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Abstract Neuronal networks connected by electrical
synapses, also referred to as gap junctions, are present
throughout the entire central nervous system.Many instances
of gap-junctional coupling are formed between dendritic
arbours of individual cells, and these dendro-dendritic gap
junctions are known to play an important role in mediat-
ing various brain rhythms in both normal and pathological
states. The dynamics of such neuronal networks modelled
by passive or quasi-active (resonant) membranes can be
described by the Green’s function which provides the fun-
damental input-output relationships of the entire network.
One of the methods for calculating this response function
is the so-called ‘sum-over-trips’ framework which enables
the construction of the Green’s function for an arbitrary
network as a convergent infinite series solution. Here we pro-
pose an alternative and computationally efficient approach
for constructing the Green’s functions on dendro-dendritic
gap junction-coupled neuronal networks which avoids any
infinite terms in the solutions. Instead, the Green’s function
is constructed from the solution of a system of linear alge-
braic equations. We apply this new method to a number of
systems including a simple single cell model and two-cell
neuronal networks. We also demonstrate that the application
of this novel approach allows one to reduce a model with
complex dendritic formations to an equivalent model with a
much simpler morphological structure.
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1 Introduction

Neuronal cells have a distinctive structure which differen-
tiates them from any other cell types. The most extended
parts of many neurons are dendrites, and their morphologi-
cal complexity has fascinated scientists since the exemplary
work of Ramón y Cajal [3]. Organised in a network, neu-
rons receive and integrate thousands of neuronal inputs via
both chemical and electrical synapses located primarily on
dendrites. With the development of sharp micropipette elec-
trodes, dynamic properties of dendritic membranes started to
be revealed through intracellular recordings, and in the late
1950s experimental work was complemented with the pio-
neering theoretical work ofWilfrid Rall on the application of
cable theory to dendritic modelling. Rall’s significant contri-
bution to the topic of dendritic function is nicely summarised
in the book of Segev et al. [15]. Recent experimental and the-
oretical/computational studies at a single cell level reinforce
the fact that dendritic morphology combined with membrane
properties plays an important role in dendritic integration
(two books, edited by Stuart et al. [16] and Cuntz et al. [7],
give informative overviews from both an experimental and
a theoretical perspective). An additional level of complexity
associated with synaptic connectivity needs to be taken into
consideration when dynamics of neuronal networks, rather
than single cell dynamics, are investigated.

The dendritic membrane of various types of neurons
is known to be equipped with voltage-gated ion channels,
nonuniformly distributed throughout dendritic arbours and
often demonstrating nonlinear dynamics. Many models of
neuronal cells with retention of complex dendritic forma-
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tions are built by combining the linear (passive) properties
of dendrites together with nonlinear (active) dynamics of ion
channels. At the level of a single cell or at the network level,
such models are restricted to being solved only by numerical
methods, based on a compartmental approach [14]. Although
the nonlinear properties of voltage-gated ion channels con-
tribute considerably to neuronal input-output relations, it is
important to recognise that the purely passive or resonant
(quasi-active) properties of dendritic membranes provide the
fundamental core for signal filtration and integration. Reso-
nant dynamics of dendritic membrane are usually associated
with the hyperpolarisation-activated Ih current and, from a
mathematical perspective, can be described by linearising
channel kinetics [9–11].

Here we focus on a network of neuronal cells with purely
passive or resonant membrane dynamics coupled by dendro-
dendritic electrical synapses, also known as gap junctions.
Gap junctions are mechanical and electrically conductive
links between adjacent neuronal cells that permit direct
electrical connections between them. Having been first dis-
covered at the giant motor synapses of the crayfish in the
late 1950s, gap junctions are now known to be expressed
in the majority of cell types in the brain [8;13]. Using the
cable theory approach for modelling dendritic arbours, the
response of an entire dendro-dendritic gap junction-coupled
neuronal network to any injected current can be represented
by a response function. This response function, often referred
as a Green’s function, describes the voltage dynamics along
a network structure in response to a Dirac delta pulse applied
at a given discrete location. One of the methods for con-
structing the Green’s function, the so-called ‘sum-over-trips’
approach, is built on a path integral formulation andwas orig-
inally proposed by Abbott et al. [1;2] for passive dendrites
of a single cell and then generalised by Coombes et al. [6]
for resonant membranes and Timofeeva et al. [19] for a neu-
ronal network. This method calculates the response function
as a convergent infinite series solution consisting of terms
with various trips (paths) on a given branching structure
and the associated coefficients obtained by the sum-over-
trips rules. It has been shown at the single cell level that
although convergence of this method is fast for simplified
dendritic structures, the number of trips to guarantee a small
convergence error for real morphologies might be large and
have a strong effect on computational efficiency [4]. Here
we propose an alternative method for calculating the Green’s
function on a neuronal network coupled by dendro-dendritic
gap junctions. This new method, named as a method of local
point matching, is inspired by the sum-over-trips approach
and utilises the trip coefficients of that method, but avoids the
construction of any trips. Instead, the new method is based
on the construction of a linear system of algebraic equations
and therefore leads to compact solutions without an infinite
number of terms.

Soma Soma

GJ node

Branching node

Terminal

Fig. 1 Anetwork of two cells connected by a gap-junctional (GJ) node

In Sect. 2, we introduce the network model for gap
junction-coupled neurons. Each neuron in the network con-
sists of a soma and a dendritic arbour. Cellular membrane
dynamics are modelled by a resonant electrical circuit. In
Sect. 3, we develop a new method of local point matching
from the generalised form of the sum-over-trips approach
[19] for constructing the Green’s function for an arbitrary
network. Applications of this new method are demonstrated
in Sect. 4. We start with a simple single cell model con-
sisting of a soma and dendrite and then move to a two-cell
simplified network and, finally, to amore complex tufted net-
work. Not only do we apply the local point matching method
for constructing the Green’s functions in each case, but also
use it to reduce the full two-cell tufted network model to
an equivalent and much simpler model. The last two afore-
mentioned sections include the key results and skip some
mathematical details on the derivation of analytical results.
We refer the interested reader to “Appendix” for detailed
mathematical derivations. Finally, in Sect. 5, we provide a
discussion of our results, as well as possible extensions of
this work.

2 The model

We consider a network of neuronal cells. Each cell consists
of an arbitrary structure of a dendritic morphology and a
lumped soma, and cells in the network are connected by gap
junctions (see an illustrative example for two cells in Fig. 1).

The transmembrane voltage Vi (X, t) on an individual
branch i of each cell is governed by the following set of
equations:

∂Vi
∂t

= Di
∂2Vi
∂X2 − Vi

τi
− 1

Ci

[
Ii − Iinj,i

]
, (1)

Li
∂ Ii
∂t

= −ri Ii + Vi , 0 ≤ X ≤ L̂i , t ≥ 0. (2)
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These equations provide a more general case of the linear
cable theory with the cell membrane modelled by the so-
called ‘LRC’ (or resonant) circuit instead of the ‘RC’ (or
purely passive) circuit. The resonant circuit for each branch
is described by the specific membrane capacitance Ci , the
resistance across a unit area of passive membrane Ri and an
inductance Li in series with a resistance ri . The presence of
an inductive path in the circuit is the result of the linearisation
of channel kinetics (in this casewith a single nonlinear gating
variable) responsible for subthreshold oscillatory behaviour
around the steady state [6;9–11]. The constants Di and τi in
Eq. (1) can be found in terms of the electrical parameters of
the cell membrane as Di = ai/(4Ra,iCi ) and τi = Ci Ri ,
where ai is the diameter and Ra,i is the specific cytoplasmic
resistivity of branch i. The term Iinj,i (x, t) models an exter-
nal current applied to this branch. The dendritic structure of
each cell is attached to an equipotential soma of the diam-
eter aS modelled by the ‘LRC’ circuit with the parameters
CS = Csomaπa2S, RS = Rsoma/(πa2S), LS = Lsoma/(πa2S)
and rS = rsoma/(πa2S). Moreover, individual branches of dif-
ferent cells can be connected by gap junctions described by
a conductance parameter gGJ.

