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ABSTRACT

Standing long-period (with the periods longer than several minutes) oscillations in

large hot (with the temperature higher than 3 MK) coronal loops have been observed

as the quasi-periodic modulation of the EUV and microwave intensity emission and

the Doppler shift of coronal emission lines, and have been interpreted as standing slow

magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter peri-

ods, detected in thermal and non-thermal emissions in solar flares could be produced by

a similar mechanism. We present theoretical modelling of the standing slow magnetoa-

coustic mode, showing that this mode of oscillation is highly sensitive to peculiarities

of the radiative cooling and heating function. We generalised the theoretical model

of standing slow magnetoacoustic oscillations in a hot plasma, including the effects

of the radiative losses, and accounting for plasma heating. The heating mechanism is

not specified and taken empirically to compensate the cooling by radiation and thermal-

conduction. It is shown that the evolution of the oscillations is described by a generalised

Burgers equation. Numerical solution of an initial value problem for the evolutionary

equation demonstrates that different dependences of the radiative cooling and plasma

heating on the temperature lead to different regimes of the oscillations, including grow-

ing, quasi-stationary and rapidly decaying. Our findings provide a theoretical founda-

tion for probing the coronal heating function, and may explain the observations of de-

cayless long-period quasi-periodic pulsations in flares. The hydrodynamic approach

employed in this study should be considered as a zero-order approximation

in the modelling of physical phenomena associated with flares.
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Subject headings: Sun: corona — Sun: oscillations — magnetohydrodynamics (MHD)

— waves

1. Introduction

The main interest in magnetohydrodynamic (MHD) waves and oscillations in the solar atmo-

sphere is connected with the possible role the waves play in heating of the atmospheric plasma, and

with the exploitation of the plasma diagnostic potential of the waves (see De Moortel & Nakariakov

2012; Liu & Ofman 2014, for recent comprehensive reviews). An important class of coronal MHD

oscillations is standing waves in coronal loops, where structuring of the plasma across the magnetic

field acts as a waveguide, and the loop footpoints are effective mirrors that form a standing wave

pattern.

Standing longitudinal oscillations in coronal loops were discovered as a periodic Doppler shift of

hot coronal emission lines with the SOHO/SUMER spectrometer (Wang et al. 2002), and analysed

in detail by Wang et al. (2003b,a). The oscillations, usually called “SUMER” oscillations (see Wang

2011, for a review), have periods in the range about 5–40 min, and are detected in long loops of the

lengths of 200–300 Mm. SUMER oscillations are seen to be very rapidly decaying, with the decay

time being about the period of oscillations. The decay time was found to be linearly proportional to

the period. The relative amplitudes of plasma flows in SUMER oscillations reach 100–300 km s−1

that in some cases reaches 50% of the sound speed corresponding to the temperature of the emitting

plasma. Simultaneous observations of Doppler shift and intensity variations showed in some cases

a quarter-period phase shift (Wang et al. 2005). About a half of the detected SUMER oscillations

were found to be associated with flares (e.g. Wang 2011).

Oscillations similar to the SUMER oscillations have been detected in the Doppler shift of hot

coronal emission lines observed with Yohkoh/BCS (Mariska 2005, 2006). Intensity oscillations with

periods from 13 to 60 min in X-ray bright points were observed with Hinode/XRT by Kumar

et al. (2011). Also, oscillations of soft X-ray intensity with periods of 12–30 min were found in the

CORONAS-F/SPIRIT data (Akimov et al. 2005). Kim et al. (2012) observed a SUMER oscillation

with the period 12.6 min and the decay time of 16 min simultaneously in the microwave and EUV

emission, with the Nobeyama Radioheliograph and SDO/AIA, respectively. Similar oscillations, of

the period about 32 min, were found in a white light curve of a stellar megaflare (Anfinogentov

et al. 2013). The first direct detection of SUMER oscillations in imaging data was recently reported

by Kumar et al. (2013). Similar oscillatory patterns have recently been detected in the soft X-ray

irradiance measurements data made with GOES (Dolla et al. 2012; Simões et al. 2015).

