
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Original citation: 
Doraiswamy, Harish, Ferreira, Nivan, Damoulas, T., Freire, Juliana and Silva, Claudio T.. 
(2014) Using topological analysis to support event-guided exploration in urban data. IEEE 
Transactions on Visualization and Computer Graphics, 20 (12). pp. 2634-2643. 
Permanent WRAP URL: 
http://wrap.warwick.ac.uk/78543             
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for profit 
purposes without prior permission or charge.  Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
“© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting 
/republishing this material for advertising or promotional purposes, creating new collective 
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component 
of this work in other works.” 
 
A note on versions: 
The version presented here may differ from the published version or, version of record, if 
you wish to cite this item you are advised to consult the publisher’s version.  Please see the 
‘permanent WRAP URLl’ above for details on accessing the published version and note that 
access may require a subscription. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/78543
mailto:wrap@warwick.ac.uk


Using Topological Analysis to Support
Event-Guided Exploration in Urban Data

Harish Doraiswamy Member, IEEE, Nivan Ferreira Student Member, IEEE, Theodoros Damoulas,
Juliana Freire Member, IEEE and Cláudio T. Silva Fellow, IEEE

Fig. 1. Overview of the event guided exploration technique. First, (1) the input data is transformed into a time-varying scalar function.
(2) Topological features are computed from the scalar functions to identify the set of events. (3) An event group index is then created
from the identified events to support efficient querying over a large number of events. (4) A visual interface guides the user towards
interesting events (5) in the data, allowing them to select an event and (6) interactively search for similar events.

Abstract— The explosion in the volume of data about urban environments has opened up opportunities to inform both policy and
administration and thereby help governments improve the lives of their citizens, increase the efficiency of public services, and reduce
the environmental harms of development. However, cities are complex systems and exploring the data they generate is challenging.
The interaction between the various components in a city creates complex dynamics where interesting facts occur at multiple scales,
requiring users to inspect a large number of data slices over time and space. Manual exploration of these slices is ineffective, time
consuming, and in many cases impractical. In this paper, we propose a technique that supports event-guided exploration of large,
spatio-temporal urban data. We model the data as time-varying scalar functions and use computational topology to automatically
identify events in different data slices. To handle a potentially large number of events, we develop an algorithm to group and index
them, thus allowing users to interactively explore and query event patterns on the fly. A visual exploration interface helps guide users
towards data slices that display interesting events and trends. We demonstrate the effectiveness of our technique on two different
data sets from New York City (NYC): data about taxi trips and subway service. We also report on the feedback we received from
analysts at different NYC agencies.

Index Terms—Computational topology, event detection, spatio-temporal index, urban data, visual exploration.

1 INTRODUCTION

Recent technological innovations have enabled the collection of enor-
mous amounts of data pertaining to cities, from conventional sen-
sors, such as power consumption [30] and noise [56], to more “un-
conventional” means of capturing city dynamics such GPS in vehi-

• H. Doraiswamy, N. Ferreira, T. Damoulas, J. Freire, and C. Silva are with
New York University E-mail:
{harishd,nivan.ferreira,damoulas,juliana.freire,csilva}@nyu.edu.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of
publication xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

cles [5, 22, 54], mobile devices [26], and social media [12, 29]. Cities
all over the world are not only collecting these data, but they are also
making the data available (see e.g., [43, 44, 45]). If properly analyzed,
urban data can take us beyond today’s imperfect and often anecdotal
understanding of cities to enable better operations, informed planning,
and improved policy. These data are also a rich source for social sci-
entists who aim to better understand cities and their populations.

However, there are many challenges involved in enabling the effec-
tive analysis of urban data. They stem not only from the volume of
data, but also from the inherent spatio-temporal complexity of the un-
derlying processes in a city. The usual approach to analyze this kind of
data is to use different types of aggregation and produce visual sum-
maries [2, 35]. These lead to a trade-off between the level of aggrega-



Fig. 2. It is difficult to identify short irregular patterns when the data is
aggregated over either space or time. (a) A heatmap of taxi locations in
Manhattan on 1 May 2011 between 8 am and 9 am. Note that the path
of the bike tour contains no taxis. (b) The time series plots compare the
number of trips that occurred in Manhattan on three Sundays in 2011:
24 April, 1 May, 8 May. It is difficult to distinguish between the three
Sundays using just the number of trips, even though an entire stretch of
streets are blocked to traffic on May 1st. (c) The trips are aggregated
over time and displayed as a heat map for the three Sundays. Note that
the path of the bike tour (highlighted) looks similar in all the heat maps.

tion and the number of data slices to be explored. The use of a coarse
(spatial or temporal) aggregation reduces the number of data slices,
but it may result in loss of information. Consider the example illus-
trated in Fig. 2(a), which shows a heatmap of pickups and drop-offs
of yellow taxi cabs in New York City on Sunday 1 May 2011 between
8 and 9 am. Note that there are no taxi pickups and drop-offs along
6th avenue. This avenue was closed to traffic at this time for the an-
nual NYC 5 Boro Bike Tour. However, as shown in Figures 2(b) and
(c), a coarse level of aggregation makes it difficult to identify small
or local events. While a finer level of aggregation would avoid these
problems, it requires the exploration of a large number of data slices.
This problem is more prominent in an urban environment, where im-
portant patterns/events can happen at multiple scales [14, 22]. Manual
(exhaustive) exploration in such cases is not only time consuming, but
for large data sets, it becomes impractical. For example, temporal ag-
gregation of a year’s worth of data into a discrete set of hourly intervals
results in over 8000 data slices to be explored per year.

In recent years, techniques and systems have been proposed that at-
tempt to streamline and better support exploratory analyses of spatio-
temporal data. These include sophisticated visualization and interac-
tion techniques that allow users to freely explore the data at various
levels of aggregation [3, 14, 22, 51, 54]. However, effective interaction
with spatio-temporal visualizations remains a challenge [25, 49] and
even using these techniques domain experts may still need to exam-
ine a prohibitively large number of spatio-temporal slices to discover
interesting patterns that represent both regular and irregular behavior.
Contributions. As a step towards addressing this challenge, we pro-
pose an efficient and scalable technique that automatically discovers
events and guides users towards potentially interesting data slices.
Event detection is accomplished through the application of topolog-
ical analysis on a time-varying scalar function derived from the urban
data. We use the minima and maxima of a given function to represent
the events in the data. Intuitively, a minimum (maximum) captures a
feature corresponding to a valley (peak) of the data. For example, the
lack of taxis along 6th avenue during the bike tour event forms a local
minimum and is therefore captured using our technique. The use of

topology also allows for events having an arbitrary spatial structure.
In order to support a potentially large number of events, we design
an indexing scheme that groups similar patterns across time slices,
thereby allowing for identification of not only periodic events (hourly,
daily, and weekly events), but also of events with varying frequency
(regular and irregular). Thus, unlike previous approaches that impose
a rigid definition of what constitutes an event [5], our technique is
flexible and able to capture a wide range of spatio-temporal events.
The index further allows users to efficiently search for occurrences of
similar patterns. Compared to techniques based on statistical analysis
that support different kinds of events, our approach is computationally
efficient and scales to large data sets. We also describe a visual in-
terface designed to aid in event-guided exploration of urban data that
integrates the event detection and indexing techniques. The interface
allows users to interactively query and visualize interesting patterns in
the data. Finally, we show the effectiveness of our approach on two
urban data sets: information about taxi trips, collected by the NYC
Taxi & Limousine Commission (TLC), and subway service, published
by the Metropolitan Transit Authority (MTA). We presented results of
preliminary analyses to experts at both the TLC and MTA. While they
offered insights for some of the events we found, they were surprised
by others which indicated potential problems they had to investigate
(see Section 7). This initial feedback suggests our technique is ef-
fective and has the potential to help in exploratory analyses of large,
spatio-temporal urban data.

