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Three-coloring triangle-free graphs on surfaces I.

Extending a coloring to a disk with one triangle

Zdeněk Dvořák∗ Daniel Král’† Robin Thomas‡

March 4, 2016

Abstract

Let G be a plane graph with exactly one triangle T and all other cycles of

length at least 5, and let C be a facial cycle of G of length at most six. We

prove that a 3-coloring of C does not extend to a 3-coloring of G if and only if

C has length exactly six and there is a color x such that either G has an edge

joining two vertices of C colored x, or T is disjoint from C and every vertex

of T is adjacent to a vertex of C colored x. This is a lemma to be used in a

future paper of this series.

1 Introduction

This is the first paper in a series aimed at studying the 3-colorability of graphs on a
fixed surface that are either triangle-free, or have their triangles restricted in some
way. All graphs in this paper are simple, with no loops or parallel edges.

The subject of coloring graphs on surfaces goes back to 1890 and the work of
Heawood [21], who proved that if Σ is not the sphere, then every graph in Σ is
t-colorable as long as t ≥ H(Σ) := ⌊(7 +

√
24γ + 1)/2⌋. Here and later γ is the

Euler genus of Σ, defined as γ = 2g when Σ = Sg, the orientable surface of genus g,
and γ = k when Σ = Nk, the non-orientable surface with k cross-caps. Incidentally,
the assertion holds for the sphere as well, by the Four-Color Theorem [3, 4, 6, 24].
Ringel and Youngs (see [23]) proved that the bound is best possible for all surfaces
except the Klein bottle, for which the correct bound is 6. Dirac [10] and Albertson
and Hutchinson [2] improved Heawood’s result by showing that every graph in Σ is
actually (H(Σ)− 1)-colorable, unless it has a subgraph isomorphic to the complete
graph on H(Σ) vertices.

For triangle-free graphs there does not seem to be a similarly nice formula, but
Gimbel and Thomassen [17] gave very good bounds: they proved that the maximum
chromatic number of a triangle-free graph drawn in a surface of Euler genus γ is at
least c1γ

1/3/ log γ and at most c2(γ/ log γ)
1/3 for some absolute constants c1 and

c2.
In this series we adopt a more modern approach to coloring graphs on surfaces,

following the seminal work of Thomassen [26, 29, 31]. The basic premise is that
while Heawood’s formula is best possible for all surfaces except the Klein bottle,
only relatively few graphs attain the bound or even come close. To make this
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assertion more precise let us recall that a graph G is called k-critical, where k ≥ 1
is an integer, if every proper subgraph of G is (k−1)-colorable, but G itself is not. It
follows easily from Euler’s formula that if Σ is a fixed surface, and G is a sufficiently
big graph drawn in Σ, then G has a vertex of degree at most six. It follows that for
every k ≥ 8 the graph G is not k-critical, and hence there are only finitely many
k-critical graphs that can be drawn in Σ. It is not too hard to extend this result
to k = 7. In fact, it can be extended to k = 6 by the following deep theorem of
Thomassen [29].

Theorem 1. For every surface Σ there are only finitely many 6-critical graphs that
can be drawn in Σ.

The lists of 6-critical graphs are explicitly known for the projective plane [2], the
torus [26] and the Klein bottle [9, 22]. An immediate consequence is that for
every surface Σ there is a polynomial-time (in fact, linear-time) algorithm to test
whether an input graph drawn in Σ is 5-colorable. Theorem 1 does not hold for
5-critical graphs, because of an elegant construction of Fisk [15]. For 3-colorability
an algorithm as above does not exist, unless P = NP , because testing 3-colorability
is NP-hard even for planar graphs [16]. It is an open problem whether there is a
polynomial-time algorithm for testing 4-colorability of graphs in Σ when Σ is a fixed
surface other than the sphere. The techniques currently available do not give much
hope for a positive resolution in the near future.

How about triangle-free graphs? Similarly as above, if G is a sufficiently large
triangle-free graph in a fixed surface Σ, then G has a vertex of degree at most four.
Thus G is not 6-critical, and the argument can be strengthened to show that G is
not 5-critical. Thus for a fixed integer k ≥ 4 testing k-colorability of triangle-free
graphs drawn in a fixed surface can be done in linear time, as before. That brings
us to testing 3-colorability of triangle-free graphs in a fixed surface, the subject of
this series of papers. The question has been raised by Gimbel and Thomassen [17]
and we resolve it later in this series, after we develop some necessary theory.

Historically the first result in this direction is the following classical theorem of
Grötzsch [18].

Theorem 2. Every triangle-free planar graph is 3-colorable.

Thomassen [27, 28, 30] found three reasonably simple proofs, and extended The-
orem 2 to other surfaces. Recently, two of us, in joint work with Kawarabayashi [11]
were able to design a linear-time algorithm to 3-color triangle-free planar graphs,
and as a by-product found perhaps a yet simpler proof of Theorem 2. The statement
of Theorem 2 cannot be extended to any surface other than the sphere. In fact, for
every non-planar surface Σ there are infinitely many 4-critical triangle-free graphs
that can be drawn in Σ. For instance, the graphs obtained from an odd cycle of
length five or more by applying Mycielski’s construction [7, Section 8.5] have that
property. Thus an algorithm for testing 3-colorability of triangle-free graphs on
a fixed surface will have to involve more than just testing the presence of finitely
many obstructions.

