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Abstract

This paper introduces a new specification for the heterogeneous autoregressive (HAR)

model for the realized volatility of S&P 500 index returns. In this modelling framework, the

coefficients of the HAR are allowed to be time-varying with unspecified functional forms. The

local linear method with the cross-validation (CV) bandwidth selection is applied to estimate

the time-varying coefficient HAR (TVC-HAR) model, and a bootstrap method is used to con-

struct the point-wise confidence bands for the coefficient functions. Furthermore, the asymp-

totic distribution of the proposed local linear estimators of the TVC-HAR model is established

under some mild conditions. The results of the simulation study show that the local linear

estimator with CV bandwidth selection has favorable finite sample properties. The outcomes

of the conditional predictive ability test indicate that the proposed nonparametric TVC-HAR

model outperforms the parametric HAR and its extension to HAR with jumps and/or GARCH

in terms of multi-step out-of-sample forecasting, in particular in the post-2003 crisis and 2007

GFC periods, during which financial market volatilities were unduly high.
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1 Introduction

Financial return volatility is fundamental to portfolio diversification, pricing financial assets and

derivatives, and risk management, among others. As a consequence, volatility modelling and

forecasting have been two of the most researched topics in both theoretical developments and

practical applications in financial econometrics. Engle (1982) and Bolleslev (1986) developed

ARCH/GARCH models for deterministic volatility modelling of financial market, which led to

various extensions and empirical applications in the last three decades. Recently, several authors

studied the GARCH model with time-varying coefficients (TVC). For example, Frijns et al. (2011)

introduced a TVC-GARCH model based on multinormial switching mechanism, while Polzehl

and Spokoiny (2006) proposed an adaptive procedure to estimate the GARCH coefficients as a

function of time. In addition, Heston (1993), Ruiz (1994), and Jacquier et al. (1994) developed

stochastic volatility models in both the continuous and discrete time series frameworks. In these

models, however, the volatility is assumed to be a latent factor and the daily volatility series are

estimated largely from daily return series.

The seminal papers by Andersen and Bollerslev (1998) and Andersen et al. (2001), among

others, introduced the nonparametric realized volatility (RV) measures constructed from intra-day

transaction data, which retain most of the pertinent information for measuring, modelling, and

forecasting RV over the daily and long horizons. Additionally, RV was shown to be an efficient

and consistent estimator of the latent volatility of asset returns series. Evidently, the availability of

nonparametric measures of latent volatility constructed from high frequency intraday data such as

the RV has created a new innovative research direction on the modelling and forecasting of volatil-

ity in the recent literature on financial econometrics. The construction of observable RV series

and the use of standard time-series techniques have led to promising approaches for modelling and

forecasting daily return volatility.

The RV is known to possess the long memory property, and as a result several studies modelled
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the RV as the ARFIMA process, which is known to be difficult for estimating and forecasting.

Based on the Heterogeneous Market Hypothesis introduced by Müller et al. (1993), as an alterna-

tive to ARFIMA model, Corsi (2009) proposed the heterogeneous autoregressive (HAR) model,

which is a relatively simple autoregressive specification and shown to capture the crucial long

memory feature of the RV series. In spite of its simplicity, Corsi (2009) showed that the HAR

model can successfully encapsulate the main empirical features of financial returns distribution’s

fat tails and thus has a remarkably better forecasting performance than its competitors. McAleer

and Medeiros (2008) provided an excellent literature review and compared the performance of the

HAR with that of the latent GARCH-type and stochastic volatility models. The authors further pro-

posed a HAR with multiple-regime switching smooth transition model for RV, combining the HAR

and the smooth transition autoregressive models. Liu and Maheu (2008) introduced a jump com-

ponent as well as asymmetric components to HAR model. See also Raggi and Bordignon (2012)

and Nonejad (2014) who proposed various extensions to HAR model for the log-transformed RV

(logRV) series.

Corsi et al. (2008) showed that the residual series of the HAR model exhibits volatility cluster-

ing and thus proposed HAR-GARCH model to explicitly account for this property. They found that

the HAR-GARCH model outperforms the HAR model in terms of out-of-sample point forecasting.

Subsequently, the HAR with various jump components in modelling and forecasting the logRV se-

ries has received notable attention in the recent literature. Anderson et al. (2007) introduced an

HAR-J model, in which the price process includes daily jumps associated with short-lived busts in

realised volatility, and proposed an HAR-CJ model, in which logRV is modelled in terms of multi-

period rough jumps and smooth continuous components. Some further advances can be found in

Bollerslev et al. (2009) and Andersen et al. (2011). These studies raise the HAR model with

jumps to the prominence by showing that the HAR models with jump components produce better

RV forecasts than those without jump components. In this paper, we propose a flexible data-driven

nonparametric approach and apply this to estimate the TVC-HAR model, and compare the results
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ACCEPTED MANUSCRIPT

with those of the aforementioned HAR-type models in terms of out-of-sample forecasting of daily,

weekly and monthly logRV.

The principal contributions of the paper are the following: (i) it introduces an alternative speci-

fication for HAR model of S&P 500 index returns by allowing the parameters of the HAR model to

be time-varying with unknown functional forms; (ii) it applies a local linear smoothing method to

estimate the TVC-HAR model and uses a bootstrap method to construct the point-wise confidence

bands for the coefficient functions; and (iii) it evaluates the multi-period out-of-sample forecast-

ing performance of the proposed TVC-HAR model against the HAR, HAR-GARCH models with

and without jumps. To our knowledge, this paper is among the first to generate nonparametric

multi-step ahead forecasts for logRV.

In a preliminary analysis of the daily S&P 500 stock index returns over the period 1999-2010,

we found that the coefficients of the simple HAR model across the sub-sample periods were sig-

nificantly different. Without making any parametric assumption as to the way in which these coef-

ficients vary over time, in this paper we allow the coefficients of the HAR models to vary over time

with unknown functional forms. If these coefficients are assumed to be constants but indeed time-

varying, then the model misspecification can give rise to time-varying volatility for HAR model,

which is introduced and extensively studied by Corsi et al. (2008). Thus, the nonparametric TVC-

HAR model that we propose in this paper is a natural competitor to the well-known HAR-GARCH

model. To assess the out-of-sample performance of the model proposed in this paper relative to

several parametric counterparts, we use the conditional predictive ability (CPA) test developed by

Giocomoni and White (2006). We further employ a hypothesis testing method to find supporting

evidence for its relative in-sample performance. In this respect, this paper makes methodological

as well as empirical contributions to the growing literature on realized volatility.

Modelling the TVC is common in finance. The TVC models have been applied to several ar-

eas in finance, including the popular capital asset pricing model and the term structure of interest

rates model (c.f., Cochrane, 2001; Tsay, 2002; and Cai, 2007). Despite many studies imposing

4
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various parametric structures to TVC functions, in practice, the underlying true feature of the TVC

function is largely unknown. However, the traditional approach to establish a TVC model relies on

the assumption made on the parametric functional forms for the time-varying coefficients. More-

over, although it is simple to implement, the parametric structure imposed for the TVC functions

is often too restricted and can be unrealistic, leading to model misspecification, and thus to inac-

curate forecasting. By contrast, without imposing any specific structure, nonparametric estimation

of the TVC models would be an attractive alternative, because it allows the data to “speak for

themselves”. There exists a vast literature on nonparametric estimation of the mean regression

models as well as their econometric applications. For instance, Robinson (1989) contributed to the

early development of the nonparametric mean estimation of TVC regression models with exoge-

nous explanatory variables, while Cai (2007) and Li et al. (2011), among others, contributed to the

recent literature on this topic. Meanwhile, there has also been increasing interest on nonparametric

estimation of the dynamic time series models under the assumption of local stationarity (c.f., Kim,

2001; Giraitis et al., 2012; and Zhang and Wu, 2012). However, so far as we know, there is little

literature on nonparametric estimation of the TVC realized volatility models with local stationarity

assumption. This paper fills this gap by further deriving the asymptotic distribution theory of the

proposed nonparametric methodology which is given in the appendix.

