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The dynamics of Ascaris lumbricoides infections

Abstract

The Anderson–May model of human parasite infections, and specifically
that for the intestinal worm Ascaris lumbricoides is reconsidered, with a view
to deriving the observed characteristic negative binomial distribution which is
frequently found in human communities. The means to obtaining this result lies
in reformulating the continuous Anderson–May model as a stochastic process
involving two essential populations, the density of mature worms in the gut, and
the density of mature eggs in the environment. The resulting partial differen-
tial equation for the generating function of the joint probability distribution of
eggs and worms can be partially solved in the appropriate limit where the worm
lifetime is much greater than that of the mature eggs in the environment. Al-
lowing for a mean field nonlinearity, and for egg immigration from neighbouring
communities, a negative binomial worm distribution can be predicted, whose
parameters are determined by those in the continuous Anderson–May model;
this result assumes no variability in pre-disposition to the infection.
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Abstract

The Anderson–May model of human parasite infections, and specifically
that for the intestinal worm Ascaris lumbricoides is reconsidered, with a view
to deriving the observed characteristic negative binomial distribution which is
frequently found in human communities. The means to obtaining this result lies
in reformulating the continuous Anderson–May model as a stochastic process
involving two essential populations, the density of mature worms in the gut, and
the density of mature eggs in the environment. The resulting partial differen-
tial equation for the generating function of the joint probability distribution of
eggs and worms can be partially solved in the appropriate limit where the worm
lifetime is much greater than that of the mature eggs in the environment. Al-
lowing for a mean field nonlinearity, and for egg immigration from neighbouring
communities, a negative binomial worm distribution can be predicted, whose
parameters are determined by those in the continuous Anderson–May model;
this result assumes no variability in pre-disposition to the infection.

Keywords: Infectious diseases, Ascaris lumbricoides, mathematical model, nega-
tive binomial distribution.

1 Introduction

Ascaris lumbricoides, or roundworm, is a ubiquitous infection of low-income popula-
tions with poor sanitation in tropical countries (Scott 2008). It has been present in
human populations for thousands of years (Cox 2002). It was originally widely preva-
lent throughout the world (Tyson 1683, Stoll 1947, Crompton 2001), but was largely
eradicated from developed countries in the 20th century (the Japanese experience is
described by WHO (1996)), and developed countries (North America, Europe, Rus-
sia) now only register a handful of cases (Pullan et al. 2014, Crompton 2001). Recent
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estimates put the number of people infected at 820 million, with considerably more at
risk (Pullan et al. 2014). Infection is caused when eggs excreted in faeces are ingested.
Maturing to a larval stage, they migrate through the blood to the lungs, before being
coughed up and re-ingested to the small intestine, where the adult worm matures.
Infection with A. lumbricoides rarely causes death, but can lead to chronic disability,
leading to poor physical and cognitive development and school achievement (Bethony
et al. 2006).

In recent years, there has been an enormous investment in providing free treat-
ments to children in affected areas (see http://unitingtocombatntds.org). These
drugs effectively clear infection, but do not affect the environment and so reinfection
occurs rapidly. Therefore there are a number of questions arising concerning how to
design these treatment programmes, including how rapid is “bounce-back” following
mass treatment, and therefore how frequently should treatment be given to push in-
fection levels down (Anderson et al. 2012, Jia et al. 2012, Truscott et al. 2014). While
previous analysis has shown that this is likely to be dominated by the life expectancy
of the worm (Anderson and May 1991), we do not yet have approximations which
include the background transmission rate, which is likely to play an important role
in bounce-back.

It has long been noticed that a feature of macroparasites, such as Ascaris, is that
they are very over-dispersed in the population, with a small proportion of the pop-
ulation harbouring the highest number, or intensity, of worms and this is commonly
represented as a negative binomial distribution (Anderson and May 1978, May and
Anderson 1978). Since severity of symptoms is related to the intensity of infection
(Bethony et al. 2006), and is expected to be correlated with infectivity, it is essential
to understand the drivers of this distribution of worms and the impact of treatment
upon it. The negative binomial distribution has been shown to be generated by
varying susceptibility across hosts (Bartlett 1960, May and Anderson 1978), but is
commonly assumed as a given property of the population in modelling (Anderson and
May 1985, 1991).

