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Calculating Dispersion Interactions using Maximally

Localised Wannier Functions

Lampros Andrinopoulos,1 Nicholas D. M. Hine,1 and Arash A. Mostofi1

The Thomas Young Centre for Theory and Simulation of Materials,

Imperial College London, London SW7 2AZ, UK

(Dated: May 25, 2011)

We investigate a recently developed approach1,2 that uses maximally-localized Wan-

nier functions (MLWFs) to evaluate the van der Waals (vdW) contribution to the

total energy of a system calculated with density-functional theory (DFT). We test it

on a set of atomic and molecular dimers of increasing complexity (argon, methane,

ethene, benzene, phthalocyanine, and copper phthalocyanine) and demonstrate that

the method, as originally proposed, has a number of shortcomings that hamper its

predictive power. In order to overcome these problems, we have developed and im-

plemented a number of significant improvements to the method and show that these

modifications give rise to calculated binding energies and equilibrium geometries that

are in markedly closer agreement to results of quantum-chemical coupled-cluster cal-

culations.

PACS numbers: 31.15.E-,71.15.Mb,34.20.Gj,31.15.-p,31.15.A-
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I. INTRODUCTION

Local and semi-local exchange-correlation functionals used in density-functional theory3,4

(DFT) can not account for the effect of long-ranged dispersion, or van der Waals (vdW), in-

teractions. Dispersion interactions are crucial for weakly-bound systems, particularly where

no covalent or ionic bonding is present, and often dominate intermolecular binding energies

and equilibrium geometries. Incorporating vdW interactions in DFT remains a challenging

task and a wide variety of methods have been developed, approaching the problem from

many different perspectives5–13. In this work we focus on the method recently proposed by

Silvestrelli1,2, which has been recently applied to various systems14–17 and implemented in a

number of modern electronic structure codes18,19. This approach uses maximally-localized

Wannier functions20 (MLWFs) as a means of decomposing the electronic density of the sys-

tem into a set of localized but overlapping fragments, which may then be used to calculate

a vdW correction to the DFT total energy by considering pairwise interactions between

density fragments as derived by Andersson, Langreth and Lundqvist7 (ALL).

In this Article, we explore the parameters and approximations involved in Silvestrelli’s

method and improve its results where possible by modifying various aspects of the method.

We apply the method and our proposed modifications to a series of test systems, then

to two more challenging systems, a phthalocyanine and a copper phthalocyanine dimer.

We thus demonstrate that although this method can offer an easily implementable and

computationally efficient way of calculating the dispersion correction to the energy with the

possibility of improved accuracy (once some modifications are applied to it), it is largely

dependent on a number of parameters and choices one can make.

The remainder of the Article is organized as follows: in Sec. II we recap the necessary

background theory relating to MLWFs and Silvestrelli’s method; in Sec. III we highlight some

of the problems with the method as it stands, and describe our improvements; in Sec. IV we

then present and discuss results for vdW-corrected total energies and equilibrium geometries

obtained by applying these methods to a series of dimer systems and compare to quantum

chemical coupled-cluster and semi-empirical vdW (DFT+D) approaches; finally, in Sec. V

we draw our conclusions.
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II. THEORETICAL BACKGROUND

A. Maximally-Localized Wannier Functions

Wannier functions21 are orthogonal localized functions that span the same space as the

eigenstates of a single particle Hamiltonian. Consider the set of Nocc occupied (valence)

eigenstates {|um〉} of a molecule. The total energy is invariant with respect to unitary

transformations among the eigenstates

|wn〉 =
∑

m

Umn|um〉. (1)

If the unitary matrix U is chosen such that the resulting Nocc orbitals {wn(r)} minimize

their total quadratic spread, given by

Ω =
∑

n

(

〈wn|r2|wn〉 − 〈wn|r|wn〉2
)

=
∑

n

(

〈r2〉n − r̄
2
n

)

, (2)

then they are said to be maximally-localized Wannier functions20 (MLWFs). Each MLWF

is characterized by a value for its quadratic spread, S2
n, and its centre, r̄n.

In the construction of MLWFs it is sometimes useful to consider not only the valence

manifold but also a range of unoccupied eigenstates above the Fermi level — often those

constituting the antibonding counterparts to the valence states. This not only allows the

MLWFs to be more localized22,23 but can also restore symmetries that would otherwise be

broken arbitrarily through the construction of MLWFs for the valence manifold only.

