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Bacterial and fungal degradation of wheat straw has become intensively scrutinised in recent years because of the

growing interest in procuring useful feedstocks and chemicals from lignocellulosic sources. Typically, after the

extraction of valuable sugars and phenolics, significant quantities of solid biomass remain as waste. In this work, it

has been shown that the leftover fermented wheat straw can be successfully used to reinforce epoxy resins,

providing better strength properties compared to non-degraded straw. A 12% and a 22% increase in Young’s

modulus and ultimate tensile strength respectively were observed for degraded wheat straw/epoxy composites

compared to composites containing non-degraded straw. The improvement in mechanical strength is explained in

terms of the structural and morphological transformations that occurred in the fibres during the fermentation process.

The opportunity to use degraded natural fibres in the manufacturing of composites, in addition to the production of

chemicals from lignocellulosic feedstocks, looks promising for improving biorefinery economics further.
1. Introduction
The concept of an enhanced biorefinery implies the intensification
of a biomass-based process by reducing energy demand and waste
streams, increasing product yield by way of a better reactor
design and/or an optimised downstream processing.1–3 One of the
methods to enhance a biorefinery process is to turn wastes into
useful feedstocks through an integrated approach. For example,
the main by-products of pulp and paper-making industries,
various industrial lignins, have attracted much attention during the
last few years as promising additives for various applications4–6

and as a substrate for the synthesis of useful chemicals7 and
polymers.8 Commonly thought of as a waste product and
generally burnt for energy recovery, lignin has gradually become
a commercially attractive feedstock on its own, which can be
used for the synthesis of valuable chemicals with aromatic
functionality. New ways on how to obtain phenolic compounds
from abundant lignocellulosic biomass have also been extensively
researched in recent years. Bacteria9 and fungi10,11 have been
proposed as less destructive, highly selective, cheaper, benign
and more environmentally friendly catalysts for the degradation
and the fractionation of biomass12 in comparison to traditional
chemical catalysts.13–16 The concept of getting ‘value prior
pulping’ with the help of fungi also emerged.17 While initially
proposed as an alternative to the chemical pre-treatment of
biomass in processes converting lignocellulose to ethanol,
biocatalytic degradation has evolved into a separate platform
within the biorefinery concept, which targets specific high-value
chemical compounds from the lignin fraction. When this happens,
the remaining biomass is a product rich in cellulose with the
potential to be further refined and converted into industrially
relevant products. This biologically pre-treated biomass can be
converted to ethanol, as in the process of second-generation
bioethanol, but it can also be used as reinforcement for the
production of biocomposites, much like hemp, sisal and flax,
natural fibres that have already been extensively used as
reinforcements in thermosets and thermoplastics.18–25 Wheat
straw fibres are cheaper and more available compared to the
aforementioned natural fibres, and there have been some reports
on their use in materials production in recent years.21,26–29

However, their reinforcing properties are worse compared to
traditional natural fibres and need to be improved through
appropriate pre-treatment in order to become more competitive.

In this work, the influence of a biological pre-treatment of wheat
straw fibres on their reinforcing properties in an epoxy resin was
studied. Epoxy resins, although expensive, are known to show
high chemical and thermal resistance and mechanical strength
compared to other polymer matrices.30–32 With recent trends in
1
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the synthesis of epoxy resins from oil-based and lignin-containing
feedstocks,33 their reinforcement with natural fibres opens a great
possibility for the production of truly sustainable biobased
composites out of cheap and available feedstocks.

