

warwick.ac.uk/lib-publications

Original citation:
Godtschalk , A. S. and Ciucu, Florin (2016) Randomized load balancing in finite regimes. In:
ICDCS 2016 : IEEE International Conference on Distributed Computing Systems , Nara, Japan,
27-30 Jun 2016. Published in: Proceedings of ICDCS 2016 : IEEE International Conference on
Distributed Computing Systems.

Permanent WRAP URL:
http://wrap.warwick.ac.uk/78222

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for profit
purposes without prior permission or charge. Provided that the authors, title and full
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata
page and the content is not changed in any way.

Publisher’s statement:
“© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting
/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.”

A note on versions:
The version presented here may differ from the published version or, version of record, if
you wish to cite this item you are advised to consult the publisher’s version. Please see the
‘permanent WRAP URL’ above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42620794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/78222
mailto:wrap@warwick.ac.uk

Randomized Load Balancing in Finite Regimes

Antonie S. Godtschalk

Capgemini

Florin Ciucu

University of Warwick

Abstract—Randomized load balancing is a cost efficient policy
for job scheduling in parallel server queueing systems whereby,
with every incoming job, a central dispatcher randomly polls
some servers and selects the one with the smallest queue. By
exactly deriving the jobs’ delay distribution in such systems, in
explicit and closed form, Mitzenmacher [13] proved the so-called
‘power-of-two’ result, which states that the random polling of
only two servers yields an exponential improvement in delay
over randomly selecting a single server. Such a fundamental
result, however, was obtained in an asymptotic regime in the total
number of servers, and does do not necessarily provide accurate
estimates for practical finite regimes with small or moderate
number of servers. In this paper we obtain stochastic lower and
upper bounds on the jobs’ average delay in non-asymptotic/finite
regimes, by extending ideas for analyzing the particular case
of the Join-the-Shortest-Queue (JSQ) policy. Numerical illustra-
tions indicate not only that the (lower) bounds are remarkably
accurate, but also that the asymptotic approximation can be
misleading in scenarios with a small number of servers, and
especially at very high utilizations.

I. INTRODUCTION

Parallel server queueing systems model a wide range of

scenarios related to daily situations, e.g., toll booths, bank

tellers, supermarket cashiers, etc., or to computer and com-

munication systems, e.g., multi-processor systems, data cen-

ters, etc. Scheduling in these complex systems concerns the

assignment of a single server to execute each arriving job.

Existing scheduling policies reveal an interesting tradeoff

between 1) the optimality of some performance metric, e.g.,

jobs’ (average) delay, and 2) cost efficiency, e.g., in terms

of minimizing the amount of overhead. At one extreme, the

policy of (non-)randomly selecting a server has no feedback

cost (as communication from the servers to the dispatcher)

but conceivably lends itself to very large delays, and even

to instabilities when the selection process is not adequately

balanced. At the other extreme, the Join the Shortest Queue

(JSQ) policy, whereby the dispatcher sends each job to the

server with the shortest queue, minimizes delay but has a very

high feedback cost because all servers must report their queue

lengths for every job arrival, and thus raises a valid concern

regarding practical implementations.

In order to reduce the feedback cost, and yet to keep the

delay ‘small’, JSQ has been generalized to SQ(d), whereby the

dispatcher runs JSQ only for a subset of d randomly sampled

servers from the uniform distribution (see Mitzenmacher [13]

and Luczak and McDiarid [11]). Note that SQ(d) reduces

to a simple uniform random selection when d = 1, and

to JSQ when d = N , where N is the total number of

servers. A fundamental qualitative result is that SQ(2) yields

an exponential improvement over SQ(1) in terms of delay, yet

with a conceivably small overhead cost. This result is known as

the ‘power-of-two’ result [13] and was independently obtained

by Vvedenskaya et al. [16].

Despite its apparent simplicity, SQ(d) is very difficult to

analyze in terms of the delay metric, even for a classical

input with Poisson arrivals and exponential job sizes. In fact,

SQ(d) can only be exactly analyzed for d = 1, in which

case the problem reduces to the M/M/1 queue. What makes

the problem particularly difficult, when d > 1, is that the

generator matrix of an underlying N -dimensional Markov

process (representing, for instance, the number of jobs at

each of the servers’ queues) has an irregular structure. For

this reason, solutions have so far been developed either in

asymptotic regimes or in terms of bounds in particular cases.

An exact solution on the delay distribution was obtained

in an asymptotic regime in the total number of servers, i.e.,

for N → ∞ for Poisson arrivals and exponential service

times [16], [13]; this solution was instrumental to showing

the ‘power-of-two’ result. The extension to general service

times was addressed in Bramson et al. [3], [4]. The corre-

sponding case of the randomized longest-queue-first policy

was addressed asymptotically in Alanyali and Dashouk [2] and

Dieker and Suk [5]. The case of heterogenous servers, Poisson

arrivals and general service time distributions was addressed

under an Erlang loss server model by Mukhopadhyay et

al. [14] and also under a light load regime with FCFS servers

by Izagirre and Makowski [7].

