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In-situ optimization of a set of localized orbitals with respect to a systematically im-

provable psinc basis set independent of the position of the atoms would theoretically

eliminate the Pulay contribution to the total ionic forces. In this work we show that

for strict localization constraints, especially with small localization regions, there can

be non-negligible Pulay forces that must be calculated. Geometry optimization calcu-

lations of molecular systems which heavily rely upon accurate evaluation of the ionic

forces are much better behaved when the Pulay forces are included. The more con-

ventional case where the local orbitals remain fixed to Pseudo-Atomic Orbital (PAO)

multiple-zeta basis sets also benefits from this implementation. We have validated

the method on several test cases, including a DNA fragment with 1045 atoms.
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I. INTRODUCTION

Quantum mechanical methods based on Kohn-Sham Density Functional Theory (DFT)1,2

are widely used to determine properties of materials and molecules at the level of quantum

theory. The computational cost of traditional approaches to DFT3–7 scales as O(N3), where

N is the number of atoms in the system, usually limiting the range of calculations to no

more than some hundreds of atoms. Increasing efforts have been put in the development

of linear-scaling approaches based on the principle of nearsightedness of electronic matter8,

which establishes that the single-particle density matrix in systems with non-zero band gap

decays exponentially with the distance between two points. This property can be exploited

to reduce the computational cost to O(N) by introducing spatially-localized orbitals and

by truncating the elements of the density matrix that belong to atoms distant more than a

given cut-off radius9,10. Codes such as Onetep11, Conquest12, Siesta13 and OpenMX14

belong to this category of linear-scaling methods and are capable to perform calculations on

thousands of atoms15.

The ground state of the system is found by Self-Consistent Field (SCF) minimization of

the energy with respect to a number of variational parameters16. The Hellmann-Feynman

theorem17,18 provides a computationally-efficient method to calculate the forces acting on

ions at the ground state of the system that eliminates the need to calculate the derivatives

of the variational parameters describing the orbitals. While this theorem holds for SCF

solutions in the limit of a complete basis set19–21, practical computational approaches to

DFT employ a finite number of basis set functions with a certain degree of incompleteness.

In such cases, Pulay forces22 must be calculated as corrections to the Hellmann-Feynman

forces if the basis set functions explicitly depend on the ionic positions. Other approaches23

propose to place the localized orbitals in the centroid of charge of the orbitals that minimize

the total energy, so that when self-consistency is achieved, Pulay forces vanish.

Different choices of localized atomic orbitals centered in the atomic coordinates include

analytical functions such as Gaussian24,25 or Slater-type26 orbitals and numerical representa-

tions such as all-electron Numerical Atomic Orbitals (NAOs)27,28 or Pseudo-Atomic Orbitals

(PAOs)29–33 to account for the valence electrons. Schemes were a combination of plane waves

and Gaussian localized orbitals have also been developed34–37.

In these methods, the quality of the basis set is controlled by the number of functions
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for each atomic shell (multiple-zeta basis sets) and the symmetry inherent to the angular

momenta of those functions, which leads to polarization and diffuse orbitals which are key

to describing the electronic structure of a molecular system. A large set of basis functions is

normally required to achieve chemical accuracy in the description of the Kohn-Sham ground

state. To reduce the number of atomic orbitals without decreasing the accuracy, a minimal-

size set of localized orbitals can be optimized in situ in terms of a systematically convergable

basis set38 that removes the restriction of fixed angular shape.

In this work we show that Pulay forces must be calculated in cases where the localized

orbitals are optimized in terms of a basis set independent of the ionic coordinates. Geometry

optimizations carried on with corrected forces show improved systematic convergence with

the basis set and lead to more accurate results. Additionally, Pulay forces are necessary

in the more conventional case where the localized orbitals remain constant. In some cases,

especially for large systems, geometry optimization calculations with fixed multiple-Z PAO

basis set can result in faster time-to-solution runtimes while retaining high accuracy in the

final geometries.