The situation is different for graphs of girth at least five by another deep theorem
of Thomassen [31].

Theorem 3. For every surface Σ there are only finitely many 4-critical graphs of
girth at least five that can be drawn in Σ.

Thus the 3-colorability problem on a fixed surface has a polynomial-time al-
gorithm for graphs of girth at least five, but the presence of cycles of length four
complicates matters. Let us remark that there are no 4-critical graphs of girth at
least five on the projective plane and the torus [27] and on the Klein bottle [25].
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The only non-planar surface for which the 3-colorability problem for triangle-
free graphs is fully characterized is the projective plane. Building on earlier work
of Youngs [35], Gimbel and Thomassen [17] obtained the following elegant charac-
terization. A graph drawn in a surface is a quadrangulation if every face is bounded
by a cycle of length four.

Theorem 4. A triangle-free graph drawn in the projective plane is 3-colorable if
and only if it has no subgraph isomorphic to a non-bipartite quadrangulation of the
projective plane.

For other surfaces there does not seem to be a similarly nice characterization,
but in a later paper of this series we will present a polynomial-time algorithm to
decide whether a triangle-free graph in a fixed surface is 3-colorable. The algorithms
naturally breaks into two steps. The first is when the graph is a quadrangulation,
except perhaps for a bounded number of larger faces of bounded size, which will
be allowed to be precolored. In this case there is a simple topological obstruction
to the existence of a coloring extension based on the so-called “winding number”
of the precoloring. Conversely, if the obstruction is not present and the graph is
highly “locally planar”, then we can show that the precoloring can be extended to
a 3-coloring of the entire graph. This can be exploited to design a polynomial-time
algorithm. With additional effort the algorithm can be made to run in linear time.

The second step covers the remaining case, when the graph has either many
faces of size at least five, or one large face, and the same holds for every subgraph.
In that case we show that the graph is 3-colorable. That is a consequence of the
following theorem, which will form the cornerstone of this series.

Theorem 5. There exists an absolute constant K with the following property. Let
G be a graph drawn in a surface Σ of Euler genus γ with no non-contractible cycles
of length at most four, and let t be the number of triangles in G. If G is 4-critical,
then

∑ |f | ≤ K(t + γ), where the summation is over all faces f of G of length at
least five.

If G has girth at least five, then t = 0 and every face has length at least five.
Thus Theorem 5 implies Theorem 3, and, in fact, improves the bound given by the
proof of Theorem 3 in [31]. The fact that our bound in Theorem 5 is linear in the
number of triangles is needed in our solution of a problem of Havel [20], as follows.

Theorem 6. There exists an absolute constant d such that if G is a planar graph
and every two distinct triangles in G are at distance at least d, then G is 3-colorable.

To prove Theorem 5 we actually prove a stronger result. If G is a graph and R
is a subgraph of G, then we say that G is R-critical if G 6= R and for every proper
subgraph G′ of G that includes R there exists a 3-coloring of R that extends to a
3-coloring of G′, but does not extend to a 3-coloring of G. The stronger version of
Theorem 5 applies to R-critical graphs, where R has bounded size. A special case
that we need in order to carry out our inductive argument is the following.

Theorem 7. There exists an absolute constant L with the following property. Let
G be a planar graph with two distinct facial cycles R1 and R2, where R1 has length
six and R2 has length four. Assume that every cycle in G of length at most four
separates R1 and R2, and that every cycle in G other than R2 of length exactly four
is disjoint from R2. If G is R1 ∪R2-critical, then it has at most L vertices.

The machinery we develop in the second paper [12] of this series can be applied
to prove Theorem 7, with one notable exception: when G is disconnected, and the
component G1 of G that contains R1 has a face bounded by a triangle (in which case
this face includes the component of G containing R2). We need to show that the size
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(a) (b)

Figure 1: Critical graphs with a precolored 6-cycle and one triangle.

of G1 is bounded, but we have not been able to do so using the same methods we
use for the rest of the proof of Theorem 5. Instead, we use a different method, which
allows us to characterize the components G1. Since the proof method is different,
we separate it from the other arguments and present it in this paper. Thus our
main result is as follows. The two outcomes are illustrated in Figure 1.

Theorem 8. Let G be a plane graph with a facial cycle R of length at most six,
let T be a triangle in G, and assume that every cycle in G other than T and R has
length at least five. Let φ be a 3-coloring of R that does not extend to a 3-coloring
of G. Then R has length exactly six and either

(a) φ(u) = φ(v) for two distinct vertices u, v ∈ V (R) that are adjacent in G, or
(b) φ(u1) = φ(u2) = φ(u3) for three pairwise distinct vertices u1, u2, u3 ∈ V (R),

where each ui is adjacent to a different vertex of T .