The rest of the paper is organized as follows. Section 2 introduces the TVC-HAR model

specification for logRV, local linear estimation method with the cross-validation (CV) bandwidth

selection and the construction of the point-wise confidence bands for the coefficient functions, and

conducts a simulation study for assessing the finite sample performance of the proposed model

and estimation approach. Section 3 provides a description of the parametric and nonparametric

out-of-sample forecasting and evaluation. Section 4 describes the S&P 500 series and presents a

preliminary analysis of the series, followed by the results of local linear estimation and CPA testing

of the proposed nonparametric TVC-HAR model. Section 5 concludes this paper. An asymptotic

theory for the proposed methodology with some regularity conditions is given in Appendix A.1
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and the generalized likelihood ratio test for the simple HAR model against the TVC-HAR model

is outlined in Appendix A.2.

2 Model and Methodology

In this section, we first specify the TVC-HAR modelling framework, and then introduce the

methodologies including the local linear estimator and the bootstrap method to construct the point-

wise confidence bands for the coefficient functions. Furthermore, we also give a simulation study

and report the results.

2.1 Specification of the TVC-HAR Model

We start with Corsi (2009)’s simple HAR model, which is defined by

log RVt = β0 + βd log RVt−1 + βw log RVt−5,t−1 + βm log RVt−22,t−1 + εt, (1)

wherelog RVt+1−k,t = k−1
(
log RVt−1 + log RVt−2 + ∙ ∙ ∙ + log RVt−k

)
= 1

k

∑k
j=1(log RVt− j) is the k-

period normalized realized variation, β0, βd, βw and βm are the four unknown parameters which

are assumed to be invariant over time. We next relax the restriction that the coefficients of the

HAR model (1) are constant which might be unrealistic in practical application as mentioned in

Section 1. Instead, we allow that the coefficients of the model can vary over the time with certain

unknown functional forms, which leads to a flexible TVC-HAR model for logRV.

Before specifying the nonparametric TVC-HAR model, we introduce some notation through

the following general TVC autoregressive time series model:

Yt = X⊤t βt + εt, t = 1, ∙ ∙ ∙ , n, (2)

where Xt =
(
1, Xt,1, Xt,2, ∙ ∙ ∙ , Xt,d

)⊤
are the lagged values of the response variable Yt with Xt,k = Yt−k

for k = 1, ∙ ∙ ∙ , d, βt =
(
βt,0, βt,1, ∙ ∙ ∙ , βt,d

)⊤
is a vector of unknown functions of time t, and {εt} is a

6
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sequence of stationary errors. As in Robinson (1989), Cai (2007) and Li et al. (2011), we assume

that

βt, j = β j(τt), τt =
t

n
, t = 1, ∙ ∙ ∙ , n, j = 0, ∙ ∙ ∙ , d, (3)

where n is the sample size. Such a specification of βt makes it possible to construct a consistent

nonparametric kernel regression estimation of the coefficient functions, via increasingly intense

sampling of data points at each point in the interval [0, 1].

Let Yt = log RVt, Xt =
(
1, log RVt−1, log RVt−5,t−1, log RVt−22,t−1

)⊤
and βt =

(
βt,0, βt,d, βt,w, βt,m

)⊤

in the model (2), with the coefficient functions replaced with those defined by (3). We then obtain

the nonparametric TVC-HAR model for the logRV series through:

log RVt = β0(τt) + βd(τt) log RVt−1 + βw(τt) log RVt−5,t−1 + βm(τt) log RVt−22,t−1 + εt. (4)

The simple HAR model (1) can be seen as a special case of the TVC-HAR model by restricting

the coefficient functions to be constants over the time. Furthermore, note that model (4) is different

from those in Cai (2007) and Li et al. (2011), as there is a dynamic structure involved in model (4)

and the commonly-assumed α-mixing condition may not be satisfied in our setting.

2.2 Local Linear Estimation Method

We next introduce the local linear method to estimate the coefficient functions βt, j = β j(τt) for j =

0, d,w,m. The local linear method has been employed in the nonparametric regression estimation

in the literature, due to its attractive properties such as efficiency, bias reduction, and adaptation

of boundary effects (c.f., Fan and Gijbels, 1996). Assuming each β j(∙) has a continuous second-

order derivative in the interval [0, 1], β j(τt) can be approximated by a linear function through the

first-order Taylor expansion:

β j(τt) ≃ a j + b j(τt − τ),

7
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where a j = β j(τ), and b j = β
′
j
(τ) which is the first-order derivative of β j(τ). Thus, the model (4)

can be locally approximated by

log RVt ≃ X̃⊤t θ(τ) + εt, (5)

where X̃⊤t =
[
X⊤t , X

⊤
t (τt − τ)

]⊤
and θ(τ) =

{
β⊤(τ), [β′(τ)]⊤

}⊤
. Note that the dimension for X̃t and

θ(τ) in the above model is 8.

Based on the local approximation (5), we define the locally weighted sum of squares:

n∑

t=1

[
log RVt − X̃⊤t θ

]2
Kh(τt − τ), (6)

where Kh(u) = 1
h
K(u

h
), K(∙) is a kernel function, and h = hn > 0 is the bandwidth satisfying the

conditions that h→ 0 and nh→ ∞ as n→ ∞. Note that h controls the amount of smoothing used

in the local linear estimation. Then, θ̂(τ) can be obtained by minimizing the weighted loss function

(6) with respect to θ. By some elementary calculation, we may show that the expression of θ̂(τ) is

given by

θ̂(τ) =



S n0(τ) S ⊤
n1

(τ)

S n1(τ) S n2(τ)



−1 

Mn0(τ)

Mn1(τ)


, (7)

where

S nk(τ) =
1

n

n∑

t=1

XtX
⊤
t (τt − τ)kKh(τt − τ), k = 0, 1, 2,

and

Mnk(τ) =
1

n

n∑

t=1

Xt(log RVt)(τt − τ)kKh(τt − τ), k = 0, 1.

The local linear estimate of β(τ) =
[
β0(τ), βd(τ), βw(τ), βm(τ)

]⊤
is β̂(τ) which consists of the first 4

elements of θ̂(τ), and the local linear estimate of the derivative β′(τ) is β̂′(τ) which consists of the

last 4 elements of θ̂(τ). Proposition 1 in the appendix shows that the local linear estimation β̂(τ) is

asymptotically normally distributed under some regularity conditions.
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As is well-known, the local linear estimator is sensitive to the choice of the bandwidth h, and

thus it is critical to choose an appropriate bandwidth in empirical applications. In this paper, we

apply the commonly-used CV bandwidth choice for the time series case (c.f., Härdle and Vieu,

1992). Let β̂−t(τt) be the local linear estimated value of β(τt) by using the sample {log RVs : s , t}.