Equations (1) and (2) for each dendritic segment must be
accompanied by additional equations describing the dynam-
ics of voltage at the two ends of a segment. If the proximal
(X = 0) or distal (X = L̂i ) end of a branch is a branching
node point, the continuity of the potential across a node and
Kirchhoff’s law of conservation of current are imposed. For
example, boundary conditions for a node shown in Fig. 1 take
the form:

Vj (L̂ j , t) = Vn(0, t) = Vk(0, t), (3)

1

ra, j

∂Vj

∂X

∣∣∣∣
X=L̂ j

= 1

ra,n

∂Vn
∂X

∣∣∣∣
X=0

+ 1

ra,k

∂Vk
∂X

∣∣∣∣
X=0

, (4)

where ra, j = 4Ra, j/(πa2j ) is the axial resistance of branch

j . If a branch terminates at X = L̂i , we have either a no-flux
(a closed-end) boundary condition

∂Vi
∂X

∣∣∣∣
X=L̂i

= 0, (5)

or a zero value (an open-end) boundary condition

Vi (L̂i , t) = 0. (6)

A lumped soma can be treated as a special node point with
the somatic membrane voltage VS(t) and the following set
of equations which imposes special boundary conditions on
the proximal ends of branches connected to the soma:

VS(t) = Vj (0, t), (7)

CS
dVS
dt

= − VS
RS

+
∑

j

1

ra, j

∂Vj

∂X

∣∣∣
∣
X=0

− IS, (8)

LS
dIS
dt

= −rS IS + VS, (9)

where the sum in Eq. (8) is over all branches connected to the
soma. If the branches of two cells are coupled by a gap junc-
tion, the location of this coupling can be treated as a special
node point on an extended branching structure. This gap-
junctional (GJ) node requires the following set of boundary
conditions (given here with an assumption that it is placed at
X = 0):

Vm−(0, t) = Vm+(0, t), Vn−(0, t) = Vn+(0, t), (10)

and

1

ra,m

(
∂Vm−

∂X

∣
∣∣∣
X=0

+ ∂Vm+

∂X

∣
∣∣∣
X=0

)

= gGJ(Vm−(0, t) − Vn−(0, t)), (11)
1

ra,n

(
∂Vn−

∂X

∣∣
∣∣
X=0

+ ∂Vn+

∂X

∣∣
∣∣
X=0

)

= gGJ(Vn−(0, t) − Vm−(0, t)), (12)

where m− and m+ (n− and n+) are two segments of branch
m (branch n) on the left and right from a gap junction (see
Fig. 1), respectively. The expressions in (10) reflect continu-
ity of the potential across individual branches m and n, and
Eqs. (11) and (12) enforce conservation of current.

The whole network in Fig. 1 can be viewed as a graph
structure (which can be cyclic) with different types of nodes:
a terminal, a regular branching node, a somatic node or the
GJ node. The voltage dynamics along the network struc-
ture are described by linear equations, and therefore, the
model’s behaviour can be studied by constructing the net-
work response function known as the Green’s function,
Ĝi j (X,Y ; t). This function describes the voltage response
at the location X on branch i in response to a Dirac delta
pulse applied to the location Y on branch j at time t = 0.

3 Method of local point matching for finding the
Green’s functions

Our method is based on and developed from the sum-over-
trips approach for calculating the Green’s function on a
network of electrically coupled neuronal cells [19]. Consid-
ering a network of cells as a single extended graph structure
with labelled branches {1, 2, . . . , i, . . . , k, . . . , j, . . . }, the
generalised sum-over-trips framework allows one to con-
struct the Green’s function for the whole structure in the
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A
Branching node

B
Somatic node

C
GJ node

Fig. 2 Sum-over-trip rules for different types of nodes

Laplace domain, Gi j (X,Y ;ω). After Laplace transforming
Eqs. (1) and (2) with initial conditions Vi (X, 0) = 0 and
Ii (X, 0) = 0, we obtain an ordinary differential equation for
each branch i:

−d2Vi (X, ω)

dX2 + γ 2
i (ω)Vi (X, ω) = Iinj,i (X, ω)

Ci Di
, (13)

where

γ 2
i (ω) = [τ−1

i + ω + (Ci (ri + ωLi ))
−1]/Di . (14)

Considering an injected current in the form of a Dirac delta
pulse and rescaling each branch k of the network by its own
characteristic function γk(ω) asLk = γk(ω)L̂k , it is possible
to derive (see [6;19]) that the Green’s function on a scaled
network (x = γi (ω)X , y = γ j (ω)Y ) takes the form of an
infinite series expansion

Gi j (x, y;ω) = 1

2Djγ j (ω)

∑

trips

Atrip(ω) f (L trip(x, y;ω)),

(15)

where f (x) = e−|x | and L trip(x, y;ω) is the length of a
trip along the network structure that starts at the point x =
γi (ω)X on branch i and ends at the point y = γ j (ω)Y on
branch j . The trips coefficients Atrip(ω) in (15) are chosen
according to the following set of rules:

• Initiate Atrip(ω) = 1.
• Branching node: Atrip(ω) ismultiplied by a factor 2pk(ω)

or 2pk(ω)−1 (see Fig. 2a),where pk(ω) is a branch factor
defined by

pk(ω) = zk(ω)
∑

n zn(ω)
, zk(ω) = γk(ω)

ra,k
. (16)

• Somatic node: Atrip(ω) is multiplied by a factor 2pS,k(ω)

or 2pS,k(ω) − 1 (see Fig. 2b), where

pS,k(ω) = zk(ω)
∑

n zn(ω) + zS(ω)
, (17)

zS(ω) = CSω + R−1
S + (rS + LSω)−1. (18)

• GJ node: Atrip(ω) is multiplied by a factor pGJ,n(ω),
1 − pGJ,n(ω) or −pGJ,n(ω) (see Fig. 2c), where

pGJ,n(ω) = zn(ω)

zm(ω) + zn(ω) + 2RGJzm(ω)zn(ω)
(19)

and RGJ = 1/gGJ.
• Terminal: Atrip(ω) is multiplied by+1 for the closed-end
boundary or by−1 for the open-end boundary condition.

We refer the reader to [19] for a detailed summary of the
generalised sum-over-trip method and the trip coefficients.

