds on the previously presented ideas, and shows how

mini-apps can be powerful tools to investigate code performance on new plat-

forms. We show how our mini-app version of EPOCH (miniEPOCH) can be

used to guide future code development, as well as e↵orts in performance tuning.

Our optimisation study readily reveals a variety of unexposed improvements to

EPOCH, which when mapped to the main code deliver a performance increase

of over 2⇥.

8.1 Limitations

The primary limitation of this thesis, is that the discussed techniques focuses

specifically on the applications Lare and EPOCH, and not on a more diverse

range of applications. Although this may initially seem to limit the generality of

the optimisations of programming techniques presented, these codes were chosen

because they are representative of their respective code classes which play an

important role in the area of ICF simulation.

A further limitation of this work is that the work discussing EPOCH is

limited to a sub-set of runtime parameters and physical simulations. Most

notably, the work only considers collisionless Particle-in-Cell (PIC). EPOCH

can be parameterised to run with the inclusion of a collision algorithm which is

based on the approach for collisional PIC by Sentoku and Kemp [103], however,

the majority of real world workloads do not need to make use of this. At

high temperatures and low densities collisional e↵ects in plasmas are generally

considered minimal, and therefor have a negligible impact on the simulation

result. Whilst enabling collisions may marginally increase the accuracy of the

answer, it would come at the cost of increased runtime. Although this work was

carried out without consideration for collisions, it is believed that some of the

proposed codes change may in fact provide benefits to the existing algorithmic

implementation. The collisions may benefit from the spatial memory-locality
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a↵orded by the sorting schemes, and could be extended to explicitly leverage

the spatial ordering of particles. It is unlikely, however, that the current collision

scheme would map well to heterogeneous architectures due to its serial nature,

but a body of previous work shows particle collisions and interactions achieve

good performance on heterogeneous architectures [37, 91].

Finally, the lack of objective metrics used for evaluating code performance

limits the applicability of this work. Much of the work presented focuses not

only on performance, but also on the important ideas of portability and future-

proofing code performance. Both of these ideas are underrepresented in the

metrics provided through this thesis, as runtime is often the primary focus. This

is especially true of Chapter 6 in which a portable, hardware agnostic version

of EPOCH was developed. If such a version was adopted into the main code

base, the e↵ort of future porting e↵orts could be reduced or entirely removed,

with only performance tuning required. It is this idea that despite being hard to

quantify, the introduction of the mini-app in Chapter 7 addresses by providing

a platform for decreasing programmer e↵ort and promoting productivity.

8.2 Implications

Due to the legacy nature of many scientific simulations, much of the discussion

so far has been limited to the maintenance of existing code bases. Code devel-

opers are now beginning to recognise that the changes to hardware designs are

su�ciently significant that the re-engineering of key scientific simulations may

be required. A significant implication of the research presented in this thesis

is that the lessons learnt and the outlined findings can also be applied to this

re-engineering process, or to the development of new simulations. These real

world lessons learnt can be combined with well established theory, such as the

Architecture Tradeo↵ Analysis Method (ATAM) [55] to help inform the pro-

cess and to ensure new HPC simulations are able to e�ciently leverage modern

architectural features.
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ATAM is a software evaluation method which focuses on assessing archi-

tecture suitability. It does this by identifying performance trade-o↵s and key

sensitivity points. Often this includes evaluating the e↵ect a given architecture

has on a range of attributes and scenarios which can occur within the soft-

ware execution. For ICF codes, these scenarios will include many aspects of

the research included in this thesis, including but not limited to: particle order-

ing; particle storage design; data access patterns a↵ecting vectorisation; load

imbalance; and data re-use.

A technique such as ATAM, and the research presented in this thesis will

clearly identify the following issues as key factors to consider during the devel-

opment of a new ICF, PIC, and Magnetohydrodynamics (MHD) codes:

Data Ordering

Data ordering, specifically particle ordering in the context of PIC codes, should

be of the utmost concern and consideration during the development of new sci-

entific simulations. The cost of poor data ordering was hidden on historical

hardware generations by other overheads, but is now key to performant code

operation. This is true for all current generations of hardware, and is paramount

to exploiting many hardware specific features such as e�cient Single Instruc-

tion, Multiple Data (SIMD) utilisation, and e↵ective use of the cache hierarchy.

Scientific simulations can no longer a↵ord to be developed without this being a

primary concern.

Flexible Code Design

When many of the legacy simulation codes were developed, they were tightly

coupled with the hardware on which they were designed. This approach is no

longer viable as hardware designs becomes more diverse the life-span of software

expands. Instead e↵orts need to be made to try safe guard portable performance,

as well as e↵orts to facilitate on-going code maintenance and modernisation.

This can be done through abstraction and software engineering, or through the
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use of programming models such as COMPSs or Charm++. The work presented

here highlights the importance of portability, and also the benefits of ensuring

a code’s design is not tightly coupled with a specific architecture.

The discussed techniques are applicable to all comparable codes. The work

in Chapter 6 demonstrates how ICF codes which iterate over a particle list can

be generalised to run on accelerator platforms, whilst the work in Chapter 7

shows a range of optimisations which can be applied to such codes.