In order to do so, one defines an outer energy window consisting of Nwin > Nocc states,

from which one may extract an optimal N -dimensional subspace (Nwin > N > Nocc) using

the disentanglement approach described in Ref. 24,

|uopt
m 〉 =

Nwin
∑

p=1

Udis
pm|up〉, (3)

where U
dis is a rectangular Nwin ×N unitary matrix. N MLWFs may then be localized by

suitable rotation of the optimal subspace in the usual manner:

|wn〉 =
N
∑

m=1

Umn|uopt
m 〉. (4)

Furthermore, an inner, or frozen, energy window may be defined if one wishes to make certain

that a range of low-lying eigenstates are included in the optimal subspace, and usually this
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inner window is set to encompass the occupied states. Algorithms for determining MLWFs

from the eigenstates obtained from electronic structure calculations are implemented within

the Wannier90 software package25.

When states above the Fermi level are included, there are necessarily more MLWFs than

there are occupied states, so some of them will have less than full occupancy. To use these

MLWFs in a decomposition of the density,

ρ(r) =
N
∑

n=1

fw
n |wn(r)|2, (5)

we need the occupancy fw
n of each. fw

n is given by the expectation value of the single-particle

density operator ρ̂, which is a projection operator for the occupied manifold, with respect

to |wn〉,

fw
n = 〈wn|ρ̂|wn〉 =

Nocc
∑

m=1

〈wn|um〉〈um|wn〉. (6)

Using Eq. (3) and (4), and the mutual orthonormality of the eigenstates, it may be shown

that

fw
n =

Nocc
∑

i=1

N
∑

l,m=1

U∗
mnU

∗dis
im UlnU

dis
il . (7)

We have adapted the Wannier90 code to calculate these occupancies so that they can be

used where they are required in our adapted form of Silvestrelli’s method, which we describe

in Sec. III.

B. Silvestrelli’s method

Silvestrelli’s approach1,2 is based on the Andersson, Langreth and Lundqvist7 (ALL)

expression for the vdW energy in terms of pairwise interactions between density fragments

ρn(r) and ρl(r
′), separated by a distance rnl,

EvdW = −
∑

n>l

fnl(rnl)
C6nl

r6nl
(8)

where fnl(rnl) is a damping function2 which screens the unphysical divergence of Eq. (8) at

short range, and

C6nl =
3

4(4π)3/2

ˆ

V

dr

ˆ

V ′

dr′
√

ρn(r)ρl(r′)
√

ρn(r) +
√

ρl(r′)
, (9)
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in atomic units. It should be noted that these expressions are only strictly valid in the limit

of non-overlapping density fragments. There are various forms for the damping function26,27

that might have a slight short-range effect but should not affect the long-range behaviour of

the vdW energies. Here we chose to use the damping function as proposed in the original

paper by Silvestrelli1.

Now, the MLWFs obtained from the valence orbitals of a system provide a localized

decomposition of the electronic charge density, such that ρn(r) = |wn(r)|2, so that Eq.( 9)

becomes:

C6nl =
3

32π3/2

ˆ

|r|≤rc

dr

ˆ

|r′|≤r′
c

dr′
|wn(r)||wl(r

′)|
|wn(r)|+ |wl(r′)|

, (10)

where rc is a suitably chosen cutoff radius obtained by equating the length scale for density

change to the electron gas screening length2; we will revisit this point later.

In order to make the calculation of the integrals more tractable, the charge density is

approximated by replacing each MLWF wn(r) with a hydrogenic s-orbital that has the same

centre r̄n and spread Sn as the MLWF, and whose analytic form is well-known and is given

by

wn(r) =
33/4

√
πS

3/2
n

e−
√
3|r−r̄n|/Sn , (11)

which, on substitution into Eq. (10) and after some algebra, gives

C6nl =
S
3/2
n S3

l

2 · 35/4F (Sn, Sl), (12)

where

F (Sn, Sl) =

ˆ xc

0

dx

ˆ yc

0

dy
x2y2e−xe−y

e−x/β + e−y
, (13)

β = (Sn/Sl)
3/2, xc =

√
3rc/Sn and yc =

√
3r′c/Sl. Eq. (13) may be evaluated easily since it

depends solely on the MLWF spreads and centres, not their detailed shapes or orientations.

We note that in the case of spin degeneracy, since every MLWF is doubly occupied, the

density of each fragment is multiplied by a factor of 2 and, therefore, the C6nl integral in

Eq. (10) is scaled by a factor of
√
2.

III. IMPROVEMENTS TO SILVESTRELLI’S METHOD

The approximations that go into the method described in the previous Section will clearly

not always hold, and the need to examine them is clear. In this Section, we introduce our

enhancements to the method that address possible drawbacks.
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A. Partly Occupied Wannier Functions

Using a manifold of eigenstates that includes but is larger than the subspace spanned

by just the valence states results in partly-occupied MLWFs that are generally more local-

ized and that better reflect the symmetries of the system, as opposed to MLWFs obtained

by rotation of the valence subspace only, which arbitrarily break the symmetry (we will

demonstrate examples of this phenomenon in Sec. IV).