Next, we provide a description of the main steps behind
the derivation of the new method of local point matching
together with the algorithmic summary of this method, the
detailed derivation of which can be found in “Appendix 1”.
Note that ω is omitted for compactness from this point. All
trips terminated at point y can be divided into two classes sep-
arated by the direction of the last part of the trip. Placing two
points v j and w j on segment j as shown in Fig. 3, we con-
sider one class which includes the trips with L trip(x, v

→y
j )

approaching y from the left (named as Jv j ) and the other
class which includes the trips with L trip(x, w

→y
j ) approach-

ing y from the right (named as Jw j ). Without constructing
the actual trips, it is possible to show that all trips ending at
y, named as Jy and from (15) having the form

Jy =
∑

trips

Atrip f (L trip(x, y)), (20)

can then be found as a linear combination of the unknown
functions Jv j and Jw j belonging to these two classes. Like-
wise, we can partition trips on all other branches by placing
a pair of points (vk, wk) on each segment k and introducing
two classes of trips Jvk and Jwk (see Fig. 4). Each unknown
function Jvk can then be written as a linear combination of
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Fig. 3 Construction of Jy by dividing the trips into two classes repre-
sented by the functions Jv j and Jw j . Dashed lines indicate all possible
trips on a network

branch

length

Fig. 4 Part of a network with the placed pairs of points (vk , wk) and
the corresponding functions Jvk and Jwk

the nearest unknown functions Jwn , Jwn+1 and Jwk which are
heading towards point vk . Similarly, the unknown function
Jwk can be written as a linear combination of the nearest
unknown functions Jvk and Jwn−1 heading towards point wk .
This leads to a linear system of 2N algebraic equations for
all unknown functions Jvk and Jwk defined on each segment
k = 1, . . . , N , where N is the number of dendritic segments
in the network. Solving this linear system for Jvk and Jwk ,
we can then find the unknown function Jy and, as a result,
the Green’s function Gi j (x, y;ω).

Summary of method
Here we summarise the main steps of an algorithm for

constructing the compact Green’s functions in the Laplace
domain for an arbitrary neuronal network and refer the reader
to “Appendix 1” for the detailed derivation of this method.

1. The physical length L̂k of each branch k is scaled by its
own characteristic function γk(ω) given by Eq. (14).

2. Place a pair of points (vk, wk) on each segment k (see
Fig. 4). Assume that vk and wk are placed infinitesi-
mally close to both ends of the branch. Trips from vk and
wk can move only towards each other (see red vectors in
Fig. 4). Construct a system of linear algebraic equations
for all Jvk and Jwk . For example, the function Jvk in Fig.
4 depends on a linear combination of the terms with Jwn ,
Jwk and Jwn+1 (if the branch i with point x is absent; oth-

Soma

Fig. 5 A soma and dendrite model. Terms of Eq. (21) are shown by
blue arrows, and terms of Eq. (22) are shown by red arrows

erwise, an additional term aik f (x) must be included in
the linear combination, where aik is a coefficient for a trip
passing from segment i to segment k). The function Jwk

in Fig. 4 depends on a linear combination of the terms
with Jvk and Jwn−1 . The constructed linear combinations
for the unknown functions Jvk and Jwk include trip coef-
ficients ank for trips passing from segment n to segment
k and trip coefficients akk for trips reflecting at the end
points of segment k. These coefficients are obtained from
the sum-over-trips rules summarised in Fig. 2.

3. Solve the constructed linear system of algebraic equa-
tions and therefore find Jv j and Jw j for a pair of points
(v j , w j ) placed on segment j which includes point y,
(0 < y < L j ), see Fig. 3.

4. Find the function Jy as Jy = f (y)Jv j + f (L j − y)Jw j

or, if x is located on branch j , using Jy = f (y)Jv j +
f (L j − y)Jw j + f (x − y).

5. Find Gi j (x, y) as Gi j (x, y) = Jy/(2Djγ j ).
6. Rescale the coordinates X = x/γi (ω) and Y = y/γ j (ω)

and take the inverse Laplace transform (InvLT) of
Gi j (X,Y ;ω) to obtain theGreen’s function Ĝi j (X, Y ; t).

If point y is located at a node (i.e. y = 0 or y = L j ),
due to the continuity of the potential at the boundaries the
method can be easily applied by initially, assuming that y is
placed on segment j slightly away from this node and, after
the Green’s function is constructed, considering that y = 0
or y = L j . A similar approach can be used if point x is also
located at one of the nodes.

Note that spatially extended neurons coupled by gap junc-
tions into an arbitrary neuronal network might develop a
graph structure with cycles, and our method of local point
matching (as well as the original sum-over-trips method) can
support such structures.

4 Applications

4.1 A soma and dendrite model

Here we consider a simple model of a dendrite with a lumped
soma attached to it at x = 0 (see Fig. 5). We assume that
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Fig. 6 a Somatic Green’s function in the frequency domain given by
(30). Dendritic parameters: L̂ = 50μm, a = 2μm, C = 1μF · cm−2,
R = 2000� · cm2, Ra = 100� · cm, r = 1000� · cm2, L =
5H · cm2. Somatic parameters: aS = 25μm, Csoma = 1μF · cm−2,

Rsoma = 2000� · cm2, rsoma = 100� · cm2, Lsoma = 5H · cm2. b
Somatic voltage profile in response to a stimulus Ichirp(t) with parame-
ters ωchirp = 0.003, Achirp = 0.2 nA

a length of the dendrite, L̂, is scaled by its characteristic
function γ (ω), i.e.L = γ (ω)L̂ . If the dendrite is terminated
with a closed-end boundary condition (i.e. has a factor +1
at the terminal), a system of linear equations for Jv and Jw
corresponding to a pair of points (v,w) takes the following
form

Jv = Jw f (L)(2pS − 1) + f (x)(2pS − 1), (21)

Jw = Jv f (L) + f (L − x), (22)

where pS can be found from (17) and (18) as

pS = γ (ω)/ra

γ (ω)/ra + CSω + R−1
S + (rS + LSω)−1

. (23)

Solving the system, we can find that

Jv = (2pS − 1)[ f (2L − x) + f (x)]
1 − (2pS − 1) f (2L)

, (24)

Jw = (2pS − 1) f (L + x) + f (L − x)

1 − (2pS − 1) f (2L)
, (25)

and then obtain Jy as

Jy = Jv f (y) + Jw f (L − y) + f (x − y), (26)

and finally, the Green’s function in the Laplace domain

G(x, y) = Jy
2Dγ

. (27)

This compact solution for the Green’s function is equiva-
lent to a solution in the form of an infinite series expansion

obtained by using the sum-over-trips method [18]:

G(x, y) =
∞∑

n=0

(2pS − 1)n[ f (y − x + 2nL)

+ (2pS−1)[ f (y+x+2nL)+ f (−(y−x)+2L(n+1))]
+ f (−(y + x) + 2L(n + 1))]/(2Dγ ). (28)

If the output is measured at the soma (x = 0), the compact
Green’s function takes the form

G(0, y) = pS[ f (y) + f (2L − y)]
Dγ [1 − (2pS − 1) f (2L)] , (29)

and in the case of the somatic stimulation, it is simply

G(0, 0) = pS[1 + f (2L)]
Dγ [1 − (2pS − 1) f (2L)] . (30)

Figure 6a shows a profile of the somatic Green’s function
given by (30). In Fig. 6b, we plot a somatic voltage profile in
response to a chirp stimulus Îchirp(t) = Achirpsin(ωchirpt2),
found as V (t) = InvLT[G(0, 0)Ichirp(ω)], where Ichirp(ω) is
the Laplace transform of Îchirp(t).