Ofman & Wang (2002) were first to interpret SUMER oscillations in terms of standing slow

magnetoacoustic oscillations of coronal loops. The oscillation period was found to be determined

by the length of the loop and the sound speed. If finite-β effects are accounted, the sound speed

should be replaced by the tube speed. The dependence of the period of SUMER oscillations on
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the magnetic field in the finite-β regime has been used for the seismological determination of the

plasma parameter β in the oscillating loop (Wang et al. 2007). Damping of the oscillations was

associated with thermal conduction.

The simple numerical 1D model of Ofman & Wang (2002) was further developed by Nakariakov

et al. (2004); Tsiklauri et al. (2004); Mendoza-Briceño et al. (2004); Taroyan et al. (2005); Selwa

et al. (2007); Ogrodowczyk et al. (2009) who subsequently included radiative effects, gravitational

stratification, effects of the chromosphere near the footpoints, and effects of the magnetic field

curvature. It was shown that standing slow magnetoacoustic oscillations are easily excited by a

localised deposition of heat or increase in the plasma pressure. Also, the simulations showed that

the oscillations may occur in two different regimes, the well-known rapidly decaying oscillations,

and decayless oscillations. In the latter regime the oscillation is limited by the duration of the flare

only. This regime has possibly been observed as the undamped oscillations of the flaring X-ray

emission with a 20-min period detected by Svestka (1994); a 143-s period detected by Terekhov

et al. (2002); the 25 to 48 s pulsations detected in the hard X-rays in the initial phase of three flares

by Fárńık et al. (2003b); the 60-s variations of the Hα emission detected by Huang & Ji (2005); the

long-period (≥ 60 s) variations of the radio and X-ray fluxes, detected by Mészárosová et al. (2006);

the 5-min and 13.5-min oscillatory modulation of the 8-mm emission, revealed by Kislyakov et al.

(2006); the persistent, semi-regular compressions of the flaring core region, modulating the plasma

temperature and emission measure with the period of about 60 s, detected in soft X-rays and EUV

by Simões et al. (2013); and the 4-min pulsations of the hard X-ray, radio and EUV emissions in a

flare, detected by Li et al. (2015a).

For the theoretical analysis of waves, a useful alternative to full-scale numerical simulations

is the method of an evolutionary equation. In this method, the wave evolution, e.g. its damping

or amplification, wave shape deformation, and acceleration, is determined in terms of the intrinsic

evolutionary mechanisms, such as dissipation, dispersion, nonlinearity and activity of the medium.

These evolutionary mechanisms are modelled by specific terms in the evolutionary equation. Spe-

cific expressions for the coefficients in front of these terms can be determined from a certain set

of governing equations, e.g. MHD, or can be taken in a guessed, effective form, e.g. when some

necessary but not understood physical processes (such as coronal heating) should be included in

the model. Moreover, these coefficients could be determined empirically, from observations and

then used to constrain the guessed expressions. In the coronal context, this approach has turned to

be successful in modelling wave phenomena in the corona, e.g. propagating longitudinal waves in

coronal active region fans (Nakariakov et al. 2004; Tsiklauri et al. 2004; Afanasyev & Nakariakov

2015) and polar plumes (Ofman et al. 2000), nonlinear Alfvén waves in coronal holes (Nakariakov

et al. 2000b).

For standing longitudinal waves in coronal loops, the evolutionary equation method was re-

cently used by Ruderman (2013) (referred to as R13 in the following discussion). The model

designed in R13 is based on the asymptotic expansion with the use of the small parameter, deter-

mined by the weakness of the effects of nonlinearity and dissipation by finite thermal conduction
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and/or viscosity. It was shown that in this approximation the SUMER oscillation can be consid-

ered as a superposition of two oppositely-propagating nonlinear waves governed by the Burgers

equation. An interesting consequence of this study was a periodic movement of the position of the

highest amplitude along the loop, caused by the nonlinearity.

