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Abstract
The study of mapping and interaction of co-localized proteins at a sub-cellular level is
important for understanding complex biological phenomena. One of the recent
techniques to map co-localized proteins is to use the standard immuno-fluorescence
microscopy in a cyclic manner (Nat Biotechnol 24:1270–8, 2006; Proc Natl Acad Sci
110:11982–7, 2013). Unfortunately, these techniques suffer from variability in intensity
and positioning of signals from protein markers within a run and across different runs.
Therefore, it is necessary to standardize protocols for preprocessing of the multiplexed
bioimaging (MBI) data from multiple runs to a comparable scale before any further
analysis can be performed on the data. In this paper, we compare various normalization
protocols and propose on the basis of the obtained results, a robust normalization
technique that produces consistent results on the MBI data collected from different
runs using the Toponome Imaging System (TIS). Normalization results produced by the
proposed method on a sample TIS data set for colorectal cancer patients were ranked
favorably by two pathologists and two biologists. We show that the proposed method
produces higher between class Kullback-Leibler (KL) divergence and lower within class
KL divergence on a distribution of cell phenotypes from colorectal cancer and
histologically normal samples.

Keywords: Multiplexed fluorescence imaging, Protein signatures, Toponome imaging
system, Normalization protocols, Bioimage informatics

Introduction
The study of co-localized proteins at the subcellular level is key to our understanding
of the functional relationships between proteins in abnormal cells in complex diseases
such as cancer, as proteins interact together at sub-cellular level to perform cell functions.
Different technologies have been developed in the recent years allowing simultaneous
imaging of the same tissue specimen with several stains or markers. This makes it possi-
ble to study co-localized protein patterns at the cellular and sub-cellular levels, potentially
leading to the discovery of functional protein complexes, protein hubs, stem cell niche,
interactions between neighboring cells in cancerous tissue, novel cancer subtypes, and
multiplex biomarkers for a particular subtype of cancer [1]. Some of the popular mul-
tiplexed bioimaging (MBI) techniques are based on immuno-fluorescence microscopy
[2–4], mass cytometry [5–7], Raman spectroscopy [8] and Ion-beam imaging [9]. All of
these techniques require a standard laboratory procedure to prepare a sample before data
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acquisition. To avoid the garbage-in garbage-out (GIGO) phenomenon in analysis, pre-
processing of the MBI data is as important as standardization of laboratory procedures
[10]. The aim of the overall pre-processing of the MBI data (i.e. a set of n MBIs obtained
for n visual fields per sample) is to align and normalize the data so the signals of one MBI
for protein marker A can be compared to the signals in another MBI for protein B. Since
the co-location of the signals and signal intensities are of primary concern, theMBIs must
be aligned in two domains, the spatial domain (a problem that is usually referred to as
the signal registration) and the intensity domain (the problem of signal normalization), so
that the signal intensities of any given sub-cellular location or ROIs (regions of interest)
can be compared between different data sets.
In this paper, we focus on the standardization of normalization protocols for the MBI

data collected from fluorescence microscopy based systems with particular emphasis
on data generated from the Toponome Imaging System (TIS). This technology has also
been referred to as MELC (multi-epitope-ligand cartography [2] or ICM (imaging cycler
microscope) [2, 11]. Like other multiplexing technologies, TIS has the capability to simul-
taneously image multiple protein markers at subcellular level by staining the tissue with
fluorescent tags and bleaching in a cyclic manner [2, 11, 12]. The strength of TIS lies in its
ability to map co-localized tags on the tissue specimen in situ without harming / destroy-
ing the tissue. This multiplexing technology has been used to study functional protein
networks in different cancers [11] and to co-map dozens of different receptor protein
clusters on the surface of peripheral human blood lymphocytes [13]. Recently, sophis-
ticated analytical tools and advanced algorithms have been developed to spatially align
TIS images [14], perform cell segmentation [15–18], phenotype cells based on their pro-
tein expression profiles [19], visually explore the spatial features of protein co-location
[20, 21] and analyze protein networks localized to individual cells without relying on raw
pixel intensities [22] as opposed to mapping of protein clusters on pixels as in [2]. The
quality of images produced by TIS (and also bymultiplexing technologies), varies depend-
ing on the quality, quantity and concentration of the tag applied to the tissue and also on
exposure time, LED intensity and inherent limitations of the camera capturing the signal.
In order to overcome the variation in captured images from various tags across differ-
ent runs, it is necessary to standardize the methods used for qualitative and quantitative
assessment of protein expression profiles of individual cells in the tissue specimen. The
goal of this work is to investigate normalization methods that can produce consistent
visualization for heterogeneous protein signatures across a range of tissue specimens used
in biological experiments. The consistency in visualization is one way of observing the
data to produce consistent data for analysis algorithms to produce robust and repeatable
results across various runs. We show in our experiments that with the proposed normal-
ization protocols we can increase the separation between the data from different types of
tissue and reduce the separation within the same type.
The most commonly used approach to analyze TIS image data is to first convert the