Our purpose in this paper is to examine the way in which the dynamics of the in-
fection can provide a cause for the observation of a negative binomial distribution. As
mentioned, this can be due to a distribution of host susceptibility, but this explana-
tion simply pushes the observation back to the question of why susceptibility should
be gamma distributed (Bartlett 1960). Rather, we are interested in whether a model
of the disease can in itself produce the observed negative binomial distribution. The
answer to this is yes, but it relies in the model on assuming a non-zero immigration
rate of mature eggs; we comment further on this in the conclusions.

Our method proceeds by reformulating the continuous Anderson and May (1991)
model in a stochastic form (which is really the underlying description whence a con-
tinuous model is derived), which describes the stochastic evolution of two coupled
populations (free-living egg stage and adult worm). This leads to a partial differential
equation for the corresponding generating function, and we find that an approximate
solution is possible, based on the disparity of the time scales in each equation. While
similar ideas have been used before (e. g., Hadeler and Dietz 1983, Kretzschmar and
Adler 1993), our novelty lies in providing an explicit approximate solution of the
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three characteristic equations which describe the generating function p.d.e. It is as a
consequence of this solution that we are able to predict the occurrence of a negative
binomial distribution.

Stochastic models in epidemiology, and particularly for helminth infections, have a
long history. For example, a simple comparison between deterministic and stochastic
models was studied for simple epidemics by Jacquez and O’Neill (1991). Generally,
comparable analytic results for the stochastic model as for the deterministic model
are not readily available, and this has been a common observation (e. g., Isham 1995).
Stochastic models of parasite distributions were probably first studied by Kostitzin
(1934, p. 20 ff.), who opined that his infinite system of nonlinear differential equations
‘presented nearly insurmountable difficulties’. Tallis and Leyton (1966) consider a
general form of stochastic model, while Tallis and Leyton (1969) consider the more
particular case of helminth infections, and in certain cases obtain negative binomial
distributions, similarly to Bartlett (1960), depending on the assumed probability
distribution of infection.

Hadeler and Dietz (1983) consider a quasi-linear model for the distribution of
parasites in an infected host population, where the nonlinearity of the model is effected
through a dependence of the (larval) uptake rate on the mean parasite burden, based
on the idea that the larval population is in quasi-equilibrium. This is somewhat similar
to the approach that we take here. A similar model was considered by Kretzschmar
and Adler (1993).

Stochastic models of helminth infections have been reviewed by Cornell (2010).
See also the articles by Walker et al. and Hollingsworth et al. in the book edited
by Holland (2013). Barbour and Kafetzaki (1991) address the overdispersion of ob-
served parasite distributions with a susceptible-infective model with various assumed
infection probability distributions. Isham (1995) introduced a stochastic model for
parasite burden as a function of host age, and later Herbert and Isham (2000) ex-
tended this to three stages: eggs, larvae and adults. Walker et al. (2010) provide a
stochastic model which focusses on the distinction between ‘trickle’ and ‘clumped’
infection rates, a theme to which we will return. Bottomley et al. (2005) develop
a stochastic model for two species of competing helminths, which leads to two cou-
pled equations for the respective probability densities. The analysis is limited to a
linearised system, and computation of the mean and variance of the distributions.
Adler and Kretzschmar (1992) consider a stochastic parasite model which ignores the
free-living stages of the parasite. Gaba et al. (2006) use a computational stochastic
model in a sheep/nematode system. While some analytic progress can be made in
some of these models (for example, derivation of equations for the mean and variance
of the resulting distribution), it seems that no direct approximate solution for the
time evolution of the probability distribution of coupled worm/egg populations has
been provided. We are able to do this here by combining the stochastic description
with an asymptotic analysis of the phase plane structure of the characteristic equa-
tions describing the generating function, based on a separation of the time scales of
the different populations. It is clear that this idea will have wider applicability in
other systems.

The structure of the paper is as follows. In section 2 we review the Anderson–May
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Figure 1: Schematic representation of the Anderson-May Ascaris model. Adult worms
(M) in the body produce eggs (E) which are excreted to the environment. These eggs
mature over a time τ2, and the mature eggs (L) are ingested at a rate β′. The
ingested eggs enter a larval stage (H), and migrate to the blood and other organs
before returning after a time τ3 to the small intestine (I), where they develop into
adult worms over a time τ ′1. Mortality rates at each stage are given by the coefficients
µk.

model, and show how it reduces to a set of two ordinary differential-delay equations.
This model is then analysed in section 3, and the nonlinear effects of mating and
fecundity yield the familiar results of bistability and population saturation. Section 4
develops a stochastic version of the two-component population model of section 3, and
shows, by means of an approximate solution, how a negative binomial distribution
can be predicted. A discussion of the results follows in section 5, and the conclusions
follow in section 6. Improvements in modelling structure and analyses form one of
the seven challenges facing the study of neglected tropical diseases (Hollingsworth et
al. 2015), and the main purpose of our paper is to contribute to this development.