The optimal bandwidth hopt is chosen such that

CV(h) =
1

n

n∑

t=1

[
log RVt − X⊤t β̂−t(τt)

]2

is minimized. In Section 2.4 below, we conduct a simulation study to evaluate the finite sample

properties of the local linear estimator of the TVC-HAR model with the CV bandwidth selection.

2.3 Construction of the Confidence Bands

For given 0 < α < 1, the (1 − α) point-wise confidence bands of β j(∙) at point 0 ≤ τ ≤ 1 can be

defined by

[̂
β j(τ) − cα/2(τ) × sd(̂β j(τ)), β̂ j(τ) + cα/2(τ) × sd(̂β j(τ))

]
(8)

for j = 0, d,w,m, where β̂ j(τ) is the local linear estimate of β j(τ), cα/2(τ) is the upper α/2 percentile

of Q j(τ) = (̂β j(τ) − β j(τ))/sd(̂β j(τ)) and sd(̂β j(τ)) is the standard deviation of β̂ j(τ). However, (8)

cannot be directly used to construct the confidence bands of β j(τ) as neither cα/2(τ) nor sd(̂β j(τ))

is known. We next estimate cα/2(τ) and sd(̂β j(τ)) by using the bootstrap procedure. Then, by using

the estimates of cα/2(τ) and sd(̂β j(τ)) which are denoted by ĉ∗
α/2

(τ) and sd
∗(̂β j(τ)), respectively, the

(1 − α) point-wise confidence bands of β j(τ) can be obtained by

[̂
β j(τ) − ĉ∗α/2(τ) × sd

∗(̂β j(τ)), β̂ j(τ) + ĉ∗α/2(τ) × sd
∗(̂β j(τ))

]
.

The bootstrap procedure to estimate cα/2(τ) and sd(̂β j(τ)) is described as follows.

1. Estimate βt by the local linear smoothing method introduced in Section 2.2, and denote the

resulting estimates by β̂t for t = 1, ∙ ∙ ∙ , n.

9
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2. For each t = 1, ∙ ∙ ∙ , n, generate log RV∗t = X⊤t β̂t + ε
∗
t , where {ε∗t }nt=1

is sampled from the

centred residuals {̃εt}nt=1
, with ε̃t = ε̂t − ε̂t, ε̂t = log RVt − X⊤t β̂t and ε̂t =

1
n

∑n
t=1 ε̂t. In practice,

ε∗t = ε̃t ∙ ηt, where {ηt} is a sequence of independent and identically distributed random

variables drawn from a prespecified distribution with mean zero and unit variance, such as

N(0, 1). Use the data set {(log RV∗t , Xt) : t = 1, . . . , n} to estimate the coefficient functions

and denote the resulting estimator as β̂∗(∙).

3. Repeat Step 2 for B times and obtain B bootstrap local linear estimated values, β̂∗(τ, i), i =

1, ∙ ∙ ∙ , B. The estimate of sd(̂β j(τ)) is the sample standard deviation of {̂β∗j(τ, i) : i =

1, ∙ ∙ ∙ , B} and is denoted as sd
∗(̂β j(τ)).

4. For each i = 1, ∙ ∙ ∙ , B, use the sequence {̂β∗j(τ, i)} and sd
∗(̂β j(τ)) to compute Q∗j,i(τ) =

(̂β∗j(τ, i) − β̂ j(τ))/sd
∗(̂β j(τ)), and then obtain the estimate of cα/2(τ), denoted by ĉ∗

α/2
(τ), by

calculating the upper α/2 percentile of {Q∗j,i(τ) : i = 1, ∙ ∙ ∙ , B}.

As in Teräsvirta et al. (2010), we let the covariates Yt−k, for k = 1, 5, 22 in the dynamic

autoregression be invariant when generating bootstrap samples, although other bootstrap methods

may also be applicable in our setting. In Section 4, the results of our empirical application show

that the above bootstrap procedure works reasonably well. Additionally, we find that the point-

wise confidence bands for the coefficient functions of TVC-HAR are sensitive to minor variations

to the optimum bandwidth which produces the narrowest confidence bands. The simultaneous

confidence bands for the coefficient functions proposed in Zhang and Peng (2010) for the case

where the observations are independent does not appear to work well in our setting, where the data

is weakly dependent and locally stationary, and they are generally much wider than the point-wise

confidence bands. Therefore, in the empirical study presented in Section 4, we report only the

point-wise confidence bands.

10
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2.4 Simulation Study

In this section, we conduct a simulation study to evaluate the finite sample behavior of the local

linear estimator with the CV bandwidth, which is introduced in Section 2.2, to estimate the coeffi-

cient functions of the TVC-HAR model. In this simulation study, we specify the TVC-HAR model

as

Yt = β0(τt) + βd(τt)Yt−1 + βw(τt)Yt−5,t−1 + βm(τt)Yt−22,t−1 + εt (9)

where τt =
t
n
, and Yt−k,t−1 = k−1 (Yt−1 + Yt−2 + ∙ ∙ ∙ + Yt−k) =

1
k

∑k
j=1 Yt− j, k = 1, 5, 22 and t =

1, ∙ ∙ ∙ , n. The functional forms for β j(∙), j = 0, d,w,m, are generated as: β0(τ) = 0.1 × sin(2πτ),

βd(τ) = 0.1 × cos(2.5πτ), βw(τ) = 0.1 × cos(2πτ), and βm(τ) = −0.1 × sin(πτ). We consider two

data generating processes: DGP 1 and DGP 2. In DGP 1, εt in (9) is N(0, 1); and in DGP 2, εt is

Student-t with 5 degrees of freedom. We set n = 250, 500 and 1000 sample sizes, and M = 500

replications. Moreover, to ensure that the initial values for the DGP do not affect the results, we

generate n + n∗ observations, with n∗ = 1000 being the burn-in sample size.

The simulation study is conducted in the following steps:

1. Set n = 250 and generate {εt} from N(0, 1).

2. Generate the initial values of the elements of {Y0,Y−1,Y−2, ..., Y−21}.

3. Generate a T × 1 series of Yt recursively from DGP1: TVC-HAR with the known coefficient

functions and the standard normal εt.

4. Then, construct the RHS dynamic variables
(
1,Yt−1,Yt−5,t−1,Yt−22,t−1

)
as defined above.

5. Discard the first n∗ observations of Yt and Xt, where Xt = (1,Yt−1,Yt−5,t−1,Yt−22,t−1). Use

the remaining n observations to estimate the four unknown coefficient functions β(.) j by the

local linear method with the CV bandwidth, and denote the resulting estimates by β̂ j(.) for

j = 0, d,w,m.

11
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6. Repeat the above Steps 3 to 5 M times.

7. Compute the bias and the standard deviation (std) for φ =
[
β0, βd, βw, βm

]⊤
, as follows:

bias j =
1

n

n∑

t=1

(̂
β j(τt) − β j(τt)

)
and std j =

√√
1

M

1

n

M∑

i=1

n∑

t=1

(̂
β j,i(τt) − β̂ j(τt)

)2
,

where β j(∙) for j = 0, d,w and m are the known coefficient functions, β̂ j(∙) = 1
M

∑M
i=1 β̂ j,i(∙),

and β̂ j,i(∙) denotes the value of β̂ j(∙) at the i-th replication.

8. Repeat the steps 3–7 for n = 500 and 1000.

9. Repeat the steps 1–7 with the DGP2 for n = 250, 500 and 1000.

The results of the simulation study are summarized in Table 1. The overall results indicate that

the local linear estimator with CV bandwidth is not very sensitive to various error distributions, and

this estimator has favorable finite sample properties in terms of bias and standard deviation (std).