An important effect that needs to be accounted for in the description of standing longitudinal

oscillations in coronal loops is the radiation from the perturbed plasma. The radiation is mainly

controlled by the composition of the plasma and the presence of heavy, not fully ionised ions. In

the context of longitudinal oscillations the effect of radiative losses was analytically described by

Bembitov et al. (2013), and shown to lead to enhanced damping. Dependence of the radiative losses

on the plasma temperature and pressure is quite non-monotonic, and includes segments with both

positive and negative gradients, see, e.g. Fig. 1 of Schure et al. (2009), and is additionally modified

in the presence of heating. It has been known for long time (e.g. Field 1965) that under certain

circumstances, e.g. in the presence of heating, thermal instability can occur in a diffuse medium

due to imbalance between temperature-independent energy gains, i.e., heating, and temperature-

dependent radiative losses. From the point of view of magnetoacoustic wave dynamics, peculiarities

of the energy loss/gain function dependence on thermodynamical parameters (e.g., density and

pressure) may lead to the amplification of oscillations and hence an increase in the nonlinearity

(e.g. Nakariakov et al. 2000a). The balance of the radiative/heating effects and dissipation may lead

to appearance of stationary propagating nonlinear waves (autowaves) of a saw-tooth shape (Chin

et al. 2010; Molevich et al. 2011), slow magnetoacoustic auto-solitons (Nakariakov & Roberts 1999),

and nonlinear resonant amplification of Alfvén waves (Zavershinsky & Molevich 2014).

The aim of this paper is to generalise the work of Ruderman (2013) accounting for isentropic

effects based on the presence of an energy loss/gain function in the energy equation. In Sec. 2

we discuss the model and governing equations. In Sec. 3 we derive and analyse linear dispersion

relations. In Sec. 4 we derive the nonlinear evolutionary equation. In Sec. 5 we study different

regimes of the oscillations. The results obtained are summarised and summarised in Sec. 6.

2. Governing equations

In this study we ignore 2D effects, such as the loop curvature and transverse non-uniformity,

and consider longitudinal oscillations as field-aligned acoustic oscillations. Effects of stratification

are neglected too, and the loop is taken to be situated between 0 and L along the magnetic field

directed along the z axis. The governing set of equations is the continuity, Euler and energy
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equations,

∂ρ

∂t
+
∂(ρu)

∂z
= 0, (1)

∂u

∂t
+ u

∂u

∂z
= −1

ρ

∂p

∂z
+

1

ρ

∂

∂z
ρν
∂u

∂z
, (2)

∂p

∂t
− γp

ρ

∂ρ

∂t
= (γ − 1)[Q(ρ, p) +∇(κ∇T )], (3)

p =
kB
m
Tρ, (4)

where ρ is the plasma density; T is the temperature; p is the plasma pressure; u is the speed of a

field-aligned bulk flow; γ is the adiabatic index; t is the time; the coefficients

ν =
4η0
3ρ

, and κ =
(γ − 1)mκ‖

ρkB
(5)

describe the viscosity and field-aligned thermal conduction, respectively, determined by the coeffi-

cients of the bulk viscosity η0 and thermal conductivity κ‖; and Q(ρ, p) is the cooling/heating (the

energy loss/gain) function that accounts for radiative cooling and unspecified coronal heating. In

this study the coefficients of the bulk viscosity η0 and thermal conductivity κ‖ are not specified as

they are likely to be enhanced by microturbulent processes typical for plasmas. Eq. (3) extends

the governing equations used in R13 by including the cooling/heating function Q(ρ, p).

In this study we consider weak perturbations of the equilibrium, determined by the constant

equilibrium density ρ0, pressure p0, temperature T0 that are assumed to be uniform along the

loop. Hence in the equilibrium thermal conduction is zero. Thus, in the equilibrium the cool-

ing/heating function Q(ρ0, p0) = 0, i.e. the heating compensates the radiative losses. The same

equilibrium was considered, e.g., in Nakariakov et al. (2000a); Chin et al. (2010); Molevich et al.

(2011). The perturbations of the equilibrium have a form of field-aligned flows that satisfy the

boundary conditions

u = 0 at z = 0, L, (6)

i.e. the chromosphere is considered to be a rigid wall for the longitudinal oscillations.