As far as non-asymptotic solutions are concerned, upper and

lower bounds on delay were obtained for the particular case

when d = N , i.e., JSQ. The main idea is to transform the

original Markov process with the inherent irregular structure

into Markov chains with some regular structure (see Adan

et al. [1], Lui et al. [12], or Zhao and Grassmann [17]). To

get a lower bound, for instance, the transformation consists

of redirecting some transitions between the states of the

original Markov process in such a way that the new system

is less loaded than the original one. Moreover, the newly

formed generator matrix has a periodic structure such that

its analysis becomes amenable to matrix-geometric techniques

(Neuts [15]).

In this paper we extend such methods for computing upper

and lower delay bounds to the general SQ(d) case. The

extension is not straightforward, but on the contrary, because

of a much more compounded transformation process needed

to produce Markov processes with a regular structure. We

thus provide the first non-asymptotic results for the SQ(d)

policy which can be applied in finite regimes with small to

moderate number of servers. One drawback of the obtained

bounds, however, is that they are obtained in implicit form, as

they are based on matrix-geometric techniques, and are thus

unable to provide qualitative insight alike the ‘power-of-two’

result. In terms of numerical accuracy, the lower bounds are

remarkably tight; in turn, the upper bounds also become tight

but only at an exponential cost in numerical complexity (by

properly adjusting a model parameter).

The rest of the paper is organized as follows. We first de-

scribe the SQ(d) model together with the associated lower and

upper bound models. In Section III we prove the corresponding

stochastic ordering on the lower and upper models, relative to

the base model. In Section IV we present a numerical analysis

of the lower and upper bound models. Concrete numerical

results are illustrated in Section V and brief conclusions are

presented in Section VI.

II. THE MODEL

We consider the general SQ(d) scheduling policy with N

parallel servers. Jobs arrive at a central dispatcher according

to a Poisson process with rate λN , and their service times are

exponentially distributed with unit mean. With every arriving

job, the dispatcher randomly polls d servers according to a

uniform distribution without replacement, out of the N servers.

The d selected servers report the number of jobs in their

systems, and the newly arriving job joins the server with the

smallest number of existing jobs; ties are resolved arbitrarily

(see Figure 1). At every server, jobs are served according to

the FIFO policy. We enforce the stability condition λ < 1.

Fig. 1. The SQ(d) model with N = 6 servers and d = 2 choices; the arriving
job joins server 3 (counted from top to bottom); the departing job from server
5 is arbitrary.

The Poisson/exponential arrivals’ model enables the con-

struction of a continuous-time Markov process to model the

evolution of the SQ(d) policy. The set of states is

M = {m : m = (m1,m2, . . . ,mN)} , (1)

where m1 denotes the largest number of jobs at the N servers,

m2 denotes the second largest number of jobs, and so on, such

that mN denotes the smallest number of jobs.

A. Transition Rates

Consider a generic state m ∈ M. We distinguish two cases,

depending on the uniqueness of m’s components. In the first

case, all the servers have distinct numbers of jobs, such that

the elements of m can be written as

m1 > m2 > · · · > mN .

The transition rates are in this case

λ(m,m+ ei) =

(

i−1
d−1

)

(

N
d

) λN, ∀d ≤ i ≤ N, and

µ(m,m− ei) = µ ∀1 ≤ i ≤ N ,

where λ(m,m + ei) and µ(m,m − ei) are the transition

rates from state m to the states m + ei and m − ei, respec-

tively. Here, ei is defined as the unit vector containing only

zeros, except for the ith element which is set to one.

It is instructive to explain the transition rate λ(m,m + ei)
corresponding to an arriving job. According to the SQ(d)

policy, there are
(

N
d

)

distinct ways to poll d servers out of

a total of N servers. Moreover, in order for the ith server to

be eventually selected, it must be polled by the dispatcher, and

in addition d−1 other servers with greater number of jobs than

server i must be polled as well; since there are at most i− 1
such servers, we get the binomial factor

(

i−1
d−1

)

from above.

Note that, as expected,
∑N

i=d

(

i−1
d−1

)

=
(

N
d

)

. In turn, the other

transition rate µ(m,m−ei) corresponding to a departing job

follows immediately by the assumption of exponential service

times.

The other slightly more complicated case is when at least

two of the servers have an equal number of jobs. There exists

thus 1 ≤ i ≤ N and j > 1 such that the elements of m can

be written as

m1 ≥ . . . ≥ mi−1 > mi = . . . = mi+j > mi+j+1 ≥ . . . ≥ mN .