2. Experimental

2.1 General considerations
Deionised water was obtained by ELGA Purelab Option-S 7
water purification system. Folin-Ciocalteu reagent was sourced
from VWR International. Anhydrous gallic acid was sourced
from Merck. A solution of 3,5-dinitrosalicylic acid (1%w/v)
was prepared by the following method: 3,5-dinitrosalicylic acid
(0·4 g) was dissolved in sodium hydroxide (NaOH) (4 ml, 5 M)
and distilled water (8 ml) and further combined with sodium
potassium tartrate solution (28 ml, 30%w/v). SuperSap CLR resin
was purchased from Entropy Resins. All other chemicals were
sourced from Sigma-Aldrich and used as received without further
purification.
2.2 Preparation of degraded and non-degraded wheat
straw fibres

Two types of wheat straw were used in this work to reinforce
epoxy resin: degraded and non-degraded wheat straw (WS).
Initially, air-dried wheat straw was acquired from a local farm in
Warwickshire, UK, and was a solstice winter wheat harvest of
August 2013. Non-degraded WS fibres were obtained by milling
the air-dried straw in a Christy Hunt mill, sieving the fibres to a
size below 250 µm and drying them in an oven at 45°C for 24 h.
The degraded wheat straw (DWS) fibres were obtained through
biodegradation with chicken manure. The as-received air-dried
straw (600 g) was mixed with fresh chicken manure (6·3 g)
dissolved in water (30 ml). Deionised water (1 l) was added, and
the straw was left to degrade in a closed plastic box in an oven at
65°C for 6 weeks. After this, the degraded straw was separated
into small batches (25 g, 4·6% w/w moisture content) which were
then autoclaved (120°C, 15 min) before being extracted with
distilled water (750 ml) in a FerMac 310/60 2L batch reactor
(40°C, 180 rpm, 2 h). After the extraction stage, the biomass
2
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was squeezed through muslin netting and dried at 45°C, and a
reduction of 15 ± 1% in dried weight was observed after the
degradation/extraction procedure. The dried biomass was milled
to a fine powder and sieved. The fraction of particles with a size
of <250 µm was taken for further composite preparation.

2.3 Characterisation of degraded wheat straw extracts
The content of the total reduced sugars and soluble phenolics in
the aqueous extracts was determined with Folin–Ciocalteu (FC)34

and 3,5-dinitrosalicylic (DNS) colorimetry35 accordingly. For the
FC analysis, in a cuvette, each sample (20 ml) was mixed with
distilled water (1·58 ml) and 10% FC reagent (100 ml). After a
period of 8–10 min, a sodium carbonate (Na2CO3) (300 ml,
16%w/v) solution was added, and the mixture was left for 2 h to
complete the reaction.

For the total sugar analysis, 250 ml of the aqueous extract from
the degraded straw mixture was mixed with freshly prepared
DNS solution (750 ml) in a plastic ultraviolet-visible (UV-Vis)
cuvette and incubated in a water bath (15 min, 95°C) to allow
the reaction to occur. The absorbance of the prepared solutions
was measured at 765 and 540 nm using a Cary 50 Bio UV-Vis
spectrophotometer (Varian Inc,) for phenolics and sugars
respectively. The calibration curves were constructed using
solutions of gallic acid and glucose with the final results
expressed in equivalents of gallic acid and glucose for phenolics
and sugars respectively. All assays were carried out in triplicate.

2.4 Preparation of wheat straw/epoxy resin
composites

The composites were prepared using SuperSap CLR epoxy
resin (Figure 1) and 1, 5, 10 and 20% w/w (by dry weight) of
both the degraded and non-degraded WS (particle size <250 µm,
dried at 45°C for 24 h to remove any residual absorbed water
prior to manufacturing). The resin (10 g) was slowly mixed with
the hardener (4·7 g) before the appropriate amount of straw was
mixed in gently in order to avoid formation of air bubbles. Dog-
bone-shaped samples with a gauge section 33 mm long, 5 mm
wide and 2 mm thick (Figure 1) were prepared by pouring the
Characteristic Value

Density: g cm–3 1·17

Biocontent by mass: % 21–30

Tensile modulus: GPa 3·4

Tensile strength: GPa 0·065

Elongation at break: % 5
33

5 18

12

5

62
Figure 1. The main physical and mechanical characteristics of the

virgin Super Sap epoxy resin (provided by Entropy resins Inc., ASTM

D638 (ISO 527))36 and a scheme of the dog bone-shaped sample used

for tensile tests (all numbers are in millimetres)
blishing, all rights reserved.
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mixture into moulds and leaving to cure for 24 h in air followed
by 2 h post-curing in an oven at 50°C.

