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Kinetic model of force-free current sheets with non-uniform temperature
D. Y. Kolotkov,1 I. Y. Vasko,2 and V. M. Nakariakov1
1)Centre for Fusion, Space and Astrophysics,Physics Department, University of Warwick,
UK
2)Space Research Institute, RAS, Moscow, Russia

(Dated: 13 October 2015)

The kinetic model of a one-dimensional force-free current sheet (CS) developed recently by M. Harrison and
T. Neukirch (Phys. Rev. Lett., vol. 6, 2009) predicts uniform distributions of the plasma temperature and
density across the CS. However, in realistic physical systems inhomogeneities of these plasma parameters may
arise quite naturally due to the boundary conditions or local plasma heating. Moreover, as the CS spatial
scale becomes larger than the characteristic kinetic scales (the regime often referred to as the MHD
limit) it should be possible to set arbitrary density and temperature profiles. Thus, an advanced model has
to allow for inhomogeneities of the macroscopic plasma parameters across the CS, to be consistent with the
MHD limit. In this paper we generalise the kinetic model of a force-free current sheet, taking into account the
inhomogeneity of the density and temperature across the CS. In the developed model the density may either
be enhanced or depleted in the CS central region. The temperature profile is prescribed by the density profile,
keeping the plasma pressure uniform across the CS. All macroscopic parameters, as well as the distribution
functions for the protons and electrons, are determined analytically. Applications of the developed model to
current sheets observed in space plasmas are discussed.

I. INTRODUCTION

Current sheets (CS) play a central role in the initia-
tion of active phenomena in space, astrophysical and lab-
oratory plasmas39,49. In particular, CSs are believed to
appear in the solar atmosphere35,37, solar wind20, plan-
etary magnetospheres25,36, and in pulsar winds6. Mag-
netic reconnection occurring within CSs results in the
transformation of the magnetic field energy into the ki-
netic energy of the plasma and accelerated non-thermal
charged particles, and hence the kinetic bulk energy45,53.
In addition, CSs act as effective waveguides for MHD
waves16,17,29,43 that could be responsible for solar coro-
nal heating13. In turn, remote observations of the MHD
waves guided by solar coronal CSs allow for diagnostics
of properties of these CSs14,26,30,32.

The study of CS instabilities and properties of guided
MHD waves requires the development of equilibrium CS
models. Since space and astrophysical plasmas are of-
ten considered to be collisionless, the development of
the CS models should be based on the set of Vlasov–
Maxwell equations. More specifically, the widely used
Harris model22 presents a 1D kinetic CS with the mag-
netic field B = B0 tanh(z/L)ex (where B0 is the mag-
netic field strength, and L is the CS thickness). In
the Harris model the variation of the magnetic pressure
across the CS is compensated by the plasma pressure
gradient. However, observations in the near Earth space
have evidently required development of generalised Har-
ris models that would take into account several plasma
populations51,54, power-law energy distribution functions
of charged particles18, a non-zero guiding magnetic field
By(z)

34,38, and a possible bifurcation (or splitting) of
the current density profile9,19,50. These models have also

been generalised for relativistic plasmas typical for pul-
sar winds5,28. CSs formed in planetary magnetotails of-
ten include a finite Bz component (directed across the
current sheet plane, i.e. the magnetic reversal geome-
try) due to the planetary dipolar magnetic field. In 1D
models including a finite Bz (see Ref. 41, 42, and 55)
the tangential magnetic field stresses (along the x and y
axes) are balanced by the non-diagonal elements of the
pressure tensor. In contrast, in 2D generalisations of the
Harris model these stresses are balanced by the gradients
of the isotropic gas pressure tensor7,10,11,27,47,52.

Force-free CSs constitute an important class of mag-
netoplasma structures formed particularly in low-β plas-
mas. Moreover, force-free CSs are the states of minimum
energy for a closed magnetoplasma system with a fixed
helicity8. In force-free CSs the current density is pre-
dominantly field-aligned. Force-free CSs are thought to
be typical for pulsar wind plasmas21,31, and may also be
formed in the solar corona37. In addition, force-free CSs
are quite typical for the Jupiter magentotail4 and some-
times are observed in the Earth’s magnetotail3,46. Simi-
lar force-free CSs are formed in laboratory plasmas15.

