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Decreased transketolase activity is an unexplained characteristic of patients with end

stage renal disease (ESRD) and is linked to impaired metabolic and immune function.

Herein we describe the discovery of a link to impaired functional activity of thiamine

pyrophosphate co-factor through the presence, accumulation and pyrophosphorylation

of the thiamine antimetabolite, oxythiamine, in renal failure. Plasma oxythiamine was

increased 4-fold in patients receiving continuous ambulatory peritoneal dialysis (CAPD)

and 15-fold in patients receiving haemodialysis (HD) immediately before a dialysis

session: healthy controls 0.18 (0.11 – 0.22) nM, CAPD, 0.64 (0.48-0.94) nM and HD

(2.73 (1.52-5.76) nM); P<0.001, Mann-Whitney U test. Oxythiamine was converted to the

transketolase inhibitor oxythiamine pyrophosphate (OTPP). Red blood cell OTPP

concentration was increased 4-fold in HD: healthy controls, 15.9 ± 10.4 nM and HD

patients, 66.1 ± 26.7 nM; P<0.001, t-test. This accounted for the concomitant 41% loss of

transketolase activity (mU/mg Hb): healthy controls, 0.410 ± 0.144 and HD, 0.240 ±

0.107; P<0.01, paired t-test. This may be corrected by displacement with excess thiamine

pyrophosphate and explain lifting of decreased transketolase activity by high dose

thiamine supplementation in previous studies. Oxythiamine is likely of dietary origin,

through cooking of acidic thiamine-containing foods. Trace level oxythiamine was not

formed from thiamine degradation under physiological conditions but rather under

acidic conditions at 100 oC. Monitoring of plasma oxythiamine concentration in renal

failure and implementation of high dose thiamine supplements to counter it may help

improve clinical outcome of patients with renal failure.
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Loss of clearance in chronic kidney disease (CKD) leads to accumulation of waste products

from metabolism that increase to potentially damaging concentrations and thereby become

uremic toxins. In end stage renal disease (ESRD) potentially noxious metabolites may

increase >10-fold, particularly preceding a dialysis session. Among classes of uremic toxins

are catabolic and degradation products of essential nutrients and cofactors. Where similar in

structure to their precursor but non-functional, uremic toxins may have potentially damaging

function as anti-metabolites.1

It is known that there is impaired function of the pentosephosphate pathway in

uraemia at the thiamine pyrophosphate (TPP)-dependent step catalysed by transketolase2. The

inhibition of transketolase was reversible although the identity of the inhibitor was difficult to

discern. The inhibitor was of low molecular weight and initially considered to be

guanidinosuccinic acid (GSA). Low levels of GSA in plasma of patients with decreased red

blood cell transketolase activity, lack of correlation of GSA concentration to inhibition of

transketolase activity and failure of GSA to inhibit transketolase activity in red blood cells ex

vivo suggested other compound(s) are likely involved.3-5 Disturbance of levels of

pentosephosphate pathway metabolites in peripheral nerves in vivo regulated by transketolase

activity and recovery of this by HD indicated reversible inhibition of transketolase.

Transketolase activity was also decreased in patients with continuous ambulatory peritoneal

dialysis (CAPD).6 This occurred in the presence of normal levels of plasma thiamine and red

blood cell TPP.4, 7, 8 The mechanism of reversible inhibition of transketolase in renal failure

has remained unresolved for over 40 years.

We hypothesised that transketolase may be inhibited in renal failure by an anti-

metabolite of thiamine which is normally cleared but accumulates to inhibitory levels with

loss of clearance in ESRD. Oxythiamine (4-hydroxythiamine) 9 is pyrophosphorylated by

thiamine pyrophosphokinase to oxythiamine pyrophosphate (OTPP) which inhibits TPP-
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dependent enzymes10-12 – Figure 1. Injection of oxythiamine into rats decreased tissue

transketolase activity.13 We report here the accumulation of oxythiamine in plasma and

related OTPP in red blood cells of patients with ESRD that likely explains the inhibition of

transketolase in renal failure.