2 RELATED WORK

The problem of event detection in the context of spatio-temporal data
has been recognized and addressed in previous works. We discuss
approaches to event detection in three categories: those that use com-
putational topology for feature tracking, those related to visual ana-
lytics, and techniques for event detection from statistics and machine
learning. Note that there is no universal definition of an event [5]. It
is thus difficult to quantitatively compare different techniques. Here,
we present a qualitative comparison where we consider flexibility to
support different event types, efficiency, and scalability.
Computational topology. Computational topology has been used to
identify and track features of spatio-temporal data. Laney et al. [34]
and Bremer et al. [8] used the Morse decomposition of a scalar field to
identify features of the input and track these features across time using
geometric properties of the features. Pascucci et al. [48] identified fea-
tures, which correspond to burning cells during turbulent combustion,
using merge trees and tracked them by computing the overlap of the
features. Widanagamaachchi et al. [55] extended this technique and
designed a framework to explore time-varying data. Kasten et al. [31]
mapped critical points of the input scalar function across time steps
and created a merge graph that is used to track unsteady flow fields.
Doraiswamy et al. [17] identified cloud systems in each time step us-
ing the join and split tree, and tracked them across time using opti-
cal flow. These methods are only interested in movement of features
across consecutive time steps, which is accomplished by looking at
adjacent time-slices. Such tracking cannot be applied to our problem,
since we need to identify features that have similar behavior but are
spread across non-adjacent time slices.
Visual Analytics for Spatio-Temporal Data. Scholz et al. [50] pro-
posed a technique to analyze hotspots using taxi data in San Francisco.
They pre-defined regions of interest, modeled the taxi activity in each
census tract in these regions, and used the model to predict the life
cycle of hotspots. By pre-defining regions of interest and using arti-
ficial boundaries such as census tracts, this approach is likely to miss
events which are of arbitrary shapes and happen at different granulari-
ties (see Fig. 2). Maciejewski et al. [37] used kernel density estimation
to model hotspots in spatial distributions along with time series analy-
sis to detect anomalous hotspots. Andrienko et al. [3, 4, 5, 6] proposed
visual analytics procedures to determine places of interest based on
high-frequency events that also have high density of occurrence. The
user first applies a set of filters to define features of potentially inter-
esting events. Then, the points with those features are clustered to find
interesting recurring locations. Unlike these techniques, which have a



(a) (b) (c) (d) (e)
Fig. 3. Topology of scalar functions. (a) The height function f defined on a graph. The super-level set at f1 is the set of all points above the
highlighted plane and consists of two components (colored red). (b) Join tree of f . (c) The features of the input are defined based on the edges of
the join tree. The labeled peaks denote the set of maxima. The features are colored the same as the corresponding edges in (b). πi denotes the
persistence of maximum vi. Intuitively, the persistence of each maximum is equal to the height the corresponding peak. (d) The simplified join tree
obtained from removing the maximum v3. (e) The resulting smoothed function.

rigid definition of events (e.g., high density and recurrent occurrence),
our technique is able to capture a wide spectrum of events, both based
on density (low and high) and frequency of occurrence at different
time scales.
Statistical Event Detection in Spatio-Temporal Data. The problem
of event detection has also been studied by the statistics and machine
learning communities [28, 33, 38, 41, 42, 53]. The area is closely
related to spatial scan statistics [32] and anomaly detection [13], al-
beit exploiting the spatio-temporal nature of the domain and focus-
ing on the discovery of “interesting” contiguous regions in space and
time. Previous work examined multiple overlapping spatio-temporal
subsets of data and identified significant deviations from a baseline,
e.g., an expectation over time, via a frequentist likelihood ratio test or
a Bayesian posterior probability distribution over events [42]. How-
ever, the majority of the literature has focused on either purely spatial
data or has accounted for temporal variations and effects via simplistic
approaches such as exponentially weighted linear regression or data
partitioning based on day-of-week or season. Furthermore, the time
complexity for these approaches is exponential O(2N) in the number
of pre-defined space-time partitions, with polynomial approximations
(non-exhaustive search) available only for the frequentist hypothesis
tests that require extensive randomization [38] for p-value estimation.
In contrast, our technique allows for detection of events that can have
arbitrary spatial geometry, different time intervals, scales up with poly-
nomial time complexity of O(n2) in the number of events, and enables
user exploration of urban data sets via efficient event querying. The
latter ensures flexibility of the technique across applications and do-
mains, where users can define and query interesting events based on
prior knowledge and different spatio-temporal properties of the data.

3 BACKGROUND

The topological representation of large data sets provides an abstract
and compact global view that captures different features and leads to
enhanced and easier analysis across applications [23, 47]. In this sec-
tion, we briefly introduce concepts from computational topology that
serve as the basis of the proposed technique. Comprehensive discus-
sions on this topic can be found in [19, 27, 39].
Scalar functions. A scalar function maps points in a spatial domain
to real values. The spatial domain of interest in this work is a graph
G representing a particular aspect of an urban environment like the
road network. The scalar function is represented using the graph G,
together with a piecewise linear (PL) function f : G→R. The function
is defined on the vertices of the graph and linearly interpolated within
each edge. Fig. 3(a) shows an example of a scalar function defined on
a graph representing a terrain. The function value at each point on this
graph is equal to the point’s y-coordinate. A super-level set of a real
value a is defined as the pre-image of the interval [a,+∞), the set of
all points having function value greater than or equal to a. Similarly,
the sub-level set of a is the pre-image of the interval (−∞,a]. Fig. 3(a)
highlights the super-level set at function value f1.
Critical points. The critical points of a smooth real-valued function
are exactly where the gradient becomes zero. Points that are not crit-
ical are regular. We are interested in the evolution of super-level sets

(sub-level sets) against decreasing (increasing) function value. Topo-
logical changes occur at critical points, whereas topology of the super-
level set (sub-level set) is preserved across regular points [39].

The critical points of a PL function are always located at vertices
of the mesh [7, 20]. Consider a sweep of the function f in decreasing
order of function value. The nature of topological change to the super-
level sets of f when the sweep passes a vertex determines the type of
that vertex. A new super-level set component is created at a maximum,
while two super-level set components merge into one at a join saddle.
Similarly, during the sweep of the input in increasing order of function
value, a new sub-level set component is created at a minimum, while
two sub-level set components merge into one at a split saddle. The
scalar function shown in Fig. 3(a) has 4 maxima (see Fig. 3(c)).