8.3 Future Work

The work presented in this thesis is amenable to a variety of extensions, and

further work. In this Section we present an overview of how the work is currently

being taken forward, as well as provide a discussion of an Many-Core version

of miniEPOCH which has been developed to target the Intel Xeon Phi product

range. As part of the work in this thesis, miniEPOCH will be made publicly

available to the wider scientific community.

8.3.1 Many-Core Investigation

As part of the work ensuring portable future performance, an OpenMP4 variant

of miniEPOCH has been developed to target many-core architectures such as

Intel Xeon Phi. Unlike many e↵orts porting code to Intel Xeon Phi, this work

does not use the supported o✏oad capability, instead favoring resident execu-

tion. To facilitate this, the code version extends the most heavily optimised

version of miniEPOCH presented in Chapter 7, and employs OpenMP pragmas

to expose additional parallelism for threaded execution. These pragmas are

added such that particles in each sorted bin can be executed in parallel, with

the aim of fully saturating all 240 threads of execution. In order to achieve

maximum performance on the Intel Xeon Phi product range, the phyiscal cores

need to be oversubscribed with at least 2 threads per core (with 4 being typical).

This is due to the hardware’s inability to issue vector instructions every cycle,
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Figure 8.2: Push time comparison for the optimised versions of miniEPOCH
and EPOCH.

instead issuing them on every second clock cycle.

Figure 8.1 compares the per kernel runtime of the CPU and Intel Xeon Phi

variants of EPOCH. We can see that near comparable results are achieved for

the move and stencil kernels. The current kernel scales less favorably, and this

issue is still under investigation. Ensuring a fair comparison between di↵er-

ent hardware platforms is non trivial, as a variety of metrics can be used. As

previously discussed, Floating-Point Operations per Second (FLOP/s) can be

a very misleading metric, as it only states a theoretical maximum – a number

which may be very hard to achieve. Other candidate metrics include a com-
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parison of Thermal Design Power (TDP) to assess running costs and thermal

envelopes; and cost for a comparison of economic viability. For the Intel Xeon

Phi card used, and the E5-2697v2 used the total FLOP/s counts are 1036.8

and 1208.3 respectively. Similarly, the TDP values are 260W and 300W respec-

tively. The similarity between these numbers further supports the idea that the

hardware used can o↵er comparable performance. It should also be noted that

TDP figures for the Intel Xeon Phi includes additional overheads not required

by stand alone Central Processing Units (CPUs). Such overheads include the

additional power required by the card infrastructure, as well as powering the

on-board memory.

Finally, Figure 8.2 shows the total push time for each code variant. Rea-

sonable performance is attained on the Intel Xeon Phi, however it still under-

performs when compared to the traditional CPU architectures. Such a result

does however suggest that PIC codes may be able to successfully make use of

future generations of accelerated hardware. As software support for OpenMP4

increases, other hardware will become targetable using the same source code,

including Graphics Processing Unit (GPU) based architectures. This represents

a significant step towards portable performance on future architectures.

8.3.2 Single-Precision EPOCH Code Variant

As part of an ongoing investigation, a single precision code variant of EPOCH

is under investigation. Initially, miniEPOCH will be used to assess the viability

of the technique, and if successful, changes will be mapped back to EPOCH.

This single precision code variant focuses on promoting the use of the single

precision data type (32-bit floats), in place of double precision numbers (64-

bit doubles) throughout the main kernel. Single precision data, however, is

inherently less precise that its double precision counter part, as it uses fewer

bits to represent the same numeric value. Typically this will mean a trade o↵

between speed of computation and simulation accuracy.

Techniques to bound the loss of accuracy do exists however. In order to
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retain the levels of accuracy needed, and to limit the e↵ect of numerical errors, a

domain-specific field cleaner known as a Marder pass will be added [70]. This will

be represented as an additional step in the main EPOCH algorithm, undertaken

after the particle push has completed. As the required number of bits switching

from double to single precision reduces the required bandwidth by a factor of

two, and enables SIMD units to process twice the amount of data per instruction.

Such changes could represent a significant step towards improving EPOCH’s

performance, and helping the code base to exploit increasing SIMD width and

other modern hardware features. To regain the lost accuracy, the Marder pass

calculates the di↵erence in charge-density, and adjusts the simulation using the

presence of a ’pseudo-current’. This technique has previously been shown to be

successful in the PIC code VPIC [15] despite this additional overhead, so will

likely also provide a performance benefit to EPOCH. This project, however, is

still currently under development with no initial results being available. The core

algorithm has been converted to use single precision, but costly data conversion

operations are still present.

8.4 Final Remarks

This thesis represents a brief window into the diverse and fast-paced world of

HPC research. With the rise of exascale computing, HPC will be faced with

many upcoming issues which promise to be as exciting as they are challenging.