In order to account for the partial occupancy of the MLWFs, we make a slight modifi-

cation to Silvestrelli’s approach, explicitly introducing occupancies in the definition of the

C6nl integral; since the density of each fragment is now given by ρn(r) = fw
n |wn(r)|2, the

expression for F (Sn, Sl) in Eq. (13) becomes

F (Sn, Sl) =

ˆ xc

0

dx

ˆ yc

0

dy
x2y2e−xe−y

e−x/(β
√

fw
n ) + e−y/

√

fw
l

, (14)

where the fw
n are given by Eq. (7). We will see in Sec. IV that this seemingly simple idea

can give rise to a marked improvement in the accuracy of the method.

B. Modification to describe p-like states

MLWFs describing only the valence manifold often take the form of well-localized func-

tions centred on a bond between two atoms, and are thus reasonably well-described by the

approximation of replacing them with a suitable s-orbital. When anti-bonding states are

included in the construction of the MLWFs, the resulting orbitals have more atomic-orbital

character. This is demonstrated by the atom-centred p-like MLWF shown in Fig. 1 for an

ethene molecule. It is clear that the density associated with such an MLWF will not be

very well represented by a single s-like function at its centre. In order to approximate p-

like orbitals appropriately when calculating C6, one could imagine using a suitably-oriented

analytic expression for a hydrogenic p-orbital, for example, a canonical pz-orbital, given by

pz(r) =
305/4r cos θ√

32πS5/2
e−

√
30r/2S, (15)

which has been normalized such that its quadratic spread is 〈pz|(r− r̄)2|pz〉 = S2. As a con-

sequence of the explicit angular dependence, using this function in Eq. (10) would give rise to

four-dimensional integrals, for which analytic solutions are not readily available. Numerical

6



evaluation of these integrals, for realistic systems, would be prohibitively computationally

expensive. We solve this problem by identifying the p-like MLWFs in the system and replac-

ing them with the hydrogenic form given in Eq. (15). Then, we further approximate each

lobe (lower and upper) of this p-like orbital with two separate hydrogenic s-orbitals of the

form of Eq. (11). In order to do so, it is necessary to know the spreads S± and centres r̄±

of the two lobes of the orbital separately, given by

S2
± =

ˆ ∞

0

ˆ π/2

0

ˆ 2π

0

r4p2z(r) sin θdrdθdφ, (16)

r̄± = r̄ ±
ˆ ∞

0

ˆ π/2

0

ˆ 2π

0

r3 cos θ p2z(r) sin θdrdθdφ ẑ, (17)

which, after some algebra, gives

S± =
7S

8
√
2
, (18)

r̄± = r̄± 15S

8
√
30

ẑ, (19)

where r̄ and S are the original centre and spread, respectively, of the MLWF. For an arbitrary

orientation of the lobes of a pz-like state, we need only rotate the offset vectors (r̄± − r̄)

accordingly.

Thus, we have developed a formalism whereby the charge density due to MLWFs with

p-like character can be represented by a pair of s-like hydrogenic orbitals with appropriate

centres and spreads. In Sec. IV we will show how this works in practice for calculating vdW

energy corrections.

In the relatively simple systems studied in this paper, the p-like orbitals are easily distin-

guished from other orbitals by their partial occupancies, given by Eq. 7, which are typically

closer to 0.5 rather than 1. Alternatively, and especially for structurally more complex sys-

tems, the shape of each MLWF could be characterized using the efficient method described

in Appendix A of Ref. 28 as another means of automating the procedure ofidentifying p-like

states.

C. Symmetry Considerations

Minimizing the total spread Ω with respect to the elements of the unitary matrix U,

and thus producing MLWFs, has the effect of picking from the space of all possible uni-

tary matrices one which produces the most localized Wannier functions accessible through
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Figure 1. Partly occupied p-like orbital on ethene molecule. In the method described here, each of

the two lobes (coloured red and blue) is replaced by an s orbital and considered a separate fragment.

optimization from a chosen initial guess. This is often enough to uniquely determine the

MLWFs. In some cases, however, it does not give rise to a unique choice, even if the op-

timization procedure is perfect. For example, the atomic positions and electron density of

the system may possess certain symmetry elements, such as rotations about a particular

axis. Then there will exist a number of equally valid and degenerate representations of the

MLWFs and their centres, which give the same spread, and are related by symmetry. The

minimization procedure breaks the symmetry by choosing one of these representations; in

other words there will be a degree of arbitrariness in the final MLWFs. It is clear from Eq. (8)

that any degree of non-uniqueness of the centres will cause an undesirable variability of the

vdW energy calculated in Silvestrelli’s method. This is indeed what we observe in some

of the examples below. Moving away from a description of the MLWFs using the valence

states only, and towards using partly occupied MLWFs that include anti-bonding states and

which retain the symmetries of the system, enables us to overcome these problems, as we

demonstrate below.