The model can be easily modified for the case of a semi-
infinite dendrite. Assuming L → ∞, we have f (L) → 0
and from Eqs. (24) and (25)

Jv = (2pS − 1) f (x), (31)

Jw = 0. (32)

Then Jy in (27) takes the form

Jy = (2pS − 1) f (x + y) + f (x − y), (33)
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Fig. 7 Preferred frequency Ω∗ as a function of the dendritic length L̂.
Other parameters as in Fig. 6

and the somatic Green’s function simply becomes

G(0, y) = pS f (y)

Dγ
. (34)

Resonant dynamics of the model can be characterised by
a preferred frequency Ω∗ at which the Green’s function has
its maximum. Figure 6b clearly shows resonant behaviour
of the system maximising the voltage response for particular
frequencies. In Fig. 7, we plot a preferred frequency as a
function of a dendritic length L̂ when x and y are placed at
the soma. This dependence is obtained as a solution of the
implicit equation

∂G(0, 0;ω)

∂ω
= 0, ω ≥ 0. (35)

The plot demonstrates a nonmonotonic trend with a minimal
value within a realistic range of dendritic lengths indicat-
ing a considerable effect of dendritic extents on the model’s
dynamics.

4.2 A two-cell simplified network

Herewedemonstrate howourmethod canbe applied to a two-
cell network of either identical or nonidentical cells coupled
by a dendro-dendritic gap junction. In each case, we obtain
the compact solutions for the Green’s functions, Eqs. (40)–
(43) for the two-cell identical network and Eqs. (49)–(56) for
the two-cell nonidentical network,which can informus about
the roles of individual parameters on the network dynamics.

We start by considering a model of two identical cells,
either of which consists of a soma and N attached semi-
infinite dendrites as shown in Fig. 8. We assume that the
biophysical properties of all dendritic segments are the same

Cell 1 Cell 2

Fig. 8 A schematic of a two-cell simplified network

and that the physical lengths are scaled by the characteristic
function γ (ω) given by (14). The gap junction is located at
some distanceLGJ away from the cell bodies.We assume that
this network can receive stimuli in four different locations
mimicking distal (y1 and y2) and proximal (y3 and y4) inputs.
Points of output x1 (for Cell 1) and x2 (for Cell 2) are located
between either soma and the gap junction.

Using our method, we can construct a linear system of
algebraic equations for the functions Ja, Jb, Jy and Jw in the
case of placing output at x2 (see Fig. 8):

Ja = Jb f (LGJ)(2pS − 1) + f (x2)(2pS − 1), (36)

Jb = Jy f (LGJ)pGJ + Ja f (LGJ)(−pGJ)

+ f (LGJ − x2)(−pGJ), (37)

Jy = Jw f (LGJ)(2pS − 1), (38)

Jw = Jy f (LGJ)(−pGJ) + Ja f (LGJ)pGJ

+ f (LGJ − x2)pGJ. (39)

This system of equations can be easily solved analytically
(see “Appendix 2”). TheGreen’s functions for four individual
inputs for Cell 2 can then be found as

G2(x2, y1) = 1

2Dγ

pGJ + pGJα

q
F̃(x2, y1), (40)

G2(x2, y2) = 1

2Dγ

1 − pGJ + pGJα

q
F̃(x2, y2), (41)

G2(x2, y3) = 1

2Dγ

pGJ f (2LGJ)

q
F̃(x2, 0)F̃(y3, 0), (42)

G2(x2, y4) = 1

2Dγ

[
f (x2 + y4)(2pS − 1) + f (x2 − y4)

− pGJ f (2LGJ)

q
F̃(x2, 0)F̃(y4, 0)

]
, (43)
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Fig. 9 a Somatic Green’s function in the Laplace domain for Cell 1
when input is placed at y3 = 0. b Somatic Green’s function in the
Laplace domain for Cell 2 when input is placed at y3 = 0. Biophysical

parameters of the cells’ membrane as in Fig. 6. Gap-junctional parame-
ters: LGJ = 50μm, RGJ = 100M

where

α = (2pS − 1) f (2LGJ), (44)

q = 1 + 2pGJα, (45)

and

F̃(m, n) = f (m + n)(2pS − 1) + f (n)

f (m)
. (46)

Here pS and pGJ can be found from Eqs. (17) and (19),
respectively. As the cells are identical and due to the sym-
metry of the input locations, the corresponding Green’s
functions for Cell 1 can be easily obtained from Eqs. (40)–
(43).

In Fig. 9, we plot the Green’s functions at the soma of
each cell (x1 = 0 and x2 = 0) in response to a stimulus
y3 = 0 applied to Cell 1. Note that Eqs. (40) and (41) are
equivalent to the solutions for the Green’s functions in the
form of an infinite series expansion found using the ‘method
of words’ in [19]. Truncated series solutions with the index
of summation n ≥ 10 match the compact Green’s functions
obtained here (not shown).

Assuming that two distal inputs y1 and y2 are applied
at equal distances from each soma (y1 = y2 > LGJ), the
Green’s function for each soma is identical:

G1(0, y1) + G1(0, y2) = G2(0, y1) + G2(0, y2)

= F̃(0, y1)

2Dγ
= pS f (y1)

Dγ
, (47)

Similarly, for the case of twoproximal inputs y3 and y4 placed
at the same distance away from each soma (y3 = y4 < LGJ),
the somatic Green’s function for each cell has the same form:

G1(0, y3) + G1(0, y4) = G2(0, y3) + G2(0, y4)

= F̃(0, y3)

2Dγ
= pS f (y3)

Dγ
. (48)

Both solutions are independent of gGJ and LGJ and have the
form of Eq. (34) for the soma and dendritemodel, i.e. without
the presence of the gap junction.

Using our method, we can also construct analytical
solutions for the Green’s functions for a network of two non-
identical cells. The response functions at the soma of Cell 2
take the forms

G2(0, y1) = pS2
D1γ1

f (L2 + y1 − L1)
pGJ,1 + pGJ,1α1

q
,

(49)

G2(0, y2) = pS2
D2γ2

f (y2)
1 − pGJ,1 + pGJ,2α1

q
, (50)

G2(0, y3) = pS2
D1γ1

pGJ,1
q

F̃1(y3,L1 + L2), (51)

G2(0, y4) = pS2
D2γ2

[
f (y4) − pGJ,1

q
F̃2(y4, 2L2)

]
, (52)

and using symmetry, the response functions at the soma of
Cell 1 can be found as

G1(0, y2) = pS1
D2γ2

f (L1 + y2 − L2)
pGJ,2 + pGJ,2α2

q
,

(53)

G1(0, y1) = pS1
D1γ1

f (y1)
1 − pGJ,2 + pGJ,1α2

q
, (54)

G1(0, y4) = pS1
D2γ2

pGJ,2
q

F̃2(y4,L1 + L2), (55)

G1(0, y3) = pS1
D1γ1

[
f (y3) − pGJ,2

q
F̃1(y3, 2L1)

]
, (56)
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Fig. 10 Preferred frequencies Ω∗
1 and Ω∗

2 at the soma of Cell 1 (a)
and of Cell 2 (b). Dendritic parameters of Cell 1 as in Fig. 9, except
r1 = 100� · cm2. The dendritic parameters of Cell 2: a2 = 0.4μm,

C2 = 1μF · cm−2, R2 = 20,000� · cm2, Ra,2 = 150� · cm, and
r2 → ∞ (i.e. passive dendritic membrane). Both somas are passive

where, for k = 1, 2,

αk = (2pSk − 1) f (2Lk), (57)

q = 1 + pGJ,2α1 + pGJ,1α2, (58)

F̃k(m, n) = f (m + n)(2pSk − 1) + f (n)

f (m)
, (59)

pSk = γk/ra,k

Nγk/ra,k + CSkω + R−1
Sk

+ (rSk + LSkω)−1
,

(60)

γk = γk(ω) is the characteristic function of the membrane of
Cell k, Lk is the distance between the gap junction and the
soma of Cell k, and pGJ,k is given by Eq. (19).