The work presented in this thesis touches on many of these key issues, with a

particular focus on those most pertinent to exascale ICF research, but sadly

leaves many more unaddressed. The key themes of this thesis – performance

portability, heterogeneous architecture, code optimisation, algorithmic changes

– will be at the forefront of HPC research for many years to come.
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APPENDIX A
Performance-Portable Plasma Physics Simulations

Table A.1: Overhead introduced by atomic operations.

Hardware With Atomics Without Atomics

X5550 11.50 5.17
C1060 49.12 3.44
C2050 31.15 1.95
K20 3.04 1.41

Table A.2: Impact of st orting schemes on the Field Calculation kernel runtimes.

Hardware Default Sorted Random

X5550 1.00 1.01 1.01
C1060 1.00 0.55 2.70
C2050 1.00 0.69 2.04
K20 1.00 0.80 2.07

Table A.3: Impact of sorting schemes on the Current Accumulation kernel run-
times.

Hardware Default Sorted Random

X5550 1.00 0.96 0.95
C1060 1.00 4.51 0.13
C2050 1.00 3.40 0.45
K20 1.00 2.77 0.70
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Table A.4: Best kernel performance across platforms.

Hardware Current
Accumulation

Field
Calculation

Particle
Move

Overhead

X5550 (F90) 5.39 1.48 0.04 0.00
X5550 (OpenCL) 6.44 2.64 0.13 0.78

E5-2670 (F90) 1.22 0.31 0.01 0.00
C1060 49.12 2.58 0.04 0.93
C2050 30.90 0.35 0.02 0.82
K20 3.04 0.23 0.01 0.78
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APPENDIX B
Optimisation of Inertial Confinement Fusion Simulations

Table B.1: Normalised Data for Original EPOCH timestep scaling.

Step Number Original Modified

1 0.43 1.00
2 0.44 1.01
3 0.44 1.02
4 0.44 1.02
5 0.45 1.03
6 0.45 1.04
7 0.45 1.05
8 0.46 1.05
9 0.46 1.06
10 0.46 1.07
11 0.46 1.07
12 0.47 1.08
13 0.47 1.09
14 0.47 1.10
15 0.48 1.10
16 0.48 1.11
17 0.48 1.12
18 0.49 1.13
19 0.49 1.13
20 0.49 1.14
21 0.50 1.15
22 0.50 1.16
23 0.50 1.16
24 0.51 1.17
25 0.51 1.18
26 0.51 1.18
27 0.51 1.19
28 0.52 1.20
29 0.52 1.20
30 0.52 1.21
31 0.53 1.21
32 0.53 1.22
33 0.53 1.22
34 0.53 1.23
35 0.53 1.23
36 0.54 1.24
37 0.54 1.24
38 0.54 1.25
39 0.54 1.25
40 0.54 1.26

Continued on next page
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Table B.1 Continued from previous page

Step Number Original Modified

41 0.54 1.26
42 0.55 1.26
43 0.55 1.27
44 0.55 1.27
45 0.55 1.27
46 0.55 1.28
47 0.55 1.28
48 0.55 1.28
49 0.55 1.28
50 0.55 1.28
51 0.56 1.28
52 0.56 1.28
53 0.56 1.29
54 0.56 1.29
55 0.56 1.29
56 0.56 1.29
57 0.56 1.29
58 0.56 1.29
59 0.56 1.29
60 0.56 1.29
61 0.56 1.29
62 0.56 1.29
63 0.56 1.29
64 0.56 1.29
65 0.56 1.29
66 0.56 1.29
67 0.56 1.29
68 0.56 1.29
69 0.56 1.29
70 0.56 1.29
71 0.56 1.29
72 0.56 1.29
73 0.56 1.30
74 0.56 1.30
75 0.56 1.30
76 0.56 1.30
77 0.56 1.30
78 0.56 1.30
79 0.56 1.30
80 0.56 1.30
81 0.56 1.30
82 0.56 1.30
83 0.56 1.30
84 0.56 1.30
85 0.56 1.30

Continued on next page
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Table B.1 Continued from previous page

Step Number Original Modified

86 0.56 1.30
87 0.56 1.30
88 0.56 1.30
89 0.56 1.30
90 0.56 1.30
91 0.56 1.30
92 0.56 1.30
93 0.56 1.30
94 0.56 1.30
95 0.56 1.30
96 0.56 1.30
97 0.56 1.30
98 0.56 1.30
99 0.56 1.31
100 0.56 1.31

Concluded

Table B.2: Cache Miss Counts for Array based EPOCH.