Let us now make two important conventions. If a server k

with i ≤ k ≤ i+ j is being polled, and its number of jobs is

smaller than at the other d− 1 servers being polled, then we

reorder the elements of m such that it appears as if server i

had been selected. The other convention is that if a job departs

from the server k, then we reorder the elements of m such

that it appears as if the job had departed from server i + j.

We point out that these two conventions do not change the

system, but they are simply made for imposing a convenient

ordering of the elements of M.

According to the first convention, we have the following

transitions for arrivals

λ(m,m+ ei) =

∑i+j

k=i

(

k−1
d−1

)

(

N
d

) λN =

(

i+j
d

)

−
(

i−1
d

)

(

N
d

) λN

λ(m,m+ ek) = 0 ∀i+ 1 ≤ k ≤ i+ j .

There are two interpretations for the numerator in the first

transition. One is that any of the servers i ≤ k ≤ i + j must

be polled, and in addition d−1 out of the servers 1 ≤ l ≤ k−1
must be polled as well. The other interpretation is that all d

servers must be polled out of the first i + j servers, and at

least one must be polled out of the servers i ≤ k ≤ i+ j. We

remark that, unlike in the case with distinct number of jobs

Fig. 7. Lower bound model; achieving regularity in the transition flow diagram (SQ(2), N = 3, and T = 2)

Fig. 8. Upper bound model; achieving regularity in the transition flow diagram (SQ(2), N = 3, and T = 2)

(m′
1,m

′
2, . . . ,m

′
N) for some states from M, we define the

set of precedence pairs

P =

{

(m,m′) :

j
∑

i=1

mi ≤

j
∑

i=1

m′
i ∀j = 1, . . . , N

}

. (5)

Intuitively, the previous inequalities can be interpreted as being

‘more preferable’ to have less jobs in the longest j queues in

the system. On one hand, when there are fewer jobs in the

system, the costs are expected to be lower (by the definition

of the cost function). On the other hand, in a more balanced

system, the efficiency of the servers is improved and hence

the costs are expected to decrease.

Let us next define Pm as the subset of precedence pairs

(m,m′) from P for which m
′ is equal to either m+eN ,m+

e1 − e2,m+ e2 − e3, . . ., or m+ eN−1 − eN .

For some precedence pair (m,m′) let us observe that by

defining

di = m′
i −mi ∀1 ≤ i ≤ N ,

and the associated partial sums

sj =

j
∑

i=1

di ∀1 ≤ j ≤ N ,

then one can write

m
′ = m+ sNeN + sN−1(eN−1 − eN)

+ · · ·+ s1(e1 − e2) . (6)

In other words, any precedence pair (m,m′) from P can be

recursively obtained using precedence pairs from Pml
, for

some states ml, l = 1, . . . , L, with m1 = m and mL = m
′.

Next we state without proof that for any precedence pair

(m,m′) in Pm it holds that

vn(m) ≤ vn(m
′), ∀n ≥ 0 . (7)

The proof is very tedious and similar to the one from [1]

(constructed for the JSQ model), for which reason we omit

it here. Note that the construction from Eq. (6) implies that

Eq. (7) extends to the whole set of precedence pairs P .

Provided the modified chain has been constructed by redi-

recting transitions to less attractive states (i.e., a transition to

m
′ is redirected to m̃

′ with vn(m
′) ≤ vn(m̃

′)), we have

vn+1(m) = c(m) +
∑

m
′

p(m,m′)vn(m
′)

≤ c(m) +
∑

m̃
′

p(m, m̃′)vn(m̃
′)

≤ c(m) +
∑

m̃
′

p(m, m̃′)wn(m̃
′)

= wn+1(m) ,

where the second inequality follows from the induction hy-

pothesis, and thus completing the induction proof.

IV. NUMERICAL ANALYSIS

In this section we numerically analyze the SQ(d) upper

and lower bound models, which provide stochastic bounds

for the original SQ(d) model. We first present a numerical

method to compute the mean waiting time of jobs for the

SQ(d) upper bound model. While this method applies for the

SQ(d) lower bound model as well, we will later present an

improved method for the latter (see Section IV-B).

A. Upper and Lower Bounds

As we have seen in Section II, the transition flow diagrams

of the SQ(d) lower and upper bound models are, in contrast to

the transition flow diagram of SQ(d), well structured. The key

advantage of these transformed models is that we can partition

the newly constructed state spaces (for the lower/upper bounds

systems) into blocks of states with a periodic structure between

adjacent blocks. Moreover, each block has a finite number

of states which can be further ordered according to the total

number of jobs in the system; ties are broken according to a

lexicographical ordering. Concretely, the first block of states

is defined as

B≤(N−1)T = {m ∈ S | #m ≤ (N − 1)T} , (8)

and corresponds to the boundary states. Here #m is defined

as the number of jobs in state m. Observe that all states for

which mN = 0 are included in the boundary states. All the

states with the same number of jobs are grouped together.

