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Abstract

Gyrokinetics is a maximally optimal description of low-frequency magnetised
plasma turbulence.

We present a generalisation of gyrokinetic theory that allows dynamic strong
flows and is valid for arbitrary-wavelength electrostatic potential perturbations
in slab magnetic geometry. We obtain a substantially simpler gyrocentre La-
grangian than that of Dimits (2010a,b). We present a symplectic strong-flow
generalisation of gyrokinetic field theory such that, unlike Dimits (2010a,b), our
Vlasov-Poisson system is manifestly conservative as, ultimately, we obtain it as
a whole, directly from our gyrocentre particle Lagrangian (Scott and Smirnov,
2010). Despite the symplectic representation of our strong-flow theory, our
Poisson equation is consistent with that for weak flows (Hahm, 1988) at all
wavelengths and the fluid equation obtained from our Vlasov-Poisson system is
consistent with fluid theory.

Again, despite our symplectic representation, we demonstrate numerical
tractability by solving implicit dependences using an iterative scheme. Weak-
and strong-flow code verification are performed in limits that admit analytic
comparison.

Simulations show strong-flow symmetry breaking of the Kelvin-Helmholtz in-
stability of a shear layer and blobs that manifest as asymmetries in the growth
rate and propagation, respectively, that depend on the sign of the parallel vor-

ticity.
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Chapter 1

Introduction

An increasing population is leading to a net increase in global energy demand
and climate change that cannot be tolerated. Fusion energy (EUROfusion, 2013)
may be a pertinent future resource.

Fusion energy is the unconventional but superior harnessing of nuclear bind-
ing energy. The obstacles for its realisation include reactor material procurement
and, for the leading tokamak magnetic confinement approach, transport.

Confined plasma fuels are associated with gradients in physical quantities
and related instabilities and, on relatively small scales, microinstabilities and
related microturbulence. This leads to energy transport and a loss of confine-
ment (Horton, 1999).

An additional layer of complexity comes in the form of self-organisation (Di-
amond et al., 2005). As such, theoretical study is warranted. Simple, classical
and neoclassical collisional transport theory are not appropriate (ITER, 1999b).
A fundamental theoretical understanding of magnetised plasma dynamics is nec-

essary.



1.1 Plasma theory

The relevant domain is that of classical electrodynamics. For simplicity, this the-
sis will consider electrostatic potential perturbations in slab magnetic geometry
(Dubin et al., 1983; Dimits, 2010a). The appropriate equations are the coupled
Lorentz force and Poisson equations. The numerical solution of these nonlin-
ear equations for the Avogadro’s number of particles found within a tokamak
plasma is currently infeasible.

The description can be simplified by taking a more statistical approach and
utilising a smooth particle probability density function or distribution function,
which, in the absence of particle collisions, yields a coupled Vlasov-Poisson
kinetic system.

Charged particles in a magnetic field undergo a helical gyromotion along
magnetic field lines. The space-time scale of the tokamak confinement system
is large compared to that of the gyromotion. This restricts direct numerical
solution and necessitates further simplification of the kinetic description.

The characteristic frequency of tokamak microturbulence is small compared
to that of the gyromotion. As a result, the gyromotion in the plane perpendic-
ular to the magnetic field exhibits quasi-circular symmetry on the gyromotion
timescale. This gyrosymmetry can be utilised to maximally optimise the theo-
retical description by keeping the physics to the minimum of what is required.

In relatively long-wavelength fields, the drifting of the particle gyration or
guiding centre can be followed and the circular gyromotion adiabatically ignored.
This guiding-centre theory (Cary and Brizard, 2009) can be generalised (Brizard
and Hahm, 2007; Krommes, 2010) for arbitrary-wavelength perturbations by
instead only following the drifting of the particle gyrocentre, as shown in Figure
1.1, and adiabatically ignoring the gyromotion due to the generalised field. This

is described in the next section.



Particle

Gyrocenter

Figure 1.1: The drifting of an electrically charged particle gyrocentre with E x B
and effective polarisation velocities, Vi and VP! respectively, due to an elec-
tric field E in the plane (x,y) perpendicular to the constant magnetic field: the
electric field acceleration changes the radius of the otherwise circular gyromo-
tion; indeed, tokamak conditions are such that the fluctuating electric field can

be considered and treated as a perturbation (Krommes, 2012).

1.2 Gyrokinetics

We begin by defining the gyrokinetic ordering and, thereby, the gyrokinetic

regime.

1.2.1 Ordering

The turbulence is characterised by fluctuations in density, temperature and elec-
trostatic potential (Brizard and Hahm, 2007). The fluctuations themselves are
characterised in terms of characteristic wavevector components and frequencies.

The gyrokinetic ordering parameter (Dimits et al., 1992) is

€ay ~ W~ Ky py ~ p Lt ~uvg <1 (1.1)

1

where w is the characteristic fluctuation frequency, Q = |¢|Bm™" is the gy-

rofrequency, q is the particle charge, B is the magnetic field strength, m is the



particle mass, k| is the component of the characteristic fluctuation wavevector
in the parallel direction with respect to the magnetic field, p; = vQ~! is the
thermal particle gyroradius, vy is the thermal particle speed, Lg is the char-
acteristic magnetic-field nonuniformity length scale and u is the E x B drift
speed associated with the fluctuating electrostatic potential. Fundamentally,
it is a low-frequency ordering, and length scales and flows that are smaller in
the perpendicular than parallel direction are implied by this. Additionally, the
ordering is appropriate for tokamak magnetic geometry.

The state-of-the-art gyrokinetic description of particle dynamics is formu-
lated in terms of manifestly conservative, differential-geometric classical me-
chanics (Brizard, 1990; Brizard and Hahm, 2007; Cary and Brizard, 2009). This
is presented in the next subsection in terms of a guiding-centre electrostatic po-

tential ¢go(x,t) ~ 1 that satisfies

k1pt ~ €gy, (1.2)

where « is the particle position, ¢ is time and k&, is the perpendicular wavenum-

ber.

1.2.2 Mechanics

The particle Lagrangian L written as a 1-form is

~v = Ldt = v,dz%, (1.3)
where
Yo = (774, (1.4)
a€{0,...,6},
Yt = _hv



h is the Hamiltonian, v; are the symplectic components, i € {1,...,6}, 2% is
a noncanonical seven-dimensional extended phase space coordinate (Cary and
Littlejohn, 1983) and we have used Einstein notation. The invariance of the
Lagrangian is apparent from this manifest covariance (1.3). Thus, coordinate
choice is arbitrary and can be used to reveal symmetries that, by Noether’s
theorem!, simplify the physical description.

We choose to express the particle Lagrangian in terms of coordinates z =

(z,v) (Cary and Brizard, 2009),
v = legy A() + 0] - da — [2v® + g dt, (1.5)

where we indicate the order of each term, we use units, here and in the remainder
of the thesis, such that

g=m=1,

—1

oy and v ~ 1 is the particle velocity.

A ~ e} is the magnetic potential, & ~ €
We may obtain our complete physical formalism from this Lagrangian (1.5) via
the principle of least action and Noether’s theorem. Thus, in order to simplify
our complete physical formalism, we need only simplify our Lagrangian, as our
complete physical formalism is obtained from our Lagrangian.

By general covariance, the Lagrangian is coordinate independent. Thus, let
us write this Lagrangian (1.5) in the natural coordinates of gyromotion, the
guiding-centre coordinates Z = (X, vy, 1, (), where

X:alr;—pweg_y1 (1.6)

is the guiding-centre position (Figure 1.2), p = v Q7 !(cos(é; —sin (éy) ~ py ~
1 is the gyroradius, v, ~ vy ~ 1 is the perpendicular speed, ( is the gyroangle,
€1 = €y X B, the hat denotes a unit vector, b is the magnetic field unit vector,

v ~ 1 is the parallel velocity and p = $v3Q7! ~ 1 is the magnetic moment.

INoether’s theorem relates the symmetries of a Lagrangian to its invariants (Krommes,
2010).



>\

Gyrocenter P

A

A

Figure 1.2: The guiding-centre or lowest-order-gyrocentre coordinates, as de-
fined in Subsection 1.2.2, in the plane perpendicular to the magnetic field

(Krommes, 2012).

The Lagrangian (1.5) in terms of coordinates Z is

I'=[e; A(X +p) +vpb+vi] d(X +p) — [%(’UHB +v1)? + ¢ge(X + p,t)| dt,
(1.7)
where v, = p x € is the perpendicular velocity and €2 = Qb.

This Lagrangian (1.7) is almost invariant under ¢ rotation, that is, it has
quasi-(-symmetry. The potentials depend on @, which in turn depends on p,
which itself depends on (. However, cancellation and gauge transformation
mean that, under the ordering used, the (-dependence of the potentials is small
as their variation over a distance p; is small. Thus, we may write the Lagrangian
(1.7) as

F = Fo + egyfl,

where I’y is (-independent and I'; is {-dependent. The invariance of the La-
grangian is apparent from its manifest covariance (1.3). Thus, we may perturb
the coordinate system in order to obtain a Lagrangian with exact (-symmetry.
This is achieved via a systematic, near-identity or Lie transformation of the
Lagrangian. We detail this Lie transform in the next chapter.

The guiding-centre particle Lagrangian obtained up to first order in ez, (1.1)



is

r

(et AX) + v B] - dX + pdC = (0F + Q2 + e (X) . (1.8)

This Lagrangian (1.8) depends on a five-dimensional phase space coordinate,
thus, our complete physical formalism will now depend on a five-dimensional
phase space coordinate. Additionally, by Noether’s theorem, the {-symmetry of
the Lagrangian (1.8) corresponds to the adiabatic invariance of p.

We present the gyrocentre particle Lagrangian obtained within gyrokinetic

theory in the next subsection.

1.2.3 Lagrangian

The gyrocentre particle Lagrangian is obtained by starting with a gyrokinetic
(1.1), as opposed to guiding-centre (1.2), potential in the Lagrangian (1.5).
An intermediate Lie transform is performed in the absence of the potential

perturbation to obtain an equilibrium guiding-centre particle Lagrangian,

7(2) = Teq(Z2) = T(2),

where the overbar denotes a gyrocentre quantity.

The gyrocentre particle Lagrangian up to second order in ey (1.1) (Brizard,

1989) is
T =[ey A(X) +0b] - dX + ud{ — [307 + AQ + (dgy (2, 1)) w9)
- eéy% _I(Q_1<v‘i)gy xb- v‘5gy> + <~§;y>7ﬂ)}dt’
where
)X put) = (2m) ! [ AP ab(X + p - )il ) (1.10)

is the gyroaverage for any function 1, ¢gy is the electrostatic potential that



satisfies the gyrokinetic ordering (1.1),

(i)gy = / dC_QSgy ~ €gy,

Pay = Pay — (Pay) ~ €y

and

U, =0,

for any function W. This Lagrangian (1.9) depends on a five-dimensional phase
space coordinate, thus, our complete physical formalism will now depend on a
five-dimensional phase space coordinate. Additionally, by Noether’s theorem,
the (-symmetry of the Lagrangian (1.9) corresponds to the adiabatic invariance
of .