The perturbation amplitude is characterised by a dimensionless small parameter ε � 1. The

dissipative effects caused by finite thermal conduction and viscosity, and non-adiabatic effects

caused by the radiative losses and heating, are considered to be of the order of ε too. Thus, the

evolutionary equation will include quadratically nonlinear terms together with linear terms that

represent the non-adiabatic processes. It is convenient to introduce the scaled coefficients at the

dissipative terms as follows

ν = ε−1ν and κ = ε−1κ. (7)
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3. Dispersion relations

Linearising the set of equations (1–4), we obtain

∂ρ

∂t
+ ρ0

∂u

∂z
= 0, (8)

∂u

∂t
+

1

ρ0

∂p

∂z
= ν

∂2u

∂z2
, (9)

∂p

∂t
− γp0

ρ0

∂ρ

∂t
= (γ − 1)

[
ãpp+ ãρρ+ κ

∂2T

∂z2

]
, (10)

p− kBρ0
m

T − kBT0
m

ρ = 0, (11)

where we used the linear terms in the Taylor expansion of the cooling/heating function Q near the

equilibrium, with ãρ = ∂Q/∂ρ taken at p0, and ãp = ∂Q/∂p taken at ρ0. Here, the variables p, ρ,

u and T are perturbations of the equilibrium state. In the following consideration we assume that

the terms on the righthand side are assumed to be smaller than the terms on the lefthand side.

Assuming the harmonic dependence of the perturbed quantities ∼ exp(−iωt+ ikz) we obtain

the dispersion relation

ω2 − C2
s k

2 − i(γ − 1)

ρ0

(ρ0ãρk2
ω

+ ãpρ0ω −
κmωk2

kB
+
κT0k

4

ω

)
+ iνωk2 = 0, (12)

where ω is the cyclic frequency, k is the wave number, and Cs = (γp0/ρ0)
1/2 is the sound speed.

Taking that the lefthand side terms in Eqs. (9) and (10) are small, and hence the last two

terms in Eq. (12) are smaller than the first two terms, we obtain that ω ≈ Csk, and determine the

real and imaginary parts of the frequency as

ωR ≈ Csk, (13)

ωI ≈
(γ − 1)

2
A−

[(γ − 1)2mκ

2γρ0kB
+
ν

2

]
k2, (14)

respectively, where

A = ãρ/C
2
s + ãp (15)

is the parameter determined by the heating/cooling function Q.

Eq. (13) shows that the oscillation period is determined by the length of the loop, e.g. P =

2π/ωR = π/CsL for the fundamental longitudinal mode, and the sound speed. Eq. (14) contains

two terms. The second term on the righthand side, which contains the thermal conductivity κ and

viscosity ν is always negative, and hence causes damping of the oscillation. The damping time is

inversely proportional to k2, thus oscillations in shorter loops decay more rapidly. The first term

on the righthand side of (14) can be either positive or negative, depending at the local gradients of

the cooling/heating function, A.
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In the case A < 0 this terms contributes to damping. However, as it is independent of k the

damping caused by this term is the same in short and long loops. In the case A > 0, this term

suppresses damping. When the condition

A = Acrit =
2

(γ − 1)

[(γ − 1)2κm

2γρ0kB
+
ν

2

]
k2 (16)

is fulfilled, the oscillation becomes undamped. For A > Acrit, the plasma becomes unstable and

the oscillation amplitude grows in time — the thermal over-stability occurs. The critical value

Acrit corresponds to the threshold of the over-stability, which is determined by thermodynamical

parameters of the plasma, the heating/cooling function, and the length of the loop.

4. Evolutionary equation for standing longitudinal oscillations

Observations show that the relative amplitude of standing longitudinal oscillations in coronal

loops reaches 30–50% (e.g. Wang 2011). Thus, it is necessary to account for nonlinear effects

in the evolution of the oscillations. The presence of the small parameter allows us to perform

the asymptotic analysis of weakly-nonlinear, weakly-isentropic standing longitudinal oscillations,

following the methodology developed in R13.