We have implemented the functionality that allows for calculation of Pulay forces within

the Onetep11 code for linear-scaling DFT calculations. Section II offers a brief description

of the SCF minimization of the energy and the conditions that are met at convergence of

the calculations. In Section III we elaborate on the evaluation of the ionic forces and the

origin of the Pulay forces as a consequence of the localization constraints. In Section IV we

first show our results regarding the convergence of the total forces in Onetep, including the

Pulay forces, with respect to the basis set for a CO2 molecule and a water dimer complex

and we demonstrate that the Pulay term does not vanish when the localized orbitals are

optimized in situ with respect to a position-independent basis set. To validate our method,

we performed geometry optimization calculations on an adenine-thymine DNA base pair and

on the self-assembling superstructure known as the “tennis-ball” dimer39,40, and we show how

the cost of the calculation can be reduced by using fixed multiple-zeta PAO basis sets while

retaining accurate results compared to the calculations with optimized localized orbitals. As

an application to large-scale systems, we performed geometry optimization calculations on

a DNA fragment of 1045 atoms.
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II. ENERGY MINIMIZATION

Onetep11 is based on a reformulation of Kohn-Sham DFT with norm-conserving

pseudopotentials41 in terms of the single-particle density matrix, ρ(r, r′), represented in

a set of Non-Orthogonal Generalized Wannier Functions (NGWFs)42, φα(r), as:

ρ(r, r′) = φα(r)K
αβφ∗

β(r
′) (1)

where the notation assumes implicit summation over repeated Greek indexes and Kαβ are

the elements of the density kernel, that is, the representation of ρ in terms of the NGWFs.

To achieve linear-scaling cost, the elements of the density kernel corresponding to atoms

distant more than a given cut-off radius rK are truncated. The cut-off radius is chosen so

that it is compatible with the exponential decay of ρ in non-metallic systems, resulting on

K being a sparse matrix with non-zero elements close to the diagonal43. At the same time,

the NGWFs are centered on the nuclear coordinates and strictly localized within a sphere

of radius Rα, and define the overlap matrix:

Sαβ =

ˆ

drφα(r)φ
∗

β(r) (2)

The NGWFs are expanded as a linear combination of psinc functions44, Dm(r), as:

φα(r) =

m∈LR(α)
∑

m

D(r− rm)cmα, (3)

where m indexes the points of the real-space Cartesian grid rm inside the localization region

of φα, LR(α). The psinc functions form an orthogonal basis set of bandwidth-limited delta

functions related to plane-waves by a unitary transformation, and hence they share many of

the desirable properties of these, notably the independence on the nuclear coordinates and

the ability of the basis set to be systematically improved by increasing a single parameter:

the kinetic energy cut-off41. The total energy is minimized self-consistently with respect

to Kαβ and cmα in two nested loops42,45, subject to the constraints of conservation of the

total number of electrons and idempotency of the density kernel. The first constraint is

enforced by ensuring tr[KS] = Ne during the energy minimization, while idempotency is

enforced using the Li-Nunes-Vanderbilt (LNV) method46 which preserves the orthonormality
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of the Kohn-Sham states at zero electronic temperature. As a result, the converged solution

satisfies:

∂E

∂Kαβ
= 0 ∀ α, β, (4)

and
∂E

∂cmα

= 0 ∀ m,α. (5)

We emphasize that the NGWFs are optimized in situ based on the variational principle.

The condition in Eq. (5) refers to the stationarity of the energy with respect to the NGWFs

expressed in the psinc representation.

An alternative approach to self-consistent energy minimization is to instead employ a

single loop that optimizes the elements of the density kernel only. In this approach, the basis

set comprises localized orbitals which remain fixed during the calculation. A recent addition

to Onetep allows generation of suitable multiple-zeta basis sets out of pseudoatomic orbitals

(PAOs), and can also be used with high accuracy given a large enough basis. The PAOs

are closely related to the Sankley-Niklewski “fireballs”29 under strict localization constraints.

The PAO solver is described in the Appendix.

It should be emphasised that NGWFs differ from the PAOs in that they are expressed

and optimized in situ in terms of a linear combination of psinc basis functions, whereas the

PAOs, although they are also expressed in terms of psinc for consistency throughout, remain

fixed. Hence, the condition of Eq. (5) never holds for PAOs.

III. IONIC FORCES

The evaluation of the ionic forces in Onetep has been previously studied in Ref. 47 for

calculations using NGWFs. The force on each ion is defined as the negative total derivative

of the system energy with respect to the coordinates of the nucleus of that ion. Explicit

derivatives of the elements of the density kernel, Kαβ, and the coefficients of the NGWFs in

terms of the psinc functions, cmα, enter the equation of the forces:

Fγ = −
dE

dRγ

= −
∂E

∂Rγ

−
∂E

∂Kβα

∂Kαβ

∂Rγ

−

ˆ

dr
δE

δφα(r)

∂φα(r)

∂Rγ

.