2 Mathematical model

We begin by reviewing and elaborating the dynamics of an Ascaris infection in a
single human, who is part of a community of N̄ identical individuals. The basic
Anderson–May model for directly transmitted helminth infections can be represented
by the diagram in figure 1. The five boxes represent the five basic variables of the
model: E, the immature eggs in the environment, L, the mature infective eggs in the
environment, H, the ingested eggs in their larval migratory phase through the body,
where they may be systematically attacked by the immune system, I, the ingested
infective larvae in the small intestine, and M , the mature worms, these last three
being in a single human. The units of L and M are dimensionless, as they are taken
as pure numbers. The units of E, H and I are d−1 (per day) because they are
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distributions with respect to maturation or transit time m: specifically, E, H and I
satisfy the partial differential equations

∂E

∂t
+
∂E

∂m
= −µeE,

∂H

∂t
+
∂H

∂m
= −µhH,

∂I

∂t
+
∂I

∂m
= −µiI, (2.1)

and the respective boundary conditions are

E = E0(t) ≡ sφN̄λM(t),

H = β′L(t),

I = H(t, τ3),

 at m = 0. (2.2)

Here s is the fraction of female (egg-producing) worms, φ is the probability of mating
(which will depend on M), N̄ is the human community size, λ is the specific egg
production rate, and β′ is the transmission coefficient; in (2.1), µe, µh and µi are the
egg mortality rates.

Solution of the equations is straightforward using the method of characteristics,
and we find

E = E0(t−m)e−µem, H = β′L(t−m)e−µhm, I = H(t−m, τ3)e−µim. (2.3)

The equations for L and M take the form

L̇ = E|m=τ2
− µ2L− β′N̄L,

Ṁ = I|m=τ ′
1
− µ1M, (2.4)

where µ2 is the mature egg mortality rate and µ1 is the mature worm mortality rate;
thus

L̇ = rM(t− τ2)− µ2L− β′N̄L,

Ṁ = ν0L(t− τ1)− µ1M, (2.5)

where
τ1 = τ ′1 + τ3, β = β′d3, r = sd2φN̄λ, ν0 = βd1, (2.6)

and the survival coefficients d1, d2 and d3 are defined by

d1 = e−µiτ
′
1 , d2 = e−µeτ2 , d3 = e−µhτ3 . (2.7)

This is the basic Anderson–May model for L and M . We will provide elaborations
of this model later. There are some differences in detail between (2.5) and equations
(16.7) and (16.8) of Anderson and May (1991). We ignore a loss term in the equation

5



for M due to human mortality; this is in any case small. The main difference in
the present version of the model is that Anderson and May take β = β′, which is
equivalent to ignoring mortality in the migratory H phase of the egg population. In
fact, on page 470 of their book, β is indeed defined analogously to its definition here,
and Anderson and May also suppose (page 472) that µ2 � β′N̄ , so in practice there
is little difference.

3 Simplification and analysis

Estimates of the parameters of the model in (2.5) are given in table 1, based on
values provided by Anderson and May (1991). We suppose that µe = µ2, whence
our estimate for d2 = 0.7, slightly higher than the in vivo value of d1 ≈ 0.6, where
there is a hostile environment, and longer maturation time. There is no estimate for
migratory mortality, and our value of 0.5 is nominal. In addition, Anderson and May
provide no estimate for β, but we can infer the value of β from the estimates of the
basic reproduction rate R0 >∼ 1, as given in their table 16.3.

Symbol Meaning Typical value
d1 ingested egg survival coefficient 0.5–0.7
d2 egg survival coefficient in wild 0.7
d3 larval survival coefficient in migration 0.5
N̄ human community size 102

R0 basic reproduction rate 1–4
s proportion of female worms 0.5
M0 mean worm burden 10–20
β transmission coefficient 2× 10−11 d−1

β′ egg uptake rate 4× 10−11 d−1

λ, λ0 egg production rate 2× 105 d−1

µ−1
1 worm life expectancy 1–2 y
µ−1

2 mature egg life expectancy 28–84 d
φ mating probability ∈ (0, 1)
τ1 internal egg maturation time 50–80 d
τ2 external egg maturation time 10–30 d