2.5 Characterisation techniques
Moisture analysis was carried out using an MB45 Moisture
Analyser (Ohaus). The samples were dried at 105°C until a
constant mass was achieved and the moisture content was
assessed.

A Bruker VECTOR 22 infrared spectrophotometer was used to
record Fourier transform infrared spectroscopy (FTIR) spectra in
a spectral range of 4000–450 cm−1 with a resolution of 2 cm−1.
An X-ray diffraction (XRD) analysis was carried out using a
PANalytical Empyrean X-ray diffractometer with cobalt (Co) Ka
radiation (l = 1·789010 Å) at 45 kV and 40 mA at a range of 2q =
5–90° with a step of 0·78°/min.

The thermogravimetric analysis (TGA) of the fibres was carried
out in an argon atmosphere at a temperature range of 25–600°C
with a heating rate of 10°C/min using a TGA 1 Star System,
Mettler Toledo. Scanning electron microscopy (SEM) analyses of
the composites and fibres were obtained using a Zeiss Sigma
microscope (Carl Zeiss Ltd, Welwyn Garden City, UK). The
working distance ranged between 4 and 8 mm, the voltage applied
was 5–15 kV, and both inlens (InLens) and second electrons
(SE2) modes were used to obtain images. The samples (the wheat
straw or the fracture surface of the composites after the tensile
tests) were mounted on the SEM sample holders using carbon
tape, and silver paint was applied to reduce the charging of the
samples, followed by double coating with gold using an Agar
Auto Sputter Coater (Stanstead, UK).

The tensile strength and the modulus were determined using dog
bone-shaped samples on an Instron test machine with a ramp rate
of 2 mm/min, at a room temperature of 21°C and a relative
humidity of 40%. Eight to ten samples were tested for each
composite, and the standard deviation was calculated. One-way
analysis of variance was regarded as sufficient; one off repetition
was carried out in order to verify the trend. A Tritec 2000 DMA
(Dynamic Mechanical Analyzer) was used for the dynamic
mechanical thermal analysis (DMTA) experiments. The testing was
performed on a single cantilever arrangement with a frequency of
1 Hz to a displacement of 0·05 mm with a 2°C/min heat rate over a
temperature span from −100 to 250°C. For the DMTA analysis,
the samples were prepared in compliance with EN ISO 6721-137

with a rectangular geometry of 17·5 × 5 × 2 mm.
3. Results

3.1 Study of the changes in wheat straw fibres
induced by the solid-state fermentation with
chicken manure

The degradation of biomass with chicken manure, followed by
the aqueous extraction, was taken as an example of a cheap and
simple biotechnological process for the production of useful
 [ LOUGHBOROUGH UNIVERSITY] on [13/04/16]. Copyright © ICE Publish
compounds out of lignocellulosic feedstock. The UV-Vis analysis
showed that the aqueous extract from the DWS contains 25·8 and
7·6 mg/gdw straw of sugars and phenols respectively. The sugars
could be further used for the production of alcohols, acids or
biogas, whereas the phenolic compounds could include valuable
derivatives of p-hydroxyphenyl (H), guaiacyl (G) and syringyl
(S) lignols, the key compounds of which have been previously
identified as vanillin, coumaric acid, 5-methoxy proto-catehuic
acid, syringyl alcohol and ferulic acid.38

The remaining wheat straw was used as reinforcement for
the composites. In order to study the changes in the chemical
composition of the surface of the straw, which will eventually
influence the interaction of the matrix with the fibres, FTIR, XRD
and TGA analyses of both degraded and non-degraded WS fibres
were carried out.