By using a Fourier space representation of ¢y, performing the integral in
the expression for its gyroaverage (1.10) and Taylor expanding the resulting
Bessel function, the gyroaveraged potential can be interpreted (Jolliet, 2009) as

a finite-Larmor-radius (FLR) corrected gyrocentre potential,
(Poy) = gy + 3 AV gy + - ~ 1.
The gyrokinetic ordering (1.1) includes the weak-flow ordering
wi ! ~ gy (1.11)

This ordering (1.11) cannot be applied to scrape-off-layer (ITER, 1999a), transport-
barrier-containing and strongly rotating tokamak plasmas and many astrophys-
ical plasmas due to the presence of strong flows (Artun and Tang, 1994), for
which

wvgt ~ 1

Strong-flow generalisations of gyrokinetics are described in the next section.



1.3 Strong flows

Strong-flow generalisations of gyrokinetics focused, initially, on symplectic (1.4)

and, more recently, on Hamiltonian modifications.

1.3.1 Symplectic formulation

The work of Brizard (1995), Hahm (1996) and Hahm et al. (2009) reached its
most general form with the work of Madsen (2010). Here, a strong-flow potential

Ps ~ egyl is accommodated by making the splitting,

¢s :¢0(m,t)+¢1(a:,t), (112)

-1

where ¢g ~ €y

is a long-wavelength electrostatic potential and ¢; ~ egy is a
short-wavelength electrostatic potential.

Symplectic strong-flow theories redefine the velocity variable to be relative
to a strong flow (Artun and Tang, 1994). The velocity variable v is redefined
to be the velocity in a frame moving with a velocity D ~ 1, where D is usually

chosen to be an E x B drift velocity.

The gyrocentre Lagrangian up to second order (Madsen, 2010) is

I' = [ AX)+7b+D(X,t)] dX + d¢ — (307 + 1Q + $D? + e} (6s)
—e0, 307N QYO x b Vo) + (47) p)]dt, (1.13)

D = Q_ll;ngZo,

where we also redefine u = 202 Q7! ~ 1 to be the magnetic moment in the
frame moving with a velocity D, ®; = [d{¢1 ~ €z and ¢y = ¢1 — (P1) ~ €gy-

A high-frequency symplectic strong-flow theory was formulated by Qin et al.
(2007), however, this work has been criticised (Madsen, 2010) for an inconsis-
tent application of a high-frequency ordering. Under a low-frequency ordering,

Kawamura and Fukuyama (2008) included a higher-order term in a redefinition



of D,
Dx = D + €,Q7'b x (Dx - V)Dxg ~ 1. (1.14)

The second term in Dy (1.14) is the centrifugal drift, which had appeared in
the Euler-Lagrange equation of previous symplectic strong-flow theories. Both
Qin et al. (2007) and Kawamura and Fukuyama (2008) have been criticised
(Madsen, 2010) for being unnecessarily complex and specialised as a result of
forgoing an intermediate, guiding-centre step.

The use of the two-component potential (1.12) is a partial, discontinuous

treatment of the spectral range of tokamak turbulence,
€oy Skipy S 1. (1.15)

Additionally, it introduces ambiguity to the conservative field theory and disal-
lows the natural computation of a complete Vlasov-Poisson system.
A Hamiltonian, as opposed to symplectic, modification has also been con-

sidered. This is described in the next subsection.

1.3.2 Hamiltonian formulation

Miyato et al. (2009) employ the guiding-centre ordering (1.2). Their modified

and simplified strong-flow guiding-centre Lagrangian up to second order is

r = [ﬁgylA(X)JFUHB]'dXJrudC—(%vfﬁ—uﬁ—%DZ
+Eg_y1 <¢O>)dt, (1.16)
D = Q'bxV¢y(X)~1.

The presence of D in the guiding-centre coordinate transformation,
X =% — e, Qb x (v + D)+ O(2,), (1.17)
results in the absence of D in the symplectic part of the Lagrangian (1.16). The
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symplectic part of this Lagrangian (1.16) is then identical in form to that of the
weak-flow Lagrangian (1.9), unlike the symplectic strong-flow Lagrangian (1.13)
of the previous subsection. This particular choice of guiding-centre coordinate
transformation (1.17) also results in the term involving D in the Hamiltonian in
this Lagrangian (1.16) appearing with the opposite sign to that in the Hamilto-
nian in the symplectic strong-flow Lagrangian (1.13) of the previous subsection.
This, coupled with the absence of D from the symplectic part of the Lagrangian
(1.16), results in this Hamiltonian strong-flow theory having fundamental weak-
flow consistency. The potential appearing in this Lagrangian (1.16) only has a
single component, unlike the symplectic strong-flow Lagrangian (1.13) of the
previous subsection. As ¢ is not considered, all the terms associated with
this potential component in the symplectic Lagrangian (1.13) of the previous
subsection are absent in this Lagrangian (1.16).

We summarise pertinent gyrokinetic theories in Table 1.1.

Flows  Formulation k& pt

Brizard (1989) Weak  Hamiltonian Arbitrary
Miyato et al. (2009) Strong Hamiltonian O(egy)
Madsen (2010) Strong  Symplectic O(eqy), O(1)

Dimits (2010a,b) Strong Symplectic  Arbitrary

Table 1.1: A summary of pertinent gyrokinetic theories.

Experimental observations of tokamak plasma dynamics indicate that self-
consistent interaction occurs on all length scales (Holzhauer et al., 1994; Andrew
et al., 2008). The unified treatment (Dimits, 2010a,b) of the spectral range of
tokamak turbulence (1.15) within strong-flow gyrokinetic theories is the subject

of the next chapter.
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Chapter 2

Gyrokinetic theory

In this chapter, we will present a generalisation of gyrokinetic theory that allows
dynamic strong flows and is valid for arbitrary wavelength electrostatic potential
perturbations in slab magnetic geometry. This generalisation is achieved by

utilising a generalisation of the gyrokinetic ordering (1.1).

2.1 Ordering

The gyrokinetic ordering parameter (1.1) was originally (Hahm, 1988)
gy ~ wQ ™~ kjpy ~ ptLgl ~ ¢gyT_1 < 1,kppy ~ 1, (2.1)

where T is the temperature, we use units, here and in the remainder of the
thesis, such that

kp=1

and kg is the Boltzmann constant. This original ordering (2.1) was generalised
(Dimits et al., 1992) by no longer ordering the quantity q/)gyT_l, nor the quantity
k1 p, and instead ordering the size of the E x B flow associated with ¢4y to be
small compared to the thermal speed (1.1). This is the weak-flow gyrokinetic

ordering (1.1). This weak-flow ordering (1.1) includes the treatment of the small-
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amplitude gyroscale perturbations of the original ordering (2.1) but additionally

allows larger-amplitude perturbations on larger perpendicular length scales.
The weak-flow ordering (1.1) can be further generalised (Dimits, 2010a,b)

by no longer ordering the quantity v, ! and instead ordering the vorticity. The

strong-flow gyrokinetic ordering parameter used in this thesis is
e~ wQt ~ Ky py ~ pelg' ~ Q7 < 1, (2.2)

where u’ represents the magnitude of the spatial derivatives of the E x B drift
velocity associated with the fluctuating electrostatic potential. Given that, for
a general magnetised plasma, w ~ v/, allowing ©'Q2~' > ¢ would break the
fundamental gyrosymmetry. This ordering (2.2) includes the treatment of the
weak flows of the weak-flow ordering (1.1) but additionally allows larger flows on
larger perpendicular length scales. This ordering (2.2) is compatible with the
magnetohydrodynamics (MHD) ordering and similar to the Hasegawa-Mima
ordering (Horton and Hasegawa, 1994), which additionally uses the cold-ion
limit. u’ represents both the eddy turnover time and the nonlinear timescale.

For the accurate numerical solution of reduced plasma models, it is essen-
tial to have conservation properties (Cary and Brizard, 2009) and, specifically,
intrinsic energetic consistency (Scott and Smirnov, 2010). The equation set of
Dimits (2010a,b) has been criticised (Madsen, 2011) for not being manifestly
conservative as, ultimately, it is not obtained as a whole, directly from the par-
ticle gyrocentre Lagrangian (Scott and Smirnov, 2010). Weak-flow gyrokinetics
is a well established theoretical tool (Krommes, 2012) and the fluid limit is per-
tinent to turbulence analysis (Brizard and Hahm, 2007; Miyato et al., 2009).
Symplectic strong-flow formulations, such a Dimits (2010a,b), have been criti-
cised (Miyato et al., 2009; Scott and Smirnov, 2010; Scott, 2013) for a lack of
weak-flow and fluid consistency. We address these points in this chapter.

We begin by deriving a preliminary, guiding-centre Lagrangian, where the

fast gyromotion time scale has been decoupled (Brizard and Hahm, 2007), in

13



the next section.

2.2 Guiding-centre Lagrangian

Our particle Lagrangian in terms of coordinate z (1.5) is
v =[A(x) + v] - dz — [30* + ¢(x, )] dt, (2.3)

where ¢ is the electrostatic potential that satisfies our strong-flow ordering (2.2).
As in Subsection 1.3.1, we redefine the particle velocity v as the velocity in a
frame moving with a velocity w(x,v,t) ~ 1 such that this Lagrangian (2.3)
becomes

[A(z) + v +u]-de — [$(v+u)? + ¢] dt,

where we have redefined v.

Given our simple, slab magnetic geometry, it is sufficient to perform a change
of variables from our original coordinates z to guiding-centre coordinates Z, as
defined in the previous chapter, rather than use a Lie transform. This yields

I =[A(X +p) +vyb+v, +ul- (AX +dp) — (3o} + pQ + Lu’ + (¢) -

+ (51(5)(115,

where we have used

and

S1p=0d+v, - u=d+p-Dxu (2.5)

has a more general form than that of Dimits (2010a,b). We can expand the first

term in square brackets in this Lagrangian (2.4) as A(X + p) = A(X) + (p-
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V)A(X) and make use of a total derivative!
dS =—d{p- [(1+3p - V)A(X) +ul},

which is modified from that of Hahm (1988) and Dimits (2010a,b) by the pres-

ence of u. This yields (Hahm, 1988)

I =[A(X) +vpb+u] - dX —dX - {V[A(X) - p] — (p- V)A(X)

—px [V X AX)|} — p-du+ pd¢ — (0] + pQ + su® + (¢) + 51¢)dt,
(2.6)
where we have used v -dX = p x [V x A(X)]-dX. By identifying the terms
in curly brackets in this Lagrangian (2.6) as [A(X)-V]p+ A(X) x (V x p) =0,

we obtain our guiding-centre Lagrangian

r

[A(X) + v”f)—l— u]-dX — p-du+ pd¢ — (%vﬁ +uQ+ Lu® + (9) + 510)dt.