Consider the nonlinear and non-adiabatic processes (the latter are caused by the finite viscosity

and thermal conductivity, and the heating/cooling function) to operate at the slow time t1 = εt.

Thus, we look for a solution to Eqs. (1–4) in the form of expansions

f = f0 + εf1 + ε2f2 + ... (17)

where f represents the quantities u, ρ, p and T . The term f0 represents the unperturbed state i.e.

f0 = const with u0 = 0.

4.1. First-order approximation

Substituting the expansions (17) into Eqs. (1)–(4) we collect the terms of the same power of

the small parameter ε. The first order approximation, after the elimination of all variables in favour

of u1 gives us the acoustic wave equation,

∂2u1
∂t2

− C2
s

∂2u1
∂z2

= 0 (18)

Eq. (18) has the solution u1 = Cs [f(ξ) + g(η)], where

ξ = ω(t− z/Cs), η = ω(t+ z/Cs) (19)

are dimensionless variables; and f(ξ) and g(η) are arbitrary smooth functions that describe the

waves travelling in the positive and negative directions z, respectively.
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Applying the boundary conditions given by Eq. (6) we obtain the solution in a form of standing

waves,

u1 = Cs[f(ξ)− f(η)], (20)

which is a superposition of two waves propagating in opposite directions. The function f(y) is

periodic with the period 2π, which requires ω = πCs/L. This cyclic frequency corresponds to the

fundamental longitudinal mode of a loop of length L, filled in with a uniform plasma with the

sound speed Cs. The perturbations of other physical quantities are

ρ1 = ρ0[f(ξ) + f(η)], p1 = ρ0C
2
s [f(ξ) + f(η)], T1 = (γ − 1)T0[f(ξ) + f(η)]. (21)

Solutions (20)–(21) correspond to the real part of the solution to dispersion relation (13).

4.2. Second-order approximation

Collecting terms of the order of ε2, and again eliminating all variables in favour of u2, we

obtain

∂2u2
∂t2

− C2
s

∂2u2
∂z2

=
ω3[γν + (γ − 1)κ]

γCs
(f ′′′− − f ′′′+ )− 2ωCs(

∂f ′−
∂t1
−
∂f ′+
∂t1

)

+ ω2Cs

[
(γ + 1)

(
f ′−

2 − f ′+
2

+ f−f
′′
− − f+f ′′+)

+ (3− γ)(f−f
′′
+ − f+f ′′−)

]
+ (γ − 1)ωCsA(f ′− − f ′+),

(22)

where f− = f(ξ, t1), f+ = f(η, t1), and the prime denotes the partial derivatives of the function

f(y, t1) with respect to the spatial coordinate y, the independent variable t1 is the “slow” time

that describes the evolution of the oscillations in the presence of the effects of non-adiabaticity

and nonlinearity (i.e. the righthand side of Eq. (22)). Eq. (22) is similar to Eq. (30) of R13 with

the additional term on the righthand side, which accounts for the cooling/heating function via the

parameter A. Eq. (22) should be supplemented by the boundary conditions

u2 = 0 at z = 0, L. (23)

The asymptotic expansion given by Eq. (17) is valid when the second order terms f2 do not

experience a secular growth. Such a growth is possible if the righthand side terms of Eq. (22) are

in resonance with the eigenfunctions of the boundary problem constituted by the lefthand side of

Eq. (22) and boundary conditions (23). This possibility is excluded by demanding the righthand

side of Eq. (22) to be orthogonal to the eigenfunctions of Eq. (22) with (23). Following the procedure

described in R13 (similar methods have also been used in the solar context in the description of

weakly-nonlinear fast waves in Nakariakov & Oraevsky 1995; Nakariakov et al. 1997) we obtain the

condition of the orthogonality,

∂f

∂τ
− 2λf

∂f

∂y
− ∂2f

∂y2
− αf = 0, (24)
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where τ = t/tdl, and

tdl =
2γL2

π2[γν + (γ − 1)κ]
, λ =

εγ(γ + 1)CsL

2π[γν + (γ − 1)κ]
, α =

εγ(γ − 1)AL2

π2[γν + (γ − 1)κ]
. (25)

Eq. (24) is a generalised Burgers equation, similar to Eq. (38) of R13, with the fourth, linear term

accounting for the finite cooling/heating function. Solutions to Eq. (24) with boundary conditions

(6) should be substituted in Eq. (20) that describes a standing oscillation and its evolution.