IV. APPLICATIONS

A. Calculation Details

For the application of Silvestrelli’s method to the following dimer systems we used the

Quantum Espresso (QE) package18 to perform the ground-state DFT calculations, and

Wannier9025 to obtain the centres and spreads of the MLWFs. Our results are compared
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to both the semi-empirical DFT+D method29,30 as implemented in QE, which is expected

to give good asymptotic behaviour, and a wavefunction-based coupled-cluster approach,

CCSD(T), which is considered the ‘gold-standard’ of quantum chemistry.

The PBE31 generalized-gradient approximation for exchange and correlation, except in

the case of argon where the revPBE32 functional was used; norm-conserving pseudopoten-

tials, and Γ-point sampling of the Brillouin zone were used throughout. A plane-wave basis

set cut-off energy of 80 Ry was used in all calculations with QE except for the case of the

phthalocyanine and copper phthalocyanine where a 50 Ry energy cutoff was used. For the

dimers of argon, methane, ethene, phthalocyanine and copper phthalocyanine, cubic simu-

lation cells of length 15.87 Å, 15.87 Å, 21.16 Å and 23.81 Å, respectively, were used. For

the dimers of benzene, a hexagonal cell with a = 15.87 Å and c = 31.75 Å was used.

B. Argon

We will first investigate the severity of the aforementioned issues relating to symmetry, by

considering the case of an argon dimer. Optimization of the MLWFs describing a single argon

atom produces four doubly occupied MLWFs arranged tetrahedrally around the atom. Due

to spherical symmetry, the orientation of these MLWFs with respect to a given coordinate

system is arbitrary for an isolated atom and the final MLWFs obtained will depend on the

initial guess used. In the dimer, this arbitrariness is removed, at least in principle, since the

spherical symmetry is broken by the presence of the other atom at a specific orientation. At

large separations, this is not in practice necessarily the case: the electron density overlap

between the Ar atoms is vanishingly small, since the wavefunctions decay exponentially

away from the atom. Therefore, to within attainable numerical precision, the orientation

of the MLWFs on each atom is uncorrelated with the orientation of the other atom: the

MLWFs can be freely rotated with respect to the atom without affecting the total spread.

Note, however, that since the vdW energy only decays as R−6, its value is influenced by

the orientation of the MLWF centres (and hence their separation) out to distances beyond

which the calculated spread (and thus the optimised MLWF orientation) has ceased to be

sensitive to separation.

This dependence can be investigated in a two-atom system by fixing the relative orien-

tations of the MLWF centres between the two atoms in the dimer. This is achieved by first
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Figure 2. Illustration of three of the many possible configurations of MLWF centres (small pink

spheres) for the two argon atoms (large blue spheres) in the fragment method.

calculating the MLWF centres for a single atom of argon and then translating and rotating

these centres to the second Ar atom with various choices of alignment. We will refer to this

approach as the fragment method. In this method, we calculate the dispersion correction to

the energy for a dimer system using various possible arrangements of MLWF centres on the

other atom. Three possible high-symmetry choices are shown in Fig. 2. For each of these

orientations, Fig. 3 (top) shows the binding energy of the Ar dimer as the separation of the

atoms varies. We see that there is considerable displacement of the curves, and the binding

energy and the equilibrium separation change according to the alignment chosen by up to

0.04 kcal/mol and 0.08 Å respectively.

In contrast to this fragment approach, in Fig. 3 (bottom) we show the binding energy

as calculated with the normal approach of using the optimized MLWFs of the entire dimer

system. However, here we have used varying initial guesses corresponding to the set of

possible alignments shown in Fig. 2. We see that at small separations, the MLWF centres

always converge to the same positions, regardless of the initial guess, and the binding energy

curve is nearly independent of the choice of initial guess (∼ 10−3 kcal/mol variation).

At larger separation, however, the spread minimization is insufficiently sensitive to the rel-

ative orientation of the MLWFs on different atoms, and does not necessarily alter it from the

initial guess, resulting in several different possible results depending on the initial orientation

of the centres. If a random initial guess is chosen, then the energy varies discontinuously, as

a function of separation, within the bounds imposed by the limiting cases described using
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the fragment method. This is because the MLWF centres converge to different orientations

depending on their starting positions (curve labelled ‘random’ in Fig. 3 (bottom)).

In order to avoid this problem of non-uniqueness of binding energy curves, a random

initial guess is used first for a configuration at small separation, in the knowledge that the

result will be independent of the guess used. Then the centres computed at the previous,

smaller separation are used as the initial guess for the calculation at a larger separation. In

this manner, a unique continuous curve is obtained (labelled ‘continuous’ in Fig. 3 (bottom)).

This is the approach that we adopt for all subsequent calculations in this paper.

