Original citation:

Shaikh, Maha and Vaast, Emmanuelle. (2016) Folding and unfolding : balancing openness
and transparency in open source communities. Information Systems Research . doi:
10.1287/isre.2016.0646

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78627

Copyright and reuse:

The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
Published version: http://dx.doi.org/10.1287/isre.2016.0646

A note on versions:

The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

warwick.ac.uk/lib-publications

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/78627
http://dx.doi.org/10.1287/isre.2016.0646
mailto:wrap@warwick.ac.uk

FOLDING AND UNFOLDING:
BALANCING OPENNESS AND TRANSPARENCY IN OPEN SOURCE COMMUNITIES

M aha Shaikh
Warwick Business School
University of Warwick
Coventry
United Kingdom
E-mail: maha.shaikh@wbs.ac.uk

Emmanuelle Vaast
Desautels Faculty of Management
McGill University
Montreal, Quebec
Canada
E-mail: emmanuelle.vaast@mcqill.ca

Forthcoming in Information Systems Research, Special 1ssue on Col-
labor ation and Value Creation in Online Communities,

Abstract

Open source communities rely on the espoused peeshisomplete openness and transparency
of source code and development process. Yet, opsrenad transparency at times need to be
balanced out with moments of less open and traaepavork. Through our detailed study of
Linux Kernel development we build a theory that laks that transparency and openness are
nuanced and changing qualities that certain deeetomanage as they use multiple digital tech-
nologies and create, in moments of needs, moreugpaqd closed digital spaces of work. We
refer to these spaces as digital folds. Our papsetributes to extant literature: by providing a
process theory of how transparency and opennedsatarced with opacity and closure in open
source communities according to the needs of theldement work; by conceptualizing the na-
ture of digital folds and their role in providingigt spaces of work: and, by articulating how the
process of digital folding and unfolding is made fiaore possible by select elite actors’ navi-
gating the line between the pragmatics of coding te accepted ideology of openness and
transparency.

Keywords: Open source communities, digital folds, transpayeapenness, opacity, closure, software
development work, qualitative research, archivéhdiaeology.

INTRODUCTION

Growing scholarly and topical interest in onlineroounities and, in particular, in open source commun
ties has given rise to a wealth of research. Aspmeoth as how open source communities emerge (&ndre
et al. 2007; Oh and Jeon 2007; von Krogh et al3p00ow they are governed (O'Mahony and Ferraro
2007; Sharma et al. 2002; Tullio and Staples 2044, how they coordinate work and practices (Ben-
Menahem et al. 2015; Crowston and Howison 2006; islmwand Crowston 2014; Koch and Schneider
2002; von Hippel and von Krogh 2003) have beertffrlly explored. Other facets of open source that
have seen deep interest include the licensing sebieand their impact on the code and community
(Laurent 2004; Lerner and Tirole 2005; Olson 208High and Phelps 2013), the economics of how open
source functions and how it is even made possibémkler 2002; Benkler 2004; Bonaccorsi and Rossi
2003; Lerner and Tirole 2002), and development timas (Crowston and Howison 2006; Feller and
Fitzgerald 2002; Feller et al. 2002; Fitzgerald &etler 2002; Raymond 1999).

Over the years, there has been a gradual but siéfaiin open source communities from what wasierig
nally seen as a group of self-selecting voluntéersituations where many within a community are em-
ployed by commercial organizations to do the comjsawork within a community. This has brought re-
newed academic interest to issues such as devslapetivations (Oram 2011; Spaeth et al. 2014; von
Krogh et al. 2012), a topic that had seen muclyéatérest as well (Hars and Ou 2002; Hertel e2@03;
Lakhani and Wolf 2005; Shah 2006). More generdhgse new dynamics of open source communities
have led researchers to question some taken fategtadeas about how open source communities work
and organize their activities. It is one such topicat of the balancing of openness and transpgreith
moments of closure and opacity in open source dpugnt work - that we draw attention to and aim to
contribute to in this paper.

The principles of transparency and openness atkeatore of the rhetorical discourse of open source
communities (Hertel et al. 2003; Lakhani and Wdl03). Openness and transparency, though highly re-
lated concepts, are distinct. Openness is primadhcerned with the issue of accessibility, whereeas

to the code (product) and the various parts ofptteeess of development are available to all (Datdan

and Gann 2010; MacCormack et al. 2006; von Krogh an Hippel 2006; West 2003). Transparency
relates to the visibility of code, process, teches] and communications (Coleman 2004; Gacek and
Arief 2004; Jorgensen 2001; MacCormack et al. 2(B6wart et al. 2006). Espousing the principles of
transparency and openness constitutes a ¢tegp’ defining structurépr ideology, that shapes much of
the framing discourses in and about open sourcemorities (Barrett et al. 2013). Yet, transparency a
openness have been sparsely examined or questioogeén source development research. Therefore we
still know precious little about the process throughich developers actually navigate openness and
transparency in open source development work.

We focus on a high profile open source case, thex_Kernel development. We followed nearly a dec-
ade’s worth of online interactions in this communiOur attention was initially drawn to a partiautlis-
cussion on version control software (VCS) that lsgldous developer attention. We examined discanssio
in the Linux Kernel Mailing List (LKML) and discoved that developers relied upon the use of overlap-
ping technologies in ways that created small amgptgary pockets of less open and transparent develo
ment work. In other words, as developers at tingsluechnologies they also creatéte“knot, the fold,
where order and disorder médClegg et al. 2005, p154). Some developers métése spaces to address
issues that had so far not been solved by the caityrin the open. These spaces that seemed toacontr
dict the principles of complete openness and tramesy in open source development work could be gen
erative for the development process. Working templgrin these secluded digital spaces helped some
members of the community come up with solutiongetthnical issues when transparency and openness
had fallen short.

This paper examines how some developers may ralg digital technologies that ‘fold’ over each other
and create private pockets of interactions that tamporarily limit the transparency and opennesdesf
velopment work. Our study considers openness ams$parency as fluid and manageable qualities in the

open source development process. It examines tlosvilog question:How do certain members of an

open source community navigate the openness oetredopment process?

Answering this question, this paper develops arthebhow select developers balance the principles
transparency and openness in open source withigabieseeds for opacity and closure by harnessigg di
tal technologies in ways that generate temporaoyepted spaces of work, i.e. digital folds. Thisrkvo
contributes to research in open source softwararaamties a process theory of folding and unfoldig.
adds to research on secluded spaces of work a oiatization of digital folds as digitally-enableslx-
clusive and provisional, spaces to accomplish ficdif, focused task. It also adds a conceptudbpabf
how the espoused principles of openness and trearepacan be mitigated, pragmatically, by occadiona
demands of work, and, ideologically, by the meridic principle.

The next section builds upon existing insights permess and transparency in open source development
We then detail our methods, clarifying our datdemtion and analysis process. Our empirical finding
focus on key processes of folding and unfoldinghie Linux community. We build on these findings to
establish our theory development, and then presegplications of our work before concluding with a
summary of this research, acknowledgement ofritgditions, and avenues for exciting future studies.

TRANSPARENCY AND OPENNESS IN OPEN SOURCE COMMUNIBE
Open source communities seem to build on the veegnise of the openness and transparency of devel-

opment work (von Krogh and Spaeth 2007). Thesecimlies are usually taken for granted even by hack-
ers (Raymond 1999) and are part of the deep steicfumeanings that manifests in the discoursetabou
open source (Dabbish et al. 2012; Ljungberg 200Bge{lly 1999; Raymond and Trader 1999). Some ac-
tivists such as Richard Stallman have in this régeted the criticality and vulnerability of thegealities

in relation to software and have spoken of ‘freedothat must be a part of all software used (Staim
1984; 1999a; 1999b; 2002). These freedoms have drempsulated and thus protected by the GNU Gen-
eral Public License (GPL) and the GNU Manifestoe TBPL tends to focus on freedoms made possible
by access to the source of the code but theresgsdmphasis on an equally open development process.
This can partly be explained by the fact that itnisre difficult to articulate exactly what is mednyt an

open source process, and how open is open enougst @Y03).

Conversely, open source has given rise to relgtedgmena such as open data (Gurstein 2011; Steteter
al. 1996), open innovation (von Hippel and von Kr@&p03; West and Bogers 2014; West and Gallagher
2006), open government (Daffara and Gonzalez-Bai@aR010; Janssen et al. 2012; O'Reilly 2010), open
standards (West 2007), open hardware (Powell 2@i),open platforms (Boudreau 2010; Economides
and Katsamakas 2006; Krishnamurthy and TripathD28Jest 2003). These phenomena are also built
around openness and transparency as the dominacipfgs. In these cases researchers have congdidere
the transparency and openness of the process tramethie artefact or service under joint development
Yet, it does take openness of the procass of an open product/service to be truly open (Fali
Zenger 2014).

It has however been noted that open source is angi@nd changing phenomenon (Barrett et al. 2013;
Deodhar et al. 2012; Spaeth et al. 2015; von Kretghl. 2012) that has in part adapted to diffecemb-
mercial interests (Fitzgerald 2006). The shift pen source has seen an equivalent transformatitrein
underlying ideology that then affects the businesslels of adoption (Dahlander 2007; Deodhar et al.
2012), a profusion in licenses (Osterloh and R@@72 Scacchi and Alspaugh 2012), a change in devel-
opment process (Dahlander and O'Mahony 2011; Fadj@006), and a deep change in ideological pref-
erences (Campbell-Kelly and Garcia-Swartz 2009;i@hal. 2015; Stewart and Gosain 2006). The latter
work is attentive to ideology more particularly gmbvides a comprehensive characterization of ¢kee r
tionship between trust building in communities &eblogy, where observance of beliefs, norms atd va
ues (elements of ideology) inspires trust and im ta better retention rate of community members
(Stewart and Gosain 2006). Trust is negotiated detvmembers of the community where there is a dif-
ference in social status. How elite developers maneork and relationships with newbies affectsléte
ter's desire to remain within this community (Steivand Gosain 2006). Social status achievement has
been explained as a process of moving from theplpery of a community to the central core over time
(Dahlander and O'Mahony 2011), but also as an atialuprocess where actors in the community weigh

the worth of a fellow developer by looking to regidin cues that are publicly available (Stewart3300

There is less literature to date that helps usttetstand how ideas of meritocracy, elitism, areblogy

are related in the everyday practices of developmwerk.

A hybrid notion of open innovation, code and pracégn Hippel and von Krogh 2003) has inspired
much of the related literature. The concept of hdibation is interesting because it hints at thegiaility

of different forms co-existing. Therefore, actualvdlopment work in open source communities does not
always or necessarily rely upon entirely open aadsparent processes. The private-collective inimva
model provides a seminal argument explaining th@ned mix of open and closed practices and possibil
ities for value creation and capture when thewre ggoductive mix of open and closed and transpaneat
non-transparent (von Hippel and von Krogh 2003)rédwer, various layers of access, governance and
possible exclusion may be exercised within a comyron Hippel and von Krogh 2003) just as in or-
ganizational hierarchies. Layers of management baea introduced into many open source projects, an
the Linux Kernel case is no exception. This projagtarticular is known for its group of elite memers
that are given the title of ‘trusted lieutenan®afermos 2001; Moody 2001; Schweik 2003; von Hippel
and von Krogh 2003). The trusted lieutenant stdikes,any other designated role in open source comm
nities, is earned by developers on the basis ofribotion (usually code) and awarded on merit (&ell
and Fitzgerald 2000). In order to have a patchoafecaccepted all submitting developers need to pass
through certain steps of review, and one of thenmags is to persuade a trusted lieutenant thatoade

is valuable and does not break the system (Sch2@fi8; von Hippel and von Krogh 2003; von Krogh et
al. 2003). Meritocracy-based development commusjitiirough such governance and coordination
mechanisms reduce conflict and unnecessary policgut and Metiu 2001; Roberts et al. 2006).