image pixels to binary values based on a manually selected threshold after background
subtraction [13, 23]. The binary values are then grouped together to form combinato-
rial molecular patterns (CMPs). The similarity mapping approach (SIM) [11] is similar
to binarization, as it allows the user to pick a particular pixel and then analyze all the
pixels which show similar profile in the data set. Conventional approaches to analyze
the TIS image data rely on raw intensities of pixel values, though analytical techniques
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employing pairwise dependence between protein markers localized to cells have recently
been proposed [22]. Analysis based on intensity values is prone to error and may produce
non-reproducible results if there is no standard method to normalize the data to a com-
parable scale. This has been shown for MBIs obtained using other technologies, such as
the matrix-assisted laser desorption (MALDI) technique [24] and mass cytometry [25]
and is what one must expect in the case of TIS as well.
In this paper, we compare eight different normalization protocols, along with the raw

pixel intensity data (protocol R) and suggest a robust normalization method that is rela-
tively insensitive to intensity variation of fluorescence microscopy images corresponding
to various tags among different runs and is responsive to the underlying protein signa-
tures of various tissue constituents. The proposed normalization method provides the
best contrast and inter-class stability across different runs when compared to eight differ-
ent normalization protocols. Here by best, wemean as judged by experts, two pathologists
and two biologists, each blinded to the others’ rankings based on the following criteria:

A) Inter-class contrast: Different tissue classes should be represented by different
colors.

B) Intra-class homogeneity: Pseudo-color for two regions showing the same tissue
class should be identical across the different runs.

C) Inter-sample homogeneity: The pseudo-color contrast features for different tissues
should be the same for different samples. If an interesting spatial distribution
pattern “pops out” in one visualization, it should do as well in the others too if it is
present there as well.

We also test the quality of the data produced using different normalization protocols
by quantitatively calculating KL divergence between the data from different type of tis-
sues. The normalization methods presented in this paper are not limited to colorectal TIS
MBI data and could be applicable to image data produced by other multiplexed imaging
technologies such as the MxIF [3] and tissue samples.

Materials andmethods
The data used in this study consisted of ten different sets of MBIs, four of them from
colorectal cancer (CRC) tissue specimens and the remaining six from histologically nor-
mal tissue. The images were captured using a TIS machine installed at the University of
Warwick following the protocols described in [13]. Before surgery at the George Eliot
Hospital, Nuneaton, UK, patients gave written consent for the use of their tissue for
research purposes. The approval for this research was granted by theWarwickshire Local
Research Ethics Committee, Warwickshire, UK. After collection, the tissue specimen was
fixed in para-formaldehyde solution and after overnight cryo protection in sucrose solu-
tion, it was embedded in optical coherence tomography (OCT) blocks and stored frozen.
Tissue sections were cut from each block and then air-dried after soaking in ice-cold ace-
tone. Before placing the coverslips for TIS imaging, the tissue specimens were soaked in
sterile Phosphate Buffered Saline (PBS), then incubated with normal goat serum in PBS,
and then washed in PBS. See [26] for more details. A library of 26 tags consisting of a
variety of cell-specific markers, tumor and stem cell markers, the nuclear marker (DAPI),
and four PBS control tags was applied to the tissue specimen during the run. Each tag
was sequentially applied from the library to the tissue section where an image is acquired
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before and then again after incubation as described in [2]. Each image was captured at
63×with a spatial resolution of 1, 056×1, 027 pixels and approximately 206 nm/pixel. The
images in each stack were aligned using the registration algorithm specifically designed
for the alignment of MBIs generated by the TIS microscope [14].
In this paper, we investigate eight different normalization protocols (I-VIII) and the raw