Using Eqs. (49)–(56), we can investigate how the strength
and location of the gap junction affect the dynamics of the
two-cell model. Here, we consider that a stimulus is applied
to the soma of Cell 1 and construct a map

Ψ : (LGJ, gGJ) → (Ω∗
1 ,Ω∗

2 ) (61)

for the preferred frequencies Ω∗
1 and Ω∗

2 at the soma of Cell
1 and Cell 2, respectively. This map is shown in Fig. 10.
In this case, Cell 2 is assumed to be purely passive, and
Cell 1 has a passive soma with resonant dendrites. The map
indicates that the location of a gap junction plays a significant
role in the dynamics of the network, unless the coupling is
weak. Moreover, the initially passive soma of Cell 2 starts
to demonstrate a resonant behaviour imposed by Cell 1 even
for weak coupling.

Often it is difficult to measure experimentally locations
and strengths of gap junctions in real neuronal networks.
Knowledge of the inverse map

0.005 0.020.0150.010
0

100

200

300

400

0.307

0.309

0.311

Fig. 11 Preferred frequency Ω∗
1 at Soma 1. All parameters are the

same as in Fig. 10, except r2 = 300� · cm2

Ψ −1 : (Ω∗
1 ,Ω∗

2 ) → (LGJ, gGJ) (62)

from a pair of preferred frequencies (obtained from somatic
sub-threshold stimulations) to (LGJ, gGJ)might provide esti-
mates for gap-junctional parameters. However, the map Ψ is
neither surjective nor injective (see, for example, Fig. 11 for
a network of two resonant cells showing that the system may
demonstrate the same resonant behaviour for two different
gap-junctional locations, proximal and distal, and identical
coupling strengths) making it mathematically impractical to
obtain Ψ −1. At the same time, if a constraint on locations
of gap junctions is imposed (e.g. proximal or distal), this
may lead to a one-to-one correspondence between (LGJ, gGJ)
and (Ω∗

1 ,Ω∗
2 ) and therefore assists in the estimation of
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Cell 2Cell 1
A

Cell 2Cell 1
B

Fig. 12 a A full two-cell tufted network model. b An equivalent
reduced model

gap-junctional parameters just from the somatic stimula-
tions.

4.3 A two-cell tufted network

Now we consider a more realistic neuronal network consist-
ing of two identical tufted or mitral cells. Each neuron has a
soma attached to N dendritic branches, one of which is the
primary dendrite with the tuft spanning from its end. Two
cells are coupled in their tufts by dendro-dendritic gap junc-
tions (see Fig. 12a). As in the previous model, we assume
that the biophysical properties of all dendritic segments are
the same and that the physical lengths are scaled by the char-
acteristic function γ (ω). We consider that each cell has nT
segments in its tuft, and nGJ of them possess identical sin-
gle gap-junctional points located l0 away from the end of
the primary dendrite. The primary dendrite of each cell has
the length L, while the other branches are semi-infinite. For
simplicity, we consider that the membrane of both cells is
purely passive (i.e. γ 2(ω) = (τ−1 + ω)/D); however, it is
straightforward to generalise it for the resonant case.

Although it is possible to use our method and construct
the compact Green’s functions for this tufted network, we
will first demonstrate that there exists an equivalent reduced
model with the simplified structure shown in Fig. 12b for
which the compact solutions will then be constructed. Here
we consider a reduction in the full model when external
inputs cannot apply to any of the tufted dendrites. Notat-
ing the reduced network with the symbol ′ we constrain the
reduced model to have

L′ = L, (63)

l ′0 = l0, (64)

p′
S = pS, (65)

p′
D = pD, (66)

where pS constitutes part of the definition of a trip coefficient
for the somatic node (see Fig. 2b), and pD is a branch factor
of the primary dendrite defined as in (16) and constitutes part
of the definition of a trip coefficient for the branching node
(see Fig. 2a). Equations (63) and (64) force the length of the
primary dendrite and the location of a single gap junction in
the reduced model to be the same as in the full tufted model.
Placing y0 on the primary dendrite of Cell 1, both models are
equivalent if

J ′
y0 = Jy0 . (67)

Using our method of local point matching, we can write
down a system of algebraic equations for the full tufted
model:

Ja = Jb f (L)(2pS − 1) + f (x0)(2pS − 1), (68)

Jb =
∑

i

Jdi f (l0)2pD + Ja f (L)(2pD − 1)

+ f (L − x0)(2pD − 1), (69)

Jci = Ja f (L)2pT + Jdi f (l0)(2pT − 1)

+
∑

j �=i

Jd j f (l0)2pT + f (L)2pT, (70)

Jdi = Jci f (l0)(−pGJ) + Jti f (l0)pGJ, (71)

Jsi = Jci f (l0)pGJ + Jti f (l0)(−pGJ), (72)

Jti = Jy f (L)2pT + Jsi f (l0)(2pT − 1)

+
∑

j �=i

Js j f (l0)2pT, (73)

Jw =
∑

i

Jsi f (l0)2pD + Jy f (L)(2pD − 1), (74)

Jy = Jw f (L)(2pS − 1), (75)

Jy0 = Jw f (L − y0) + Jy f (y0), (76)

and for the reduced model:

J ′
a = J ′

b f (L)(2pS − 1) + f (x0)(2pS − 1), (77)

J ′
b = J ′

d f (l0)2pD + J ′
a f (L)(2pD − 1)

+ f (L − x0)(2pD − 1), (78)

J ′
c = Ja f (L)2p′

T + J ′
d f (l0)(2p

′
T − 1) + f (L)2p′

T, (79)

J ′
d = J ′

c f (l0)(−p′
GJ) + J ′

t f (l0)p
′
GJ, (80)

J ′
s = J ′

c f (l0)p
′
GJ + J ′

t f (l0)(−p′
GJ), (81)

J ′
t = Jy f (L)2p′

T + J ′
s f (l0)(2p

′
T − 1), (82)

J ′
w = J ′

s f (l0)2pD + Jy f (L)(2pD − 1), (83)

J ′
y = J ′

w f (L)(2pS − 1), (84)

J ′
y0 = J ′

w f (L − y0) + J ′
y f (y0). (85)

Indices i and j in the equations for the full model change
from 1 to nGJ, and pT is a branch factor of any tuft dendrite
defined as in (16).
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It is possible to prove that Eq. (67) holds and the systems
in Fig. 12a, b are equivalent when, in addition to constraints
(63)–(66), p′

T = nGJ pT, R′
GJ = RGJ/nGJ and z′ = nGJz,

giving

p′
GJ = pGJ = 1

2 + 2zRGJ
, (86)

which constitutes part of the definition of a trip coefficient for
theGJ node (see Fig. 2c). A detailed proof ofmodel reduction
is given in “Appendix 3”.

Our method for constructing the compact Green’s func-
tions can then be simply applied to the reduced model shown
in Fig. 12b. A detailed derivation of the solutions for the
model with a stimulation applied at y0 in Cell 1 and the out-
put points x0 placed in both cells is given in “Appendix 4”.
Assuming that y0 is placed at the soma of Cell 1, the Green’s
functions at each soma have the following forms

G2(0, 0) = θη2 pD p2S pGJ f (L + 2l0)

Dγ (1 + 2μ)
, (87)

G1(0, 0) = pS
2Dγ

(1 + δ f (L))η − G2(0, 0), (88)

where ζ = f (L)(2pS − 1), δ = f (L)(2pD − 1),
θ = 2nGJ pT f (L), η = 2/(1 − ζ δ) and μ = (ζ θηpD +
2nGJ pT − 1)pGJ f (2l0).

