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Abstract 

The number of engineered nanomaterials (ENMs) being exploited commercially is growing 

rapidly, due to the novel properties they exhibit. Clearly, it is important to understand and 

ameliorate any risks to health or the environment posed by the presence of ENMs. Data-

driven models that decode the relationships between the biological activities of ENMs and 

their physicochemical characteristics provide an attractive means of maximizing the value of 

scarce and expensive experimental data. Although such structure-activity relationship (SAR) 

methods have become very useful tools for modelling nanotoxicity endpoints (nanoSAR), 

they have limited robustness and predictivity, and interpretation of the models they generate 

can be problematic. New computational modelling tools or new ways of using existing tools 

are required to model the relatively sparse and sometimes lower quality data on the biological 

effects of ENMs. The most commonly used SAR modelling methods work best with large 

data sets, are not particularly good at feature selection, and may not account for nonlinearity 

in the structure-property relationships. To overcome these limitations, we describe the 

application of a novel algorithm, a genetic programming-based decision tree construction tool 

(GPTree) to nanoSAR modelling. We demonstrate the use of GPTree in the construction of 

accurate and interpretable nanoSAR models by applying it to four diverse literature datasets. 

We describe the algorithm and compare model results across the four studies. We show that 

GPTree generates models with accuracies equivalent to or superior to those of prior 

modelling studies on the same datasets. GPTree is a robust, automatic method for generation 

of accurate nanoSAR models with additional advantages that it works with small datasets, 

automatically selects descriptors, and provides improved interpretability of models. 

  



1. Introduction 

Nanotechnology is a broadly applicable science with considerable potential for 

breakthroughs in a wide variety of fields. It has impact in almost all branches of engineering, 

resulting in a rapid increase in the number of nanotechnology-based products and a 

concomitant need to understand the potential consequences of environmental and human 

exposure to these novel types of products. It has been assumed that the existing risk 

assessment protocols for conventional materials are applicable to nanoscale materials. 

However, these protocols need to be reconsidered given the complex nature of engineered 

nanomaterials (ENMs) and their interactions with biological environments. There is a clear 

gap in scientific knowledge and understanding related to the toxicological effects of ENMs, 

which makes it difficult to assess and manage risks associated with ENMs. Clearly, rapid 

assessment methods are needed to assess any toxic effects of ENMs to ensure the data gap for 

their risk assessment does not widen.  

Established data-driven computational techniques such as quantitative structure-activity 

relationship (QSAR) modelling and its qualitative variant (qSAR), have proven to be useful 

in modelling biological response data for ENMs. Their use has increased significantly in 

recent years because they provide rapid biological activity/toxicity predictions from structural 

properties where experimental data are incomplete, missing or difficult to obtain (Wang et al., 

2014, Fourches et al., 2010, Puzyn et al., 2011a, Epa et al., 2012, Gajewicz et al., 2014, Kar et 

al., 2014, Chau and Yap, 2012, Zhang et al., 2012, Pathakoti et al., 2014, Bigdeli et al., 2015, 

Burello and Worth, 2011a, Le et al., 2015, Liu et al., 2014). Additionally, they are the only 

methods currently available that can generate quantitative predictions of biological effects of 

multifarious ENMs in very complex biological or ecological ‘real world’ environments. 

Published nanoSAR models have identified linear and non-linear relationships between 



nanomaterials properties and their biological effects, suggesting a potentially complex 

relationship between physical and compositional features of ENMs and toxicity, for example. 

Given the current scarcity of hazard data in nanotoxicology (Oksel et al., 2015a) due to time, 

cost, and ethical factors, nanoSAR methods provide reasonably accurate results in a timely 

manner and make best use of these limited data. Maximizing the usefulness of limited data 

will provide opportunities to design inherently safer ENMs by structural manipulations (e.g. 

safety by design research).  

In the absence of suitable datasets for generating quantitative models of ENM toxicity 

using traditional methods, we decided to focus on tools that elucidate relationships between 

theoretically/experimentally derived descriptors and toxicity. In particular, we investigated 

the use of decision tree learning algorithms to identify the optimum combination of 

physicochemical properties for effective predictions of biological activity of ENMs. Decision 

trees (DTs) have been recently suggested as a ‘gold standard’ SAR algorithm by Ma et al. 

(2015). Our method allows automatic construction of DTs from categorical toxicity data. DT 

models are transparent and can deal with small, large and noisy datasets, detect nonlinear 

relationships, allow automatic selection of input descriptors, provide a clear indication of 

which properties are most important for toxicity, and generate understandable rules.  

This paper describes the GPTree (genetic-programming based decision tree induction) 

approach, and demonstrates its potential in SAR modelling of ENM toxicity by a number of 

case studies. We compiled nanotoxicity data from the literature, applied the GPTree method 

to model these data, and compared the results with past studies. Since the details of the 

method have been reported in recent literature (Ma et al., 2008, Wang et al., 2006, 

Buontempo et al., 2005), we provide only a summary. Here we demonstrate the successful 

application of a genetic programming-based decision tree construction algorithm to identify 



key physicochemical descriptors contributing to the toxicity of ENMs, and to automatically 

build easy-to-interpret decision tree models. 