(2.7)

This Lagrangian (2.7) is modified from that of Hahm (1988) by the presence of
u.

We are now in a position to transform to gyrocentre coordinates. This is

covered in the next section.

2.3 Gyrocentre Lagrangian

Using the strong-flow ordering (2.2), we can write the guiding-centre Lagrangian
(2.7) as
'=Ty+1I1y,

where

Lo = [A(X)+vyb+ul-dX + pd¢ — (Fof +pQ+ u’ + (¢))dt = O(¢™") (2.8)

1The addition of an arbitrary total derivative of a gauge to a Lagrangian does not change
the Euler-Lagrange equation (Littlejohn, 1982).
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is (-independent and
[y =—p-du—8¢dt = —p- (dtd; +dX -V + dud,)u — 6,¢dt = O(e) (2.9)

is ¢-dependent. Both T'g (2.8) and I'; (2.9) are modified from that of Hahm
(1988) by the presence of u and ().
The requirement

516 = O(e)
is equivalent to restrictions on the possible choices for the (-independent poten-
tial appearing in our guiding-centre Lagrangian (2.7) and u given by
by — d(X,t) < O(e) (2.10)
and
u— Q7' x Vo(X,t) < O(e), (2.11)

respectively, where ¢, is a general (-independent potential. Some possible

choices for ¢, and w that satisfy the restrictions (2.10) and (2.11) are ¢y =
P(X,1),
¢g = <¢>7

u=0"1bx Vé(X,t) and
u=0"1bx V(). (2.12)

We will choose u to take this latter form (2.12). In addition, w must satisfy the
condition

Oru= (0 +u-V)u~ €,

where 7 corresponds to the time variable in the frame moving with a velocity u
(Artun and Tang, 1994).

We compute our gyrocentre Lagrangian systematically via Lagrangian Lie
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perturbation theory (Littlejohn, 1982, 1983; Cary and Littlejohn, 1983). The

Lie transform used proceeds order by order in € (2.2) and is given by the operator

T+ = exp (ﬁ: > e”.cn> , (2.13)
n=1

where L,, are the Lie derivative operators,

L, = ngabdzb,

oo
I=) €T,
n=0
g2 are the arbitrary generators,
Wab = 2F[b,a] (2.14)

is the Lagrange matrix and I'f o) = %(Pb,a —T'4p). By convention (Littlejohn,
1982), T~ is applied to T,
r=T7'T. (2.15)

For the special case of the perturbation being solely resident within the
Hamiltonian, Hamiltonian Lie perturbation theory (Cary, 1981) is sufficient.
Pertinent examples of the use of Hamiltonian and Lagrangian Lie perturba-
tion theory that admit comparison are Hahm et al. (1988) and Hahm (1988),
respectively.

We start by computing the lowest-nontrivial-order part of the gyrocentre

Lagrangian in the next subsection.

2.3.1 First order

The first-order part of the gyrocentre Lagrangian in terms of the Lie transform

(2.15) is

fl :Fl — £1I‘0 + dSl (216)
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=T'; — ¢fwoapdZ® + dSy,

where

dS; =dZ%0,5:

and S is the first-order part of a gauge. We can compute the non-zero Lagrange

matrix (2.14) components of T'y (2.8) as

*
wox, x, = Lox, x, —Tox, x, = (A+u)yx, — (A+u)rx, =€y,
Woxp = —U,p,

woxt =—V{(¢) —ux (Vxu)—(u-V+0)u,

wout = — () —w-u, — Q,
wOXUH = _67

Wout = Y|

Wou¢ = 17

(2.17)
where i, j', k' € {1, 2,3}, €;j5 is the three-dimensional Levi-Civita pseudoten-
sor,

Q" =Q+V xu, (2.18)

and we have used 1Vu? = u x (V x u) + (u - V)u. We can then write
I''=(-p-Vu)-dX —p-u,dp—(p-us+ 510)dt,

—giwoapdZ® =(g* x Q" — glu,) - dX + (9w, + g7 )dp — gi'd¢

+{g - [V(9) +u x (V xw)] +gf ((9) s + - uy +Q)}dt

+O(e%)

and

dS1 = V81 -dX + Sy, dyj + 51,udp + S1,¢dC + 51 4dt,
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where we have chosen

as in Hahm (1988).
We may solve for the first-order generator in terms of the first-order gauge
such that the gyrocentre Lagrangian is composed solely of a time component at

first order. This yields the non-zero first-order generators

gX =Q7 p- (bx V)u+ VS, x b,

gi =P Uy — St

where, as for the case for weak flows, b- gi¥ = 0. The first-order part of the

gyrocentre Lagrangian is then
T1 = (=616 + QSy ¢ )dt + T,
where

Iy = [gf x (Vxu)—gluy,] dX + gfu,du+ {g7 - u x (V x u) + g} ((6)
+u-u,)+ (O +u-V)(S1—p-u)ldt

= 0
and, as in Dimits (2010a,b), we have used
(8t +u- V)Sl ~ 62,

which is validated upon choosing the first-order part of the gauge.
We choose the first-order part of the gauge such that the gyrocentre La-
grangian is gyroangle independent at first order or, equivalently, such that it

cancels with the first-order gyroangle-dependent terms in the time component
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of the Lagrangian. This yields
S, =071, 0, (2.19)

where 6; P = Ik dC(Sl(;S, and we have that the first-order part of our gyrocentre
Lagrangian is

fl = FQ.

By substituting for the first-order gauge (2.19), we may now write our non-

zero first-order generators as

91X =02V x b,
g =069, (2.20)

9% =p Uy — Q_l(sli),u = _Q_l(i),u —U-pPu-

Our first-order spatial generator is the same as that for weak flows. For k, py ~ ¢,
our g} and gf (2.20) are small compared to those for weak flows. This represents
an enhancement of the Lagrangian Lie perturbation theory.

In order to obtain the crucial polarisation physics (Lee, 1983), the La-
grangian Lie perturbation theory must proceed to second order. We will do

so in the next subsection.

2.3.2 Second order

The second-order part of the gyrocentre Lagrangian in terms of the Lie trans-
form (2.15) is
Ly =Ty — LiT1 + (3£7 — £2)To + dSs, (2.21)

where

dSy = dZ%0,52

and Sy is the second-order part of the gauge. We can use the expression for

the first-order part of the gyrocentre Lagrangian written in terms of the Lie
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transform (2.16) to write this expression (2.21) as

[y =Ty —3LiT1 — LT +dS2 + O(e?) = T'y — L gfwiapd Z® — g5woapd Z° + dSs,
(2.22)
where we have used £,dS] = 0.

We may compute the Lagrange matrix (2.14) components of 'y as

wixy = Vu-p,,

wix¢ =P Vu,

wixt = —Vé10,

Wip¢ = P¢ U, p,

Wit = —WUit - Py — 51&,;4,

wice = —(p-uys+610) ¢

We may then write the terms in the expression for the second order part of the

gyrocentre Lagrangian (2.22) as

—LgfwiadZ® =3{glpa Vu-dX + (gipc -y — g5 - Vu- p)du— gipc - uod¢
+ g% Voo + g (us - p+010,) + 5 (p -y + 819) Jdt},
—g5woabdZ® = g3 x Q- dX + g5du — ghd¢ + (935 - V(p) + ghQ)dt + O(€°)

and

dS; =VS; -dX + S2,v” d’U“ + SQ’Hd/J, + S2,ch + Sg’tdt,

where we have chosen

' = gh =0

We may solve for the second-order generator in terms of the second-order

gauge such that the gyrocentre Lagrangian is composed solely of a time compo-
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nent at second order. This yields the non-zero second-order generators

g3 = Q7 g x (V xu) = gluy + 39ipa- Vu+ VS| x b,
gh = Sa¢c = 591P.c - W

95 = —lg%uy + 3(gipc w4 9% Vu-py)+ ol

At this point, several cancellations are facilitated as a result of having chosen
u to be the E x B drift velocity associated with the (-independent potential that
appears in our guiding-centre Lagrangian (2.7). For the particular choice of our

second order generator, the second-order part of the gyrocentre Lagrangian is

Ty =[g{ (@) + (O +u-V)(S1— p-u)+ 2gi(610.0 — ¢ - uq) + Qo c]dt

+O(e),
where we have used
291pa- O+ u-Vur~ (0 +u-V)Sy ~ €.

We now choose the second-order gauge such that the second-order part of

the gyrocentre Lagrangian is gyroangle independent. This yields

Ty =3(91 (01,0 — Qpc - ua))dt

=(3(o - V) + 30716167 i+ b x (516p) - w ) dt, (2.23)

where we have used the first-order generators (2.20) and expanded one of the
factors of d1¢ (2.5). We can also expand the remaining factors of d;¢ (2.5) in

this Lagrangian (2.23) to yield
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where we have used

u=bx (¢p) .

and the only difference between this form of the second-order part of the gyro-
centre Lagrangian and that for weak flows is the presence of u.

Our gyrocentre Lagrangian up to second order is then

[ =[A(X) +oyb] - dX + ad — (3¢ + aQ + () — L{gX - V) 0
— 397 N¢?) p)dt + u - (X — adt). |
This Lagrangian (2.25) is identical to the weak-flow gyrocentre Lagrangian up
to second order (1.9) except for the last term. Our gyrocentre Lagrangian up to
second order (2.25) is also substantially simpler than that of Dimits (2010a,b).
In particular, our second-order terms appear only in the Hamiltonian.
The principle of least action leads to an equation for describing the behaviour

of the system under consideration: the Euler-Lagrange equation. We will derive

the explicit form of our Euler-Lagrange equation in the next section.

2.4 Euler-Lagrange equation

Using the Lagrange matrix (2.14) components computed from the gyrocentre
Lagrangian (2.25) up to first-order, or equivalently those computed from the
guiding-centre Lagrangian up to zeroth-order (2.17), in the gyrocentre Euler-

Lagrange equation (Littlejohn, 1983),
@z‘jzj = Wi,
where j € {1,...,6}, with i = {X, 9, i1, (} yields
X x QO — b= ,x (2.26)

b- X =7, (2.27)
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(=Q+ (D) ptu t,—u, X, (2.28)
[i =0, (2.29)

respectively. By Noether’s theorem, the (-symmetry of our Lagrangian (2.25)
corresponds to the adiabatic invariance of fi (2.29).
Taking the cross product of b and Equation 2.26, expanding the resultant

triple product and using Equation 2.27 yields
X =0 Qa+bx [ax (V x @)+ (@ V+,)a] + 52}, (2.30)

where

Qj=b-0. (2.31)
By expanding the triple product and using the vector identity
Q =Qib+bxa, (2.32)

which is analogous to that in Hahm (1988),

X =u+Q b x (0 +a-V+oV))a+0b. (2.33)

The second term in X (2.33) is the strong-flow term. It is a polarisation drift
that originates from the change of frame and contains centrifugal and Coriolis
drift terms, which are the second and third terms in the parentheses, respec-
tively.