From the continuous curve, we obtain 3.97 Å for the equilibrium separation and −0.28 kcal/mol

for the binding energy. This is in good agreement with the coupled cluster CCSD(T) cal-

culations of Ref. 33, which give 3.78 Å and −0.28 kcal/mol, respectively, whereas revPBE

without dispersion corrections gives 4.62 Å and −0.04 kcal/mol.

C. Methane

The methane dimer is a straightforward application of the Silvestrelli method: the po-

sitions of the MLWF centres, which lie on the four tetrahedral C-H bonds of each CH4

molecule (see Fig. 4), obey the same symmetries as the atomic positions, so there exists no

arbitrariness of orientation.

In Fig. 5, we compare to the results of both DFT+D and CCSD(T) calculations. Our

geometries and CCSD(T) results were drawn from the Benchmark Energy and Geometry

Database (BEGDB)34.

The accuracy of Silvestrelli’s method in the case of the methane dimer is good compared

to CCSD(T): the former gives an equilibrium separation of 3.66 Å and binding energy

of −0.69 kcal/mol, and the latter 3.72 Å and −0.53 kcal/mol, respectively. DFT+D is in

somewhat worse agreement with CCSD(T), yielding 3.54 Å and −0.76 kcal/mol, respectively.

D. Ethene

The ethene molecule has s-like orbitals on the C-H bonds and two σ-like orbitals on the

C-C bond, placed slightly above and below the plane of the molecule. Our geometries and

CCSD(T) results were again drawn from the Benchmark Energy and Geometry Database
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Figure 3. Binding energy versus interatomic separation for the argon dimer, for varying relative

orientations of the MLWF centres surrounding each atom (see Fig. 2). Top panel: results obtained

using the fragment method, in which the MLWF centres are calculated for a lone Ar atom and

then translated and rotated to the second Ar atom. Bottom panel: results obtained using the true

MLWF centres with various initial guesses for their positions. The curve labelled ‘continuous’ is

obtained by using the MLWF centres from a configuration at small separation as the initial guess

for the centres at larger separations. In this way, the discontinuities in the curve are avoided and

a unique curve is obtained (see text for details).

(BEGDB)34.

To use Silvestrelli’s original method in this case, we only include the valence manifold

only in the representation of the MLWFs, giving six MLWFs per molecule (see Fig. 6 (left)).

In our modified method we use seven MLWFs per molecule, with p-like, partly occupied

orbitals on each carbon atom (Fig. 6 (right)).

As seen in Fig. 7, neither the original Silvestrelli method (blue squares) nor DFT+D
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Figure 4. Illustration of the methane dimer. Carbon atoms are shown by large grey spheres,

hydrogen by small white spheres, and the valence MLWF centres are shown by small pink spheres.
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Figure 5. Binding energy curves for the methane dimer with various methods.

(red diamonds) reproduce the CCSD(T) values very accurately. By introducing one extra

eigenstate per molecule in the summation for the MLWFs and applying our modified method

to include partial MLWF occupancies and the splitting of the p states (see Sec. III), we

find an excellent agreement (black circles) with the CCSD(T) equilibrium values of 3.72 Å

for the separation and −1.51 kcal/mol for the binding energy; our method gives 3.75 Å

and −1.52 kcal/mol, respectively; Silvestrelli’s method gives 3.83 Å and −1.69 kcal/mol;

DFT+D yields 3.55 Å and −2.04 kcal/mol.

E. Benzene

For a benzene ring, the valence states are represented by 15 doubly-occupied Wannier

functions. The MLWF optimization procedure in this case breaks the D6h symmetry of

the benzene ring: the end result is that there are three C-C double bonds and three C-C

single bonds. Those alternating double and single C-C bonds represent a delocalised π-bond
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Figure 6. Colours as in Fig. 4. Left: Ethene dimer with six MLWFs per molecule. Right: Ethene

dimer with seven MLWFs per molecule. The centres of the p-like MLWFs are placed on the carbon

atoms, but here we show the centres of the individual lobes of these p-like orbitals as calculated by

our method.
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Figure 7. Binding energy for an ethene dimer with various methods.

around the ring. In terms of MLWFs, the double bonds are represented by two centres

located above and below the plane of the molecule, while the single bonds are represented

by one centre on the bond. When two molecules are put in proximity (see Fig. 8) and

the vdW energy is calculated by Silvestrelli’s method, the breaking of the symmetry affects

the vdW energy in an arbitrary manner, dependent on how the two rings are aligned (i.e.

whether the pairs of double bonds in adjacent molecules are aligned or anti-aligned). This
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Figure 8. The three configurations used for the benzene dimer calculations: S (vertical displace-

ment), PD (vertical and lateral displacement) and T (vertical displacement plus rotation in plane

of one molecule), and the valence MLWF centres in each case (depicted by pink spheres).

alignment is defined by where the initial guesses for the centres of the Wannier functions

are placed.