Step Number L1 Misses L2 Misses L3 Misses

1 860,382.94 128,200.51 27,511.68
2 1,221,048.81 212,382.32 31,606.29
3 1,622,297.94 298,308.64 35,443.76
4 2,029,055.97 382,744.04 39,726.72
5 2,453,458.38 459,913.71 43,739.18
6 2,894,230.53 541,976.00 47,550.28
7 3,346,198.11 629,991.49 51,539.78
8 3,807,903.03 723,860.08 55,570.63
9 4,274,000.43 814,674.24 59,693.61

10 4,744,024.96 901,319.33 63,384.04
11 5,215,178.68 986,404.13 67,175.74
12 5,690,036.19 1,072,973.78 70,763.82
13 6,155,613.79 1,155,886.26 74,337.85
14 6,618,025.50 1,236,303.29 77,830.54
15 7,072,443.07 1,314,792.07 81,146.99
16 7,519,462.71 1,389,593.25 84,192.75
17 7,954,146.19 1,463,156.10 87,170.83
18 8,377,473.78 1,533,627.08 90,334.60
19 8,786,777.47 1,605,395.06 92,993.14
20 9,180,582.22 1,678,754.49 95,749.63
21 9,558,100.57 1,747,141.56 98,211.78
22 9,920,543.58 1,811,177.18 100,701.50
23 10,268,734.64 1,869,916.43 102,824.92
24 10,595,265.44 1,928,320.36 104,855.64

Continued on next page
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Table B.2 Continued from previous page

Step Number L1 Misses L2 Misses L3 Misses

25 10,904,519.06 1,986,603.40 106,757.53
26 11,194,580.79 2,041,140.04 108,457.82
27 11,464,287.18 2,090,723.67 110,113.29
28 11,713,427.76 2,134,189.35 111,653.03
29 11,946,034.78 2,176,247.08 113,341.76
30 12,157,997.99 2,210,351.22 114,854.29
31 12,350,195.99 2,239,469.82 116,075.74
32 12,524,977.92 2,266,945.63 117,487.00
33 12,678,532.97 2,290,149.75 118,616.03
34 12,814,882.50 2,310,300.97 119,583.82
35 12,930,492.88 2,328,167.42 120,578.44
36 13,025,393.14 2,343,452.10 121,252.17
37 13,101,824.25 2,358,516.92 121,874.15
38 13,159,027.40 2,375,264.50 122,309.97
39 13,194,486.49 2,392,112.38 122,450.38
40 13,206,538.49 2,406,699.29 122,708.28
41 13,203,085.13 2,420,378.57 122,899.33
42 13,185,903.65 2,429,503.63 122,833.85
43 13,167,342.99 2,433,463.83 122,714.35
44 13,153,442.38 2,434,746.06 122,663.47
45 13,140,906.53 2,434,503.85 122,845.99
46 13,121,923.47 2,436,437.14 122,989.54
47 13,083,172.11 2,433,376.24 122,970.46
48 13,036,876.14 2,432,905.50 123,063.68
49 12,984,345.57 2,432,336.72 123,307.49
50 12,939,887.40 2,430,924.01 123,501.75
51 12,901,067.42 2,430,107.13 123,565.74
52 12,869,519.61 2,431,653.61 123,791.71
53 12,841,755.19 2,428,575.10 123,852.01
54 12,821,058.60 2,426,573.25 124,018.67
55 12,808,318.04 2,427,266.69 124,146.38
56 12,799,362.06 2,427,030.85 124,320.92
57 12,794,489.10 2,426,482.97 124,304.67
58 12,794,134.85 2,426,255.54 124,497.00
59 12,794,902.19 2,426,268.29 124,689.44
60 12,798,289.75 2,426,427.96 124,677.07
61 12,805,754.63 2,426,693.67 124,942.24
62 12,815,357.61 2,426,120.53 124,891.75
63 12,830,095.29 2,427,681.25 125,002.49
64 12,841,245.67 2,427,669.38 125,015.07
65 12,852,986.50 2,429,998.19 124,999.81
66 12,863,564.35 2,431,527.39 125,066.14
67 12,871,530.42 2,433,272.28 125,022.50
68 12,873,200.86 2,432,837.65 125,138.22
69 12,874,425.79 2,433,355.97 125,180.85

Continued on next page
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Table B.2 Continued from previous page

Step Number L1 Misses L2 Misses L3 Misses

70 12,879,924.51 2,433,771.18 125,039.64
71 12,877,938.85 2,432,849.68 125,062.19
72 12,877,079.29 2,432,507.31 124,979.78
73 12,875,861.39 2,432,772.92 125,168.58
74 12,876,740.31 2,433,241.56 125,269.06
75 12,879,718.54 2,433,919.83 125,163.17
76 12,878,328.57 2,433,850.74 125,161.06
77 12,880,060.92 2,433,791.07 125,102.44
78 12,878,982.50 2,433,220.15 125,088.29
79 12,881,037.93 2,432,754.83 125,099.53
80 12,880,444.13 2,433,580.83 125,132.63
81 12,880,642.11 2,433,968.26 125,096.01
82 12,882,070.58 2,434,520.17 125,136.43
83 12,883,738.76 2,433,486.58 125,078.53
84 12,883,183.81 2,434,344.15 125,037.43
85 12,884,213.13 2,433,630.35 125,208.53
86 12,885,357.29 2,433,660.89 125,080.69
87 12,882,276.18 2,433,482.47 125,165.82
88 12,882,968.31 2,434,250.07 125,046.11
89 12,883,876.94 2,434,229.39 125,111.42
90 12,884,523.96 2,433,967.93 125,115.10
91 12,883,665.92 2,433,399.43 125,015.10
92 12,883,039.25 2,433,717.21 125,148.78
93 12,885,175.50 2,434,161.79 125,147.10
94 12,883,721.04 2,435,793.39 125,218.67
95 12,885,469.47 2,434,418.60 125,182.03
96 12,888,422.42 2,436,029.83 125,166.83
97 12,885,839.03 2,435,490.94 125,206.71
98 12,887,770.10 2,435,669.00 125,197.25
99 12,886,738.46 2,435,722.46 125,023.51
100 12,888,053.88 2,435,924.40 125,207.44

Concluded

Table B.3: Normalised Cache Miss Counts for Array based EPOCH.