Projecting Equation 2.26 onto Q* yields
O =~ V() +u x (V x u) + (a-V + 8;)al.

By using Equation 2.32 with the first and last terms and Equation 2.18 with
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the second term, and expanding the cross product,
’L_)H = *<(Z5>7H + Qﬁ_lﬂ,,u b x (O +u- ?)ﬁ (2.34)

The second term in v (2.34) is the strong-flow term. It is absent from that of
Dimits (2010a,b), although a similar term is present in the second-order part of
v of Dimits (2010a,b).

Inserting X (2.33) into 6 (2.28) yields

C=0+(0)a— 0 g bx (9 +a V +0V))a

The contributions to the Euler-Lagrange equations from the second-order
part of the gyrocentre Lagrangian are

X> = Qi7" x Vi,

’li}Hg = _I;IZH + Qﬁil’l—lﬂu b x ?Hg,

2 = 2,015

Hy = ${g - V) + 39718107 + b x (5:16p) - w,p

where H, is the second-order part of the gyrocentre Hamiltonian (2.23). As is
the case for weak flows, the Euler-Lagrange equations that include the contribu-
tions from the second-order part of the gyrocentre Lagrangian can be simplified
by renormalising the potential.

Now we are in a position to use Liouville’s theorem to obtain a Vlasov equa-
tion. In order to complete the description of a collisionless particle-field system,
state-of-the-art gyrokinetic theory employs non-relativistic classical field theory.
However, symplectic strong flows necessitate a generalisation of conventional gy-

rokinetic field theory. This is described in the next section.
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2.5 Field theory

The particle-field system Lagrangian is

L= Z L, + L, (2.35)

where L,, is the nth particle Lagrangian and Ls is the field part of the system
Lagrangian. Within tokamaks, the large E x B particle-drift kinetic energy

compared to field energy or quasineutrality implies that
L¢ = 0.

It is useful to write our system Lagrangian (2.35) in terms of the species
distribution function f(z,t), where the species subscript has been suppressed.
This is analogous to writing the particle number N(¢) in terms of the species

distribution function,
N=> 1= / dbzf,

where the species sum has been suppressed. Our discrete system Lagrangian

(2.35) then becomes
Ls = /dﬁsz. (2.36)

We wish to write our system Lagrangian in terms of our gyrocentre coor-
dinate. Going from our discrete (2.35) to our smooth (2.36) form of system
Lagrangian is coordinate system independent, so we may simply write down

our gyrocentre system Lagrangian as
Ly = / d°ZF(Z,t)L, (2.37)

where F is the gyrocentre species distribution function.
We may equivalently obtain our gyrocentre system Lagrangian (2.37) by

transforming our original system Lagrangian (2.36) from coordinate z to Z.
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The integration element d®z transforms as

dbz =J,_,,d°Z, (2.38)

where

JZ*}Z = |5iTZ%sz|

is the Jacobian determinant and 7_,, is a mapping from coordinate system Z

to z. The distribution function f must transform as a scalar density,

f=0z..)7"F. (2.39)

Performing these two transformations results in all the factors of the Jacobian
cancelling and yields the same gyrocentre system Lagrangian (2.37) as before.

The invariance of the original (2.36) and gyrocentre (2.37) system Lagrangians
is apparent from their manifest covariance.

Conventional gyrokinetic field theory (Sugama, 2000; Brizard and Tronko,
2011) simply transforms f as a scalar, as opposed to a scalar density (2.39),
and so arrives at a form of gyrocentre system Lagrangian that is not manifestly
covariant.

The Poisson equation is obtained from the stationary variation of the system
Lagrangian with respect to the potential. In order to comply with the demand
for general covariance, the variation must be performed on forms (2.35, 2.36,
2.37) of the system Lagrangian whose manifest covariance imply invariance.

Conventional gyrokinetic field theory varies a system Lagrangian that is not
manifestly covariant, so the variation is not guaranteed to be invariant.

Whilst we are able to write our Vlasov-Poisson equations in terms of our
gyrocentre coordinate, we are, ultimately, interested in equations that are writ-

ten in terms of the conventional gyrocentre species distribution function (Dubin
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et al., 1983; Brizard and Hahm, 2007)
FI(Z) = f(Tz.2), (2.40)

where F’ is (-independent,

e = 0. (2.41)

It is, therefore, necessary to use the expression relating our original and gyrocen-
tre distributions functions (2.39) in our gyrocentre system Lagrangian (2.37).
The Jacobian in this expression (2.39) can be written in terms of the gyro-

centre Lagrange matrix (2.14),
Iz = |wi]2. (2.42)

This Lagrange matrix is a function of the symplectic part of the gyrocentre
Lagrangian (2.25), which, in turn, depends on the potential. In order to comply
with the demand for general covariance, the expression (2.39) should only be
used after the variation with respect to the potential has been performed.

Conventional gyrokinetic field theory uses a gyrocentre system Lagrangian
that is written directly in terms the conventional gyrocentre distribution func-
tion (2.40). In the absence of symplectic strong flows, the symplectic part of
the gyrocentre Lagrangian (1.9), the gyrocentre Lagrange matrix @;; and the
gyrocentre Jacobian are all independent of the potential. Thus, care is only
needed for the case of a symplectic strong-flow theory.

The Vlasov equation is obtained from Liouville’s theorem,
F =0
Our gyrocentre Vlasov equation is

Fy+ Z;F = 0. (2.43)
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Conventional gyrokinetic field theory (Brizard, 2000) obtains the Vlasov
equation from the system Lagrangian by prescribing the variation.

We will use the field theory described in this section to derive our Poisson
equation in the next section.

Unlike Dimits (2010a,b), our Vlasov-Poisson system is manifestly conserva-
tive as, ultimately, we obtain it as a whole, directly from our gyrocentre particle

Lagrangian (2.25) (Scott and Smirnov, 2010).

2.6 Poisson equation

We will derive our Poisson equation using both the manifestly conservative,
variational method described in the previous section and the original, direct

method (Dubin et al., 1983).

2.6.1 Variational method

The variation of our gyrocentre system Lagrangian (2.37) with respect to the

potential is

(6Ls)p = /dﬁzﬁ(aL)¢, (2.44)

where (6L), is the variation of the particle Lagrangian with respect to the
potential.
By using a variational method, it is possible to obtain a Poisson equation

from our gyrocentre Lagrangian up to zeroth order.

Zeroth order

Our gyrocentre Lagrangian up to zeroth-order is

T 10 =T_1+T = [A(X)+0b]-dX +d{— (30 +AQ+(d)) di+a- (A X —Fudt).

s

(2.45)
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The potential-dependent part of this Lagrangian (2.45) is
T_10p = —(p)dt +a-(dX — Ladt). (2.46)

We can use the expression relating our particle Lagrangian written as a 1- or
O-form (1.3) and express @ in terms of the potential (2.12) in order to vary the
potential-dependent part (2.46) of the Lagrangian (2.45) with respect to the

potential in the variation (2.44). This yields

(6Ls-10)p = - / EZF{[(¢+0¢) — Q7' V(p+06) - (X x b— 107V (¢
+68)] — [(9) — QW (g) - (X x b— 207V L (¢))]}
— [ 2B - 071960 (X xb- 0L, (247)

where 0¢ is the variation of the potential and the pertinent variation is linear
(Morrison, 2005). By performing an integration by parts so as to move the

gyrocentre gradient acting on (d¢), the variation (2.47) can be written as

(0Ly10)s = —/d62<5¢>[F FO VK F(X —a)],  (248)

where the surface term was evaluated to give zero. Expanding the integration
element as

d°Z = dX dodpd(, (2.49)

integrating over ¢ and expanding the gyroaverage (1.10) in the variation (2.48)

yields
(Lo 10)y = — / SR / AEZ5(X +p—a)[F+Q 6% x F(X —a)]. (2.50)
Upon requiring stationary variation,

(5Lsfl,0)d> = 07
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we can obtain the Poisson equation from our gyrocentre Lagrangian up to zeroth

order as

Oz/dGZé(X—kﬁ—w)[FJrQ*lB'v x F(X — ). (2.51)

For uniform F’, this Poisson equation (2.51) up to first order is
0:/d625(X+ﬁ—w)(1+Q—1Ev x u)F’. (2.52)

In the weak-flow limit, this Poisson equation (2.52) is identical to the weak-flow
Poisson equation in the &k p; ~ € limit up to first order with uniform F”.
We will now obtain the Poisson equation from our gyrocentre Lagrangian

up to second order (2.25).

Second order

The potential-dependent part of our gyrocentre Lagrangian up to second order

(2.25) is

Ty = —((6) — $(g¥ - V&) — 4071¢) p)dt +a- (AX —ade).  (2.53)

We can use the expression relating our particle Lagrangian written as a 1- or
O-form (1.3) and express gfz (2.20) and @ (2.12) in terms of the potential in
order to vary the potential-dependent part (2.53) of this Lagrangian (2.25) with

respect to the potential in the variation (2.44). This yields

(6L = — /dGZF{Ksb +0¢) — 2Q7HV(P +0®) x b- V() +59))
—1Q7H(6+60)%) 5 — Q' V(6 +69) - (X x b
—Q7IV (¢4 69))] - [(¢) — 327 (Ve x b- V) — 3071,
—Q71V(9) - (X x b— Q7Y L (9)]}
= — /dGZF[<5¢> —QHVP x b-Vip) — QO Hpdg) 4

—QIVG8) (X x b— 2071V L (8))]. (2.54)
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By performing integrations by parts so as to move the derivatives acting on d¢,

the variation (2.54) can be written as

(6Ly)s = — /d6Z<6¢[(1 OV x bV 4 QG0 F
| (2.55)
+Q7' -V x F(X —2a))),

where the surface terms have been evaluated to give zero. Expanding the inte-
gration element (2.49), integrating over ¢ and expanding the gyroaverage (1.10)

in the variation (2.55) yields

(6L.)s = — /d3x6¢/d625(X 4 p—2)(1+Q 2V x bV +Q 140, F

1OV x F(X - 2a)).
(2.56)

Upon requiring stationary variation, we can obtain our Poisson equation as

0 :/dﬁZ(S(X +p-2)(1+Q72Vd xb-V+ Q7 169, F
(2.57)

+ Q7% -V x F(X —2a)].

We present an alternative, direct method to derive our Poisson equation in

the next subsection.

2.6.2 Direct method

Here, the Poisson equation is

0= pe. (2.58)

where p. is the charge density. The charge density can be written in terms of

the distribution function such that this Poisson equation (2.58) becomes

0= /d%f. (2.59)
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This Poisson equation (2.59) can be written in terms of an integral over z as

0= /dGZé(m —r)f, (2.60)

where 7 is the position.
This Poisson equation (2.60) can be equivalently evaluated in terms of either

our guiding-centre or gyrocentre coordinate.