1.1.NanoSAR research 

The SAR modelling approach is based on a simple assumption that the biological activity 

is a function of measurable or computable structural, process, and physiochemical properties 

of materials. Thus, the biological activity of materials can, in principle, be predicted from 

their chemical structures and processing conditions. Figure 1 demonstrates the main steps for 

developing quantitative or qualitative SAR models. Although the traditional SAR method has 

been widely used to estimate the biological activity of discrete molecules and materials in 

bulk form, nanoSAR modelling is relatively new and still developing. The earliest studies in 

nanoSAR research were less than ten years ago (Durdagi et al., 2008), and there has been 

accelerating interest in the application of these methods to ENMs in the last few years 

(Bigdeli et al., 2015, Singh and Gupta, 2014, Gajewicz et al., 2014, Pathakoti et al., 2014). 

Since a detailed review of previous nanoSAR studies was reported recently (Oksel et al., 

2015b), only a brief summary of representative studies is provided here. 

Early literature in nanoSAR modelling were opinion papers (Puzyn et al., 2009, Poater et 

al., 2010, Burello and Worth, 2011a, Burello and Worth, 2011b, Fourches et al., 2011, 

Gajewicz et al., 2012, Winkler et al., 2012) and research articles attempting to describe and 

model the properties that influence toxicity of ENMs (Fourches et al., 2010, Sayes and 

Ivanov, 2010, Puzyn et al., 2011a, Epa et al., 2012, Liu et al., 2013b, Zhang et al., 2012, 

Wang et al., 2014). Table 1 summarizes some key classification- or regression-based 

nanoSAR modelling studies that employed experimental and/or theoretical descriptors. One 

set of studies (Sayes and Ivanov, 2010, Wang et al., 2014, Liu et al., 2013b) employed 

experimentally measured physicochemical or structural property descriptors. This approach 



requires systematic and extensive characterization of ENMs, a difficult issue due to the 

dynamic and easily perturbed nature of some of these properties and the lack of 

standardised/verified measurement methodologies. A second set of studies (Puzyn et al., 

2011b, Chau and Yap, 2012, Kar et al., 2014) used theoretically calculated descriptors that 

encoded information on physicochemical, structural, or quantum mechanically derived 

properties of ENMs. The main problem that complicates the computation of molecular 

descriptors for ENMs is that they are not pure compounds, rather populations of materials 

with distributions of structures, shapes, sizes, surface properties, and charges. Progress and 

shortcomings of this approach in predicting biological properties of ENMs has been reviewed 

very recently by Winkler (2015 (in press)). 

1.2.NanoSAR modelling methods and decision tree induction 

In theory, any regression or classification method, such as multiple linear regression, 

partial least squares, decision trees, random forest, support vector machine, linear 

discriminant analysis and artificial neural networks, can be used to qualitatively or 

quantitatively relate physicochemical properties to a biological activity of the ENMs. 

However, one of the main issues for nanoSAR modellers currently is the lack of 

comprehensive hazard and exposure data for well-characterized ENMs. Therefore, it is 

reasonable to focus on methods/tools that can make the best possible use of limited existing 

data, rather than tools that work best with large data sets that are currently in short supply. 

Moreover, in the absence broad understanding of how ENMs damage cells, tools that can 

automatically identify the most relevant descriptors for predicting toxicological outcomes, 

can simplify model interpretation and may provide new mechanistic insights (Burden and 

Winkler, 2009). One method that is well suited to achieving these aims is decision trees 

modelling. This selects a small set of relevant variables (e.g. descriptors) in a context-

dependant way and associates the output value (e.g. toxicity) to each of these key variables. 



Automatic construction of DTs is a powerful data-mining tool used for classification and 

regression. It is tolerant of poor quality and missing data and can model linear and nonlinear 

structure-activity relationships. Like other sparse feature selection methods that exploit 

sparsity-inducing Bayesian priors (Burden and Winkler, 2009), decision trees select a small 

subset of the most relevant descriptors and completely remove the less important ones. They 

identify linear and non-linear structure-activity relationships in a transparent, understandable, 

and intuitive way. To date, the DT algorithm has been successfully used in a range of SAR 

modelling studies (Sussman et al., 2003, Arena et al., 2004, Andres and Hutter, 2006, Han et 

al., 2008, Ma et al., 2008) but its use in nanoSAR studies is surprisingly very limited, given 

its clear advantages (Bakhtyari et al., 2014). 

2. Methodology 

Decision tree models can be generated using a variety of algorithms. Most construction 

algorithms use a greedy search of the response surface that can lead to suboptimal solutions 

(local minima) and overfitting of training data. These limitations can be ameliorated by the 

use of genetic programming methods to construct DTs. Genetic programming is a member of 

the broad class of evolutionary algorithms that can efficiently search very large parameter 

spaces for locally optimal solutions to high dimensional materials spaces (Le and Winkler, 

2016). The application of evolutionary algorithms for discovery and optimization of materials 

has been reviewed very recently (Le and Winkler, 2016). 

In 2004, DeLisle and Dixon (2004) developed a novel approach called EPTree that 

employs a genetic programming-style search to construct accurate DT models. We developed 

a variant called the GPTree that uses a simpler fitness function and demonstrated how it can 

be successfully applied to modelling of ecotoxicity data (Buontempo et al., 2005). As the 



details of the technique can be found in literature (Wang et al., 2006, Buontempo et al., 

2005), only a basic overview of the method is provided here. 

Briefly, GPTree begins with a random population of solutions and repeatedly attempts 

to find better solutions by applying genetic operators such as mutation and crossover (for 

descriptions of these operators see Le and Winkler (2016)). The first step is to construct a 

user-specified number of trees (usually a large number) starting from a random compound 

and randomly chosen descriptor. Once the initial population is generated, tournament 

selection is performed to identify the best tree to be used as a parent tree for genetic operators 

such as crossover. The best tree from the subset of trees is chosen by its fitness (e.g. 

accuracy). Genetic operators such as crossover and mutation are used to form next generation 

of trees that added or replace the current generation. These steps are repeated until the user-

specified number of generations has been created. The DT models with the highest accuracy 

of classification for the training and test datasets result. Figure 2 summarizes the operations 

used to find the optimal DTs while key parameters used in GPTree are shown in Table 2. 