Finally, let us mention a related interesting conjecture due to Steinberg [32],
who conjectured that every planar graph without 4- and 5-cycles is 3-colorable.
This conjecture is still open. Currently the best result of Borodin, Glebov, Mon-
tassier and Raspaud [8] shows that excluding cycles of lengths 4, 5 and 7 suffices to
guarantee 3-colorability. (A proof of the same result by Xu [34] is refuted in [8].)

2 Auxiliary results

In this short section we present several results that will be needed later. Let G be
a graph, and let R be a subgraph of G. Let us recall that G is R-critical if G 6= R
and for every proper subgraph G′ of G that includes R as a subgraph there exists a
3-coloring of R that extends to a 3-coloring of G′, but not to one of G. Theorem 2
admits the following strengthening.

Theorem 9. There is no R-critical triangle-free plane graph G, where R is a cycle
in G of length at most five.

This result was later strengthened in several ways. Gimbel and Thomassen [17]
extended this to cycles of length six:

Theorem 10. Let G be a plane triangle-free graph with a facial cycle R of length
six. If G is R-critical, then all faces of G distinct from R have length four.

For graphs of girth at least five the above results can be strengthened, as shown
by Thomassen [31] and Walls [33].

Theorem 11. Let H be a plane graph of girth at least five, and let C be a facial
cycle in H of length k ≤ 11. If H is C-critical, then

(a) k ≥ 8, V (H) = V (C) and C is not induced, or
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(b) k ≥ 9, H − V (C) is a tree with at most k − 8 vertices, and every vertex of
V (H)− V (C) has degree three in H, or

(c) k ≥ 10 and H − V (C) is a connected graph with at most k − 5 vertices con-
taining exactly one cycle, and the length of this cycle is five. Furthermore,
every vertex of V (H)− V (C) has degree three in H.

Proof. Since H is C-critical, there exists a 3-coloring of C that does not extend to a
3-coloring of G. Theorem 2.5 of [31] (as well as independently proved Theorem 3.0.2
of [33]) states that there exists a subgraph H ′ of H such that C is a subgraph of H ′

and H ′ satisfies one of (a)–(c). We claim that H = H ′. Indeed, otherwise the C-
criticality of H implies that there exists a 3-coloring of C that does not extend to a
3-coloring of H , but extends to a 3-coloring φ of H ′. By applying [31, Theorem 2.5]
or [33, Theorem 3.0.2] to every face of H ′ we deduce that φ extends to every face
of H ′, and hence extends to a 3-coloring of H , a contradiction.

We will need a version of Theorem 9 that allows the existence of a triangle.
Such a result was attempted by Grünbaum [19], but his proof is not correct. A
correct proof was found by Aksionov [1]. The result of Aksionov together with
Theorem 10 gives the following characterization of critical graphs with a triangle
and a precolored face of length at most five.

Theorem 12. Let G be a plane graph with a facial cycle R of length at most five
and at most one triangle T distinct from R. If G is R-critical, then R has length
exactly five, T shares at least one edge with R and all faces of G distinct from T
and R have length exactly four.

3 Graphs with one triangle

To prove Theorem 8 we prove, for the sake of the inductive argument, the following
slightly more general result. Theorem 8 will be an immediate corollary.

Theorem 13. Let G be a plane graph with outer cycle R of length at most six and
assume that

(∗) there exists a point p in the plane such that for every cycle C in G of length
at most four, the open disk bounded by C contains p.

If G is R-critical, then R has length exactly six and G is isomorphic to one of the
graphs depicted in Figure 1.

Proof. Let G be as stated, and suppose for a contradiction that it is not isomorphic
to either of the two graphs depicted in Figure 1. By Theorems 9 and 10 the graph G
has a triangle T . We may assume that G is minimal in the sense that the theorem
holds for every graph with fewer vertices. A vertex v ∈ V (G)− V (R) will be called
internal. The R-criticality of G implies that

(1) every internal vertex of G has degree at least three.

If C is a cycle in G, then by ins(C) we denote the subgraph of G consisting of all
vertices and edges drawn in the closed disk bounded by C. More generally, suppose
that C is a closed walk in G such that the subgraph of G consisting of the vertices
and edges of C has a bounded face ∆ incident with all the edges of C. It follows
that ∆ is unique and homeomorphic to an open disk. In this case, we say that C
bounds the open disk ∆ and we define ins(C) to be the subgraph of G consisting of
all vertices and edges drawn in the closure of ∆.
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(2) Let C be a closed walk in G that bounds an open disk ∆, and assume that ∆
includes at least one vertex or edge of G. Then ins(C) is a C-critical graph.

To prove (2) let C be as stated, let G′ be obtained from G by deleting every
vertex and edge of G drawn in ∆, and let J be a proper subgraph of ins(C) that
includes C. Then some 3-coloring of R extends to a 3-coloring φ of G′∪J , but does
not extend to a 3-coloring of G. It follows that the restriction of φ to C extends to
J , but not to ins(C), as desired. This proves (2).