Guiding-centre coordinate

We can perform a change of variables from our original coordinate z to our
guiding-centre coordinate Z.

The integration element transforms as
d%z = Jz,.d%Z.

We can use this, the relation between our original and guiding-centre position

(1.6) and the conventional guiding-centre species distribution function
F(Z) = f(Tz—:2)
in the Poisson equation (2.60) to yield
0= /Jzﬂzd("Zé(X +p—r)F.

Once again, we are interested in equations that are written in terms of the
conventional gyrocentre distribution function. In order to achieve this, we may

use the action of the Lie transform (2.13) on scalars,

Lnf = 99af, (2.61)

to relate the conventional guiding-centre and gyrocentre distribution functions
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as

F =TF\(2).

The Poisson equation is then
0= /Jzﬂdﬁzé(x +p—7)TF. (2.62)
The guiding-centre Jacobian determinant is
Jzse = 10iTz—:25| = Qﬁ +p 2 xw Q7 e jrun 1wy a + prug i g, (2.63)

where the guiding-centre Jacobian matrix is

10 0 0 —wuj? P2
0 1 0 0 viv]? —p1
0 0 1 0 0 0
i Tz—:Zj =
iy wie w0 upu+pap? va
Uy uga Uz. 0 ug,—pipT7 —v1
0 0 0 1 0 0

and €,/ is the two-dimensional Levi-Civita pseudotensor. We obtain the same
result by evaluating this Jacobian written in terms of the Lagrange matrix

(2.42), where the non-zero Lagrange matrix components are

wx/xt = €irjrkr Qs
wX’U” = 7b7

—ovlp - Vu —
Wxpy =0V, p-Vu—Uyu
wx¢ = p’lA)L -Vu

wue =14 p01 -u .
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By using the guiding-centre Jacobian (2.63) up to first order
Jz201=Q+p - W xu,
and the action of the Lie transform on scalars (2.13, 2.61) up to first order
(TEF o1 = (1 £ g0 F, (2.64)

an evaluation of the direct Poisson equation (2.62) up to first order yields the
same expression as the variational Poisson equation up to first order (2.67), up
to a dummy variable (Dubin et al., 1983).

We may equivalently evaluate the direct Poisson equation (2.60) in terms of

our gyrocentre coordinate.

Gyrocentre coordinate

We transform directly from our original to gyrocentre coordinate.
We may transform the integration element, particle position and original

distribution function as before (2.38, 1.6, 2.40). This yields
0= /JZHZdGZ(S(X +p—7)F.

The particle position (1.6) may then be transformed (Brizard and Hahm, 2007)
as

yielding
0= [ 1 26T (X + )~ 1]

We may write this delta function in terms of the Lie transform (2.13) (Brizard

and Hahm, 2007) as
S(Tzs2(X 4 p) 7] =T '6(X +p 7).
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This yields

0= / Jy dSZ[T716(X +p—17)]F. (2.65)

By using the action of the Lie transform on scalars up to first order (2.64) and
performing an integration by parts so as to move the derivative within this Lie
transform, an evaluation of this gyrocentre direct Poisson equation (2.65) up to
first order again yields the same expression as the variational Poisson equation
up to first order (2.67), given that the surface terms can be evaluated to give
zero and

5 _ o—ls =
0igy = Qv -up.

Weak-flow gyrokinetics is a very well established theoretical tool (Krommes,
2012). Symplectic strong-flow gyrokinetic theories have been criticised (Miyato
et al., 2009; Scott and Smirnov, 2010; Scott, 2013) for a lack of weak-flow con-
sistency. We consider the weak-flow limit of our Poisson equation (2.57) in the

next subsection.

2.6.3 Weak-flow limit

In order to take the weak-flow limit consistently, we will consider uniform F”.
We can evaluate our gyrocentre Jacobian written in terms of the gyrocentre
Lagrange matrix (2.42) as

Iz =, (2.66)

where the non-zero gyrocentre Lagrange matrix components are

_ O)*
wx, x, = €k

w}?f}u = _b’
Wxp = —Up,
wge =1

This Jacobian (2.66) is not equal to the guiding-centre Jacobian (2.63). This
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arises from the symplectic dependence of the Jacobians (2.42) and the symplectic
parts of the guiding-centre (2.7) and gyrocentre (2.25) Lagrangians differing by
a gyroangle-dependent term. For weak flows, the two Jacobians are identical as
the symplectic parts of the two Lagrangians are identical.

By using an alternative form for the second-order part of our gyrocentre
Lagrangian (2.24) and our gyrocentre Jacobian (2.66), our Poisson equation up
to first order is

0=0 / A°Z6(X + p— @)[(1 + Q1 ¢0,) F + Q 2V () F'
(2.67)

— Q75 (F'V()).al.

By using a Fourier-space representation of the gyrocentre gradient of the gy-

roaveraged potential,
V(o) = [ @RV @)X,
the last two terms in this Poisson equation (2.67) are
27ri/d@Hdﬁd?’k{kLQ’lJO(kLﬁ) — [pJ1(k1p)] g H(V () e F = 0.
Our Poisson equation (2.67) then becomes
0=0 / PZ6(X +p—)(1+Q 140, . (2.68)

In the weak-flow limit, this Poisson equation (2.68) is identical to the weak-flow
Poisson equation up to first order with uniform F".

We now have explicit forms for our Vlasov-Poisson equations.

The fluid limit is pertinent to turbulence analysis (Brizard and Hahm, 2007;
Miyato et al., 2009). We may now obtain a fluid equation for our system in the

next section.
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2.7 Fluid equation

We will obtain our fluid equation both by taking moments of our Vlasov equation

and by deriving a strong-flow reduced fluid equation.

2.7.1 Moment equation

Our Vlasov equation (2.43) is

F,/t JF)LQFA’%#L’L_.)HFC =0, (2.69)

,1)H

where we have used the invariance of the magnetic moment (2.29) and the
gyroangle-independence of the distribution function (2.41). We can take a
gyrocentre-velocity moment of this Vlasov equation as in Brizard (1990), or

equivalently Miyato et al. (2009), to yield
Ngy,t + Xﬂ”gy,{ =0, (2.70)

where

Ngy = Q/dGZS(X’ +p—x)F (2.71)

is our gyrocentre density, we consider a dominance of perpendicular turbulence

(Hasegawa and Mima, 1977) and we have used
ngyyfgu =0.

We will now consider a two-species system by redefining ng, as our ion

gyrocentre density and writing our quasineutrality equation as

Ngy = Ne — Np, (2.72)
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where n, is the electron density,

np:noﬂﬁxjﬁ

is the linearised (Scott and Smirnov, 2010) polarisation density in the k) py ~ €

limit up to second order,

no = / dZ6(X + p— @) F,
F{ is uniform and static, )L(l is X (2.33) in the k| py ~ € limit and we use units,
here and in the remainder of the thesis, such that

0=1,

so as to admit comparison to the derivation of the Hasegawa-Mima equation

(Horton and Hasegawa, 1994) and aid numerical analysis. Furthermore, we will

take our electron density to be uniform and static,

Ne = N (2.73)
We may then write our moment equation (2.70) as
4h-V x X; =0, (2.74)
where
4L—0,+X -V, (2.75)
Xi=w+bx (0 +w V) (2.76)
and
u = b x ?&

Symplectic strong-flow theories have been criticised (Scott and Smirnov, 2010;
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Scott, 2013) for a lack of consistency with reduced fluid equations. In the weak-
flow limit, this moment equation is identical to the Hasegawa-Mima equation,
which we describe in the next subsection, with n, = ng.

Our moment equation (2.74) is a gyrofluid equation (Brizard and Hahm,
2007; Miyato et al., 2009), which includes FLR physics, and, like the Hasegawa-
Mima equation, it is a vorticity equation.

We obtain our fluid equation by deriving a strong-flow reduced fluid equation

in the next subsection.

2.7.2 Reduced fluid equation

The derivation of the Hasegawa-Mima equation (Horton and Hasegawa, 1994)
uses an ordering similar to our strong-flow ordering (2.2) and makes use of the
Lorentz Force, ion continuity and quasineutrality equations. The procedure
is to construct an equation for the parallel vorticity € by taking the curl of
the Lorentz Force equation and to then combine this with the ion continuity
and quasineutrality equations. The equation obtained, the Hasegawa-Mima
equation, is

4(Q —Inne) =0, (2.77)

where & = 8, + @ - V is the weak-flow limit of the £ (2.75) given in the
previous subsection, that is to say, with )_'(1 (2.76) containing the E x B but
not the polarisation drift, Q) = b-V x 4, is the weak-flow limit of the parallel
vorticity given in the previous subsection, that is to say, again, with j(l (2.76)

containing the E x B but not the polarisation drift, ne = nge? is an adiabatic

electron density, we use units, here and in the remainder of the thesis, such that
T.=1

and Ty is the electron temperature.
We can take the strong-flow limit of this equation (2.77) by including the

polarisation drift in % and (2. Additionally, we take the electron density to be
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uniform and static, as in the previous subsection, which corresponds to taking
the large-electron-temperature limit of the adiabatic response. By doing so,
we obtain a strong-flow reduced fluid equation that is identical to our moment
equation (2.74).

We present a numerical solution of the arbitrary-wavelength, dynamic-strong-

flow gyrokinetic theory presented in this chapter in the following chapter.
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Chapter 3

Discretisation

Symplectic strong-flow theories have been criticised (Miyato et al., 2009; Scott
and Smirnov, 2010; Madsen, 2011; Scott, 2013) for equation sets that depend
implicitly on the potential and its time derivative (Wang and Hahm, 2010).
In this chapter, we demonstrate the tractable nature of our Vlasov-Poisson

equations (2.33, 2.34, 2.57, 2.69),

Fiy+ XiFl + 8 Fly =0,

X =a+Q b x (0 +a-V+oV)u+ob,

o= — (o) + ey bx (0 +a-V)a,

0= /d625(X +p-2)[(1+Q72Vd xb-V+Q 169, F

+Q7 'V x F(X —2a)].

We describe our numerical scheme in the next section.

3.1 Scheme

From the pertinent numerical scheme options (Garbet et al., 2010), we choose
the particle-in-cell method. Here, Monte-Carlo markers are used to represent

distribution function quanta that are evolved along trajectories according to
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consistent fields. This is shown in Figure 3.1. We use a combination of spectral

C: assign

______________ S

D: solve fields

B: push

A: load

Figure 3.1: In the particle-in-cell method, markers are loaded in phase space
(A), evolved or pushed along trajectories (B) and their charges are interpolated
or assigned onto real space (C). Alongside this, fields that are consistent with

the charge assignment (C) are solved for in real space (D) (Garbet et al., 2010).