For investigating the effect of gap junctions from the tufted
regions of the cells on the model’s behaviour, we define a
coupling ratio (CR) as

CR = maxt InvLT{G2(0, 0;ω)}(t)
maxt InvLT{G1(0, 0;ω)}(t) . (89)

Using Eqs. (87) and (88), we compute and plot in Fig. 13 a
mapofCR for various values of conductance gGJ and location
l0 of the gap junctions in the tuft. This map can be compared
with the CR map obtained earlier in [12] for two mitral cells
coupled by distal gap junctions. Note that the map in [12] is
obtained by brute-force numerical simulations of a compu-
tational model with a similar, but not identical, structure to
our two-cell model.

Using our method of local point matching, we can also
prove that there exists an equivalent reduced model for the
full tufted model with external inputs applied to the tufts
(instead of the primary dendrites). We consider that any tuft
dendrite k can receive a Dirac delta pulse at the location yk
away from the branch point with the primary dendrite. This
tuft dendrite can be either with or without a gap junction.
In the equivalent reduced model shown in Fig. 14, we con-
sider two possible inputs corresponding to the location of
yk , namely the input y1 applied to the branch without a gap
junction and y2 applied to the branch with a gap junction.

0.005 0.020.0150.010
0

50

100

0

0.03

0.01

0.02

CR

Fig. 13 Coupling ratio as a function of gap-junctional conductances
and distances from the branch point with the primary dendrite. Both
cells are identical and passive. Dendritic parameters: a = 0.4μm, C =
1μF ·cm−2, R = 2000� ·cm2, Ra = 150� ·cm. Somatic parameters:
aS = 25μm, Csoma = 1μF · cm−2, Rsoma = 2000� · cm2. The length
of the primary dendrite is L = 350μm

Cell 2Cell 1

Fig. 14 A reduced model with inputs applied to the tuft

It is possible to show (see “Appendix 5” for details) that the
Green’s function of the full tufted model for a given input yk
can be found knowing the Green’s function for the equivalent
reduced model as

G(x0, yk) = 1

nT − nGJ
G ′(x0, y1), (90)

for the input yk applied to the branch without a gap junction,
and

G(x0, yk) = 1

nGJ
G ′(x0, y2), (91)
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for the input yk applied to the branch with a gap junction.
Here, the reduced model is constructed in such a way that
the stimuli in the full and reduced models are located at the
same distance away from the primary dendrites, i.e. y1 = yk
and y2 = yk . The point x0 (0 ≤ x0 ≤ L) is located on the
primary dendrite of either of two cells. The reduced model
shown inFig. 14 can be constructed from the full tuftedmodel
using a number of constraints specified in (164)–(168) and
(174). The Green’s functions G ′ for each cell can then be
found by our method of local point matching and used in
(90) and (91) for finding the Green’s functions for the full
tufted model.

In the case of multiple inputs applied to the tuft dendrites,
the Green’s function for each cell can be found by summing
individual Green’s functions for each input. Assuming that
all tuft dendrites of both cells receive identical inputs located
at a distance y away from the primary dendrite of each cell,
we obtain in this special case

G(x0, y) = G ′(x0, y). (92)

5 Discussion

In this paper we have presented a novel method for calcu-
lating the Green’s functions for arbitrary neuronal networks
with a passive or resonant cell membrane coupled by dendro-
dendritic gap junctions. This method provides an alternative
and complementary approach to the generalised sum-over-
trip method [19]. Importantly, our new approach avoids the
construction of an infinite number of trips and, being based
on the construction of a linear system of algebraic equa-
tions, provides exact expressions for the network response
function in the Laplace (frequency) domain without any
issues of computational convergence. We have applied this
new method of local point matching to a simple single cell
model and two-cell neuronal networks (simplified and with
tuft dendrites). Its application to the tufted network has also
allowed us to reduce it to an equivalent network, but with a
much simpler morphological structure. We have also illus-
trated that knowledge of the exact compact expressions for
the Green’s function can provide important insights into the
role of individual variations in cell parameters on themodel’s
dynamics.

There are a number of natural extensions of thework in this
paper. One is an application tomore realistic network geome-
tries withmore than just two cells, given that a computational
implementation of the method of local point matching can
provide a fast realisation of theGreen’s function for thewhole
network. Having a complex network of multiple cells with a
graph structure consisting of N dendritic segments, we need
to construct and solve a linear system of 2N equations only
once to find all unknown Jvk and Jwk functions. We can then

simply construct the functions Jy for each dendritic segment
to obtain Gi j (X,Y ;ω). Note that the point X can be placed
on each dendritic segment before constructing a system of
linear equations for Jvk and Jwk . Switching off all X points
except one on branch i in the solution for Jy allows one to find
theGreen’s function for the entire network straight away. The
numerical inverse Laplace transform to obtain Ĝi j (X, Y ; t)
is the only procedure in which a computational approxima-
tion appears. As has been previously pointed in Sect. 4.2,
knowledge of a map from the preferred frequencies to the
system’s parameters for a reconstructed neuronal network
combined with subthreshold electrophysiological data might
provide some estimates for important network’s parameters
and additionalwork is required in this direction.Another pos-
sible extension is to incorporate active properties in dendrites
and somas of cells in a network and analyse the propaga-
tion of dendritic action potentials as well as somatic spiking
dynamics. The spike-diffuse-spike (SDS)-type model [5;17]
can be utilised for that, as although the voltage-gated chan-
nels in the SDS framework are modelled by piecewise linear
instead of nonlinear dynamics, it has been shown that the
speed of wave propagation in the SDS model is in excel-
lent agreement with a more biophysically realistic nonlinear
model [20]. Both these extensions will be reported on else-
where.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Derivation of a method of local point
matching

Introducing the function

Ji j (x, y;ω) = 2Djγ j (ω)Gi j (x, y;ω), (93)

we can write from Eq. (15) that

Ji j (x, y;ω) =
∑

trips

Atrip(ω) f (L trip(x, y;ω)). (94)

We assume that two points v j and w j are placed on segment
j infinitesimally close to each end of it such that the point y
which is not at a node (i.e. 0 < y < L j ) is between v j and
w j . Then Ji j (x, y;ω) can be found as a combination of two
classes of trips:

Ji j (x, y) =
∑

trips

Av j f (L trip(x, y))

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Biol Cybern

+
∑

trips

Aw j f (L trip(x, y)) (95)

= f (v j − y)
∑

trips

Av j f (L trip(x, v
→y
j ))

+ f (w j − y)
∑

trips

Aw j f (L trip(x, w
→y
j )). (96)

Note that ω is omitted for compactness from this point. The
trips in (95) are divided into two groups: the trips that are
passing through v j just before reaching y and the trips that
are passing through w j just before reaching y (see Fig. 3).
L trip(x, v

→y
j ) introduced in (96) defines a length of a trip

which moves in the direction of y and ends at v j before
reaching y. Similarly, L trip(x, w

→y
j ) defines a length of a

trip which moves in the direction of y and ends at w j

before reaching y (shown in red in Fig. 3). Av j and Aw j

are the trip coefficients corresponding to the trips to v j

and w j and obtained using the rules of the sum-over-trips
method.
As v j is placed close to one end of the segment, we have
L trip(x, v j ) = L trip(x, v