The first kinetic model of a 1D force-free CS with the
magnetic field B = B0 tanh(z/L)ex + B0 cosh

−1(z/L)ey
was recently developed (see Ref. 23 and 33). In that
model, the plasma pressure and the magnetic pressure(
B2

x +B2
y

)
/8π are uniform across CS. In contrast to

the models described above, in this case the force bal-
ance is provided by the non-zero value of the shear mag-
netic field By instead of the plasma pressure gradient.
Subsequently, this model has been generalised for non-
Maxwellian distribution functions of charged particles48,
and relativistic plasmas44. Kinetic models of a force-free
CS with a periodic transverse structure have also recently
been developed1. Similar to the Harris model, in Ref. 23
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the CS thickness depends on the parameters of charged
particles distribution functions, and may be larger than
the characteristic kinetic scales.
The class of force-free models suggested in Ref. 23 and

33 has one significant drawback. In these models the
plasma temperature and density distributions are uni-
form across CS. However, in the case when the CS
spatial scale is much larger than the characteris-
tic ion gyroradius (one can refer to this regime as
an MHD limit, although the plasma can be colli-
sionless), it should be possible to set arbitrary temper-
ature and density profiles across the CS, keeping the uni-
form pressure to ensure the total pressure balance in the
transverse direction. In a realistic physical system (e.g.
in the solar atmosphere) the density and temperature
distributions across CS are prescribed by the boundary
conditions at some surface (crossed by all field lines) and
local heating mechanisms (e.g. the Ohmic heating that
is localised in the region of the strongest electric current
density). Thus, physical reasoning suggests that models
developed in Ref. 23 and 33 set highly restrictive con-
ditions on the density and temperature distributions. In
the present paper we generalise that model, incorporating
inhomogeneous distributions of the plasma temperature
and density in the direction across the CS.

II. ANALYSIS

It was shown (see, e.g. Ref. 24, 39, and 40) that for
1D CSs with the magnetic field B = Bx(z)ex +By(z)ey
where the z-axis is directed across the CS, the set of
Vlasov–Maxwell equations can be reduced to Ampere’s
law in the following form:

d2Ax

dz2
= −4π

∂ Pzz

∂ Ax
, (1)

d2Ay

dz2
= −4π

∂ Pzz

∂ Ay
, (2)

where Ax and Ay are the components of the mag-
netic field vector potential (Bx = −dAy/dz and By =
dAx/dz), and Pzz is the zz-component of the plasma
pressure tensor. The latter is given by

Pzz(Ax, Ay, ϕ) =
∑
s=i,e

∫
msv

2
zfs(v, r)d

3v, (3)

where the indices s = i, e are used for the plasma species
designation (we consider an electron-ion plasma), ϕ is the
scalar potential corresponding to the electric field Ez =
−dϕ/dz arising due to the electron–ion decoupling, ms

denotes the particle masses, and fs(v, r) are the particles’
distribution functions that satisfy the Vlasov equation.
The Vlasov equation can be solved by choosing the

distribution function as an arbitrary function of the par-
ticles’ integrals of motion. In the chosen 1D configura-
tion there are three integrals of motion: the total en-
ergy Hs = msv

2/2 + qsϕ and two generalised momenta

pxs = msvx + qsAx and pys = msvy + qsAy (qs is a
particle charge, qi = −qe ≡ e), so that the Vlasov equa-
tion is solved by assuming fs(v, r) = fs(Hs, pxs, pys).
We consider CSs with the transverse scale exceeding the
Debye length so that the plasma is assumed to be quasi-
neutral. The quasi-neutrality condition can be written
as ∂Pzz/∂ϕ = 0 (see Ref. 39 and 40). This condition al-
lows one to determine the distribution of the electrostatic
potential ϕ = ϕ(Ax, Ay).