The case of the benzene dimer therefore illustrates again the need to include the unoccu-

pied antibonding states in the construction of the MLWFs: doing so increases the number

of MLWFs and introduces partial occupancies, but restores the D6h symmetry of the system

and also localises the MLWFs more. This then makes the vdW contribution independent of

the initial guess for the Wannier function centres.

We applied our implementation of the original Silvestrelli’s method (with 15 MLWFs),

and then our modified method (with 18 MLWFs, partial occupancies and splitting of p-like

states) to determine the binding energy as a function of displacement for three types of

displacement (labelled S, PD, and T, illustrated in Fig. 8 of one of the molecules in the

benzene dimer. We compare this to DFT+D and to the CCSD(T) calculations of Ref. 35.

We note that we used the same bond lengths for C-C and C-H as Ref. 35 to within two

decimal places, to construct perfectly symmetric benzene rings for our calculations.

The binding energy curves for the various methods for the three configurations are shown

in Fig. 9.

Silvestrelli’s method (blue squares) does not agree very well with CCSD(T) calculations,

overestimating equilibrium distances by 0.07-0.25 Å (Table I) and overestimating binding

energies by 0.28-1.25 kcal/mol (Table II). In particular, the dispersion curve obtained from
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Figure 9. Binding energy (kcal/mol) curves for the various methods for the benzene dimer in the

S, PD and T configurations (top, middle and bottom respectively). For the S configuration we also

show the curve using 18 MLWFs per molecule if no p-splitting is used; in this case the method

overbinds. CCSD(T) benchmark values are from Janowski et al.
35

Silvestrelli’s method does not agree asymptotically with the DFT+D curve (red diamonds).

In the T configuration Silvestrelli’s method performs better in terms of equilibrium distance,

binding energy and asymptotics as it can be seen in Fig. 9 (bottom).

For the S configuration we also show the binding curve obtained if the splitting of the
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Method S PD T

Silvestrelli (15 MLWFs) 4.01 3.78 5.06

This work (18 MLWFs) 3.89 3.53 4.93

Semi-empirical DFT+D 3.93 3.58 4.89

CCSD(T) (Janowski et al
35) 3.92 3.53 4.99

Table I. Equilibrium distances in Å for the benzene dimers in the three configurations (Fig. 8) using

the various methods. For all DFT calculations the PBE functional was used.

Method S PD T

Silvestrelli (15 MLWFs) −2.85 −3.23 −2.85

This work (18 MLWFs) −1.45 −2.22 −2.58

Semi-empirical DFT+D −1.38 −2.11 −2.87

CCSD(T) (Janowski et al
35) −1.60 −2.55 −2.57

Table II. Binding energies (kcal/mol) at equilibrium geometry for the benzene dimers in the three

configurations (Fig. 8) using the various methods. For all DFT calculations the PBE functional

was used.

p-like states is not used (orange crosses); it is clear that in this case the method does not

perform well, as replacing a p-like orbital by an s-orbital is a very poor approximation.

Our modified method (black circles in Fig. 9), on the other hand, has excellent agreement

in terms of equilibrium distances and binding energies with the DFT+D curves and the

CCSD(T) values, for all three configurations, to within 0.05 Å and 0.33 kcal/mol (Table I

and II); the asymptotic behaviour of the energy is also better captured.

F. H2Pc and CuPc

To examine the difficulties encountered applying these methods to larger systems, we have

investigated the phthalocyanine (H2Pc) dimer in the simplest configuration (S vertically

displaced) first by applying Silvestrelli’s method and then by applying our modifications

it, and comparing the binding energy curve to one obtained using DFT+D. The optimised

MLWF centres for a single H2Pc are shown in Fig. 10 (top). We see that as with the benzene

molecule, there are alternating single and double MWLF centres on the C-C bonds of the

17



six-membered rings, representing delocalised π-bonds. We also find, however, that using

only the 93 valence MLWFs (186 valence electrons) is problematic, as a good representation

of the electronic density of the system cannot be obtained in this way since this breaks the

symmetry of the system, but most importantly it yields one lone MLWF of unrealistically

large spread (∼2.5 Å) located some distance from any atoms (Fig. 10 (top)). This is due

to the fact that an odd number (93 MLWFs) is incompatible with the D2h symmetry of the

molecule.