intensity MBI (protocol R), as described in the remainder of this section. Figure 1 shows
a unified workflow of the normalization pipeline for MBI, for all the eight protocols. The
dashed boxes show optional processing modules and the solid boxes show mandatory
process in the pipeline. Using different combination of these methods, we established and
compared all the protocols as denoted in Table 1.
For the remainder of this paper, the following notation is used. LetD denote the domain,

for example the set of possible 12-bit intensities that can be measured in a single pixel
p for a single tag t. The width and height in pixels of an image are denoted by w and h
respectively. So the set of all conceivable images for a single tag is Dw×h. Let It ∈ D

w×h

denote the intensity image corresponding to the tag t in a given MBI stack, and the entire
stack consisting of images acquired using N tags be denoted by

(
It ∈ D

w×h)
t=1,...,N . We

denote by ft(p) the intensity of pixel location p in image It .

The truncate filter (a)

We first describe the non-mandatory step of clipping or truncation in the normalization
pipeline, as shown in Fig. 1. Most of the denoising algorithms assume the underlying noise
to be a Gaussian distribution. However, during image acquisition various non-Gaussian
signals with impulsive characteristics are added to the image at extreme ends of the image
histogram, and these may affect any follow-up analysis. To eliminate the outlier values,
we truncate the highest and lowest values per intensity image as recently proposed in [25]

f̂t(p) =

⎧⎪⎨
⎪⎩
f 0.01t , if ft(p) < f 0.01t
f 99.99t , if ft(p) > f 99.99t
ft(p), otherwise

(1)

with f xt being the x-th percentile of It .

Bilateral filter (b)

For denoising purposes, we explored two popular options: relatively recent bilateral fil-
tering and the more conventional median filtering. Bilateral filter [27] uses a combination

Fig. 1 Flowchart of the normalization pipeline. Workflow chart of the normalization pipeline for multiplexed
bioimages (MBI). The dashed boxes show non-mandatory processes and the solid boxes show mandatory
process. For a detailed view, please see the Materials and methods section
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Table 1 Normalization protocols as combinations of clipping, filtering, and renormalization methods

Clipping (a) Filtering Renormalization

R No No No

I No bilateral filter (b) linear renormalization (d)

II No bilateral filter (b) sigmoid renormalization (e)

III Yes bilateral filter (b) linear renormalization (d)

IV Yes bilateral filter (b) sigmoid renormalization (e)

V No median filter (c) linear renormalization (d)

VI No median filter (c) sigmoid renormalization (e)

VII Yes median filter (c) linear renormalization (d)

VIII Yes median filter (c) sigmoid renormalization (e)

of domain and range filters that give relatively large weight to the pixels of a window in
close proximity to the center pixel (whose value is to be smoothed) and having a similar
intensity, and relatively small weight for pixels that are at a distance and have different
intensities. Let �Mb denote the Mb × Mb window with the pixel p to be smoothed at the
center of the window. Mathematically, the bilateral filter can be written as follows,

f̂t(p) = 1
o(p)

∑
p′∈�Mb

ft(p)g(p, p′)s(p, p′)

g(p, p′) = e
− ||p−p′||2

2σ2d

s(p, p′) = e
− ||ft (p)−ft (p′)||2

2σ2r

o(p) =
∑

p′∈�Mb

g(p, p′)s(p, p′)

(2)

We applied bilateral filter with parametersMb = 3, σd = 0.5 and σr = 10 for this work.

Median filter (c)

The median filter [28] is a popular non-linear filter conventionally used in fluorescence
microscopy images. It replaces the intensity value of the center pixel with the median
of intensity values of a neighborhood window of the size Mm × Mm. The median filter
has excellent noise-reduction capabilities with good edge preservation particularly in the
presence of bipolar and unipolar impulse noise [28]. Mathematically, the median filter can
be expressed as follows,

f̂t(p) = median
p′∈�Mm

{
f (p′)

}
(3)

where �Mm is an Mm × Mm filter. In this work, we employed median filtering using
Mm = 3.