The standard procedure for developing a kinetic CS
model consists of the choice of the particles’ distribu-
tion functions and the analysis of Eqs. (1), (2). An al-
ternative, inverse approach is to set a priori a magnetic
field configuration, and determine the corresponding dis-
tribution functions12. The latter approach was chosen in
Ref. 23 to develop the model of a 1D force-free CS with
homogenous transverse profiles for density and temper-
ature. We note that in the inverse approach12 the dis-
tribution functions are not determined uniquely. In the
present paper we generalise the force-free CS model, in-
cluding transverse inhomogeneities of the plasma param-
eters, by an appropriate choice of the particle distribution
functions.

The magnetic field of a force-free Harris sheet has the
following non-zero components:

Bx = B0tanh(z/L), (4)

By = B0cosh
−1(z/L), (5)

where the constants B0 and L are the magnetic field am-
plitude and the CS characteristic scale length, respec-
tively. The current densities corresponding to this mag-
netic field are jx = cB0/(4πL)tanh(z/L)/cosh(z/L) and
jy = cB0/(4πL)cosh

−2(z/L). The magnetic field compo-
nents Bx(z), By(z) and the corresponding current den-
sities are shown in Fig. 1. The vector potential corre-
sponding to the force-free CS given by (4) and (5), has
two components:

Ax = 2B0L arctan (exp (z/L)) , (6)

Ay = −B0L ln (cosh (z/L)) . (7)

According to Harrison and Neukirch 23 , Eqs. (1) and
(2) have the following solution Pzz(Ax, Ay) in the class of
additive functions, i.e. Pzz(Ax, Ay) = P1(Ax) + P2(Ay):

Pzz =
B2

0

8π

[
1

2
cos

(
2Ax

B0L

)
+ exp

(
2Ay

B0L

)]
+ P0, (8)

where P0 is a uniform pressure of the background plasma.
Harrison and Neukirch 23 found a distribution function
fhn
s (Hs, pxs, pys) that allows one to obtain Pzz in form
(8) directly from expression (3):

fhn
s = n0s

(
msβs

2π

)3/2

e−βsHs [exp(βsuyspys)+

+ as cos(βsuxspxs) + bs], (9)
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FIG. 1. Components of the magnetic field in a force-free Har-
ris current sheet, given by Eqs. (4), (5) (top panel), and the
corresponding current densities (bottom panel). Both com-
ponents of the magnetic field are normalised to the field am-
plitude B0. Current components are normalised to their am-
plitude cB0/(4πL).

where uxs, uys, as, bs, and βs are some positive con-
stants. The first term in the distribution function fhn

s has
the same form as in the Harris model22 and corresponds
to the population responsible for the current density jy.
The second term describes the particle population carry-
ing the current jx and generating the magnetic field com-
ponent By given by Eq. (5). The last term corresponds to
the background plasma which does not contribute to the
current. However, the choice of the distribution function
of form (9) results in uniform density and temperature
profiles across the CS1,23. These conditions put strong re-
strictions on the solution from a physical point of view.

In fact, it would be natural to expect that the plasma
temperature and density are non-uniform across the CS,
as the plasma may be hotter in the vicinity of regions of
higher electric current due to heating, e.g. Ohmic heat-
ing, or current-driven micro-turbulence. The need for a
non-uniform distribution of the plasma temperature and
density can also be connected with boundary conditions.

In order to obtain the equilibrium state of the force-free
CS with inhomogeneous density and temperature pro-
files, the distribution function fhn

s must be adjusted ac-
cordingly. Such a modification of fhn

s can be achieved by
introducing different temperatures for the two current-
carrying populations. Namely, the parameter βs in ex-
pression (9) characterises the temperature of both par-
ticle populations. Now, we introduce a more general
distribution function assuming that the second current-
carrying population is characterised by a temperature
different by a positive factor of γ. The new distribution
function fs can be written in the following form:

fs = n0s

(
msβs

2π

)3/2

[e−βsHs exp(βsuyspys)+

+ asγ
3/2e−γβsHs cos(γβsuxspxs) + bsγ

3/2e−γβsHs ].
(10)

The function fs reduces to the function fhn
s (see Eq. (9))

for γ = 1. Similar to the distribution function given
by expression (9), the first term in fs is identical to the
Harris model22, whereas the second term corresponds to
the second current-carrying population with a different
temperature. Basically, the distribution function of the
background plasma can be chosen arbitrarily, with only
the positiveness of fs required to be satisfied. We have
assumed that the temperatures of the second current-
carrying and background populations are the same. In
this case the condition bs > as ensures the positiveness
of the function fs over the entire phase space (v, r).