Step Number L1 Misses L2 Misses L3 Misses

1 1.00 1.00 1.00
2 1.42 1.66 1.15
3 1.89 2.33 1.29
4 2.36 2.99 1.44
5 2.85 3.59 1.59
6 3.36 4.23 1.73
7 3.89 4.91 1.87
8 4.43 5.65 2.02

Continued on next page
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Table B.3 Continued from previous page

Step Number L1 Misses L2 Misses L3 Misses

9 4.97 6.35 2.17
10 5.51 7.03 2.30
11 6.06 7.69 2.44
12 6.61 8.37 2.57
13 7.15 9.02 2.70
14 7.69 9.64 2.83
15 8.22 10.26 2.95
16 8.74 10.84 3.06
17 9.24 11.41 3.17
18 9.74 11.96 3.28
19 10.21 12.52 3.38
20 10.67 13.09 3.48
21 11.11 13.63 3.57
22 11.53 14.13 3.66
23 11.94 14.59 3.74
24 12.31 15.04 3.81
25 12.67 15.50 3.88
26 13.01 15.92 3.94
27 13.32 16.31 4.00
28 13.61 16.65 4.06
29 13.88 16.98 4.12
30 14.13 17.24 4.17
31 14.35 17.47 4.22
32 14.56 17.68 4.27
33 14.74 17.86 4.31
34 14.89 18.02 4.35
35 15.03 18.16 4.38
36 15.14 18.28 4.41
37 15.23 18.40 4.43
38 15.29 18.53 4.45
39 15.34 18.66 4.45
40 15.35 18.77 4.46
41 15.35 18.88 4.47
42 15.33 18.95 4.46
43 15.30 18.98 4.46
44 15.29 18.99 4.46
45 15.27 18.99 4.47
46 15.25 19.00 4.47
47 15.21 18.98 4.47
48 15.15 18.98 4.47
49 15.09 18.97 4.48
50 15.04 18.96 4.49
51 14.99 18.96 4.49
52 14.96 18.97 4.50
53 14.93 18.94 4.50

Continued on next page
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54 14.90 18.93 4.51
55 14.89 18.93 4.51
56 14.88 18.93 4.52
57 14.87 18.93 4.52
58 14.87 18.93 4.53
59 14.87 18.93 4.53
60 14.88 18.93 4.53
61 14.88 18.93 4.54
62 14.89 18.92 4.54
63 14.91 18.94 4.54
64 14.93 18.94 4.54
65 14.94 18.95 4.54
66 14.95 18.97 4.55
67 14.96 18.98 4.54
68 14.96 18.98 4.55
69 14.96 18.98 4.55
70 14.97 18.98 4.54
71 14.97 18.98 4.55
72 14.97 18.97 4.54
73 14.97 18.98 4.55
74 14.97 18.98 4.55
75 14.97 18.99 4.55
76 14.97 18.98 4.55
77 14.97 18.98 4.55
78 14.97 18.98 4.55
79 14.97 18.98 4.55
80 14.97 18.98 4.55
81 14.97 18.99 4.55
82 14.97 18.99 4.55
83 14.97 18.98 4.55
84 14.97 18.99 4.54
85 14.97 18.98 4.55
86 14.98 18.98 4.55
87 14.97 18.98 4.55
88 14.97 18.99 4.55
89 14.97 18.99 4.55
90 14.98 18.99 4.55
91 14.97 18.98 4.54
92 14.97 18.98 4.55
93 14.98 18.99 4.55
94 14.97 19.00 4.55
95 14.98 18.99 4.55
96 14.98 19.00 4.55
97 14.98 19.00 4.55
98 14.98 19.00 4.55
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99 14.98 19.00 4.54
100 14.98 19.00 4.55

Concluded

Table B.4: Cache Miss Counts for Linked List based EPOCH.