The interpretation of the FTIR spectra of lignocellulose is
hampered by the high similarities in the FTIR spectra of lignin,
cellulose and hemicellulose which contain the same functional
groups.39,40 For example, a high-intensity peak at around
3300 cm−1 could be attributed to O–H stretching in the hydroxyl
groups in lignin, hemicellulose or cellulose and is therefore
not suitable for monitoring the changes in lignin content only.
Nevertheless, some changes in the FTIR spectra of the straw
before and after the degradation/extraction process can be
observed in Figure 2, where a differential spectrum was also
presented in order to better visualise the changes in the peak
intensities. The degradation of the straw causes a reduction in the
peak size at 1606, 1514 and 1422 cm−1, which corresponds to
vibrations in aromatic rings, which are present only in lignin.41,42

The difference at 1422 cm−1 can also be attributed to the
methylene (CH2) scissoring motions in cellulose.43 The reduction
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Figure 2. FTIR spectra of the wheat straw before and after solid-state

degradation with chicken manure at 65°C for 6 weeks and following

aqueous extraction
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in the following peak intensities was observed: 1462 cm−1

(aromatic methyl vibrations) and 1233 (aromatic C–O stretching)
in lignin, 1641 cm−1 (H–O–H bending in absorbed water) and
1553 cm−1 (carboxylate), which all are attributed to lignin.42,44

The peaks at 897 (characteristic of b-glycosidic linkages between
sugar units), 1025 and 1156 cm−1 represent C–O–C pyranose
ring skeletal and C–O stretching and deformation in cellulose
and hemicelluloses.45,46 They decreased in intensity after the
degradation/extraction process suggesting lowers the cellulose/
hemicellulose content in the treated fibres. The peak at 1734 cm−1

is usually attributed to the C=O bond in the acetyl and uronic
ester groups of the hemicellulose, but it could be also of the C=O
linkage of the ferulic and p-coumaric acids of lignin and/or
hemicelluloses.40,47 The intensity of this peak decreases after
degradation pointing towards a lower content of lignin and
hemicellulose in DWS fibres. Thus, the lower intensities of the
peaks attributed to lignin and hemicellulose in degraded/extracted
straw compared to that in non-degraded suggest a reduction in
lignin and hemicellulose contents. There is also some evidence
that cellulose may have been partially degraded.

Lignin and hemicellulose are amorphous; however, the
crystallinity of cellulose, which influences the fibres strength,
could be monitored by an XRD analysis.48 The crystallinity index
(CrI) for the fibres was evaluated according to the following
equation48

CrI ¼ ½100� ðI200 − I amÞ�=I2001.

where Iam is the intensity above baseline at 2q = 21°
corresponding to amorphous cellulose (for cobalt Ka or 18° for
copper (Cu) Ka) and I200 is the maximum intensity for the peak
4
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of (200) crystalline plane (2q = 22·5° for copper Ka or 26° for
cobalt Ka).

The XRD spectra of the wheat straw before and after degradation
(Figure 3) show a sharp peak at 2q = 26°, a broad peak at 2q =
19 and a small peak at 2q = 41°, which can be attributed to the
crystallographic planes (200), (1-10) and (110) and (004) of
crystalline cellulose I.49,50 As it can be seen, the degradation/
extraction process does not induce the structural transformation
of cellulose I (parallel orientation of chains) to cellulose II (anti-
parallel orientation of chains), unlike the mercerisation process
for example,51 suggesting that the fermentation of the biomass
appears to be a mild pre-treatment technique. The estimated
crystallinity index changes from 68% for non-degraded straw to
75% for degraded/extracted straw. This could be a result of a
reduction in the amorphous fraction of cellulose, which is more
susceptible to degradation compared to crystalline regions.
With a higher crystalline fraction of cellulose, one might expect
better mechanical properties of the fibres due to the higher rigidity
of the crystalline regions compared to disordered amorphous
regions.