5. Evolution of standing longitudinal waves

An initial value problem constituted by Eqs. (24), (6), (20), and the initial condition f(y, 0) =

− sin(y) was solved numerically with the use of the standard procedure pdede in Matlab 8.51.

Numerical solutions f(y, t1) with the use of expressions (19) were substituted in equation (20) to

obtain the oscillations of the field-aligned velocity u1.

Figures 1 and 2 show different regimes of the oscillations, determined by different combinations

of the parameters of Eq. (24). The top-left panels of both the figures show the decaying linear

oscillation that was in detail considered in R13. Other panels show the effect of the cooling/heating

function Q(ρ, p). In the middle-left panels the oscillation grows because of the thermal over-

stability. In the top-right the oscillations is undamped. This regime occurs when the profile of

the dependence of the cooling/heating function on the density and pressure has a value given by

condition (16). In this case the damping caused by thermal conduction and viscosity is compensated

by the amplification caused by the thermal over-stability. In the middle-right panels the oscillation

damps stronger than in the case without the cooling/heating function (the top-left panel). In this

case the profile of Q(ρ, p) does not satisfy condition (16), and hence contribute to the oscillation

damping. Despite the finite value of the nonlinear coefficient λ, the oscillation remains practically

harmonic, as it rapidly decreases in time. The bottom panels show nonlinear deformation of the

oscillations caused by the finite amplitude. The plot in the bottom-left panel is rotated to make the

nonlinear deformation better visible. The nonlinearity manifests itself as the appearance of higher

spatial harmonics of the oscillation, i.e. the instant snapshots of the oscillations can be considered

as a sum of the fundamental mode sin(πz/L) and the nonlinearly generated modes sin(πNz/L),

where the integer N ≥ 2 is the spatial harmonic number. Fig. 2 shows the gradual distortion of the

oscillation profile that becomes anharmonic. For higher values of the nonlinear coefficient λ (c.f.

the bottom-left and bottom-right panels), the distortion is more pronounced. Observationally, it

would lead to the movement of the position of the highest amplitude along the loop from the top

where it is in the fundamental mode.

1mathworks.com/products/matlab/
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Fig. 1.— Different regimes of the evolution of the global longitudinal oscillation of a coronal loop,

determined by different combinations of the parameters of nonlinearity and non-adiabaticity. The

plasma speed is normalised at double the initial amplitude. The time is normalised at half the linear

oscillation period. The spatial coordinate is normalised at the loop length L. The top raw: the left

panel shows a decaying linear oscillation (λ = 0, α = 0); the right panel shows an almost undamped

linear oscillation (λ = 0, α = 10). The middle raw: left panel shows a growing oscillation (λ = 0,

α = 20); the right panel shows an over-damped linear oscillation (λ = 3, α = −10). Bottom raw:

the left panel shows the an undamped highly-nonlinear oscillation (λ = 6, α = 10); the right panel

shows a growing nonlinear oscillation (λ = 3, α = 15).
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Fig. 2.— Variations of the longitudinal speed at the top of the loop in different regimes of the

evolution of the global longitudinal oscillation, determined by different combinations of the param-

eters of nonlinearity and non-adiabaticity. The plasma speed is normalised at double the initial

amplitude. The time is normalised at half the linear oscillation period. The panels correspond to

the regimes shown in the corresponding panels of Figure 1.
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6. Discussion and conclusions