Step Number L1 Misses L2 Misses L3 Misses

1 1,267,619.25 334,976.25 52,615.83
2 1,750,249.67 604,849.50 76,937.96
3 2,278,793.23 870,392.00 99,689.67
4 2,804,645.50 1,131,481.08 123,628.13
5 3,373,565.21 1,392,383.44 147,594.90
6 3,957,447.63 1,652,120.52 172,109.90
7 4,552,467.00 1,909,627.29 198,264.15
8 5,164,108.75 2,163,981.56 224,994.56
9 5,786,041.23 2,417,785.52 251,913.13
10 6,412,099.52 2,666,276.17 279,831.71
11 7,044,306.73 2,909,083.00 308,280.06
12 7,679,550.06 3,141,273.40 336,976.10
13 8,316,702.67 3,368,034.56 366,655.38
14 8,948,577.15 3,588,037.52 396,534.17
15 9,573,765.71 3,805,519.44 426,525.60
16 10,193,166.35 4,015,404.88 456,821.25
17 10,802,569.15 4,219,432.08 487,192.15
18 11,406,958.06 4,418,704.23 517,650.88
19 11,994,040.27 4,609,541.17 548,392.94
20 12,559,855.02 4,790,150.83 578,825.85
21 13,115,931.75 4,966,957.48 609,528.13
22 13,652,304.67 5,143,441.92 639,848.81
23 14,168,155.83 5,314,159.27 669,944.02
24 14,665,697.58 5,478,152.00 699,189.08
25 15,134,576.69 5,630,317.52 727,977.60
26 15,583,997.79 5,775,091.46 756,412.85
27 16,004,401.60 5,909,849.50 784,261.15
28 16,397,820.23 6,029,893.54 811,521.88
29 16,761,875.73 6,131,912.27 837,983.42
30 17,095,508.02 6,228,241.58 863,504.98
31 17,394,024.35 6,319,318.56 888,487.75
32 17,667,942.04 6,412,630.81 912,743.48
33 17,914,615.88 6,501,523.65 935,997.13
34 18,133,323.69 6,589,190.17 958,172.69
35 18,317,017.56 6,671,185.40 979,352.42
36 18,465,873.85 6,756,703.27 999,788.52
37 18,577,379.79 6,839,136.27 1,019,114.27
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38 18,652,425.69 6,915,436.40 1,037,336.67
39 18,683,899.15 6,980,330.85 1,055,036.54
40 18,679,984.17 7,033,876.94 1,071,895.73
41 18,636,745.73 7,079,897.90 1,087,759.69
42 18,567,443.52 7,119,748.35 1,103,161.56
43 18,502,166.31 7,160,131.38 1,117,971.23
44 18,443,315.90 7,192,755.46 1,132,283.29
45 18,401,715.83 7,219,419.79 1,145,625.71
46 18,361,408.04 7,237,781.40 1,157,541.77
47 18,314,040.73 7,250,044.60 1,167,148.52
48 18,253,321.27 7,258,735.23 1,174,438.33
49 18,191,588.23 7,267,880.73 1,180,355.38
50 18,135,692.02 7,272,309.06 1,185,468.60
51 18,090,035.06 7,275,690.85 1,190,285.77
52 18,046,217.48 7,278,696.71 1,194,532.67
53 18,013,758.96 7,277,982.69 1,198,480.40
54 17,984,650.10 7,278,395.79 1,202,015.00
55 17,974,307.17 7,282,856.13 1,205,440.60
56 17,965,223.29 7,285,898.69 1,208,361.90
57 17,961,508.90 7,286,042.29 1,211,112.29
58 17,967,258.13 7,288,849.17 1,213,541.71
59 17,973,993.00 7,289,397.06 1,215,700.52
60 17,989,792.79 7,292,744.25 1,217,915.13
61 18,006,951.94 7,294,415.42 1,219,810.33
62 18,026,327.19 7,295,367.88 1,221,454.98
63 18,054,605.27 7,301,276.13 1,223,032.15
64 18,077,134.33 7,305,980.75 1,224,435.40
65 18,099,884.23 7,309,940.35 1,225,905.25
66 18,113,843.04 7,312,495.42 1,227,309.83
67 18,125,666.77 7,314,988.31 1,228,924.38
68 18,127,877.67 7,317,093.77 1,230,652.73
69 18,132,946.88 7,321,755.79 1,232,749.73
70 18,132,735.25 7,323,489.17 1,235,018.02
71 18,142,610.83 7,329,166.04 1,237,645.13
72 18,145,797.15 7,330,608.79 1,240,428.69
73 18,148,000.69 7,334,864.79 1,243,379.71
74 18,156,556.77 7,339,337.00 1,246,398.67
75 18,158,393.25 7,343,754.96 1,249,379.35
76 18,164,600.38 7,347,334.92 1,252,348.73
77 18,169,893.92 7,350,248.06 1,255,192.42
78 18,175,100.04 7,353,785.75 1,258,110.65
79 18,181,845.67 7,357,708.38 1,260,984.54
80 18,187,996.44 7,361,043.71 1,263,858.08
81 18,189,868.27 7,363,845.83 1,266,578.19
82 18,193,891.75 7,366,221.73 1,269,253.25
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83 18,196,724.31 7,366,181.15 1,271,849.60
84 18,204,512.02 7,369,955.27 1,274,437.50
85 18,207,699.58 7,371,707.15 1,276,960.38
86 18,210,973.63 7,372,045.63 1,279,422.23
87 18,214,281.00 7,375,238.58 1,281,727.27
88 18,218,792.67 7,376,719.35 1,284,048.65
89 18,222,211.02 7,378,389.63 1,286,081.42
90 18,219,161.58 7,377,546.71 1,287,852.94
91 18,223,554.63 7,378,882.29 1,289,267.33
92 18,229,897.31 7,383,560.29 1,290,408.71
93 18,228,477.44 7,382,873.71 1,291,186.73
94 18,228,168.27 7,383,888.29 1,291,613.83
95 18,229,829.79 7,384,271.98 1,292,063.69
96 18,232,722.54 7,386,239.00 1,292,248.35
97 18,235,917.25 7,385,578.56 1,292,378.40
98 18,237,527.00 7,387,074.25 1,292,444.75
99 18,239,020.85 7,386,564.81 1,292,466.56
100 18,236,300.21 7,386,992.96 1,292,494.92

Concluded

Table B.5: Normalised Cache Miss Counts for Linked List based EPOCH.