Table 1: Parameter values

We begin by supposing that the natural mortality of infectious eggs in the en-
vironment is much greater than that of the uptake by humans, that is, β′N � µ2.
(This assumption is cosmetic, in the sense that otherwise we simply replace µ2 by
µ2 + β′N below, which is equivalent to taking a smaller value of µ−1

2 in table 1.) We
non-dimensionalise the model (2.5) by scaling the variables as

M ∼M0, L ∼ rM0

µ2

, t ∼ 1

µ1

, (3.1)
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and then the dimensionless form of the equations is

εL̇ = Mε2
− L,

Ṁ = R0Lε1 −M, (3.2)

where
Fτ ≡ F (t− τ), (3.3)

and the dimensionless parameters are defined by

ε =
µ1

µ2

, ε2 = µ1τ2, ε1 = µ1τ1, R0 =
ν0r

µ1µ2

=
βd1sd2φNλ

µ1µ2

. (3.4)

From table 1, we have ε, ε1, ε2 � 1, and thus the delays can be ignored, the infected
egg population L rapidly approaches equilibrium, and the worm population satisfies
the approximate equation

Ṁ = (R0 − 1)M, (3.5)

where Anderson and May (1991) estimate R0 in different communities as having
typical values R0 ≈ 1–5.

The worm population scale M0 is undetermined, because the model (3.2) or (3.5)
is linear. In particular, if R0 > 1 then unbounded growth occurs; in reality the worm
population is limited by nonlinearities, as discussed below.

If we accept the value of R0 of O(1), which is inferred from the recovery time
scale of the infection (e. g., Anderson and May 1991, figure 17.4), we can calculate
the value of βN̄ . Using the values in table 1, we find βN̄ ∼ 2× 10−9 d−1, and thus,
for a nominal community size of N̄ = 102, β ∼ 2× 10−11 d−1. This value seems very
small, and it raises the issue of whether this model for egg uptake is realistic; we come
back to this issue later in the discussion, section 5. First we complete the analysis of
the model on the basis that (2.5) is essentially correct.

3.1 Nonlinearity and saturation

Anderson and May (1991) address the issue of the linearity of (2.5) by proposing
two nonlinear dependences of the parameters in the definition of R0. The mating
probability must be a function of M , since we must have φ = 0 for M = 1, φ = 0.5
for M = 2, and so on. Generally, φ is an increasing function of M , asymptoting to
one for large M . A simple estimate for φ follows from assuming mating occurs if
there is at least one male and one female worm. In this case,

φ = 1− 1

2M−1
. (3.6)

Similarly, egg fecundity λ is a decreasing function of M . Measurements indicate
that while λ decreases (Anderson and May 1991, figure 15.14), the net production
Mλ increases with M , as we might expect (Hall and Holland 2000). The simplest
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Figure 2: The bistable equilibria of (3.8), assuming (3.9) and (3.10), with α = 5.

choice for a decreasing fecundity which satisfies these constraints is the algebraic
decay function

λ =
λ0M0

M +M0

, (3.7)

where M0 then provides the natural scale for the worm population. This is not
dissimilar to other algebraic data fits (Anderson and Medley 1985). With these
modifications, the dimensionless Anderson–May model (3.5) takes the form

Ṁ = [R0ψ(M)− 1]M, (3.8)

where

ψ(M) =
φ(M)

1 +M
, (3.9)

and a reasonable representation for φ is, from (3.6),

φ = 1− e−αM , (3.10)

where α ≈M0 ln 2, and has a typical value in the range 7–14.
The nonlinear model (3.8) provides a classical hysteretic transition from the stable

state M = 0 to the stable upper branch of figure 2. Since in practice α is large, the
threshold for transition is very low, and we can approximately take φ = 1 in (3.9).
In this case (3.8) is simply

Ṁ =

(
R0

1 +M
− 1

)
M, (3.11)
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and the stable steady state is just M ≈ R0− 1. The general solution of (3.11) is just

t =
1

R0 − 1
ln

[
M

(R0 − 1−M)R0

]
. (3.12)

In particular, the dimensionless time, following an intervention which reduces the
worm burden to a fraction fI of the steady state, for it to recover to a fraction fR of
the steady state, is just

tR =
1

(R0 − 1)
ln

(
fR
fI

)
+

R0

(R0 − 1)
ln

(
1− fI
1− fR

)
. (3.13)

This gives a simple expression for the bounce-back time.