Furthermore, an attractive property is that these two quantities rapidly decrease as the sample size

increases from 250 to 1000.

Table 1 near here

3 Forecasting Volatility

In this section we discuss how to assess the out-of-sample forecasting performance of the proposed

nonparametric TVC-HAR model relative to other parametric HAR models including the simple

HAR and the HAR-GARCH models, with or without the jump components. The parametric and

nonparametric forecasting methods are introduced in Sections 3.1 and 3.2, respectively, and the

so-called CPA test is discussed in Section 3.3 to evaluate the volatility forecasts.

12
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3.1 Parametric Multi-Step-Ahead Forecasting

In this section we first provide a summary of some selected parametric forecasting models of the

logRV series, and then describe how to generate the multi-step-ahead forecasts of logRV using

these models.

Andersen et al. (2007) extended Corsi (2009)’s daily HAR model to longer horizons, i.e.,

log RVt,t+δ = βδ,0 + βδ,d log RVt−1 + βδ,w log RVt−5,t−1 + βδ,m log RVt−22,t−1 + εt,t+δ, (10)

The δ-step-ahead forecasts of logRV can be generated as the one-step-ahead forecast from model

(10) for a given δ. The estimates of the parameters in model (10) are expected to vary for different

δ. In this paper, for the purpose of forecasting comparison, we include the parametric HAR-family

including simple HAR, HAR-GARCH(1,1) with normal errors, and HAR-J and HAR-CJ models

(Equations 13 and 28 in Andersen et al. (2007), respectively), and HAR-J with GARCH(1,1)

errors, where the letter C refers to the log continuous sample path component variation, while the

letter J refers to the log jump component of logRV.

To generate multi-step-ahead out-of-sample forecasts, we partition the total data sample of size

n into two periods: an estimation period and an evaluation period:

t = 1, 2, ∙ ∙ ∙ , k,︸       ︷︷       ︸
estimation period

k + 1, k + 2, ∙ ∙ ∙ , n︸                 ︷︷                 ︸
evaluation period

.

Next, we describe the out-of-sample forecasting methodology only for the HAR model (10), and

the methodology is similar for other parametric HAR-type models included in this forecasting exer-

cise; see also Andersen et al. (2007) for HAR models with jumps. We generate the volatility point

forecasts using a rolling window of fixed length k with the estimation scheme. At the time point

k, let the estimators of parameters in model (10) be β̂k
δ, j

estimated using the first k observations,

and then the δ-step-ahead out-of-sample forecasts are generated and compared to the realization

log RVk+δ. Similarly, at the time point k + 1, β̂k+1
δ, j

are obtained using the k observations ending

at k + 1, the second set of δ-step-ahead forecasts are generated and compared to the realization

13
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log RVk+δ+1, and so on. This iterative procedure generates m ≡ n − δ − k + 1 number of out-of-

sample forecasts and relative forecast errors. Following Patton (2011), we measure the relative

forecast error using the simple mean squared error loss function. In summary, setting δ = 1, 5 and

22 as the daily, weekly and monthly forecasting horizons, respectively, the conditional forecasts of

log RVt,t+δ at any time point t ∈ {k, k + 1, ∙ ∙ ∙ , n − δ + 1}, are computed directly as follows:

E(log RVt,t+δ|Ft) = β̂
t
δ,0 + β̂

t
δ,d log RVt−1 + β̂

t
δ,w log RVt−5,t−1 + β̂

t
δ,m log RVt−22,t−1

for δ = 1, 5 and 22, where Ft represents the information set available up to time t.

3.2 Nonparametric Multi-Step-Ahead Forecasting

The nonparametric multi-step-ahead forecasting for non-linear autoregression models with order d

can be made by estimating the conditional mean E(Yt+δ|Yt, ∙ ∙ ∙ ,Yt−d+1) via nonparametric smooth-

ing of Yt+δ on (Yt, ∙ ∙ ∙ ,Yt−d+1) directly (c.f., Robinson, 1983; Härdle and Vieu, 1992; Teräsvirta

et al., 2010). The direct nonparametric approach, however, ignores the substantial information

contained in the intermediate variables Yt+1, ∙ ∙ ∙ ,Yt+δ−1 about the conditional mean. Hence, to im-

prove this estimator, Chen et al. (2004) introduced a multi-stage nonparametric predictor, which

utilises information in pseudo observations Y∗
t+1
, ∙ ∙ ∙ ,Y∗

t+δ−1
(which will be defined later) to gen-

erate an estimate for Yt+δ. They showed that such multi-stage smoother improves the estimation

of the conditional mean, and demonstrated that this new predictor is more efficient than the direct

nonparametric smoother. In the empirical application, we thus employ the multi-stage nonpara-

metric predictor introduced by Chen et al. (2004) for the conditional forecasts of log RVt+δ under

the nonparametric TVC-HAR modelling framework (4), with adjustments made to the predictor to

account for the time-varying nature of the coefficient functions. The approach of the nonparametric

multi-step-ahead forecasting is described as follows.

1. Choose the optimal bandwidth hopt by the CV selection introduced in Section 2.2, where

14

ACCEPTED MANUSCRIPT

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
Y

o
rk

] 
at

 0
2
:1

3
 3

0
 M

ar
ch

 2
0
1

6
 



ACCEPTED MANUSCRIPT

only the first k observations of {Yt, Xt} are used.

2. For one-step-ahead forecast at time t, use the optimal bandwidth hopt from Step 1 and obtain

the local linear estimates β̂t, j of βt, j, using the past observations up to time t. Use these β̂t, j

and model (4) to predict Yt+1, denoted as Ŷ∗
t+1

, and compare it to the realization log RVt+1.

3. For two-step-ahead forecast at time t, update the vector of regressor values by including the

pseudo observation Ŷ∗
t+1

. Then, estimate the coefficient functions using the same bandwidth

hopt, and let the resulting estimator be β̂t+1, j. Use this estimator to generate the two-step-

ahead forecast, Ŷ∗
t+2

, and compare it to the realization log RVt+2.

4. Similarly, for δ-step-ahead forecast at t, update the set of regressors by adding the pseudo

observations Ŷ∗
t+1
, ∙ ∙ ∙ , Ŷ∗

t+δ−1
. Estimate the coefficient functions in the updated model using

the same bandwidth hopt and let this estimator be β̂t+δ−1, j. Use this estimator to generate Ŷ∗t+δ

and compare it to the realization log RVt+δ.

For simplicity, in Steps 2–4, we apply the same optimal bandwidth, hopt, which is constructed

from Step 1. In practice, however, one may re-estimate the optimal bandwidth hopt, as it may differ

as the data sample changes. The advantage of bandwidth re-estimation is the gain in the forecast

accuracy (which may not be significant), but it comes at a cost of a significant increase in the

computation time for nonparametric forecasting.