RESULTS

We measured plasma thiamine concentration of healthy subjects and patients with ESRD

receiving renal replacement therapy - continuous ambulatory peritoneal dialysis (CAPD) and

haemodialysis (HD) by the conventional thiochrome assay14 – Table 1. The plasma

concentration of thiamine was within the normal range and even increased in CAPD and HD

patients. Oxythiamine is not detectable by the thiochrome assay as it lacks the 4-

aminopyrimidinyl moiety required for thiochrome formation.15 We therefore developed a

liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for oxythiamine and

OTPP – Figure 2, a. - d. Oxythiamine were analysed in plasma of ESRD patients receiving

CAPD or HD. Oxythiamine was detectable at trace levels in plasma of healthy people:

median (lower – upper quartile), 0.18 (0.11 – 0.22) nM. In ESRD patients receiving CAPD

and HD, however, this was increased 4-fold, 0.64 (0.48-0.94) nM, and 15-fold, 2.73 (1.52-

5.76) nM, respectively; P<0.001, Mann-Whitney U test – Table 1. In a further group of HD

patients we measured plasma oxythiamine before and after a 4 h dialysis session and found

that oxythiamine decreased by 53 (34 - 64)% during the dialysis session (n = 12, P<0.002,

Wilcoxon Signed Ranks test).

We explored the metabolism of oxythiamine and its effect on thiamine metabolism in

a subgroup of healthy control subjects and HD patients. We measured the concentration of

TPP in red blood cells of healthy subjects and HD patients and found no significant

difference. However, plasma oxythiamine was increased 19-fold in these patients and
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corresponding OTPP concentration in red blood cells was increased 4-fold – Figure 3, a. - c.

OTPP is a reversible competitive inhibitor of transketolase. We measured the transketolase

activity of the red blood cells by the conventional test with lysates prepared ex vivo. Red

blood cell transketolase activity was decreased 41% in HD patients, with respect to healthy

controls – Figure 3d. It was also measured in the presence of excess TPP which is used to

assess the percentage unsaturation of transketolase or “thiamine effect” but will also increase

transketolase activity by displacing competitive inhibitors. With added exogenous TPP there

was no increase in transketolase activity of healthy controls (0.436 ± 0.139 versus 0.410 ±

0.144 mU per mg Hb; P>0.05, paired t-test) but there was a highly significant increase in HD

patients (0.332 ± 0.103 versus 0.240 ± 0.107 mU per mg Hb; P<0.001, paired t-test). This

increase in transketolase activity reflects lifting of reversible competitive inhibition and the

competitive inhibitor TPP is presence in the red blood cell lysate. There was no correlation of

plasma oxythiamine and red blood cell transketolase activity. However, there were highly

significant correlations of red blood cell transketolase activity and OTPP concentration (r = -

0.55, P<0.01; Spearman) and red blood cell OTPP concentration with plasma oxythiamine

concentration (r = 0.79, P<0.001; Spearman).

To deduce if the accumulation of OTPP in red blood cells likely causes significant

inhibition of transketolase clinically, the effect of competitive inhibition of OTPP on

transketolase activity was deduced from enzyme kinetics considerations - Figure 3e.

Comparing the decrease in red blood cell activity of transketolase in HD patients from

healthy controls determined experimentally (Figure 3d) with the computed decrease in

residual transketolase activity by inhibition with OTPP (Figure 3e), it can be seen that

inhibition of transketolase by OTPP accounts for most of the observed decrease of

transketolase activity of red blood cells in HD patients. Experimental transketolase activity is
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decreased 41% and the computed decrease of fractional residual activity of transketolase is

35% in HD patients - Figures 3d and 3e.

For further demonstration that transketolase activity in red blood cells of HD patients

is decreased reversibly by OTPP, we sought to recover transketolase activity by incubation of

red blood cells ex vivo in short term culture with exogenous thiamine. A relatively high

concentration of thiamine (50 μM) was used to drive rapid phosphorylation to TPP and 

displacement of OTPP from transketolase. With thiamine supplementation, red blood cell

transketolase activity was increased to 0.53 ± 0.11 mU/mg Hb (n = 12), similar to that of

healthy controls. In the same incubations, the terminal pentosephosphate pathway metabolite

ribose-5-phosphate (R5P) was quantified with and without 50 μM thiamine. Supplementation 

with thiamine increased the red blood cell concentration of R5P with respect to

unsupplemented controls to levels similar to those of healthy control subjects16: 34.5 ± 14.5

versus 19.1 ± 10.3 nmol/ml packed red blood cells (n = 12; P<0.01, paired t-test).