(6)

5



where dE
dRγ

is the total derivative of the energy with respect to the nuclear coordinates, and

includes its explicit dependency (first term in the right-hand side) and its implicit depen-

dency via the variational parameters (last two terms in the right-hand side). When a tight

convergence of the SCF energy minimization is achieved, the conditions in Equations (4)

and (5) apply, so the implicit derivatives of the energy with respect to Kαβ and cmα vanish,

leaving a much simpler expression for the total force:

Fγ = −
∂E

∂Rγ

. (7)

This result corresponds to direct application of the Hellmann-Feynman theorem after

successful SCF energy minimization, with vanishing Pulay forces. The total Hellmann-

Feynman force on atom γ is formed by individual contributions to the Hamiltonian, and

does not consider derivatives of the NGWFs themselves. It thus includes local and non-local

pseudopotential, Ewald, and (where applicable) non-linear core correction (NLCC) terms:

F
HF
γ = F

nl
γ + F

loc
γ + F

ew
γ + F

nlcc
γ . (8)

Eq. (8) will remain valid when the condition in Eq. (5) holds. However, obtaining tight

convergence of energy with respect to the psinc coefficients can be very difficult, due to

the competition between the kinetic energy operator, which tends to spread the NGWFs

across the cell, and the constraint of strict localization of the NGWFs within a sphere48.

In such circunstances the NGWF energy gradient in psinc representation tends to converge

to small non-zero values. Whereas the total energy converges quadratically with respect to

the Kohn-Sham states during the SCF procedure, the forces converge at a slower rate22.

As a result, the residual NGWF energy gradient has a negligible effect in the evaluation of

the ground-state energy, yet can produce non-negligible Pulay corrections to the Hellmann-

Feynman forces. The methodology implemented in Onetep for density kernel optimization

based on the Li-Nunes-Vanderbilt algorithm45,46 allows to converge the energy with respect

to Kαβ to a very tight tolerance, so that the condition in Eq. (4) is achieved. Therefore, the

Pulay forces term is due entirely to the NGWF contribution in Eq. (6):

F
Pulay
γ =

ˆ

dr
δE

δφα(r)

∂φα(r)

∂Rγ

. (9)

For a given set of localized functions and density kernel, the total force on atom γ at the
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Kohn-Sham ground state is the sum of the Hellmann-Feynman forces and the Pulay forces:

F
total
γ = F

HF
γ + F

Pulay
γ .

The above expression is valid for any set of localized functions. As the PAOs are also

represented as a linear combination of psinc functions, the method presented hereafter for

determining Pulay forces holds for both NGWFs and PAOs. As seen from Eq. (9), the Pulay

forces require evaluation of two terms and integration of their product on a real space grid

within the localisation region of the relevant NGWF: the energy gradient with respect to the

NGWFs and the derivative of the NGWFs with respect to the ionic coordinates. The first

is evaluated at each step of the SCF optimization of the NGWFs and does not need to be

recalculated to evaluate the forces. This makes the computation of Pulay forces inexpensive

compared to the SCF cycle, which takes most of the computational effort. The analytical

form of δE
δφα(r)

has been derived before by Soler et al.13 for a generalized Lagrangian to keep

orthogonality of the Kohn-Sham states and Miyazaki et al.49 for the LNV method. The

expression is equivalent in the case of Onetep:

δE

δφα(r)
= 4

[

Ĥφβ(r)K
βα + φβ(r)Q

βα
]

, (10)

where, for a converged density kernel, Qαβ = −(KHS−1)αβ. The prefactor of 4 in Eq. (10)

appears as the NGWFs are real functions and closed shells are assumed. On the other hand,

derivatives with respect to the ionic coordinates can be calculated by applying the gradient

operator to the NGWFs:

∂φα(r)

∂Rγ

= −∇rφα(r)δαγ . (11)

The gradient operator acts on the reciprocal space representation of the function φα(r)

using the well-tested FFT-box technique44. The equivalence of the psinc functions and plane

waves allow us to expand Eq. (3) as:

φα(r) =
1

Np

Gmax
∑

G

φ̃α(G)eiG(r−Rα) (12)

where G denotes the reciprocal lattice vectors on the FFT-box up to a magnitude of Gmax,

defined by the kinetic energy cut-off. Np indicates the number of points in the FFT-box,

whose size is proportional to the NGWF radii. It necessary to stress that the dependency

of φα(r) on Rα does not involve a change in the functional form of the NGWFs as expressed
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in terms of the psinc basis set, but instead it remains as a translational phase factor that

takes into account the displacement of the NGWF center across the simulation cell. Direct

differentiation of Eq. (12) provides the derivative of the NGWFs with respect to Rγ:

∂φα(r)

∂Rγ

=
1

Np

Gmax
∑

G

−iGφ̃α(G)eiG(r−Rα)δαγ. (13)

Equations (10) and (13) are evaluated in the FFTbox of φα so that FPulay
γ can be calculated

with O(N) cost.