Moreover, all boundary states are those states m
′ for which

there is a state m with #m = #m
′ and mN = 0. The state

with the most number of jobs in the system and with mN = 0
is the state (T, T, . . . , T, 0). As there are N servers, the total

number of jobs in this state is (N − 1)T . Therefore, Eq. (8)

corresponds to the set of boundary states.

For the rest of the state space we define the blocks

Bq = {m ∈ S|(N − 1)T + qN < #m ≤ (N − 1)T

+(q + 1)N}, ∀q = 0, 1, 2, . . .

Note that we expect a regular pattern as we have seen in the

transition flow diagrams from Figures 7 and 8. In particular,

except for boundary states,

p
m,m

′ = p
m+1,m

′
+1 . (9)

(see the ‘Useful Properties’ in the Appendix.) The difference

between these two transition probabilities stems from the states

which are involved. Furthermore, the difference between the

corresponding states is the number of jobs at each server,

which is one. The difference in the total number of jobs in

the system is therefore N . We thus expect that every state in

set Bq will correspond to exactly one state in set Bq+1 for all

nonnegative integers q. Moreover, every state in set Bq will

correspond to exactly one state in set Bq+l for all nonnegative

integers q and all nonnegative integers l.

Having partitioned the state space into blocks of states, i.e.,

S = B≤(N−1)T ∪ (∪∞
q=0Bq) ,

we are now ready to construct the newly generator matrices Q

of the upper and lower bound models. They have the following

structured form

Q =

R00 R01 0 0 0 . . .

R10 A1 A0 0 0 . . .

0 A2 A1 A0 0 . . .

0 0 A2 A1 A0 . . .
...

...
...

. . .
. . .

. . .

.

Here, R00, R01 and R10 correspond to the matrices created

by transition rates within the boundary blocks, transitions

from a non-boundary block to a boundary block and from

a boundary block to a non-boundary block, respectively. The

non-boundary blocks, i.e., A0, A1 and A2, are of order m×m,

where m is the number of states in such a block, i.e.,

m =

(

N + T − 1

T

)

.

Given the property from Eq. (9), all submatrices on the main

diagonal are, except for R00, identical. We call this submatrix

A1. Also, all submatrices on the subdiagonal on the left and all

submatrices on the right of the main diagonal are, except for

R10 and R01, identical, respectively. We call these matrices A2

and A0, respectively. Because of this structure of the generator

matrix Q, the stationary equations are given by

(π≤(N−1)T ,π0,πq)Q = 0 ,

where π≤(N−1)T is the limiting probability of the boundary

block and πq is the limiting probability of block Bq for all q ∈
{0, 1, 2, . . .}. On blocks, we can write the balance equations

for the equilibrium probabilities as

0 = π≤(N−1)TR00 + π0R10 (10)

0 = π≤(N−1)TR01 + π0A1 + π1A2 (11)

0 = πq−1A0 + πqA1 + πq+1A2, q = 1, 2, . . . (12)

Eqs. (10) and (11) are called the boundary equations, and

Eqs. (12) are called the queue equations.

For the analysis of the SQ(d) upper and lower bound

models, we construct a matrix R whose elements Rij are the

expected number of visits to state j in block B1, starting from

state i in block B0. This matrix R is called the rate matrix

and is characterized by

0 =

∞
∑

k=0

RkAk

= A0 +RA1 +R2A2

Note that R is an m × m matrix as the number of states

in both B0 and B1 is
(

N+T−1
T

)

. In order to use matrix-

geometric techniques, we observe that the generator matrix Q

is irreducible, since the matrices B0 and A1 are non-singular

(their determinant is not zero). Also, assuming a stability

condition, all states are positive recurrent and, consequently,

the generator matrix Q is positive recurrent. Therefore, we

can use Theorem 1.7.1 from Neuts [15], which states that the

solutions of the stationary probabilities of the SQ(d) lower and

upper bound model can be obtained by solving the balance

equations

(π≤(N−1)T ,π0,π1)

R00 R01 0
R10 A1 A0

0 A2 A1 +RA2

 = 0 (13)

with the normalization condition

π≤(N−1)Te+ (π0 + π1)(I −R)−1
e = 1 ,

where e is the all one vector of proper dimensions.

For the lower bound model, the stability condition is λ < 1.

However, for the SQ(d) upper bound model, this stability

condition is no longer sufficient as the service capacity is

reduced by the redirected transitions to less preferable states.

Therefore, the balance equations from (13) only have a solu-

tion if and only if (see again Theorem 1.7.1 of Neuts [15])

πA0e < πA2e ,

where π is given by πA = 0, πe = 1, and where A = A0 +
A1 +A2.