A possible source of oxythiamine detected clinically is formation by high temperature

processing of thiamine-containing foods under acidic conditions – similar to but not as severe

as conditions of oxythiamine synthesis.15, 17 To model this we incubated 1 μM thiamine in 

water, pH 7.0, at 37 oC and 100 oC, and in 100 mM acetic acid, pH 2.9, at 37 oC and 100 oC

for 1 h. Oxythiamine was detected only in thiamine solution heated at 100 oC and pH 2.9. The

concentration of oxythiamine formed was 0.56 ± 0.06 nM or 0.06% of thiamine. Similar

conversion of dietary thiamine in cooking or commercial food processing with limited

clearance over 2 – 3 days could explain the accumulation of oxythiamine to low nanomolar

levels in ESRD patients.

DISCUSSION
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From the studies herein accumulation and metabolism of the thiamine antimetabolite

oxythiamine in renal failure is a major contributory factor to inhibition of transketolase

activity and block of the pentosephosphate pathway in HD patients. It likely produces similar

effects in renal failure patients with CAPD and pre-dialysis patients. Surveillance of OTPP

levels in red blood cells or oxythiamine levels in plasma may be of benefit. Plasma

oxythiamine concentration correlated strongly and positively with red blood cell OTPP

which, in turn, correlated strongly and negatively with red blood cell transketolase activity.

The lack of correlation of plasma oxythiamine with transketolase activity is likely due to

clearance of oxythiamine in dialysis sessions whereas OTPP and transketolase are both

retained in red blood cells.

The source of oxythiamine in clinical samples is uncertain. Analytical reagent grade

thiamine did not contain detectable oxythiamine impurity. Trace mono-oxygenase

metabolism of thiamine to oxythiamine by human tissues or intestinal bacteria is possible but

unknown; moreover, mono-oxygenases (cytochrome P450 enzymes) tend to be down-

regulated in renal failure.18 The precedent from chemical synthesis and the dependence of

kinetics and product distribution of thiamine degradation on pH and temperature suggest

processing of thiamine under acidic conditions at high temperatures forms oxythiamine.15

Model studies herein support this: oxythiamine was only formed in acidic solution at pH 2.9

heated at 100 oC. pH 2.9 is similar to the acidity of some fruits, diluted vinegar19 and mean

pH of the stomach in the prandial/postprandial period.20 There is, therefore, likely no

significant formation of oxythiamine in the acidic environment of the stomach. Exposure to

oxythiamine is rather likely of dietary origin, formed in thiamine-containing foodstuffs

during home or commercial cooking. The degradation of thiamine in foodstuffs has mostly

been studied for the rapid degradation at high pH which does not form oxythiamine.21

Examples of thiamine containing foodstuffs with natural low pH are fruits and fruit juices;
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canned fruits are heated during commercial processing. Foods may also be made acidic by

vinegar, lemon juice and other acidic culinary additives.19 The use of vinegar in cooking has

been proposed as beneficial in the diet of ESRD patients to decrease potassium and

magnesium content of vegetables22 and to decrease formation of advanced glycation

endproducts (AGEs) in foods.23 This requires reappraisal in light of the current studies. Low

protein diets for renal patients will affect the exposure to oxythiamine if they concurrently

decrease consumption of cooked thiamine-containing acidic foods. The accumulation of

oxythiamine in ESRD patients is due to decreased clearance and elimination by dialysis.

Given the requirement for acidic, high temperature processing for oxythiamine

formation, high dose thiamine administered as a pharmaceutical at ambient temperature does

not lead to oxythiamine formation. Supporting evidence for this is experimental and clinical

studies in renal failure with high dose thiamine or related derivatives where transketolase

activity was increased. 24-26 Maintained low or further decreased transketolase activity would

be expected if formation of oxythiamine had increased.