Different types of critical points of a scalar function capture dif-
ferent types of features. In particular, a maximum captures a peak
of the function, where the function value is higher than its neighbor-
hood. Similarly, a minimum captures a valley of the function. The set
of peaks and valleys are the natural features of a given function, and
are therefore of interest in this work. We use the set of minima and
maxima to represent features (events) of the given data.
Topological persistence. Consider the sweep of the input function
f in decreasing order of function value. As mentioned above, the
topology of the super-level sets change when this sweep encounters
a critical point. A critical point is called a creator if a new compo-
nent is created, and a destroyer otherwise. It turns out that one can
pair up each creator vc uniquely with a destroyer vd that destroys the
component created at vc. The persistence value of vc is defined as
πc = f (vc)− f (vd), which is intuitively the lifetime of the feature cre-
ated at vc, and is thus a measure of the importance of vc. The tra-
ditional persistence of the global maximum is equal to ∞ since there
is no pairing destroyer for that maximum. In this paper, we use the
notion of extended persistence [1] which pairs the global maximum
with the global minimum. For the height function shown in Fig. 3(a),
the persistence of each feature corresponds to the height of the corre-
sponding peak, highlighted in Fig. 3(c). Given an input domain of size
n, the persistence of the set of minima and maxima can be computed
efficiently in O(n logn) time [18, 21].
Join tree and split tree. The join tree and split tree abstracts the topol-
ogy of a scalar function f , and are useful for extracting and represent-
ing features of f (the regions corresponding to maxima and minima).
The join tree tracks the changes in the connectivity of super-level sets
of an input function f with decreasing function value. Fig. 3(b) shows
the join tree corresponding to the function shown in Fig. 3(a). The
split tree of f is defined similarly, and tracks the connectivity of the
sub-level sets of f with increasing function value. Nodes of the join
tree and split tree correspond to the set of critical points of f .

Regular points are often inserted into the join/split tree as degree-2
nodes to obtain an augmented join tree/augmented split tree. We use
the subgraph of the input mesh induced by the regular vertices that are
part of an edge in the augmented join/split tree to represent the feature
corresponding to the maximum/minimum. The colors of the different
features of the function in Fig. 3(c) correspond to the colors of the
edges of the join tree shown in Fig. 3(b). Optimal algorithms exists to
compute join and split trees of a PL function [10, 15, 36, 46].



Simplification. The input is often simplified to remove noise. This
is accomplished by removing low persistent features. The join and
split trees provide an efficient mechanism to perform this simplifi-
cation [11]. Removing an edge in the join/split tree corresponds to
smoothing the corresponding region of the function. For example,
consider the feature represented by v3 in Fig. 3 which has low persis-
tence. Simplifying this feature corresponds to smoothing the function
in order to remove the maximum v3. The simplified join tree is shown
in Fig. 3(d), while function resulting from this simplification is illus-
trated in Fig. 3(e). Features can also be simplified based on geometric
measures like hyper-volume [11].

4 URBAN DATA AND SCALAR FUNCTIONS

We model urban data as a time-varying scalar function f defined on
a graph G, where the temporal dimension is represented as a set of
discrete time steps. In this section, we describe two urban data sets
that we use in the paper and the scalar functions derived from them.

4.1 NYC Taxi Data

The taxi data set gathered by the TLC is composed of historical data of
taxi trips in NYC. Each trip consists of pickup and drop-off locations
and times, along with other relevant data such as the fare and tip. There
are on average 500 thousand trips each day. In our experiments, we use
the taxi data for trips that took place in Manhattan during 2011 and
2012. The data set is first divided into a set of hourly intervals. Note
that this time interval is not fixed, and can be changed depending on the
application. Manhattan is represented using the graph corresponding
to its road network. Each node of this graph represents an intersection
of two or more streets, and each edge corresponds to a street segment.

Analysts at the TLC and at the Department of Transportation (DoT)
are interested in identifying traffic-related events that have led to road
closures as well as taxi hot spots (see Section 7.1). To capture these
events, we define the scalar function for an hourly interval at each node
of this graph as the density of taxis within a small circular region sur-
rounding the corresponding location. The radius of the circular region
is approximately equal to half the distance between two avenues in
Manhattan. The density is then computed as the Gaussian weighted
sum of the trips within this neighborhood, where the weights corre-
spond to the trip’s distance from the node. This ensures that trips closer
to a node have a higher contribution to the density compared to a trip
that is farther away. Recall that the set of minima and maxima are used
to represent events in the data. Given a single time step, a minimum
of the above function represents a region where the density of taxis is
lower than its local neighborhood, implying a relative scarcity of taxis
in that region. Similarly, a maximum represents a region where the
density of taxis is higher than that of its local neighborhood, implying
a relatively high concentration of taxis.

Such a density function can also be used on many other urban data
sets such as twitter feeds [52] and GPS traces from mobile devices [26]
which have a representation similar to that of the taxi data.

4.2 MTA Subway Data

The MTA provides real-time information for the numbered lines of the
NYC subway system [40]. These data consist of the time stamps of all
the stops for all the trips that happen each day. Engineers at MTA are
interested in analyzing data from these feeds to improve operations
and scheduling of the subway system. In particular, they are interested
in delays in the schedule of the different trains. In order to capture this
for a given train, we compute the scalar function at each station as the
average delay of the train at that station. The delay at a station for a
given train is the difference between the time the train was scheduled
to arrive and the actual time at which it arrived. The underlying graph
used to define the scalar function is essentially a simple path repre-
senting the route of the train. The nodes of this path corresponds to
the different stations along its route. As with the previous data set, the
temporal dimension is divided into a set of hourly intervals. The above
scalar function is computed for each of the train lines.

Fig. 4. Identifying minima events. Left: The scalar function correspond-
ing to the time step 10 am-11 am on 24 November 2011 is shown using
a heat map. Right: The set of minima events identified using the split
tree. Each connected component of the colored subgraph corresponds
to an event. The event corresponding to Macy’s Parade is highlighted.

5 IDENTIFYING AND MANAGING EVENTS

Our framework consists of two main steps. First, a set of potential
events is computed from the input scalar function – these constitute
all features from each time step of f . Then, similar single time-step
events are grouped and an index is built that supports efficient queries
over a possibly large number of events. The process is illustrated in
Fig. 1 and the details are presented below. We use the NYC taxi data
as a running example to illustrate our technique.

5.1 Computing Events

First, the split tree of the scalar function f is computed. The set of
minima and the regions corresponding to them constitute the set of
minima events. Since we are mainly interested in the set of “sig-
nificant” events, simplification of the split tree is performed to prune
uninteresting (noisy) minima. We use a small threshold (close to zero)
during this simplification process. While persistence captures the im-
portance of a feature only in terms of the scalar function, for the taxi
data, we are also interested in capturing the geometric size of a fea-
ture. We therefore use hyper-volume as the importance measure. The
hyper-volume [11] of a topological feature is defined as the integral of
the input scalar function over the corresponding region. This allows
features that occupy a large area but have low persistence (depth) to
also be considered important. Thus, this simplification retains “deep
valleys” as well as “shallow, but large” valleys. Note that using per-
sistence instead of hyper-volume could potentially remove the large
shallow valleys during the simplification process. The top-k from the
set of minima that remain after simplification and their corresponding
regions constitute the set of minima events. Here, k is a user defined
parameter. In our experiments, we found that setting k = 50 provides
a good threshold that is large enough to ensure no significant event
is lost. Fig. 4 shows the scalar function and the associated set of min-
ima events identified for the time step 10-11am on 24 November 2011.
This was one of the time steps during which the Macy’s Thanksgiving
Parade (highlighted in the figure) occurred. The set of maxima events
are computed similarly using the join tree of the scalar function.