4 The stochastic Anderson–May model

The distribution of worm load in humans is highly skewed: most infected carriers have
one or two worms, and the number with higher burdens shrinks rapidly, although there
is a fat tail to the probability density. Anderson and May (1991) show that a negative
binomial distribution fits measured worm burden profiles very well. They give the
probability density of having j worms as

pj =
(j + k − 1)!

j!(k − 1)!
αj(1− α)k, (4.1)

where in Anderson and May’s notation,

α =
m

m+ k
, (4.2)

and m and k are positive parameters: m is the mean of the distribution. We form
the probability generating function

GW (z) =
∞∑
0

pjz
j, (4.3)

from which we find

GW (z) =

(
1− α
1− αz

)k
, (4.4)

which gives the negative binomial distribution its name.
A natural explanation for the prevalence of negative binomial distributions in the

human population can be found through a stochastic process which describes within-
host birth, death and immigration (Bartlett 1960). However, such a model does not
apply directly to macroparasite infections, because births do not take place within
the host. We now aim to formulate a stochastic model to allow for the Anderson–May
environmental dynamics.
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We consider a community of N̄ people, each of whom has a random number of
n worms, and we suppose that the local environment contains m mature eggs, or
m cohorts (stools) of mature eggs (in the latter case, we are considering the idea
of ‘clumped’ infection (Isham 1995, Cornell 2010, Walker et al. 2010)). The joint
probability of an individual having n worms and there being m mature eggs is denoted
pm,n. To derive a stochastic equation for pm,n, we suppose the following processes
occur: worms die with probability µ1 dt in a time interval dt, mature eggs are taken
in by humans with specific probability ν0 dt, they die with probability µ2 dt, and they
are produced by individual worms at a rate r. As will be crucial, we also assume that
(mature) eggs are imported from elsewhere at a rate νe. Most obviously this is by
means of human traffic.

These assumptions lead to the sequence of differential equations

ṗm,n = −[nµ1 + ν0m+ µ2m+ rn+ νe]pm,n + µ1(n+ 1)pm,n+1

+ν0mpm,n−1 + µ2(m+ 1)pm+1,n + rnpm−1,n + νepm−1,n, (4.5)

and, defining the joint probability generating function

Π(z, w) =
∑
m,n≥0

pm,nz
mwn, (4.6)

(and taking pi,j = 0 if i or j < 0), we can derive the partial differential equation

∂Π

∂t
+ [µ1(w − 1)− r(z − 1)w]

∂Π

∂w

+[µ2(z − 1)− ν0(w − 1)z]
∂Π

∂z
= νe(z − 1)Π. (4.7)

In terms of this distribution, the mean quantities L and M of section 2 are defined
by

L =
∂Π(z, 1)

∂z

∣∣∣∣
z=1

, M =
∂Π(1, w)

∂w

∣∣∣∣
w=1

, (4.8)

and if we differentiate (4.7) with respect to z and w and apply the appropriate limits,
we regain (2.5) in the form

L̇ = rM − µ2L+ νe,

Ṁ = −µ1M + ν0L, (4.9)

indicating the values of the egg production rate r and egg intake rate ν0 are the same
as defined earlier in (3.4). Because of the dependence of φ and λ, and thus r, on M ,
the parameter

R =
rν0

µ1µ2

(4.10)

will also be a function of M . For M = 0, we have R = R0 as in (3.4), but the
nonlinear dependence of r on M means that the value of R = Rc at the stable steady
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state is different, and crucially less than one; if we assume (3.11), for example, we
have the simple relation

Rc =
1

R0

. (4.11)

We come back to discuss the problem when r varies later; for the moment we just
take it as a constant.

If the initial populations have values M and N , then the initial condition for Π is

Π = zMwN at t = 0. (4.12)

It is convenient to define
Z = z − 1, W = w − 1; (4.13)

then the characteristic equations for (4.7) are

Ż = µ2Z − ν0W (1 + Z),

Ẇ = µ1W − rZ(1 +W ),

Π̇ = νeZΠ. (4.14)

Despite their simplicity, solution of these for Z and W does not appear feasible in
closed form. Instead, we take advantage of the fact that µ1 � µ2, so that the system
(4.14)1,2 is relaxational, with Z being the fast variable. Additionally, note that our
concern is with the distribution of the worm numbers. If we denote its generating
function as GW (w), then in terms of z and w,