It follows from (∗), (2) and Theorem 12 that

(3) T bounds a face and all other cycles in G have length at least five.

Consequently,G is connected, as otherwise it would contain a component disjoint
from R and this component would be 3-colorable by Theorem 12, contrary to the
assumption that G is R-critical. Next we constrain cycles in G of length at most
seven:

(4) Let C 6= R be a cycle in G of length at most seven that does not bound

a face. Then C has length at least six, and the closed disk bounded by C
includes T .

To prove (4) let C be as stated. By the minimality of G and (2) we deduce that
C has length at least six. If T is not contained in the closed disk ∆ bounded by C,
then (3) implies that ins(C) has girth at least five, contrary to (2) and Theorem 11.
Thus T is contained in ∆, and (4) follows.

The same argument and the minimality of G imply the following claim.

(5) Let C 6= R be a cycle in G of length six that does not bound a face. Then

ins(C) is isomorphic to one of the graphs depicted in Figure 1.

(6) Let C 6= R be a closed walk in G of length k ≤ 11 bounding an open disk

∆ disjoint from T , and let H = ins(C). If H 6= C, then H satisfies the

conclusion of Theorem 11.

To prove (6) we modify H , converting C to a cycle, and then apply Theorem 11.
First we replace every edge of H that is traversed by C twice by a pair of parallel
edges bounding a face of length two, thus creating a multigraph H1 and a closed
walk C1 in H1 such that C1 uses no edge more than once. Thus every vertex
of H1 is incident with an even number of edges of C1. Let v be a vertex of H1

incident with 2k ≥ 4 edges of C1. Then the edges and faces of C1 incident with v
can be numbered e1, f1, e2, f2, e3, . . . , f2k−1, e2k, f2k in the clockwise cyclic order of
appearance around v in such a way that for i = 1, 2 . . . , k the edges e2i−1, e2i are
consecutive in C1 and f2i−1 = ∆. We split v into k vertices v1, v2, . . . , vk as follows.
Let i = 1, 2, . . . , k, and let e2i−1, g1, g2, . . . , gl, e2i, . . . be the edges ofH incident with
v listed in clockwise cyclic order around v. Then the edges e2i−1, g1, g2, . . . , gl, e2i
will be incident with vi in the new graph in the clockwise order listed. By repeating
this construction for every vertex of H1 incident with at least four edges of C1

we arrive at a plane graph H2 such that the walk C2 corresponding to C1 is a
cycle. By (2) the graph H is C-critical, and since the above construction preserves
criticality we deduce that H2 is C2-critical. Thus (6) follows from Theorem 11.

From (3) and Theorem 12 it follows that
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(7) R has length six,

and since every cycle of length at most five bounds a face by (4) we deduce that

(8) the graph G has no subgraph H with outer face R such that H is isomorphic

to either of the two graphs depicted in Figure 1; in particular, R is induced.

Next we claim that

(9) every internal vertex has at most one neighbor in V (R).

To prove (9) suppose for a contradiction that an internal vertex v2 has two
neighbors v1, v3 ∈ V (R). Let P denote the path v1v2v3, and let R,C1, C2 be the
three cycles of R∪P . By (3) either one of C1, C2 is T and the other has length seven,
or C1, C2 both have length five. In either case it follows from (4) that C1, C2 both
bound faces of G, and hence v2 has degree two, contrary to (1). This proves (9).

(10) The cycle T is disjoint from R.

To prove (10) suppose for a contradiction that v ∈ V (T )∩V (R). By (8) and (9)
v is the only vertex of T ∩R. The graph T ∪R has a face bounded by a walk C of
length nine. By (6) combined with (3), at least one of the vertices of V (T ) \ V (R)
has degree two, which contradicts (1). This proves (10).

Let us fix an orientation of the plane, and let T = t1t2t3 and R = r1r2 . . . r6 be
numbered in clockwise cyclic order according to the drawing of G.

(11) G has at most one edge joining T to R.

To prove (11) suppose that say t1r1, t2ri ∈ E(G) for some i ∈ {1, . . . , 6}. By (3)
we have 3 ≤ i ≤ 5. Let C2 = r1t1t3t2riri+1 . . . r6. As t3 has degree at least three,
C2 does not bound a face; thus C2 has length at least eight by (4), and we conclude
that i = 3. Thus C2 has length exactly eight, and hence by (6) ins(C2) consists of
C2 and at most one chord. Since t3 has degree at least three, this chord exists and
joins t3 with r5, and hence G has a subgraph isomorphic to the graph depicted in
Figure 1(b), contrary to (8). This proves (11).

(12) G does not contain a 5-face incident only with internal vertices of degree

three.