5.2 Event Group Index

Each of the events computed in the previous stage corresponds to a
single time step. Multiple such events can be part of a larger macro
event that spans multiple time steps. For example, the Macy’s Parade
consisted of a set of events that spanned several hours when the roads
were blocked for the parade. To group such events, we first define a
notion of similarity between events based on their geometric and topo-
logical properties. Similar events within a user-defined time interval
are then grouped together to obtain the set of event groups. There can



potentially be a large number of event groups across different time in-
tervals. To support efficient search over event groups, we define a key
that is used to index these groups.
5.2.1 Similarity Between Events
An event E is formally represented as a pair (R,τ), where R is a sub-
graph of G denoting the spatial region of E, and τ is a real number
that represents the topological importance of E. τ is the same measure
that is used to simplify the join and split trees in the previous step,
which for the taxi data is the hyper-volume of E. Consider two events
E1(R1,τ1) and E2(R2,τ2). We use the graph distance metric [9], δ , to
measure the geometric similarity between R1 and R2:

δ (E1,E2) = 1− |R1
⋂

R2|
max(|R1|, |R2|)

,

where R1
⋂

R2 denotes the maximum common subgraph between R1
and R2, and |R| denotes the number of nodes in R. The topological
similarity between two events is defined as:

T (E1,E2) = |τ1− τ2|

The geometric similarity measures the amount of overlap between two
regions, ensuring that similar regions have a significant overlap. The
topological similarity on the other hand ensures that the two events are
topologically close with respect to the topological importance mea-
sure used. Two events E1 and E2 are similar if δ (E1,E2) ≤ εδ and
T (E1,E2)≤ ετ , where, εδ and ετ are user-defined thresholds.

5.2.2 Event Group and Event Group Key
An event group comprises a set of similar events that occur within a
given time interval. A brute-force approach to compute event groups
from a set of n events would require the computation of similarity
between all pairs of events (

(n
2
)

comparisons). For example, even con-
sidering 50 events per hourly time step results in a total of 1200 events
per day. Since urban data sets typically contain data for multiple years,
computing similarity between all event pairs is not practical.

To avoid a combinatorial explosion, we propose to group events for
fixed time intervals. In this paper, we use a time period equal to one
month. We choose this time interval since it provides a good trade-off
between efficiency and number of events: there is a sufficient number
of events so as to not to miss periodic events, but the number of events
in this interval is small enough and does not create a computational
bottleneck. Moreover, a time frame of a month provides a natural and
easily understandable abstraction for the user to explore event groups.

Given an event group Σ = {E1,E2, . . . ,Ek}, we define the event
group key of Σ as (RΣ,τΣ), where

RΣ =
⋂

i∈[1,k]
Ri and τΣ =

k

∑
i=1

τi/k

The above definition of the event group key follows directly from the
definition of geometric and topological similarity measures. RΣ is the
maximum common subgraph of the geometric regions of all the events
in Σ. Since the events in Σ are similar, we can conclude that there
is considerable overlap among them due to the similarity condition.
Thus, RΣ provides a good representation for the region where events
in Σ occur. τΣ captures the topological importance of the Σ as the
average of the topological importance of the events in Σ. The definition
of event group key also helps in using a consistent definition for the
similarity between event groups. Two event groups are similar if their
keys satisfy the similarity constraints described earlier.

5.2.3 Computing Event Groups
Even when restricting the events to be within a time interval, com-
parison between all pairs of events is a costly operation. To decrease
the number of such comparisons, we relax the condition of similarity
between two events: two events are similar if their event groups are
similar. Using the relaxed condition, event groups for each time in-
terval are computed as follows. Initially, each event is its own group.
The algorithm iterates through the set of event groups to identify sim-
ilar group pairs. Events are processed in increasing order of their time

Fig. 5. Event group index. The event group key of an event group corre-
sponding to Macy’s Parade. The black nodes and edges correspond to
the maximum common subgraph of regions of all the events in the event
group, and is used to represent the region of the event group.

step. When two similar event groups are found, they are merged into a
single group. The algorithm continues until no event groups are simi-
lar. Fig. 5 shows an event group corresponding to the Macy’s Thanks-
giving Parade along with its event group key.

The quadratic number of comparisons to be performed among the
events present in a given time interval is still a computationally expen-
sive operation (approximately 650 million comparisons in the worst
case are required per month assuming 50 events per hour). However,
utilizing the spatial information of the events, it is possible to dras-
tically reduce the number of comparisons. The spatial region of the
input graph is first divided into a set of smaller subregions. An event
intersecting a subregion is assigned to that subregion. It is then suffi-
cient to group only events present in each subregion. Note that an event
can be assigned to multiple subregions. These multi-region events can
be efficiently handled by maintaining the event groups using the union-
find data structure [16].

5.2.4 Analysis

Time complexity. Let the graph G have N nodes. Computing the
join and split trees of a scalar function defined on G takes O(N logN+
Nα(N)) time [10], where α is the inverse Ackermann function. Given
n events per time interval, computing event groups for that period re-
quires O(n2) time in the worst case. However, we note that in practice
the constant associated with the above bound is small, thus allowing
for fast computation. For example, when using 50 events per hour on
the taxi data, the average number of events assigned to a subregion of
Manhattan was about 1000. Manhattan was divided into a total of 50
subregions, thus amounting to a maximum of 25 million comparisons
as opposed to 650 million that is required by a brute-force technique.
Scalability. The set of event groups along with the corresponding keys
are stored separately on disk for each time interval. As and when data
is obtained for newer time steps, it is easy to update the event group in-
dex. Computing the scalar function followed by identifying the events
is independent for each time step. If the newer events correspond to
an already existing time interval, then they are grouped into the event
groups of that interval. If the time interval does not exist, then a new
set of event groups are formed for this time interval.

5.3 Querying Events

Once an event is discovered, it is often useful to identify similar events
that may have occurred at different times. Manual search is impracti-
cal due to the large number of data slices. For example, consider a case
where a particular road block had unintended effects on the traffic in
Manhattan. Experts at the DoT are interested in identifying how fre-
quently such road blocks occur, if they are periodic, and if they have
the same effects. This will help them design preventive measures and
improve decision making.



(a) (b) (c) (d)
Fig. 6. The visual exploration interface. (a) The time line view showing 4 event groups with different densities and ranges. In this view, event groups
are sorted according to their topological importance τ. (b) The event group distribution view where the time resolution is an hour. (c) The event
group distribution view when the time resolution is changed to a day. The daily event (purple) moves to Region I for this time resolution. (d) The
event group distribution view when the time resolution is changed to a week. The weekly event (orange) moves to Region II for this time resolution.

The event group key enables the efficient evaluation of such simi-
larity queries. Given a query consisting of a geometric pattern (a sub-
graph) together with a real value, we perform a linear search over the
set of event groups to identify the set of events similar to the given
query. Since the set of event groups for each time interval are stored
separately on disk, queries can be executed in an out-of-core manner
by sequentially loading event groups from each interval.

6 VISUAL EXPLORATION INTERFACE

In this section we describe an interactive visual exploration interface
that uses coordinated views and allows users to browse through the
data based on the detected events. Given the input data set, the event
group index is first created in a pre-processing step. The data together
with the created index is then loaded by the interface and used to sup-
port interactive exploration and querying of events in the data. The
rest of this section describes the different views and options available
in this interface for data exploration.

6.1 Map View and the Query Interface
The map view, as the name suggests, provides geographical context to
the user. For a given time step, the geometry of the different events
in that time step is visualized in the context of a map of the city of
interest (see Fig. 4). This view also allows users to select events of
interest to search for similar events.