In preclinical studies administration of oxythiamine decreased the retention of

thiamine in tissues27 and increased the rate of TPP dephosphorylation.28 Oxythiamine was a

weak inhibitor of thiamine transporters29 and potentiated the toxicity of methylglyoxal30

which is also elevated in renal failure and precursor of AGEs.31 Oxythiamine was taken up

and phosphorylated by all tissues of rats except brain; the formation of OTPP was inversely

proportional to TPP content.32 Correspondingly transketolase activity was inhibited in all rat

tissues by oxythiamine administration except the brain,13 likely through formation of OTPP.

OTPP inhibits other TPP-dependent enzymes with lower potency: for mammalian pyruvate

dehydrogenase, the Ki ≈ 70 nM12 and 2-oxoglutarate dehydrogenase complex was little

affected.33
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In clinical studies, decreased transketolase activity leads to impairment of oxidative

and reductive pentose pathway activity, contributing to impaired phagocyte function for

resistance to infection34 and impaired disposal of triosephosphates.35 The latter is associated

with stimulation of mitochondrial dysfunction and formation of oxidative stress, increased

diacylglycerol formation and activation of protein kinase C, activation of the hexosamine

pathway and increased formation of methylglyoxal and AGEs.36 Further disturbance of

thiamine metabolism in renal failure occurs by decreased expression of thiamine transporters

in small intestine, heart, liver and brain and likely decreased availability of thiamine at these

sites.37 Herein we showed that incubation of red blood cells from HD patients ex vivo with

thiamine restored normal levels of transketolase activity and R5P concentration, consistent

with correction of impaired pentose pathway activity.

Plasma oxythiamine was decreased after a dialysis session in HD patients and hence

is cleared by dialysis. Thiamine binds to human serum albumin with a dissociation constants

KD of ca. 1 μM.38 Plasma thiamine measured in the thiochrome assay is the sum of the free

and protein-bound forms. Given the high plasma albumin concentration, 40 mg/ml or ca. 600

μM, most of thiamine is protein-bound in plasma. The affinity of oxythiamine for albumin is 

unknown but oxythiamine had similar urinary excretion characteristics to thiamine in rats and

therefore is likely also bound to albumin.27 This will limit the clearance of oxythiamine in

dialysis.

Previous studies have assessed transketolase deficiency in ESRD by measuring

erythrocyte transketolase activity stimulating index (αETKA). This measures the fractional or 

percentage increase in activity of transketolase on addition of excess cofactor TPP.39 We used

addition of 348 μM herein - ca. 500 fold higher than present physiologically - to provide for

effective and rapid displacement of the OTPP competitive inhibitor. Values of αETKA > 1 

are conventionally assumed to be due to decreased availability of TPP and presence of apo-
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transketolase. In the presence of a competitive inhibitor such as OTPP, however, αETKA also 

reports on inhibition of transketolase where the 500-fold excess TPP displaces the

competitive inhibitor. Consistent with this, herein addition of 500-fold excess TPP increased

transketolase activity in HD patients but not in healthy controls. For αETKA to capture 

reversible inhibition of transketolase, the activity of transketolase is measured immediately

on dilution of red blood cell haemolysate before the inhibitor dissociates from the

holoenzyme by dilution; and when 500-fold excess TPP is added to the haemolysate, 30 min

pre-incubation is performed in the absence of substrate prior to the transketolase activity

measurement to allow for displacement of the inhibitor. When transketolase is in the presence

of substrate, exchange of TPP cofactor and OTPP inhibitor is very slow.40 The absolute level

of transketolase activity relates to metabolic function in the pentosephosphate pathway

whereas αETKA captures the competitive inhibition of transketolase in ESRD patients and 

unsaturation of transketolase by TPP in thiamine deficiency.

Dynamics of TPP cofactor binding to apo-transketolase indicate that if highly diluted

red blood cell lysates are left without substrate at ambient temperature for >30 min prior to

assay, OTPP would be released from holo-transketolase and competitive inhibition lost.40

This may have contributed to discordant reports of decreased transketolase activity in ESRD

patients. Studies by Lonergan and co-workers2, 3 and Kopple et al.41 used a modified method

of transketolase activity assessment developed by Dreyfus42 which was subsequently found to

lack specificity and reproducibility43-45 and is no longer used. Inhibition of transketolase

would have been lost if high dilution of red blood cell lysate was prepared without immediate

assay of transketolase activity such that OTPP dissociated from the holoenzyme.