3.3 Evaluation of Volatility Forecasts: CPA Testing

It is of practical importance to evaluate and compare the out-of-sample forecasting performance

between the proposed TVC-HAR model and its competitors including the simple HAR and the

HAR-GARCH models. To achieve this, we employ the CPA test introduced by Giacomini and

White (2006).
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Diebold and Mariano (1995) and West (1996) (henceforth referenced as DM-W), contributed

to the early literature on the unconditional out-of-sample predictive ability evaluation of forecast-

ing models. However, the recent CPA test provides a framework for an unconditional forecast

evaluation criterion, which is robust to misspecified forecasting models. In our forecast evaluation

which involves three models, the proposed TVC-HAR and the simple HAR are nested models,

whereas the proposed TVC-HAR and HAR-GARCH are non-nested models. The CPA test has an

advantage over the DM-W approach in that the former is well suited for evaluating CPA of nested

as well as non-nested forecasting models. In addition, the CPA test can be applied to multi-step

point, interval, probability or density forecast valuation for a general loss function. Furthermore,

the CPA approach accommodates conditional forecast evaluation objectives (which is more ac-

curate at a specific future date), as well as nesting the unconditional objectives (which is more

accurate on average) of the DM-W approach. Although both the unconditional and conditional

approaches are informative, the global (or average) relative forecasting performance may conceal

important information about the relative forecasting performance over time. Hence, the use of the

CPA test appears promising for assessing the merit of the TVC-HAR model against the parametric

HAR-type models in terms of out-of-sample forecasting accuracy. The CPA test is implemented

via the following three steps.

1. Based on the rolling samples of fixed length k, the conditional forecasts of Yt+δ by using

the TVC-HAR and the benchmark models (say, the simple HAR model), respectively, for a

given set Ft (defined in Section 3.1), are generated for the target date t + δ of the evaluation

period at t = k, k + 1, ∙ ∙ ∙ , n − δ. Let Ŷ1,t+δ and Ŷ2,t+δ be the conditional forecasts of Yt+δ by

using the simple HAR and TVC-HAR models, respectively.

2. For each of the two forecasting models, generate a sequences of losses, L j,t+δ = L(Yt+δ, Ŷ j,t+δ),

with j = 1 denoting the benchmark model, and j = 2 denoting the TVC-HAR model, where

L(∙, ∙) is the mean squared error loss function. The two conditional forecasts are compared

16

ACCEPTED MANUSCRIPT

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
Y

o
rk

] 
at

 0
2
:1

3
 3

0
 M

ar
ch

 2
0
1

6
 



ACCEPTED MANUSCRIPT

through calculating ∆Lt+δ = L1,t+δ − L2,t+δ.

3. To test whether the alternative TVC-HAR model outperforms the benchmark model, we

consider testing

H0∗ : E[∆Lt+δ|Ft] = 0 a.s., versus H1∗ : E[∆Lt+δ|Ft] > 0 a.s.

We use the test statistic Tk,m = mZ
⊤
k,mΘ̂

−1
m Zk,m, where Zk,m =

1
m

∑n−δ
t=k Zt+δ, Zt+δ = πt∆Lt+δ,

m = n − δ − k + 1, πt is a chosen test function,

Θ̂k,m =
1

m

n−δ∑

t=k

Zt+δZ
⊤

t+δ +
1

m

δ−1∑

l=1

wm,l ×
n−δ∑

t=k+l

[Zt+δZ
⊤
t+δ−l + Zt+δ−lZ

⊤
t+δ],

and wm,l is a weight function such that wm,l → 1 as m→ ∞ for each l = 1, ∙ ∙ ∙ , δ − 1.

With respect to the choice of πt, as discussed in Giacomini and White (2006), πt is chosen

by researchers to include variables that are considered helpful to distinguish the relative forecast

performance of the two competing models. It can be an indicator of past relative performance

(such as lagged loss differences or moving averages of past loss differences) or business cycle

indicators, see Bierens (1990) and Stinchcombe and White (1998) for various ways of choosing

the test function. Section 4.3 below will specify the choices of πt and wm,l in the analysis of the

logRV of the S&P 500 index returns.

The null hypothesis H0∗ of equal conditional predictive ability of the models is rejected when

Tk,m > χ
2
q,1−α, where χ2

q,1−α is the (1 − α) quantile of the χ2
q distribution and q is the dimension of

πt. This rejection occurs when the out-of-sample loss difference {∆Lt+δ} is significantly different

from zero. Furthermore, in case where the null hypothesis of equal conditional predictive ability

is rejected, Giacomini and White (2006) also proposed an approach to make forecasting model

selection decisions. Their approach consists of the following three steps.

1. Regress ∆Lt+δ on πt over the out-of-sample period for t = k, k + 1, ∙ ∙ ∙ , n − δ, and let ϕ̂m
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denote the regression coefficient matrix. Apply the above χ2
q test and if the null hypothesis

is rejected, then we proceed to step 2.

2. Approximate E[∆Lt+δ|Ft] using ϕ̂⊤mπt, and model A (the benchmark model), with the lower

loss, is considered superior if ϕ̂⊤mπt < c, and model B (the alternative TVC-HAR model) is

superior otherwise. In this paper, we specify c = 0, as we desire to choose a model that

yields lower loss at t + δ.

3. Compute the ratio 1
m

∑n−δ
t=k I{ϕ̂⊤mπt > 0}, the relative out-of-sample performance of models A

and B, where I{∙} is an indicator function. Thus, model A is a better forecasting model at

t + δ if the ratio < 0.5, and model B otherwise.

4 Analysis of the US Market Data

4.1 Preliminary Analysis of the Data

The primary data set consists of tick-by-tick transaction prices for the S&P 500 index for the period

from 10/May/1999 to 26/October/2010. All the index data have been supplied by the Securities

Industries Research Centre of Asia Pacific (SIRCA) on behalf of Reuters, with the raw index

data filtered prior to the construction of the RV data. Construction of RV does not impose any

particular requirement on the way in which prices are sampled as long as the corresponding returns

are non-overlapping and span the time period of interest. There are variety of different sampling

schemes used in the literature. However, it is well established that ultra high-frequency returns

would lead to bias in the volatility measures, due to market microstructure effects such as the bid-

ask bounce, stale prices and price discreteness. These effects cause the observed asset prices to

behave differently to the assumptions underlying the construction of RV. In the literature, there is

a general consensus that the five-minute interval minimizes the influence of such microstructure

effects. This is also the approach adopted in our empirical study. Following Andersen et al. (2007)
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and Bollerslev et al. (2009), we compute the daily realized variance from five-minute logarithmic

returns constructed using the nearest price to each five-minute mark. The resulting daily log RVt

time series is displayed in Figure 1.

We first fit the simple HAR model (1) to the data set, and the ordinary least squares (OLS) esti-

mates of the coefficients are presented in Table 2. All of the coefficients are significantly different

from zero at the 10% significance level. Furthermore, to examine if the four coefficients, β0, βd,

βw and βm change significantly over time, we also estimate the moving window (with size 250)

bivariate correlations between log RVt and log RVt−1, log RVt−5,t−1, and log RVt−22,t−1, respectively.

All the three sets of correlations are plotted in Figure 2. All three moving window correlations

appear to be nonlinear over the sample period and they move in unison over time. In particular, all

of the three correlation measures move upwards during the crises such as the 2002-03 stock market

downturn and the 2007 global financial crisis (GFC), and then downwards and stay low during the

tranquil period between 2003 and early 2007.

Table 2 near here

To learn more about the time-varying nature of the coefficients of the HAR models, we subdi-

vide the full sample period into four different subsample periods. A simple HAR model is fitted

to each of the four subsamples, and the results are also presented in Table 2. Subsample 1 covers

the periods before the dotcom crisis, subsample 2 covers the US stock market downturn during

the dotcom crisis, subsample 3 covers the period before the GFC, and subsample 4 represents the

recent GFC period. The OLS estimates and their standard errors (in the parentheses) of the coeffi-

cients in the simple HAR model for each subsample are listed in Table 2. The result of the Wald

test for the equality of the regression coefficients indicates that the coefficients are significantly

different across the four sample periods, as the value of the test statistic is 61.168. Moreover, the

ACF plots of log RVt series for all the four subsamples are presented in Figure 3, which exhibit

different patterns across the subsamples, indicating the dynamic changes of the serial dependence
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in the log RVt series. Therefore, from the above our preliminary analysis, the TVC-HAR model

(4) may be a better alternative to the simple HAR specification for the log RVt series.