Substitution of distribution function (10) into Eq. (3)
allows one to calculate a new pressure function Pzz:

Pzz(Ax, Ay, ϕ) =
∑
s=i,e

β−1
s n0sGs(Ax, Ay, ϕ), (11)

where

Gs = e−βsqsϕ exp(βsqsuysAy) exp(βsmsu
2
ys/2)+

+ asγ
−1e−γβsqsϕ exp

(
−βsmsγu

2
xs/2

)
cos(γβsuxsqsAx)+

+ bsγ
−1e−γβsqsϕ.

The total electric charge density σ can be determined
as a function of Ax and Ay by taking the derivative of
the pressure Pzz given by Eq. (11), with respect to the
electric potential ϕ (see Ref. 39):

σ = −∂ Pzz

∂ ϕ
=

∑
s=i,e

qsn0sNs(Ax, Ay, ϕ), (12)
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where n0sNs is the number density of the species s, and
Ns is determined as

Ns = e−βsqsϕ exp(βsqsuysAy) exp(βsmsu
2
ys/2)+

+ ase
−γβsqsϕ exp

(
−βsmsγu

2
xs/2

)
cos(γβsuxsqsAx)+

+ bse
−γβsqsϕ.

Applying the quasi-neutrality condition σ = 0, sat-
isfied by Ni(Ax, Ay, ϕ) = Ne(Ax, Ay, ϕ), allows one to
determine the transverse profile of the scalar poten-
tial ϕ. In the case when ϕ does not vanish, our ini-
tial assumption that Pzz(Ax, Ay) is an additive function
(Pzz = P1(Ax) + P2(Ay)) cannot be satisfied. We fo-
cus on a particular class of models satisfying the exact
neutrality condition, i.e. ϕ = 0, imposing the following
relations between the microscopic parameters of the ion
and electron distribution functions:

n0e exp(βemeu
2
ye/2) = n0i exp(βimiu

2
yi/2) ≡ n0,

aen0e exp
(
−βemeγu

2
xe

)
= ain0i exp

(
−βimiγu

2
xi

)
≡ a,

be exp(−βemeu
2
ye/2) = bi exp(−βimiu

2
yi/2) ≡ b,

−βeuxe = βiuxi,

−βeuye = βiuyi.

If one of these conditions is violated, the electrostatic
field appears, and our approach becomes inapplicable.
Taking these relations into account, we find that the pres-
sure Pzz of the neutral plasma can be re-written in the
following form:

Pzz =
(
β−1
e + β−1

i

)
n0[exp(−eβeuyeAy) +

+aγ−1 cos(γeβeuxeAx) + bγ−1]. (13)

Direct comparison of (13) with (8) allows one to estab-
lish the following relations between the microscopic and
macroscopic parameters:

B2
0 = 8πn0

(
β−1
e + β−1

i

)
,

a = γ/2,

b = 8γπP0/B
2
0 ,

L =
(
2πn0e

2u2
yeβ

2
e (β

−1
i + β−1

e )
)−1/2

,

uys = γuxs.

In Eq. (12), the plasma density n = n0iNi = n0eNe is
determined as

n = n0 {exp(eβiuyiAy) + a cos(γeβiuxiAx) + b} .