3. Results of case studies 

We present the results of genetic-programming based DT models of four nanotoxicity 

datasets to illustrate the applicability of GPTree to SAR modelling studies of ENMs. 

3.1. Case Study I – General cellular toxicity 

3.1.1. Biological data and modelling 

A previously reported dataset containing the toxicological responses of 23 nanoparticles 

(NPs) together with a large pool of NP descriptors was used for GPTree analysis. The original 

toxicity study (Zhang et al., 2012) measured the toxicity of 24 NPs by 1) multi-parameter 

high-throughput screening assays examining cellular oxygen radical generation, calcium flux, 

mitochondrial depolarization and cytotoxicity, and 2) single parameter MTS, ATP and LDH 



assays in human bronchial epithelial (BEAS-2B) and murine myeloid (RAW 264.7) cell lines.  

Liu et al. (2013b) used self-organising maps (SOM) to model toxicity data for 23 NPs (one of 

the metal oxides, Fe3O4, was excluded as it was impure) in order to group NPs with similar 

toxicological effects into the same clusters. Although their SOM-based clustering analysis 

revealed three distinct NP clusters, they suggested combining cluster 2 and 3 into a single 

cluster. Thus, Cluster 1 contained 16 NPs having no toxicological effects (i.e. negative 

response) while cluster 2 included 7 NPs of high toxicological concern (i.e. positive 

response). A set of 27 NP descriptors including element related descriptors, energy/enthalpy 

descriptors, size information and surface charge descriptors was also collected from Liu et al. 

(2013b) and used as input parameters in GPTree analysis. The initial dataset was then divided 

into training (18 NPs, 78% of dataset) and test set (5 NPs, 22% of dataset) as recommended 

by (Sizochenko et al., 2015). 

3.1.2. GPTree modelling results 

The initial descriptor dataset and the categorical (toxic/nontoxic) biological data were 

used to generate 100 generations of decision trees, each generation consisting of 600 trees. 

The fittest 16 trees competed in each tournament and 0.015 of trees were mutated. These 

values were all chosen after a number of trial-and-error runs. The decision tree with best 

performance (Fig. 3) was selected based on its ability to predict the biological activities of the 

training and test sets, and its complexity (e.g. number of descriptors included). The statistical 

measures of the performance of the binary classification tree generated by GPTree are 

presented in Table 3. Here, sensitivity represents the proportion of positives that are correctly 

predicted; specificity quantifies the proportion of negatives that are correctly identified while 

accuracy is the proportion of the true results including both true positives and true negatives 

among the total number of examined cases. The best performing tree model given in Figure 3 

achieved the maximum value of accuracy, specificity and sensitivity (i.e. 100%) on both 



training and test datasets at the 24th generation. A Y-scrambling test involving repetitive 

randomization of the response data was performed using the procedure of Wold et al. (1995). 

This demonstrates the statistical significance of the nanoSAR model by comparing its 

prediction accuracy to the average accuracy of random models (50% for a two class problem). 

The first step was to randomize the response data (toxicity class membership) of 18 

compounds in the training set. For this purpose, a random number generator was used to 

allocate the integer between 1 (negative class) and 2 (positive class). GPTree analysis was 

then carried out on these scrambled response data with the same parameters used in the 

original model development. Simulations were run for 100 generations, each consisting of 

600 trees, and the prediction accuracy of the best decision tree of the current generation was 

recorded. This process was repeated 3 times. The results of y-scrambling (prediction accuracy 

of the best “random” trees in each of 100 generations, and number of leaf nodes) were 

averaged and compared to the results of the original model. In each case, scrambled data gave 

accuracies of 44, 41 and 47%, close to 50% expected by chance. This confirmed the high 

statistical significance of the nanoSAR model constructed from the experimental biological 

response data. As large and complex trees may overfit the data, resulting in the loss of ability 

of the model to generalise to untested compounds, tree complexity provides an additional 

model quality parameter (Ariew, 1976). 

3.1.3. Model interpretation 

One of the strengths of the decision tree method, compared to other widely used nanoSAR 

modelling approaches, is the ability to interpret the model. The descriptors selected by the 

GPTree model include NP conduction band energy, EC, and ionic index of metal cation, Z2/r. 

This finding is very consistent with past studies that identified these two descriptors as being 

important for the toxicity of metal oxide NPs (Zhang et al., 2012, Liu et al., 2013b). The 

conduction band energy values of NPs screened ranged between -5.5 and -1.5 while the ionic 



index of metal cation of the studied NPs were in the range of 0.054 and 0.615. GPTree 

analysis showed that NPs with a conduction band energy of less than -3.9 and an ionic index 

of less than 0.16 tended to show toxic responses. Again, these findings are consistent with the 

conclusions of earlier studies (Liu et al., 2013b) that metal oxide NP toxic effects increased 

when its conduction band energy is close to the cellular redox potential (in the range of [-4.8, 

-4.12]) and when its ionic index is low. 