Linear renormalization (d)

Variable dynamic range in an image corresponding a particular tag t, due for example
to different exposure times, may result in biased results. Linear renormalization can be
applied to ensure that the dynamic range of each image in the MBI stack is the same.

f̂t(p) = ft(p) − fmin
t

fmax
t − fmin

t
(4)

with fmin
t and fmax

t being the minimum and maximum intensity values of It .
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Sigmoid renormalization (e)

The strong binding of a protein marker in a particular region may produce high intensity
values in that region, rendering the weaker regions almost completely unidentified for
analysis purposes due to their relatively weaker intensity. To ensure that weaker signals are
enhanced without further enhancing the stronger signals, the hyperbolic tangent function
(a scaled form of the sigmoid function commonly used as a neuronal activation function)
can be applied to each intensity image [21].

f̂t(p) = tanh
(

1
2fmean

t
ft(p)

)
(5)

with fmean
t being the mean value of It .

Principal component analysis (PCA) (f)

After the application of a normalization strategy - made up of clipping (optional), fil-
tering, and renormalization steps - we obtain for each set of MBIs N transformed
intensity images

(
It ∈ D

w×h)
t=1,...,N . We flatten each image to get column vectors(

I ′t ∈ D
(w·h)×1)

t=1,...,N . We then defineM ∈ D
(w·h)×N as a matrix consisting of N such col-

umn vectors. We compute the principal component ei ∈ R
N , regarding each row of Mas

a data point [29].

Project data (g)

Due to the numeric computation of eigenvectors (i.e., the principal components), the ori-
entation (not to be confused with the direction, accounting for the variance, of course) of
principal components ei may be arbitrary and needs to be aligned to avoid inverted color
projections (see below). To ensure that they have a similar direction, we set

ei =
{

ei, if ei · �1 > 0
−ei, otherwise

(6)

After this,M is multiplied by an (w.h) × 3 matrix consisting of the first three principal
components

η = M[e1, e2, e3] , where η ∈ R
(w.h)×3 (7)

where η can be transformed back to O ∈ D
w×h×3, resulting in 3 images each having the

same size as each of the N normalized tag images. Thereafter, O is used as an RGB color
image after linearly scaling the intensity values in the R, G, and B channels to the domain
D. In order to visualize and compare the results generated by the various normalization
protocols, we then rescale each of the 3 color channels separately. This way we obtain for
each image data set and each normalization strategy a pseudo-color map, representing
the variances in the data in relation to tissue morphology and prevalent protein signa-
tures. Pseudo-color visualizations (termed as maps here) have their drawbacks, like for
instance the human’s non-homogenous contrast sensitivity along the visual spectrum (i.e.
differences between low frequency colors (blue) are not recognized with the same sen-
sitivity as those for higher frequencies (yellow, red)). However, pseudo-color maps can
display muchmore structure in the feature domain than grey value images so they are still
a widely used approach to exploratory data analysis in MBI [30].
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Kullback-Leibler (KL) divergence

For quantitative comparison of the normalization protocols we performed Agglomera-
tive Hierarchical Clustering (AGHC) and k-means, on average protein expression profile
corresponding to each cell in an MBI, to generate cell phenotypes corresponding to
histologically normal and cancer samples as described in [19]. To measure the differ-
ence between discrete probability distributions of cell phenotyping profile, we employ a
symmetric Kullback-Leibler (KL) divergence [31] defined by

KL(P,Q) = 1
2

∑
i∈X

(P(i) − Q(i)) log
P(i)
Q(i)

(8)

where P andQ are discrete probability distributions on a finite setX of cell phenotypes in
MBI data. According to definition, the KL divergence should be higher when comparing
different classes (‘Normal vs Cancer’) whereas it should be low when comparing within
the same class (‘Normal vs Normal’ and ‘Cancer vs Cancer’).