IV. RESULTS

A. Convergence of the forces

Convergence with respect to the psinc basis set (cut-off energy) and the radius of the

spherical localization region of the NGWFs is vital for accurate calculation of ionic forces

within this method. This aspect has been studied in Ref. 47 for the Hellmann-Feynman

forces alone, with results presented for the force on an oxygen atom in CO2 and the force

on a hydrogen atom in a H2O dimer. Fig. 1 reproduces these results and additionally

demonstrates the effect of the Pulay correction to the total forces. These calculations used

the LDA exchange-correlation functional, employing one NGWF for hydrogen and four for

carbon and oxygen atoms.

The total forces, calculated as the sum of the Hellmann-Feynman components and the

Pulay corrections, converge to a single value as the cut-off energy and NGWF radii increase,

and are comparable to the values obtained with Castep plane-wave DFT. Adding the Pulay

correction term to the Hellmann-Feynman forces ensures a greater degree of consistency

between ground-state energies and forces in the calculations performed with Onetep. Pulay

forces take a non-negligible value for small localization regions and converge to zero when

the NGWFs become larger and more delocalized. The Pulay corrections do not vanish as the

cut-off energy increases, showing the strong correlation with the localization constraint. The

relative strength of the Pulay correction compared to the Hellmann-Feynman force is greater

in the case of the hydrogen bond in the water dimer (up to 15% of the Hellmann-Feynman

value) than in the covalent bond of CO2 (3%). Therefore, Pulay forces can be expected to

play a more significant role in the ionic forces of weakly bonded systems, particularly when
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Figure 1. Convergence of the forces with respect to the cut-off energy and the NGWF radius. Left:

force in an oxygen atom in CO2 along the covalent bond. Right column: force on a hydrogen atom

in H2O dimer along the hydrogen bond. The first row corresponds to the Hellmann-Feynman force,

the second to the Pulay force and the third are the Pulay-corrected total forces (Hellmann-Feynman

forces plus Pulay). R refers to the NGWF radii.

modelled with small NGWF radii.

Real-space grid methods can suffer of the so-called egg-box effect50,51, which appears

when the localized orbitals are displaced by a fraction of the grid-spacing in the simulation

cell generating periodic oscillations of the converged ground-state energy and forces. An

estimation of the egg-box effect in the total energy and the forces is shown in Fig. 2. These
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calculations consecutively displace a CO2 molecule along the first axis of the simulation

cell (parallel to the CO2 covalent bond) by a given step of 1/20 of the grid spacing of 0.24

Å. We use the PBE exchange-correlation functional52 with a kinetic energy cut-off of 1000

eV and NGWF radii of 4.23 Å to ensure convergence of the forces with the basis set. SZ,

DZP and TZDP basis sets were constructed using PAOs as described in the Appendix .

The magnitude of the egg-box effect is reduced when NGWFs are used instead of PAOs

contributing to more stability in calculations where the ionic coordinates vary, such as

geometry optimization. The maximum variation of the energy using NGWFs is of 1.6×10−3

eV, which is up to ten times smaller compared to SZ calculations. NGWFs also reduce the

magnitude of the egg-box effect on the forces to 0.01 eV/Å, nearly a third of the magnitude

in the case of SZ calculations.

Figure 2. Eggbox effect on the energy (top) and force along covalent bond (bottom) on CO2 with

SZ/PAOs (red circles), DZP/PAOs (blue squares), TZDP/PAOs (green diamonds) and NGWFs

(black triangles). The energy cut-off is 1000eV and the PAO and NGWF radii is 4.23 Å.

B. Geometry optimization using NGWFs

We have performed geometry optimization calculations using the BFGS algorithm53 in

Onetep to test the accuracy of the force evaluation in practical applications. Calculations
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on an adenine-thymine DNA base pair were carried out as a first test case. This system

is weakly bound by two hydrogen bonds that involve oxygen and nitrogen making it more

challenging for self-consistent minimization of the total energy and forces. PBE52 calcu-

lations with 1200 eV kinetic energy cut-off and various NGWF radii were performed with

uncorrected Hellmann-Feynman forces and Pulay-corrected forces, using one NGWF for the

hydrogen atoms and four for oxygen, carbon and nitrogen. We compared the resulting struc-

tures with those given bt NWChem with a cc-pVTZ Gaussian basis set and Castep with

the same plane-wave cut-off and pseudopotentials as Onetep. The results are shown in

Table I.