Scaling down into more focused work on opennessQdamack et al (2006) make a strong case for an
‘architecture for participation’ in relation to eednodularity. Participation, they argue, reliesagness to
software architecture, ability to reuse softwaneg laetection and fixing (Bagozzi and Dholakia 2006;
MacCormack et al. 2006). This is reminiscent cdrgé body of work where openness and transpardncy o
open source is unconditionally considered as p@siffhe use of tools like concurrent version system

(CVS), and publicly archived mailing lists offeretigollective a trackable process for joint softwdesel-

6

opment (Fogel 1999; Koch and Schneider 2000; KochZchneider 2002; Lakhani and von Hippel 2003;
von Hippel and von Krogh 2003). Yet, organized workhether it takes place in traditional or non-
traditional settings, often involves processes tigipen not only in public but also, at least s, in
more private settings. Such movement between pablitprivate settings has implications for develop-
ment work in open source communities but has nbbgen much examined or theorized in the literature
The literature to date has paid little theoretaténtion to how such movement is made possibte s
significance for the development process. Thifigsunder-investigated area that our research Gets-t
plore and theorize.
This area seems important to examine especialbesintuitively, one can imagine that extreme osssn
and transparency can be limiting and lead to ingions and failures in decision making in the depe
ment process. It therefore stands to reason tHatst some participants in open source developeatent
times need to balance out the openness and tramsyaof the process with moments of closure and-opa
ity for the development to work. Yet, how peopleigate the openness of the open source development
has not yet been investigated. What this balanitimglves, who manages it, how it happens and with
what consequences for the development processng@tiant issues for open source development schol-
arship that deserve further investigation and tlze.
Having presented the conceptual foundations tHatrived our thinking and helped us position our own
work, we now turn to our methods and findings idesrto further our conceptualization of how comruni
ty members may navigate the openness and transgavséthe context through what we call digital feld
and the corresponding process of folding and uirfgld

METHODS

Resear ch Setting
We opted for an in-depth, qualitative archival ldadinal study (Hoegl et al. 2004; Roberts et &0&,

van Oorschot et al. 2013; Wright and Zammuto 201\8).chose the Linux Kernel community as our open
source study because it has been in existencevérrtwo decades, has shown sustainable growth-in de

veloper numbers, code base size, and users (cotain@nd otherwise) (Benkler 2002; Torvalds 1999),

and has lived through a history of arguing over\thegous technologies needed to coordinate, organiz
and control the community (Lee and Cole 2003; Wek@d4). It may have been an extreme case
(Flyvbjerg 2006; Yin 1981) with regard to its hedhitgiscussions over version control software use and
choice but at the same time it offered a uniqueodppity to unpack, through the words of the comimun
ty, the ramifications of each technological cho@m®l decision, and thus provided a strong theotetica
sample (Eisenhardt and Graebner 2007). Moreovisrcfse provided a high level of access to longitud
nal data since the Linux community has carriedteuliscussions for over two decades.

Linux Kernel development is one of the largestwafe development projects where collaboration is es
sentially carried out online (Corbet et al. 20I)ere are close to 10,000 developers working anpto-

ject which establishes it as one of the most aativ@munities. Version control software is part loé t
basic eyeballing of bugs and patches that is eagagrin open source communities. It is part ofdwsic
technical infrastructure that makes geographicdibpersed development possible. Version contrdt sof
ware (VCS) is a mechanism and software by whichtipial versions of any software can be managed,
kept track of and protected against overwritinge(@n 1989; Kilpi 1997). Along with other digital tec
nologies like email, and chat software (like IR@rsion control software draws the community togeth
and coordinates and organizes software development.

The Linux Kernel began in 1991 as a very smallgobjnitiated by Linus Torvalds, then a young Fami
student at the Helsinki University. Simple toolsrev@ised for at least the first 4-5 years of Linusrikel
development as the community was small enough tmdmeaged by Torvalds on his own. He preferred
the use of email for nearly all communications, gled with IRC on occasion, for sending software
patches to and fro between the community and hfmielvas in mid-1995 that the community grew
aware that a more sophisticated tool was becom@ngssary to coordinate Linux work because patches
were being overwritten or missed by Torvalds. Amsegt of the Linux community then began to use
Concurrent Versions System (CVS) which was an agmirce version control system (Bar and Fogel
2003; Berliner 1990; Fogel 1999; Grune 2003) to aganLinux code and patch updates. Many were con-
tent with this digital tool but Torvalds found tHizol problematic, I'don't know what ifCVS] fixes, be-

8

cause vger has kept me out of the loop, and quitkify | don't have the time to look at several dnea
kilobytes of compressed patches by hand. And sedfw apply patches that | don't feel comfortabid.w
..And I'm going to ask David once again to justtsiger down, because these problems keep on happen-
ing” (Torvalds, 1998 — Tues #9Sept}. Torvalds’ decision in 2002 to officially adopipaoprietary VCS
for Linux development was met with dismay. Larry Wy, a contentious figure, created and owned Bit-
Keeper (BK) and had managed to convince Torvalds BK would behave exactly the way Torvalds
wanted for his Kernel. Table 1 summarizes key digi@chnologies used in open source development.

<< Insert Table 1 here >>
Open source developers rely upon digital technekdd collaborate. These tools archive content and
conversations. VCS for instance ensures that thieeescommunity becomes aware of which issues still
need a software solution in the Kernel, and thabmas patch is overwritten by another developacsi-
dentally. VCS flags multiple fixes sent by diffetadevelopers to resolve the same issue and den@ands
decision of the developer to choose which patcguperior. Most work is coordinated through a VC$ bu
developers also have group as well as personal cmications through IRC (Crowston and Howison
2005; German 2003; Jorgensen 2001). Email disaudsioms are used regularly to air opinions, discus
development options, ask questions of their pesnd, make announcements. The use of these digital
technologies in combination makes open source dprent possible.

Data Collection
Our primary source of data was the Linux Kernellmgilist archive [LKML] that is kept up to date by

the University of Indiana. We chose this site beeditiis a fairly exhaustive site dating as farkoag June
1995. Its search engine allows full access to @aei threads or phrases. At times other LKML sitese
used to refine searches and points of referencen ey offered some unique facilities which proved
helpful when cross-checking that all the matered fveen collected and nothing on the topic of versi

control, and other technological tools used had beft out from the data set.

1 http://www.uwsg.indiana.edu/hypermail/linux/kernel/9809.3/0766.html

9

We accessed and collected data after a detailelihgeaf conversation threads in the LKML to ensure
that we gathered the most important activity conicer version control software and technology use. W
collected data chronologically to reduce the rigkmissing highly relevant threads. Often one thread
would break into another one that had a differitiet, and unless you followed the ‘story’ you coddsi-

ly miss an important exchange. The exploratorydetamiliarized us to certain developers and kegsor

to further expand our data collection. The LKMLesitllowed the messages on each page to be sorted by
date, subject and author. This feature was helpipecially thesubjectsort because this broke all the
messages down into their respective threads, tlaksnignit possible to download each message retated
every identified threads in the time period of JU®®5 — June 2003. The URL’s were saved for each
email to ensure that we could return to the origiest should the need arise. We constantly adapted
search keywords as the story unfolded. The mater@n for a message to be included into our data s
was to have some mention of version control, comoation technologies or related issues like VCS,
BK, and IRC. This necessarily entailed reading mloer of threads, which potentially could have bekn
use, but were later discarded for their lack oéclircontribution to this study. Over time the dseemed

to have been saturatedliereby no additional data’ could be found where tesearcher could develop
more propertie’s(Glaser and Strauss 1967 p61).

We supplemented our data with peer-reviewed puiics on the topic of version control software and
digital technologies. An initial search through MEb of Science led us to 1,372 papers. Scanneggth
revealed that many papers listed were of limitdeviance to our own work so we refined the search to
include years 1996-2012 only. This reduced the rernalb hits to around 500 but, again, looking at the
tittes we noted how few were related to our workeTast stage of refining our search included using
‘open source’ as a search within our current seattdhthen returned 97 papers. We drew upon these pa
pers to better grasp the technical work involvedpen source software development work.

Our final data access point involved attending opaurce conferences where there was a revealing com
bination of software engineers, open source haclkers computer science academics. We attended two
such conferences. We observed how they interactéd each other while discussing different issues,

10

some of which involved the technologies they usedef/ery day development practice. If such a topic
discussion arose (e.g. during informal chats batweevelopers or during formal presentations) we at-
tempted to speak to the developers involved. Wikegat data from developers in what we termed ‘rapid
interviews’. Such interviews lasted between 5-2@Gwtes (average 12 minutes) and focused on a few
guestions. Most developers, when asked, agreedbto isterviews and gave us quick and clear answers
We conducted 19 interviews in this manner. Tabder®marizes our collected data.

<< Insert Table 2 here >>
Data Analysis
To manage our data we relied upon Qualitative Batalysis software Atlas.ti. We coded email messages
from the LKML and rapid interviews transcriptiorBhillips and Brown 1993). Our analysis methods in-
volved a detailed study of reading and reflectiBntler 1998; Gadamer 1988; Prasad 2002) of multiple
textual materials. Our approach made it possiblaaie sense of meaning within different texts st a
across texts (Heracleous and Barrett 2001). Trec@demic publications we had studied served a futua
ly relevant but separate purpose of acquaintingnush more deeply with relevant computer science
background. Studying peer-reviewed papers relaiedetsion control software development and tools
gave us the needed contextual knowledge to makerisetnse of conversations among developers, &s wel
as of how various tools actually functioned. Thesblications aided us to ‘go native’ (Lok and denRo
2013) in the open source developer world and ttl ltbe initial open code book (D’Adderio and Pokoc
2014; Glaser and Strauss 1967; Van Maanen 1979).
All 3,352 messages were saved in a text file thas then used as a primary document for the content
analysis software. We coded at various levels @eioto fracture and expose the main themes inakee d
Rather than code by word or phrase we looked @muSs&rand Corbin (1999) who argued that codingeentir
sentences or paragraphs is a useful approatierf the researcher already has several categaies
wants to code specifically in relation to the¢p. 120). This is not to say that more and newropodes
were not generated during the open coding of theefmail data collected but this coding scheme gdid
our analyses.

11

The open coding procedure was accompanied by mekiregtin the axial coding step. These memos de-
veloped into extended notes regarding emerging¢tieal constructs as the analyses proceeded. &ar d
analysis drew close connections between the dat@antheoretical objectives (Suddaby 2006). Tt fi
author had collected the data but the data analyassfollowed in a constant comparative style tigiou
numerous discussions between authors. Inspiredibijirey research where one of the researcher haa be
more ‘native’ than the others with regard to théadar different authors had focused on separatescas
(Harrison and Rouse 2014), we established momdrdscoussion where the field researcher would de-
fend her coding techniques and emergent ideasr Aftery few hundred messages that had been coded
the authors would come together for a discussidas@ and Strauss 1967). They then questioned and
cross-questioned the codes that had emerged sigeificance and implications. A first process Jafk-
ing/cloning, emerged from such scrutiny and seepagticularly relevant because a) it occurred oaga r
ular basis (multiple times in a day), b) was algoomt of comparison between the two tools, CVS and
BK, and c) emerged directly from the data.

Analyzing the locking/cloning process helped usocemtually distinguish various sub-elements, oryearl
conceptual ideas. The field researcher then reduiméhe data armed with new codes that had be¢a-mu
ally developed by the authors. This set of codekdd for i) process triggers, ii) elements of folidéding

and unfolding, iii) examples of select developeaming elite access, and iv) technological embeddssl

of the fold. Drawing on these larger schemes factfiring the data the field researcher was abieetati-

fy two additional complete processes of relevanite data set had thus provided three key procéisaes
were recurrent in the Linux Kernel case and seeraeelling of a process of folding and unfoldingeTh
field researcher returned one more time to the fdmtanother round of analysis, and was struck pyoa
cess that appeared ‘broken’ (her initial code)themrrounds of analysis and constant comparisosesub
quently brought in a fourth process, of ‘ineffeetifolding and unfolding process’ to the attentidrhe
authors. Figure 1 visualizes the progression ofepopirical analyses and the following section detidie
four resulting theoretically sampled processes.

We detail four folding and unfolding processes #vaerged from our analyses in the following section

12

FOLDING AND UNFOLDING PROCESSES IN LINUX DEVELOPMEN
This research examines how the transparency antheps of the development process may be navigated
in the context of open source communities througgrlaps in the use of and subtle differences ires&c
to multiple digital technologies. A detailed anadysf our data gave us insight into how select tmpars
used several overlapping digital technologies iroeerall open context to create segments of pgeik
if momentary, secluded spaces. We will concepteatifra such secluded spaces of work as digitalsfol
This section presents empirically how folds emelgeugh folding and are dissipated through unfajdin
Developers temporarily inhabit a digital fold erexbby overlapping digital technologies, but maimitzg
the fold requires sustained effort on their pahte holding together of technologies by a developeare-
ate a moment of isolation requires work and effdrhen released, the folds dissipate. Unfoldingdsin
the output of the fold (e.g. code, bug fixes, mdatiocumentation) back into the open. Unfoldingroft
provides the only trace available of the existeoica digital fold. Unfolding generates an increas¢he
potential and scope of the abilities of technolbging developed as well as in the open source cariamu
ty. Unfolding, through an amplification of resouscand coordinating processes makes folds visitdeh E
process of digital folding below therefore comethva corresponding unfolding.
This section details three processes whereby desedaenerated and dissipated digital folds. i ple-
sents a fourth process that turned out to be int&tmpnd thus ineffective. For each of these prEege
present the coalescing pressures that led to fpldie interplay among technologies, the digitacsy its
generativity, and the dissolution of the fold (3edle 3 for an analytical summary).