Step Number L1 Misses L2 Misses L3 Misses

1 1.00 1.00 1.00
2 1.38 1.81 1.46
3 1.80 2.60 1.89
4 2.21 3.38 2.35
5 2.66 4.16 2.81
6 3.12 4.93 3.27
7 3.59 5.70 3.77
8 4.07 6.46 4.28
9 4.56 7.22 4.79

10 5.06 7.96 5.32
11 5.56 8.68 5.86
12 6.06 9.38 6.40
13 6.56 10.05 6.97
14 7.06 10.71 7.54
15 7.55 11.36 8.11
16 8.04 11.99 8.68
17 8.52 12.60 9.26
18 9.00 13.19 9.84
19 9.46 13.76 10.42
20 9.91 14.30 11.00
21 10.35 14.83 11.58
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22 10.77 15.35 12.16
23 11.18 15.86 12.73
24 11.57 16.35 13.29
25 11.94 16.81 13.84
26 12.29 17.24 14.38
27 12.63 17.64 14.91
28 12.94 18.00 15.42
29 13.22 18.31 15.93
30 13.49 18.59 16.41
31 13.72 18.86 16.89
32 13.94 19.14 17.35
33 14.13 19.41 17.79
34 14.31 19.67 18.21
35 14.45 19.92 18.61
36 14.57 20.17 19.00
37 14.66 20.42 19.37
38 14.71 20.64 19.72
39 14.74 20.84 20.05
40 14.74 21.00 20.37
41 14.70 21.14 20.67
42 14.65 21.25 20.97
43 14.60 21.38 21.25
44 14.55 21.47 21.52
45 14.52 21.55 21.77
46 14.48 21.61 22.00
47 14.45 21.64 22.18
48 14.40 21.67 22.32
49 14.35 21.70 22.43
50 14.31 21.71 22.53
51 14.27 21.72 22.62
52 14.24 21.73 22.70
53 14.21 21.73 22.78
54 14.19 21.73 22.85
55 14.18 21.74 22.91
56 14.17 21.75 22.97
57 14.17 21.75 23.02
58 14.17 21.76 23.06
59 14.18 21.76 23.11
60 14.19 21.77 23.15
61 14.21 21.78 23.18
62 14.22 21.78 23.21
63 14.24 21.80 23.24
64 14.26 21.81 23.27
65 14.28 21.82 23.30
66 14.29 21.83 23.33
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67 14.30 21.84 23.36
68 14.30 21.84 23.39
69 14.30 21.86 23.43
70 14.30 21.86 23.47
71 14.31 21.88 23.52
72 14.31 21.88 23.58
73 14.32 21.90 23.63
74 14.32 21.91 23.69
75 14.32 21.92 23.75
76 14.33 21.93 23.80
77 14.33 21.94 23.86
78 14.34 21.95 23.91
79 14.34 21.96 23.97
80 14.35 21.97 24.02
81 14.35 21.98 24.07
82 14.35 21.99 24.12
83 14.36 21.99 24.17
84 14.36 22.00 24.22
85 14.36 22.01 24.27
86 14.37 22.01 24.32
87 14.37 22.02 24.36
88 14.37 22.02 24.40
89 14.38 22.03 24.44
90 14.37 22.02 24.48
91 14.38 22.03 24.50
92 14.38 22.04 24.53
93 14.38 22.04 24.54
94 14.38 22.04 24.55
95 14.38 22.04 24.56
96 14.38 22.05 24.56
97 14.39 22.05 24.56
98 14.39 22.05 24.56
99 14.39 22.05 24.56
100 14.39 22.05 24.56

Concluded

Table B.6: Data for Original and Modified EPOCH timestep scaling.