Using a larger and even number of MLWFs (112 per molecule) we can restore this D2h

symmetry of the molecule (Fig. 10 (bottom)) and represent the electronic density of the

system in a way more compatible with its chemistry. When anti-bonding states are included,

it is important to make a chemically intuitive initial guess for the centres and forms of the

MLWFs. We make initial guesses as follows: we place p-like orbitals on the carbon atoms

and s-like orbitals on every bond and p-like orbitals on the hydrogenated nitrogens as well

as two s-like orbitals on every non-hydrogenated nitrogen atom. In this way, we have

partly occupied MLWFs that represent the 372 valence electrons of the dimer. The binding

energy curves obtained by using this representation and our modifications to Silvestrelli’s

method are shown in Fig. 11 and compared to DFT+D. The binding energy obtained from

our method is −16.55 kcal/mol and the equilibrium distance 3.70 Å; with DFT+D we

obtain −18.91 kcal/mol and 3.68 Å. As for benzene, we see very good agreement with

DFT+D; these values roughly agree with the stacking distance of crystalline H2Pc (around

3.2–3.4 Å)36. Silvestrelli’s original method severely overbinds the dimer (giving a binding

energy of −41 kcal/mol) because of the unphysically large spread of the lone MLWF that

appears in the valence representation. This is due to the strong dependence of the vdW

energy on the spreads (Eq. (12)).

In the case of CuPc dimer (vertically displaced S configuration) we again do not use the

valence manifold of 390 MLWFs per dimer (195 MLWFs per molecule: 98 spin up and 97 spin

down), but instead use a larger manifold of MLWFs. We note that the dimer configuration

used here does not correspond to any phases CuPc is observed in experimentally, but was

used for illustrative purposes as it is the simplest one. This is a spin-polarized system, so a

different set of MLWFs is required for spin up/down electrons, yielding a total of 234 singly

occupied MLWFs per molecule (117 for every spin channel). There are 10 d-like MLWFs

(five for every spin channel) centred on each copper atom, and s-like MLWFs on bonds and
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Figure 10. Left: Phthalocyanine (H2Pc) molecule and its valence MLWF centres. Hydrogen atoms

are by small white spheres, carbon atoms by large grey spheres and nitrogen atoms by large blue

spheres. The MLWF centres are shown by the small pink spheres. Using only the valence MLWFs

does not give a satisfactory description of the system since it yields a lone MLWF of unphysically

large spread (shown by large yellow sphere and labelled by the letter L). Right: H2Pc molecule

and its 112 MLWF centres, now including anti-bonding states. With this representation all the

D2h symmetry of the ring is restored and a better chemical picture is given. There are s-like

orbitals on every bond and the non-hydrogenated nitrogens, and p-like partly occupied orbitals

on every carbon the two hydrogenated nitrogens (not shown here as these are located inside the

corresponding atoms).
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Figure 11. Binding energy curves for H2Pc dimer in the S configuration (vertically displaced) versus

intermolecular distance obtained with the various methods.

nitrogens. The MLWFs corresponding to spin up and spin down electrons have essentially

the same centres for the same bonds or atoms (Fig. 12).

In such cases, where some Wannier functions centres are very closely centred, it would be

incorrect to consider them as separate fragments since this would violate the fundamental

assumption of the ALL method, that it is valid for non-overlapping fragments only. This can

be understood from the fact that Eq. (9) is strongly non-linear, so adding the contributions

of overlapping density fragments does not give the same result as summing the densities be-

forehand. As a result, Silvestrelli’s method severely overbinds the dimer (∼ −108 kcal/mol),

demonstrating that the method breaks down for overlapping fragments.

We alleviate this problem by amalgamating all the centres and spreads of the closely

placed MLWFs (in this case the d-like MLWFs on Cu) into one MLWF with a centre and

spread given by the arithmetic mean of the closely placed MLWFs, and occupancies given by

the sum of the separate MLWFs. The criterion for amalgamating MLWFs can be automated

such that MLWFs less than a particular threshold distance apart are combined. In our case,

we used a value of 0.1 Å for this threshold, which had the desired effect of including the

d-like orbitals on Cu in the amalgamation procedure, while leaving all other MLWFs in the

system unaffected.

In Fig. 13 we compare the binding energy curves obtained using DFT+D to our modified

method (now including the amalgamation of closely centred MLWFs) using a larger manifold

of 468 MLWFs per dimer. This gives much more sensible results, with a binding energy of

−18.93 kcal/mol and an equilibrium separation of 3.67 Å, in good agreement with DFT+D,
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Figure 12. Copper phthalocyanine (CuPc) molecule and its 234 MLWF centres, again including

anti-bonding states. Colours as in Fig. 10, with copper shown by the large brown sphere in the

centre. There are s-symmetry MLWFs on every bond and atom except for copper, p-like MLWFs

on the carbons and 5 d-symmetry MLWFs on the copper atom. Now there are no p-like orbitals on

any nitrogen atom as for H2Pc.
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Figure 13. Binding energy curves for the CuPc dimer in the S configuration (vertically displaced)

obtained using the various methods.

which gives −22.21 kcal/mol and 3.63 Å, respectively; these values are also closely in-line

with those for H2Pc.
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G. Intermolecular C6 coefficients

It is expedient to define effective intermolecular C6 coefficients,

C6eff =
1

2

∑

n,l

C6nl, (20)

where only intermolecular terms are summed over, i.e., n and l correspond to MLWFs

on different molecules, and the factor of 1/2 accounts for double-counting. In Table III,

we compare our values to those of the original method of Silvestrelli, benchmark MP2

calculations and experimental results given in the database of Ref. 37.