6.2 Event Group Distribution View and Timeline View
The event detection technique can generate a large number of event
groups, many of which may be uninteresting. It is thus important to
allow users to explore the set of event groups and guide them towards
potentially interesting events. Events can be broadly classified into
two categories – recurring events and sporadic (or one-off) events. To
capture these categories, we define two attributes – range and density.
The range of an event group is defined as the amount of time between
the first and the last event in that group based on their time steps. Its
density is defined as the number of events of that group that happen
per time unit. It measures the time frequency of the events within
the group. The resolution of time determines the time unit. Our tool
supports three units – hours, days, and weeks.

A combination of these two attributes enables the classification of
an event group. We provide an event group distribution view that uses
a scatter plot to visualize the event groups, where the axes correspond
to the two attributes. Fig. 6(b) illustrates an event group distribution
view consisting of 4 event groups. As illustrated in the figure, the
different combinations of the two attribute values roughly divides the
event group distribution space into four regions:
Region I Event groups in this region have a low range, but high den-
sity. This indicates rare occurrence of such events, and can be used to
identify irregular patterns of the data. The green event group shows
one such example – it consists of events that happen over two consec-
utive hours.
Region II Event groups in this region have high range and high
density, thus implying that such events occur over frequent periods

Fig. 7. The event group distribution view for November 2011 after filter-
ing. Note that the event group corresponding to Macy’s Parade stands
out in this view, thus helping the user identify this pattern.

throughout the given time interval. Event groups in this region can be
used to identify trends in the data. The blue event group consists of
similar events that occur every hour during a 7 day period, and there-
fore has both high range as well as density.
Region III Event groups in this region consists of a small number of
events that span a large range. Such events could move to Region II at
a lower time resolution, and could potentially represent patterns that
are regular over a large time interval, but irregular with respect to the
range of the input data. The orange event group contains events that
occur over two weeks, but only for one hour per week. Note that this
event group moves to Region II (Fig. 6(d)) when the time resolution is
changed to a week.
Region IV Event groups in this region have low range as well as low
density. However, such events could move to Region I at a lower time
resolution. Fig. 6(c) shows an example where the purple event group,
having events over two days, moves from Region IV to Region I when
the time resolution is changed to a day.

As we show later in the paper, this view acts as a powerful device to
help identify many interesting patterns. Using it in conjunction with
the query interface simplifies the exploration of large data sets.

While the distribution view gives an overview of an event group, its
exact periodicity cannot be inferred accurately. This is instead accom-
plished using the timeline view which visualizes the individual events
in an event group over time (see Fig. 6(a)). This view is inspired by
the Gantt chart visualization [24] which is commonly used to represent
activities (events) over time. Event groups are represented by a hor-
izontal sequence of points, each point representing individual events.
The x-axis in this view represents time. In the timeline view, the event
groups are sorted based on their topological importance in order to
help the user in identifying significant event groups (the most impor-
tant event group is on the top). Fig. 6(a) shows the timeline view
containing the four event groups described above.

6.3 Filtering Interface

Given the possibly large number of event groups, the ability to filter
them not only helps to remove spurious events, but it also allows users
to focus on specific types of events. Our visual exploration interface



(a) (b) (c)

Fig. 8. Minima events in NYC. (a) Selecting the lone high density event group from Region I of October’s event distribution view identifies the
event corresponding to the Halloween Parade in 2011. (b) Changing the time unit to daily, and selecting high density event groups with range =
2 identifies events corresponding to Hispanic Day Parade and Columbus Day Parade that occurred on consecutive days. (c) Changing the time
unit to weekly for the month of August, and selecting high density event groups with range = 3 identifies events corresponding to the NYC Summer
streets that occurred on three consecutive Saturdays.

supports multiple property-based filters:
Event group size allows users to filter event groups based on the num-
ber of events constituting that group. The user can specify both the
maximum and minimum size using this filter. For example, if the user
is interested in patterns that happen for at least 4 hours, then minimum
size should be set to 4.
Event size allows the users to filter event groups based on the geomet-
ric size of the events in the group. The geometric size of an event is
defined as the size of the subgraph representing that event. For exam-
ple, the user might be interested in viewing only events that span at
least 10 nodes.
Event time allows the user to filter events for a particular time period.
For example, the user can search for events that occur only at night.
Spatial region allows the user to select regions on the map and filter
out events that occur outside this region.

Fig. 7 shows the event group distribution view for November 2011
after the application of the first two filters. The minimum event group
size was set to 4, and the minimum event size was set to 10. The lone
highlighted event group in Region I corresponds to Macy’s Parade.

Multiple event groups can overlap in the distribution view. To help
identify event groups that are occluded in the distribution view, we
also allow users to filter event groups using the distribution view, and
visualize the selected events in the time line view.

7 CASE STUDIES

In this section, we present scenarios that illustrate the features and
benefits of event-guided exploration for two data sets: NYC taxi trips
and subway data (Section 4). The supplemental video demonstrates
the use of the visual interface in the exploration of some of the results
presented in this section.

7.1 NYC Taxi data

We applied our technique on the density scalar function derived from
the NYC taxi data. In what follows, we describe a use case where we
explored events at different time granularities and queried for similar
events. Motivated by a problem posed by the TLC, we also looked
for trends in the data to help them identify areas with high concen-
trations of taxis. We have been collaborating with experts from the
DoT and the TLC who are currently using TaxiVis [22] to analyze the
taxi data. We demonstrated the event-guided exploration framework
to them. Their feedback was very positive and they expressed inter-
est in using the framework together with TaxiVis to improve policy
decisions in their respective organizations.

Fig. 9. Using the timeline view to isolate events. (a) Identifying daily
events. The most important event group (the topmost event group) in
the timeline view corresponds to the daily event corresponding to the
Hispanic Day Parade and Columbus Day Parade. (b) Identifying weekly
events. The timeline view is used to select a periodic event group, which
corresponds to the NYC summer streets that happened on Park avenue
for 3 consecutive Saturdays.

7.1.1 Minima events in NYC

Minima events are of interest for the taxi data, since they provide in-
formation about regions where there are comparatively fewer taxis. If
such minima events occur in places where there is usually a high den-
sity of taxis, then this implies blockage of streets. Policy makers in
the DoT are particularly interested in identifying such road blocks. By
analyzing its spatial location and frequency of occurrence, they are
interested in putting in place policies to help them handle such situ-
ations. Since such phenomena occur rarely, we focus on Region I of
the distribution view to identify such events. We categorize the events
into hourly, daily, and weekly respectively, denoting the periodicity of
the event. In this section, we briefly discuss a few examples of events
that we found while exploring different months.

Hourly events. Fig. 8(a) shows the event group distribution view for
the month of October in 2011. Filtering out event groups having less
than 4 events and event size greater than 10, and selecting the high-
lighted event group reveals an event that occurred along Sixth avenue
in Greenwich Village on October 31st. This corresponds to the an-
nual NYC Halloween Parade. As shown in the running example, we
also find the Macy’s Thanksgiving Parade in November. Fig. 1 illus-
trates the process used to identify the NYC Five Boro Bike Tour that
happened on 1 May 2011. Using similar a similar process, we were
able to find many other events such as the New year’s eve ball drop,
St. Patrick’s Day Parade in March, etc.



Date Event
17 March 2011 St. Patrick’s Day Parade
7 October 2011 Pulaski Day Parade

10 September 2011 Labor Day Parade
8 September 2012 Labor Day Parade

8 October 2012 Columbus Day Parade
14 October 2012 Hispanic Day Parade

11 November 2012 Veterans Day Parade

Table 1. Event groups similar to Hispanic Day Parade.