(Frigo and Johnson, 2005) and central finite-difference methods for the fields.
In order to control the Monte-Carlo noise, a d f method is usually employed

(Garbet et al., 2010). Here, we write
F' =F,+0F, (3.1)
where we choose the analytic part F}j to be Maxwellian,

F)=(2rT) 3¢ 2" T "
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we use units, here and in the remainder of the thesis, such that ng = 1, T is the

ion temperature and the discrete part
SF ~ €.

We describe this discretisation in the next section.

3.2 Distribution function

We can define for marker n a weight
wn(t) = 0F, Von, (3.2)

where 6F is the average value of §F’ within our chosen marker phase-space
volume

Vi = dozdN "

and dN is the number of markers in the redefined
d°z = Qd* X do djadc.
We distribute our markers uniformly (Jolliet, 2009) in the redefined
Z = (X1, X2,0,00), (3.3)

where X; and X5 are both in the perpendicular plane. This corresponds to
(Jolliet, 2009)
dN = N(L,L,7*v2, 1)~ 'd*Xdvjdv, d¢

max

and, therefore,

max

Von = U, 0100 Lo Lyn?05, TN, (3.4)

where N is the number of markers, L, and L, are the lengths of the periodic two-
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dimensional spatial simulation domain in the x and y directions, respectively,

and we choose the input parameter v,,.x to be given by
Umax = DOUVt.
The marker weight (3.2) is initialised by assuming
_ﬁ _q

in the marker phase-space volume (3.4).
Markers are initialised in Z (3.3) using quasirandom, Hammersley sequences
(Rafajlowicz and Schwabe, 2006). The marker phase space coordinate Z, is

initialised via

Zn = [Xyn, Xy, arctan(o,, 07, 0] (8:5)

= [BE Lo, h2 Ly, B2, (NN 7T 2 Oy,

where arctan(@LﬁlTl) is the pitch angle,

are the Hammersley sequences, n € {1,..., N}, N is the number of markers,

Cmo(n) is the oth coefficient in the unique expansion of n in base py,,

n= Zcmo(n)pZM (3.6)

0>0

and is uniquely defined in terms of this unique expansion (3.6), and p,, is a
prime number. From this (3.5), we compute Z,, as before (3.3).

We choose the spatial dependence of §f in order to specify the desired po-
tential initialisation.

The code has been Message-Passing-Interface parallelised by distributing

45



markers amongst processors. The field discretisation is unparallelised. The
code exhibits excellent strong scaling up to at least 512 processors.

We describe our field discretisation in the next section.

3.3 Poisson equation

Our Poisson equation (2.57) depends implicitly on the time derivative of the
potential. This is not the case for the weak-flow Poisson equation (Hahm,
1988). Thus, the method of solution of our Poisson equation deviates from that

for weak flows.

3.3.1 Quasistatic solution

For simplicity of illustration, we may write our Poisson equation (2.57) symbol-
ically as

p=W +1¢,, (3.7

where W represents the part of our Poisson equation (2.57) that is analogous to
the weak-flow Poisson equation (Hahm, 1988) and is related to the gyrodensity
(2.71) and the reciprocal of spatial polarisation operators and I represents the
part of our Poisson equation (2.57) that is related to the implicit dependence
on the time derivative of the potential and the reciprocal of spatial polarisa-
tion operators. For short timescales, we may write the general solution of this
equation (3.7) as

¢ = dw + pret (3.8)

where ¢y is the inhomogeneous solution and ¢; ~ 1 is a constant. According

to our strong-flow ordering (2.2),
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This implies that potential initialisations (3.8) are allowed that violate the
fundamental low frequency ordering contained within our strong-flow ordering
(2.2).

In general, we have that

IeC

and that, as the strong-flow formalism is an extension of the weak-flow one,
Re(I) < 0.

We can, therefore, choose to solve our Vlasov-Poisson system in the quasistatic
limit by iterating the solution of our Poisson equation (3.7), where the first

iteration uses

=W

For a spatially uniform F}, our linearised Poisson equation does not contain
a term involving the time derivative of the potential and an alternative solution

method from that for weak flows is unnecessary.

3.3.2 Uniform background

We will use interpolation to pass information between our markers to our grid.
Using the simplest possible, nearest-neighbour interpolation, a one-dimensional

grid quantity is given by

N
Gn = E Mm,i()(:im, : é1 - sL’n),
m=1
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where n € {1,..., N}, N, is the number of grid points in the x direction, M

is the value of a quantity at a marker,

is the interpolant, Az = L, N ! is the grid spacing in the x direction and z,, is
the grid point position in the x direction.
The smoothness of this interpolation can be improved by instead using a

linear interpolant given by the convolution of i¢ with itself,

Simplicity and smoothness may be maximally optimised by using a minimal set
of contiguous piecewise polynomials or B-spline as an interpolant.

Our fluctuating density,
on =0 / dEZ6(X + p— 2)oF,

is then

N Ngo
1 .=
M, = § woNgo § Z3($o - ‘Enm)a
o=1 p=1

where m € {1,..., Ny}, N, is the number of grid points in the y direction,

N, = max|ceiling (320, v,,1,), 4]

max

is the v -dependent or adaptive number of gyroaveraging points (Hatzky et al.,
2002), i3 is a cubic B-spline interpolant (Jolliet, 2009) and @, is the grid point

position. The density and potential for a single marker are shown in Figures 3.2
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Figure 3.2: The fluctuating density for a single marker on the two-dimensional
spatial gyrokinetic simulation domain. We see that markers do not represent

pseudo particles but pseudo gyrorings.

and 3.3, respectively. We see that markers do not represent pseudo particles
but psuedo gyrorings.

By using our df method (3.1) to linearise (Scott and Smirnov, 2010) our
Poisson equation (2.57) up to first order, we obtain a Poisson equation that is
identical to the weak-flow Poisson equation (Hahm, 1988) up to first order with
uniform £} (2.68). By using this Poisson equation (2.68) with our quasineu-
trality equation (2.72), we find our k| -space fluctuating density (Dubin et al.,
1983) as

Sni, =T Y1 — Io(Tk% e T¥1 gy,

where

ong, = E dne~ ke
k.
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Figure 3.3: The fluctuating electrostatic potential for a single marker on the
two-dimensional spatial gyrokinetic simulation domain. We see that markers do

not represent pseudo particles but pseudo gyrorings.

I,, is the modified Bessel function of the first kind, n € R and

o, =) pe .
ki

In general, spectral methods (Frigo and Johnson, 2005) have an error due to
the finite discretised spectral range or aliasing.
We are now able to specify our potential initialisation. We now wish to use

this to evolve the markers.

3.4 Vlasov equation

Our Vlasov equation depends implicitly on the time derivative of the potential.

Thus, we evolve our markers by modifying our chosen fourth-order Runge-Kutta
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time integrator such that it incorporates iteration.

3.4.1 Iterative solver

The fourth-order Runge-Kutta time integrator,

gm(t + At) = g (t) + %(el + 2es + 2e3 + ey),

e1 = g (gm(t), 1), (3.9)
= G (gm(t) + Sler,t + 51), (3.10)
= G (qm (1) + SLea, t + L), (3.11)
€4 = 4m(qm(t) + Ates, t + At), (3.12)

where At is the time step, uses evaluations of the potential and its derivatives at
the beginning (3.9), middle (3.10, 3.11) and end (3.12) of the time-step interval.
The evaluation of the potential and its spatial derivatives at these points (3.9,
3.10, 3.11, 3.12) does not pose a problem.
However, in order to evaluate the time derivative of the potential at these
points (3.9, 3.10, 3.11, 3.12), it is necessary, and sufficient, to additionally eval-
uate the potential, and some of its spatial derivatives, at time ¢ + % within the
time-step interval,

€0 = Gm (qm(t) + Grer,t + 51). (3.13)

The evaluation of the time derivative of the potential at the beginning (3.9) and

middle (3.10, 3.11) of the time-step interval can be computed from forward,
d(t) = (B1) 7 p(t + LAt) — o(1)], (3.14)
and backward,
Gt +3A0) = (34) 7 [o(t + §A8) — ot + 1A¢)],

differences, respectively, that use this additional evaluation point (3.13). The
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evaluation of the time derivative of the potential at the end of the time-step
interval (3.12) can be computed from a backward difference that uses the eval-

uations at the middle of the time-step interval (3.10, 3.11),
Bt + At) = (LA8) T [o(t + AL) — o (t + SAD)].

We can create the additional evaluation point (3.13) by iterating a quarter

Euler time step,

and a forward-difference evaluation of the time derivative of the potential (3.14),
where the first iteration neglects the polarisation drift and each iteration uses
the closest known value of the marker phase-space volume (3.4). The spatial
derivatives of the potential evaluated at the beginning of the time-step interval
are precomputed outside of this iteration loop.

Each of the original integrator evaluations (3.9, 3.10, 3.11, 3.12) are then
iterated with each iteration using the closest known value of the marker phase-
space volume (3.4).

In general, we expect the accuracy of our modified time integrator to be less
than that of the standard one.

For non-uniform F}}, we may consider simply using our § f method (3.1) to

find the time derivative of 6 F’ as

5F' = I

R L7UF - Flu(d +u - V)a (3.15)

“RiL]'F) + O(e?),

where L, > L, is the density nonuniformity length scale in the z direction.

We now present convergence studies for our iterative method.
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Convergence

223

Our convergence simulations used markers. A circularly symmetric solution,

as shown in Figures 3.4 and 3.5, is a static solution of our Vlasov-Poisson system.

t2 =0
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10
-0.06
0

0 10 20 30 40 50 60
zp; !

Figure 3.4: The fluctuating density associated with a circularly symmetric so-
lution of the Vlasov-Poisson system on the two-dimensional spatial gyrokinetic

simulation domain. The simulation parameters are as in Subsection 3.4.1.

This static potential solution can be modified to give a dynamic solution by
adding a constant to the equation for )4(1 (2.33) such that we have u ~ 1.

The relative error per iteration is shown in Figure 3.6. The convergence
ratio per iteration is of order e.

We present the verification of our code in the next section.

3.5 Verification

We first present weak- and then strong-flow code verification.
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Figure 3.5: The fluctuating electrostatic potential associated with a circularly
symmetric solution of the Vlasov-Poisson system on the two-dimensional spatial
gyrokinetic simulation domain. The simulation parameters are as in Subsection

3.4.1.

3.5.1 Weak flows

As described in Subsection 2.7.1, the Hasegawa-Mima equation is a limiting case
of our Vlasov-Poisson system. The Hasegawa-Mima equation exhibits cascade
and inverse cascade phenomena (Horton and Hasegawa, 1994). Specifically, the
mode coupling coefficient contains the factor b- k1 X ko, where ki and ko are
the wavevectors of two modes. Analytic linear growth rates may be computed

(Horton and Hasegawa, 1994) by using

Ok | > |Ohs | ~ [dres| > [dre, [, #1,2,3, (3.16)

where ¢, is the complex Fourier mode amplitude and n,m € Z*.