The higher crystallinity of cellulose in the treated wheat
straw could also improve the thermal stability of the fibres,52,53

which was confirmed by TGA analysis. Indeed, differential
thermogravimetric curves (Figure 3) showed that an intense peak,
attributed to cellulose degradation,54,55 shifts from 322°C for non-
degraded straw towards 353°C for DWS. Because of the higher
degradation temperature for cellulose, a shoulder peak at 285°C
on the graph for DWS, which is attributed to hemicellulose,
appears to be more profound compared to that for the non-
degraded WS. Also, the weight of the residue after the thermal
decomposition reduced from 37% to 31% of the initial weight for
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the treated fibres compared to for the non-treated ones. Thus,
fermentation and consecutive aqueous extraction removed some
salts and silicates present in the straw. A peak-fitting procedure
allows an observation of a low-intensity peak at around 375°C
corresponding to the degradation of lignin, which reduced in area
for treated fibres compared to non-treated fibres.

3.2 Composite preparation and tensile strength testing
Prior to the preparation of the composites, the fibres were dried,
milled and sieved, and the particles with a size <250 mm were
used. This reduced the variation in the composite properties due
to the large variation in particle size. The wheat straw dispersed
well in the hydrophobic epoxy/hardener mixture, despite concerns
about potential problems with the hydrophilic nature of the
feedstock. As the filler loading was increased in the composite
(>5%), the viscosity of the mixture increased which meant that
the removal of air bubbles became problematic. This could be
 [ LOUGHBOROUGH UNIVERSITY] on [13/04/16]. Copyright © ICE Publish
overcome by using techniques such as vacuum-assisted resin
transfer moulding.

Figure 4 shows the original stress-strain curves obtained for the
neat epoxy, epoxy with 1 and 5% of DWS powder and non-
degraded WS powder, whereas all the data are summarised in
Table 1. Overall, the reinforced composites showed the same
stress-strain behaviour as the initial epoxy resin, where elastic
deformation is followed by plastic deformation and fracture. The
wheat straw/epoxy composite has a strain at break (3–5%) close
to the one of the virgin epoxy resin (4·5%). The composite
reinforced with DWS fibres has somewhat lower strain-to-failure
properties values, showing that the DWS/epoxy samples became
more embrittled. The ultimate tensile stress is higher for both
reinforced materials (35–45MPa) compared to the neat resin
(20MPa), which proves that the resin, reinforced with the fibres,
withstands higher loading.
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composites (right)
Sample

Fibre content:

%

Young’s modulus:

MPa
ing, al
Ultimate tensile strength:
MPa
l rights reserved.
Elongation at break:
%

Neat epoxy
 0
 982 ± 99
 25·0 ± 4·0
 4·4 ± 0·5

Non-degraded WS
 1
 1555 ± 136
 33·7 ± 5·7
 4·3 ± 0·9
5
 1790 ± 119
 31·3 ± 4·2
 4·0 ± 1·2

10
 1485 ± 109
 23·3 ± 4·0
 2·6 ± 0·5

20
 1299 ± 83
 16·0 ± 0·8
 1·7 ± 0·4
DWS
 1
 1746 ± 164
 41·3 ± 4·1
 3·3 ± 0·6

5
 2002 ± 213
 38·2 ± 5·2
 3·1 ± 0·4
10
 1711 ± 69
 29·8 ± 1·3
 2·6 ± 0·3

20
 1372 ± 61
 17·1 ± 1·2
 1·7 ± 0·5
Table 1. Young’s moduli and ultimate tensile strength for the

composites with DWS and non-degraded WS fibres
5
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By comparing the Young’s moduli deduced from the above
curves (Table 1), it can be seen that at a fibre loading of only
1%, Young’s modulus increased by 50% compared to that of the
non-reinforced epoxy resin. The modulus almost doubled for a
composite with 5% wheat straw, which can be regarded as
the optimum loading for manufacturing epoxy/wheat straw
composites with improved stiffness. If the loading is increased to
10–20%, Young’s moduli decrease, although it is still higher than
for the neat epoxy matrix. At higher fibre volume fractions,
agglomeration of the fibres occurs, weak fibre–fibre interactions
become dominant over stronger fibre–matrix interactions and
therefore higher loading does not lead to higher stiffness of
the composites.