→y
j ), and therefore, we introduce

Ji j (x, v j ) =
∑

trips

Av j f (L trip(x, v
→y
j )). (97)

Similarly, as w j is located close to the other end of the seg-
ment, we introduce

Ji j (x, w j ) =
∑

trips

Aw j f (L trip(x, w
→y
j )). (98)

Then simplifying the notations as Ji j (x, y) = Jy ,
Ji j (x, v j ) = Jv j and Ji j (x, w j ) = Jw j we can rewrite Eq.
(96) in the form

Jy = f (v j − y)Jv j + f (w j − y)Jw j . (99)

As both points v j and w j are placed infinitesimally close to
individual ends of segment j of length L j , we consider that
v j = 0 andw j = L j , and therefore, Eq. (99) can be rewritten
as

Jy = f (y)Jv j + f (L j − y)Jw j . (100)

If the point y is located on a semi-infinite branch and w j

is placed on the side towards infinity, then |w j − y| → ∞
giving f (w j − y)Jw j = 0.
Following similar steps, if placing two points vk and wk

on each segment k infinitesimally close to each end, we
can define functions Jvk and Jwk which can be written in
terms of functions Jvn and Jwn associated with points vn
and wn from all branches connected to a single node. For
example, given a node with K segments and K pairs of

points (vk, wk) (see Fig. 4), the function Jvk can be found
as

Jvk =
K∑

n=1

∑

trips

Awn f (L trip(x, wn))ank f (Ln)

=
K∑

n=1

ank f (Ln)
∑

trips

Awn f (L trip(x, wn))

=
K∑

n=1

ank f (Ln)Jwn , k = 1, . . . , K , (101)

where ank is a coefficient for a trip passing from segment n
to segment k, akk is a coefficient for a trip reflecting at one of
the ends of segment k and Ln is the scaled length of branch
n. Equation (101) can be constructed for any node branches
of which do not include point x . If x is located on branch
i connected to a node in consideration (0 < x < Li ), an
additional term representing a trip from x to vk needs to be
added:

Jvk =
K∑

n=1

ank f (Ln)Jwn + aik f (x). (102)

For a given network, the number of functions Jv and Jw is
equal to the degree sum of the corresponding graph and a
system of linear equations for unknown Jv and Jw can be
written using Eqs. (101) and (102). It is possible to show that
this system of equations is linearly independent and therefore
has a unique solution. Solving it, we can find Jv j and Jw j and
obtain Jy = Ji j (x, y) from Eq. (100). The Green’s function
Gi j (x, y) can then be calculated from Eq. (93) as

Gi j (x, y) = Jy
2Djγ j

. (103)

If both x and y are located on the same branch, equation for
Jy takes the following form (instead of Eq. 100):

Jy = f (y)Jv j + f (L j − y)Jw j + f (x − y). (104)

Appendix 2: Solving a simplified two-cell network
model

Equations (37) and (39) give

Jw + Jb = 0. (105)

Then using Eqs. (36), (38) and (105) we can get

Jy + Ja = f (x2)(2pS − 1). (106)
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Using Eqs. (38), (39) and (106), we can obtain that

Jw = pGJ f (L)

q
[ f (x2)(2pS − 1) + 1/ f (x2)]

= pGJ f (L)

q
F̃(x2, 0), (107)

where function F̃ is defined in (46).
Placing the stimulus to the point y1 (see Fig. 8), we have

Jy1 = Jz f (y1 − LGJ) (108)

with

Jz = Jy f (LGJ)(1− pGJ)+ Ja f (LGJ)pGJ+ f (LGJ−x2)pGJ,

(109)

and the solution G2(x2, y1) can be found as

G2(x2, y1) = Jy1
2Dγ

= 1

2Dγ

pGJ + pGJα

q
F̃(x2, y1). (110)

Similarly for y2, we can show that

G2(x2, y2) = Jy2
2Dγ

= 1

2Dγ

1 − pGJ + pGJα

q
F̃(x2, y2).

(111)

Solutions G1(x1, y2) and G1(x1, y1) can be easily obtained
using the symmetry of the system. Note that for the case of
two symmetrical inputs located after the gap junction (i.e.
y1 = y2 = y), we have

G1(x1, y1) + G1(x1, y2) = F̃(x1, y1 = y)

2Dγ
, (112)

G2(x2, y1) + G2(x2, y2) = F̃(x2, y2 = y)

2Dγ
. (113)

When the stimulus is applied to the location y3, we can get
that

Jy3 = Jy f (y3) + Jw f (LGJ − y3), (114)

and therefore obtain

G2(x2, y3) = Jy3
2Dγ

= 1

2Dγ

pGJ f (2LGJ)

q
F̃(x2, 0)F̃(y3, 0). (115)

Considering the stimulus at the point y4, we have

Jy4 = Ja f (y4) + Jb f (LGJ − y4) + f (y4 − x2). (116)

To find G2(x2, y4), we notice that if two symmetrical inputs
(y3 = y4 = y) are applied to the system, then using Eqs.
(114), (116), (105) and (106), we get

G2(x2, y3 = y) + G2(x2, y4 = y)

= 1

2Dγ
(Jy3=y + Jy4=y) = 1

2Dγ
( f (x2 + y)(2pS − 1)

+ f (x2 − y)). (117)

From (117) and (115), we can then find

G2(x2, y4) = 1

2Dγ

[
f (x2 + y4)(2pS − 1) + f (x2 − y4)

− pGJ f (2LGJ)

q
F̃(x2, 0)F̃(y4, 0)

]

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1
2Dγ

[
F̃(x2, y4)

− pGJ f (2LGJ)
q F̃(x2, 0)F̃(y4, 0)

]
, if x2 < y4,

1
2Dγ

[
F̃(y4, x2)

− pGJ f (2LGJ)
q F̃(x2, 0)F̃(y4, 0)

]
, if x2 > y4.

(118)

Solutions G1(x1, y3) and G1(x1, y4) can be easily found
using the symmetry.

Appendix 3: Model reduction in a two-cell tufted
network

In the case of the model with the input/output points placed
in the primary dendrite, it is straightforward to demonstrate
using our algorithm that nT − nGJ branches having no gap
junctions can be easily merged into a single branch. From
Eqs. (75), (76), (84) and (85) we obtain that

Jy0 = Jw f (L)2pS, (119)

J ′
y0 = J ′

w f (L)2pS. (120)

Then due to Eq. (67), we get

J ′
w = Jw, (121)

and then

J ′
y = Jy . (122)

Comparing Eqs. (74) and (83) with the equality (121), we
obtain

J ′
s =

∑

i

Jsi , i = 1, . . . , nGJ. (123)
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Equations (71), (72), (80) and (81) give

Jdi + Jsi = 0, (124)

J ′
d + J ′

s = 0, (125)

and with relationship (123) we have

J ′
d =

∑
Jdi . (126)

Using Eqs. (68), (69), (77) and (78), we can obtain

[
1 − f (2L)(2pS − 1)(2pD − 1)

]
Jb

=
∑

i

Jdi f (l0)2pD + f (L)(2pD − 1)2pS, (127)

[
1 − f (2L)(2pS − 1)(2pD − 1)

]
J ′
b

= J ′
d f (l0)2pD + f (L)(2pD − 1)2pS, (128)

and together with (126) we have

J ′
b = Jb, (129)

and then

J ′
a = Ja . (130)

Using the relationships (123) and (126) we can rewrite Eqs.
(70) and (73) as

Jci = Ja f (L)2pT + J ′
d f (l0)2pT − Jdi f (l0)

+ f (L)2pT, (131)

Jti = Jy f (L)2pT + J ′
s f (l0)2pT − Jsi f (l0), (132)

and after summing all functions Jci and Jti over i =
1, . . . , nGJ, we get

∑

i

Jci = Ja f (L)2
∑

i

pT + J ′
d f (l0)

(
2

∑

i

pT − 1

)

+ f (L)2
∑

pT, (133)

∑

i

Jti = Jy f (L)2
∑

i

pT + J ′
s f (l0)

(
2

∑

i

pT − 1

)
.