In clinical translation, dietary deficiency of thiamine - leading to Beriberi and

Wernicke–Korsakoff syndrome if untreated, may be conveniently diagnosed by urinary

excretion of thiamine where excretion of ≤0.20 µmol/24 h reflects thiamine nutritional
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deficiency.46 In ESRD patients, plasma thiamine measured by the thiochrome assay is an

expected surrogate measure of this. Recent studies in diabetes and CKD suggest there are

also abnormalities of thiamine transport due to tissue-specific down regulation of thiamine

transporters.14, 37, 47 Measurement of renal clearance of thiamine is a sensitive clinical marker

of this.14 Red blood cell transketolase activity is valuable to assess impact on the

pentosephosphate pathway and αETKA to explore cause of transketolase activity deficit.48

Where competitive inhibition of transketolase by OTPP or similar antimetabolite is

suspected, care is required to ensure the inhibitor does not dissociate from the holoenzyme

before the activity is recorded. Plasma oxythiamine offers an assessment of oxythiamine

exposure with analytical standard available commercially.

In summary, transketolase activity is likely impaired in red blood cells in ESRD

patients by inhibition by the antimetabolite OTPP. The recommendation for patients with

stage 3 – 5 CKD to take a supplement of the daily reference intake (DRI)49 of 1.1 – 1.3 mg

thiamine may be insufficient given the increased concentration of OTPP in renal failure. The

remedy to the antimetabolite effects of oxythiamine accumulation is pharmaceutical doses of

thiamine to produce increased TPP for OTPP displacement from transketolase. Thiamine (30

- 45 mg per day equivalent) in HD patients was studied and found to alleviate transketolase

deficiency.24 These remedial effects found were consistent with reversal of OTPP

antimetabolites effects but oxythiamine was not determined and the minimum dose of

thiamine required for benefit is uncertain. High dose thiamine supplementation in renal

failure is deserving of further attention to assess if it can consistently alleviate the metabolic

impairment linked to transketolase insufficiency.

METHODS
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Materials

Thiamine, TPP (≥ 95%), oxythiamine chloride hydrochloride (HPLC grade, ≥ 95%) and D-

ribose-5-phosphate, disodium salt dihydrate (≥99%) were purchased from Sigma-Aldrich 

(Poole, U.K.). [4,5,5–Methyl-13C3] thiamine chloride (99 atom %) was purchased from

Cambridge Isotope Laboratories (Andover, USA). OTPP was prepared from oxythiamine and

purified by HPLC as described.50

Healthy subject and patients

Peripheral venous blood samples were collected from healthy human subjects and patients

with stage 5 CKD receiving CAPD or HD renal replacement therapy. For HD patients, blood

samples were collected immediately before and after a 4 h dialysis session. Samples were

collected using EDTA as anticoagulant. Blood cells were sedimented by centrifugation

(2000g, 10 min) and plasma removed. White blood cell buffy coast was removed and red

blood cells retained. Clinical characteristics of the participants are given - Table 1. Healthy

human subjects and patients were recruited at the University Hospitals Coventry &

Warwickshire NHS Trust, Coventry, U.K., after written informed consent. The study was

approved by National Research Ethics Service Committee West Midlands - Coventry &

Warwickshire, (REC 05/Q202/26), and Black Country Research Ethics Committee

(REC:09/H1202/113). Plasma and red blood cells were stored at -80oC until analysis.

Red blood cell incubation ex vivo

Red blood cells from HD patients were washed three times with 4 volumes of phosphate-

buffered saline, and with a final wash of 4 volumes of Krebs-Ringer phosphate buffer (120

mM NaCl, 4.8 mM KC1, 1 mM CaCl2, 1.2 mM MgSO4, 16.5 mM NaH2PO4/ Na2HPO4, pH

7.4, and 5 mM D-glucose). Red blood cell suspensions (50% v/v; 0.25 ml) were then
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incubated for 2 h at 37 oC in a shaking water bath with and without 50 μM thiamine, as 

described.16 Cells were then either collected by centrifugation (2000g, 10 min, room

temperature) and transketolase activity assayed or de-proteinised by addition of ice-cold

perchloric acid (250 µl, 0.6 M) and analysed for R5P – see below.