DWS fibres appeared to be a better reinforcing agent compared to
non-degraded WS, as the Young’s modulus for 1%, 5% and 10%
in DWS/epoxy are 12–15% higher compared to that in WS/epoxy.
A similar enhancement in stiffness was observed for starch-based
composites modified with chemically and mechanically treated
wheat straw fibres.47 The observed enhancement in comparison
to non-treated natural fibres suggests either better fibre–matrix
adhesion or higher strength of the treated fibres themselves due to
higher crystallinity of the cellulose; however, more investigation
is required to prove this. At higher DWS fibre content of 20%,
however, the beneficial effect of degradation on lignocellulosic
fibre mechanical properties is negated by the effects of fibre
agglomeration.

Table 1 summarises the data for the Young’s moduli and the
ultimate tensile strength for the prepared composites and the neat
epoxy resin. It can be seen that at a loading as low as 1% of fibres
in the composites, the ultimate strength increases by 35% and
65% for WS/epoxy and DWS/epoxy composites accordingly.
Overall, the addition of 1–10% of wheat straw increases the
ultimate strength compared to the unmodified epoxy resin. The
optimum loading, which provides the highest stiffness, is 5% of
the fibres, with 10% being the maximum content at which the
properties of the neat epoxy are preserved, whereas a higher
loading of 20% leads to greater brittleness of the material. This
was caused by a combined effect of both higher stiffness and
agglomeration of the fibres at their higher content in the matrix
and has been observed elsewhere.28

The damping parameter (tan d) obtained by DMTA analysis
shows the ratio of the loss to the storage moduli, and it is related
to molecular motions and phase transitions. Here again, the fibres
interact with the matrix and therefore reduce the mobility of the
polymer molecules; hence, a reduction in the damping parameter
can be observed for the composites in comparison to the pure
epoxy (Figure 5). At a low fibre content, this effect is more
profound for the DWS compared to that for the non-degraded
fibres. At higher fibre loading, the decrease in tan d can be also
attributed to the effect of the matrix dilution with the filler.56 A
small change (1–5°C) in the glass transition temperature for the
composites compared to the neat epoxy resin (Tg = 55°C) also
6
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confirms that curing/cross-linking was not significantly affected
by the addition of the fibres even at high loadings.

Studies of the fracture surfaces of the composites under a SEM
microscope showed brittle failure with broad smooth islands of
the epoxy matrix (Figure 6). It can be observed (also on the fibres
before compounding) that the DWS has a rougher surface and
therefore higher surface area compared to non-degraded straw
(the surface of which looks smooth and undamaged). Also,
the degraded fibres look damaged and more disintegrated in
comparison to non-treated fibres. Thus, the SEM analysis proves
that the degradation process changes the surface of the straw
fibres. Larger pores and deeper grooves were also observed on the
surface of rice straw that underwent biodegradation for long
periods of time (28 d).45 Some changes in corn stover and
soybean straw morphology, such as erosion of the surface and
appearance of numerous cavities and cracks, were also reported
after a hot water treatment combined with fungal degradation.57

The overall fibre–matrix interaction, however, is not strong enough
to yield a clean break on the surface. Indeed, the fibres pull out,
and a visible void between the fibres and the matrix could be
observed for both DWS and non-degraded WS fibres (Figure 6).

In comparison to man-made carbon fibres, natural fibres are
known to exhibit non-homogeneous strength distribution due
to the numerous intrinsic defects in the form, the shape and
the structure of the fibres.19,58 This non-homogeneity increases
after the mechanical treatment of fibres, worsening their total
reinforcing properties.58 In this work, the opposite effect was
observed – the DWS fibres appeared to have better reinforcing
properties compared to the non-degraded fibres. This can be
attributed to the changes in both the chemical composition and
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the surface structure of the degraded lignocellulosic fibres
providing better fibre–matrix adhesion. The degradation process
worked as a mild pre-treatment of biomass, which led to the
decrease in lignin, hemicellulose and amorphous cellulose
content, leaving the crystalline cellulose fibres mainly intact.
It is known that lignin and hemicellulose polymers randomly
cover and cement together the cellulose fibrils. Therefore, their
degradation will lead not only to fibrillation, but also to higher
thermal stability and better intrinsic structural properties of the
degraded biomass due to higher regularity and higher content of
cellulose crystals. Higher overall crystallinity (because of the
higher content of cellulose and lower content of lignin obtained as
the result of fibres treatment) was previously reported to increase
the mechanical strength of the natural fibres.47,58