3.2. Case Study II – Nanoparticle cellular uptake 

3.2.1. Biological data and modelling 

This dataset consisted of 105 iron-oxide based NPs investigated for cellular uptake by 

Weissleder et al. (2005). The NPs had the same metal core, super paramagnetic iron oxide, 

but different surface chemistries. The biological response values used in this case study were 

the cellular uptake of NPs in human pancreatic cancer cell line (PaCa2). The cellular uptake 

values of 105 NPs ranging between 170 and 27 542 NP/cell were obtained from Fourches et 

al. (2010). For binary classification, a criterion of Chau and Yap (2012) was considered: the 

NPs having cellular uptake of more than 5000 NPs per cell were considered to have good 

cellular uptake (class 2 - positive class) while NPs with cellular uptake of less than 5000 

particles per cell were considered to have poor cellular uptake values (class 1 - negative 

class). According this criterion, 56 NPs belonged to class 2 and the remaining 49 NPs were in 

class 1 resulting in a balanced data set. The data set was split into a training set (84 NPs) and 

test set (21NPs) that containing NPs distributed across the range of the cellular uptake values.  

Although no experimental characterization data was provided in the original paper 

(Weissleder et al., 2005), all NPs screened in this study contained the same magnetic iron 

oxide core decorated with different small molecules which enabled the computation of the 

theoretical descriptors based on the chemistry of the surface modifiers. Two different 



descriptor datasets were separately used as input data in modelling part. Firstly, a total of 690 

1D and 2D descriptors were calculated using DRAGON 6 software (Mauri et al., 2006). After 

removing those descriptors with little variation across the nanoparticles, 389 chemical 

descriptors were retained. Secondly, a pool of 147 chemically interpretable descriptors was 

used (Winkler private communication) (Epa et al., 2012). These two descriptor datasets were 

modelled separately in GPTree analysis to investigate the relationship between descriptor 

values and the cellular uptake of NPs in PaCa2 cell line. 

3.2.2. GPTree results 

For the descriptor dataset of 389 Dragon descriptors, 100 generations of trees were 

produced, each generation consisting of 600 trees (a larger number of trees provided no 

advantages and slowed the calculations down). Sixteen trees competed in each tournament 

and 10% of trees were mutated each time. These values were chosen after a number of trial-

and-error runs in which the adjustable parameters, such as the number of generations, number 

of trees in each generation, number of trees in each tournament and the age of mutation were 

varied. The best performing decision tree (Figure 4), selected by model prediction accuracy 

for the training and test sets, had performance parameters given in Table 4.  This tree model 

achieved a training accuracy of 98% and test accuracy of 86% at the 54th generation and no 

improvement was observed subsequently.  

The risk of chance correlation was verified by the Y-scrambling test, which was repeated 

3 times following the procedure explained in section 3.12. In comparison to the original 

dataset, lower test accuracy values (39, 44 and 55%) and also higher complexities (23, 23, 21 

leaf nodes) of the randomized models confirmed that the developed nanoSAR model which 

achieved higher test accuracy (86%) with less complexity (14 leaf nodes in total) was not due 

to chance factors. 



A similar modelling approach was followed for the second descriptor dataset. Overall, 

1000 trees were grown in each generation while a maximum of 50 generations was used (no 

improvement was obtained with a higher number of generations required). 16 trees competed 

in each tournament and the mutation rate was set to be 10%.  The best performing decision 

tree was selected based on its ability to predict the class membership of NPs in the training 

and test sets. The performance parameters for the model are given in Table 5. At the 48th 

generation, the GPTree achieved a training accuracy of 99% and a test accuracy of 86%.  

A Y-scrambling test was carried out to investigate the chance correlations and robustness 

of the best model selected. The results of y-scrambling showed that the accuracy of the 

random response models (49, 58 and 39%) were not comparable to the original model (86%). 

Lower test accuracy values (39-58%) of the random response models despite their higher 

complexities (22, 24, 22 leaf nodes) were a good indicator of the absence of chance 

correlation in the developed nanoSAR model. Randomization results confirmed that the 

developed nanoSAR model, which achieved higher test (86%) accuracy with less complexity 

(16 leaf nodes), was robust and not due to chance factors. 

3.2.3. Model interpretation 

For the descriptor dataset of 389 Dragon descriptors, our GPTree model selected 12 

descriptors related to lipophilicity (MlogP and CATS2D_03_AL), atomic masses (ATSC6m), 

symmetry associated with structure (AAC, IDDE), charge distribution (GGI6) and 

connectivity indices (Spmax2Bh) as the most important descriptors (see Table S1). Drug-like 

scores (DLS-cons and DLS-04) that are defined based on several parameters such as 

lipophilicity (MLogP), molecular weight and hydrogen bonding characteristics, were also 

found to be significant in explaining cellular uptake of different NPs in pancreatic cancer 

cells. In line with the earlier studies (Fourches et al., 2010), our analysis showed that 

lipophilicity, as measured by a MlogP lipophilicity descriptor, of NPs correlates well with 



their uptake. This lipophilicity descriptor successfully discriminated between two classes of 

NP uptake: 15 NPs with low values of MlogP, indicating the ability to penetrate lipid-rich 

zones from aqueous solutions (Turabekova and Rasulev, 2004), were correctly located in 

Class 1 while 6 NPs with higher MlogP values were accurately located in Class 2.  