Assay of thiamine and TPP by the HPLC thiochrome method.

Plasma thiamine and red blood cell TPP were determined by HPLC with fluorimetric

detection as previously described.14 Briefly, plasma was used without further processing. Red

blood cells were washed 4 times with isotonic saline, lysed with 4 volumes of water and

membranes sedimented by centrifugation (6000, 10 min, 4 oC). The supernatant hemolysate

was retained. Plasma diluted 5-fold in water (50 μl) or hemolysate (25 μl) was mixed with 

20% (w/v) trichloroacetic acid (TCA) for de-proteinisation; and internal standard,

chloroethylthiamine (1 μM, 10 μl), added and mixed again. Samples were kept on ice for 10

min and then precipitate was sedimented by centrifugation (6000g, 4 ºC, 10 min). The

supernatant was removed and adjusted to pH 4.5 by addition of 2 M sodium acetate (7 μl for 

plasma,10 μl for haemolysate) and spin-filtered (0.2 µm, 4000 g, 4 ºC, 10 min). The filtrate 

(40 µl) was analysed by HPLC. Chromatographic conditions used were optimized for

thiochrome recovery. Column: 3 x 150 mm C18 column with 3.5 µm particle size and 3 x 20

mm guard column (Xbridge; Waters, U.K.). Mobile phases: A – 10 mM K2HPO4/ KH2PO4 in

water at pH 8.4; B – 10 mM K2HPO4/ KH2PO4 in 50% methanol at pH 8.4; and C – 30%

isopropanol in water with 0.1% trifluoroacetic acid. The flow rate was 0.5 ml/min. The

elution profile was: 0 min, 95% A + 5% B; 0 – 20 min, a linear gradient of 5 – 100% B; 20 –

32 min 100% C (column washing); and 32 – 48.5 min 95% A + 5% B (re-equilibration).

Samples were derivatised with NaOH-K3[Fe(CN)6] solution prepared and mixed with

samples immediately prior to injection. The autosampler was programmed to mix 40 µl 15%



14

NaOH and 10 µl 1% K3[Fe(CN)6], then add 10 µl of this to 40 µl of the sample, and finally

25 µl of the derivatised sample injected onto the column for each analysis. Thiochromes

formed by derivatisation were detected by fluorescence spectrophotometer at excitation 365

nm and emission 439 nm. The retention times, limits of detection, interbatch coefficient of

variation and recoveries were: thiamine 13.1 min, 36 fmol, 1.1% and 97%; and TPP 4.5 min,

51 fmol, 2.9% and 94%. Stock solutions of thiamine and TPP were calibrated by

spectrophotometry assuming extinction coefficients of ε233 = 14.2 and ε247 =13.0 mM-1cm-1,

respectively.51 Oxythiamine is not detectable by the thiochrome assay as it lacks the 4-

aminopyrimidinyl moiety required for thiochrome formation.15

Assay of red blood cell transketolase activity and ribose-5-phosphate concentration

Red blood cell transketolase activity was determined by the method of Chamberlin et al.52 To

determine the thiamine effect, transketolase activity was measured with and without addition

of 348 μM TPP. Haemolysate was incubated with and without TPP for 30 min in the absence 

of substrate prior to the transketolase activity measurement to allow for displacement of the

putative OTPP inhibitor by TPP.

Red blood cell R5P concentration was determined by negative ion LC-MS/MS, as we

previously described,53 confirming quantitation by standard addition analysis of authentic

analyte.