Figure 3. Convergence of the maximum absolute value of the force during geometry optimization

of the adenine-thymine DNA base pair with NGWF radii of 3.70 Å (top) and 7.94 Å (bottom).

The convergence threshold was 0.015 eV/Å.

The addition of Pulay corrections to the Hellmann-Feynman forces improves the conver-

gence of the BFGS algorithm for all the range of NGWF radii, having a more important

effect for small localization regions, where it allows relaxation of the structure to much

tighter tolerance thresholds. The calculations using uncorrected Hellmann-Feynman forces

with small NGWF radii result in poor description of hydrogen bonding in the adenine-

thymine complex, leading to heavily distorted geometry and to unphysical configurations.

In the uncorrected case, increasing the NGWF radius eventually results in a bound and
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Table I. Geometry optimization of adenine-thymine using Onetep for different localization radii Rα

with Hellmann-Feynman forces (HF) and Pulay-corrected forces (PC). Results show the hydrogen

bond lengths, the maximum absolute value of the force, |F |max, and the number of BFGS steps

required.

O...H bond (Å) N...H bond (Å) |F |max (eV/Å) BFGS steps

Rα (Å) HF PC HF PC HF PC HF PC

Onetep 3.70 9.77 1.73 10.64 1.60 1.028 0.010 203 222

4.23 5.39 1.75 7.15 1.62 1.542 0.015 128 73

4.86 1.90 1.80 1.65 1.65 1.542 0.015 80 73

5.39 1.61 1.83 1.62 1.69 0.514 0.015 95 90

5.82 1.73 1.83 1.64 1.71 1.028 0.015 100 63

6.45 1.75 1.83 1.57 1.72 0.463 0.015 92 63

6.98 1.85 1.84 1.62 1.72 0.463 0.015 97 65

7.41 1.81 1.84 1.68 1.73 0.206 0.015 92 74

7.94 1.83 1.84 1.67 1.73 0.051 0.015 78 69

NWChem — 1.84 1.73 0.026 102

Castep — 1.85 1.75 0.010 88

symmetric system, albeit the maximum value of the residual force remains higher than in

the corrected case after a similar number of BFGS steps. The convergence of the maximum

element of the force is plotted in Fig. 3. This demonstrates that accuracy in the force evalua-

tion is crucial to enabling the BFGS method to find the equilibrium geometry of the system.

Our results also show that the geometry of the adenine-thymine complex after relaxation

with Pulay-corrected forces is still somewhat sensitive to the NGWF radius. Overly-small

NGWF localization regions tend to overbind the hydrogen bonds, while as radii increase,

the geometry converges to the expected structure as given by NWChem and Castep.

We have used the geometry obtained with each method to calculate the binding energy

of the adenine-thymine complex, calculated as Ecomplex −Eadenine −Ethymine, where the first

term is the energy of the geometry-optimized complex and the last two are the energies of

each separate monomer with the same geometry as in the complex. The results in Fig. 4
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show systematic convergence with respect to the localization radius when the Pulay forces

are taken into account, while, in contrast, the calculations using Hellmann-Feynman lead

to extreme variations and erratic convergence. In this case, the binding energies obtained

with Pulay-corrected forces converge within 1 kcal/mol for NGWF radii larger than 5.5 Å.

Nevertheless, the convergence of these set of calculations is due to simultaneous change of

the basis set (increasing NGWF radii) and of the final structure. To isolate the convergence

of the binding energies with respect to the basis set we chose the structures obtained for

3.70 and 7.94 Å (Pulay-corrected) and re-calculated the binding energies for different NGWF

radii. In these calculations the binding energy converges within 1 kcal/mol for NGWF radii

larger than 4.2 Å. Basis set superposition error is eliminated due to the optimization of the

NGWFs in terms of the psinc basis set54.

Figure 4. Convergence of the binding energy in the Adenine-Thymine complex.

We have also performed geometry optimization calculations in the larger system of the

“tennis-ball” self-assembling superstructure39,40, which is a model for protein-ligand binding

interactions. This molecule is formed by two identical structures that bind each other when

rotated 90 degrees via eight hydrogen bonds. The calculations, performed with the PBE52

functional, 1200 eV energy cut-off and one NGWF per hidrogen atom and four per oxygen,

nitrogen and carbon atoms with NGWF radius of 3.70 Å, show that in the absence of Pulay

13



forces, the system loses its symmetry and eventually breaks (Fig. 5), while the minimization

of the force is unstable and highly oscillating. When the Pulay forces are included the BFGS

method converges to a symmetric structure and a low threshold of force tolerance (0.015

eV/Å).