 For the second descriptor dataset, 13 parameters associated with hydrogen-bonding 

capacity (nN, O-058, nHDon), functional group counts (nCp), molecular shape (ASP, L/Bw), 

composition (nSK, nBT) and polarizability (DISPp) were identified by the GPTree model 

search as the best correlated with NP uptake (see Table S2). As reported elsewhere (Epa et 

al., 2012), strong correlation between hydrogen bonding capacity, molecular shape and 

cellular uptake was observed. Two of the selected descriptors, nBO and SCBO, can be 

viewed as a representation of the degree of unsaturation that specifies the amount of hydrogen 

that a compound can bind and hence can be related to the hydrogen bonding ability of a 

molecule. The findings of GPTree analysis regarding the large contribution of lipophilicity, 

hydrogen bonding and molecular shape descriptors in the cellular uptake behaviour of NPs is 

in great agreement with the results of previous nanoSAR studies [2, 4, 7, 25]. 

3.3.Case Study III – cytotoxicity to human keratinocytes 

3.3.1. Biological data and modelling 

The third dataset modelled with GPTree software consists of 29 descriptors (e.g. 16 

quantum-mechanical descriptors, 11 image-based descriptors and 2 experimental 

measurements) representing the structural features of 18 metal oxide NPs (Gajewicz et al., 

2014). The authors also measured the cytotoxicity of 18NPs to human keratinocyte (HaCaT) 

cell line using the CytoTox-Glo cytotoxicity assay and calculated LC50 values for all NPs.    

Firstly, since GPTree can only work with categorical endpoints, 18 NPs were divided into 

two homogenous clusters, e.g. low toxicity (9 NPs) and high toxicity (9 NPs), based on a 



threshold value of 2.4. Activity threshold was chosen based on the natural grouping of NPs 

with balanced distribution between toxic and nontoxic ENMs. There was no object falling 

near the decision boundary (between 2.32 and 2.48), hence, there was no need to exclude any 

compounds from the analysis. The selection of classification threshold value has a direct 

influence on the modelling results. However, choosing a different activity threshold, for 

example 2.0, results in an unbalanced split of 2 nontoxic and 16 toxic NPs for which no 

significant model could be constructed. To ensure the validity of the data split, k-means 

clustering method was applied using XLSTAT statistic package (Fahmy, 1993). In k-means 

clustering analysis, the selected criterion was Determinant (W), as it allowed to remove the 

scale effects of the variables. The results of k-means clustering were identical to the results of 

data split based on a threshold value of 2.4: 9 NPs (Al2O3, Cr2O, Fe2O3, Sb2O3, SiO2, TiO2, 

V2O3, Y2O3 and ZrO2) were assigned to the low-toxicity cluster (class 1 - negative response) 

while the remaining 9 NPs (Bi2O3, CoO, In2O3, La2O3, Mn2O3, SnO2, NiO, ZnO and WO3) 

were assigned to the high-toxicity cluster (class 2 - positive response).  

 Secondly, for validation purpose, the dataset was split into training (10 NPs) and test (8 

NPs) datasets in the same way as in Gajewicz et al. (2014) .  

3.3.2. GPTree results 

After data transformation and splitting, 100 generations of trees were produced by 

GPTree using the training and test datasets. Elitism between 2 and 16 trees surviving was 

tried but no elitism gave the best results in terms of accuracy, so the results are presented for 

no elitism. 16 trees were computed in each generation, and 0.5% of the trees were mutated 

since low values of mutation rate were found to be more suitable for this dataset. These 

values were all chosen after recording the accuracy of best trees and the average accuracy of 

each generation on the training data. The best performing tree was obtained at the 39th 



generation, which achieved an accuracy of 100% on both training and test data. This tree is 

shown in Figure 6 while performance parameters for the model are given in Table 6. 

Following the same procedure described in case study 1, standard Y-scrambling test was 

applied to the shuffled data to show the robustness of the developed nanoSAR model 

(Fig.10). The predictivity of the selected model was confirmed by the lower values of the 

average test accuracies (39-54%) of the randomized models, compared to the accuracy of the 

actual model as assessed by the prediction accuracy on test set. 

3.3.3. Model interpretation 

As can be seen from Figure 6, the constructed decision tree model included following 

quantum-mechanical descriptors only: ∆Hfc (the enthalpy of formation of metal oxide 

nanocluster representing a fragment of the surface), Xc (Mulliken electronegativity of the 

cluster) and chemical hardness. Three descriptors were selected by GPTree, the most 

important one being the Mulliken electronegativity of the cluster (Xc). The results of GPTree 

are in very good agreement with the results of Gajewicz et al. (2014) who developed a 

nanoSAR model that utilised two molecular descriptors (e.g. ∆Hfc and Xc). As shown by the 

GPTree model given in Figure 6, metal oxide NPs with higher electronegativity were more 

toxic. Since the mechanistic interpretation of the constructed model based on these two 

descriptors is discussed elsewhere (Gajewicz et al., 2014), it will not be repeated here. The 

only extra descriptor selected by GPTree was chemical hardness, which corresponds to the 

half the band gap of a chemical compound. Again, this finding is not surprising as the 

relevance of the band energy levels to adverse biological effects of metal oxide NPs has been 

previously reported by Zhang et al. (2012).   

 

 



3.4.Case Study IV– exocytosis of gold nanoparticles 

3.4.1. Biological data and modelling 

        Oh and Park (2014) examined the role of surface properties in the exocytosis of gold 

NPs (GNPs) in macrophages. They reported the exocytosis rates of 12 GNPs expressed as the 

% of GNPs leaving the macrophage, and a set of 6 experimental descriptors including zeta 

potential, hydrodynamic diameter, and maximum wavelength both prior to and after protein 

coating (Oh and Park, 2014). Bigdeli et al. (2015) extracted 12 nano-descriptors (e.g. size, 

surface area, aspect ratio, corner count, curvature, aggregation state, and shape) from TEM 

images of GNPs and calculated 10 descriptors such as charge densities, adjusted aspect ratio, 

charge accumulation values, spectral size, spectral surface area, spectral aspect ratio and 

spectral aggregation by combining TEM extracted image descriptors with experimental 

parameters. Our study used 28 descriptors, comprised of experimental parameters, TEM 

extracted image descriptors and nano-descriptors together with the observed exocytosis 

values of GNPs in the GPTree analysis. 