<< Insert Table 3 here >>

Process of L ocking/Cloning - Generating privileged accessto code
One of the most recurrent processes in our datahea®of locking/cloning. The very ability to hayeur

code accepted if you were a developer was dependeatcess not only to the main code, but alsbeo t
mailing list, VCS and other digital technologies.
Coalescing pressurediorvalds had managed a system through email amivasimple digital tools to

isolate the kernel from the community. He wouldklalown his code to the rest of the developers by di

13

allowing any ‘logging facility’. Simple tools in th case, along with email use built a temporary mam

of seclusion for Torvalds. This moment was necgsdae to the large influx of patches sent to Taisal
and the growing pressure of being unable to copesarsome action was taken. Declaring his frusimati
about the state of Linux code on email he creatddliberate break in public discourse. His aim was
organize his own ideas about Linux and fix curiissties with the program with no space for interfeee
from others. The process of locking the code dollawad him this moment where the various tensions i
Linux could be addressed.

Interplay of multiple technologiesn CVS use this process was called locking but noangtemporary
version control software, like BitKeeper, callsstisioning. For the purpose of our paper we we e érst-

ed in the link that was created by developers batignux code and the CVS. We knew that in order to
create this necessary interplaying link a developeuld lock down the Linux code (the branch being
worked on) and then begin to make changes to it fbihced a rupture in code development. Locking wa
done to stop other developers making a changeeasdime time whereby confusing the version control
tool and breaking the Linux code. Locking was tauey mechanism offered by version control software
to sustain development with as few breakdowns énLihux code as possible. CVS was used temporarily
and by only a segment of the community. Howeveruge was controversial. Indeed Torvalds was clear
in his disapproval of its use and explained it #&ck of control over his code. Many decisions wkien

by him that he was reluctant to delegate to theroonity at large. This affected progress adversely b
also the morale of the community,

“l don't like the idea of having developers do th®im updates in my kernel source tree. |
know that's how others do it, and maybe I'm pardnbut there really aren't that many peo-
ple that | trust enough to give write permissiomstte kernel tree. Even people | have worked
with for a long time | want to have the option @bking through their patches first, and may-
be commenting on them (and | do reject patches freaple)...Or | can decide (unilaterally)
to revert a patch that results in problehf$orvalds, 1995)
Digital space:We found that VCS and other tools were used taengdvileged access to code for certain

developers. In the case of BitKeeper this led tely advanced method called push/pull and cloning.

2 http: //www.uwsg.indiana.edu/hypermail/Linux/kernel /9602 /0800.html

14

Linux code could be pulled by every developer adoaed copy was created on their personal system.
This would allow the developer to make changesewvbiving the same access and privilege to all other
members of the community in real-time. Howevergls\of privilege differed when it came to the paift
pushing changes back into the main code. BK growheahges into changesets rather than force the de-
veloper to make single changes, and these chasgasabled ‘automatic synchronization’ so that devel
opers had an easy method of backtracking to specifanges rather than having to trace each single
change and branching of the program. It also, sdraelike CVS, allowed for a copy of the master pro-
gram to be made, called a clone in BK, and it hadsh-pull method of control. However the key atira
tion of BK was its auto-merging algorithm, thoudjette was still the possibility to perform manualrgie

es as well. A developer could perform two-way adl a® three-way merges with BK creating numerous
overlaps in technologies.

“Linux BK doesn't depend on Linus using it. If & diwouldn't be using it. We've been track-
ing Linus for nearly a year, merging with him, tagipatches from BK and non-BK users and
it does work. You don't even need to track Linussalf. You don't have to create a tree, ei-
ther. Just clone the tree we've been maintainingatck Linus (2.2 or 2.4/2.3) and you have
your own area to work In(Dougan, 2000}
The work area suggested by Dougan is the orchedtsgtace built by digital tools where a develoger i

protected to work in solace and peace.

Generativity:Error messages, which are a common phenomenonsaftivare development work, very
importantly signify failure, but in our data andl/sve found them to perform another role, that afd
ing momentum and generative discussion, while mgrkie start of the unfolding of the digitally etexb
secluded folds. They were necessary for the swidity of code and this was evident from the gatier
ity of coding activity and discourse that suddesiyrounded them,

“Open source is good at debugging. AFTER the faetiple notice WHEN it breaks, not that
it's GOING to break” (Landley, April 2002)
An error message when running code drew the attewfi the community to make repairs. Without error

messages code development would make little pregiggs simple yet essential mechanism of running

3 http://www.ussg.iu.edu/hypermail /linux/kernel /0009.1/1282.html

4 http://lkml.iu.edu/hypermail/linux/kernel/0204.2 /1334.html
15

the code to detect errors was thus one of the gesstrative and common practices in open sourcd-deve
opment. If developers simply provided read-onlyesscthen the possibility of generativity was reduce
because though a problem could be noted it coulb@ahanged or fixed by anyone other than theldeve
oper who had set the access rights.

Dissolution of the foldThe locking/cloning created folds where multipletieologies overlapped, but for
these overlaps to be generative they necessitatedd@mpanying unfolding. In the case below the un-
folding took the form of an (evident) breakdown:

“First, CVS doesn't fail silently. Second, | finbitVCH easier to figure out what CVS repos-
itory changes broke my local changes than to uripajet new source tree, repatch, and try
to see what the error messages patch gave outegsflgh off the screen. If the local patches
were *not* to fail, a simple "cvs update" is mudsir to perform than unpatch-getnewtree-
repatch. When a local patch does fail, CVS leahésreally nice block in the file showing

what repository and local changes overlapped.difaost always very easy to fix the overlap.
A failed merge will never compile because the ctanpiill give errors on the overlap mark-

ers. And a bad patch will never make it into theasitory because only one person will have
write access (and he'll only add Linus' approvetthas) (Mason, 1996)

Code being pushed back into the main repository queestioned by core developers that had maintainer

roles in the community. This point would mark thissdlution of the temporary fold held together bg t
involved developer. The digital space evaporatestha repository is no longer invisibly locked teet
rest of the community.

Process of Stealth Patching - Evading public review
A second process of folding/unfolding dealt withawhdigital technologies made it possible for some de

velopers to evade public review of their work adlas slip their patch into the main code. Stealitch-
ing, like locking and cloning is a phrase usedpem source community development work (as welhas i
other software development environments). Herelvadl aot describe stealth patching in detail btivea
delve into how some Linux developers used it to mot@arily borrow multiple tools to slip patches into
the main code without detection which obviates peeiew.

Coalescing pressuregs mentioned stealth patching was made possibbeitfir a coalescing of pressures

including a desire to contribute code, an availaipdate created by a (usually) core developerijlpged

5 http: //www.ussg.iu.edu/hypermail /linux/kernel /9602 /0918.html

16

access to different technical tools, and a desirevade peer review (sometimes to simply expeditie ¢
development)Bits of code would thus be inserted into the fipadject without expected peer review be-
cause the developer had privileged access to dibial technologies. This involved a number of mo-
ments beginning with the key matter of aligningrapltiple digital technologies for long enough tipsl
your code in but not too long that a break in cdeleelopment is detectable.

Interplay of multiple technologie#n order to add a patch stealthily the developeolived would artfully,

if only momentarily, align different technologies that they would interface with each other. Inuxn
development, various developers used stealth pagahier time. Especially revealing was how BitKeep-
er, as opposed to CVS, provided more opportunfiesurreptitious technologies alignment. The data
extract below shows that such alignment could exasur accidentally through BitKeeper thus making
the Linux code vulnerable:

“With no public casualties (iput fuckup in 2.4.15vea unrelated patch, but there was an id-
iotic bug that slipped into the patches sent toukimnd ate his tree - missed list_del() in a
bad place ;-) And it involved complete rewrite sfsfiper.c - including change of allocation
rules, locking (Viro 2001)".
The alignment was between BK, the personal treekaebon by Torvalds, and a floating patch of soft-

ware. This wreaked some havoc, which made it didlgler. This was fortunate to us researchers because
often stealth patches remain mostly invisible.

Digital space:The alignment of multiple technologies funneledeartrance into an un-gated space of
submission within the version control software vehferrtive development could be carried out. Thevabo
example showed the extent of damage that coulddy®ked by a stealth patch yet often this process r
onated better with purposeful, yet useful code ds&ions. The strength of the code patch could eot b
verified without peer review and testing, and thiss why some Linux developers were irritated atecod
being slipped in:

“Who knows what code might slip through otherwise@yThave to audit the entire revision
history rather than just the patch they mean todsdthat's a nightmare. The lawyers would
never approve ANYTHING for release, except as ehplite’ (Landley 2002].

6 http://lkml.iu.edu//hypermail/linux/kernel/0112.3/0612.html
7 http://Ikml.iu.edu//hypermail/linux/kernel/0202.0/0257.html

17

A scrupulous process of code submission entailesl Weork fixing bugs at a later date. Open source de
velopment may well include the entire source codletihe idea that it was easy to scrutinize it fitkraa
certain size in lines of code was passed was @aatipal or easy.

Generativity BitKeeper was criticized by some for making speliching more possible through its rather
unique pull and push techniques of taking the Lisoge and pulling it into a personal system, making
changes to it, and then aligning your computeresystvith BK, to push your changes back into Linux
code. Xymoron stressed above that BK seemed to Ihatdean equal number of pushes to pulls. It was
accepted knowledge that not all the developergiénLinux Kernel community had equal privilege with
regard to code acceptance, and this was the basisymron’s surprise at the identical number oflpulf
code to pushes. Many, if not all had pull accesddnufewer developers had push privileges. A codsh
would ideally undergo peer review. Peer review e@ssidered by many to be essential to the quality o
coding.

“Which patches are the stealth patches?
The ones that say 'pull from here' are pretty ogagnd seem to go past without much dis-
cussion. Off the top of my head, I'd say aboutdeen about as many bk pushes as pulls but
that could be perceptual biagGarzik and Xymoron 2002)

A discussion between two key developers in the icmmmunity above reflects the perception of skealt

patching. This realization that a stealth patch hadn attempted created a new thread of discussion
amongst the Linux Kernel developers. Community gudé engagement and development practices were
called into question by these and other develogdédrs.invisibility of stealth patches usually wouddve

little trace but the community was beginning tadfimaterial traces of such practices and attemptedrt

rect this issue. This discussion generated a changeactices that later translated into a redesigthe
version control software to effect better detection

Dissolution of the foldThe digital space dissolved when the alignmentohhologies came to an end.
The unfolding of the digital fold stressed the igition that something had passed or changed. wass

possible because a breakdown drew attention tpréngously ‘unknown’ or when a change was noticed

8 http://Ikml.iu.edu//hypermail/linux/kernel/0204.2/1141.html

18

by a developer due to personal interest. The interge below was intriguing because Daniel was an-
noyed by BK documentation being added to the Kemneel. BK was a proprietary tool and it was decided
by a majority vote in the Linux community to kee¢@$ separate from Linux as possible. Some Linux de
velopers feared that undue mixing between BK amdix.iwould not only tarnish the image of Linux as an
open source project but actually defile its codaniel wanted to make the Linux community aware kif B
documentation, which, according to him, had beealstily added to Linux.

“Daniel is now bothered by the presence of BK doatatien in the Linux kernel tree.
Therefore, he submitted a patch to remove this mectation. Just about everybody else in-
volved in this thread accuses him of censorshipafiempting to restrict the dissemination
of ideas. | do not know whether all of these peaqsle BK; all | know is the "censorship"
claim, on the basis that he is restricting the disation of informatich(Stevie 20023,

What became yet more interesting was that the dinfglof this stealth patch did indeed amplify tlifeet

of BK documentation, but not quite as this devetaméght have imagined. The community, instead of
perceiving him as a Linux and open source herajseat him of censorship,

“Daniel was attempting a 'remove' operation... Damdsagrees with the content of the
speech in Documentation/BK-usage, based on hiddggeoAnd he attempted to restrict the
dissemination of that speech. What is the defimitibcensorship again? | see this as a clear
cut case of Daniel's ideology pushing him to attetmpestrict speech...That is anti-freedom
(Garzik 20023’

Daniel’s patch to remove BK documentation had keestealth patch, not open to scrutiny, and thub-pro

lematic to the Linux community. It had been noti@dl this was why there was even a discussion sur-
rounding it causing its effect to intensify.

Process of Siphoning - Privileged policymaking
The recognition of the process of siphoning idésgithe importance and relevance of real-time,ifriv

leged, and often face-to-face communication in opewmce development. Obviously open source soft-
ware development would not be possible withoutlthernet and all the digital technologies it prasd
yet open source developers are often geographiclalsfered in specific locations around the woddy(

Silicon Valley). This geographical density does translate into a non-reliance on digital technieg

9 http://lkml.iu.edu//hypermail/linux/kernel/0204.2/1105.html

10 http://lkml.iuv.edu//hypermail/linux/kernel/0204.2/1004.html
19

but it is interesting all the same. The abilitypdvilege some developers over others is apparentany
open source projects. We found this very true inLdnux Kernel case.