Results
To minimize the effect of unknown variations in the data we start our analysis with four
MBIs from the same patient, two each of cancerous and adjacent healthy tissue samples.
We obtained pseudo-color (section ‘g’) visualizations using all the normalization proto-
cols listed in Table 1 and requested two pathologists and two biologists to rank the results.
The results for the top five protocols as ranked by the experts (Table 2) are shown in Fig. 2,
whereas the results for the rest of normalization protocols have been added in Additional
file 1: Figure A-1. The first two columns represent samples from histologically healthy
colon tissue and the last two columns represent samples from cancerous tissue. Before
the application of the normalization protocols defined above, the background fluores-
cence signal was removed by subtracting the auto fluorescence signal image just before
applying the respective antibody tag. Two pathologists and two biologists were requested
to rank the images based on the criteria A-C (see Materials and methods section above).
The experts made following general observations on Fig. 2. Normalization protocols R &
I show consistent blue color across the epithelial region in all the three cases where the
epithelial cells are well organized around the crypt. Similarly, they shows greenish color
inside the crypt and the stromal cells show the purple color in all the four cases. Normal-
ization protocols III, V & VII show consistency in the normal cases but show different
colors in the lumen and stromal regions for the cancer cases. Table 2 shows the rank of
the normalization protocols as given by the two pathologists (A & B) and the two biolo-
gists (C, & D). Three experts ranked normalization protocol I as consistently producing
the best results, however one of the experts ranked it as the second best. The reason being
that they seemed to be producing very similar results. When results from protocol I and

Table 2 Rank given to normalization protocols R, I to VIII by two pathologists (A & B) and two
biologists (C & D). The rows represent ranks given by each of the four experts whereas the columns
represent rank of an MBI

Expert 1 2 3 4 5 6 7 8 9

A I R VII V III IV II VIII VI

B I R V II IV VII VIII VI III

C I R VII V III II IV VIII VI

D R I VII III V II IV VIII VI
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Fig. 2 Pseudocolor representation of normalization results. Column 1 to 4 represent four different cases: first
two columns are from histologically normal tissue and the last two are from cancerous tissue of the same
patient. Row 1 represents pseudo-color image obtained using raw pixel intensity values whereas row 2 to 5
represent psudo-color images obtained after applying different normalization protocols. See the text for
details about results shown in I, III, V, VII. The pseudo-color images for the remaining normalization protocols
are added in the Additional file 1: Appendix in Figure A-1

R were carefully examined they seem to produce similar pseudo-color images except that
epithelial region in column two show slightly lighter blue for the protocol R compared
to epithelial from the protocol I. Experts ‘A’ & ‘C’ preferred the color tone of blue in the
protocol I as it was consistent with the color tone in the images in first and third column.
Additionally, the protocol I shows higher contrast between signal and the background by
suppressing background intensities whereas the protocol R shows slightly higher inten-
sities in the background region. This suggests that the protocol I does not compromise
the quality of data while performing normalization. We perform further experiments as
explained in the remainder of this section to examine if the protocol I increases the quality
of the data and introduces consistency in the results from different runs. Normalization
protocols II, IV VI & VIII, (Figure A-1 in Additional file 1: Appendix) do not exhibit color
consistency in all four cases and were ranked low by experts. For example, all of these
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protocols show a variation in color in the epithelial cells around the crypt. Even in the
healthy cases, the colors are not stable and show a lot of variation. The same is the true
for the lumen areas, goblet cells and the stromal cells.
Another interesting feature of protocol R & I is the particular foreground / background

contrast of one specific cell, which can be seen in the upper-left quadrant of images in the
first column (Fig. 2). It appears as a small blue / cyan dot. An in-depth analysis has shown
that this cell expresses an unusual combination of almost all proteins tagged in this exper-
iment. Such rare occurrences could yield potential cues to rare events in the specimen,
such as cancer stem cells. The contrast of this particular cell is high for protocols R, I, III,
and V and ideal for protocol I and R.
To compute KL divergence, distribution of cell phenotypes obtained using the method