Figure 5. Convergence of the maximum force during the BFGS geometry optimization of the

tennis-ball dimer using Hellmann-Feynman forces (top left molecule) and Pulay-corrected forces

(top right).

C. Geometry optimization using PAOs

Geometry optimization calculations using PAO multiple-zeta basis sets have been per-

formed on the adenine-thymine DNA base pair, using the same exchange-correlation func-

tional, pseudopotentials and cut-off energy than in the case of NGWFs. The results, shown

in Table II, are consistent with those obtained with NGWFs for the same radii, and calcula-
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tions with medium-size basis sets such as TZP, TZDP or QZP are thus also seen to converge

to the same structures obtained with NWChem and Castep in Table I.

Table II. Lenth of the two Hydrogen bonds in the DNA pair adenine-thymine for different PAO

radii R. Onetep calculations use a plane wave basis set of 1200 eV and forces converged to 0.015

Å.

O...H bond (Å) N...H bond (Å)

R (Å)= 3.70 4.23 4.86 3.70 4.23 4.86

SZ 1.41 1.42 1.42 1.32 1.31 1.31

SZP 1.57 1.61 1.56 1.32 1.31 1.31

DZ 1.66 1.67 1.65 1.49 1.52 1.53

DZP 1.74 1.73 1.71 1.58 1.58 1.57

TZ 1.70 1.71 1.69 1.53 1.58 1.56

TZP 1.83 1.84 1.81 1.68 1.69 1.68

TZDP 1.79 1.84 1.79 1.68 1.68 1.68

QZ 1.73 1.71 1.71 1.55 1.56 1.57

QZP 1.81 1.82 1.81 1.67 1.66 1.69

D. Geometry optimization in large systems

As an example of the applicability of the aforementioned methods to large-scale systems,

we performed a geometry optimization calculation on a DNA fragment of 16 base pairs

and 1045 atoms in vacuum. The initial structure was created using Amber Nucgen55

(sequence ATCGATTGAGCTCTAG) and the phosphate groups were protonated so that

the total charge is zero. The calculations were run using the PBE exchange-correlation

functional52 and a kinetic energy cut-off of 1200 eV, using, for each case, NGWFs (one for

hydrogen atoms, four for oxygen, nitrogen and carbon, and nine for phosphorus), DZP and

TZP PAO basis sets of radii of 3.70 Å. The convergence threshold for the force was set to

0.16 eV/Å. This can be considered high for conventional quantum chemical standards, while

it has been chosen as to account for the non-monotonic convergence of the BFGS algorithm
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to the equilibrium geometry due to the large count of atoms in this system. Fig. 6 shows

convergence of the force for the different calculations, while Table III shows some structural

parameters mand the change underwent through the geometry optimization.

The maximum value of the force converges in all cases. The final structure given by

DZP possesses clear differences with respect to TZP and NGWFs: shorter length, smaller

radius and much shorter hydrogen bonds formed on each base pair. This observation is in

agreement with the results of the adenine-thymine single base pair, in which the DZP basis

set tends to overbind hydrogen bonds. TZDP and optimized NGWFs offer more similar

results.

Noticeably, the calculation with NGWFs requires fewer steps to complete in comparison

with DZP and TZDP PAO basis sets. This is likely to be a consequence of the more accurate

description of the Kohn-Sham ground-state provided by the NGWF optimization. Similarly,

TZDP also requires fewer steps than DZP due to its better degree of completeness. For the

basis sets used in this study, each BFGS step is completed somewhat faster when using

PAOs, as overall fewer matrix operations are required due to the absence of the outer loop

required for NGWF optimisation. As a reference, the calculations were run using 15 Intel

Nehalem nodes with 8 cores each, making it a total of 120 processors. The average BFGS

step took 3.2 hours with the DZP PAO basis set, 7.6 hours with TZDP PAO basis set,

and 8.3 hours with the NGWFs optimized in the psinc basis set. This reduction overcomes

the increasing cost of algebraic operations with more basis set functions and thus larger

matrices.

V. CONCLUSIONS

In this work we have shown that the Pulay forces correction to the Hellmann-Feynman

forces must be calculated for accuracy in the in total ionic forces. Using localized orbitals

optimized in situ in terms of a basis set that is independent of the nuclear positions, such

as psinc functions, does not eliminate the Pulay forces. This is due to the tendency of

the kinetic energy gradient to delocalize the atomic orbitals which are constrained to be

stricly localized within a sphere of finite radius. The implementation in Onetep ensures

consistency between the Pulay-corrected forces and the energy calculated self-consistently.