Coalescing pressuredBroad changes to development practices became saggesom time to time.
Some were triggered by the processes detailed abbile others involved mistakes and breakdowns.
Any such instance would build anxiety and pressuthin the community prompting the more experi-
enced and elite members of a community (the caregdognize the need to discuss new policies, code
direction changes and other serious decisionsneettio the community and code.

Interplay of multiple technologie§he process of siphoning involved a break in publlscourse. This
was made possible through an alignment of more ¢in@ndigital technology to create some level of pri
vate space. We found that many Linux developersenaddindant use of IRC with email and version con-
trol software that made more exclusive, invitatmly communications possible even in an open envi-
ronment:

“Ben's right. Most patches are independent becauseavork divides itself up that way, be-
cause people talk about this stuff (on IRC) andpeoate, and because the tree structure
evolves to support the natural divisions ;)
In a fan club, saying "andrea’'s the MM guy, talkhim" is only natural. It's a meritocracy,
he's alpha geek on call in that area right ridivandley and Phillips 2001},

This email conversation illustrated how accepte@ li&se was within the community, even though its

limitations to public access and visibility wereognized. Certain developers argued against thefuse
such folding technologies yet most acknowledged tthey played a key role in advancing the develop-
ment process. Siphoned spaces created a tightesnaaltl space where a few developers could pause to
discuss controversial matters and come to a deciiovas accepted that open communities builtabalt
rative environments for debate but there were atsasions that required a quick decision, wherealihe
ferent emails from the larger community createdsabrather than helpful discussion,

“If Linus and the top dozen lieutenants all had &deripts and encryption keys set up (all
using open source software) so that their codetgaach other's systems more easily and
was looked at first before shoveling through thgnal to noise ratio on Ikml, or the random
spam Linus gets dailfLandley, April 200232

11 http://lkml.iu.edu//hypermail/linux/kernel /0201.0/0004.html
12 http://lkml.iu.edu/hypermail/linux/kernel/0204.2/1334.html

20

This and other moments indicated that open sow®nities needed public spaces for open discussion
but at the same time reserved digital folds atmiglay in sustaining a community.

Digital space:Siphoned spaces created privileged and elite-ardgss to high level decision making in
the Linux community. Developers not privy to actegshese siphoned decision-making spaces ques-
tioned the application level of decisions takenisTinvalidated the basic principles and ‘law’ ofeop
source for them as they insisted that opennesgbtauore scrutiny, and thus better code, and develo
ment. This developer argued below to make the dpeweént process more open, but more importantly, all
major decisions related to development to be hefaliblic online settings as well:

“I'd like to see the development process carriednooite in the open and to that extent, in-
creasing reliance on Bitkeeper, with its convenigaint-to-point push/pull paths is worri-
some.
What we have now is, *everybody* with a piece ohdéleto maintain is in on the private,
point-to-point thing. It's efficient, no doubt, blufear we're also weakening one of one the
basic driving forces of Linux development, thatttie public debate part... you won't find a
lot of design discussiofon the Ikml postings]..even though... many changes are taking
place that will affect kernel development for yesrscome. It used to be that every major
change would start with an [RFC]. Now the typicahynis to build private consensus be-
tween a few well-placed individuals and go straifghin there to feeding patches.
Not voting, discussion. Without the discussion vigs rthe chance to get thousands of eye-
balls on the issugPhillips 20022,

Generativity:The issues discussed in siphoned spaces coulcehdssteer impact and often substantial

change in the communitfhe example above showed awareness amongst dengetdpeonfidential dis-
cussions being held. Our analysis revealed thaintipications of such discussions for the developime
process may not be simply categorized as usefblonful. They were often a mix of both as they had
different implications for various members of treveloper community,

“I have to observe that the current process is troken* in the sense that development is
now proceeding at a truly impressive rate... thusaéng the immediate pressure to per-
form....True, | haven't noticed a lot of grumblingoab dropped patches latélyPhillips,
April 2002)".

13 http: //lkml.iu.edu/hypermail /linux/kernel /0204.2/1224.html
14 http://lkml.iu.edu/hypermail/linux/kernel/0204.2/1224.html

21

Phillips explained that whatever had been appramdngst the core developers in the siphoned space
seemed to be working well as code development wgmhing to show substantial progress. The genera-
tive nature of folding/unfolding was evident becatrsiceable changes in code were visible.

Dissolution of the foldPrivate discussions would have remained concealééhux if no traces had been
left behind. The fact that developers summonednooeraged other developers to a less visible IRC or
email conversation indicated to others that a bdédloccur even if there was little disclosure dfavhad
been discussed. Code, bits of development and @éseslopers were thus temporarily quarantined into
privileged spaces. These moments of silence creatédbsence’ that left little trace yet was madsi-

ble’ because it created a break in the usual falfraommunity conversation. The texture of the carmm
nal discussion changed from one of question, ¢nislsuke, and thwarting control or disagreemertrte

of resolution, partial or otherwise. But inevitaldych siphoned discussions needed to be rewovén bac
into the community discussion so that the new dlaasscould take effect,

“Yes, it came out in the course of the thread -4.imud Jeff had a private email exchange in
which Linus had Jeff to push his Bitkeeper docuatimt files into the tree(Phillips, April
2002)".

The conversation between Linus and Jeff was ndbleiso the community but a trace of it remained be

cause it was mentioned by one of them in the LKN#Hcdssion forum. The fold created by Linus to speak
in isolation with Jeff was brief and dissolved thement the email was successfully in Jeff's inbbixe
simple technologies used to create the digital folblved an email programme, email server, and
POP3/IMAP but as soon as the email was directéldet@orrect recipient the fold was dissolved.

Partial/l neffective Folding
What happened when the process of folding/unfoldiag for some reason thwarted and failed to produce

a generative digital space was especially intriguBuch situations provided us with the opportukity
contrast effective folding/unfolding with that of aneffective or incomplete process. Our data riegba
that the folding process of locking/cloning whesrdpted drew the lack of opacity in developmentkwor

to the notice of the developer community. Partidulaevealing, developers did not consider reduced

15 http://lkml.iu.edu/hypermail /linux/kernel /0204.2 /1224.html

22

opacity as troubling per se. Rather, they were eorexd about the breakdown in their ability to work.
From the various discussions amongst the develaheisg such breakdowns it became evident that de-
velopers recognized the role and privilege of ateeelopers and it is the pragmatics of coding thay
concern themselves with rather than hierarchy oprest

“Linus has separated the maintainers list into tagels because he cream-skimmed out a
half dozen lieutenants in charge of major subsystdarhose lieutenants have a direct hotline
to Linus, and the maintainers are expected torfilteir patches through them. Individual
contributors filter their patches through the maiimers, then the lieutenants, then Linus.
This is not a bad thing, it means that by the tltimus sees code it's been code reviewed by
two people: one with intimate knowledge of the ipalar subsystem and the other with
broader knowledge of other areas it needs to irngerate with. And this hierarchy, now that
people know about it, is probably equally as resilde for the declogging of the patch queue
as Bitkeeper is(Landley, April 20025°.

Coalescing pressure§he desire to fix a bug or make some changesrioxL.code coupled with the abil-

ity to fix the issue and a possible solution caogether to create pressure. This convinced thelajese

to upload the desired solution to the bug, and Idsv@ame added to the list of Linux Kernel conttdss.
Knowledge that he had a possible solution to tldblpm encouraged him to make the attempt to upload
his work. This involved turning his attention toirjag access to more than one technology to made th
change happen.

Interplay of multiple technologie$olding and unfolding occur numerous times in oamity develop-
ment work, but not all folding processes happely.fln example in Linux development where a fold
was attempted but that didn't materialize can kensa the discussion between Manolov and McVoy.
Manolov, a Linux developer, was attempting to makgull of code from the version control software,
BitKeeper, but found that he had been locked oid.ithbility to create a link with BK made it impsis
ble for him to finish his work. The fold was notgsible though he needed it to do his work, and g@ana
the various links to multiple technologies.

“It looks like we have a bad disk, I'm checkingrtheow to figure out if it is the the primary
or backup data drive. I'll run checks in all thepositories if fsck doesn't find the problem so
it may take a couple of hours before we are ba¢k(MxrVoy, March 2002Y.

16 http://lkml.iu.edu/hypermail /linux/kernel /0204.2/1334.html
17 http://lkml.iu.edu/hypermail /linux/kernel /0203.3/0590.html

23

“I can't pull from linux-2.[45] and i'm getting:
ERROR-Lock fail: possible permission problem.
Last time | got this error somebody was playinghwtite config files”(Manolov, March
2002).
Digital space In this particular example the fold was made isgible because of a failure in BitKeeper.

As McVoy explained in this email thread he was wastithe breakdown was in the primary or the back-
up drive. Not all the content was backed up so aeted to fix and then mirror the repositories teuza
completeness. Version control software, in thisecBK, is often a crucial part of the fold when code
changes and updates are concerned. Its breakdodm folding impossible. Manolov was therefore una-
ble to create a digital space to work in and hddcaot make any updates to Linux either. If anytighr
digital space had been created it was not enouglvas not appropriate for Manolov to be able to €om
plete his development task.

Generativity The breakdown in the folding process became heidith the community and caused an out-
cry. The community did not complain about the opyaof work in open source development but, rather,
about the breakdowns in the folding process,

“1 wouldn't be a bit surprised if we have some pesions problems... we'll fix things as we
become aware of them. In fact, | know we have @sions problems... There are a couple of
trees which are missing files, both in Rik's linmdvkbits.net, | suspect an interrupted clone.
They are:

bk://linuxvm.bkits.net/linux-2.5-vmtidbits

bk://linuxvm.bkits.net/linux-2.5-writethrot
Rik, ping me if you need help cleaning these up.
The ppc tree seems to be missing linuxppc_2 4,/RaulTroy/Cort, where is this tree?
You'll want to get a copy back(McVoy, March 2002Y’.

This episode was illustrative of how open sourcesttgers tacitly accepted the dual need for tramspa

cy and opacity. The generative elements of thigifgiunfolding can be illustrated by McVoy's aldgri
to resolve Manolov's lock-out. McVoy's email reigvere shot out speedily to show good faith to the
community and his desire to make BitKeeper funci@gain.

“Leaving the drive off overnight "fixed it" enougjtat | am able to get some of the data off. It
will be a couple hours before | know how much, Iitl manage to get all the ssh keys, pro-
ject descriptions, and project statistics. I'm nearking on the actual data just in case there

18 http://lkml.iu.edu/hypermail /linux/kernel/0203.3/0691.html
19 http://lkml.iu.edu/hypermail/linux/kernel/0203.3/0689.html

24

is one of the trees, such as the ppc trees, thatam find again. The drive has bad blocks
and when it hits them it goes into retry la la lasd | won't know which data is bad until | hit
the bad blocksMcVoy, March 2002¥.

Dissolution of the foldThe attempt made by Manolov to pull code from ®k&s not productive so the

digital space that he wanted to create never erdetheny partial fold was created, this was digedl| by
Manolov so that he could return to the use of thilip email group to establish a reason for thekre
down. In so doing he created a trace to his ingffedolding which made the entire community awafe
the problem and, it could be argued, led to legsaagted developers faced with the same problem.
These processes of folding and unfolding in Linevelopment work, including the ineffective one,
helped illuminate key elements of how open soudraraunities develop software and coordinate work.
Some ideas that struck us in the findings were Hewvelopers were constantly in a process of balgncin
their need to finish working on code (pragmatic&ghwhe often stated principles of keeping disocnssi
open and transparent to all (ideology of open sodevelopment). We return to this and other implica
tions after having elaborated upon the nature gifalifolds and the process of folding and unfofdin
THEORETICAL DEVELOPMENT
This section draws from the empirical analysestaedconceptual foundations of this work to builthe-
oretical understanding: of digital folds as progectigital spaces for work; of the process of foddand
unfolding that enables the creation and dissolutibdigital folds; and of how this process balandgs
namically openness and transparency with closwleopacity in open source communities (see Figure 2)
<< Insert Figure 2 here >>

Digital Folds

We define a digital fold as the drawing togethermfitiple digital technologies created and susthibg
actors in times of coalescing pressures to creatwraentary digital space of work. It is a foldingrh
what happens outside, in the larger world and conityuinto a more secluded inside that generates a
temporary pocket of stability and retreat for refilee organizing (Deleuze 1992; Deleuze and Strauss

1991; Kavanagh and Araujo 1995). We are inspireddbleuze’s ideas and by Kavanagh and Araujo’s

20 http://lkml.iu.edu/hypermail/linux/kernel/0203.3/0779.html
25

accessible interpretation of how technologies caitef capsules that offer those ‘inside’ some mdamgn
measure of a more quiet space. As such folds expaeary, they elapse and bring those inside batck in
the larger environment of the community.

