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In addition to its role in the destruction of aberrant mRNAs, 
nonsense-mediated mRNA decay (NMD) modulates gene 
expression by degrading endogenous transcripts bearing specific 
target features.1-6 Despite the presence of an NMD mechanism 
in all eukaryotes, few mRNAs have been identified as conserved 
NMD targets across evolution.4,5 The features that target a tran-
script to NMD are also not fully defined. In plants some, but not 
all, long 3'UTRs, 3' UTR-located introns and upstream open 
reading frames (uORFs) result in NMD.7-12 In order to under-
stand the role of NMD in plant gene regulation it is important 
to identify the transcripts that are targeted by NMD, the features 
that subject them to NMD and the effect of impairing NMD on 
growth and development.

Microarrays were used to identify 206 ‘common NMD tran-
scripts’ that are coordinately upregulated in three Arabidopsis 
NMD mutants (upf1-5, upf3-1 and smg7-1).13 These transcripts 
represent both direct and indirect NMD targets. Meta-analyses 
reveal that most of these transcripts (183) respond to pathogens 
in an SA dependent manner, whereas only 23 do not respond to 
pathogens or exogenously applied SA.13 Furthermore, Arabidopsis 
NMD mutants are partially resistant to Pseudomonas syringae 
pathovar tomato DC3000 (DC3000) and accumulate more SA 
than their wild-type cohorts in the presence or absence of patho-
gen.13 These findings suggest that one role for NMD in plants 
could be to facilitate a rapid pathogen response by changing the 
stability of pathogen responsive transcripts.

NMD Mutant Phenotypes in Arabidopsis

Plants deficient in different NMD effectors display similar 
phenotypes.8,9,14,15 The thin, twisted leaves of NMD mutants 

In eukaryotes, nonsense-mediated mRNA decay (NMD) targets aberrant and selected non-aberrant mRNAs for 
destruction. A recent screen for mRNAs showing increased abundance in Arabidopsis NMD-deficient mutants revealed 
that most are associated with the salicylic acid (SA)-mediated defense pathway. mRNAs with conserved peptide upstream 
open reading frames (CpuORFs or CuORFs) are hugely overrepresented among the smaller class of NMD-regulated 
transcripts not associated with SA. Here we show that the common phenotypes observed in Arabidopsis NMD mutants 
are SA-dependent, whereas the upregulation of CpuORF-containing transcripts in NMD mutants is independent of SA. 
We speculate that CpuORFs could allow the conditional targeting of mRNAs for destruction using the NMD pathway.
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resemble SA accumulating mutants,16 suggesting that some 
aspects of the NMD mutant phenotype may be caused by the 
constitutive pathogen response. To disentangle the effects of 
SA and NMD, NMD mutants were studied in an SA-deficient 
background. sid2-1 mutants are incapable of accumulating 
SA in response to pathogens.17 The NMD impaired upf1-5 
mutant exhibits the typical NMD phenotype of thin leaves 
with twisted petioles.9 However, upf1-5 sid2-1 double mutants 
appear wild-type, with wider, flatter leaves (Fig. 1). This sug-
gests that the distinctive leaf-shape phenotype of Arabidopsis 
NMD mutants is caused by accumulation of SA, consistent 
with a previously published finding that disruption of PAD4, 
which is upstream of SID2, also supresses the NMD mutant 
phenotype.14