Assay of oxythiamine and red blood cell OTPP were determined by liquid

chromatography-tandem mass spectrometry

Plasma oxythiamine and red blood cell OTPP were determined by LC-MS/MS, operating in

positive ion, multiple reaction monitoring (MRM) mode. Chromatographic and mass

spectrometric detection conditions are given in Table 2. Detection were normalised to [4,5,5–
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methyl-13C3] thiamine internal standard and analyte amounts deduced from calibration curves

constructed by assay of 0.01 – 2.0 pmol oxythiamine and 0.1 – 2 pmol OTPP. For plasma

oxythiamine, plasma (50 µl) was spiked with 2 pmol of [13C3]thiamine and deproteinised by

addition of 20 µl 20% trichloroacetic acid (TCA). The precipitate was centrifuged (20,000g,

4ºC, 10 min) and the supernatant removed, filtered (0.2 µm pore size) and an aliquot (45 µl

analysed by LC-MS/MS. For red blood cell OTPP, packed red blood cells (50 µl) were

spiked with 0.1 pmol of [13C3]thiamine (5 µl, 0.02µM) and lysed and de-proteinized by

addition of 40 µl 10% TCA. The samples were placed on ice for 10 min and then membranes

and protein precipitate sedimented by centrifugation (20,000g, 10 min at 4°C). The

supernatant was removed filtered (0.2 µm pore size) and an aliquot (40 µl) analysed by LC-

MS/MS. There was no degradation of thiamine to oxythiamine in pre-analytic processing but

thiamine degraded partly to oxythiamine in the electrospray source in mass spectrometric

detection and so thiamine and oxythiamine were resolved chromatographically to avoid

interference – see Figure 2, a. and b. In the assay of OTPP, TPP and OTPP were only partly

resolved chromatographically and TPP partly degrades to OTPP in the electrospray sourced

of the mass spectrometry. The fraction of TPP degrading to OTPP was constant in analysis of

standards and this was used to correct OTPP detected in samples for the contribution

produced from TPP degradation to OTPP during electrospray ionization.

Calculation of fractional residual activity of transketolase in the presence of

oxythiamine pyrophosphate

The dependence of apparent reaction velocity, Vapp, of the transketolase-catalysed reaction in

the presence of a fixed, steady-state concentration of transketolase and substrates and varied

TPP concentration is given by the equation: Vapp = kapp[TPP]/(KTPP + [TPP]), where kapp is

the apparent pseudo first order rate constant, KTPP is the dissociation constant for the
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transketolase /TPP complex and [TPP] is the steady-state concentration of TPP.54 In the

presence of the competitive inhibitor OTPP, this is modified to Vapp,OTPP =

kapp[TPP]/(KTPP(1+[OTPP]/KOTPP) + [TPP]), where KOTPP is the dissociation constant for the

transketolase /OTPP complex and [OTPP] is the steady-state concentration of OTPP. The

fractional residual activity of transketolase in the presence of a given concentration of OTPP

– the proportion of the total transketolase remaining – is given by Vapp,OTPP/ Vapp

= (KTPP + [TPP])/(KTPP(1+[OTPP]/KOTPP) + [TPP]). The fractional activity of transketolase

may be deduced for each subject and HD patient by estimation of [TPP] and [OTPP] and

assuming values of KTPP and KOTPP: TPP = 610 nM and KOTPP  ≈ 15 nM.10, 11
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Table 1 │Characteristics of healthy subjects and ESRD patients on dialysis. 

Variable Healthy controls CAPD HD

Gender (M/F) 8/8 7/9 8/8

Age (years) 48 ± 5 43 ± 15 49 ± 6

BMI (kg/m2) 25.5 ± 3.2 25.6 ± 3.0 26.2 ± 3.6

Plasma creatinine (µM) 71 ± 17 655 ± 249 677 ± 268

Plasma albumin (mg/ml) 45.6 ± 3.2 35.6 ± 6.9 43.1 ± 3.5

Plasma thiamine (nM) 5.1 (4.3- 9.7) 31.8 (18.0 – 53.5)*** 51.1 (20.1 – 83.0)***

Plasma oxythiamine (nM) 0.18 (0.11 – 0.22) 0.64 (0.48 – 0.94)*** 2.73 (1.52 – 5.76)***,OOO

Data are mean ± SD or median (lower – upper quartile). Significance: *** and OOO, P<0.001 with respect to healthy controls and CAPD,

respectively. A second study group of HD patients has plasma analysed for plasma oxythiamine before and after a dialysis session and

characteristics were: gender (M/F) 6/6, age 49 ± 24 yrs, BMI 26.4 ± 7.9 kg/m2, and plasma albumin 40.5 ± 4.0 mg/ml (n = 12).
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Table 2 │ Liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection

of thiamine metabolites.