Folds are temporary for they require some workearaintained. Folds are thus not permanent, and nor
can they occur or endure without human effort. Getkevelopers who draw upon several overlapping
technologies create an interfacing position thatstitutes the virtual locus for the fold. Most tiese
technologies are used as tools, in isolation a$ ageln conjunction, to do development work anceit
quires effort on the part of the developers to nthken interface for any length of time.

Digital folds are elusive and hidden to many in tdoenmunity. These spaces are places of work, cenver
sations, and reflection that are not publicly VisitDigital spaces make isolation and interactioagible

but at the same time are not inclusive. Visibitifythe space and access for a developer has tarbece
through reputation based upon contributions to ¢bexmunally developed product (Dahlander and
Frederiksen 2012; Howison and Crowston 2014; Lane\Wenger 1991; Setia et al. 2012; von Krogh et
al. 2003). The developers that are privy to suetep of isolated work are then the core, estallifng.

It is a position of privilege to be able to creattold where more private code development andidgon
can be done. The peripheral developers or actos j@mject spend months and in some cases years to
attain the necessary knowledge and expertise @bleeto contribute, and thus become a core dewvelope
Digital spaces of work are about creating an eséayqme the cacophony of too many diverse ideas, -opin
ions, and range of experiences that makes comntionicstilted (Kelty 2008).

Developers who have less privileged access to tmuidscode are less able to create or hold a fatld wi
certain technologies like version control softwdrbe nature of the fold is thus affected by thenaek-
edged expertise levels of a developer but alsdweynature of the tools and technologies being lsaetk

to create the fold. Some technologies are desigmesclude and include access to actors differekfity-
sion control software was usually built and desiji® have access control but far more importamtly t
have editing control.

Folding and Unfolding in Open Sour ce Development

26

Digital folds have a fluid nature where change(irggthe norm. They are enabled by the use of digita
technologies and represent therefore a virtuakrathan a tangible space. Folds’ fluidity stemsrfrihe
work carried out by the developers to create anihtaia the fold. Work is needed to build an integfa
between different technologies in order to accefsmation and content necessary for coding. it ihe
very playing and use of multiple technologies thigtal spaces are created. This is the opacitycod
sure that is made possible. Each of these techieslagay be accessible freely to all members of the
community. However, some actors move from one telclyy to the next as their coding work demands.
This generatespacity in the process through closure to ceraatstand an inability to update code. Most
of the community developers will not follow thisrdul of isolated developers from platform to plat-
form, and retracing their steps is difficult. Tiésdue in large part to faint digital traces theduce visibil-

ity. Faint digital traces may occur because soro&stand technologies used like libraries are aetkeby
too many developers, multiple times and often siamdously leading to obscurity over which developer
is in the process of accessing which tool(s), ahdnvDistinguishing one user from another becorifes d
ficult when attempting to catch and become a pha digital fold. Other reasons for faint digitahtes
include the specific nature of the technologie®ived in the fold. Barriers to access are easidatad in
some tools like version control software. Multipdgehnologies use is predicated on the relianceuch s
developers on more than one technology to complata the simplest of algorithms that can then be se
as a contribution (i.e. is an accepted piece oédbdt fixes previous problems and does not biealsys-
tem build).

Unfolding is the natural continuation of the prazeghis is not another or separate process, hege-
lease of the fold to effectuate a difference. Tloekwor discussion that is established within thiel i
given a release through subsequent unfolding. dirfglamplifies the effect of the fold through itdaase
and the accompanying change, be that a changelearadecision after a discussion. It makes thegha
visible, but the change itself was made possiblthbyentire folding and unfolding process.

Actors work to create and maintain the fold buthsfmds are not easy to sustain because the dgfinin
qualities of open source software development pemess and transparency. They need constant avork t

27

hold together. The release of a fold or its dis$otureturns the community development to greatars-
parency and openness, and the private digital spamgorates. The unfolding therefore entails tiseadi
lution of the digital fold. Unfolding involves thactors releasing the interfacing links they haveatsd
between different and multiple technologies. Thecpss of dissolving can be captured analyticallg in
number of ways, for example when a new patch ok@gpears and is included in the most current code-
base.

The process of folding and unfolding is generalieeause it: creates a new type of momentum ine¢he d
velopment process; generates a temporary prote@édl space of work with overlapping technologies
releases any change in code or decision back gublic domain of community development; and
leads to new potentialities and ideas when thegdmare brought to the attention of other devetpad
there is initiation of a new discussion.

Balancing openness and transparency with closure and opacity, dynamically
Openness and transparency are qualities that dnechabling and constraining for open source develo

ment. In a similar fashion opacity and closure lawth enabling and constraining; what they enabté an
constrain is symmetrically opposed. Transparencgpan source development work makes the perfor-
mance of development inclusive and close to thestitational ideas of open source ensconced inithe |
cence (Cornford et al. 2010; Weber 2004). Likewggenness enables all members of the community to
be able to read the code, follow the process oéldgwment, recommend changes and bug fixes and carry
on discussions of code merit. At the same time slistussions can lead to an impasse and make deci-
sion-making close to impossible. There are multipiav points on the strengths of various algorithms
version direction (to list a few) and this is urgtandable considering development work is dondljoin
and each member will naturally have his/her owrsésaand preferences. These pressures arise due to
such impasses. The process of folding and unfoldenggates the pressures brought by these qualities
When transparency and openness lead to a deadiahd idevelopment process some developers may
create a protected space of refuge to work threungldlea to overcome the impasse. In the same mahner

some point when opacity and closure become too eymnd protected developers may well have ex-

28

hausted their ability to work further on their idesnd will then seek feedback from the larger comityu
We argue that the process of folding and unfoldimntains the enabling dimensions of openness and
transparency while also managing the constrairgg tfenerate for open source community work. Prag-
matically, thus, openness and transparency, justogsire and opacity, are not given once and fdoul
are navigated by developers on an on-going basis.

IMPLICATIONS
The theorizing of folding and unfolding in open smidevelopment was inspired by our empirical anal-
yses but holds implications beyond the single aafskinux Kernel development to open source and
online work scholarship. Our research brings attento a notion of relevance and importance to many
open and transparent contexts, that of managingpalence between the rush of ideas and solutions of
fered by the entire community and the need for kmabrotected and quiet spaces of work. Our thebry
folding and unfolding provides insight into how bug balance is achieved to help select participagts
gotiate development work within a larger communBpecifically, this research holds implications for
open source communities research: by conceptuaglidigital folds; by articulating how folding and -un
folding help combine the ideology of openness aaddparency with the pragmatic need for moments of
greater opacity and closure to get the job dond; lay conceptualizing further important and solitdie
examined dimensions of open source work.

The Nature of Digital Folds

This research adds to scholarship a conceptualizat digital folds in open source work. It thenefo
holds implications for research that has examimdated phenomena of secluded spaces of work in vari
ous environments, in particular, de Vaan et all&@&nd Vedres and Stark’s (2010) “structural foksd
Kellogg's (2009) “relational spaces.” Vedres andrit(2010) considered what happens in overlapping
networks, i.e. in structural folds of one network@another. They argued that structural folds Hhee
potential to be innovative because tightly knitugre develop a familiarity to access the resoureeest
sary to build knowledge and work together. De Veagal (2015) further considered that in structfméds

clashes and discord caused by diversity in exgesatigl (mis-)communication generate new ideas and in

29

novation. Structural folds rely on bringing expefrtam diverse networks together into a fold so thaty

are forced to communicate (de Vaan et al. 2015;r&ednd Stark 2010). On a related but distinct,note
building upon ethnographic work rather than sooetiwork analysis, and considering the condition for
institutional change in organizations, Kellogg'9(®2) conceptualized relational spaces as areaolaf-i
tion and inclusion where actors with opposing iests came together to stimulate organizationalggan
Our research relates to these influential conceptsalso differs from them in important manners and
doing so extends theory on secluded spaces of v@&trictural folds (de Vaan et al. 2015; Vedres and
Stark 2010) rely on bringing experts from diverseups together into a fold so that they are fored
communicate. According to de Vaan et al. (2015) ¥edres and Stark (2010), experts who happen to be
situated in structural folds are forced to commatgowith each other, which can lead to innovatitme
digital folds conceptualized in this research db cantradict the notion of structural fold but ieatl ad-
dress the importance, in open source developmdeast of private spaces that do not welcome dityer

of expertise but, rather, encourage the deep fotseslect experts on a specific issue.

Moreover, akin to relational spaces (Kellogg 2008, digital folds conceptualized in this researdike
developers’ isolation and interactions possibleweheer, dissimilar to relational spaces, digitadfolre
not inclusive. In digital folds, access has to bened through reputation-based contributions toctive-
munally developed product (Bergquist and Ljungb20@1; Grewal et al. 2006; Masum 2001; Stewart
2005). The developers that are privy to such ptetespaces of work are then the core and estailishe
few. It is a position of privilege to be able tongeate a digital fold where more private code dawelent
and discussions happen. Peripheral developerdansamn a project may spend months and in somes case
years to attain the necessary knowledge and egpddibe able to contribute, and thus become admre
veloper. Kellogg's relational spaces highlighted tmportance of inclusiveness and openness tosdiver
groups of people. By contrast, digital folds anerfeore about an escape from the cacophony of tagyma
diverse ideas, opinions, and range of experienaedin at times slow down the collective develogmen
process in open source.

Pragmatically respecting the principles of openness and transpar ency

30

The discourse of open source software communitigzhasizes the defining principles of openness and
transparency (Hertel et al. 2003; Lakhani and V26®5). Some have even argued that ideology, along
with rituals, culture and tradition, is a key paftwhat brings the developers together to form mmaoini-

ty (Choi et al. 2015). At the same time, open seutevelopers’ pragmatism has also been recognized
(David and Shapiro 2008; Stewart and Gosain 2008yalds and Diamond 2001). Faced with a choice
between following principles or practicality, theyay choose the latter (Torvalds and Diamond 2001).
Apparent dilemmas between espoused principles efmmgss and transparency and pragmatism manifest
when the need to complete work and build an effeatiodebase clashes with principles. In such situa-
tions, open source developers at times even ugeigtary software and tools for key areas of dgwelo
ment such as version control software (Shaikh amuhiord 2003; Weber 2004). Open source, therefore,
relies and builds on the premise of openness ampgarency. However, we note how such ideological
beliefs deepen and shift when a community begingite more formal shape over time. Ideology then
also encompasses meritocracy, earned privilegeldoelopers, levels of access rights and a repatatio
earned through solid code contributions. Researdhé area of open source ideology implies a certai
necessary undulation in getting community agreeroarany issue (Stewart and Gosain 2006) too quick-
ly. An over emphasis on implementation of decision/ comingafter an agreement has been reached
may indeed create a solidifying process that ctardgask completion (Stewart and Gosain 2006, p307
In a large, disparate community an agreement nieedsse out of the noise and chaos of multiplewie
points (Bergquist and Ljungberg 2001; CasadesusaMaksand Ghemawat 2006; Raymond 1999), and
this could continue indefinitely if there are noghanisms put into place to create a resolution. (roe
cess of folding and unfolding can be understood agy to bring about resolutions while maintaining
fluidity. This process showcases that successfahgmurce communities like the Linux Kernel one are
more fluid in how agreement is reached and in wihegsisions are implemented. At the same time ideo-
logical ideas of privilege and access control glaynfluential role in bringing agreement.

Ideology, as can be noted from different elememisompassed under this term (Stewart and Gosain
2006) is also not a ‘binary phenomenon’ (Choi e8ll5, p683). Diverse open source communities un-

31

derstand this idea differently as do individual elepers within communities. Certain communitiesehav
the reputation of being strongly ideological whithers are seen as pragmatic. The Linux Kernel wase
fascinating in this regard as its leader was stsoptagmatic but a large part of those in the comityu
referred equally strongly to the ideology of openrse.

Open source communities however do not solely uplyn the principles of openness and transparency,
but also upon that of meritocracy. A reliance oa hinciples of meritocracy is a mechanism by which
ideological differences are actually negotiatedjren source communities. As we had noted supra, the
meritocratic principle relates to how status isi@edd in open source community work. Meritocracthis
underlying mechanism by which developers gain gptation of a good programmer and achieve status
(O'Mahony and Ferraro 2007; Roberts et al. 2006).developer works hard and well, and her contribu
tions are peer-reviewed to be significant then saicteveloper is able to yield status in the comiguni
(Bergquist and Ljungberg 2001). The meritocraticchamism relies on experience, expertise and hard
work as reputation signifiers but at the same tihie makes privileged access to community tools and
code possible. Privileged access is then lessiqnestby the rest of the community because thgyees
the process by which the developer has earnedtkitvé®t 2005).