(134)

Right-hand sides of these equations have the same forms
as Eqs. (79) and (82) for the functions J ′

c and J ′
t under the

constraint

p′
T =

∑

i

pT. (135)

Therefore, we have

J ′
c =

∑

i

Jci , (136)

J ′
t =

∑

i

Jti . (137)

We can also sum Eqs. (71) and (72) over index i =
1, . . . , nGJ to obtain

∑

i

Jdi =
∑

i

Jci f (l0)(−pGJ) +
∑

i

Jti f (l0)pGJ, (138)

∑

i

Jsi =
∑

i

Jci f (l0)pGJ +
∑

i

Jti f (l0)(−pGJ), (139)

and compare them with Eqs. (80) and (81). The reduced
model will then be equivalent to the full tufted model if,
in addition to the previous constraints, the following rela-
tionship holds

p′
GJ = pGJ, (140)

leading to R′
GJ = RGJ/nGJ and z′ = nGJz.

Appendix 4: Closed form solution to the tufted
model

Solving Eqs. (77)–(84) for the reduced model and applying
the constraints we get

J ′
a = ηpS − 1 − ζθη2 pGJ pS pD f (2l0)

1 + 2μ
, (141)

J ′
b = δηpS − θη2 pGJ pS pD f (2l0)

1 + 2μ
, (142)

J ′
c = θηpS

1 + μ

1 + 2μ
, (143)

J ′
d = −θηpGJ pS f (l0)

1 + 2μ
, (144)

J ′
s = θηpGJ pS f (l0)

1 + 2μ
, (145)

J ′
t = θηpS

μ

1 + 2μ
, (146)

J ′
w = θη2 pGJ pS pD f (2l0)

1 + 2μ
, (147)

J ′
y = ζθη2 pGJ pS pD f (2l0)

1 + 2μ
. (148)
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Placing y0 and x0 on the primary dendrites of Cell 1 and Cell
2, respectively, we can write that

Jy0 = J ′
y0 = J ′

w f (L) + J ′
y f (0)

= 2θη2 pD p2S pGJ f (L + 2l0)

1 + 2μ
.

(149)

As all dendrites in the tuft are identical, Eq. (135) is simply
p′
T = nGJ pT. Using this relationship in (149) and having

x0 = y0 = 0, we obtain the somatic Green’s function for
Cell 2 (Eq. 87).

As the cells are identical and the system is symmetrical,
the Green’s function for Cell 1 (where the input is placed) is
equal to the Green’s function for Cell 2 if both x0 and y0 are
placed on Cell 2. For this case Jy0 takes the form

Jy0 = J ′
y0 = J ′

b f (L) + J ′
a f (0) + f (0). (150)

Then

G2(0, 0) + G1(0, 0) = 1

2Dγ
[J ′

w f (L) + J ′
y f (0)

+ J ′
b f (L) + J ′

a f (0) + f (0)] = pS
2Dγ

(1 + δ f (L))η,

(151)

which gives Eq. (88).
Note that by setting pD = 1/2 which gives δ = 0, p′

T =
1/2, θ = f (L), we can recover a case of two simplified
identical cells (without the tuft). Equation (87) gives

G2(0, 0) = 1

Dγ

2p2S pGJ f (2L + 2l0)

1 + 2(2pS − 1)pGJ f (2L + 2l0)
, (152)

and this is exactly Eq. (42) with x2 = 0, y3 = 0 and LGJ =
L + l0.

Appendix 5: Inputs applied to the tuft

Here we assume that a single input is placed on segment k of
the tuft of Cell 1 at the distance yk away from the branch point
with the primary dendrite (see Fig. 14 for a reduced version
of the model). Two cases are possible: (i) this segment k is
uncoupled from Cell 2 and (ii) this segment k is coupled by
a gap junction with Cell 2.

As the tufted branches are identical, using the constraints
(123), (126), (136) and (137), we have

J ′
c = nGJ Jci , (153)

J ′
d = nGJ Jdi , (154)

J ′
s = nGJ Jsi , (155)

J ′
t = nGJ Jti , (156)

J ′
e = (nT − nGJ)Jei , (157)

J ′
g = (nT − nGJ)Jgi , (158)

J ′
h = (nT − nGJ)Jhi , (159)

J ′
r = (nT − nGJ)Jri (160)

Skipping the subscript i used in the full model, we get for
case (i) when, for example, the input is located on a branch
with point h as in Fig. 14:

Jyk = Jh f (yk), (161)

J ′
y1 = J ′

h f (y1). (162)

This gives

Jyk = J ′
y1

nT − nGJ
. (163)

Using relations (66) and

p′
T_GJ =

nGJ∑

i

pT_GJ, (164)

which is just Eq. (135) for the tuft dendrites with gap junc-
tions, we can obtain that

p′
T_noGJ =

nT−nGJ∑

i

pT_noGJ = (nT − nGJ)pT_noGJ, (165)

where pT_noGJ and p′
T_noGJ are branch factors of any tuft

dendrite without gap junctions in the full and reduced mod-
els, respectively. From constraints (66), (164) and (165), we
obtain the additional constraints for themodels’ equivalence:

z′D = zD, (166)

z′T_GJ = nGJzT_GJ, (167)

z′T_noGJ = (nT − nGJ)zT_noGJ, (168)

where z = γ (ω)/ra defined as in (16) are given for the
primary dendrite (D), any tuft dendrite with a gap junc-
tion (T_GJ) and any tuft dendrite without a gap junction
(T_noGJ). These constraints (166)–(168) can be achieved by
controlling diameters of the corresponding branches (i.e. by
varying ra parameter) and keeping identical electrical proper-
ties of cell membrane (i.e. γ (ω)) in both the full and reduced
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models. Then Eq. (163) gives

G(x0, yk) = 1

nT − nGJ
G ′(x0, y1). (169)

Considering case (ii) when the input is placed on the tuft
dendrite with a gap junction (stimulus y2 in the reduced
model in Fig. 14), we can get that

Jyk = Jt f (yk) + Js f (l0 − yk), if yk < l0, (170)

J ′
y2 = J ′

t f (y2) + J ′
s f (l0 − y2), if y2 < l0, (171)

and

Jyk = Jr f (yk − l0) = [Jc f (l0)pGJ
+ Jt f (l0)(1 − pGJ)] f (yk − l0)

= (Jc pGJ + Jt (1 − pGJ)) f (yk), if yk > l0, (172)

J ′
y2 = J ′

r f (y0 − l0) = [J ′
c f (l0)p

′
GJ

+ J ′
t f (l0)(1 − p′

GJ)] f (y0 − l0)

= (J ′
c p

′
GJ + J ′

t (1 − p′
GJ)) f (y0), if y2 > l0. (173)

Then adding a constraint [notably the same as Eq. (140) in
the previous model]

p′
GJ = pGJ, (174)

we have

Jyk = J ′
y2

nGJ
, (175)

and thus

G(x0, yk) = 1

nGJ
G ′(x0, y2). (176)
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