Analyte Rt (min) Molecular ion>

fragment ion

transition (Da)

Collision

energy

(eV)

Cone

voltage

(V)

Method 1 Method
2

Oxythiamine 12.9 36.5 265.9 > 123.0 18 40

Thiamine 13.9 39.5 264.9 > 122.0 18 16

4,5,4-Methyl-

[13C3]-thiamine 13.9 39.5 267.9 > 122.0 18 16

OTPP --- 32.7 425.9 > 123.0 26 44

TPP --- 32.7 424.9 > 122.0 26 44

Chromatographic conditions: Method 1. Column - two graphitic HypercarbTM columns

(Thermo) in series, 5 µm particle size, 2.1 x 50 mm and 2.1 mm x 250 mm. The mobile phase

was: 0.1% trifluoroacetic acid (TFA) with a custom gradient of acetonitrile (MeCN); 0.2

ml/min. Elution programme: 0 – 2 min, 0% MeCN; 2 – 15 min, 0 – 18% MeCN; and 15 – 18

min, 18 – 50% MeCN. After each injection the columns were cleaned by elution of column 1

and then column 2 with 50% tetrahydrofuran in 0.1% TFA for 5 min, 0.2 ml/min) and then

re-equilibrated with 0.1% TFA in water, 0.4 ml/min, for 15 min. LC-MS/MS was performed

with an Acquity-Quattro Premier (Waters) with electrospray source temperature 150 oC,

desolvation gas temperature 500 oC with desolvation and cone gas flows of 1000 and 150 L/h

respectively, and capillary voltage was 0.6 kV. Method 2. As for Method 1 except elution

programme: 0 – 2 min, 0% MeCN; 2 – 45 min, 0 – 5% MeCN. LC-MS/MS was performed

with an Acquity-Xevo-TQS (Waters) to meet the increased sensitivity of detection response

required with instrument settings as above except capillary voltage was 2.5 kV.
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FIGURE LEGENDS

Figure 1 | Formation, metabolism and antimetabolite activity of oxythiamine. Pathways

of thiamine metabolism, oxythiamine formation and metabolism to antimetabolite

oxythiamine pyrophosphate.

Figure 2 | Liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay of

oxythiamine and oxythiamine pyrophosphate. Detection of oxythiamine, multiple reaction

monitoring chromatogram, 265.9 > 123.0 Da: a. Analytical standard containing 100 fmol

oxythiamine and 100 fmol thiamine. b. Detection of oxythiamine in plasma of a HD patient.

* indicates oxythiamine formed from thiamine in the electrospray ionisation source.

Detection of oxythiamine pyrophosphate (OTPP), multiple reaction monitoring

chromatogram, 425.9 > 123.0 Da: c. Analytical standard containing 1.5 pmol fmol OTPP. b.

Detection of OTPP in red blood cells of a HD patient.

Figure 3 | Metabolism of oxythiamine to oxythiamine pyrophosphate (OTPP) and

inhibition of red blood cell transketolase in healthy human subjects and HD patients. a.

red blood cell (RBC) thiamine pyrophosphate (TPP), healthy controls, 692 ± 185 nM, and

HD patients, 782 ± 176 nM (n = 13; P>0.05, t-test). b. Plasma oxythiamine concentration -

Healthy controls, 0.19 ± 0.11 nM, and HD patients, 3.74 ± 2.97 nM (P<0.001, t-test). c. Red

blood cell OTPP – Healthy controls, 15.9 ± 10.4 nM, and HD patients, 66.1 ± 26.7 (P<0.001,

t-test). d. Red blood cell transketolase (TK) activity - Healthy subjects, 0.410 ± 0.144 mU/mg

Hb, and HD patients, 0.240 ± 0.107 mU/mg Hb (- 41%, P<0.002, t-test). e. Fractional

residual red blood cell transketolase activity – see Methods section. Data are mean ± SD (n =

10, healthy subjects n = 13, HD patients).
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