Using the explicit dependencies Ax,y(z), given by Eqs.
(6) and (7), we obtain the explicit expression for the
plasma density n(z):

n(z) = n0

(γ
2
+ b

)
+ n0(1− γ)cosh−2(z/L). (14)

We note that the plasma density can also be written
as n = n1 + n2, where n1 = n0cosh

−2(z/L) is the
density of the first current carrying population, while
n2 = n0b+n0γ(1/2− cosh−2(z/L)) is the combined den-
sity of the second current-carrying population and back-
ground population. The density of the first population
peaks in the central region of the CS, while the total
density of other populations has a minimum there. We
recall that these separate populations still correspond to
the same plasma species. Substitution of (6) and (7)
into (13) allows one to calculate the explicit value of the
pressure Pzz, which is uniform according to the force-free
condition:

Pzz = n0γ
−1

(
β−1
e + β−1

i

) (γ
2
+ b

)
. (15)

Eq. (15) together with (14) gives us the variation of the
plasma temperature T = Pzz/n(z) across the CS:

T (z) =
γ−1

(
β−1
i + β−1

e

)
cosh2(z/L)

2(1− γ)/(γ + 2b) + cosh2(z/L)
. (16)

We can clearly see that the plasma temperature and
density profiles are uniform (n = n0 (1/2 + b) and T =
β−1
i +β−1

e ) only in the case γ = 1, in accord with the orig-
inal Harrison and Neukirch 23 model. In the case when
the temperatures of the current-carrying populations are
different, i.e. γ ̸= 1, the plasma temperature and density
profiles become non-uniform. We note that γ > 1 (γ < 1)
describes a CS with the first current-carrying population
hotter (colder) than the second population. The density
and temperature profiles normalised to their values at the
CS boundary n0(γ/2 + b) and γ−1(β−1

e + β−1
i ), respec-

tively, are illustrated in Figs. 2, 3. To keep the distri-
bution function given by Eq. (10) positive, the density of
the background population should be set appropriately.
The condition b > a = γ/2 ensures that the distribution
function is positive over the entire phase space (v, r).

In Fig. 2 the parameter b is fixed (b = 10) and the den-
sity and temperature profiles are illustrated for various
values of the parameter γ (γ < 2b). For γ > 1 the tem-
perature peaks at the CS central region, while the density
is depleted so that the plasma pressure Pzz is uniform (as
it should be for a force-free CS). Larger values of the pa-
rameter γ result in a stronger plasma density depletion in
the CS central region. We note that in the limiting case
γ ≫ 1 and b ≈ γ/2 (not illustrated in Fig. 2, where the
parameter b is fixed), the plasma density in the central re-
gion of the CS asymptotically tends to a small value. The
temperature peak in the CS central region forms due to
the first current-carrying population which is hotter than
the second population (in the case γ > 1) and localised
near the CS central region (as n1 = n0 cosh

−2(z/L)).
The density of the second, colder, current-carrying pop-
ulation increases toward the CS boundary resulting in
the plasma temperature decrease.

For γ < 1 the first current-carrying population is colder
than the second population. In contrast to the previ-
ous case, Fig. 2 shows that the plasma temperature has
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FIG. 2. Density and temperature profiles across a current
sheet, determined by Eqs. (14) and (16), plotted for b = 10
and γ = 0.1 (red lines), γ = 0.6 (orange lines), γ = 1 (grey
lines), γ = 3 (green lines), γ = 5 (blue lines), γ = 10 (purple
lines). The plasma density profile is normalised to n0(γ/2+b);
the temperature profile is normalised to (βi + βe)/γβiβe.

a minimum in the CS central region, while the plasma
density peaks therein. The density peak is larger for
smaller values of γ. In the limiting case γ ≈ 0, the den-
sity variation across the CS is less than ten percent of the
plasma density at the CS boundary. Eq. (14) shows that
for γ ≈ 0 the plasma density in dimensionless units is
n(z) = 1+ b−1cosh−2(z/L), so that the ten percent den-
sity variation corresponds to b = 10, i.e. to the assumed
density of the background population.
In Fig. 3 we fix the temperature ratio to a small value,

γ = 0.1, implying the second current-carrying popula-
tion to be ten times hotter than the first one. We vary