The folding and unfolding process and the notiordigftal fold conceptualized in this work illumireat
how, pragmatically, the meritocratic principle relmlance out the principles of openness and teaesp

¢y in open source communities. This research tlds & current scholarship on open source communi-
ties by showing how the espoused values of opentressparency, and meritocracy can still dominate
the development process while opacity and privilegecess actually operate, at least intermittenatiy,
further cement the contributions of core develomamsr time. Digital folds, and the restricted asces
such spaces, are made possible from prior mertioaise of select developers who have already gmov
their value in the open and are then able to sughair status in the community through privilegextess

to overlapping digital technologies. These privildgdevelopers can work in protected and provisional
digital folds, which provide a pragmatic solutiangroblems arising in the open, broader, commuanity
respect the espoused principles of openness amspaeency.

32

How open sour ce communities wor k
There have been some insights in the literatureerming the changes wrought in open source develop-

ment, both in the nature of the community (Shai@h3) and in the process of development due to great
commercialization (Fitzgerald 2006). Research mapairticular already showed nuanced changes over
time in open source ideology and community valledlér and Fitzgerald 2002; Fitzgerald 2005; Fitzge
ald 2006; Fitzgerald and Feller 2002). This papitsato such scholarship on open source communities
work by being less focused on examining the changepen source communities over time than in un-
derstanding more deeply a so far less examineattspdevelopment work in open source.

Moreover, there has been substantial scholarshipn@mprivate-collective model as a way to undebtan
how open source borrows from both the private ail&ctive forms of innovation at the individual and
collective level, which helps make sense of develapotivations and of how work is organized (von
Hippel and von Krogh 2003; Von Hippel and Von Krogb06; von Hippel and von Krogh 2016; von
Krogh et al. 2012; von Krogh et al. 2003). Thisatn of research has examined how the more elite de-
velopers in open source projects are able to regpehprivate benefits. Such ideas are clearly edhip

this work as well. Our study complements and extehi scholarship on the private-collective mdael
providing a micro analysis of how elite developersrk, retain their positions of influence, and dbta
non-pecuniary benefits by examining how such depesi® manipulate and control multiple technologies.
This research further adds to scholarship on worten source communities by theorizing how certain
developers develop the ability to work temporaitilyquiet enclaves of work by using multiple tectool
gies. This research unpacked the on-going navigdietween transparency and opacity and between
openness and closure in relation to the collegireeess of writing code. It revealed how some dmpesis

can rely upon overlapping technologies in ways tleflect their achieved privileged status withire th
community to create opacity which then in turnalahem space to write and upload code in peace. Th
process of folding and unfolding highlights the dgmic relationships in open source development be-
tween developers’ specialization, privilege, angutation status and their subtly differentiatedesscto

software building technologies.

33

Furthermore, this research also adds to scholashigpen source communities’ work by highlighting a
unanticipated consequence of the reliance uponipteutiechnologies. That open source developers rely
upon multiple technologies is not in itself surjmgsor new. At some points in the development psece
developers rely upon multiple tools since no siagaustomized and comprehensive tool may fulfil all
developers’ needs all the time. This study howehighlighted a more unexpected consequence of the
reliance upon multiple digital tools: certain deogrs can manipulate the availability of variousldo
simultaneously in ways that reflect their earnedilpge and provides them with some temporary
protection, even as these tools are equally avail@bany and all developers of the community. @ee
facto creation of pockets of opacity and closura tems from the reliance upon - and mastery of -
multiple digital tools is particularly intriguingezause it pragmatically benefits select developsmk

while also staying true to the rhetoric and ideglo§openness and transparency.

CONCLUSION

Complete, uninterrupted transparency and openmessd always the most generative qualities when
multiple opinionated experts are all eager to kerdhand followed. They at times need to be balaoctd
with more closure and opacity in open source conitiesn Our theoretical contribution lies in reflegs

on how moments of reduced transparency and opendiggtal folds, emerge within an open source
community’s development work through folding andstilve through unfolding.

There are limitations to this work that warrantlf@r investigations. For one, this research unaa/bpw
digital folds helped some developers solve tricksues and accomplish temporarily isolated woris It
however possible that digital folds be used foeofurposes for open source communities as wetliréu
research could thus examine if digital folds mayubed for reasons other than to complete delicaté& w
in open source communities. Also, this study higited how the use of multiple technologies enatiied
emergence of digital folds. However, digital foll® also likely to appear in other conditions. Whath
other conditions are and how they may be activateligital folds would be interesting for futuresearch

to investigate. Moreover, the nature and roles aftiple digital technologies in use simultaneously

34

open source communities merits research in its ogitt. Our study touches on this aspect but only in
relation to digital folds. Future research thatuees on the complexity of multiple technologies with
regard to security concerns, software breakdowms,eaen unplanned actions on the part of technology
become imperative in a world with growing dependena software. Finally, an especially fascinating
avenue for scholarship would be to investigateiberrelationship among multiple digital folds attneir
possible implications for development practices.

REFERENCES

Bagozzi, R.P., and Dholakia, U.M. 2006. "Open Source Software User Communities: A Study of Participation in Linux
User Groups " Management Science (52:7), pp. 1099-1115.

Bar, M., and Fogel, K. 2003. Open Source Development with Cus. Scottsdale, AZ: Paraglyph Publishing.

Barrett, M., Heracleous, L., and Walsham, G. 2013. "A Rhetorical Approach to It Diffusion: Reconceptualizing the
Ideology-Framing Relationship in Computerization Movements," MIS Quarterly (37:1), pp. 201-220.
Ben-Menahem, S., von Krogh, G., Erden, Z., and Schneider, A. 2015. "Coordinating Knowledge Creation in
Multidisciplinary Teams: Evidence from Early-Stage Drug Discovery," Academy of Management Journal),

June 16, 2015.

Benkler, Y. 2002. "Coase's Penguin, or, Linux and the Nature of the Firm," Yale Law Journal (112:3), pp. 369-446.

Benkler, Y. 2004. "Sharing Nicely: On Shareable Goods and the Emergence of Sharing as a Modality of Economic
Production," Yale Law Journal (114:273-358).

Bergquist, M., and Ljungberg, J. 2001. "The Power of Gifts: Organising Social Relationships in Open Source
Communities," Information Systems Journal (11:4), pp. 305-320.

Berliner, B. 1990. "Cvs Ii: Parallelizing Software Development," Proceedings of the USENIX Winter 1990 Technical
Conference, Washington D.C.

Bonaccorsi, A., and Rossi, C. 2003. "Why Open Source Software Can Succeed," Research Policy (32:7), pp. 1243-1258.

Boudreau, K. 2010. "Open Platform Strategies and Innovation: Granting Access Vs. Devolving Control," Management
Science (56:10), pp. 1849-1872.

Butler, T. 1998. "Towards a Hermeneutic Method for Interpretive Research in Information Systems," Journal of
Information Technology (13), pp. 285-300.

Campbell-Kelly, M., and Garcia-Swartz, D.D. 2009. "Pragmatism, Not Ideology: Historical Perspectives on Ibm’s
Adoption of Open-Source Software," Information Economics and Policy (21:3), pp. 229-244.

Casadesus-Masanell, R., and Ghemawat, P. 2006. "Dynamic Mixed Duopoly: A Model Motivated by Linux Vs.
Windows," Management Science (52:7), pp. 1072-1084.

Choi, N., Chengalur-Smith, I., and Nevo, S. 2015. "Loyalty, Ideology, and Identification: An Empirical Study of the
Attitudes and Behaviors of Passive Users of Open Source Software," Journal of the Association for
Information Systems (16:8).

Clegg, S., Kornberger, M., and Rhodes, C. 2005. "Learning/Becoming/Organizing," Organization (12:2), pp. 147-167.

Clemm, G. 1989. "Replacing Version-Control with Job-Control," Proceedings of the 2nd International Workshop on
Software configuration management, Princeton, New Jersey, United States, pp. 162-169.

Coleman, G. 2004. "The Political Agnosticism of Free and Open Source Software and the Inadvertent Politics of
Contrast," Anthropological Quarterly (77:3), pp. 507-519.

Corbet, J., Kroah-Hartman, G., and McPherson, A. 2013. "Linux Kernel Development: How Fast It Is Going, Who Is
Doing It, What They Are Doing, and Who Is Sponsoring It ", Linux Foundation.

Cornford, T., Shaikh, M., and Ciborra, C. 2010. "Hierarchy, Laboratory and Collective: Unveiling Linux as Innovation,
Machination and Constitution," Journal of the Association for Information Systems (11:11).

Crowston, K., and Howison, J. 2005. "The Social Structure of Free and Open Source Software Development.," First
Monday).

Crowston, K., and Howison, J. 2006. "Hierarchy and Centralization in Free and Open Source Software Team
Communications," Knowledge, Technology, and Policy (18:4), Winter, pp. 65-85.

D’Adderio, L., and Pollock, N. 2014. "Performing Modularity: Competing Rules, Performative Struggles and the Effect
of Organizational Theories on the Organization," Organization Studies), August 19, 2014.

Dabbish, L., Stuart, C., Tsay, J., and Herbsleb, J. 2012. "Social Coding in Github: Transparency and Collaboration in
an Open Software Repository,” in: Proceedings of the ACM 2012 conference on Computer Supported
Cooperative Work. Seattle, Washington, USA: ACM, pp. 1277-1286.

Dafermos, G. 2001. "Management and Virtual Decentralized Networks: The Linux Project," First Monday (11:6).

35

Daffara, C., and Gonzalez-Barahona, J.M. 2010. "Open Source Software for Open Government Agencies," in Open
Government, D. Lathrop and L. Ruma (eds.). Sebastopol, CA: O'Reilly Media, pp. 345-362.

Dahlander, L. 2007. "Penguin in a Newsuit: A Tale of How De Novo Entrants Emerged to Harness Free and Open
Source Software Communities," Industrial and Corporate Change (16:5), pp. 913-943.

Dahlander, L., and Frederiksen, L. 2012. "The Core and Cosmopolitans: A Relational View of Innovation in User
Communities," Organization Science (23:4), pp- 988-1007.

Dahlander, L., and Gann, D.M. 2010. "How Open Is Innovation?," Research Policy (39:6), pp. 699-709.

Dahlander, L., and O'Mahony, S. 2011. "Progressing to the Center: Coordinating Project Work," Organization Science
(22:4), pp. 961-979.

David, P.A., and Shapiro, J.S. 2008. "Community-Based Production of Open-Source Software: What Do We Know
About the Developers Who Participate?," Information Economics and Policy (20:4), pp. 364-398.

de Vaan, M., Vedres, B., and Stark, D. 2015. "Game Changer: The Topology of Creativity," American Journal of
Sociology (120:4), pp. 1144-1194.

Deleuze, G. 1992. The Fold: Leibniz and the Baroque. University of Minnesota Press.

Deleuze, G., and Strauss, J. 1991. "The Fold," Yale French Studies (80), pp. 227-247.

Deodhar, S.J., Saxena, K.B.C., Gupta, R.K., and Ruohonen, M. 2012. "Strategies for Software-Based Hybrid Business
Models," The Journal of Strategic Information Systems (21:4), pp. 274-294.

Economides, N., and Katsamakas, E. 2006. "Two-Sided Competition of Proprietary Vs. Open Source Technology
Platforms and the Implications for the Software Industry," Management Science (52:7), pp. 1057-1071.

Eisenhardt, K.M., and Graebner, M.E. 2007. "Theory Building from Cases: Opportunities and Challenges," Academy
of Management Journal (50:1), pp. 25-32.

Endres, M.L., Endres, S.P., Chowdhury, S.K., and Alam, I. 2007. "Tacit Knowledge Sharing, Self-Efficacy Theory, and
Application to the Open Source Community," Journal of Knowledge Management (11:3), 2007/06/05, pp.
92-103.

Felin, T., and Zenger, T.R. 2014. "Closed or Open Innovation? Problem Solving and the Governance Choice," Research
Policy (43:5), Pp- 914-925.

Feller, J., and Fitzgerald, B. 2000. "A Framework Analysis of the Open Source Software Development Paradigm," The
21st International Conference in Information Systems (ICIS 2000), Brisbane, pp. 58-69.

Feller, J., and Fitzgerald, B. 2002. Understanding Open Source Software Development. London, UK: Addison-
Wesley.

Feller, J., Fitzgerald, B., and van der Hoek, A. 2002. "Open Source Software Engineering," IEE Proceedings -
Software (149:1), pp. 1-2.

Fitzgerald, B. 2005. "Has Open Source a Future?," in Perspectives on Free and Open Source Software, J. Feller, B.
Fitzgerald, S. Hissam and K. Lakhani (eds.). Cambridge, MA: MIT Press, pp. 121-140.