To prove (12) suppose for a contradiction that G contains such a 5-face C =
v1v2v3v4v5. For 1 ≤ i ≤ 5, let xi be the neighbor of vi not belonging to C (each
vi has such a neighbor, because T bounds a face by (3) and C bounds a face
by definition and each vertex of C has degree three). Since T is disjoint from R
by (10) and G contains no 4-cycles by (3), it follows that at most three of the
vertices x1, . . . , x5 belong to R. Without loss of generality we may assume that x1
is internal. Note also that x1 6∈ {x3, x4}, as G does not contain a 4-cycle. By the
symmetry between x3 and x4 we may assume that if x3 is adjacent to a vertex of R,
then so is x4. Let G

′ be the graph obtained from G−V (C) by adding the edge x1x3
drawn in the same way as the path x1v1v2v3x3 in G. Observe that every 3-coloring
of G′ extends to a 3-coloring of G: given a 3-coloring of G′, every vertex in C has
a list of two available colors, and the lists of v1 and v3 are different.

Our next objective is to show that G′ satisfies (∗). To that end let K ′ 6= T
be a cycle in G′ of length at most four. Then K ′ includes the edge x1x3 by (3).
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r1

r2

r3

r4

r5

r6

x1

v1

v2

v3

x3
t

Figure 2: A configuration obtained in the proof of (12).

Consider the cycle K in G obtained from K ′ by replacing the edge x1x3 by the
path P = x1v1v2v3x3. Note that K has length at most seven, and that it does not
bound a face of G (since the edges v1v5 and v2x2 are drawn on the opposite sides of
P ). Thus by (4) T is a subgraph of ins(K), and since the edge x1x3 of G′ is drawn
in the same way as the path P of G, it follows that the point p is contained in the
open disk bounded by K ′. We conclude that G′ satisfies (∗), as desired.

Let G′′ be a minimal subgraph of G′ such that R is a subgraph of G′′ and
every 3-coloring of R that extends to a 3-coloring of G′′ extends to a 3-coloring of
G′. Then G′′ 6= R, for otherwise every 3-coloring of R extends to a 3-coloring of
G′′, and hence to a 3-coloring of G′, and therefore to one of G, contrary to the
R-criticality of G. We conclude that G′′ is R-critical. The minimality of G implies
that G′′ is isomorphic to one of the graphs depicted in Figure 1. But R is an induced
subgraph of G by (8) and x1 is internal, and hence G′′ is isomorphic to the graph of
Figure 1(b). Let L′ be the triangle of G′′. By (11) we have L′ 6= T , and hence x1x3
is an edge of L′. Let t be the third vertex of L′. We may assume that x1 is adjacent
to r1, x3 is adjacent to r3 and t is adjacent to r5, where the adjacencies take place
in G,G′ and G′′. Let D′ be the face boundary of the 5-face of G′′ incident with the
edge x1x3, and let D be the 8-cycle of G obtained from D′ by replacing the edge
x1x3 by the path P (see Figure 2). Let L be the 6-cycle in G obtained from L′ by
replacing the edge x1x3 by the path P . By (4) T lies in the closed disk bounded
by L, and since t is adjacent to r5 it follows that ins(D) includes no cycle of length
at most four. By (6) no vertex of G lies in the open disk bounded by D, and hence
v4 and v5 lie in the open disk bounded by L. Since G has no 4-cycles we deduce
that x4 6∈ {x1, t}, and x3 6= x4, for otherwise T = x3v4v3 and the cycle x3tx1v1v5v4
includes the edge v5x5 in its inside but not T , contrary to (4). Since x3 is adjacent
to r3, the choice of x3 implies that x4 is adjacent to a vertex of R, contrary to the
planarity of G. This proves (12).

(13) The distance between R and T is at least two.

To prove (13) suppose for a contradiction that the distance between R and T
is at most one. Then it is exactly one by (10), and so we may assume that say
t1r1 ∈ E(G). Let C denote the closed walk r1r2 . . . r6r1t1t2t3t1. Then C bounds
an open disk. Let H = ins(C). Since G is R-critical, we see that H 6= C. By (6)
the graph H satisfies (a), (b) or (c) of Theorem 11. If it satisfies (a), then by (1),
t2 has a neighbor in R, contrary to (11). If H satisfies (b), then H − V (C) is a
tree X with at most three vertices, each of degree three. Both t2 and t3 have a
neighbor in X , and hence X ∪ {t2, t3} includes the vertex-set of a 5-cycle, contrary
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to (12). Finally, H cannot satisfy (c), because the cycle referenced in (c) would
contradict (12). This proves (13).

(14) No two vertices of degree two are adjacent in G.

To prove (14) suppose for a contradiction that G has two adjacent vertices of
degree two. By (1) they belong to R, and so we may assume that say r2 and r3 have
degree two. The edge r2r3 is not contained in any 5-cycle, as otherwise R would
have a chord or an internal vertex would have two neighbors in R, contrary to (8)
and (9). Let G′ be the graph obtained from G by contracting the edge r2r3, and
let R′ be the corresponding outer cycle of G′. Then G′ has no cycle of length at
most 4 distinct from T . Furthermore, every 3-coloring ψ of R can be modified to
a 3-coloring ψ′ of R′ such that ψ′(ri) = ψ(ri) for i ∈ {1, 4, 5, 6}, and ψ extends to
G if and only if ψ′ extends to a 3-coloring of G′. It follows that G′ is R′-critical,
contrary to Theorem 12. This proves (14).