CpuORFs as Targets for NMD

While it is likely that many of the 183 SA-responsive transcripts 
are indirectly affected by NMD, we previously suggested that 
the remaining 23 transcripts that do not respond to patho-
gens are enriched for direct NMD targets.13 Eight of these 23 
transcripts have CpuORFs; short open reading frames in the 
leader sequences that are conserved between Arabidopsis and 
rice.13,18 This is a striking overrepresentation given that only 44 
Arabidopsis genes show this feature.18 Comparisons with other 
species reveal that 82 Arabidopsis genes harbour CpuORFs.18-20 
Of the 77 CpuORF-containing genes represented on the ATH1 
GeneChip microarray, 49% are upregulated in at least one 
NMD mutant line (Fig. 2, Table S1). Enrichment for CpuORFs 
among NMD targets suggests that this feature is recognized by 
NMD.
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Although CpuORFs tend to be among the longest uORFs,18,21 
length does not account for the differential representation of 
uORFs and CpuORFs in the list of NMD-regulated genes. 
CpuORFs are over-represented among the common NMD 
genes, even as a proportion of transcripts with a uORF exceed-
ing 42 codons (p < 0.05). This suggests that the conserved 
sequence of the CpuORF may be important for recognition by 
NMD. In diverse organisms, nascent peptides of uORFs exert 
translational control of downstream ORFs by ribosome stalling 
at the uORF, sometimes in response to changing cellular condi-
tions.22-24 Perhaps the short peptides encoded by the CpuORFs 
of NMD-sensitive transcripts expose the transcript to NMD by 
stalling the ribosome at the CpuORF, decreasing the efficiency 
of re-initiation of translation at the downstream ORF or mak-
ing the transcript vulnerable to a change in cellular competence 
for translation reinitiation. Since recognition by NMD would 
depend on the translation of the CpuORF, this provides a mech-
anism by which individual transcripts could be targeted to, or 
protected from, NMD in a condition dependent manner. There 
is a precedent for this; in Saccharomyces cerevisiae, the CPA1 
transcript harbours an uORF that encodes arginine attenuator 
peptide (AAP). In the presence of arginine, nascent AAP stalls 
ribosomes at the uORF targeting the transcript to NMD and 
downregulating CPA1 expression.25

Publically available microarray data indicates that CpuORF-
containing transcripts are mainly independent of SA and could 
therefore represent direct NMD targets. Meta-analyses across 
multiple microarray experiments show no association between 
CpuORFs and responses to SA. Furthermore, a specific search 
for transcripts that show increased abundance in smg7-1 mutants 
that are compromised in their ability to accumulate SA (smg7-1 
pad4-1 vs pad4-1; PAD4 being a gene that mediates numerous 
responses to pathogens including SA accumulation via ICS126,27) 
reveals 340 such transcripts (fold change > 1.5, p > 0.05). This 
list includes 16 CpuORF-containing transcripts, 8 of which are 
also commonly upregulated in the upf1-5, upf3-1 and smg7-1 
NMD mutants. The PAD4-independence of the upregulation of 
these CpuORF transcripts supports the view that they are tar-
geted directly by NMD, rather than responding indirectly via 
elevated SA.

Here we provide further evidence that CpuORFs are direct 
NMD targets in Arabidopsis. The high degree of conservation of 
CpuORFs suggests that they could also be direct NMD targets 
in other species. The presence of a CpuORF in the leaders of spe-
cific mRNAs could provide a mechanism whereby those mRNAs 
are conditionally moved into and out of the influence of NMD, 
raising the possibility that environmental and cellular conditions 
could act through CpuORFs to effectively alter the expression of 
the associated major transcripts.
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Many uORFs are not recognized by NMD and it is unclear 
why CpuORFs should differ from other uORFs in this respect. 

Figure 1. Phenotypes of NMD mutant plants with and without a 
functional ICS1 allele. All plants shown are homozygous for the mutant 
upf1–5 allele and therefore impaired in NMD. (i) Wild-type ICS1. (ii) 
Homozygous for the sid2–1 mutant allele of ICS1. Plants are 3 weeks (A), 
and 6 weeks (B and C) old. The white scale bar indicates 1 cm.
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Figure 2. Upregulation of CpuORF-containing transcripts in Arabidop-
sis plants deficient in NMD. The universe list for the Venn diagram is 
Arabidopsis loci that are represented on the ATH1 GeneChip microarray 
and that have CpuORFs that are conserved between Arabidopsis and 
another plant species (77 transcripts, Hayden and Jorgensen, 2007, Tran, 
Schiltz and Bauman, 2008 and Takahashi et al., 2012).18-20 Each circle 
represents transcripts that are upregulated at least 1.5-fold, p < 0.05.
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