4.2 Estimation of the TVC-HAR model

In this section, we implement the methodologies introduced in Sections 2.2 and 2.3 to the logRV of

the S&P 500 series. We first compare the local linear estimation method with the Nadaraya-Watson

local constant estimation method. The optimal bandwidths chosen by the CV method for the

local constant and local linear methods are 0.137 and 0.174, respectively. Overall, the local linear

estimates of the coefficient functions are somewhat smoother than those by using the local constant

method, mainly due to a slightly larger optimal bandwidth for the local linear method. In addition,

as shown in Figure 4, the plot of the residuals from the latter estimation are closer to a normal

distribution than those from the former. To evaluate the in-sample estimation performance of the

simple HAR model with OLS estimation, the TVC-HAR model with local constant smoothing

and the TVC-HAR model with local linear smoothing, the mean squared errors are calculated as

0.269, 0.266, and 0.260, respectively, which indicate that the local linear smoothing method of the

TVC-HAR model provides the best estimation overall. Following the preceding observations, we

will not further discuss the results of local constant estimation on TVC-HAR.

The local linear estimates of the time-varying coefficient functions in the TVC-HAR models

are plotted in Figure 5 along with their 90% point-wise confidence bands. The horizontal lines

in all four panels in Figure 5 indicate the OLS estimates: beta0-OLS, beta1-OLS, beta2-OLS

and beta3-OLS, respectively of the constant coefficients, β0, βd, βw and βm of the simple HAR

model (1). The plot of the intercept function β̂0(∙) in Figure 5 is significantly smaller than the

corresponding constant coefficient during the tranquil period. The β̂d(∙), β̂w(∙) and β̂m(∙) in Figure

5 are respectively the estimated coefficient functions of log RVt−1, log RVt−5,t−1, and log RVt−22,t−1

on log RVt, Reported along with these estimates are their 90% point-wise confidence bands which
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lie either above or below the horizontal lines. The local linear estimates of coefficient functions of

TVC-HAR in Figure 5 are denoted by beta0-LL, beta1-LL, beta2-LL and beta3-LL, respectively.

The plot of β̂d(∙) which measures the daily effect of log RVt−1 on log RVt is smaller during the

tranquil period, while it is larger during the GFC period. However, the opposite effects emerge

from the plot of the β̂w(∙) function, which measures the weekly effect of log RVt−5,t−1 on log RVt.

It is larger during the non-crisis period while smaller during the GFC period. The plot of the

estimate of monthly effect β̂m(∙) shows a downwards trend until 2004 indicating declining effect

of log RVt−22,t−1 on log RVt during this period, reaches its trough during the period 2004–2006,

but then increases on the occurrence of the GFC and peaks around mid-2008 when this crisis was

deepening. It is evident that all the coefficients of the HAR model are time-varying.

To find further statistical evidence of whether or not the widely used simple HAR model is

adequate for the data, we apply the generalized likelihood ratio (GLR) test proposed by Fan et al.

(2001), with the wild bootstrap method to compute the p-value, is outlined in Appendix A.2 below.

We use the GLR to test whether H0: simple HAR against H1: TVC-HAR is rejected or not. By

setting B = 200 in the bootstrap procedure, we obtain the p-value of 0, which indicates that the

simple HAR model is rejected in favour of the TVC-HAR specification for the logRV of the S&P

500 index returns. Despite the GLR test originally proposed for the independent data, the result of

our analysis indicates that this test works well numerically for the weakly dependent and locally

stationary logRV series.

4.3 Forecasting and CPA Test

In this section we evaluate the out-of-sample forecasting ability of the TVC-HAR model with

the local linear method relative to the simple HAR, HAR-CJ, HAR-J, HAR-GARCH and HAR-

J-GARCH models. To do this, we first define the in-sample estimation and the out-of-sample

prediction periods as follows:
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Evaluation (m)

Estimation (k) pre-GFC post-GFC

Dates 01/07/2002–13/11/2007 14/11/2007–31/8/2008 02/09/2008–16/07/2009

Data size 1345 200 220

The reason for splitting the out-of-sample forecasting period into pre- and post-GFC periods

is that during the post-crisis period the stock market volatility has been unduly high. Finding a

model that generates superior multi-step-ahead out-of-sample forecasts relative to its competitors

during high volatility is very useful to investors and practitioners. To apply the nonparametric

forecasting method discussed in Section 3.2, the optimal bandwidth hopt estimated for the full

sample period is used for simplicity and time efficiency. All the models included in this forecasting

are estimated using the rolling samples of k observations and the conditional forecasts of log RVt,t+δ

are generated and compared them with the realizations. Following Giacomini and White (2006)’s

method described in Section 3.3, we choose the weight function wm,l = 1 − l
δ

and the test function

πt = (1,∆Lt+δ−1), where ∆Lt+δ−1 is the lagged value of the difference of the loss ∆Lt+δ, from which

the test statistic for the CPA test is constructed. In what follows, we report the results of the CPA

test.

4.3.1 CPA Test of the HAR-type model against the TVC-HAR model

The CPA test applied for testing the H0∗ that the parametric HAR-type model (benchmark model)

and the TVC-HAR model have the same out-of-sample forecasting performance against the H1∗

that these two models do not have the same forecasting performance. The p-values of the test

statistic are reported in Table 3. Furthermore, the proportion of the times (in percentages) that the

alternative model TVC-HAR offers a more accurate forecast over the benchmark model are also

reported in this table. When the simple HAR model is considered as the benchmark model, the
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results are given in Table 3(a). For the entire forecasting evaluation period, the p-values indicate

that the TVC-HAR model is as good as the HAR model in forecasting of log RVt,t+δ at δ = 1. On

the other hand, at δ = 5 and 22, the performance of TVC-HAR is superior to HAR in forecasting.

The results in Table 3(c) and (e) show that these observations are very similar when the HAR-

J and HAR-CJ model are considered as the benchmark model. More importantly, there is an

overwhelming evidence showing that the TVC-HAR model consistently outperforms the three

HAR-type models in the post-2007 GFC period.

The out-of-sample forecasting evaluations of these models were also made during the 2003

crisis, for which we used the estimation period 10/05/1999–20/09/2001, and the out-of-sample

forecasting evaluation periods: pre-2003 crisis period 21/09/2001–16/07/2002 and the post-2003

crisis period 17/07/2002–06/06/2003. The forecasting performance of the TVC-HAR relative to

the three HAR-type models are very similar to what was observed during the 2007 crisis. To save

space the results for during the 2003 crisis period are not tabulated in this paper.