Daily events. Fig. 8(b) shows the event group distribution view for
October when the time unit is changed to days. The highlighted high
density point with range = 2 consists of multiple event groups. How-
ever, using the timeline view to choose the most important event group
identifies the one that happened on Fifth avenue on October 9th and
10th, 2011 (see Fig. 9(a)). This corresponds to the Hispanic Day Pa-
rade on 9th October and the Columbus Day Parade on October 10th.

This change in the resolution of the time unit essentially helps in
boosting the density of periodic events that happen on consecutive
days, but for only a few hours per day. Note that it will be difficult
to isolate this event group in the distribution view when the time unit
is an hour since it is part of the dense cluster of points in Region IV
(Fig. 8(a)). Exploring the month of May, we also found events corre-
sponding to the 9th avenue Food Festival that happened on May 14th
and 15th, 2011.
Weekly events. Changing the time unit to “week”, we were able
to isolate the event corresponding to the NYC Summer streets that
happens on Park avenue as shown in Fig. 8(c). The Summer streets
for the Year 2011 occurred on three consecutive Saturdays, 6th, 13th,
and 20th August respectively. Note that selecting high density event
groups with range equal to 3 weeks results in multiple event groups as
shown in the timeline view in Fig. 9(b). This includes event groups
in which the events are not periodic. The events in the timeline view
are colored based on the day of the week. This helps in visualizing the
periodicity of the events, and one can immediately locate the periodic
3 week event group (highlighted in Fig. 9).

7.1.2 Querying events
Querying for events similar to a given pattern is essential for the anal-
yses performed by experts in DoT. Using the interface described in
Section 6, we can search for events similar to a selected event that oc-
curs in other months. We now discuss a few results obtained when
querying for events similar to the ones automatically detected.

In Fig. 1, searching for events similar to 2011’s Five Boro Bike
Tour, we find the Five Boro Bike Tour that happened in 2012 together
with the Dominican Day Parades that happened in 2011 and 2012.
Additionally, we also find that the Gaza solidarity protest was held at
the same location on November 18th, 2012.

When querying for patterns similar to Hispanic day parade, we were
able to find other parades that also occurred in the same location. Ta-
ble 1 lists the set of events similar to the Hispanic day parade. Simi-
larly, the query with the New year’s ball drop event on December 31st,
2011 returns the same event from January 1st, 2012 and 2011, and 31
December 2012.

7.1.3 Identifying trends
Maxima events show high concentration of taxis. If such concentra-
tions are frequent, then it could imply taxi hot spots. Experts from
TLC are particularly interested in identifying such locations. They in-
tend to install data receivers throughout Manhattan to collect data at
regular intervals from all the taxis. By placing the receivers at strategic
locations such as hotspots they hope to optimize the amount of hard-
ware used. The location of these hot spots can also identify interesting
regions in Manhattan.

Selecting highly frequent maxima event groups from Region II of
the event distribution view locates the different taxi hot spots in NYC.
Fig. 10(a) shows the top 10 hot spots for the month of November 2011.
Note that the frequent hot spots include transit locations such as the
New York Penn station and the Port Authority Bus terminal, in addi-
tion to tourist locations such as Central Park (Columbus circle).

Fig. 10. Identifying trends. (a) Taxi hot spots correspond to areas of high
activity in NYC. These include transit locations and tourist spots. (b) Taxi
hot spots during the night corresponds to areas of active nightlife.

By switching to lower time resolution (weekly) and viewing event
groups that consist of only events from 9 pm to 6 am, helps us iden-
tify various places of nightlife in Manhattan, as shown in Fig. 10(b).
This includes areas popular for restaurants and night clubs in Lower
Manhattan such as Greenwich Village, East Village, and Meatpacking
district, in addition to the Hell’s Kitchen region in Midtown. Note that
there is also a high concentration of taxis during this time on both Up-
per East Side and Upper West Side. Experts from TLC pointed out that
this was because a lot of people in that area use taxis to return home
late night. It is interesting to note that the frequency of these events
was more prominent during weekends compared to weekdays.

7.2 MTA data
To identify events related to delays, we used the average delay of trains
at a given station as the scalar function. Since we are only interested in
the amount of delay, topological persistence is used as the importance
measure for this data set. As we discuss below, we have presented the
automatically identified events to engineers at the MTA, who not only
provided interesting insights, but were also piqued by some of them.

7.2.1 Identifying trends
Minimum event groups. A minimum event for this function corre-
sponds to a station at which the delay is lower than that of its neigh-
bors. This also signals the station where trains start to get delayed.
Therefore, a frequent presence of such events could indicate a prob-
lematic situation at a station that needs to be investigated. Such fre-
quent patterns are represented as event groups in Region II of the event
group distribution view. We now discuss a few such interesting event
groups along with their implications.

Fig. 11 shows the event group distribution view in August 2013 for
the southbound Line 3 trains, which run from Harlem in Manhattan
to New Lots Avenue in Brooklyn. A frequent daily minimum event
group for this month corresponded to the Wall Street station. Plotting
the frequency distribution of events in this group across both hours of
the day, as well as days of the week indicates that such an event occurs
at this station predominantly during the rush hour period on weekdays.
Note that a large number of people use Wall street station, with it being
in the middle of the financial district that houses a lot of offices. We
noticed this pattern even for other months.

According to MTA engineers, the delay at this station is due to two
reasons. Because the station is small, it can be difficult for passengers
to board on or off the trains due to the crowds. More importantly,
passengers tend to hold doors in order to allow other passengers to
board, thus delaying the train from leaving the station. A similar daily
minimum event group was also found on the 14th street station. Here
the delay is because the 3 train sometimes waits for the 1 train to arrive
in order to allow passenger transfer between them.

When considering northbound Line 3 trains, in addition to event
groups similar to that of the southbound line, we also found a fre-
quent event group at the Borough Hall station. The MTA engineers



Fig. 11. Frequent minima events for August 2013 for the south bound
3 trains. Two of the event groups in Region II of the event group distri-
bution view (daily events) corresponds to the Wall Street and the 14th

Street stations. Frequency distribution of events in the minimum event
group corresponding to Wall street station indicates that this event pre-
dominantly occurs during rush hours, i.e., between 8 and 10am and
between 4 and 8pm. Also note that the frequency of this event is higher
on weekdays than on weekends.

did not expect delays to occur at this station, and they were interested
in investigating further as to why it occurs. Another unexpected delay
was found at the Dyckman Street station along the northbound Line
1 trains. This was interesting for the engineers because this delay oc-
curred predominantly during late nights and early hours of the day.
Maximum event groups. A maximum event for the computed delay
function corresponds to a station from which the train makes up on
time. One such frequent maximum event group was found on 34th

street Penn station for the Line 3 southbound train. This is because the
stop after Penn station, which is 14th street, is far from Penn station.
Additionally, this stretch of the route is straight allowing the train to
speedup and make up on time. Other frequent maximum event groups
we found were also along such straight stretches of the route.

8 DISCUSSION AND FUTURE WORK

Event structure. The structure of topological features depends on
the input scalar function. Small changes in the scalar function can
change the geometric size of the events found, causing the geometry
of the actual event to be split across multiple topological features. For
example, the event group found for the NYC 5 Boro bike tour consists
of 2 events corresponding to time steps 8 am and 9 am respectively.
However when the map view for one of those time steps is viewed, one
can find that there exists another event that also corresponds to the bike
tour. Fig. 12 illustrates this phenomena, where the blue region is part
of the event group identified by exploring the visualization interface.
However, by guiding the user to this time step, the user can also find
the red region. The two regions represents a huge portion of the path
taken by bike tour in Manhattan that starts at Battery Park and passes
through 6th avenue into Central Park.