FIG. 3. Density and temperature profiles across a current
sheet, determined by Eqs. (14) and (16), plotted for γ = 0.1
and for various values of the background plasma density: b =
0.1 (red lines), b = 0.2 (orange lines), b = 0.5 (green lines),
b = 1 (blue lines), b = 10 (purple lines). The limit b ≫ 1
is shown by the horizontal grey lines. The plasma density
profile is normalised to n0(γ/2 + b); the temperature profile
is normalised to (βi + βe)/γβiβe.

the density of the background population b, satisfying
the condition b > γ/2 to ensure the positiveness of the
distribution functions. Smaller values of the background
population density are found to result in a larger varia-
tion of the plasma density across the CS. In particular,
for b = 0.1 the plasma density (temperature) in the CS
central region is ten times larger (smaller) than at the
CS boundary. In the limit b ≫ 1 the plasma density and
temperature become approximately uniform across CS.
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III. DISCUSSION AND CONCLUSIONS

We have generalised the models developed in Ref. 23
and 33 taking into account the density and temperature
variations across the CS that can arise in realistic natural
and laboratory plasma systems either due to the bound-
ary conditions or Ohmic heating in the region of the en-
hanced current density localisation. The latter process
should be slow enough to consider the developed
models as quasi-stationary. One of the motivations
for our work was a shortcoming of the model developed
by Harrison and Neukirch 23 , which only provides uni-
form density and temperature profiles, and does not in-
form whether the inhomogeneous profiles of the plasma
parameters consistent with MHD solutions are possible.
In fact, it is clear that as the CS thickness becomes larger
than characteristic kinetic scales, it should be possible to
set arbitrary density and temperature profiles across the
CS, while maintaining a constant plasma pressure. The
kinetic models designed here show that the density and
temperature profiles can actually be set arbitrarily not
only in the MHD limit, i.e. in the case when the CS
thickness is much larger than kinetic scales, but
also in the kinetic regime.

In the developed models the density and temperature
may either increase or decrease in the CS central region.
Such configurations can be found in a number of astro-
physical and space plasma systems, in particular in solar
coronal streamers and in macroscopic CSs over the re-
connection sites in solar flares. The force-free CS models
with the plasma density peaked in the CS central re-
gion, developed here, represent effective waveguides for
MHD waves. Specifically, regions of decreased Alfvén
speed are fast magnetoacoustic waveguides. Currently,
coronal MHD seismology studies assume that CSs are
described by the Harris model26,30,43, where the plasma
β is infinite in the CS central region (where the mag-
netic field vanishes), and drops to some small values at
the CS boundary. In the developed force-free models,
the plasma β is always constant across CS, and is given
by β = 8πPzz/B

2
0 = 1/2 + b/γ (according to Eq. (15)

and using the relation B2
0 = 8πn0(β

−1
i + β−1

e )). Taking
into account that b > γ/2 to ensure the positiveness of
the particle distribution functions, we find that in the
developed force-free CSs the parameter β > 1. Thus,
the properties of MHD waves in such a CS should be
different from those in the Harris model26,30. The prop-
erties of MHD waves in such a force-free configuration are
worth considering and may be used for MHD seismology
purposes14,32. Additionally, kinetic models of the devel-
oped force-free CSs generalised for relativistic plasmas44,
could be useful for modelling CS instabilities in pulsar
winds21.

Recently there have been reports of in situ observa-
tions of force-free CSs in the magnetotails of Jupiter4

and the Earth3,46. Similar force-free CSs are studied in
detail in laboratory plasmas15. The principal feature of
these force-free CSs is the presence of a finite magnetic

field component Bz. Models have been developed for al-
most force-free CSs including an asymptotically small2

and finite46 Bz component. It has been shown both
theoretically46 and observationally4,46 that the plasma
density is uniform in these CSs. In force-free CSs with a
finite Bz the density and temperature profiles cannot be
set arbitrarily even in the MHD limit, since the field lines
are curved and cross the entire CS. In contrast, the mag-
netic field lines are straight for the models developed in
the present paper (i.e. each field line is “tied” to a partic-
ular z coordinate). The plasma parameters can therefore
be set arbitrarily for each field line satisfying the condi-
tion of total pressure balance. Thus, the force-free CS
models developed in the present paper can be applied
only to situations without a regular Bz component.
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