Table 3 near here

4.3.2 CPA Test for HAR-GARCH and HAR-J-GARCH against TVC-HAR

In this section, the HAR and HAR-J models with GARCH(1,1) errors are treated as benchmark

models against the TVC-HAR model. The results of the CPA test are reported in Table 3(b)

and (d), respectively, and they show that as a consequence of adding the GARCH component,

the out-of-sample forecasting performances of HAR-GARCH and HAR-J-GARECH models have

improved for the full forecasting evaluation period, which includes the 2007-crisis. However, it

is noticeable that the relative performance of the TVR-HAR model consistently better than the

parametric counterparts during the post-GFC period when δ = 22 and during the pre-GFC period

when δ = 5.
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5 Conclusions

In this paper, we introduce a flexible TVC-HAR modelling framework for the logRV of the S&P

500 index returns. In this flexible model, the coefficients of the HAR model are allowed to be

time-varying with unspecified functional forms, which are estimated by a local linear method. In

a simulation study, we find that the local linear estimator for the coefficient functions of a TVC-

HAR time series model has good finite sample properties in terms of bias and standard deviation.

We construct the point-wise confidence bands for the coefficient functions using the bootstrap

procedure, which provide a statistical evidence to show that the HAR coefficients are indeed time-

varying. Additionally, the GLR test statistic augmented with the wild bootstrap method is con-

ducted to provide further statistical evidence against the simple linear HAR model for logRV of

the S&P 500 series in favour of the TVC-HAR model proposed in this paper. We evaluate the

multi-step-ahead out-of-sample forecasting performance of the TVC-HAR model relative to the

simple HAR model and its extensions to HAR with jumps and/or GARCH. The results of the CPA

test developed by Giacomini and White (2006) indicate that the one-step-ahead (daily) forecasting

performance of these models are equal. On the other hand, the TVC-HAR model consistently

outperforms the other parametric HAR-type models in 5-step-ahead (weekly) and 22-step-ahead

(monthly) out-of-sample forecasting, particularly in the post-2003 and 2007 crises periods during

which the financial market volatilities were extremely high.

6 Acknowledgements

We are grateful to the Co-Editor–Professor Rong Chen, an Associate Editor and two referees for their helpful

comments, which greatly improved the original version of the paper. Thanks also go to the participants of

several seminars and conferences for their constructive comments and suggestions on earlier versions of this

paper. The authors would also like to acknowledge financial support by the Australian Research Council

Discovery Grants Program under Grant Numbers: DP1314229 & DP150101012.

24

ACCEPTED MANUSCRIPT

D
o
w

n
lo

ad
ed

 b
y
 [

U
n
iv

er
si

ty
 o

f 
Y

o
rk

] 
at

 0
2
:1

3
 3

0
 M

ar
ch

 2
0
1

6
 



ACCEPTED MANUSCRIPT

Appendix A

A.1. Assumptions and an Asymptotic Distribution

In this part of the appendix, we derive the asymptotic distribution theory of the local linear estimation

β̂(τ) defined in Section 2.2, which is of independent interest. Existing literature, such as Robinson (1989),

Cai (2007) and Li et al. (2011), mainly considers the limiting distribution of the nonparametric kernel or

local linear estimation of the TVC models where the covariates are exogenous and do not include the lagged

term of the response. Hence, their results cannot be directly extended to the setting here.

Before giving the asymptotic results, we introduce a general class of evolutionary processes which can

accommodate a variety of forms of nonstationary (or locally stationary) behavior. Let τt =
t
n

and

Xt = βt,0 +
p∑

j=1

βt, jXt− j + εt = β0 (τt) +
p∑

j=1

β j (τt) Xt− j + εt, (11)

which allows the autoregressive coefficients to change smoothly over time, and thus provides a much more

general framework than the traditional autoregression models. Following Dahlhaus (1996), the process (11)

is locally stationary under some mild conditions on the coefficient functions. The locally stationary process

behaves like a stationary process in a small neighbourhood of each instant in time, but has a nonstationary

behavior globally. We can refer to Kim (2001), and Zhang and Wu (2012) for recent development on

nonparametric estimation of the coefficient functions {β j(∙) : 1 ≤ j ≤ p}.

We next convert our TVC-HAR model into the framework of the locally stationary process (11). It is

easy to see that model (4) can be re-written as

log RVt = β0(τt) + βd(τt) log RVt−1 + βw(τt)
[1

5

5∑

i=1

log RVt−i

]
+ βm(τt)

[ 1

22

22∑

i=1

log RVt−i

]
+ εt

= β0(τt) +
[
βd(τt) +

βw(τt)

5
+
βm(τt)

22

]
log RVt−1 +

[βw(τt)

5
+
βm(τt)

22

] 5∑

i=2

log RVt−i

+
[βm(τt)

22

] 22∑

i=6

log RVt−i + εt

≡ ϕ0(τt) +

22∑

j=1

ϕ j(τt) log RVt− j + εt, (12)
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where τt =
t
n
. Hence, the TVC-HAR model falls into the locally stationary modelling framework defined

in (11). Before presenting the asymptotic properties of the local linear estimator for the TVC-HAR models,

we introduce the following regularity conditions.

Assumption 1. The coefficient functions β j(∙), j = 0, d,w,m, are twicely continuous differentiable in [0, 1].

Meanwhile,
∑22

j=0 ϕ j(τ)z
j
, 1 for all |z| ≤ 1 + c with c > 0 uniformly in τ ∈ [0, 1], where ϕ j(∙) is defined on

the right hand side of (12).

Assumption 2. The sequence {εt} is independent and identically distributed (i.i.d.) with E[εt] = 0, 0 < σ2 ≡

E[ε2
t ] < ∞ and E[|εt|2+κ] < ∞ for κ > 0.

Assumption 3. The kernel function K(∙) is a continuous, symmetric and nonnegative function with a compact

support.

Assumption 4. Let the bandwidth h satisfy h→ 0 and nh→ ∞.

Assumption 1 imposes certain smoothness condition on the coefficient functions which ensures that

the local linear approach is applicable and it also entails local stationarity and short-range dependence,

respectively (c.f., Dahlhaus, 1996; Kim, 2001; and Zhang and Wu, 2012). The i.i.d. condition on the

error term in Assumption 2 can be relaxed to some stationary and weakly dependent conditions such as the

stationary martingale differences. Assumptions 3 and 4 are two commonly-used conditions on the kernel

function and bandwidth, respectively.

Let F ∗
j
=

( ∙ ∙ ∙ , ε j−1, ε j

)
be a shift process of i.i.d. random variables εi. We next give the asymptotic

distribution for the local linear estimation β̂(τ) defined in Section 2.2, where τ ∈ [0, 1].

Proposition 1. Suppose that Assumptions 1–4 are satisfied. Furthermore, there exists a measurable and

stochastically Lipschitz continuous function X(∙, ∙) such that

max
1≤t≤n

∥∥∥X∗t − X(τt−1,F ∗t−1)
∥∥∥ = OP

(
1

n

)
, (13)

where X∗t = (log RVt−1, log RVt−5,t−1, log RVt−22,t−1)⊤. Then, we have

√
nh

[̂
β(τ) − β(τ) − bτ(h)

] d−→ N
(
0, ν0σ

2
Σ
−1
τ

)
, (14)

where bτ(h) = 1
2
h2µ2β

′′
(τ) + oP(h2) with µ2 =

∫
u2K(u)du, ν0 =

∫
K2(u)du and Στ = E

[
X̃τX̃⊤τ

]
, X̃τ =

[
1,X⊤(τ,F ∗

0
)
]⊤

.
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Proof. By (13), Assumption 1 and Proposition 4.2 in Zhang and Wu (2012), we can prove that Xt =

(1, log RVt−1, log RVt−5,t−1, log RVt−22,t−1)⊤ in the local linear estimation can be replaced by X̃t =
[
1,X⊤(τt−1,F ∗t−1

)
]⊤

,

which would not affect the asymptotic distribution. Noting that {εt} is i.i.d. and εt is independent of

X(τt−1,F ∗t−1
), we can complete the proof of (14) by using the central limit theorem and the argument in

Zhang and Wu (2012).