What remains to show is the construction of the rate matrix

R, for which we use the technique described in Latouche and

Ramaswami [9], [10]. Therein it is shown how to derive a

matrix G, whose elements Gij represent the probability that

starting from a state i in block B1 the chain eventually visits

block B0 and does so by visiting state j. As for the rate matrix

R, the matrix G can be characterized by the following equation

0 = A2 +A1G+A0G
2 .

The matrix G for a generator matrix Q is then explicitly given

by

G = −

∞
∑

k=1

(

k
∏

i=1

B1,i)B2,k ,

where

B1,1 = (−A1)
−1A0

B2,1 = (−A1)
−1A2

B1,i = (I −B1,i−1B2,i−1 −B2,i−1B1,i−1)
−1B2

1,i−1

B2,i = (I −B1,i−1B2,i−1 −B2,i−1B1,i−1)
−1B2

2,i−1 .

As a side remark, Latouche and Ramaswami [10] claim that

the algorithm to compute G needs only few iterations k. We

confirm this to hold for our system configurations, for which

the number of iterations is within k = 6.

Finally, the rate matrix R can be computed from the matrix

G by (see Latouche and Ramaswami [9])

R = −A0(A1 +A0G)−1 .

Having the numerical algorithm to compute the rate matrix

R, we are able to obtain the steady-state probabilities by

solving the balance equations from (13) with the normalization

condition. These lend themselves to stochastic lower and

upper bound on the mean waiting time for the SQ(d) model.

Concretely, for each state we know how many waiting jobs

there are at each server, i.e., server i has max{(mi − 1), 0}
waiting jobs, and we can multiply this number by the equi-

librium probability of the corresponding state. By doing so

for all states, we can compute the jobs’ average delay in a

numerically tractable manner.

The above results are summarized in the following theorem.

Theorem 1. The solutions of the stationary probabilities of the

SQ(d) lower and upper bound model have a modified vector-

geometric form. Specifically,

πq+1 = Rπq, q = 1, 2, . . .

and (π≤(N−1)T ,π0,π1) can be obtained by solving the

balance equations

(π≤(N−1)T ,π0,π1)

R00 R01 0
R10 A1 A0

0 A2 A1 +RA2

= (π≤(N−1)T ,π0,π1) .

B. Improved Lower Bound

In the previous subsection we have obtained a numerically

tractable method to compute the steady-state probabilities for

the SQ(d) lower and upper bound models. Here we simplify

this method dramatically, in terms of the numerical complexity,

by demonstrating an important relation between steady-state

probabilities, in the case of the lower bound model. Concretely,

we will show that for non-boundary states πq+1 = ρNπq , for

all q = 1, 2, Next we present this fundamental result for

some arbitrary arrival process A(t), and after we give a more

explicit solution when A(t) is a Poisson process.

Theorem 2. The solutions of the stationary probabilities of the

SQ(d) lower bound model have a modified vector-geometric

form. Specifically,

πq+1 = σN
πq, q = 1, 2, . . .

and (π≤(N−1)T ,π0,π1) can be obtained by solving the

balance equations

(π≤(N−1)T ,π0,π1)

R00 R01 0
R10 A1 A0

0 A2 A1 + σNA2

= (π≤(N−1)T ,π0,π1) . (14)

Here σ is the unique solution for x, inside the unit circle, of

the equation

x =
∑

k≥0

xkβk , (15)

and where

βk =

∫ ∞

0

(µt)k

k!
e−µtdA(t) .

For the proof see Godtschalk [6].

As our arrivals are assumed to be Poisson, we can give a

stronger result for the SQ(d) lower bound model, in the sense

that we can compute the solution σ for x.

Theorem 3. In the case of Poisson arrivals, the solutions of

the stationary probabilities of the SQ(d) lower bound model

have the modified vector-geometric form

πq+1 = ρNπq , q = 1, 2, . . .

where ρ is the traffic intensity and the rest is as in Theorem 2.

The proof follows using calculus methods and is deferred

to the Appendix.

V. NUMERICAL RESULTS

We first numerically motivate the need for addressing the

problem of randomized load balancing in finite regimes.

Consider the exact, but asymptotic result on the average delay

in a SQ(d) system ([13]):

E[Delay] =

∞
∑

i=1

λ
d
i
−d

d−1 . (16)

Note in particular that the expression is invariant to the number

of servers n.

0 50 100 150 200 250

Number of servers: N

0

2

4

6

8

10

R
el
a
ti
v
e
er
ro
r
(%

)

d = 2
d = 5
d = 10
d = 25
d = 50

(a) ρ = 0.75

0 50 100 150 200 250

Number of servers: N

0

10

20

30

40

50

R
el
a
ti
v
e
er
ro
r
(%

)

d = 2
d = 5
d = 10
d = 25
d = 50

(b) ρ = 0.95

Fig. 9. Relative error of the predicted asymptotic delays vs. simulations

The accuracy of this approximation is illustrated in [13]

for several values of n. Figure 9 herein provides further

numerical results on the relative error (in %) of the asymptotic

results from Eq. (16) relative to simulation results (obtained by

simulating 108 jobs, out of which the first 107 were discarded).