GW (w) = Π(1, w); (4.15)

note that z = 1 when Z = 0 in figure 3.
Figure 3 shows a phase portrait in the (Z,W ) phase plane for a typical set of

parameters having µ1 � µ2, and in which ν0 ∼ µ2 (though as we see later the case

ν0 � µ2 is more likely). The figure illustrates the case where r <
µ1µ2

ν0

, for which

the fixed point other than the origin lies in the first quadrant; the only difference for

the case r >
µ1µ2

ν0

is that it lies in the third, but the phase portrait is otherwise the

same.
What concerns us is the large time evolution of Π along the characteristics, since

this will give us the limiting distribution; and in view of (4.15), we are also interested
in the initial conditions for (4.14) which intersect the W axis, on which Z = 0, i. e.,
z = 1. It suffices to discuss the trajectories in W < 0, which must thus originate from
the saddle point at the origin, emerging almost along the lower unstable separatrix.
For the case where µ1 � µ2, these trajectories remain almost on the Z nullcline until
they leave at the last moment and dive almost horizontally to the right. This allows
us to obtain an approximate solution for Π.

We consider first the case ν0 ∼ µ2. The trajectories in W < 0 remain approxi-
mately on the Z nullcline

W =
µ2Z

ν0(1 + Z)
, (4.16)

11



-2

-1

 0

 1

-2 -1  0  1  2

W

Z

Figure 3: Phase portrait for (4.14)1,2, using values µ1 = 0.002 d−1, µ2 = 0.02 d−1,
Rc = 0.6, and ν0 = 0.02 d−1; the value of r is determined from (4.10). The solid (red
online) curve is the Ż = 0 nullcline, and the dashed (without arrows, green online)
curve is the Ẇ = 0 nullcline. Apart from the origin, which is an unstable node, there
is a second fixed point at (1

3
, 1

2
), which is a saddle point, and located at the apparent

slight discontinuity (which arises through the solution of two separate trajectories).

on which therefore

Ẇ ≈ µ1W −
rν0W (1 +W )

µ2 − ν0W
. (4.17)

Similarly, from (4.14) we can derive the approximate equation for Π on the Z nullcline,

1

Π

dΠ

dW
=

ν0νe
µ1(µ2 − ν0W )− ν0r(1 +W )

, (4.18)

and the appropriate initial condition for long time solutions is

Π = 1 at W = 0. (4.19)

Defining

Ω =
µ1µ2 − rν0

ν0(µ1 + r)
=
µ2(1−Rc)

ν0 + µ2Rc

, (4.20)

the solution of this is

Π =

(
Ω

Ω−W

)k
, (4.21)
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where
k =

νe
µ1 + r

, (4.22)

and rewriting this in terms of w = 1 +W yields

Π =

(
1− α

1− αw

)k
, (4.23)

where

α =
1

1 + Ω
=
ν0 + µ2Rc

ν0 + µ2

. (4.24)

This gives the familiar negative binomial distribution on the Z nullcline, but it re-
mains approximately valid also on the W axis, since the change of W between the two
is asymptotically small. Hence the long term worm distribution is (approximately)
negative binomial.

We now discuss the solution of the characteristic equations (4.14) when ν0 � µ2.
It is appropriate to rescale the variables as

Z ∼ δ =
ν0

µ2

, t ∼ 1

µ1

, (4.25)

which leads to the (rescaled) equations

µŻ = Z −W (1 + δZ),

Ẇ = W −RZ(1 +W ),

Π̇ = νZΠ, (4.26)

where
µ =

µ1

µ2

, ν =
νeν0

µ1µ2

. (4.27)

Since µ� 1, the Z equation is still fast and the earlier discussion applies, except now
the Z nullcline is approximately Z = W , since δ � 1. Thus on this nullcline,

1

Π

dΠ

dW
≈ ν

1−R(1 +W )
, (4.28)

whose solution (in terms of w) satisfying Π = 1 on w = 1 is

Π =

(
1−R

1−Rw

)ν/R
, (4.29)

so that we again obtain the negative binomial distribution (4.23) with parameters

α = R, k =
ν

R
=
νe
r
. (4.30)

Note that at the stable steady state R = Rc < 1.
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5 Discussion

The negative binomial distribution is commonly written in terms of k and the mean

m =
αk

1− α
, and thus we have

k =
νe

µ1 + r
, m =

νe(ν0 + µ2Rc)

µ2(µ1 + r)(1−Rc)
, ν0 ∼ µ2,

k =
νe
r
, m =

νeRc

r(1−Rc)
, ν0 � µ2. (5.1)

Note that if Rc ∼ 1 as we suppose, then ν0 � µ2 only if µ1 � r; so we see that the
first result in (5.1) includes the second as a particular limit and is uniformly valid.