As a side effect, this also causes some of the events not to be part
of the event group. For example, while the roads are blocked for the
Macy’s Parade from early hours of the day until 11 am, the event group
corresponding to it consists of events from only a subset of these time
steps. Again, once the users are assisted towards one of these time
steps, they can find the others by exploring close by time steps. It will,
however, be interesting to explore techniques to allow combining such
split events into a single event.
Similarity computation. The grouping of events depends on the
thresholds εδ and ετ . For the results reported in this paper, we used
εδ = 0.3 and ετ = 0.2. While these values gave good results for both
the taxi and subway data sets, it would be interesting to explore meth-

Fig. 12. Due to the impact of the scalar function on the shape of the
events found, the path taken by the bike tour is split into multiple regions.

ods that help identify a good threshold based on the data. The ordering
of events when computing event groups can also affect the number of
groups found. We plan to explore the effects of event order in the
quality of the event groups found.

Currently, we restrict events in a group to be present in the same
spatial location. Users might also be interested in the occurrence of
events that have a certain shape. For example, using the taxi data, user
might be interested to find events where a long stretch of an avenue is
blocked irrespective of the location. This is a difficult problem which
we intend to explore in future work.
Scalar function computation. While we show two possible trans-
formations of the raw data to scalar functions, we expect many other
scalar functions to be useful. The design of the scalar function is de-
pendent on the application. For example, another possible scalar func-
tion that can be computed using the MTA data set is the average wait-
ing time of a passenger at each station. MTA engineers are interested
in maintaining high frequency between trains especially during peak
hours. Hence a frequent maxima event group of such a scalar func-
tion would help in identifying stations which have significant waiting
times.

Another parameter in designing the time-varying scalar function is
the time interval used to convert the temporal component into a set of
discrete time steps. We chose an hourly interval since it was small
enough to not conceal short events, but was large enough to provide
sufficient data to avoid spurious events.

9 CONCLUSION

In this paper we introduced a topology-based technique for event-
guided exploration of urban data, which aims to extend the capabilities
of current visual analysis systems by guiding users towards interesting
portions of the data. Our technique uses efficient algorithms to cap-
ture topological features of spatio-temporal data and enables flexible
exploration of events by grouping and indexing events. As demon-
strated in a variety of case studies, the proposed approach is efficient,
scales to large data sets, and is able to handle a wide range of event
types. As discussed in Sec. 8 our work opens many directions for
future work, both in exploring possibilities to improve the event detec-
tion mechanism and also in user interaction with this novel exploration
tool. Finally, we note that while this paper focuses on data from ur-
ban environments, we expect our technique to be useful even for other
types of spatio-temporal data obtained, such as data produced by sci-
entific simulations and experiments.

ACKNOWLEDGMENTS

The authors thank the TLC, DoT, and MTA for providing the data
used in this paper and feedback on our results. This work was sup-
ported in part by a Google Faculty Award, an IBM Faculty Award, the
Moore-Sloan Data Science Environment at NYU, the NYU School of
Engineering, the NYU Center for Urban Science and Progress, and
NSF award CNS-1229185.



REFERENCES

[1] P. K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang. Extreme Eleva-
tion on a 2-manifold. Disc. Comput. Geom., 36(4):553–572, 2006.

[2] G. Andrienko and N. Andrienko. Spatio-temporal Aggregation for Visual
Analysis of Movements. In Proc. of IEEE VAST, pages 51–58, 2008.

[3] G. Andrienko, N. Andrienko, P. Bak, D. Keim, and S. Wrobel. Visual
Analytics Focusing on Spatial Events. In Visual Analytics of Movement,
pages 209–251. Springer Berlin Heidelberg, 2013.

[4] G. Andrienko, N. Andrienko, G. Fuchs, A.-M. O. Raimond, J. Symanzik,
and C. Ziemlicki. Extracting Semantics of Individual Places from Move-
ment Data by Analyzing Temporal Patterns of Visits. In Proceedings of
The First ACM SIGSPATIAL International Workshop on Computational
Models of Place, COMP ’13, pages 9:9–9:16. ACM, 2013.

[5] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, and S. Wrobel.
From Movement Tracks through Events to Places: Extracting and Char-
acterizing Significant Places from Mobility Data. In Proc. of IEE VAST
2011, pages 161–170. IEEE, 2011.

[6] G. Andrienko, N. Andrienko, C. Hurter, S. Rinzivillo, and S. Wrobel.
Scalable Analysis of Movement Data for Extracting and Exploring Sig-
nificant Places. IEEE TVCG, 19(7):1078–1094, July 2013.

[7] T. F. Banchoff. Critical Points and Curvature for Embedded Polyhedral
Surfaces. Am. Math. Monthly, 77:475–485, 1970.

[8] P.-T. Bremer, G. Weber, V. Pascucci, M. Day, and J. Bell. Analyzing and
Tracking Burning Structures in Lean Premixed Hydrogen Flames. IEEE
TVCG, 16(2):248–260, Mar. 2010.

[9] H. Bunke and K. Shearer. A Graph Distance Metric Based on the Maxi-
mal Common Subgraph. Pattern Recogn. Lett., 19(3):255–259, 1998.

[10] H. Carr, J. Snoeyink, and U. Axen. Computing Contour Trees in All
Dimensions. Comput. Geom. Theory Appl., 24(2):75–94, 2003.

[11] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying Flexible Iso-
surfaces Using Local Geometric Measures. In Proc. IEEE Visualization,
pages 497–504, 2004.

[12] J. Chae, D. Thom, H. Bosch, Y. Jang, R. Maciejewski, D. S. Ebert, and
T. Ertl. Spatiotemporal Social Media Analytics for Abnormal Event De-
tection and Examination using Seasonal-Trend Decomposition. In Proc.
of IEEE VAST 2012, pages 143–152. IEEE, 2012.

[13] V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

[14] R. Chang, G. Wessel, R. Kosara, E. Sauda, and W. Ribarsky. Legible
Cities: Focus-Dependent Multi-Resolution Visualization of Urban Rela-
tionships. IEEE TVCG, 13(6):1169–1175, 2007.

[15] Y.-J. Chiang, T. Lenz, X. Lu, and G. Rote. Simple and Optimal Output-
Sensitive Construction of Contour Trees Using Monotone Paths. Comput.
Geom. Theory Appl., 30(2):165–195, 2005.

[16] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algo-
rithms. MIT Press, 2001.

[17] H. Doraiswamy, V. Natarajan, and R. S. Nanjundiah. An Exploration
Framework to Identify and Track Movement of Cloud Systems. IEEE
TVCG, 19(12):2896–2905, 2013.

[18] H. Edelsbrunner and J. Harer. Persistent Homology — A Survey. In J. E.
Goodman, J. Pach, and R. Pollack, editors, Surveys on Discrete and Com-
putational Geometry. Twenty Years Later, pages 257–282. Amer. Math.
Soc., Providence, Rhode Island, 2008. Contemporary Mathematics 453.

[19] H. Edelsbrunner and J. Harer. Computational Topology: An Introduction.
Amer. Math. Soc., Providence, Rhode Island, 2009.