Fitzgerald, B. 2006. "The Transformation of Open Source Software," MIS Quarterly (30:3), September, 2006, pp.
587-598.

Fitzgerald, B., and Feller, J. 2002. "A Further Investigation of Open Source Software: Community, Co-Ordination,
Code Quality and Security Issues," Information Systems Journal (12:1), pp. 3-6.

Flyvbjerg, B. 2006. "Five Misunderstandings About Case-Study Research," Qualitative Inquiry (12:2), April 1, 2006,
pP. 219-245.

Fogel, K. 1999. Open Source Development with Cus. Scottsdale, AZ: Coriolis Open Press.

Gacek, C., and Arief, B. 2004. "The Many Meanings of Open Source," Software, IEEE (21:1), pp. 34-40.

Gadamer, H.G. 1988. "On the Circle of Understanding," in Hermeneutics Versus Science? Three German Views, J.M.
Conolly and T. Keutner (eds.). IN: University of Notre Dame Press.

German, D.M. 2003. "The Gnome Project: A Case Study of Open Source, Global Software Development," Software
Process: Improvement and Practice (8:4), pp. 201-215.

Glaser, B.G., and Strauss, A. 1967. The Discovery of Grounded Theory: Strategies for Qualitative Research. Chicago:
Aldine.

Grewal, R., Lilien, G.L., and Mallapragada, G. 2006. "Location, Location, Location: How Network Embeddedness
Affects Project Success in Open Source Systems," Management Science (52:7), 2006/07/01, pp. 1043-1056.

Grune, D. 2003. "Concurrent Versions System Cvs." 2004, from http://www.cs.vu.nl/~dick/CVS.html#History

Gurstein, M.B. 2011. "Open Data: Empowering the Empowered or Effective Data Use for Everyone?," First Monday
(16:2).

Harrison, S., and Rouse, E. 2014. "Let's Dance! Elastic Coordination in Creative Group Work: A Qualitative Study of
Modern Dancers," Academy of Management Journal (57:5), December 6, 2013, pp. 1256-1283.

Hars, A., and Ou, S. 2002. "Working for Free? Motivations for Participating in Open-Source Projects," International
Journal of Electronic Commerce (6:3), pp. 25—39.

Heracleous, L., and Barrett, M. 2001. "Organizational Change as Discourse: Communicative Actions and Deep
Structures in the Context of Information Technology Implementation," Academy of Management Journal
(44:4), pp. 755-778.

Hertel, G., Niedner, S., and Herrmann, S. 2003. "Motivation of Software Developers in Open Source Projects: An
Internet-Based Survey of Contributors to the Linux Kernel," Research Policy: Special Issue on Open Source
Software Development (32:7), pp. 1159-1178.

36

Hoegl, M., Weinkauf, K., and Gemuenden, H.G. 2004. "Interteam Coordination, Project Commitment, and Teamwork
in Multiteam R&D Projects: A Longitudinal Study," Organization Science (15:1), pp. 38-55.

Howison, J., and Crowston, K. 2014. "Collaboration through Open Superposition: A Theory of the Open Source Way,"
MIS Quarterly (38:1), pp. 29-50.

Janssen, M., Charalabidis, Y., and Zuiderwijk, A. 2012. "Benefits, Adoption Barriers and Myths of Open Data and
Open Government," Information Systems Management (29:4), 2012/09/01, pp. 258-268.

Jorgensen, N. 2001. "Putting It All in the Trunk: Incremental Software Development in the Freebsd Open Source
Project," Information Systems Journal (11), pp. 321-336.

Kavanagh, D., and Araujo, L. 1995. "Chronigami: Folding and Unfolding Time.," Accounting, Management and
Information Technology (5:2), pp. 103-121.

Kellogg, Katherine C. 2009. "Operating Room: Relational Spaces and Microinstitutional Change in Surgery,"
American Journal of Sociology (115:3), pp. 657-711.

Kelty, C.M. 2008. Two Bits: The Cultural Significance of Free Software. Duke University Press.

Kilpi, T. 1997. "New Challenges for Version Control and Configuration Management: A Framework and Evaluation,"
IEEE Computer:1st Euromicro Working Conference on Software Maintenance and Reengineering (CSMR
'97)), March, pp. 33-41.

Koch, S., and Schneider, G. 2000. "Results from Software Engineering Research into Open Source Development
Projects Using Public Data," Tdtigkeitsfeld Informationsverarbeitung und Informationswirtschaft, H.R.
Hansen and W.H. Janko (eds.).

Koch, S., and Schneider, G. 2002. "Effort, Cooperation and Coordination in an Open Source Software Project:
Gnome," Information Systems Journal (12:1), pp. 27-42.

Kogut, B., and Metiu, A. 2001. "Open-Source Software Development and Distributed Innovation," Oxford Review of
Economic Policy (17:2), pp. 248-264.

Krishnamurthy, S., and Tripathi, A.K. 2009. "Monetary Donations to an Open Source Software Platform," Research
Policy (38:2), pp. 404-414.

Lakhani, K., and von Hippel, E. 2003. "How Open Source Software Works: "Free" User-to-User Assistance," Research
Policy (32), pp- 923-943.

Lakhani, K.R., and Wolf, R.G. 2005. "Why Hackers Do What They Do: Understanding Motivation and Effort in
Free/Open Source Software Projects," in Perspectives on Free and Open Source Software, J. Feller, B.
Fitzgerald, S. Hissam and K.R. Lakhani (eds.). MIT Press.

Laurent, A.M.S. 2004. Understanding Open Source and Free Software Licensing. Sebastopol, CA: O'Reilly

Lave, J., and Wenger, E. 1991. Situated Learning : Legitimate Peripheral Participation. Cambridge England ; New
York: Cambridge University Press.

Lee, G.K., and Cole, R.E. 2003. "From a Firm-Based to a Community-Based Model of Knowledge Creation: The Case
of the Linux Kernel Development," Organization Science (14:6), pp. 633-649.

Lerner, J., and Tirole, J. 2002. "Some Simple Economics of the Open Source," The Journal of Industrial Economics
(2), pp. 197-234.

Lerner, J., and Tirole, J. 2005. "The Scope of Open Source Licensing," Journal of Law, Economics, and Organization
(21:1), pp. 20-56.

Ljungberg, J. 2000. "Open Source Movements as a Model for Organizing," European Journal of Information Systems
(9:4), pp. 208-216.

Lok, J., and de Rond, M. 2013. "On the Plasticity of Institutions: Containing and Restoring Practice Breakdowns at the
Cambridge University Boat Club," Academy of Management Journal (56:1), February 1, 2013, pp. 185-207.

MacCormack, A., Rusnak, J., and Baldwin, C.Y. 2006. "Exploring the Structure of Complex Software Designs: An
Empirical Study of Open Source and Proprietary Code," Management Science (52:7), pp. 1015-1030.

Masum, H. 2001. "Reputation Layers for Open Source Development.," Making Sense of the Bazaar: Proceedings of
the 1st Workshop on Open Source Software Engineering., J. Feller, B. Fitzgerald and A. van der Hoek (eds.).

Moody, G. 2001. Rebel Code: Linux and the Open Source Revolution. London: Penguin.

O'Mahony, S., and Ferraro, F. 2007. "The Emergence of Governance in an Open Source Community," Academy of
Management Journal (50), pp. 1079-1106.

O'Reilly, T. 1999. Open Sources: Voices from the Open Source Revolution. Boston: O'Reilly.

O'Reilly, T. 2010. "Government as a Platform," in Open Government, D. Lathrop and L. Ruma (eds.). O'Reilly Media,
pp- 11-39.

Oh, W., and Jeon, S. 2007. "Membership Herding and Network Stability in the Open Source Community: The Ising
Perspective," Management Science (53:7), pp. 1086-1101.

Olson, M. 2005. "Dual Licensing," in Open Sources 2.0: The Continuing Evolution, C. DiBona, M. Stone and D.
Cooper (eds.). Sebastopol, CA: O'Reilly, pp. 71-90.

Oram, A. 2011. "Promoting Open Source Software in Government: The Challenges of Motivation and Follow-
Through," Journal of Information Technology & Politics (8:3: Special Issue: The Politics of Open Source),
pPp. 240-252.

Osterloh, M., and Rota, S. 2007. "Open Source Software Development—Just Another Case of Collective Invention?,"
Research Policy (36:2), pp. 157-171.

37

Phillips, N., and Brown, J.L. 1993. "Analyzing Communication in and around Organizations: A Critical Hermeneutic
Approach," Academy of Management Journal (36:6), December 1, 1993, pp. 1547-1576.

Powell, A. 2012. "Democratizing Production through Open Source Knowledge: From Open Software to Open
Hardware," Media, Culture & Society (34:6), September 1, 2012, pp. 691-708.

Prasad, A. 2002. "The Contest over Meaning: Hermeneutics as an Interpretive Methodology for Understanding Texts,"
Organizational Research Methods (5:1), January 1, 2002, pp. 12-33.

Raymond, E. 1999. The Cathedral and the Bazaar: Musings on Linux and Open Source by an Accidental
Revolutionary. Sebastopol, California: O'Reilly & Associates.

Raymond, E.S., and Trader, W.C. 1999. "Linux and Open-Source Success," IEEE Software (16:1), pp. 85-89.

Roberts, J., Hann, I.-H., and Slaughter, S. 2006. "Understanding the Motivations, Participation, and Performance of
Open Source Software Developers: A Longitudinal Study of the Apache Projects," Management Science
(52:7), pp- 984-999.

Scacchi, W., and Alspaugh, T.A. 2012. "Understanding the Role of Licenses and Evolution in Open Architecture
Software Ecosystems " Journal of Systems and Software (85:7), pp. 1479—1494.

Schweik, C. 2003. "The Institutional Design of Open Source Programming: Implications for Addressing Complex
Public Policy and Management Problems," 2003 (8:8), p. January.

Setia, P., Rajagopalan, B., Sambamurthy, V., and Calantone, R. 2012. "How Peripheral Developers Contribute to
Open-Source Software Development," Information Systems Research (23:1), pp. 144—163.

Shah, S.K. 2006. "Motivation, Governance, and the Viability of Hybrid Forms in Open Source Software Development,"
Management Science (52:7), pp. 1000-1014.

Shaikh, M. 2015. "Embedding Penguins into the Company: Sourcing the 'Right' Sauce " Academy of Management
Annual Meeting, Vancouver, Canada.

Shaikh, M., and Cornford, T. 2003. "Version Management Tools: Cvs to Bk in the Linux Kernel," 25th International
Conference on Software Engineering - Taking Stock of the Bazaar: The 3rd Workshop on Open Source
Software Engineering, J. Feller, B. Fitzgerald, S.A. Hissam and K. Lakhani (eds.), Portland, Oregon, pp. 127-
132.

Sharma, S., Sugumaran, V., and Rajagopalan, B. 2002. "A Framework for Creating Hybrid-Open Source Software
Communities," Information Systems Journal (12:1), pp. 7-26.

Singh, P.V., and Phelps, C. 2013. "Networks, Social Influence, and the Choice among Competing Innovations: Insights
from Open Source Software Licenses," Information Systems Research (24:3), pp. 539-560.

Spaeth, S., von Krogh, G., and He, F. 2014. "Research Note—Perceived Firm Attributes and Intrinsic Motivation in
Sponsored Open Source Software Projects," Information Systems Research (0:0), p. null.

Spaeth, S., von Krogh, G., and He, F. 2015. "Research Note—Perceived Firm Attributes and Intrinsic Motivation in
Sponsored Open Source Software Projects," Information Systems Research (26:1), pp. 224-237.

Stallman, R. 1984. "The Gnu Manifesto." from http://www.gnu.org/gnu/manifesto.html

Stallman, R. 1999a. "The Free Software Definition." 2003, from http://www.gnu.org/philosophy/free-sw.html

Stallman, R. 1999b. "The Gnu Operating System and the Free Software Movement," in Open Sources : Voices from the
Open Source Revolution, C. DiBona, S. Ockman and M. Stone (eds.). O'Reilly.

Stallman, R.M. 2002. Free Software, Free Society: Selected Essays of Richard M. Stallman. Lulu.com.

Stewart, D. 2005. "Social Status in an Open-Source Community," American Sociological Review (70:5), October 1,
2005, pp. 823-842.

Stewart, K.J., Ammeter, A.P., and Maruping, L.M. 2006. "Impacts of License Choice and Organizational Sponsorship
on User Interest and Development Activity in Open Source Software Projects," Information Systems
Research (17:2), pp. 126-144.

Stewart, K.J., and Gosain, S. 2006. "The Impact of Ideology on Effectiveness in Open Source Software Development
Teams," MIS Quarterly (30:2), June, pp. 201—-314.