The results of Oh and Park (2014) demonstrated that cationic GNPs exhibited the lowest 

rate of exocytosis while PEGylated ones showed the highest rate. They also noted that the 

remaining ones, anionic and zwitterionic GNPs, exhibited medium exocytosis rates. Based on 

these findings, we divided 12 GNPs into three homogenous clusters, e.g. low (3 GNPs), 

medium (6 GNPs) and high exocytosis (3 GNPs). For validation purpose, we randomly 

selected 1 compound from each cluster and formed a test set of 3 GNPs.   

3.4.2. GPTree results 

Based on the initial pool of toxicity dataset and clustered toxicity data, 100 generations of 

trees were produced with each generation consisting of 600 trees. 16 trees competed in each 

tournament and 0.015 of trees were mutated. The best performing decision tree shown in 



Figure 7 was selected based on mode accuracy on classifying training and test datasets. The 

corresponding statistical performance measures are given in Table 7. This tree model 

achieved both training and test accuracies of 100 at the 35th generation.  

Y-scrambling was applied to randomized response data to demonstrate the robustness of 

the developed nanoSAR model. A random number generator was used to allocate the integer 

between 1 and 3. GPTree analysis was then carried out with the same parameters on the 

randomly shuffled response data. This process was repeated 3 times. The averaged test 

accuracies reached in Y-randomization test runs (1-27%) were similar to those expected by 

chance (33%), much lower than achieved by the model (100%), indicating that the method 

has produced a robust model. 

3.4.3. Model interpretation 

The descriptors selected from a pool of 28 descriptors by the GPTree model include 

charge accumulation, zeta potential and charge density values before coating. This finding are 

completely consistent with the previous results of previous studies (Bigdeli et al., 2015) 

which showed that charge density, zeta potential, charge accumulation and circularity have 

the highest impact on the exocytosis of GNPs in macrophages. GPTree results showed that 

high (or positive) values of zeta potential prior to protein corona formation resulted in higher 

exocytosis of GNPs in macrophages. Also in line with the findings of previous studies 

(Bigdeli et al., 2015, Oh and Park, 2014), our GPTree analysis results demonstrated that 

particle size had no effect on the exocytosis pattern of GNPs, while surface characteristics 

were the main factors influencing the exocytosis rate.  

 

 



4. Discussion 

Using four literature datasets, we demonstrated that GPTree was clearly capable of 

correctly classifying the biological response data from cells exposed to diverse NPs and of 

identifying the key NP descriptors associated with their toxicity. The accuracy of the model 

predictions was satisfyingly high and clearly highly statistically significant relative to the 

classification rate due to chance.  

Interpretability of models was also an important reason for investigating the applicability 

of GPTree to modelling of NP biological effects. The data sets were chosen for the case 

studies because have been modelled by others, allowing us to determine how the relatively 

sparse model parameters chosen by GPTree compared with these earlier studies and with the 

known mechanisms of toxicity where these have been identified or suggested. In the first 

general cellular toxicity case study two parameters, the conduction band energy and ionic 

index of metal cation, were identified as suitable descriptors for metal oxide NPs. Previous 

studies (Zhang et al., 2012, Liu et al., 2013b) showed that cytotoxicity tended to increase with 

decreasing values of the ionic index, and for conduction band energies in the range of -5.5 

and -3.9 eV, close to the estimated range of standard redox potential couples in biological 

medium (typically in the range of 4.84 - 4.12 eV) (Liu et al., 2013b, Zhang et al., 2012, Nel et 

al., 2006, Burello and Worth, 2011b).  

In the cellular uptake of NP case study, two different descriptor datasets were used to 

generate the nanoSAR model. For the descriptor dataset of 389 Dragon descriptors, 12 

descriptors (see Table S1) related to lipophilicity, atomic masses, symmetry associated with 

structure, charge distribution and connectivity indices were found to be predominantly 

affecting the cellular uptake behaviour of NPs. Additionally, the results showed that 

druglikeness score can potentially be used to judge the NP’s cellular uptake behaviour since it 



takes into account the most important parameters (lipophilicity and hydrogen bonding), which 

seem to have an influence on cellular uptake. For the descriptor dataset of 147 chemically 

interpretable descriptors, 13 descriptors (see Table S2) representing the hydrogen-bonding 

characteristics, functional group counts, molecular shape, composition and polarizability were 

found to be significant predictors of cancer cell uptake. The findings of GPTree analysis 

regarding the large contribution of lipophilicity, hydrogen bonding and molecular shape 

descriptors in the cellular uptake behaviour of NPs is consistent with earlier studies (Fourches 

et al., 2011, Fourches et al., 2010, Chau and Yap, 2012, Epa et al., 2012). 

For the cytotoxicity to human keratinocytes dataset, the descriptors selected by GPTree 

were the enthalpy of formation of metal oxide nanocluster representing a fragment of the 

surface (∆Hfc), the Mulliken’s electronegativity of the cluster, Xc, and the chemical hardness. 