(15) For every path v1v2v3v4 with v2 and v3 internal and v1, v4 ∈ V (R) there

exists r ∈ V (R) such that v1v2v3v4r bounds a 5-face.

To prove (15) consider a path P = v1v2v3v4 with v2 and v3 internal and v1, v4 ∈
V (R), and let C1 and C2 be the cycles of R ∪ P other than R such that T lies in
the closed disk bounded by C1. Since C1 does not bound a face, it has length at
least six by (4). Thus C2 has length at most six, and hence bounds a face by (4),
and therefore has length five by (14). This proves (15).

(16) All faces of G distinct from R and T have length exactly five.

To prove (16) consider a face f = v1v2 . . . vk of length k ≥ 6 in G. By (9) we
may assume without loss of generality that v2 and v3 are internal. Furthermore, if
k = 6, then not all of v1, v4, v5 and v6 may belong to R, by (14), and hence, by
symmetry, we may assume that either v4 or v6 is internal. LetW = {v2, vk} if k > 6
and W = {v2, v4, v6} if k = 6. Let G′ be the graph obtained from G by identifying
the vertices of W to a new vertex w and deleting all resulting parallel edges (the
drawing of the new vertex w is placed inside the face f of G and the drawings of
the edges incident with the vertices of W in G are first shifted infinitesimally so
that they do not intersect and then joined to w through f). Thus E(G′) ⊆ E(G).
By (1) and (4) the vertices of W are pairwise non-adjacent; thus the identifications
created no loops. Observe that every 3-coloring ψ of G′ gives rise to a 3-coloring of
G (color the vertices of W using ψ(w)). It follows that some 3-coloring of R does
not extend to a 3-coloring of G′. Let G′′ be a minimal subgraph of G′ such that R
is a subgraph of G′′ and every 3-coloring of R that extends to a 3-coloring of G′′

also extends to a 3-coloring of G′; then G′′ is R-critical.
Next we show that G′′ satisfies (∗). As a first step we prove that G′′ does

not have a triangle other than T . To that end let K ′ 6= T be a triangle in G′′.
Recall that E(G′′) ⊆ E(G). Two of the edges of K ′ are incident in G with distinct
vertices w1, w2 ∈ W . Let K be the corresponding 5-cycle in G, obtained from K ′

by replacing w with the two-edge path between w1 and w2 with internal vertex in
{v1, v3, v5}. Observe that K does not bound a face in G, contrary to (4). Therefore,
G′′ does not have a triangle distinct from T . Consider now a 4-cycle L′ in G′′. The
corresponding cycle L in G (constructed in the same way as K) has length six. As L
does not bound a face we can apply (5) to the cycle L; it follows that T is contained
in the closed disk bounded by L. Note that the point p is contained in the open
disk bounded by T and since p does not lie inside f , the choice of the drawing of
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G′ ensures that p is contained in the open disk bounded by L′. It follows that G′′

satisfies (∗).
Since G′′ has fewer vertices than G, G′′ is one of the graphs drawn in Figure 1.

Furthermore, the first result of the previous paragraph implies that T is the unique
triangle of G′′. However, this implies that the distance between T and R in G is at
most one, contradicting (13). This proves (16).

(17) At least one vertex of T has degree at least four.

To prove (17) suppose for a contradiction that all vertices of T = t1t2t3 have
degree at most three. By (1) and (10) they have degree exactly three. For i =
1, . . . , 3, let xi be the neighbor of ti that does not belong to V (T ). As T is the only
cycle of length at most four in G by (3), these vertices are distinct and pairwise
non-adjacent, and by (13), they are internal.

Suppose first that each of x1, x2 and x3 has a neighbor in R. Let H be the
subgraph of G consisting of T ∪R and the six edges joining x1, x2, x3 to T and R,
and let C1, C2 and C3 be the cycles bounding the faces of H distinct from R and T .
Note that |V (C1)|+ |V (C2)|+ |V (C3)| = 21 and G = ins(C1)∪ ins(C2)∪ ins(C3). At
most one of C1, C2 and C3 bounds a face of G, as otherwise x1, x2 or x3 would be an
internal vertex of degree two, contrary to (1). From the symmetry we may assume
that C1 and C2 do not bound a face. From (4) it follows that |V (C1)|, |V (C2)| ≥ 8.
This implies that |V (C3)| = 5 and |V (C1)| = |V (C2)| = 8. However, (6) implies
that C1 has a chord, contradicting (8), (9) or (13).

Therefore, by symmetry we assume that x1 has no neighbor in R. Let G′ be the
graph obtained from G− V (T ) by adding the edge x1x2, where the edge is drawn
along the path x1t1t3t2x2 of G. Since G is R-critical, there exists a 3-coloring φ of
R that does not extend to a 3-coloring of G. Note that every coloring of G′ extends
to a coloring of G, since each vertex of T has a list of two available colors and the
lists of t1 and t2 are different. Thus φ does not extend to a 3-coloring of G′. Let
G′′ be a smallest subgraph of G′ such that R is a subgraph of G′′ and φ does not
extend to G′′. Then G′′ is R-critical.