Our study shows that the cooling/heating function that accounts for radiation and unspecified

heating of the coronal plasma can significantly affect longitudinal (slow magnetoacoustic) oscilla-

tions of coronal loops. The main contribution to this effect is caused by the gradient of this function

at the equilibrium point on the thermodynamic parametric plane (e.g. the p–ρ plane). The specific

dependence of the cooling/heating function on these parameters has not been established yet, as it

is connected with the enigmatic coronal heating mechanism. Moreover, fine details of the radiative-

loss function are also continuously updated following new and improved calculations of atomic data

and transition rates (see, e.g., discussion in Reale & Landi 2012). What is also important for our

study is that the dependence of the radiative-loss function on the thermodynamical parameters

is not steady, and even approximated dependences show steep positive and negative gradients for

coronal conditions. Thus, we could treat the cooling/heating function as a free parameter in our

study. Unfortunately, this uncertainty does not allow us to make any quantitative estimations, re-

stricting our attention to the discussion of the possible regimes and their seismological implications

only.

It should be pointed out that governing equations (4) used in our derivation, as well as in R13,

are rather simple, and may miss some important physical effects. In particular, these additional

effects include the complex interactions between thermal and non-thermal effects in flares, and

long-durational, in comparison with the oscillation period, field-aligned up- and downflows (e.g.

Fárńık et al. 2003a; Warren & Antiochos 2004; Li et al. 2015b). Thus, the specific values of the

coefficients given by Eqs. (25) may need to be modified if these additional effects are taken into

account. However, despite the possible changes in the governing equations, the general view of

the evolutionary equation will be similar to Eq. (24) that accounts for the intrinsic mechanisms

responsible for the wave evolution: nonlinearity, dissipation and activity. Our main finding is that

the effects associated with the activity of the medium, modelled by the fourth term in Eq. (24), may

cause a dramatic change in the slow wave evolution, and should not be neglected. Furthermore,

in the context of the the specific value of the radiative losses is not important, as the effect of the

thermal over-stability is prescribed by the derivatives of the radiative losses and heating function

with respect to the local thermodynamical parameters of the plasma.

Anyway, it is clear that one of obvious shortcomings of the presented analysis is the applicability

of the effective fluid approach to flaring plasmas, which is not established and needs a dedicated

study. On the other hand, the Burgers equation formalism is known to work well as the zero-order

approximation even in a collisionless plasma (e.g. Hasegawa 1975). Also, the main intrinsic features

of nonlinear wave dynamics, such as nonlinear cascade and appearance of dissipative structures,

described by the generalised Burgers equation given by expression (24) are similar in very different

environments.

In addition, the formalism developed in this study may be applied to the loops sur-

rounding the flaring site, where the applicability of the fluid approach is justified. In
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this case, the oscillatory modulation of thermal emission (e.g. EUV, soft X-ray) come

from the variation of the plasma density and temperature. Oscillatory modulation of

non-thermal emission (e.g. microwave, hard X-ray, γ-ray) could be produced by the

modulation of the magnetic reconnection rate by a magnetoacoustic oscillation in a

loop situated nearby the flaring site (Chen & Priest 2006; Nakariakov et al. 2006). In

those scenarios, the modulation of non-thermal emission is produced by the periodic

modulation of the plasma resistivity, caused by the modulation of the macroscopic

plasma parameters, such as the density and temperature, by an MHD or acoustic

wave. In addition, the periodic modulation of the density of the plasma, and hence

the electron plasma frequency, by a slow magnetoacoustic wave, can periodically mod-

ulate the gyrosynchrotron emission produced by non-thermal electrons (Nakariakov &

Melnikov 2006). Another possibility for the modulation of the non-thermal emission

by a periodic variation of macroscopic plasma parameters in an MHD wave is the pe-

riodic variation of the magnetic mirror condition in the legs of flaring loops (Zaitsev

& Stepanov 1982). Thus, admitting that the non-thermal emission is definitely caused

by non-MHD effects, we would like to point out that its periodic modulation can be

associated with the periodic variations of the macroscopic plasma parameters in MHD

oscillations, considered in this paper.