The former two descriptors are consistent with the properties reported to be important for 

cytotoxicity of metal oxide NPs (Gajewicz et al., 2014, Puzyn et al., 2011a). In addition, the 

chemical hardness corresponding to the reactivity was found to be an influential parameter on 

the cytotoxicity of NPs.  

In the exocytosis of gold nanoparticles in macrophages case study, the optimal descriptors 

for predicting the exocytosis were the charge accumulation, zeta potential and charge density. 

These findings are in line with previous studies revealing an association between surface 

characteristics of GNPs, especially high positive surface charge, and their exocytosis patterns 

in macrophages (Oh and Park, 2014, Bigdeli et al., 2015). 

The two main issues hampering the development of computational models in 

nanotoxicology and limiting usefulness and reliability of data-driven models are the lack of 

nano-specific molecular descriptors and the scarcity of high-quality and systematically 

derived data on ENM characterization and hazard. To build robust, predictive models not 



only the amount of data but also about the diversity, quality, consistency, and accessibility of 

those data is critically important. Additionally, experimentally derived parameters used in 

models data can be highly dependent on experimental procedures (e.g. dispersion protocols, 

environmental conditions, concentrations, protein number and concentrations etc.). If the 

characterization or biological data are not complete or representative of the material or the in 

vivo toxicity, then it can be extremely hard to useful relationships between NP 

physicochemical characteristics and biological activity, no matter how robust and accurate the 

computational modelling approaches are. Ideally, a complete characterization dataset should 

include not only intrinsic and primary properties of ENMs, but also their extrinsic properties 

influenced by the environments or changing over time. Computational models are well able to 

deal with such rich data and temporally dynamic data sets (Le et al., 2013). 

It is now well recognised that the collection of a considerable amount of high quality data 

on both nano-characteristics and nano-toxicity is the key to successful application of SAR-

like computational approaches like GPTree to ENMs. The acquisition of such data in a timely 

and cost effective manner can only be possible with the integration of more efficient data 

generation systems such as high-throughput toxicity screening (HTS) analysis and faster, 

more systematic and complete characterisation systems into nanotoxicity research. Once a 

significant amount of systematically obtained biological data for properly-characterised 

ENMs become available as a consequence of HTS testing efforts and standard ENM 

characterization protocols/methods, the (Q)SAR-like computational methods will be much 

more valuable and effective in predicting ENM toxicity. Another important issue is the 

construction of an appropriate ontology for the nanosafety domain to support data integration 

from different sources and facilitate computational studies (Robinson et al., 2015). Such an 

ontology encompassing ENMs is currently under development in EU projects such as 

eNanomapper (eNanoMapper) . 



The quantitative or qualitative nanoSAR approach is also very promising for other 

applications that link physicochemical characteristics of ENMs to endpoints such as the 

exposure, toxico-kinetics and environmental behaviour. NanoSAR-like approaches can 

potentially identify links between different toxicity endpoints (e.g. cellular cytotoxicity and 

genotoxicity) or the same toxicity endpoints measured in different assays (e.g. cellular ATP 

assay and LDH release assay) or under different conditions (e.g. different cell lines such as 

A549 or CaCo2). As with toxicities of industrial chemicals, it is likely that SAR-type 

approaches that use in vitro assays as descriptors will be capable of predicting in vivo activity 

when sufficient data are available. 

Finally, in order to increase confidence of the outcome of nanoSAR approach, 

computational modellers should manage the expectations of experimentalists and regulators 

on the predictive capability of models based on small data sets with limited domains of 

applicability. More effort should be put into model interpretation using computational 

methods like GPTree to help understand the complex interplay between many physiochemical 

properties of NPs and their environments. Providing sensible interpretation and explanatory 

information regarding the observed system behaviour can be as important as developing 

statistically significant nanoSAR models itself.  

5. Conclusion 

The focus of this study was to show how decision tree construction tool can accurately 

predict the toxicity and transport properties of NPs in cells, and elucidate the key 

physicochemical properties that lead to high toxicity of ENMs. We demonstrated using case 

studies that DT analysis is a powerful tool for categorical predictions of biological activity in 

nanoSAR investigations. The DT models were usually very sparse, ≤13 predictors selected 



from a large pool of descriptors, with an accuracy ranging between 98 - 100%  and 86 - 100% 

on training and test data, respectively.  

Overall, the genetic programming based decision tree construction algorithm shows 

considerable promise in its ability to identify the relationship between molecular descriptors 

and biological effects of ENMs. The selected decision tree models yielded (external) 

prediction accuracy of 86-100%. Other statistical test (e.g. y-randomization) was also 

performed to demonstrate the robustness of the selected models. In each case, the scrambled 

data gave much lower test accuracy data than the original data so we can feel confident about 

the relevance of the selected nanoSAR models. This paper is a first step in the 

implementation of genetic-programming based DT construction algorithm to nanoSAR 

studies. There are a number of opportunities to expand this work and fully evaluate the 

capabilities of GPTree in the context of nanoSAR toxicity modelling.  
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Table 1: Representative nanoSAR studies 

References Data Size Descriptor 
Type 

Modelling Type 

Sayes and Ivanov 
(2010) 

24 NMs             
6 descriptors 

Experimental Regression and 
Classification 

Linear 

 

Fourches et al. (2010) 

44 NMs                           
4 descriptors 

Experimental Classification Linear 

109 NMs                       
150 descriptors 

Theoretical Regression Nonlinear 

Puzyn et al. (2011b) 17 NMs                       
12 descriptors 

Theoretical Regression Linear 

Chau and Yap (2012) 105 NMs                       
679 descriptors 

Theoretical Classification Linear and 
Nonlinear 

Zhang et al. (2012) 24 NMs                       
12 descriptors 

Experimental 
and Theoretical 

Regression Nonlinear 

 