Geometry optimization calculations, which heavily rely upon accurate ionic forces, prove
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Figure 6. Convergence of the maximum force for the DNA molecule using optimized NGWFs and

frozen DZP and TZDP PAO basis sets.

to yield to much better results when Pulay forces are taken into account. Molecular systems

containing weakly-bound components are better described by the inclusion of Pulay forces.

Our method can be used for large-scale geometry optimization calculations on systems of

more than a thousand atoms, with the results being systematically convergable with respect

to the basis set.

The Pulay forces corrections also allow calculations in which the localized orbitals are

fixed during the calculation. PAO are reliable and convergable method to construct suit-

able multiple-zeta basis sets of increasing accuracy. Calculations with medium-sized PAO

basis sets can offer faster runtimes allowing to perform costly calculations such as geometry

optimization on large systems. This is due to the reduction of the matrix operations as the

outer loop to optimize the localized orbitals is avoided, which overcomes the extra cost due

to algebraic operations with larger matrices.
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Table III. Structural parameters of the optimized 1045-atom DNA fragment as optimized by

Onetep. N...H(4), N...H(8) and N...H(12) correspond to the hydrogen bond of the fourth, eighth

and twelfth pairs, respectively, that involve a nitrogen atom.

Basis set DZP TZDP NGWFs

Final Change Final Change Final Change

Length (Å) 49.74 −1.18 50.62 −0.35 50.50 −0.47

Diameter (Å) 15.31 0.04 15.32 0.05 15.21 −0.06

Helix pitch (Å) 24.05 0.34 23.63 0.08 23.55 0.16

NH(4) 1.66 −0.21 1.78 −0.09 1.80 −0.07

NH(8) 1.48 −0.33 1.62 −0.19 1.67 −0.14

NH(12) 1.54 −0.27 1.63 −0.18 1.64 −0.17
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Appendix: Pseudoatomic Solver

1. Generating Valence PAOs

Initial NGWFs can be generated by performing a Kohn-Sham DFT calculation for a

pseudoatom. The pseudopotential of a single isolated ion provides the external potential,

and the single-electron Kohn-Sham states are solved self-consistently at fixed occupancies.

The resulting states form an ideal pseudoatomic orbital basis for calculations on molecules

or solids with the same choice of pseudopotential and functional.

The PAOs are solutions of the Kohn-Sham equation:

(

−
1

2
∇2 + Vloc(r) + V̂nl

)

|ψnlm〉 = ǫnl|ψnlm〉 (A.1)
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where the Hamiltonian contains kinetic, local effective potential and nonlocal potential con-

tributions for an isolated atom in spherical confinement.

The solutions to this spherically-symmetric problem comprise real spherical harmonics

Zlm(θ, ϕ) multiplying a radial part described by a basis of normalised spherical Bessel func-

tions Bl,ν(r) of given angular momentum l. This choice has been made in other implemen-

tations of similar methods29–31. The basis functions are defined by

Bl,ν(r) = jl(ql,νr) /
[

ˆ Rc

0

|jl(ql,νr)|
2r2dr

]
1

2

, (A.2)

with ql,ν chosen such that ql,νRc are the zeros of the spherical Bessel functions jl(x). This

ensures that all the basis functions go to zero at the cutoff radius Rc, which is chosen to

coincide with the NGWF cutoff Rα. Furthermore,
´ Rc

0
|Bl,ν(r)|

2r2dr = 1 for all ν. The basis

is made finite by including only functions with a kinetic energy less than a cutoff energy

Ecut. The criterion 1
2
q2l,ν < Ecut determines the largest ν for each l.

We therefore write the PAO ψnlm(r) in terms of coefficients cnl,ν for each basis function,

in the form

ψnlm(r) =
∑

ν

cnl,ν Bl,ν(r)Zlm(θϕ) , (A.3)

with eigenvalues ǫnl and occupancies fnl (which account for spin-degeneracy). The occupan-

cies are fixed such that they obey the aufbau principle and sum to the number of valence

electrons. Spherical symmetry means that the occupancies of all members of a given set of

m-degenerate orbitals are equal, so we combine the 2l + 1 degenerate states of differing m

for a given nl state into one state to be solved with the sum of the occupancies of the shell.

Henceforth we will only consider the radial dependence Rnl(r).