Weak-flow verification was performed by computing linear simulated and
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Figure 3.6: The logarithm of the relative error €, as a function of the number of
iterations N; in the iterative forth-order Runge-Kutta time integrator for time
step At = Q71 (solid), 207! (dashed). The simulation parameters are as in

Subsection 3.4.1.

semi-analytic Kelvin-Helmholtz instability growth-rate spectra. The Kelvin-
Helmholtz instability is brought about by the presence of velocity shear and
manifests as the exponential growth of the perturbation of a shear layer.

The simulations used 224

markers, cold ions, adiabatic electrons, a uniform
background ion density, At = 1 and N; = 0. The potential was initialised
to contain background and perturbation sinusoidal components in the y and x

directions, respectively,

¢ = A(sink,y + 10~ * cos k, ),

where A is the background potential amplitude, and k; and k, are the wavenum-

bers in the = and y directions, respectively. An example potential initialisation
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is shown in Figures 3.7 and 3.8, where the magnetic field is in the z direction,
the flow is in the z direction and there is velocity shear in the y direction.

The evolution is such that the perturbed and coupled modes grow exponen-
tially, as shown in Figures 3.7 and 3.8. We see that we have many growing
modes. Thus, we do expect agreement with analytic, three-wave-coupling lin-
ear growth rates (3.16). Examples of the late time, saturated state of these
simulations is shown in Figures 3.9 and 3.10.

Distinct transient, linear and nonlinear evolutionary periods are visible in
the evolution of the growth rate of the perturbation, as shown, for example,
in Figures 3.11 and 3.12. Whilst we do not expect agreement with analytic,
three-wave-coupling linear growth rates (3.16), we do expect agreement with
semi-analytic linear growth rates computed in a similar manner to that of Rogers
and Dorland (2005).

During the linear period, our potential is given by

po = Asin(k,y) + et Tikae Z By, (3.17)

n=—oo

where ~ is the linear growth rate and 7 in an exponent is the imaginary unit.
By substituting this potential (3.17) into the Hasegawa-Mima equation (2.77),

we obtain the eigenvalue equation

Z (Y(n®k} + kS +1) +iAkgky (0 = 1)k, +k2) cos(ky,y))pne™ v = 0. (3.18)

n=—oo

By using

o0 o0 o0
Z ey = Z an cosnkyy + Z by, sinnkyy
n=0 n=1

n=—oo
and the orthogonality of sine and cosine, the eigenvalue equation (3.18) can be
written in the form

Ma = va, (3.19)

where M € C™*" is an infinite square matrix, n € Z%, a = a,, and m € Z*. The
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Figure 3.7: The fluctuating electrostatic potential on the two-dimensional spa-
tial domain at the start (top) and transition from the linear to the nonlinear
period (bottom) of the gyrokinetic simulation of the Kelvin-Helmholtz instabil-

ity. The simulation parameters are as in Subsection 3.5.1.
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Figure 3.8: The Fourier-space fluctuating electrostatic potential at the start
(top) and transition from the linear to the nonlinear period (bottom) of the
gyrokinetic simulation of the Kelvin-Helmholtz instability. The simulation pa-

rameters are as in Subsection 3.5.1.
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Figure 3.9: The saturated two-dimensional fluctuating electrostatic potential in
real (top) and Fourier (bottom) space early in the nonlinear period of a gyroki-
netic simulation of the Kelvin-Helmholtz instability. The simulation parameters

are as in Subsection 3.5.1.
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Figure 3.10: The saturated two-dimensional fluctuating electrostatic potential
in real (top) and Fourier (bottom) space late in the nonlinear period of a gyroki-
netic simulation of the Kelvin-Helmholtz instability. The simulation parameters

are as in Subsection 3.5.1.
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Figure 3.11: The fluctuating electrostatic potential perturbation growth-rate
evolution during a Kelvin-Helmholtz instability. The simulation parameters are

as in Subsection 3.5.1.

eigenvalue equation in this form (3.19) can be solved numerically by computing
the maximum real eigenvalues of a truncation of M that corresponds to our
finite dicretised spectral range.

The simulated, semi-analytic (3.19) and analytic (3.16) linear Kelvin-Helmholtz
instability growth-rate spectra are shown in Figure 3.13. As expected, we
only have good quantitative agreement between the simulated and semi-analytic
(3.19) spectra.

Our simple implementation (3.15) of nonuniformity in F}) agrees with the
drift-wave velocity (Horton and Hasegawa, 1994) given by the Hasegawa-Mima
equation for k| p, ~ €, with a relative error of 4.72 x 1072,

We present the strong-flow verification of our code in the next subsection.

61



_05 1 1 1 1 1
0 2 4 6 8 10 12

) x 10%

Figure 3.12: The fluctuating electrostatic potential perturbation growth-rate
evolution during a Kelvin-Helmholtz instability. The simulation parameters are

as in Subsection 3.5.1.

3.5.2 Strong flows

Strong-flow verification was performed by comparing the simulated and analytic
Kelvin-Helmholtz instability growth-rate spectra of a shear layer.

Strong-flow verification simulations used 222 markers, At = 1 and N; = 16.
The potential was initialised to contain a shear layer with « ~ 1 dominated by
a single sign of the parallel vorticity and a sinusoidal perturbation in the y and
x directions, respectively. An example initialisation is shown in Figures 3.14
and 3.15.

The evolution is such that the perturbation grows exponentially, as shown
in Figure 3.14. Distinct evolutionary periods are visible in the evolution of the
growth rate of the perturbation, as shown in Figure 3.16. We can compare the
linear-period Kelvin-Helmholtz growth rate to that of an FLR MHD analysis of

a thin, incompressible shear layer (Nagano, 1978).
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Figure 3.13: The simulated (points), semi-analytic (3.19) (solid) and analytic
(3.16) (dashed) linear Kelvin-Helmholtz instability growth-rate spectra. The

simulation parameters are as in Subsection 3.5.1.

From Nagano (1978), the positive and negative parallel vorticity growth rates

are given by

N

i = (k2 ¥ Lp20ulk?))?, (3.20)

respectively. The dependence on the sign of the parallel vorticity is due to the
chirality of gyromotion (Nagano, 1978; Gingell et al., 2012). That is to say, the
net flow depends on whether the shear flow and gyromotion are correspondent.
The asymmetry is manifest in our Vlasov equation (2.33, 2.34, 2.69) through
Qﬁ (2.31). The effect has also been observed with hybrid models (Gingell et al.,
2012). It can be thought of as FLR or strong-flow symmetry breaking.

The simulated and analytic growth-rate spectra are shown in Figure 3.17.
We have good qualitative agreement between these spectra, with the changes in

the growth rate with the sign of the parallel vorticity having a relative error of
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Figure 3.14: The fluctuating electrostatic potential on the two-dimensional spa-
tial domain at the start (top) and transition from the linear to the nonlinear
period (bottom) of the gyrokinetic simulation of a Kelvin-Helmholtz unstable

shear layer. The simulation parameters are as in Subsection 3.5.2.
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Figure 3.15: The gyroaveraged E x B velocity initialisation in the y direction of
the gyrokinetic simulation of a Kelvin-Helmholtz unstable shear layer. Simula-

tion parameters are as in Subsection 3.5.2.

0.488.
We present the applications of our code to more general scenarios in the next

chapter.
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Figure 3.16: The fluctuating electrostatic potential perturbation growth-rate
evolution during a Kelvin-Helmholtz instability of a shear layer. The simulation

parameters are as in Subsection 3.5.2.
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Figure 3.17: The negative and positive parallel vorticity analytic (3.20) (solid
and dashed, respectively) and simulated (dotted and dot-dashed, respectively)
Kelvin-Helmholtz instability growth-rate spectra of a shear layer. The simula-

tion parameters are as in Subsection 3.5.2.
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Chapter 4

Applications

We have applied our code to more general shear layers as well as plasma filaments

or blobs, as shown in Figures 4.1 and 4.2, respectively. The edge of tokamak

Figure 4.1: A classic, GYRO tokamak simulation showing multiple shear layers
(Candy, 2008).

plasmas is associated with the formation and propagation of these blobs, as
shown in Figures 4.3 and 4.4. The propagation is due to V B polarisation and
is in the major radial direction of a tokamak torus, as shown in Figures 4.5 and
4.6. The damage to tokamaks caused by blobs motivates the understanding

of, for example, blob transport.
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Figure 4.2: A Mega Ampere Spherical Tokamak shot showing plasma filaments

or blobs during an edge localised mode (Kirk, 2012).

We may investigate the effects of strong-flows on blob transport by assuming
that blob formation and V B polarisation has already transpired. Thus, we
model a blob simply as a dipole potential, as in Figures 4.4 and 4.5.

We first consider more general shear layer scenarios in the next section.

4.1 Shear layer

In order to aid analytic comparison, the shear layer simulations presented in
Subsection 3.5.2 were initialised to be dominated by a single sign of parallel
vorticity. In this section, we will present more general simulations of the Kelvin-
Helmholtz instability of a shear layer.

The simulations used 223 markers, N; = 16 and At = 1. The potential was
initialised to contain a shear layer and a sinusoidal perturbation in the y and x
directions, respectively. Example potential initialisations are shown in Figures
4.7 and 4.8.

The evolution is analogous to that of our simpler shear layers in the previous
chapter, as shown in Figures 4.7 and 4.8. Additionally, by visual inspection, we

observe that the weak-flow evolution accords with the symmetry

¢(x7y) = —¢>(—$a _y)7 (41)
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0.01 0.1 1.0

Figure 4.3: A simulation showing plasma filament or blob formation in terms of
density on a 150p; x 100p; spatial domain, where the bottom panel is at a time
30Q~! after that of the top panel and, here, p = 0 denotes the last closed flux

surface and p = 1 denotes the wall radius (Garcia, 2009).

as shown in Figure 4.7. However, for strong flows, we do not observe this
symmetry (4.1) and instead have strong-flow or, equivalently, FLR symmetry

breaking with
¢($, y) 7é _(b(_xa _y)7 (42)
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Figure 4.4: An experimental observation of the cross section of a plasma filament
or blob in terms of density at three different times each separated by 100us (left)
and floating potential with density and velocity overlaid (right) (Katz et al.,

2008).

plasma blob
-

Figure 4.5: V B polarisation and propagation of a blob (Krasheninnikov, 2001).

as shown in Figure 4.8.
Given our constant electron density (2.73), the fluctuating density may be

used as a proxy for the parallel vorticity. Thus, we may examine the mono-
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Figure 4.6: Blob propagation through the edge, last closed flux surface (LCFS)

and scrape-off layer (SOL), where ¢, is the sound speed (Naulin, 2007).

tonically increasing weak- and strong-flow parallel vorticity at the end-state of
the simulation. This is shown in Figures 4.9 and 4.10. For weak flows, the
distribution of parallel vorticity is symmetric. For strong flows, the magnitudes
of the positive values of the parallel vorticity peak more than those of the nega-
tive values, however, there is a greater spread in the negative than the positive
values of the parallel vorticity.