proposed in [19] was compared in normal and cancer samples. Figure 3 shows results for
within class KL divergence, whereas Fig. 4 shows between class KL divergence results for
normal and cancer samples, where Normal1 and Normal2 correspond to columns 1 and
2, whereas Cancer1 and Cancer2 refer to columns 3 and 4 respectively in Fig. 2.We expect
lower within class KL-divergence as the same class should exhibit similar phenotypes
whereas higher between class KL-divergence as different classes should exhibit different
phenotypes. Figure 4 shows that only R, I and V produced higher KL divergence whereas
the rest of the normalization protocols failed to show separation between the phenotypes
while performing AGHC. Protocol R shows higher KL divergence in both Normal2 vs
Cancer1 and Normal2 vs Cancer2 cases compared to protocol I and V which is desired,
but it also shows higher within class KL divergence for Normal when performing AGHC.
When Normal2 is carefully observed in Fig. 2, the stromal cells show a variation in colour
within the same image for protocol R as can be seen in the stromal cell at the bottom
of the image (Row 1, Column 2). Protocol I and V do not suffer from this discrepancy.
Similarly, within class KL-divergence for k-means show higher values for protocol R & V.

Fig. 3 Within class KL divergence after applying different normalization protocols. Normalization protocol I
shows lower KL divergence in all cases except for k-means clustering on cancer data
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Fig. 4 Between class KL divergence after applying different normalization protocols. Only R, I & VII show
higher KL divergence while performing AGHC & k-means

Compared to protocol R normalization protocol I shows lower within class KL divergence
in all k-means cases. However, normalization protocol I shows higher KL divergence com-
pared to II,III, IV, VI, VIII normalization protocols while performing phenotyping using
k-means clustering on cancer data. This is likely due to the difference in histologic grade
of the cancer tissues. The normal tissues on the other hand show very low KL divergence
for protocol I. Protocol I shows higher KL divergence for all the cases except for k-means
Cancer1 vs Normal1 and Cancer1 vs Normal2, but these values are very close to the ones
obtained using protocol R. Protocol R on the other hand shows lower values for KL diver-
gence for the k-means Cancer2 vs Normal1 and Cancer2 vs Normal2. Results obtained
using protocol VII and IV can be studied in a meaningful way when the results from these
protocols are combined in Figs. 3 and 4. Protocol VII shows higher between class KL
divergence but it also shows higher KL divergence for within class KL divergence in Fig. 3.
Similarly, protocol IV shows lower values in Fig. 3 but it also lowers the between class KL
divergence.
We performed the same experiment with three MBIs collected from another patient,

which contains one MBI from cancer sample and two MBIs from adjacent histologically
normal samples. We have added the results in the Additional file 1: Appendix for within
class KL-divergence in Additional file 1: Figure A-2 and for between class KL divergence
in Additional file 1: Figure A-3. The KL-divergence result show similar kind of pattern
for protocols R, I & V as in Figs. 3 and 4 respectively. The protocol R shows higher
within class KL-divergence for normal samples with k-means clustering. However, for this
patient, protocol VII behaved differently and shows higher between class KL-divergence
when performing clustering using AGHC, but between class KL-divergence is lower for
protocol VII when performing clustering using k-means, showing inconsistency in the
results.
In addition to above experiments, we combined data from four cancer MBIs and six

histologically normalMBIs and calculated KL-divergence on the cell phenotypes obtained
using AGHC and k-means clustering. For computing between class KL-divergence (i.e.,
Cancer vs Normal (CN)), we generate a ‘normal’ mosaic using six histologically normal
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MBIs and a ‘cancer’ MBI mosaic using four cancer MBIs and perform clustering to obtain
cell phenotypes. For between class KL-divergence, i.e., normal vs normal (NN) and cancer
vs cancer (CC), we generate the mosaic by dividing each MBI into two halves and use
one half to contribute to artificially generated one mosaic and the other half artificially
generated second mosaic. In this way we can make sure that we are not missing any cell
phenotypes which might be present in one patient and not in another. At the same time,
by using half of the image we create separation between the data in a way that the data
is not taken from the same region. The results for KL-divergence are shown in Table 3,
which shows that protocol I shows lower within class KL-divergence and higher between
class KL-divergence. In the case of k-means protocol V shows higher between class KL-
divergence but at the same time it has higher within class KL-divergence. Also, for in the
AGHC case, protocol V produces lower between class KL-divergence. Therefore, there is
inconsistency in the results as evident from results in Fig. 3 and Additional file 1: Figure
A-2 which shows higher within class KL-divergence for protocol V. Similarly, protocol
R shows higher within class KL-divergence for k-means Normal case both in Fig. 3 and
Additional file 1: Figure A-2. Normalization protocol I as ranked bymajority of the experts
increases the separation between clusters when comparing different classes but decreases
this separation within the same class. The consistency of protocol I makes it the best
choice for normalization among the comparable schemes.