We consider two utilization levels ρ = 0.75, 0.95, several

number of choices d = 2, 5, 10, 25, 50, and a broad range

of number of servers n. The results clearly indicate that the

approximation can be misleading in a regime with a small

number of servers, and especially at very high utilizations.

Another interesting observation is that the relative error is not

necessarily monotonous in d, as shown in the moderately-high

utilization case.

Next we illustrate the accuracy of our lower and upper

bounds in the SQ(d) model. In Figure 10.(a-d) we show the

average delay as a function of utilization for SQ(2). The first

observation is that there is a tradeoff between the accuracy of

the upper bounds and the computational complexity. Indeed,

(a) and (b) indicate that the upper bounds are quite loose

by letting T = 2, and are getting significantly tighter by

letting T = 3. However, the numerical complexity increases

significantly with T because the sizes of the (non-)boundary

blocks in the generator matrix Q are exponential in T . As

a related remark, different values of T change the stability

condition for the SQ(d) upper bound (recall the last two

rules for redirecting transitions from the previous section).

The second observation is that the lower bounds are accurate

over all three values of N , i.e., 3, 6, and 12. Finally, as

also partially illustrated in Figure 9, the asymptotic results

significantly underestimate the ‘true’ results for small values

of N , and especially at high utilizations.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Utilization

A
v
er
a
g
e
D
el
ay

Upper Bound
Simulations
Lower Bound
Asymptotic Result

(a) N = 3, T = 2

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Utilization

A
v
er
a
g
e
D
el
ay

Upper Bound
Simulations
Lower Bound
Asymptotic Result

(b) N = 3, T = 3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Utilization

A
v
er
a
g
e
D
el
ay

Upper Bound
Simulations
Lower Bound
Asymptotic Result

(c) N = 6, T = 3

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Utilization

A
v
er
a
g
e
D
el
ay

Upper Bound
Simulations
Lower Bound
Asymptotic Result

(d) N = 12, T = 3

Fig. 10. Average delay as a function of utilization for SQ(2); various number
of servers N = 3, 6, 12 and threshold parameter T = 2, 3

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the SQ(d) scheduling

policy whose analysis has so far been restricted to asymptotic

regimes in the number of servers. Our central idea was to

artificially construct two scheduling models which provide

stochastic upper and lower bounds for the average delay in

the original SQ(d) model. The merit of the obtained bounds

is that they hold in non-asymptotic/finite regimes, and thus

complement the existing exact but asymptotic results. Numer-

ical evaluations revealed that there is an interesting tradeoff

between the accuracy of the obtained upper bounds and the

dimension of the computational complexity. Moreover, the

lower bounds are remarkably tight, whereas existing asymp-

totic approximations may be misleading in finite regimes,

especially at very high utilizations.

A major constraint of our results, alike existing asymptotic

ones, is the Poisson assumption on the arrivals which may

conceivably provide poor estimates in the context of fitting real

traces. For this reason, a potential and significant advantage

of the matrix-geometric methodology employed in this paper

is that it can be extended to the broad class of Markov Arrival

Processes (MAP) and Phase-Type (PH) service distributions

(see, e.g., Lakatos et al. [8]). Another valuable extension is the

analytical understanding of the tradeoff between computational

complexity and the accuracy of the bounds, in particular the

upper ones.

ACKNOWLEDGEMENTS

The authors thank Sem Borst for his support, and also the

anonymous reviewers for their well-thought suggestions. This

work was partially funded by Telekom Innovation Laboratories

and the DFG grant Ci 195/1-1.

REFERENCES

[1] I. J. B. F. Adan, G. J. van Houtum, and J. van der Wal. Upper and lower
bounds for the waiting time in the symmetric shortest queue system.
Annals of Operations Research, 48(2):197–217, Apr. 1994.

[2] M. Alanyali and M. Dashouk. Occupancy distributions of homogeneous
queueing systems under opportunistic scheduling. IEEE Transactions

on Information Theory, 57(1):256–266, Jan 2011.

[3] M. Bramson, Y. Lu, and B. Prabhakar. Randomized load balancing with
general service time distributions. In ACM Sigmetrics, pages 275–286,
2010.

[4] M. Bramson, Y. Lu, and B. Prabhakar. Asymptotic independence of
queues under randomized load balancing. Queueing Systems, 71(3):247–
292, 2012.

[5] A. B. Dieker and T. Suk. Randomized longest-queue-first scheduling
for large-scale buffered systems. ArXiv e-prints, June 2013.

[6] A. S. Godtschalk. Stochastic bounds for randomized load balanc-
ing. MSc Thesis, Eindhoven University of Technology, Eindhoven, The

Netherlands, 2012.