We define the local potential to be

Vloc(r) = Vpsloc(r) + VH(r) + VXC(r) + Vconf(r) (A.4)

where the Hartree and XC terms are included in the standard way, as is an optional confining

potential implemented as described in Ref. 28.

For each value of l we can define the Hamiltonian and overlap matrices

H l
ν,ν′ =

ˆ Rc

0

Bl,ν(r)
[

ĤBl,ν′(r)
]

r2dr (A.5)

and

Sl
ν,ν′ =

ˆ Rc

0

Bl,ν(r)Bl,ν′(r)r
2dr (A.6)
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and solve the secular equation

H
l.cnl = ǫnlS

l.cnl (A.7)

to give the coefficients cnl,ν describing the orbitals. The orbitals are then evaluated on a

regular radial real-space grid and used to construct the total density. Density mixing with

a variable mixing parameter α is then used and the SCF cycle repeats until self-consistency

is obtained. The result is deemed to be converged once the Harris-Foulkes56,57 estimate of

the total energy (the bandstructure energy) matches the total energy as determined from

the density to within a tolerance of 2.7× 10−4 eV, and the energy has stopped changing at

each iteration to within a tolerance of 2.7× 10−6 eV.

2. Generating larger basis sets

We follow the procedure described in Ref. 30 for generating larger PAO basis sets, ap-

propriate for calculations with a fixed basis. Briefly, this works in two ways: firstly, the

radial flexibility can be improved by splitting each of the valence orbitals into multiple zeta

functions. Secondly, the highest-l valence states can be polarised using perturbation theory,

to produce orbitals for higher angular momentum values than exist in the valence states.

The former is achieved by setting fractional values Ni of the norm, known as the "split-

norms", which determine matching radii rm. which are then used to divide the function into

components. The matching radius corresponding to each splitnorm is chosen such that the

norm from rm to the cutoff radius Rc is equal to the Ni. Typically, N1 ≃ 0.15 is suitable for

most elements. The first new function matches the tail of the original function beyond rm,

and has the form rl(ai,l − bi,lr
2) for r < rm. The coefficients al and bl are chosen to match

the value and gradient at rm. A second new function is then created by subtracting the new

function from the original function and renormalising it. This has the advantage that the

second new function is zero beyond rm and is thus shorter ranged. This procedure can then

be repeated on new functions, using new matching radii determined from further splitnorms

Ni, where each must be smaller than the last.

Generation of higher angular momentum functions is achieved through perturbation the-

ory, as used extensively elsewhere13,50. A valence orbital Rnl with eigenvalue ǫnl is perturbed

by an applied electric field in the z direction, ∆V̂ = Ez. Perturbation theory then produces
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the first-order change in the wavefunction ∆Rnl as

(Ĥ − ǫnl)∆Rnl = −(∆V̂ −∆ǫnl)Rnl . (A.8)

Since the perturbation is an odd function of z, the ∆ǫnl term is always zero. The first-order

change ∆Rnl only contains components with angular momenta l+1 and l− 1, by the dipole

selection rule. In most cases we already have angular momentum l − 1 terms in the basis,

so only the l + 1 term is considered, and the coefficient of this term is dropped as it only

affects the normalisation (as does the field strength E).

We can expand the radial part in terms of coefficients dν multiplying the basis functions

for l + 1, as

∆Rnl(r) =
∑

ν

dνBl+1,ν(r) (A.9)

Multiplying through by Bl+1,ν′(r) and solving the resulting matrix equation gives us

dν =
(

H l+1
νν′ − ǫnlS

l+1
νν′

)−1
Dν , (A.10)

where Dν is the overlap of the basis functions with the perturbation. After angular integra-

tion with ∆V̂ ∝ −r cos θ this gives

Dν = −

ˆ Rc

0

Bl+1,ν r Rnl(r)r
2dr . (A.11)

The resulting wavefunctions (after renormalisation) approximately match the radial weight

distribution of the original functions and have the same cutoff. They thus form an ideal

extension of the basis, suited to describing the response of the valence states to local electric

fields.

The choices of PAO basis set we employed in this work were: Single-Zeta (SZ), with no

extra functions beyond the valence orbitals, Double-Zeta (DZ) where the valence states are

split into two functions, Double-Zeta plus Polarisation (DZP), where a set of polarisation

functions are added, as well as TZ, TZP, TZDP, QZ and QZP, involving three and four

basis functions and up to two polarisation shells. SZ is generally regarded as insufficiently

accurate for meaningful results, but typically DZP or above can be used for moderately

accurate calculations, with TZDP and above providing a well-converged result (albeit at

rather high cost).
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