The estimates in table 1 suggest the egg production rate is r ∼ 107 d−1, whence
the assumption that Rc ∼ 1 suggests ν0 ∼ β ∼ 10−11 d−1. As we intimated earlier, it
may not be the actual egg production which is important, but the infected (clumped)
stool production (Isham 1995, Walker et al. 2010). Eggs are not distributed randomly
in the environment. They are concealed in faeces which themselves are deposited
occasionally and locally. And within these faeces, only the eggs located on the outside
should be available for uptake. Thus, although the adult worm produces 105 eggs
per day, these are packaged in one set of faeces and only a small fraction will be
exposed and available. More specifically, if 105 eggs of diameter 50 µm are distributed
uniformly in a 2 cm diameter stool, then a rough calculation suggests that ∼ 103 will
present themselves on the surface. More importantly, it is not really the egg density
which is important but the faecal stool density. In terms of infected stool production,
a rate λ ∼ 1 d−1 is more reasonable. If we take total infected stool production at 10
d−1, then the necessary uptake rate is ν0 ∼ 10−5 d−1, but this is still much less than
µ2, so it seems the assumption ν0 = βd1 � µ2 is safe; in that case we can use the
second line of (5.1) in our discussion.

Observed distributions can then give us some further understanding of the value
of the egg uptake rate and the immigration rate. As an example, we consider some
Korean data (Anderson and May 1991, figure 15.17), for which m = 2.2 and k = 0.32;
thus Rc = 0.87, and more importantly, νe = kr <∼ r: the immigration rate would need
to be comparable to the local production rate. This can make sense, if children of
neighbouring villages frequently visit.

It is essential in our analysis to include the effects of external immigration. Partly,
this is because with the effects of nonlinearity included, immigration is necessary in
order to make the zero state unstable. More pertinently, if there is no immigration,
then the initial condition is retained in the distribution, although there may be some
effect of nonlinearity on this. Indeed, straightforward asymptotic solution of (4.14)
with νe = 0 leads to the approximate distribution

Π =

[
1 + (w − 1)

(
Ω

Ω + 1− w

)ν′

exp

(
−r
′t

µ2

)]N
, (5.2)
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where Ω is as given in (4.20), and

r′ = µ1µ2 − rν0, ν ′ = 1− ν0Ω

µ2

. (5.3)

The behaviour of the distribution at large time is opaque, however, because with no
immigration, the equilibrium worm density is obtained when r′ = 0 and thus also
Ω = 0. Näıve insertion of these limits implies extinction, which cannot be the case,
and a more subtle investigation is necessary, but we do not pursue this here.

A comment should be made concerning the assumption that the nonlinear depen-
dence of the production rate r is on the mean M and not n. If we were dealing with
a single individual, this would not be the case, and the differential equations (4.5)
would be genuinely nonlinear. However, because we have a reasonably large num-
ber of individuals, which we suppose represents the worm distribution, the correct
expression for r in (4.5) and thus eventually (4.14) is

r̄ = r(n), (5.4)

where the overline represents an average over the population. The characteristic
equations are the same (e. g., (4.26), but with R replaced by R̄, but the eventual
distribution is the same, except that R̄ is then the average of R over the distribution.

In view of the asymptotic assumption that µ1 � µ2, one might suppose that the
direct stochastic equivalent of the first order equation (3.5) would give similar results.
This is not the case, as it is simple to show that the result is a Poisson process for the
worm distribution. Nor does the assumption of an exponential distribution of lifetimes
affect this. Assumption of a fixed finite lifetime just leads to the renewal equation
and again a Poisson process with mean proportional to the product of the effective
egg uptake β and the worm lifetime T . However, if we additionally suppose that this
product itself has a gamma distribution, then a negative binomial distribution for the
worm population again ensues. Thus an alternative explanation for such distributions
is a simple immigration-death process for the adult worms, together with a gamma
distribution for uptake rates, for example. Such distributions are not unreasonable,
insofar as very young children are protected, but their uptake will rise sharply when
they are toddlers but decrease as they grow up. It remains to be seen whether such
an explanation is consistent with observed values of m and k.