Conclusions
Standardization of normalization procedures for data acquired from multiplexed
bioimaging (MBI) technologies is as important as the standardization of protocols for the
preparation of the tissue. This is mainly because of the presence of inherent limitations
of the imaging apparatus, which can be due to variations in quality, quantity, or concen-
tration of the antibody tag, exposure times, and quality of the camera and the microscope
being used. Although efforts are being made to optimize the procedure for data acquisi-
tion and preparation of slides under the microscope [23], normalization of the data, i.e.
the alignment of signals will always be necessary to overcome the variation across vari-
ous runs for different types of tissue. Normalization protocols have been attempted in the
past for other multiplexed technologies such as MALDI, mainly based on heuristics [24].
We presented a normalization pipeline for the normalization of MBI data and compared

Table 3 KL-divergence result for the mosaic image created using multiple MBIs

k-means AGHC

CC NN CN CC NN CN

R 0.43 0.51 5.97 0.13 0.32 0.56

I 0.26 0.22 8.37 0.25 0.27 0.58

II 0.16 0.48 0.42 0.13 0.15 0.14

III 0.52 0.19 2.08 0.09 0.12 0.22

IV 0.16 0.42 0.46 0.10 0.14 0.21

V 0.46 0.33 10.08 0.25 0.27 0.21

VI 0.26 0.35 0.36 0.13 0.13 0.13

VII 0.52 0.16 1.22 0.07 0.14 0.13

VIII 0.22 0.43 0.66 0.08 0.16 0.13

CC represents cancer vs cancer, NN represents normal vs normal and CN represents Cancer vs Normal KL-divergence. Protocol I
(bold) produces high inter-class divergence while simultaneously preserving low intra-class divergence
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the performance of its eight variants for data sets collected from ten different tissue sam-
ples, six histologically healthy and four cancerous samples. Three of the four experts, two
pathologists and two biologists, agreed on the normalization protocol I (made up of bilat-
eral filtering followed by linear scaling) to be performing the best, whereas one expert
ranked protocol I to be second best.
Protocol I also ranks best in terms of consistency in KL-divergence results, and is a

combination of no clipping, bilateral filtering and linear normalization. Using protocol I,
different constituents in the tissue, for example epithelial tissue, lumen and stromal cells
produced consistent visualization across all the images from different types of tissue. In
addition, normal and cancer tissues produced desired results after calculating KL diver-
gence on cell phenotypes. The results suggest that if images do not contain over saturated
intensities, clipping may destroy the quality of the data in those images. Bilateral filtering
denoises the images but does not merge different compartments of the tissue as does the
conventional median filtering. Linear scaling linearly stretches the intensities from 0 to 1
(maximum intensity), for all the protein expressions, therefore dynamic range of expres-
sion of protein intensities is preserved across different runs, while the results suggest
that non-linear sigmoid scaling degrades the quality of data. It seems that linear scaling
has major impact on the normalization protocol as R, I, III, V & VII rank best by expert
markings but if the results are studied in detail it is the combination of bilateral + lin-
ear normalization which makes it the best normalization protocol. If bilateral filtering is
replaced with median as in protocol V (No clipping + median + linear), protocol V shows
different visualization for stromal cells in Fig. 2, in addition the results show higher within
class KL-divergence in Fig. 3 and Additional file 1: Figure A-2. This suggests that it is the
combination of No clipping + bilateral filtering + linear scaling which produces the best
results.

Additional file

Additional file 1: Appendix. Figure A-1: Column 1 to 4 represent four different cases: first two columns are from
histologically normal tissue and the last two are from cancerous tissue of the same patient. Rows 1 to 4 represent
pseudo-color images obtained after applying low rank normalization protocols as marked by the experts. Figure A-2:
Within class KL-divergence for Patient 2. Within class KL-divergence for second patient after performing phenotyping
using different normalization protocols. Figure A-3: Between class KL-divergence for Patient 2. Between class
KL-divergence for second patient after performing phenotyping using different normalization protocols. (PDF 341 kb)
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