A.2. Specification Testing

In this part of the appendix, we give an outline for the generalized likelihood ratio test developed by Fan

et al. (2001) for finding a statistical evidence to check whether the proposed TVC-HAR model fits the data

better than the simple HAR model. To outline this test, we consider the null hypothesis:

H0 : β0(τt) = β0, βd(τt) = βd, βw(τt) = βw, βm(τt) = βm,

against the alternative hypothesis:

H1 : β j(τt) , β j for at least one of j = 0, d,w,m.

If H0 is rejected, then we would infer that the nonparametric TVC-HAR model fits the logRV series better

than HAR. The test statistic is constructed based on the generalized maximum likelihood ratio test proposed

by Fan et al. (2001) and defined as follows:

TS n =
RS S 0 − RS S 1

RS S 1

, (15)

where RS S 0 is the residual sum of squares under the null hypothesis H0, and RS S 1 is the residual sum

of squares under the alternative hypothesis H1. Letting β̂ be the OLS estimate of β = (β0, βd, βw, βm)⊤,

then RS S 0 =
1
n

∑n
t=1 ε̂

2
t0

with ε̂t0 = log RVt − X⊤t β̂ and RS S 1 =
1
n

∑n
t=1 ε̂

2
t1

with ε̂t1 = log RVt − X⊤t β̂(τt) =

log RVt − X⊤t β̂t.

The null hypothesis is rejected if the p-value of the test is smaller than a nominal level (say 5%). The

p-value is computed using the following wild bootstrap procedure introduced by Stinchcombe and White

(1998).
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1. Under the null hypothesis H0, for each t = 1, ∙ ∙ ∙ , n, generate log RV∗t = X⊤t β̂ + ε
∗
t , where the {ε∗t } is

defined as in Step 2 of the bootstrap procedure in Section 2.3.

2. Use the data set {(log RV∗t , Xt) : t = 1, ∙ ∙ ∙ , n} to estimate the models under both H0 and H1 and then

calculate the corresponding RS S ∗
0

and RS S ∗
1
, and TS ∗n defined in (15).

3. Repeat Steps 1 and 2 for B times and obtain the empirical distribution of TS ∗n. Then, the p-value

of the test statistics is computed by 1
B

∑B
i=1 I(TS ∗n(i) ≥ TS n), where I(∙) is an indicator function and

TS ∗n(i) is calculated as TS ∗n by using the i-th bootstrap sample.
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Figure 1. Time series of logarithmic realized volatility.
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Figure 2. The moving window correlation plots between log RVt and log RVt−1, log RVt−5,

log RVt−22, respectively. The bottom-right plot combines the curves in the other three plots.
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Figure 3. ACF plots for log RVt up to 125th order. The plots exhibit different patterns across the

four subsamples, reflecting the dynamic changes of the serial dependency of the log RVt series over

the sample period.
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Figure 4. Plots of the residuals from local linear and local constant regressions as well as their

distributions.
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Figure 5. The local linear estimates of the coefficient functions β(∙) (solid nonlinear line) with 90%

point-wise confidence bands (dotted lines), and OLS estimates (solid horizontal line).
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Table 1: Bias and Standard Deviation (Std) of the local linear estimates of the TVC-HAR model of based

on 500 replications

DGP 1 DGP 2

n β̂0 β̂d β̂w β̂m β̂0 β̂d β̂w β̂m

250 0.0004 0.0039 −0.1099 −0.9151 0.0015 0.0018 −0.0937 −0.9062

Bias 500 −0.0045 0.0035 −0.0272 −0.3331 −0.0006 0.0044 −0.0033 −0.3149

1000 −0.0018 0.0060 −0.0021 −0.1540 −0.0053 0.0047 0.0026 −0.1427

250 0.1263 0.0327 0.0387 0.2087 0.1301 0.0281 0.0282 0.2179

Std 500 0.0771 0.0296 0.0250 0.0919 0.0718 0.0261 0.0230 0.0582

1000 0.0634 0.0356 0.0409 0.0279 0.0632 0.0341 0.0372 0.0332
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Table 2: Subsample periods and the associated simple HAR model parameter estimates. The standard errors

are given in the parentheses and ∗ indicates insignificance of parameter at 10% level.

(a) Subsample Periods

Periods

Subsample 1 10/05/1999 10/03/2000

Subsample 2 11/03/2000 09/10/2002

Subsample 3 10/10/2002 13/07/2007

Subsample 4 16/07/2007 26/10/2010

(b) The OLS estimates of the simple HAR model

β0 βd βw βm

Full sample −0.0313
(0.0121)

0.3732
(0.0220)

0.4137
(0.0343)

0.1655
(0.0274)

Subsample 1 −0.1347
(0.0764)

0.2264
(0.0708)

0.2705
(0.1333)

0.2253∗
(0.1820)

Subsample 2 −0.0100∗
(0.0217)

0.4077
(0.0480)

0.3588
(0.0771)

0.1374
(0.0696)

Subsample 3 −0.1357
(0.0338)

0.2731
(0.0355)

0.4011
(0.0584)

0.2249
(0.0495)

Subsample 4 −0.0065∗
(0.0181)

0.4930
(0.0388)

0.3833
(0.0555)

0.0629∗
(0.0408)
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Table 3: Results of the CPA test for out-of-sample forecasting performance between the TVC-HAR model

and the benchmark model (HAR-RV, HAR-GARCH, HAR-RV-J, HAR-J-GARCH or HAR-RV-CJ model),

with selected test function πt = (1,∆Lt+δ−1). The p-values denoted by pval and the proportion of time (in

%) that the alternative model offers a more accurate forecast over the benchmark are given in the table.

δ = 1 δ = 5 δ = 22

Subsamples pval Alternative better pval Alternative better pval Alternative better

(a) TVC-HAR versus HAR-RV

Full sample 0.4813 Equally good 0.0000 93.48% 0.0000 81.70%

pre-GFC 0.5550 Equally good 0.0000 95.98% 0.0727 Equally good

post-GFC 0.7415 Equally good 0.0000 91.96% 0.0000 98.49%

(b) TVC-HAR versus HAR-GARCH

Full sample 0.2454 Equally good 0.0000 47.12% 0.0002 52.38%

pre-GFC 0.4099 Equally good 0.0015 62.31% 0.0003 48.24%

post-GFC 0.4841 Equally good 0.0001 42.71% 0.0000 55.28%

(c) TVC-HAR versus HAR-J

Full sample 0.5182 Equally good 0.0000 92.98% 0.0000 78.95%

pre-GFC 0.6574 Equally good 0.0000 95.98% 0.0693 Equally good

post-GFC 0.7152 Equally good 0.0000 91.96% 0.0000 92.46%

(d) TVC-HAR versus HAR-J-GARCH

Full sample 0.3383 Equally good 0.0000 46.87% 0.0002 51.38%

pre-GFC 0.5033 Equally good 0.0017 63.32% 0.0004 49.25%

post-GFC 0.6034 Equally good 0.0001 42.71% 0.0000 53.77%

(e) TVC-HAR versus HAR-CJ

Full sample 0.8182 Equally good 0.0000 56.14% 0.0000 64.16%

pre-GFC 0.9855 Equally good 0.0003 63.82% 0.0001 52.76%

post-GFC 0.6227 Equally good 0.0008 51.26% 0.0000 70.85%
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