We found that, depending on the specific gradient of the cooling/heating function at the

thermal equilibrium there are three main different regimes of longitudinal oscillations possible in

coronal loops. The radiative cooling and heating effects can either increase the oscillation damping,

or suppress the damping caused by finite thermal conduction and viscosity. In the latter case we

can observe either undamped oscillations, or even increase in the oscillation amplitude in time -

the regime of thermal over-stability. In all these regimes, the oscillation period remains determined

by the loop length and temperature. We should point out that undamped oscillations have been

detected in coronal oscillations during solar flares (e.g. Svestka 1994; Terekhov et al. 2002; Fárńık

et al. 2003b; Huang & Ji 2005; Mészárosová et al. 2006; Kislyakov et al. 2006; Simões et al. 2013; Li

et al. 2015a), and hence could, at least in some cases, be attributed to this effect. In the undamped

regime, the oscillation period remains determined by the length of the loop and the temperature

of the plasma. For example, for a 120-s oscillation in a flaring plasma of 20 MK temperature,

the length of the oscillating loop should be about 40 Mm for the fundamental harmonics, and

80 Mm for the second spatial harmonics. It is necessary to mention that an undamped or growing

regime of another MHD mode, the kink oscillation, has recently been discovered observationally

(Wang et al. 2012; Nisticò et al. 2013) during non-flaring periods of time, while its nature remains

unrevealed. Anyway, undamped kink oscillations are not likely to be responsible for the undamped

or growing QPP detected in solar flares, as that regime is observed during the quiet periods of the

solar activity.

In contrast with the damping caused by finite thermal conduction and/or viscosity that de-

creases with the oscillation wavelength, the cooling/heating function is independent of the wave-
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length. It suggests that the undamped and over-stable regimes are more likely to occur in longer

loops, in which the efficiency of the damping by thermal conduction and viscosity is lower. How-

ever, realisation of these regimes in specific situations depends on the specific thermodynamical

parameters of the plasma in the oscillating loop. Also, the observational detection of an undamped

or growing long-period oscillation is only possible in the case when the flaring emission in e.g. the

soft X-rays lasts longer than several cycles of the oscillation.

The nonlinear movement of the position of the highest amplitude along the loop, that was

revealed in R13, becomes even more important in the case of undamped or growing oscillations.

In those cases, nonlinear corrections get accumulated for a longer time, causing more significant

departure from the harmonic shape of the oscillations.

Thermal over-stability can also lead to the excitation of oscillations. A gradual change of

thermodynamical conditions in a loop, could reach the instability’s threshold (16), causing the

onset of the over-stability and hence increase in the oscillation amplitude. In this reasoning one

could also take into account the possible onset of some plasma micro-instabilities caused, e.g. by

plasma flows in the oscillations, resulting in the increase in the viscosity and thermal conductivity.

This scenario could explain the sudden appearance of the oscillation and its rapid decay by the

enhance dissipation. However, this discussion remains speculative till more detail investigation of

this possibility.

Our results demonstrate that the behaviour of slow magnetoacoustic oscillations in coronal

loops is sensitive to the peculiarities of the coronal cooling/heating function. Different dependences

of the combination of the radiative cooling and heating on the plasma’s thermodynamical parame-

ters result in qualitatively different regimes of the oscillations (over-damped, undamped, growing),

providing us with a potential ground for the seismological diagnostics of the cooling/heating func-

tion in observations. This finding motivates a more detailed study of compressive oscillations in

observational data. Special attention should be paid to the search for the undamped and growing

regimes, similar to those described in (e.g. Svestka 1994; Terekhov et al. 2002; Fárńık et al. 2003b;

Huang & Ji 2005; Mészárosová et al. 2006; Kislyakov et al. 2006; Simões et al. 2013; Li et al. 2015a),

the shape of the oscillation curve, and the appearance of higher spatial harmonics.

The significant limitations of the used governing equations, discussed above, require a further

development of the model by including additional physical effects typical for flaring plasmas. The

formalism for the derivation of evolutionary equation (24) presented here provides one with a

convenient starting point. Another limitation of the present study is the use of rigid-wall boundary

conditions (6). However, if necessary, the developed formalism can be modified for the cases of

open or asymmetric boundary conditions, which is out of scope of the present paper.
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Fárńık, F., Hudson, H. S., Karlický, M., & Kosugi, T. 2003a, A&A, 399, 1159
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