We consider a circularly symmetric shear layer in the next subsection.

4.1.1 Circular symmetry

We may examine the Kelvin-Helmholtz instability of a shear layer with circular
symmetry.

The simulations used 223 markers, N; = 16 and At = 1. The potential was
initialised to contain a circularly symmetric shear layer. An example initialisa-
tion is shown in Figures 4.11 and 4.12.

The circularly symmetric shear layer is Kelvin-Helmholtz unstable, as shown
in Figures 4.11 and 4.12. Once again, we have the symmetric, weak-flow evolu-
tion (4.1), as shown in Figures 4.13, 4.14, 4.15 and 4.16, and the asymmetric,

strong-flow evolution (4.2), as shown in Figures 4.17, 4.18, 4.19 and 4.20.
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Figure 4.7: The weak-flow fluctuating electrostatic potential initialisation (top)
and symmetric evolution (bottom) of a Kelvin-Helmholtz unstable shear layer
on the two-dimensional spatial gyrokinetic simulation domain. The simulation

parameters are as in Section 4.1.

73



Yypy

tQ) =0
150 30
20
100 i 10
{10 quT_1

110

50
220
-30

0

0 50 100 150

—1
40
30
I"IlI 120

TPy
10 q¢T!

50 100 150

~1
TPy

tQ =672

150

100

Ype

50

Figure 4.8: The strong-flow fluctuating electrostatic potential initialisation (top)
and asymmetric evolution (bottom) of a Kelvin-Helmholtz unstable shear layer
on the two-dimensional spatial gyrokinetic simulation domain. The simulation

parameters are as in Section 4.1.
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Figure 4.9: The magnitude of the monotonically increasing weak-flow fluctuat-
ing density with the predominantly negative (solid) and predominantly positive

(dashed) values overlaid. The simulation parameters are as in Section 4.1.

We present the application of our code to the simulation of strong-flow blob

transport in the next section.

4.2 Blobs

The simulations used 226 markers, N; = 16 and At = 1. The potential was
initialised as a dipole. Example potential initialisations are shown in Figures
4.21 and 4.22. We may consider the dipole to be a pair of interacting point

vortices with equal but opposite parallel vorticities,

We observe propagation of this dipole, as shown in Figures 4.21 and 4.22.
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Figure 4.10: The magnitude of the monotonically increasing strong-flow fluctu-
ating density with the predominantly negative (solid) and predominantly posi-

tive (dashed) values overlaid. The simulation parameters are as in Section 4.1.

We may write the parallel vorticities (4.3) as the parallel components of curls
of velocity fields,
i)'VX’Ulz—i)'VX’Uz.

We then have that the equal but opposite circulations are given by

VX’l)l'dSl:— VXUQ-dSQ,
Sl S2

where S; and S are surfaces in the x-y plane and are enclosed by circles
centred around the each respective pole of the dipole. By Stokes’ theorem,

the circulations may also be given by
f ’Ul'dllz—%‘ ’Ug'dlg.
851 852
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Figure 4.11: The weak-flow, circularly symmetric, Kelvin-Helmholtz unstable
shear layer fluctuating density initialisation (top) and evolution (bottom) dom-
inated by positive parallel vorticity on the two-dimensional spatial gyrokinetic

simulation domain. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.12: The weak-flow, circularly symmetric, Kelvin-Helmholtz unstable

shear layer electrostatic potential initialisation (top) and evolution (bottom)

dominated by positive parallel vorticity on the two-dimensional spatial gyroki-

netic simulation domain. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.13: The weak-flow fluctuating density on the two-dimensional spatial
domain in the nonlinear period of the gyrokinetic simulation of a circularly
symmetric, Kelvin-Helmholtz unstable shear layer dominated by positive paral-

lel vorticity. The simulation parameters are as in Subsection 4.1.1.

In terms of azimuthal velocities, with the origin centred on each the vortex,

27Tll’019 = 727T'lg’029.

We may write these azimuthal velocities in terms of their respective circulations

as
Vg = (27Tl1)_1 V x V1 dSl = —V29 = —(27‘(‘12)_1 V x Vo - ng
Sl S2

The corresponding radial velocities are

Vi = V2p = 0.
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Figure 4.14: The weak-flow fluctuating density on the two-dimensional spatial
domain in the nonlinear period of the gyrokinetic simulation of a circularly sym-
metric, Kelvin-Helmholtz unstable shear layer dominated by negative parallel

vorticity. The simulation parameters are as in Subsection 4.1.1.

In other words, we have that each point vortex pulls the other around its centre
with equal but opposite azimuthal velocities, resulting in propagation.
For weak flows, the blob travels in a straight line, as shown in Figure 4.23.

For the corresponding Cartesian velocities of the point vortices, we have that

Vig = V2

and

Viy = V2y = 0.
For the corresponding blob velocity vy, we have that
vp =0,
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Figure 4.15: The weak-flow fluctuating electrostatic potential on the two-
dimensional spatial domain in the nonlinear period of the gyrokinetic simulation
of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

positive parallel vorticity. The simulation parameters are as in Subsection 4.1.1.

that is, the blob centre moves with a constant velocity and the each of the
vortices do not move relative to the blob centre or each other.

For strong flows, the blob does not travel in a straight line and instead
performs circular motion, as shown in Figures 4.22, 4.24 and 4.25. The effects
of strong flows manifest as velocity perturbations and shifts in the rotation
frequency of each of the point vortices that depend on the sign of the parallel
vorticity. This results in azimuthal point vortex velocities that are no longer
equal in magnitude. The motion consists of the point centred between the
point vortices performing circular motion and the point vortices performing
circular motion about this point, with all circular motions having equal angular
frequencies.

The simulated radius of curvature of the circular motion of the strong-flow
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Figure 4.16: The weak-flow fluctuating electrostatic potential on the two-
dimensional spatial domain in the nonlinear period of the gyrokinetic simulation
of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

negative parallel vorticity. The simulation parameters are as in Subsection 4.1.1.

blob is 2.36 x 102. By using similar triangles, we may estimate the analytic
radius of curvature of the circular motion of our interacting point vortex pair
model based on the initialisation of our strong-flow blob simulation (Figure 4.22)
as 2.48 x 103.

We present the conclusion and future scope of this thesis in the next chapter.
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Figure 4.17: The strong-flow fluctuating density on the two-dimensional spa-
tial domain in the nonlinear period of the gyrokinetic simulation of a circularly
symmetric, Kelvin-Helmholtz unstable shear layer dominated by positive paral-

lel vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.18: The strong-flow fluctuating density on the two-dimensional spatial
domain in the nonlinear period of the gyrokinetic simulation of a circularly sym-
metric, Kelvin-Helmholtz unstable shear layer dominated by negative parallel

vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.19: The strong-flow fluctuating electrostatic potential on the two-
dimensional spatial domain in the nonlinear period of the gyrokinetic simulation
of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

positive parallel vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.20: The strong-flow fluctuating electrostatic potential on the two-
dimensional spatial domain in the nonlinear period of the gyrokinetic simulation
of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

negative parallel vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.21: The weak-flow dipole fluctuating electrostatic potential blob model
initialisation (top) and evolution (bottom) on the two-dimensional spatial gy-
rokinetic simulation domain. The simulation parameters are as in Subsection

4.2.
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Figure 4.22: The strong-flow dipole fluctuating electrostatic potential blob
model initialisation (top) and evolution (bottom) on the two-dimensional spatial
gyrokinetic simulation domain. The simulation parameters are as in Subsection

4.2.
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Figure 4.23: The weak-flow dipole fluctuating electrostatic potential blob model
on the two-dimensional spatial domain late in gyrokinetic simulation. The sim-

ulation parameters are as in Subsection 4.2.
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Figure 4.24: The strong-flow dipole fluctuating electrostatic potential blob
model on the two-dimensional spatial domain late in the gyrokinetic simula-

tion. The simulation parameters are as in Subsection 4.2.
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Figure 4.25: The path of the centre of the strong-flow dipole fluctuating electro-
static potential blob model on the two-dimensional spatial domain during the

gyrokinetic simulation. The simulation parameters are as in Subsection 4.2.
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Chapter 5

Conclusion

Gyrokinetics is a maximally optimal description of low-frequency magnetised
plasma turbulence.

We have presented a generalisation of gyrokinetic theory that allows dynamic
strong flows and is valid for arbitrary wavelength electrostatic potential pertur-
bations in slab magnetic geometry. We have obtained a substantially simpler
gyrocentre Lagrangian (2.25) than that of Dimits (2010a,b). We have presented
a symplectic strong-flow generalisation of gyrokinetic field theory such that,
unlike Dimits (2010a,b), our Vlasov-Poisson system (2.33, 2.34, 2.57, 2.69) is
manifestly conservative as, ultimately, we obtain it as a whole, directly from our
gyrocentre particle Lagrangian (2.25) (Scott and Smirnov, 2010). Despite the
symplectic representation of our strong-flow theory, our Poisson equation (2.57)
is consistent with that for weak flows (Hahm, 1988) at all wavelengths and the
fluid equation (2.74) obtained from our Vlasov-Poisson system is consistent with
fluid theory.

Again, despite our symplectic representation, we have demonstrated numeri-
cal tractability by solving implicit dependences using an iterative scheme. Weak-
and strong-flow code verification have been performed in limits that admit an-
alytic comparison.

Simulations show strong-flow symmetry breaking of the Kelvin-Helmholtz in-
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stability of a shear layer and blobs that manifest as asymmetries in the growth
rate and propagation, respectively, that depend on the sign of the parallel vor-
ticity.

We discuss the future scope of this thesis in the next section.

5.1 Future scope

The implementation of the gyrokinetic theory presented here in global gyroki-
netic codes such as ORB5 (Jolliet et al., 2007) would require a generalisation of
the theory to allow the treatment of electromagnetic potential perturbations in
general magnetic geometry. This is being pursued for the case with a velocity-
independent @ (Sharma and McMillan, 2015b).

The Hamiltonian representation of the strong-flow theory of Miyato et al.
(2009) admits proof of toroidal momentum conservation (Scott and Smirnov,
2010). A Hamiltonian formulation of our theory could be considered.

An improvement in our electron model and an extension of the code to three
spatial dimensions would allow full drift instability simulations to be performed.

We have used a spectral method for our field solver. Alternatively, an intrin-
sically conservative, arbitrary-wavelength finite-element method may be used
(Dominski et al., 2014).

Additionally, the iterative numerical scheme presented here may be gener-
alised by incorporating 6 F” polarisation.

Finally, this thesis, and work derived from it, may lead to a fusion energy

solution.
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