Consider a cycle K ′ in G′′ of length at most four. Note that x1x2 is an edge
of K ′, and let K be the cycle obtained from K ′ by replacing this edge by the path
x1t1t3t2x2. The cycle K has length six or seven, and thus by (6) and (16), T is
contained in the closed disk bounded by K. By the choice of the drawing of the
edge x1x3, we conclude that the point p is contained in the open disk bounded by
K ′. Therefore, G′′ satisfies (∗).

As G′′ has fewer vertices than G, G′′ is isomorphic to one of the graphs in
Figure 1. As T is not a subgraph of G′′, the triangle of G′′ contains the edge x1x2,
and thus x1 is at distance at most one from R both in G′′ and in G. This contradicts
the choice of x1, finishing the proof of (17).

(18) If C is a 6-cycle of G distinct from R, then the open disk bounded by C
contains no vertices and V (T ) ⊆ V (C).

To prove (18) let C be as stated. By (16) it does not bound a face, and by (5)
ins(C) is isomorphic to one of the graphs depicted in Figure 1. By (17) it is not
isomorphic to the second of those two graphs, and hence (18) follows.

(19) If f is a 5-face incident with four internal vertices of degree three, then some

edge of T is incident with f .
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To prove (19) suppose for a contradiction thatG contains a 5-face f = v1v2v3v4v5,
where v1, v3, v4 and v5 are internal vertices of degree three, and that no edge of
T is incident with f . By (12) the degree of v2 is at least four: this follows directly
from (12) if v2 is internal; otherwise v2 has two neighbors in R and two internal
neighbors incident with f . Let x1, x3, x4 and x5 be the neighbors of v1, v3, v4 and
v5, respectively, outside of {v1, v2, . . . , v5}. If v2 ∈ V (R), then x3 is internal since v3
has only one neighbor in R by (9), and x4 and x5 are internal by (15) and (1). Also,
not all of x1, x3, x4 and x5 belong to R, as no edge of T is incident with f . Thus we
may assume that at least one of x3 and x4 and at least one of v2 and x5 is internal.
As f does not share an edge with T , the vertices v2, x3, x4 and x5 are distinct
and pairwise non-adjacent by (1), (3) and (4). Let G′ be the graph obtained from
G−{v1, v3, v4, v5} by identifying v2 with x5 to a new vertex w1 and x3 with x4 to a
new vertex w2 (with both w1 and w2 drawn inside the original face f and the edges
incident with v2, x5, x3 and x4 extended towards them in the natural way, without
changing their position with respect to the point p). Note that any coloring ψ of
G′ extends to a coloring of G: Give v2 and x5 the color c1 = ψ(w1) and x3 and x4
the color c2 = ψ(w2). If c1 = c2, then color the vertices of V (F ) \ {v2} in the order
v1, v5, v4 and v3. Otherwise, color v4 by c1 and then color v3, v1 and v5 in order.
It follows that some 3-coloring of R does not extend to a 3-coloring of G′. Let G′′

be a minimal subgraph of G′ such that R is a subgraph of G′′ and every 3-coloring
of R that extends to a 3-coloring of G′′ also extends to a 3-coloring of G′. Then G′′

is R-critical.
Next we show that G′′ satisfies (∗). Consider a cycle K ′ of G′′ of length at

most four distinct from T , and let K ⊆ G be the corresponding cycle obtained
by replacing w1 by v2 or x5 or v2v1v5x5, as appropriate, and replacing w2 by
x4 or x3 or x4v4v3x3, as appropriate. If we added both v2v1v5x5 and x4v4v3x3,
then K has length at most 10 and it has two chords v2v3 and v4v5. Thus one of
them must belong to T , contradicting the assumption that no edge of T is incident
with f . Therefore, we expanded only one vertex in K ′ into a path, and hence
6 ≤ |V (K)| ≤ 7. By (16), K does not bound a face. By (4) T is a subgraph of
ins(K). The choice of the drawing of G′ ensures that the point p (contained in
the open disk bounded by T ) belongs to the open disk bounded by K ′; hence, G′′

satisfies (∗), as claimed.
Since G′′ has fewer vertices than G, we conclude that G′′ is isomorphic to one

of the graphs from Figure 1. Let K ′ be the unique triangle of G′′. Using (13), we
conclude that K ′ 6= T . From (3), (4) and the fact that no edge of T is incident
with f we deduce that w1 and w2 are not adjacent in G′. It follows that exactly
one of w1, w2 belongs to K ′. Let K be the corresponding cycle of length six in G.
Since K 6= R, (18) implies that V (T ) ⊆ V (K). Let us label the vertices of K so
that K = xvv′x′y1y2, where xvv

′x′ is either v2v1v5x5 or x3v3v4x4. Since no edge
of T is incident with f and v1, v3, v4 and v5 have degree three, it follows that y1y2
is an edge of T . Let j ∈ {1, 2} be the index such that x and x′ are identified into
wj . Then w3−j 6∈ {y1, y2}, because w1 and w2 are not adjacent in G′. Thus one of
y1, y2 is not adjacent to w3−j (because K ′ is the only triangle in G′′), and so we
may assume that y1 is not adjacent to w3−j . Since G′′ is isomorphic to one of the
graphs from Figure 1, y1 is at distance at most one from R in G′′, and, since y1 is
not adjacent to w3−j , we conclude that y1 is also at distance at most one from R
in G. This contradicts (13) and proves (19).