[20] H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Morse-Smale
Complexes for Piecewise Linear 3-Manifolds. In Proc. Symp. Comput.
Geom., pages 361–370, 2003.

[21] H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological Persis-
tence and Simplification. Disc. Comput. Geom., 28(4):511–533, 2002.

[22] N. Ferreira, J. Poco, H. T. Vo, J. Freire, and C. T. Silva. Visual Exploration
of Big Spatio-temporal Urban Data: A Study of New York City Taxi
Trips. IEEE TVCG, 19(12):2149–2158, 2013.

[23] A. T. Fomenko and T. L. Kunii, editors. Topological Modeling for Visu-
alization. Springer Verlag, 1997.

[24] H. L. Gantt. Work, Wages, and Profits. Engineering Magazine Co., 1913.
[25] Y. Gu and C. Wang. itree: Exploring Time-Varying Data Using Indexable

Tree. In IEEE PacificVis, pages 137–144, 2013.
[26] J. Gudmundsson, P. Laube, and T. Wolle. Computational Movement

Analysis. In Springer Handbook of Geographic Information, pages 423–
438. Springer, 2012.

[27] A. Hatcher. Algebraic Topology. Cambridge U. Press, New York, 2002.

[28] M. Hoai and F. De la Torre. Max-Margin Early Event Detectors. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages
2863–2870, 2012.

[29] M. Hu, S. Liu, F. Wei, Y. Wu, J. Stasko, and K.-L. Ma. Breaking News
on Twitter. In Proceedings of the ACM annual conference on Human
Factors in Computing Systems, pages 2751–2754, 2012.

[30] H. Janetzko, F. Stoffel, S. Mittelstädt, and D. A. Keim. Anomaly De-
tection for Visual Analytics of Power Consumption Data. Computers &
Graphics, 38:27–37, 2014.

[31] J. Kasten, I. Hotz, B. Noack, and H.-C. Hege. Vortex merge graphs in
two-dimensional unsteady flow fields. In EuroVis - Short Papers, pages
1–5, 2012.

[32] M. Kulldorff. A Spatial Scan Statistic. Communications in Statistics-
Theory and methods, 26(6):1481–1496, 1997.

[33] M. Kulldorff, F. Mostashari, L. Duczmal, W. Katherine Yih, K. Klein-
man, and R. Platt. Multivariate Scan Statistics for Disease Surveillance.
Statistics in Medicine, 26(8):1824–1833, 2007.

[34] D. Laney, P. T. Bremer, A. Mascarenhas, P. Miller, and V. Pascucci. Un-
derstanding the Structure of the Turbulent Mixing Layer in Hydrody-
namic Instabilities. IEEE TVCG, 12(5):1053–1060, Sept. 2006.

[35] L. Lins, J. T. Klosowski, and C. Scheidegger. Nanocubes for Real-Time
Exploration of Spatiotemporal Datasets. IEEE TVCG, 19(12):2456–
2465, 2013.

[36] S. Maadasamy, H. Doraiswamy, and V. Natarajan. A Hybrid Parallel
Algorithm for Computing and Tracking Level Set Topology. In Proc.
Intl. Conf. High Performance Computing, pages 12.1–12.10, 2012.

[37] R. Maciejewski, S. Rudolph, R. Hafen, A. Abusalah, M. Yakout, M. Ouz-
zani, W. S. Cleveland, S. J. Grannis, M. Wade, and D. S. Ebert. Under-
standing Syndromic Hotspots-A Visual Analytics Approach. In Proc. of
IEEE VAST 2008, pages 35–42. IEEE, 2008.

[38] E. McFowland III, S. Speakman, and D. B. Neill. Fast Generalized Subset
Scan for Anomalous Pattern Detection. Journal of Machine Learning
Research, 14:1533–1561, 2013.

[39] J. Milnor. Morse Theory. Princeton Univ. Press, New Jersey, 1963.
[40] NYC MTA API. http://web.mta.info/developers/.
[41] D. B. Neill and G. F. Cooper. A Multivariate Bayesian Scan Statis-

tic for Early Event Detection and Characterization. Machine learning,
79(3):261–282, 2010.

[42] D. B. Neill, A. W. Moore, and G. F. Cooper. A Bayesian Spatial Scan
Statistic. Adv. Neur. In., 18:1003, 2006.

[43] Chicago Open Data. https://data.cityofchicago.org/.
[44] NYC Open Data. http://data.ny.gov.
[45] Seattle Open Data. http://data.seattle.gov.
[46] V. Pascucci and K. Cole-McLaughlin. Parallel Computation of the Topol-

ogy of Level Sets. Algorithmica, 38(1):249–268, 2003.
[47] V. Pascucci, X. Tricoche, H. Hagen, and J. Tierny, editors. Topological

Methods in Data Analysis and Visualization. Springer, 2010.
[48] V. Pascucci, G. Weber, J. Tierny, P.-T. Bremer, M. Day, and J. Bell.

Interactive Exploration and Analysis of Large-Scale Simulations Using
Topology-Based Data Segmentation. IEEE TVCG, 17(9):1307–1324,
2011.

[49] R. E. Roth. An Empirically-Derived Taxonomy of Interaction Prim-
itives for Interactive Cartography and Geovisualization. IEEE TVCG,
19(12):2356–2365, 2013.

[50] R. W. Scholz and Y. Lu. Detection of Dynamic Activity Patterns at a Col-
lective Level from Large-Volume Trajectory Data. International Journal
of Geographical Information Science, (ahead-of-print):1–18, 2014.

[51] G.-D. Sun, Y.-C. Wu, R.-H. Liang, and S.-X. Liu. A Survey of Visual
Analytics Techniques and Applications: State-of-the-Art Research and
Future Challenges. J. of Comp. Sci. and Tech., 28(5):852–867, 2013.

[52] Twitter API. https://dev.twitter.com/.
[53] J. Wakefield and A. Kim. A Bayesian Model for Cluster Detection. Bio-

statistics, 14(4):752–765, 2013.
[54] Z. Wang, M. Lu, X. Yuan, J. Zhang, and H. v. d. Wetering. Visual Traffic

Jam Analysis Based on Trajectory Data. IEEE TVCG, 19(12):2159–2168,
2013.

[55] W. Widanagamaachchi, C. Christensen, P.-T. Bremer, and V. Pascucci. In-
teractive Exploration of Large-Scale Time-Varying Data Using Dynamic
Tracking Graphs. In Proc. of IEEE LDAV, pages 9–17, 2012.

[56] P. H. T. Zannin, M. S. Engel, P. E. K. Fiedler, and F. Bunn. Charac-
terization of Environmental Noise Based on Noise Measurements, Noise
Mapping and Interviews: A Case Study at a University Campus in Brazil.
Cities, 31:317–327, 2013.

http://web.mta.info/developers/
https://data.cityofchicago.org/
http://data.ny.gov
http://data.seattle.gov
https://dev.twitter.com/

	Introduction
	Related Work
	Background
	Urban Data and Scalar Functions
	NYC Taxi Data
	MTA Subway Data

	Identifying and Managing Events
	Computing Events
	Event Group Index
	Similarity Between Events
	Event Group and Event Group Key
	Computing Event Groups
	Analysis

	Querying Events

	Visual Exploration Interface
	Map View and the Query Interface
	Event Group Distribution View and Timeline View
	Filtering Interface

	Case Studies
	NYC Taxi data
	Minima events in NYC
	Querying events
	Identifying trends

	MTA data
	Identifying trends


	Discussion and Future Work
	Conclusion