6 Conclusions

We have addressed and provided a solution to the question of why human communities
subject to endemic infections of the helminth Ascaris lumbricoides generally display
a negative binomial distribution of adult worm numbers in the human hosts. Our
solution method generalises the classic Anderson–May model to a coupled stochas-
tic/deterministic process, and we show that the dynamics of the infection naturally
leads to the evolution of negative binomial distributions, providing we include the
effect of egg immigration into the model.
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If this is the correct explanation, it has important consequences for treatment
strategies. Following disinfection, worm recovery would in any case be enabled by
ingestion of worms already present in the environment. If, however, these could
removed, then according to the model, treatment would be permanent, and recurrence
would be entirely due to immigration. Indeed, this is also true for the classical
Anderson–May ordinary differential equation model. Also, observed parameters of the
distribution then suggest that immigration is as important as local egg production. If
quarantining could be introduced, the immigration rate νe and thus also ν would be
reduced, and (4.29) then suggests that the distribution would become much sparser,
and eradication more likely.

The alternative is that the negative binomial distribution arises because of the
variability in uptake rates in the population, suggesting that immigration may be
infrequent. In that case, infection recurrence is most likely due to the continuing
presence post-inoculation of eggs in the soil.

An interesting question for the Anderson–May model is why the inferred value of
the transmission coefficient β is so low. β = β′d3 is the product of two terms, the
uptake rate β′ and the survival probability in the body. From our discussion above,
the constraint that R0 ∼ 1 requires βλ ∼ 4× 10−6, so that even if we take the uptake
objects to be infected stools (thus replacing λ by stool production rate, say 1 d−1),
we would then need β ∼ 0.4× 10−5 d−1. It seems difficult to see how we could have
stool contact rate β′ < 10−2, say, in which case the immune loss rate would need to be
d3 <∼ 10−3. While that seems entirely reasonable on the basis of an effective immune
response, it raises the question why the immune response is not able to completely
eradicate the infection; nor is it consistent with our much higher assumed value of
d3 in table 1. Questions such as this go beyond the Anderson–May model, but are
central to the more general question as to why infectious diseases typically have a
value of R0 ∼ 1, and what mechanism enables this.
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Walker, M., A. Hall and M.-G. Basáñez 2010 Trickle or clumped infection process? A
stochastic model for the infection process of the parasitic roundworm of humans,
Ascaris lumbricoides. Int. J. Parasitol. 40, 1,381–1,388.

WHO 1996 Report of the WHO Informal Consultation on the use of chemother-
apy for the control of morbidity due to soil-transmitted nematodes in humans.
Geneva: World Health Organization (WHO/CTD/SIP/96.2).

18



φNλWs

E L H I

µ
µ

µ µ
µ

τ τ

e
2

h i

1

2 ’β 3 1τ  ’

environment body

egg production

M

Figure Click here to download Figure fig1.eps 

http://www.editorialmanager.com/bmab/download.aspx?id=105386&guid=b3318279-9cae-42b4-b458-6ce468e70e54&scheme=1
http://www.editorialmanager.com/bmab/download.aspx?id=105386&guid=b3318279-9cae-42b4-b458-6ce468e70e54&scheme=1


 0

 1

 2

 3

 0  1  2  3  4

R 0

M

Figure Click here to download Figure fig2.eps 

http://www.editorialmanager.com/bmab/download.aspx?id=105387&guid=143b3dcc-73d4-44ae-9013-cf604f64aa88&scheme=1
http://www.editorialmanager.com/bmab/download.aspx?id=105387&guid=143b3dcc-73d4-44ae-9013-cf604f64aa88&scheme=1


-2

-1

 0

 1

-2 -1  0  1  2

W

Z

Figure Click here to download Figure fig3.eps 

http://www.editorialmanager.com/bmab/download.aspx?id=105388&guid=3a6a58f7-c102-4766-9097-49acae8fb2d6&scheme=1
http://www.editorialmanager.com/bmab/download.aspx?id=105388&guid=3a6a58f7-c102-4766-9097-49acae8fb2d6&scheme=1


Manuscript - in LaTeX or Word format

Click here to access/download
Manuscript - in LaTeX or Word format

ascaris3.tex

Click here to view linked References

http://www.editorialmanager.com/bmab/download.aspx?id=105385&guid=7e2438e7-6cb5-4064-88d3-b156b586dd92&scheme=1
http://www.editorialmanager.com/bmab/viewRCResults.aspx?pdf=1&docID=2862&rev=0&fileID=105385&msid={C6CA7678-5CC2-4B21-9EE9-8513E11CFCC1}