Epa et al. (2012) 

31 NMs          
7 descriptors 

Experimental Regression Linear and 
Nonlinear 

109 NMs     
691 descriptors 

Theoretical Regression Linear and 
Nonlinear 

Wang et al. (2014) 18 NMs                       
119 descriptors 

Experimental Classification Linear 

Liu et al. (2013a) 44 NMs                           
4 descriptors 

Experimental Classification Linear 

Liu et al. (2013b) 24 NMs                           
30 descriptors 

Experimental 
and Theoretical 

Classification Linear and 
Nonlinear 

Kar et al. (2014) 109 NMs                       
307 descriptors 

Theoretical Regression Linear 

Liu et al. (2011) 9 NMs                           
14 descriptors 

Experimental 
and Theoretical 

Classification Linear 

Pathakoti et al. (2014) 17 NMs       
>20 descriptors 

Experimental 
and Theoretical 

Regression Linear 

Gajewicz et al. (2014) 18 NMs                           
32 descriptors 

Experimental 
and Theoretical 

Regression Linear 

Liu et al. (2015) 84 NMs                           
148 descriptors 

Experimental Regression Linear and 
Nonlinear 

Bigdeli et al. (2015) 12 NMs                           
28 descriptors 

Experimental 
and Theoretical 

Regression Linear 

 

 

 



Table 2: GPTree parameters 
yCOL Column number containing the class of the data set. 
nGen Number of generations required. 
nTrees Number of trees in each generation required. 
No. in tournament Number of trees in the tournament to sort out the best for crossover 

operation 
Winners included The Elitism operator (The N best trees are placed directly into the 

next generation). 
LIIAT Low increase in accuracy tolerance (It forces a mutation for every 

tree if no improvement in the best accuracy has been seen for this 
many generations). 

Mutation % age of mutation 
C in LN Minimum number of cases in a leaf node 

 

Table 3: Classification performance of the decision tree induced by GPTree and shown in 
Figure 3. 

Training Set  Test Set  

 
Predicted Class 

 
Predicted Class 

Actual Class Nontoxic Toxic Actual Class Nontoxic Toxic 

Nontoxic 13  0 Nontoxic 3  0 

Toxic 0 5  Toxic 0 2  

Sensitivity 100% Sensitivity 100% 

Specificity 100% Specificity 100% 

Accuracy 100% Accuracy 100% 

 

Table 4: Classification performance of the decision tree induced by GPTree and shown in 
Figure 4. 

Training Set  Test Set  

 Predicted Class  Predicted Class 

Actual Class Nontoxic Toxic Actual Class Nontoxic Toxic 

Nontoxic 39   0 Nontoxic 9  1  

Toxic 2  43  Toxic 2  9  

Sensitivity 100% Sensitivity 90% 

Specificity 95% Specificity 82% 

Accuracy 98% Accuracy 86% 

 

 



Table 5: Classification performance of the decision tree induced by GPTree and shown in 
Figure 5. 

Training Set  Test Set  
 Predicted Class  Predicted Class 

Actual Class Nontoxic Toxic Actual Class Nontoxic Toxic 

Nontoxic 39  1  Nontoxic 7  3  

Toxic 0 47  Toxic 0 11  

Sensitivity 98% Sensitivity 79% 

Specificity 100% Specificity 100% 

Accuracy 99% Accuracy 86% 

 

Table 6: Classification performance of the decision tree induced by GPTree and shown in 
Figure 6. 

Training Set  Test Set  
 Predicted Class  Predicted Class 

Actual Class Nontoxic Toxic Actual Class Nontoxic Toxic 

Nontoxic 5  0 Nontoxic 4  0 

Toxic 0 5  Toxic 0 4  

Sensitivity 100% Sensitivity 100% 

Specificity 100% Specificity 100% 

Accuracy 100% Accuracy 100% 

 

Table 7: Classification performance of the decision tree induced by GPTree and shown in 
Figure 7. 

Training set Test set 

 
Predicted Class 

 
Predicted Class 

Actual Class Low Medium High Actual Class Low Medium High 

Low 2   0  0  Low 1 0  0  

Medium 0   5 0  Medium  0 1  0 

High 0  0 2 High 0 0 1  

Sensitivity 100% Sensitivity 100% 

Specificity 100% Specificity 100% 

Accuracy 100% Accuracy 100% 

 

 



 

Figure 1: Main steps in SAR model development. 

 

 

Figure 2: An overview of research methodology used in this study. 



 

Figure 3: Decision tree produced by GPTree for general cellular toxicity dataset (Zhang et al., 2012). 

The statistical measures of the performance are given in Table 3. 

 

Figure 4: Decision tree produced by GPTree for nanoparticle cellular uptake dataset (Weissleder et 

al., 2005) using an initial pool of 389 DRAGON descriptors.  



 

Figure 5: Decision tree produced by GPTree for nanoparticle cellular uptake dataset (Weissleder et 

al., 2005) using the descriptor dataset obtained from Epa et al. (2012). The statistical measures of the 

performance are given in Table 5. 



 

Figure 6: Decision tree produced by GPTree for cytotoxicity to human keratinocytes dataset 

(Gajewicz et al., 2014). The statistical measures of the performance are given in Table 6. 

 

Figure 7: Decision tree produced by GPTree for exocytosis of gold nanoparticles dataset (Oh and 

Park, 2014). The statistical measures of the performance are given in Table 7. 