Higher disintegration and surface area provide better load sharing
capability and stress dispersion between the matrix and the fibre
and, with good fibre–matrix interaction, result in better mechanical
properties. Therefore, the higher surface area and the irregularity of
the degraded fibres provided somewhat better interaction between
the fibres with the resin matrix in comparison to that of the non-
degraded fibres. Compositional changes were accompanied by
morphological changes of the surface and the structure of the
natural fibres during the degradation and extraction processes. The
higher surface roughness and the lower surface uniformity and
homogeneity were observed after the degradation and extraction
processes. The same changes in surface morphology were reported
for mechanically treated wheat straw fibres.58 A better interaction
between the polymeric matrix and the rough surface would
eventually lead to better mechanical properties of the obtained
 [ LOUGHBOROUGH UNIVERSITY] on [13/04/16]. Copyright © ICE Publish
composites. It is worth noting that the main problem of variation
in biomass properties due to varying environmental conditions
of growth44 could be potentially overcome by biocatalytic
degradation, after which, one would expect more uniform
properties within different batches of the same type of biomass.

4. Conclusion
In this work, wheat straw fibres were pre-treated by way of a
solid state fermentation with chicken manure as a biocatalyst.
Solid-state fermentation is advantageous compared to a traditional
aqueous fermentation in a stirred tank reactor because it demands
less energy (no mixing, quite low temperature), capital and
consumables costs (no need for a reactor; chicken manure
provides both nitrogen source and biocatalyst), and it can also be
easily adopted by local producers of agricultural wastes. Various
lignocellulose degradation products, such as sugars and phenolics,
could be recovered by a simple aqueous extraction following the
degradation stage. The aqueous solution of the products is the
main intermediate stream product in bioenergy processing in
which biomass is used as a feedstock to produce targeted aromatic
compounds (from lignin), C5 (from hemicellulose) and C6 sugars
(from glucose mainly).

The remaining biomass can be easily turned into a source of
reinforcing fibres and used in composite manufacturing. In this
work, composites were made out of SuperSap epoxy resin
reinforced with DWS and non-degraded WS by a simple and
low energy curing process and proved that the composites
with degraded natural fibres have better mechanical properties
compared to non-degraded biomass. Currently, a further study on
(a)

(c) (d)

(b)

20 μm 20 μm

20 μm 20 μm

Air
bubble
Figure 6. In the lens, the SEM images of the fracture surface for the

(a) non-degraded WS and (b) DWS fibres in the epoxy resin after a

tensile break (5% fibres content). In the lens, the images of the fibre

pull out for (c) non-degraded and (d) degraded fibres
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how the pre-treatment influences the reinforcing properties of the
wheat straw fibres and how their properties are comparable to
other types of fibres, such as cellulose and carbon, is under way,
and the outcomes will be published soon.

Thus, it has been shown that the waste biomass remaining after
fermentation has great potential to be used as reinforcement for
the production of sustainable composites. It is suggested that the
degradation process, followed by aqueous extraction, can be
regarded as a mild pre-treatment method. It induces morphological
changes on the surface of the fibres and reduces the content of
lignin, amorphous cellulose and hemicellulose. This has led to
better reinforcing properties of the DWS fibres compared to the
non-degraded variants. With the growing interest in procuring
valuable chemicals from lignocellulosic feedstock by way of
bacterial or fungal degradation, the proposed utilisation of the
remaining biomass in the manufacturing of reinforced composites
will bring significant environmental and economical benefits.
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