[7] A. Izagirre and A. M. Makowski. Light traffic performance under the
power of two load balancing strategy: The case of server heterogeneity.
Performance Evaluation Review, 42(2):18–20, Sept. 2014.

[8] L. Lakatos, L. Szeidl, and M. Telek. Introduction to Queueing Systems

with Telecommunication Applications. Springer, 2012.

[9] G. Latouche and V. Ramaswami. A general class of Markov processes
with explicit matrix-geometric solutions. Springer-Verlag, OR Spektrum,
8(4):209–218, Aug. 1986.

[10] G. Latouche and V. Ramaswami. A logarithmic reduction algorithm for
quasi-birth-death processes. Journal of Applied Probability, 30(3):650–
674, Sept. 1993.

[11] M. J. Luczak and C. McDiarmid. On the maximum queue length in the
supermarket model. Annals of Probability, 34(2):493–527, May 2006.

[12] J. Lui, R. R. Muntz, and D. Towsley. Bounding the mean response time
of the minimum expected delay routing policy: An algorithmic approach.
IEEE Transactions on Computers, 44(12):1371–1382, Dec. 1995.

[13] M. Mitzenmacher. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems,
12(10):1094–1104, Oct. 2001.

[14] A. Mukhopadhyay, R. R. Mazumdar, and F. Guillemin. The power
of randomized routing in heterogeneous loss systems. In International

Teletraffic Congress (ITC 27), pages 125–133, Sept 2015.

[15] M. F. Neuts. Matrix-Geometric Solutions in Stochastic Models: an

Algorithmic Approach. John Hopkins University Press, 1981.

[16] N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. Queueing
system with selection of the shortest of two queues: An asymptotic
approach. Problems of Information Transmission, 32(1):15–29, 1996.

[17] Y. Zhao and W. K. Grassmann. Queueing analysis of a jockeying model.
JSTOR: Operations Research, 43(3):520–530, May 1995.

APPENDIX

USEFUL PROPERTIES

Here we give two useful properties amongst the transition

probabilities p
m,m

′ , over the state space

S = {m = (m1, . . . ,mN) | m1 ≥ m2 . . . ≥ mN

and |m1 −mN | ≤ T} .

Define tl as the time just before the lth arrival and consider

{ ~Xl = (X1(tl), X2(tl), . . . , XN (tl)); l = 1, 2, . . .}, which is,

alike ~Xt = (X1(t), X2(t), . . . , XN (t)), a Markovian process.

Now we are able to express the transition probabilities by

conditioning on the interarrival time Ul, i.e.,

p
m,m

′ =

∫ ∞

0

P (~Xl+1 = m
′|Ul = t, ~Xl = m)dA(t) .

For a state m, recall that #m denotes the total number of

corresponding jobs, including both the jobs in service and the

waiting jobs. We see that p
m,m

′ = 0 if #m
′ > #m + 1,

because we only consider single arrivals. The next two lemmas

are useful for the proving the main results in the paper.

Lemma 1. Let m,m′ ∈ S. If #m
′ = #m+1 and mN > 0

or if #m
′ < #m+ 1 and m1 > T , then

p
m,m

′ = p
m+1,m

′
+1 , (17)

where 1 = (1, 1, . . . , 1).

Proof. Define ~X ′
l to be the state immediately after the arrival

of the lth job. The proof considers two cases, i.e., #m
′ =

#m+ 1,mN > 0 and #m
′ < #m+ 1,m1 > T .

For the first case we can write

p
m,m

′ =

∫ ∞

0

P (~Xl+1 = m
′|Ul = t, ~Xl = m)dA(t)

=

∫ ∞

0

P (~X ′
l = m

′| ~Xl = m)

P (~Xl+1 = m
′|Ul = t, ~X ′

l = m
′)dA(t)

=

∫ ∞

0

P (~X ′
l = m

′| ~Xl = m)

P (no job served|Ul = t, all servers busy at tl)dA(t)

=

∫ ∞

0

P (~X ′
l = m

′ + 1| ~Xl = m+ 1)e−µtdA(t)

= p
m+1,m

′
+1

Note that ~X ′
l =

~Xl + 1 and also ~Xl+1 = ~Xl + 1 as in this

case there is only one arrival and no departure.