As previously discussed in Ref. 2, comparison with experimental values is made somewhat

difficult by the fact that they are obtained by fitting to experimental data and hence also

include higher-order terms (C8, C10) in an effective manner.

Taking the experimental values as a benchmark, it can be seen from Table III that, for

the systems under consideration, there is no clear or systematic improvement in calculated

effective C6 coefficients with our modifications to Silvestrelli’s approach as compared to

Silvestrelli’s original approach: in the case of ethene the original method compares more

favourably, while in the case of the benzene dimers our approach performs much better. In

spite of this, however, it is worth noting that our approach (as shown earlier) significantly

improves the values obtained for equilibrium separations and binding energies, as compared

to CCSD(T), for all systems considered for which we have access to CCSD(T) results.

H. Sensitivity to cutoff radius rc

The sensitivity of the binding energy on the cutoff radius rc in Eq. 12 was tested on the

S configuration of the benzene dimer with 18 MLWFs per molecule (Fig. 14). Even small

changes of 1% in the cutoff radius result in significant changes in the binding energy curves,

with the binding energy and equilibrium distance varying by 6-8% and 0.2-0.8% respectively.

For larger changes in rc, the method breaks down, as the energy changes are unphysically

large. Although the cutoff radius is physically justified7, this strong dependence of the vdW

correction on it is a weakness of the method.
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System C6 (Eha
6
0)

Silvestrelli This work MP2 Experimental

Argon 92.7 - 76.1 64.3

Methane 99.1 - 119 130

Ethene 275 208 328 300

Benzene S 2727 1258 2364 1723

Benzene PD 2727 1257 2364 1723

Benzene T 2769 1232 2364 1723

Table III. Effective intermolecular C6 coefficients. MP2 and experimental values are drawn from

Ref. 37. For the argon and methane dimers, our approach is identical to the original method

of Silvestrelli. The differences between the values reported in the first column (Silvestrelli) and

those in Ref. 2 are attributable to the different calculational details such as choice of exchange and

correlation functional, simulation cell size and plane-wave energy cutoff.
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Figure 14. Binding energy curve for the benzene dimer in the S configuration for various values of

rc using our modified method with 18 MLWFs per molecule.

V. CONCLUSION

We conclude that Silvestrelli’s method is computationally efficient and very easy to im-

plement for small systems where initial guesses for the Wannier centres can be specified.

However, there is a considerable dependence of the calculated vdW energy on the position

of the Wannier centres, and these are not always unique, as symmetry-breaking, often in-
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duced by considering only the valence manifold in the construction of the MLWFs, may

introduce arbitary dependence on initial guesses in a way that significantly affect the vdW

energy. We have shown that arbitrarily-broken symmetries may often be restored by in-

creasing the number of Wannier functions used and generating them with a suitably-chosen

range of the conduction states as well as the valence states. This necessitates the inclusion

of occupancies in the formalism. We note that in cases where no symmetries are restored

when we use more MLWFs, as in the example of ethene, it is the better localisation of the

MLWFs that may be responsible for improved vdW energies, since the method is based on

pairwise summation of well-separated fragments.

Particularly, in cases with a larger number of Wannier functions, we have shown that the

approximation implicit in replacing the true Wannier functions with hydrogenic s-orbitals

may not always yield an accurate representation of the electronic denstiy, and have shown

how in cases where there is p-like symmetry, it is better to substitute the p-symmetry

functions with two s-like functions. By considering the problems associated with applying

these adapted methods to larger systems such as H2Pc and CuPc, we have demonstrated

that the approach is not necessarily a good candidate for studying larger systems, where

specifying initial guesses for a large number of non-trivial MLWFs may be difficult; chemical

insight for the form of these higher-lying states has to be employed, but becomes more

difficult for even larger systems. In the case of copper phthalocyanine, we showed that

MLWFs that are centred effectively at the same point (such as the five d-like MLWFs on

each Cu atom) cannot be treated as separate fragments of density; they should instead be

amalgamated into one fragment of density of an averaged centre and spread and summed

occupancies. The reason for this is that the method is valid only in the limit of well-separated

fragments. Finally, we have demonstrated that there is also a strong dependence of the

vdW energy on the cutoff radius used in the integral of Eq. (12), and although the value

used is justified on physical grounds, it nevertheless represents something of an adjustable

parameter with considerable influence on the results obtained. Overall, we conclude that

Silvestrelli’s method can be made remarkably accurate once modifications are applied to it;

these improvements, and Silvestrelli’s method in general, however, may be less suitable for

more structurally complex, large-scale systems, for which alternative methods that are more

fully ab initio may be desirable.
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