Step Number Original Modified

1 0.43 0.43
2 0.44 0.43
3 0.44 0.43
4 0.44 0.43
5 0.45 0.43
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6 0.45 0.43
7 0.45 0.43
8 0.46 0.43
9 0.46 0.44
10 0.46 0.44
11 0.46 0.44
12 0.47 0.44
13 0.47 0.44
14 0.47 0.44
15 0.48 0.44
16 0.48 0.44
17 0.48 0.44
18 0.49 0.44
19 0.49 0.44
20 0.49 0.45
21 0.50 0.45
22 0.50 0.45
23 0.50 0.45
24 0.51 0.45
25 0.51 0.45
26 0.51 0.45
27 0.51 0.45
28 0.52 0.45
29 0.52 0.45
30 0.52 0.45
31 0.53 0.45
32 0.53 0.45
33 0.53 0.45
34 0.53 0.45
35 0.53 0.45
36 0.54 0.45
37 0.54 0.45
38 0.54 0.45
39 0.54 0.45
40 0.54 0.45
41 0.54 0.45
42 0.55 0.45
43 0.55 0.45
44 0.55 0.45
45 0.55 0.45
46 0.55 0.45
47 0.55 0.45
48 0.55 0.45
49 0.55 0.45
50 0.55 0.45
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51 0.56 0.45
52 0.56 0.45
53 0.56 0.45
54 0.56 0.45
55 0.56 0.45
56 0.56 0.45
57 0.56 0.45
58 0.56 0.45
59 0.56 0.45
60 0.56 0.45
61 0.56 0.45
62 0.56 0.45
63 0.56 0.45
64 0.56 0.45
65 0.56 0.45
66 0.56 0.45
67 0.56 0.45
68 0.56 0.45
69 0.56 0.45
70 0.56 0.45
71 0.56 0.45
72 0.56 0.45
73 0.56 0.45
74 0.56 0.45
75 0.56 0.45
76 0.56 0.45
77 0.56 0.45
78 0.56 0.45
79 0.56 0.45
80 0.56 0.45
81 0.56 0.45
82 0.56 0.45
83 0.56 0.45
84 0.56 0.45
85 0.56 0.45
86 0.56 0.45
87 0.56 0.45
88 0.56 0.45
89 0.56 0.45
90 0.56 0.45
91 0.56 0.45
92 0.56 0.45
93 0.56 0.45
94 0.56 0.45
95 0.56 0.45

Continued on next page

132



B. Optimisation of Inertial Confinement Fusion Simulations

Table B.6 Continued from previous page

Step Number Original Modified

96 0.56 0.45
97 0.56 0.45
98 0.56 0.45
99 0.56 0.45

100 0.56 0.45
Concluded

Table B.7: SIMD scaling of miniEPOCH AoS kernels for 256-bit AVX, 128-bit
AVX and for the code operating without vectorisation.

Kernel 256-bit 128-bit No Vec

Move 2.27 · 10�2 2.35 · 10�2 2.37 · 10�2

Stencil 4.44 · 10�2 5.00 · 10�2 8.33 · 10�2

Current 6.42 · 10�2 8.19 · 10�2 1.14 · 10�1

Table B.8: SIMD scaling of miniEPOCH SoA kernels for 256-bit AVX, 128-bit
AVX and for the code operating without vectorisation.

Kernel 256-bit 128-bit No Vec

Move 7.66 · 10�3 7.69 · 10�3 7.69 · 10�3

Stencil 4.83 · 10�2 4.65 · 10�2 7.55 · 10�2

Current 4.69 · 10�2 6.54 · 10�2 9.84 · 10�2

Table B.9: Normalised instruction counts per kernel for di↵erent SIMD widths
for the SoA memory layout.

Kernel 256-bit 128-bit No Vec

Move 0.25 0.50 1.00
Stencil 0.52 0.63 1.00
Current 0.37 0.59 1.00
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Table B.10: Kernel runtime for di↵erent data layouts.

Kernel SoA AoS AoSoA

Move 7.66 · 10�3 2.27 · 10�2 1.73 · 10�2

Stencil 4.83 · 10�2 4.44 · 10�2 3.90 · 10�2

Current 4.69 · 10�2 6.42 · 10�2 6.56 · 10�2

Table B.11: Overall runtime for the original and optimised versions of EPOCH
for a 10,000 step run.

Code Variant Total Kernel Time Sort Overhead

Original 5332.19 0.00
Array 4502.09 0.00
Optimised 2164.41 1302.36

Table B.12: Particle Per Cell Scaling of EPOCH and miniEPOCH.

Particles Per Cell EPOCH miniEPOCH

32 0.22 0.25
64 0.43 0.40
128 0.87 0.70
256 1.74 1.31
512 3.47 2.46

Table B.13: Counts for the number of instructions executed during particle per
cell scaling.

Particles Per Cell EPOCH miniEPOCH (vec) miniEPOCH (novec)

32 1.00 1.00 1.00
64 2.00 1.54 1.95
128 4.00 2.57 3.84
256 8.00 4.65 7.65
512 16.00 8.80 15.26
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Discussion and Conclusions

Table C.1: Kernel Performance of Intel Xeon Phi and Comparable CPU.

Kernel CPU Intel Xeon Phi

Move 1.02 · 10�3 2.67 · 10�3

Stencil 2.47 · 10�2 2.70 · 10�2

Current 1.48 · 10�2 3.58 · 10�2

Table C.2: Total Runtime of Intel Xeon Phi and Comparable CPU.

Code Variant Total Runtime

EPOCH 7.19 · 10�2

miniEPOCH (Xeon Phi) 6.54 · 10�2

miniEPOCH (CPU) 4.05 · 10�2
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