(20) The cycle R has no subpath z1z2z3 with deg(z2) = 3 and deg(z1) =
deg(z3) = 2.

To prove (20) suppose for a contradiction that say r2 and r4 have degree two
and r3 has degree three. By (14) the vertices r1 and r5 have degree at least three.
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By (16) the face incident with r2 distinct from the outer face is bounded by a 5-
cycle, say r1r2r3yx. Similarly, there is a face bounded by a 5-cycle r3r4r5zy, where
x 6= z by (1). Let K be the 6-cycle r1xyzr5r6. By (1) and (5) the graph ins(K) is
isomorphic to one of the graphs in Figure 1, contrary to (13). This proves (20).

(21) If R has at least two vertices of degree two, then it has at least one vertex

of degree at least four.

To prove (21) suppose for a contradiction that R has at least two vertices
of degree two and the remaining vertices of degree at most three. By (14) and
(20) G has exactly two vertices of degree two, and the distance in R between
them is three. We may therefore assume that r1 and r4 have degree two, and
r2, r3, r5, r6 have degree three. By (16), G has a 6-cycle C = x1x2x3x4x5x6 such
that x1r2, x3r3, x4r5, x6r6 ∈ E(G). By (5) the graph ins(C) is isomorphic to one
of the graphs in Figure 1. It follows that either x2 or x5 has degree two, contrary
to (1). This proves (21).

We are now ready to complete the proof of Theorem 13 using the so-called
discharging argument. Let us assign charges to the vertices and faces of G in the
following way: Each face f of length |f | not bounded by R or T gets a charge of
1 = |f | − 4, the face bounded by T gets charge 2 = (|V (T )| − 4) + 3, and the face
bounded by R gets charge 0 = (|V (R)| − 4)− 2. A vertex v ∈ V (R) of degree two
gets charge −1/3 = (deg(v) − 4) + 5/3, a vertex v ∈ V (R) of degree three gets
charge 0 = (deg(v)− 4) + 1, and all other vertices v get charge deg(v)− 4.

(22) The total sum of the charges is at most −1/3.

To prove (22) we deduce from Euler’s formula the sum of the charges is at most∑
f∈F (G)(|f | − 4)+

∑
v∈V (G)(deg(v)− 4)+n3 +5n2/3+ 1 = n3 +5n2/3− 7, where

n2 is the number of vertices of degree two and n3 is the number of vertices of R of
degree three in G. By (14) n2 ≤ 3. By (20), if n2 = 3 then n3 = 0. By (21), if
n2 = 2, then n3 ≤ 3. It follows that n3 + 5n2/3 ≤ 20/3, and hence the sum of the
charges is at most −1/3, as desired. This proves (22).

Let us now redistribute the charge according to the following rules: every face
distinct from R sends 1/3 to each incident vertex of degree two and each incident
internal vertex of degree three. The face T sends 1/3 to each face that shares an
edge with it. The final charge of each vertex and of the faces R and T is clearly
non-negative. Since the sum of the final charges is equal to the sum of the initial
charges, it follows from (22) that G has a face f of strictly negative final charge.
The face f has length five; let v1, v2, v3, v4, v5 be the incident vertices in order.

If say v2 were a vertex of degree two, then by (14), v1 and v3 would be vertices
of R of degree at least three, and hence f would send no charge to them, contrary
to the fact that the final charge of f is strictly negative. It follows that all vertices
of f have degree at least three, and since the final charge of f is negative, f sends
charge to at least four of them. Therefore, at least four of the vertices incident with
f are internal and have degree three. The fifth vertex has degree at least four by
(12): this is clear if it is internal, and otherwise it has two neighbors on R and two
neighbors on f . By (19) f shares an edge with T . However, f sends 1/3 to each
of its incident vertices of degree three and nothing to the fifth vertex, and receives
1/3 from T ; hence the final charge of f is non-negative, a contradiction.

We are now ready to prove Theorem 8.
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Proof of Theorem 8. Let G, T and φ be as in Theorem 8. We may assume that
R bounds the outer face. Let p be any point of the plane contained in the open
disk bounded by T . Let G′ be a minimal subgraph of G such that R is a subgraph
of G′ and φ does not extend to a 3-coloring of G′. It follows that G′ is R-critical.
Note that G′ satisfies hypothesis (∗) of Theorem 13. By Theorem 13 the graph G′ is
isomorphic to one of the graphs depicted in Figure 1. If neither of the two outcomes
of Theorem 8 holds, then φ extends to a 3-coloring of G′, a contradiction.
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