Streeter, L.A., Kraut, R.E., Lucas, H.C., and Caby, L. 1996. "How Open Data Networks Influence Business Performance
and Market Structure," Communications of the ACM (39:7 (July)), pp. 62-73.

Suddaby, R. 2006. "What Grounded Theory Is Not," Academy of Management Journal (49), pp. 633-642.

Torvalds, L. 1999. "The Linux Edge," in Open Sources: Voices from the Open Source Revolution, C. DiBona, S.
Ockman and M. Stone (eds.). Sebastopol, California: pp. 101-111.

Torvalds, L., and Diamond, D. 2001. Just for Fun: The Story of an Accidental Revolutionary. Harper Collins.

Tullio, D.D., and Staples, D.S. 2014. "The Governance and Control of Open Source Software Projects " Journal of
Management Information Systems (30:3), pp. 49-80

Van Maanen, J. 1979. "The Fact of Fiction in Organizational Ethnography," Administrative Science Quarterly (24),
Pp- 539-550.

van Oorschot, K.E., Akkermans, H., Sengupta, K., and Van Wassenhove, L.N. 2013. "Anatomy of a Decision Trap in
Complex New Product Development Projects,” Academy of Management Journal (56:1), February 1, 2013,
pp. 285-307.

Vedres, B., and Stark, D. 2010. "Structural Folds: Generative Disruption in Overlapping Groups," American Journal of
Sociology (115:4), pp. 1150-1190.

von Hippel, E., and von Krogh, G. 2003. "Open Source Software and the “Private-Collective” Innovation Model: Issues
for Organization Science," Organization Science (14:2), March-April, pp. 209-223.

38

Von Hippel, E., and Von Krogh, G. 2006. "Free Revealing and the Private-Collective Model for Innovation Incentives,"
R&D Management (36:3), pp- 295-306.

von Hippel, E., and von Krogh, G. 2016. "Crossroads—Identifying Viable “Need—Solution Pairs”: Problem Solving
without Problem Formulation," Organization Science (27:1), pp. 207-221.

von Krogh, G., Haefliger, S., Spaeth, S., and Wallin, W. 2012. "Carrots and Rainbows: Motivation and Social Practice
in Open Source Software Development," MIS Quarterly (36:2), pp. 649-676.

von Krogh, G., and Spaeth, S. 2007. "The Open Source Software Phenomenon: Characteristics That Promote
Research," Journal of Strategic Information Systems (16:3), pp. 236-253.

von Krogh, G., Spaeth, S., and Lakhani, K.R. 2003. "Community, Joining, and Specialization in Open Source Software
Innovation: A Case Study," Research Policy (32:7), July, pp. 1217-1241.

von Krogh, G., and von Hippel, E. 2006. "The Promise of Research on Open Source Software," Management Science
(52:7), pp. 975-983.

Weber, S. 2004. The Success of Open Source. Harvard University Press.

West, J. 2003. "How Open Is Open Enough? Melding Proprietary and Open Source Platform Strategies," Research
Policy (32), pp. 1259-1285.

West, J. 2007. "Seeking Open Infrastructure: Contrasting Open Standards, Open Source and Open Innovation," First
Monday, Peer Reviewed Journal on the Internet (12:6).

West, J., and Bogers, M. 2014. "Leveraging External Sources of Innovation: A Review of Research on Open
Innovation," Journal of Product Innovation Management (31:4), pp. 814-831.

West, J., and Gallagher, S. 2006. "Challenges of Open Innovation: The Paradox of Firm Investment in Open Source
Software," R&D Management (36:3), pp. 315-328.

Wright, A.L., and Zammuto, R.F. 2013. "Wielding the Willow: Processes of Institutional Change in English County
Cricket," Academy of Management Journal (56:1), February 1, 2013, pp. 308-330.

Yin, R. 1981. "The Case Study Crisis: Some Answers. ," Administrative Science Quarterly (26), pp. 58-65.

Author Biographies

Maha Shaikh is an Assistant Professor of Infornma8gstems at Warwick Business School, University of
Warwick. Maha's research focus is open source comities, how they coordinate work, their changing
governance structures, the role of transparendyoth building communities and sustaining them over
time, and the nature of how serious work is cardetlin online settings. She is co-author of an NRfess
book titled Adopting Open Source Software.

Emmanuelle Vaast is an Associate Professor of imdtion Systems at the Desautels Faculty of Manage-
ment of McGill University, in Montreal, Canada. Steceived her PhD at Ecole Polytechnique, Paris
France. Her research interests deal with the imtitins of the use of technologies on practicesvemrt

in multiple offline and online settings. Her resgahas been published in a variety of journalduitiog
Information Systems Researthanagement Information Systems QuarteglydOrganization Science

39

TABLES AND FIGURES

Table 1: Digital Technologiesin Open Source

Name of Technology Acronym ‘ Definition

Version control software VCS Is a digital tool by which multiple versions of any software can be managed,
kept track of and protected against overwriting.

Concurrent Versions System CVS Is a type of version control software which is open source in nature. It was
created by Dick Grune in 1986 but has since evolved by Brian Berliner and
others.

BitKeeper BK Another version control system but this one is proprietary. It is a distributed
VCS created by Larry McVoy and his company, BitMover in 2000.

Internet Relay Chat IRC Is an electronic application that facilitates textual based communication in
both group and private one-on-one settings.

Libraries A set of resources in the form of code, sub-routines and help data that are
pre-written and can be drawn upon by computer programmes to help build
software (Wikipedia).

Linux Kernel Mailing List LKML Is an email group subscribed to by all the Linux Kernel developers where the
majority of discussions about development are held, and archived.

Linux Kernel LK Central and most essential part of an operating system that coordinates activ-
ities on a computer system. Linux Kernel is the Unix-based central software
that runs within and to coordinate the GNU Hurd.

Table 2: Data Sources

Data Access Point

Primary da

Data Features

ta source

Use in Analysis

Linux Kernel Mailing -
List (LKML) -

3352 emails
Single-spaced printed
pages = 1892

Deepened our knowledge and insight into digital folding and over-
laps and focused our attention on the implications stemming from
such tools creating new binds to facilitate communication.

Gave us direct access and insight into the facets of digital technolo-
gies used by online communities, and the tensions they create and
dissipate with a historical, longitudinal level of access.

Secondary data sources

Academic publica- -
tions (Web of Sci-
ence) -

1372 articles on version
control software

97 articles were focused
on open source

Developed and enhanced our understanding of the different kinds
of digital technologies in use by open source communities.

It sensitized us to nuances in language and functionality in prepara-
tion for coding the LKML data. It facilitated our ability to parse tech-
nical, hacker conversations.

Conference observa- -
tions and interviews -

19 rapid interviews

0SS Conference 2007-
2012

Open World Forum 2008-
2011

Triangulate facts and observations: Developed and enhanced our
understanding of how developers work, collaborate and coordinate
daily development work.

Gave us direct access and insight into the facets of digital technolo-
gies used by online communities, and the tensions they create and
dissipate.

40

Concepts and pro-
cesses

Table 3: Folding/Unfolding in Linux Development

Locking/Cloning

Stealth patching

Siphoning

Partial/Ineffective

Coalescing pressures

Tension created
through a disparity
between the need for
control evinced by the
elite developers of the
community, and the
community’s desire to
keep the code base
growing

Privileged access to
technical tools cou-
pled with a desire to
reduce peer review of
personal bug fix/code

Experienced and elite
members of a com-
munity (the core)
recognize the need to
discuss new policies,
code direction chang-
es and other serious
decisions pertinent to
the community and
code

folding
Tension created
through a disparity
between the need for
control evinced by the
elite developers of the
community, and the
community’s desire to
keep the code base
growing

Interplay of multiple
technologies

Bridging a link between
code, and email
through a lock in the
version control soft-
ware creating a rupture
in code development

Artful and momen-
tary alignment of
digital tools to push
changes

Decisive demand or
need to break the
discourse in public
through access to
invitation-only tools

Attempting to bridge a
link between code, and
email through a lock in
the version control
software creating a
rupture in code devel-
opment

Digital space

Creation of privileged
and exclusive space for
development

Entrance to un-gated
submission space
within version control
software that allows
for furtive develop-
ment

Creation of privileged
and elite-only access
to high level decision
making space

The digital space re-
quired is not created

Generativity

Failure in code integra-
tion and breakdown in
software propagating
ideas, solutions, discus-
sion and improvement

Realization of stealth
patches led to a re-
evaluation of com-
munity rules of en-
gagement and devel-
opment

Discussions held in
siphoned spaces
steered impact and
change in the com-
munity

Failure in code pull and
breakdown in access to
code creates unease in
the community which
generates attempts to
rectify the problem

Dissolution of the

Decisive push of code

Reweaving the code

Reweaving the final

Dissolution of any par-

fold back to the communal and discourse to re- decision and/or code tial fold leaving behind
code questioned connect to the com- through limited dis- a trace of the failed
through digital gate- munity course to reconnect attempt
keepers to the community
Folding The process of aligning multiple technologies by a (core) developer to The ineffective process
create an exclusive digital space for work that allows for generative of aligning multiple
change that becomes visible when the fold dissipates. technologies so that a
digital space is not pos-
sible and generative
change cannot be engi-
neered.
Unfolding The natural follow through of folding where the digital space created A digital space was not

through the folding process is dissolved to reveal decisions, change, and

the trace of folding itself.

created as required
thus rendering unfold-
ing as unnecessary and
less generative.

41

Illustrative Examples of Empirical Observations

Two digital tools used by different groups of developers in Linux development — CVS
and BK

Theoretical Observations

CVS adoption rejected by Torvalds due to concerns with his loss of control over
Linux

This created ideological boundaries and barriers between the two groups of users

Led to setting up of a group of trusted lieutenants

Processes of locking/cloning, and

ineffective folding and unfolding

- Bridginga link between code, and
email through a lock in VCS

- Rupturein code development

- Extraction and inclusion control

- Creation of managed private
space for development

Levels of developer inclusivity became more murky with BK cloning

N/

Both tools were questioned by the open source community in relation to access,
functionality and openness

- Anydecisive push of code back to
the communal code questioned
through digital gatekeepers

Linux developers work with multiple digital tools like libraries, VCS, irc and others
when both building and pushing code back to the main branch

- The bridge between technologies
is not complete or too fragile

- The digital space required is not
created

Expertise of developers varied as did their access rights within Linux

- Failure creates unease and
generates attempts to fixissue
- Dissolution of any partial fold

Some antagonism engendered between core developers and others where the
latter felt their code was dismissed unfairly and other code privileged

Theoretical Constructs

All code, for different reasons, was not equally scrutinized by the community before
acceptance

Private discussions would often be held in real-time with a few key developers using
tools suchasirc

Both main VCS tools were then held accountable by the community for allowing
stealth patching

Though questioned, most of the Linux community was aware that co-located
meetings with inner core group of trusted developers were held both online and in
person

Process of stealth patching

- Artful and momentary alignment
of digital tools to push changes

- Furtive development

- Lack of apparent rupture in code
development

\ 4

- Reweaving the code and
discourse to reconnect to the
community

[X

Irc was the chosen tool for online, yet private communication in the Linux
community

Torvalds, and others were ‘public’ about invoking certain developers to a private irc
conversation to resolve a difference or fix a complex problem

Such private decision-making though very necessary, built up anxiety within the
larger community about what breaking ‘Linus’ Law’ could lead to

A forkin Linux was seriously discussed as an option to create a more meritocratic
development process.

Process of siphoning

- Decisive demand or need to break
the discourse in public

- Breakinvoked by allusion to
connect to another digital tool

- Discourse and decision-making
with limited traceability amongst

Reweaving the final decision and
code through limited discourse to
reconnect to the communi

Folding

Interplay of
multiple digital
technologies

Generativity in
folding and
unfolding

Digital Fold

Unfolding

A

Figure 1: Data Analysisand Theoretical Constructs

Conditions creating
the fold in the open
community

Coalescing

pressures

Interplay of
multiple digital
technologies

Openness and
transparency

Failure to harness the
necessary multiple
technologies required
for work pushes for
any partial fold to
dissolve

Harnessing multiple
technologies in
FOLDING

Digital fold

Holding the
interfacing
technologies in
place

Digital space of
work

Generative
build-up of quiet
space for
productive work
without ‘noise’
of the broader
community

More closure &
opacity

Dissolution of any partial
fold that resulted in an
ineffective fold

Harnessing multiple
technologies in
UNFOLDING

Conditions
dissolving the fold

Easing the
technologies out
of interfacing
conditions

Amplification
through
unfolding

Release of ideas,
work, decisions
onto broader
community

Unfolding feeds back into the
broader community by opening
up public discourse

Figure 2: Theoretical Model of Folding and Unfolding