For the second case, we define the variable k to be (#m+
1)−#m

′. Also define → m1 → m2 . . . → mk as the event

that the system is in state m1 after the first job is served, in

state m2 after the second job is served, . . ., and in state mk

after the kth job is served. We can write

p
m,m

′ =

∫ ∞

0

∑

m1,...,mk:E

P (→ m1 . . . → mk = ~Xl+1

= m
′|Ul = t, ~Xl = m)dA(t)

=

∫ ∞

0

∑

m1,...,mk:E

P (→ m1 + 1 . . . → mk + 1

= ~Xl+1 = m
′ + 1|Ul = t, ~Xl = m+ 1)dA(t)

= p
m+1,m

′
+1 ,

where E denotes the event {#m1 = #m,#m2 = #m −
1, . . . ,#mk = #m− k = #m

′}. �

Lemma 2. Let m,m′ ∈ S. If #m
′ = #m+1 and mN > 0,

then

∑

m
′
:

#m
′
=#m+1

p
m,m

′ = β0 ,

where

β0 =

∫ ∞

0

e−µtdA(t) .

If #m
′ < #m + 1 with m1 > T , define k to be (#m +

1)−#m
′. Then

∑

m
′
:

#m
′
=#m+1−k

p
m,m

′ = βk , (18)

where

βk =

∫ ∞

0

(µt)k

k!
e−µtdA(t) . (19)

Proof. As in the previous proof, we start with the case #m
′ =

#m+ 1. From Eq. (17) and
∑

m

P (~X ′
l = m

′| ~Xl = m) = 1

it follows that
∑

m
′
:

#m
′
=#m+1

p
m,m

′ =
∑

m
′
:

#m
′
=#m+1

∫ ∞

0

P (~X ′
l = m| ~Xl = m)e−µtdA(t)

=

∫ ∞

0

∑

m
′
:

#m
′
=#m+1

P (~X ′
l = m| ~Xl = m)e−µtdA(t)

=

∫ ∞

0

e−µtdA(t) = β0

For the second case #m
′ < #m + 1,m1 > T , we have

from Eq. (17)
∑

m
′
:

#m
′
=#m+1−k

p
m,m

′ =
∑

m1,...,mk:E

∫ ∞

0

P (→ m1 . . . → mk|Ul = t, ~Xl = m)dA(t)

=

∫ ∞

0

∑

m1,...,mk:E

P (→ m1 . . . → mk|Ul = t, ~Xl = m)dA(t)

=

∫ ∞

0

P (k jobs served |Ul = t, all servers busy at tl)dA(t)

=

∫ ∞

0

(µt)k

k!
e−µtdA(t)

= βk .

�

PROOF of Theorem 3

The proof is similar to the one of Theorem 2. What we

additionally need is to explicitly solve for the solution σ for

x. Recall that σ is the unique solution for x, inside the unit

circle, of the equation

x =
∑

k≥0

xkβk . (20)

We start by computing the βk’s in the case of Poisson

arrivals. To make the analysis more insightful, we consider

µ in our derivations (i.e., the service rate which by convention

has an unitary value).

βk =

∫ ∞

0

(µt)k

k!
e−µtdA(t) =

∫ ∞

0

(µt)k

k!
e−µtλe−λtdt

= λ

∫ ∞

0

(µt)k

k!
e−(λ+µ)tdt

Next, using induction and partial integration we will prove

that

βk =
λ

µ

µk+1

(λ+ µ)k+1
(21)

To start the induction we consider k = 0, in which case we

have

β0 = λ

∫ ∞

0

e−(λ+µ)t = −
λ

λ+ µ
e−(λ+µ)t

∣

∣

∣

∣

t=∞

t=0

=
λ

λ+ µ
.

Next we assume that Eq. (21) holds for k ∈ N and we prove

that it also holds for k + 1. We see that

βk+1 = λ

∫ ∞

0

(µt)k+1

(k + 1)!
e−(λ+µ)tdt

= λµk+1

[

−
tk+1

k!

1

λ+ µ
e−(λ+µ)t

∣

∣

∣

∣

t=∞

t=0

+

∫ ∞

t=0

tk

k!

1

λ+ µ
e−(λ+µ)tdt

]

=
µ

λ+ µ
λ

∫ ∞

t=0

(µt)k

k!
e−(λ+µ)tdt

=
µ

λ+ µ

λ

µ

µk+1

(λ+ µ)k+1
(22)

=
λ

µ

µk+2

(λ+ µ)k+2
.

Eq. (22) follows from the induction hypothesis, and the

induction is thus complete.

Next we solve Eq. (20). For convenience, we first express

βk in terms of the traffic intensity ρ, i.e.,

βk =
λ

µ

µk+1

(λ+ µ)k+1
= ρ

1

(ρ+ 1)k+1
.

Next we can write

x =
∑

k≥0

xkβk =
∑

k≥0

xkρ
1

(ρ+ 1)k+1

=
∑

k≥0

(

x

1 + ρ

)k
ρ

1 + ρ
=

ρ

1 + ρ

∑

k≥0

(

x

1 + ρ

)k

=
ρ

1 + ρ

1

1− x
1+ρ

, |x| < 1 + ρ

=
ρ

1 + ρ− x
.

The two solutions of the quadratic equation in x are 1 and

ρ, of which x = ρ is the non-trivial one. The proof is thus

complete. �

