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Abstract

Gyrokinetics is a maximally optimal description of low-frequency magnetised

plasma turbulence.

We present a generalisation of gyrokinetic theory that allows dynamic strong

flows and is valid for arbitrary-wavelength electrostatic potential perturbations

in slab magnetic geometry. We obtain a substantially simpler gyrocentre La-

grangian than that of Dimits (2010a,b). We present a symplectic strong-flow

generalisation of gyrokinetic field theory such that, unlike Dimits (2010a,b), our

Vlasov-Poisson system is manifestly conservative as, ultimately, we obtain it as

a whole, directly from our gyrocentre particle Lagrangian (Scott and Smirnov,

2010). Despite the symplectic representation of our strong-flow theory, our

Poisson equation is consistent with that for weak flows (Hahm, 1988) at all

wavelengths and the fluid equation obtained from our Vlasov-Poisson system is

consistent with fluid theory.

Again, despite our symplectic representation, we demonstrate numerical

tractability by solving implicit dependences using an iterative scheme. Weak-

and strong-flow code verification are performed in limits that admit analytic

comparison.

Simulations show strong-flow symmetry breaking of the Kelvin-Helmholtz in-

stability of a shear layer and blobs that manifest as asymmetries in the growth

rate and propagation, respectively, that depend on the sign of the parallel vor-

ticity.
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Chapter 1

Introduction

An increasing population is leading to a net increase in global energy demand

and climate change that cannot be tolerated. Fusion energy (EUROfusion, 2013)

may be a pertinent future resource.

Fusion energy is the unconventional but superior harnessing of nuclear bind-

ing energy. The obstacles for its realisation include reactor material procurement

and, for the leading tokamak magnetic confinement approach, transport.

Confined plasma fuels are associated with gradients in physical quantities

and related instabilities and, on relatively small scales, microinstabilities and

related microturbulence. This leads to energy transport and a loss of confine-

ment (Horton, 1999).

An additional layer of complexity comes in the form of self-organisation (Di-

amond et al., 2005). As such, theoretical study is warranted. Simple, classical

and neoclassical collisional transport theory are not appropriate (ITER, 1999b).

A fundamental theoretical understanding of magnetised plasma dynamics is nec-

essary.

1



1.1 Plasma theory

The relevant domain is that of classical electrodynamics. For simplicity, this the-

sis will consider electrostatic potential perturbations in slab magnetic geometry

(Dubin et al., 1983; Dimits, 2010a). The appropriate equations are the coupled

Lorentz force and Poisson equations. The numerical solution of these nonlin-

ear equations for the Avogadro’s number of particles found within a tokamak

plasma is currently infeasible.

The description can be simplified by taking a more statistical approach and

utilising a smooth particle probability density function or distribution function,

which, in the absence of particle collisions, yields a coupled Vlasov-Poisson

kinetic system.

Charged particles in a magnetic field undergo a helical gyromotion along

magnetic field lines. The space-time scale of the tokamak confinement system

is large compared to that of the gyromotion. This restricts direct numerical

solution and necessitates further simplification of the kinetic description.

The characteristic frequency of tokamak microturbulence is small compared

to that of the gyromotion. As a result, the gyromotion in the plane perpendic-

ular to the magnetic field exhibits quasi-circular symmetry on the gyromotion

timescale. This gyrosymmetry can be utilised to maximally optimise the theo-

retical description by keeping the physics to the minimum of what is required.

In relatively long-wavelength fields, the drifting of the particle gyration or

guiding centre can be followed and the circular gyromotion adiabatically ignored.

This guiding-centre theory (Cary and Brizard, 2009) can be generalised (Brizard

and Hahm, 2007; Krommes, 2010) for arbitrary-wavelength perturbations by

instead only following the drifting of the particle gyrocentre, as shown in Figure

1.1, and adiabatically ignoring the gyromotion due to the generalised field. This

is described in the next section.

2
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Figure 2
Illustration of the important concept that gyrocenters ( green) move only with the E × B drift
V E

.= c E × b̂/B (and magnetic drifts, for inhomogeneous B). The magnetic field B = B b̂ is in the z
direction. The additional polarization drift Vpol experienced by the ions when E varies in time is taken into
account by a polarization charge that appears explicitly in the gyrokinetic Poisson equation.

Gyrokinetic vacuum:
the background state,
endowed with large
dielectric permittivity
due to ion
polarization, in which
gyrocenters move with
the effective E × B
and magnetic drifts

includes effects that do not depend on the electric field, such as those driven by the pressure
gradient.

Polarization leads to a useful interpretation of the gyrokinetic-Maxwell system as describing
the motion of gyrocenters in a gyrokinetic vacuum. The vacuum state, devoid of gyrocenters,
is defined (for the example above) to possess a large dielectric permittivity D⊥ analogous to the
permittivity ε0 of free space. Into that vacuum one places gyrocenters, which move with the
E × B and magnetic drifts. This interpretation was first given by Krommes (1993a) and has been
discussed in various pedagogical papers by Krommes (2006a, 2010).

3.2. Equilibrium Gyrokinetic Statistical Mechanics

Although most interest is in nonequilibrium states (see Section 3.3), it is instructive to consider
what physics emerges from thermal-equilibrium gyrokinetics. Thermal equilibrium arises from
intrinsically nonlinear interactions, so predictions derived therefrom can be used to test the nonlin-
ear routines in simulation codes, a rare opportunity. That was already recognized in pregyrokinetic
simulation theory (Birdsall & Langdon 1985), but gyrokinetics is richer and more subtle.

A gas of discrete gyrocenters in thermal equilibrium exhibits fluctuations with properties that
can be calculated from a gyrokinetic fluctuation-dissipation theorem, which can be formulated
in terms of the wave-number- and frequency-dependent gyrokinetic dielectric function D(k, ω).
That was done first by Krommes et al. (1986) for the electrostatic limit and later by Krommes
(1993a,b) for weakly electromagnetic fluctuations. One finds that gyrokinetic fluctuations are
strongly suppressed (by the tendency for ion polarization to neutralize charge imbalances) relative
to those of the full many-body plasma.

Even in the absence of discreteness effects, gyrokinetic systems appropriately truncated in
wave-number and velocity space possess absolute statistical equilibria, as discussed by Zhu &
Hammett (2010). Such equilibria are well known in neutral fluids. For example, in two dimensions
the conservation of both energy and enstrophy admits two-parameter Gibbsian equilibria with
possible negative temperature states (Kraichnan 1975). [For a review of 2D turbulence with earlier
references, readers are referred to Kraichnan & Montgomery (1980). Some aspects of the absolute
equilibrium problem were also reviewed by Krommes (2002), and a Monte Carlo method for
constructing states of N gyrocenters with negative temperature was described by Krommes &
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Figure 1.1: The drifting of an electrically charged particle gyrocentre with E×B

and effective polarisation velocities, VE and V pol, respectively, due to an elec-

tric field E in the plane (x, y) perpendicular to the constant magnetic field: the

electric field acceleration changes the radius of the otherwise circular gyromo-

tion; indeed, tokamak conditions are such that the fluctuating electric field can

be considered and treated as a perturbation (Krommes, 2012).

1.2 Gyrokinetics

We begin by defining the gyrokinetic ordering and, thereby, the gyrokinetic

regime.

1.2.1 Ordering

The turbulence is characterised by fluctuations in density, temperature and elec-

trostatic potential (Brizard and Hahm, 2007). The fluctuations themselves are

characterised in terms of characteristic wavevector components and frequencies.

The gyrokinetic ordering parameter (Dimits et al., 1992) is

εgy ∼ ωΩ−1 ∼ k‖ρt ∼ ρtL
−1
B ∼ uv−1

t � 1, (1.1)

where ω is the characteristic fluctuation frequency, Ω = |q|Bm−1 is the gy-

rofrequency, q is the particle charge, B is the magnetic field strength, m is the

3



particle mass, k‖ is the component of the characteristic fluctuation wavevector

in the parallel direction with respect to the magnetic field, ρt = vtΩ
−1 is the

thermal particle gyroradius, vt is the thermal particle speed, LB is the char-

acteristic magnetic-field nonuniformity length scale and u is the E × B drift

speed associated with the fluctuating electrostatic potential. Fundamentally,

it is a low-frequency ordering, and length scales and flows that are smaller in

the perpendicular than parallel direction are implied by this. Additionally, the

ordering is appropriate for tokamak magnetic geometry.

The state-of-the-art gyrokinetic description of particle dynamics is formu-

lated in terms of manifestly conservative, differential-geometric classical me-

chanics (Brizard, 1990; Brizard and Hahm, 2007; Cary and Brizard, 2009). This

is presented in the next subsection in terms of a guiding-centre electrostatic po-

tential φgc(x, t) ∼ 1 that satisfies

k⊥ρt ∼ εgy, (1.2)

where x is the particle position, t is time and k⊥ is the perpendicular wavenum-

ber.

1.2.2 Mechanics

The particle Lagrangian L written as a 1-form is

γ = Ldt = γadza, (1.3)

where

γa = (γt, γi), (1.4)

a ∈ {0, . . . , 6},

γt = −h,
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h is the Hamiltonian, γi are the symplectic components, i ∈ {1, . . . , 6}, za is

a noncanonical seven-dimensional extended phase space coordinate (Cary and

Littlejohn, 1983) and we have used Einstein notation. The invariance of the

Lagrangian is apparent from this manifest covariance (1.3). Thus, coordinate

choice is arbitrary and can be used to reveal symmetries that, by Noether’s

theorem1, simplify the physical description.

We choose to express the particle Lagrangian in terms of coordinates z =

(x,v) (Cary and Brizard, 2009),

γ = [ε−1
gy A(x) + v] · dx−

[
1
2v

2 + φgc

]
dt, (1.5)

where we indicate the order of each term, we use units, here and in the remainder

of the thesis, such that

q = m = 1,

A ∼ ε−1
gy is the magnetic potential, x ∼ ε−1

gy and v ∼ 1 is the particle velocity.

We may obtain our complete physical formalism from this Lagrangian (1.5) via

the principle of least action and Noether’s theorem. Thus, in order to simplify

our complete physical formalism, we need only simplify our Lagrangian, as our

complete physical formalism is obtained from our Lagrangian.

By general covariance, the Lagrangian is coordinate independent. Thus, let

us write this Lagrangian (1.5) in the natural coordinates of gyromotion, the

guiding-centre coordinates Z = (X, v‖, µ, ζ), where

X = x− ρ ∼ ε−1
gy (1.6)

is the guiding-centre position (Figure 1.2), ρ = v⊥Ω−1(cos ζê1− sin ζê2) ∼ ρt ∼

1 is the gyroradius, v⊥ ∼ vt ∼ 1 is the perpendicular speed, ζ is the gyroangle,

ê1 = ê2 × b̂, the hat denotes a unit vector, b̂ is the magnetic field unit vector,

v‖ ∼ 1 is the parallel velocity and µ = 1
2v

2
⊥Ω−1 ∼ 1 is the magnetic moment.

1Noether’s theorem relates the symmetries of a Lagrangian to its invariants (Krommes,
2010).
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a magnetic field line (Cary & Brizard 2009, Northrop 1963). General results from the theory
of almost-cyclic systems (Kruskal 1962, Lichtenberg & Lieberman 1992) show that μ is asymp-
totically conserved even in the presence of weak magnetic inhomogeneities and slowly varying
fields. If weak and slow are indicated by an ordering parameter ε, then μ in principle can be
determined as an asymptotic expansion through all orders in ε, with μ(0) being the lowest-order
term. In this regard, a seminal calculation was by Taylor (1967), who found the first-order correc-
tion to μ(0) due to the presence of a slowly varying electrostatic wave of arbitrary perpendicular
wavelength.

Note that μ is not an exact invariant. Dragt & Finn (1976) discussed μ conservation within
a Hamiltonian formulation, relating it to the existence of a Kolmogorov-Arnold-Moser surface.
They found stochastic regions in the motion of a charged particle in a dipolar magnetic field.
Dubin & Krommes (1982) discussed the interaction of rapid gyration with high harmonics of
periodic motion on much longer timescales (such as the bounce motion associated with the second
or longitudinal invariant J). They found stochastic layers with widths that scale as exp(−b/ε),
where ε is the ratio of the small bounce frequency and large gyrofrequency and b is a constant;
because exp(−b/ε) is asymptotic to zero, stochastic wandering in the layers is overlooked by the
asymptotic construction of a conserved μ. Lichtenberg & Lieberman (1992) described in more
detail the situation, which is related to Arnold diffusion (Chirikov 1979). One must always keep
in mind the possibility that the adiabatic invariance of μ can be broken. Related concerns were
recently expressed by Sugiyama (2008) (for discussion, see Krommes 2009a, Sugiyama 2009).
In the material to follow, μ conservation is assumed; that is an excellent approximation for the
situations of interest.

Gyrokinetics amounts to the determination of a change of variables (Catto 1978) from the
particle phase space {x, v} ≡ zi to gyrocenter phase space {X, U , μ, ζ } ≡ zi , together with a
closure approximation to be described. (A mere change of variables cannot alter the physical
content of the kinetic equation.) Here X is the gyrocenter position, U is the gyrocenter velocity
along B, and ζ is the gyration phase; the overline (subsequently omitted) signifies development
as an asymptotic series with its lowest-order form corresponding to that for circular motion.
The lowest-order gyrocenter variables are illustrated in Figure 1. In standard gyrokinetics, the
ordering parameter is ε ∼ ω/ωc i ∼ k‖/k⊥ ∼ VE/c s, where k is a typical fluctuation wave vector,

â

ê2

ê1
xX

= ρâρ

ĉ

=
v

v
ĉ

−ζ

x

y

Gyrocenter

Particle

Figure 1
Illustration of the lowest-order gyrocenter coordinates. The magnetic field is B = B b̂; at the position x of
the particle (blue dot), B is in the z direction. The particle velocity is U b̂ + v⊥ ĉ; if B were constant, the
particle would circle a gyrocenter at position X .= x − ρ ( green square) with angular velocity ζ̇ = ωc , where
the gyroradius vector is ρ

.= b̂ × v⊥/ωc = ρ â (ρ .= v⊥/ωc ). Instead of resolving vectors onto the
orthonormal triad (â, b̂, ĉ), it is frequently convenient to use a local Cartesian system (ê1, ê2, b̂) centered on
the magnetic field line at the position of the particle. The lowest-order magnetic moment is
μ(0) .= 1

2 mv2
⊥/ωc , and the lowest-order gyrocenter coordinates are {X, U , μ(0), ζ }.
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Figure 1.2: The guiding-centre or lowest-order-gyrocentre coordinates, as de-

fined in Subsection 1.2.2, in the plane perpendicular to the magnetic field

(Krommes, 2012).

The Lagrangian (1.5) in terms of coordinates Z is

Γ = [ε−1
gy A(X + ρ) + v‖b̂+ v⊥] · d(X + ρ)−

[
1
2 (v‖b̂+ v⊥)2 + φgc(X + ρ, t)

]
dt,

(1.7)

where v⊥ = ρ×Ω is the perpendicular velocity and Ω = Ωb̂.

This Lagrangian (1.7) is almost invariant under ζ rotation, that is, it has

quasi-ζ-symmetry. The potentials depend on x, which in turn depends on ρ,

which itself depends on ζ. However, cancellation and gauge transformation

mean that, under the ordering used, the ζ-dependence of the potentials is small

as their variation over a distance ρt is small. Thus, we may write the Lagrangian

(1.7) as

Γ = Γ0 + εgyΓ1,

where Γ0 is ζ-independent and Γ1 is ζ-dependent. The invariance of the La-

grangian is apparent from its manifest covariance (1.3). Thus, we may perturb

the coordinate system in order to obtain a Lagrangian with exact ζ-symmetry.

This is achieved via a systematic, near-identity or Lie transformation of the

Lagrangian. We detail this Lie transform in the next chapter.

The guiding-centre particle Lagrangian obtained up to first order in εgy (1.1)
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is

Γ =[ε−1
gy A(X) + v‖b̂] · dX + µdζ −

(
1
2v

2
‖ + µΩ + φgc(X)

)
dt. (1.8)

This Lagrangian (1.8) depends on a five-dimensional phase space coordinate,

thus, our complete physical formalism will now depend on a five-dimensional

phase space coordinate. Additionally, by Noether’s theorem, the ζ-symmetry of

the Lagrangian (1.8) corresponds to the adiabatic invariance of µ.

We present the gyrocentre particle Lagrangian obtained within gyrokinetic

theory in the next subsection.

1.2.3 Lagrangian

The gyrocentre particle Lagrangian is obtained by starting with a gyrokinetic

(1.1), as opposed to guiding-centre (1.2), potential in the Lagrangian (1.5).

An intermediate Lie transform is performed in the absence of the potential

perturbation to obtain an equilibrium guiding-centre particle Lagrangian,

γ(z)→ Γeq(Z)→ Γ̄(Z̄),

where the overbar denotes a gyrocentre quantity.

The gyrocentre particle Lagrangian up to second order in εgy (1.1) (Brizard,

1989) is

Γ̄ =[ε−1
gy A(X̄) + v̄‖b̂] · dX̄ + µ̄dζ̄ −

[
1
2 v̄

2
‖ + µ̄Ω + 〈φgy(x, t)〉

− ε2gy
1
2Ω−1(Ω−1〈∇̄Φ̃gy × b̂ · ∇̄φ̃gy〉+ 〈φ̃2

gy〉,µ̄)
]
dt,

(1.9)

where

〈ψ〉(X̄, µ̄, t) = (2π)−1

∫
dζ̄d3xδ(X̄ + ρ̄− x)ψ(x, t) (1.10)

is the gyroaverage for any function ψ, φgy is the electrostatic potential that

7



satisfies the gyrokinetic ordering (1.1),

Φ̃gy =

∫
dζ̄φ̃gy ∼ εgy,

φ̃gy = φgy − 〈φgy〉 ∼ εgy

and

Ψ,a = ∂aΨ

for any function Ψ. This Lagrangian (1.9) depends on a five-dimensional phase

space coordinate, thus, our complete physical formalism will now depend on a

five-dimensional phase space coordinate. Additionally, by Noether’s theorem,

the ζ̄-symmetry of the Lagrangian (1.9) corresponds to the adiabatic invariance

of µ̄.

By using a Fourier space representation of φgy, performing the integral in

the expression for its gyroaverage (1.10) and Taylor expanding the resulting

Bessel function, the gyroaveraged potential can be interpreted (Jolliet, 2009) as

a finite-Larmor-radius (FLR) corrected gyrocentre potential,

〈φgy〉 = φ̄gy + 1
2Ω−1µ̄∇̄2

⊥φ̄gy + · · · ∼ 1.

The gyrokinetic ordering (1.1) includes the weak-flow ordering

uv−1
t ∼ εgy. (1.11)

This ordering (1.11) cannot be applied to scrape-off-layer (ITER, 1999a), transport-

barrier-containing and strongly rotating tokamak plasmas and many astrophys-

ical plasmas due to the presence of strong flows (Artun and Tang, 1994), for

which

uv−1
t ∼ 1.

Strong-flow generalisations of gyrokinetics are described in the next section.
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1.3 Strong flows

Strong-flow generalisations of gyrokinetics focused, initially, on symplectic (1.4)

and, more recently, on Hamiltonian modifications.

1.3.1 Symplectic formulation

The work of Brizard (1995), Hahm (1996) and Hahm et al. (2009) reached its

most general form with the work of Madsen (2010). Here, a strong-flow potential

φs ∼ ε−1
gy is accommodated by making the splitting,

φs = φ0(x, t) + φ1(x, t), (1.12)

where φ0 ∼ ε−1
gy is a long-wavelength electrostatic potential and φ1 ∼ εgy is a

short-wavelength electrostatic potential.

Symplectic strong-flow theories redefine the velocity variable to be relative

to a strong flow (Artun and Tang, 1994). The velocity variable v is redefined

to be the velocity in a frame moving with a velocity D ∼ 1, where D is usually

chosen to be an E× B drift velocity.

The gyrocentre Lagrangian up to second order (Madsen, 2010) is

Γ̄ = [ε−1
gy A(X̄) + v̄‖b̂+ D̄(X̄, t)] · dX̄ + µ̄dζ̄ −

[
1
2 v̄

2
‖ + µ̄Ω + 1

2D̄
2 + ε−1

gy 〈φs〉

−ε2gy
1
2Ω−1(Ω−1〈∇̄Φ̃1 × b̂ · ∇̄φ̃1〉+ 〈φ̃2

1〉,µ̄)
]
dt, (1.13)

D̄ = Ω−1b̂× ∇̄φ̄0,

where we also redefine µ = 1
2v

2
⊥Ω−1 ∼ 1 to be the magnetic moment in the

frame moving with a velocity D, Φ̃1 =
∫

dζ̄φ̃1 ∼ εgy and φ̃1 = φ1 − 〈φ1〉 ∼ εgy.

A high-frequency symplectic strong-flow theory was formulated by Qin et al.

(2007), however, this work has been criticised (Madsen, 2010) for an inconsis-

tent application of a high-frequency ordering. Under a low-frequency ordering,

Kawamura and Fukuyama (2008) included a higher-order term in a redefinition
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of D̄,

D̄K = D̄ + εgyΩ−1b̂× (D̄K · ∇̄)D̄K ∼ 1. (1.14)

The second term in D̄K (1.14) is the centrifugal drift, which had appeared in

the Euler-Lagrange equation of previous symplectic strong-flow theories. Both

Qin et al. (2007) and Kawamura and Fukuyama (2008) have been criticised

(Madsen, 2010) for being unnecessarily complex and specialised as a result of

forgoing an intermediate, guiding-centre step.

The use of the two-component potential (1.12) is a partial, discontinuous

treatment of the spectral range of tokamak turbulence,

εgy . k⊥ρt . 1. (1.15)

Additionally, it introduces ambiguity to the conservative field theory and disal-

lows the natural computation of a complete Vlasov-Poisson system.

A Hamiltonian, as opposed to symplectic, modification has also been con-

sidered. This is described in the next subsection.

1.3.2 Hamiltonian formulation

Miyato et al. (2009) employ the guiding-centre ordering (1.2). Their modified

and simplified strong-flow guiding-centre Lagrangian up to second order is

Γ = [ε−1
gy A(X) + v‖b̂] · dX + µdζ −

(
1
2v

2
‖ + µΩ− 1

2D
2

+ε−1
gy 〈φ0〉

)
dt, (1.16)

D = Ω−1b̂×∇φ0(X) ∼ 1.

The presence of D in the guiding-centre coordinate transformation,

X = x− εgyΩ−1b̂× (v⊥ +D) +O(ε2gy), (1.17)

results in the absence of D in the symplectic part of the Lagrangian (1.16). The
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symplectic part of this Lagrangian (1.16) is then identical in form to that of the

weak-flow Lagrangian (1.9), unlike the symplectic strong-flow Lagrangian (1.13)

of the previous subsection. This particular choice of guiding-centre coordinate

transformation (1.17) also results in the term involving D in the Hamiltonian in

this Lagrangian (1.16) appearing with the opposite sign to that in the Hamilto-

nian in the symplectic strong-flow Lagrangian (1.13) of the previous subsection.

This, coupled with the absence of D from the symplectic part of the Lagrangian

(1.16), results in this Hamiltonian strong-flow theory having fundamental weak-

flow consistency. The potential appearing in this Lagrangian (1.16) only has a

single component, unlike the symplectic strong-flow Lagrangian (1.13) of the

previous subsection. As φ1 is not considered, all the terms associated with

this potential component in the symplectic Lagrangian (1.13) of the previous

subsection are absent in this Lagrangian (1.16).

We summarise pertinent gyrokinetic theories in Table 1.1.

Flows Formulation k⊥ρt

Brizard (1989) Weak Hamiltonian Arbitrary

Miyato et al. (2009) Strong Hamiltonian O(εgy)

Madsen (2010) Strong Symplectic O(εgy), O(1)

Dimits (2010a,b) Strong Symplectic Arbitrary

Table 1.1: A summary of pertinent gyrokinetic theories.

Experimental observations of tokamak plasma dynamics indicate that self-

consistent interaction occurs on all length scales (Holzhauer et al., 1994; Andrew

et al., 2008). The unified treatment (Dimits, 2010a,b) of the spectral range of

tokamak turbulence (1.15) within strong-flow gyrokinetic theories is the subject

of the next chapter.
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Chapter 2

Gyrokinetic theory

In this chapter, we will present a generalisation of gyrokinetic theory that allows

dynamic strong flows and is valid for arbitrary wavelength electrostatic potential

perturbations in slab magnetic geometry. This generalisation is achieved by

utilising a generalisation of the gyrokinetic ordering (1.1).

2.1 Ordering

The gyrokinetic ordering parameter (1.1) was originally (Hahm, 1988)

εgy ∼ ωΩ−1 ∼ k‖ρt ∼ ρtL
−1
B ∼ φgyT

−1 � 1, k⊥ρt ∼ 1, (2.1)

where T is the temperature, we use units, here and in the remainder of the

thesis, such that

kB = 1

and kB is the Boltzmann constant. This original ordering (2.1) was generalised

(Dimits et al., 1992) by no longer ordering the quantity φgyT
−1, nor the quantity

k⊥ρt, and instead ordering the size of the E×B flow associated with φgy to be

small compared to the thermal speed (1.1). This is the weak-flow gyrokinetic

ordering (1.1). This weak-flow ordering (1.1) includes the treatment of the small-
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amplitude gyroscale perturbations of the original ordering (2.1) but additionally

allows larger-amplitude perturbations on larger perpendicular length scales.

The weak-flow ordering (1.1) can be further generalised (Dimits, 2010a,b)

by no longer ordering the quantity uv−1
t and instead ordering the vorticity. The

strong-flow gyrokinetic ordering parameter used in this thesis is

ε ∼ ωΩ−1 ∼ k‖ρt ∼ ρtL
−1
B ∼ u′Ω−1 � 1, (2.2)

where u′ represents the magnitude of the spatial derivatives of the E × B drift

velocity associated with the fluctuating electrostatic potential. Given that, for

a general magnetised plasma, ω ∼ u′, allowing u′Ω−1 > ε would break the

fundamental gyrosymmetry. This ordering (2.2) includes the treatment of the

weak flows of the weak-flow ordering (1.1) but additionally allows larger flows on

larger perpendicular length scales. This ordering (2.2) is compatible with the

magnetohydrodynamics (MHD) ordering and similar to the Hasegawa-Mima

ordering (Horton and Hasegawa, 1994), which additionally uses the cold-ion

limit. u′ represents both the eddy turnover time and the nonlinear timescale.

For the accurate numerical solution of reduced plasma models, it is essen-

tial to have conservation properties (Cary and Brizard, 2009) and, specifically,

intrinsic energetic consistency (Scott and Smirnov, 2010). The equation set of

Dimits (2010a,b) has been criticised (Madsen, 2011) for not being manifestly

conservative as, ultimately, it is not obtained as a whole, directly from the par-

ticle gyrocentre Lagrangian (Scott and Smirnov, 2010). Weak-flow gyrokinetics

is a well established theoretical tool (Krommes, 2012) and the fluid limit is per-

tinent to turbulence analysis (Brizard and Hahm, 2007; Miyato et al., 2009).

Symplectic strong-flow formulations, such a Dimits (2010a,b), have been criti-

cised (Miyato et al., 2009; Scott and Smirnov, 2010; Scott, 2013) for a lack of

weak-flow and fluid consistency. We address these points in this chapter.

We begin by deriving a preliminary, guiding-centre Lagrangian, where the

fast gyromotion time scale has been decoupled (Brizard and Hahm, 2007), in
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the next section.

2.2 Guiding-centre Lagrangian

Our particle Lagrangian in terms of coordinate z (1.5) is

γ = [A(x) + v] · dx−
[

1
2v

2 + φ(x, t)
]

dt, (2.3)

where φ is the electrostatic potential that satisfies our strong-flow ordering (2.2).

As in Subsection 1.3.1, we redefine the particle velocity v as the velocity in a

frame moving with a velocity u(x,v, t) ∼ 1 such that this Lagrangian (2.3)

becomes

[A(x) + v + u] · dx−
[

1
2 (v + u)2 + φ

]
dt,

where we have redefined v.

Given our simple, slab magnetic geometry, it is sufficient to perform a change

of variables from our original coordinates z to guiding-centre coordinates Z, as

defined in the previous chapter, rather than use a Lie transform. This yields

Γ =[A(X + ρ) + v‖b̂+ v⊥ + u] · (dX + dρ)− ( 1
2v

2
‖ + µΩ + 1

2u
2 + 〈φ〉

+ δ1φ̃)dt,

(2.4)

where we have used

b̂ · u = 0

and

δ1φ̃ = φ̃+ v⊥ · u = φ̃+ ρ ·Ω× u (2.5)

has a more general form than that of Dimits (2010a,b). We can expand the first

term in square brackets in this Lagrangian (2.4) as A(X + ρ) = A(X) + (ρ ·
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∇)A(X) and make use of a total derivative1

dS = −d
{
ρ ·
[(

1 + 1
2ρ ·∇

)
A(X) + u

]}
,

which is modified from that of Hahm (1988) and Dimits (2010a,b) by the pres-

ence of u. This yields (Hahm, 1988)

Γ =[A(X) + v‖b̂+ u] · dX − dX · {∇[A(X) · ρ]− (ρ ·∇)A(X)

− ρ× [∇×A(X)]} − ρ · du+ µdζ − ( 1
2v

2
‖ + µΩ + 1

2u
2 + 〈φ〉+ δ1φ̃)dt,

(2.6)

where we have used v⊥ · dX = ρ× [∇×A(X)] · dX. By identifying the terms

in curly brackets in this Lagrangian (2.6) as [A(X) ·∇]ρ+A(X)×(∇×ρ) = 0,

we obtain our guiding-centre Lagrangian

Γ =[A(X) + v‖b̂+ u] · dX − ρ · du+ µdζ − ( 1
2v

2
‖ + µΩ + 1

2u
2 + 〈φ〉+ δ1φ̃)dt.

(2.7)

This Lagrangian (2.7) is modified from that of Hahm (1988) by the presence of

u.

We are now in a position to transform to gyrocentre coordinates. This is

covered in the next section.

2.3 Gyrocentre Lagrangian

Using the strong-flow ordering (2.2), we can write the guiding-centre Lagrangian

(2.7) as

Γ = Γ0 + Γ1,

where

Γ0 = [A(X) + v‖b̂+u] ·dX +µdζ− ( 1
2v

2
‖+µΩ + 1

2u
2 + 〈φ〉)dt = O(ε−1) (2.8)

1The addition of an arbitrary total derivative of a gauge to a Lagrangian does not change
the Euler-Lagrange equation (Littlejohn, 1982).
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is ζ-independent and

Γ1 = −ρ · du− δ1φ̃dt = −ρ · (dt∂t + dX ·∇ + dµ∂µ)u− δ1φ̃dt = O(ε) (2.9)

is ζ-dependent. Both Γ0 (2.8) and Γ1 (2.9) are modified from that of Hahm

(1988) by the presence of u and 〈φ〉.

The requirement

δ1φ̃ = O(ε)

is equivalent to restrictions on the possible choices for the ζ-independent poten-

tial appearing in our guiding-centre Lagrangian (2.7) and u given by

φg − φ(X, t) ≤ O(ε) (2.10)

and

u− Ω−1b̂×∇φ(X, t) ≤ O(ε), (2.11)

respectively, where φg is a general ζ-independent potential. Some possible

choices for φg and u that satisfy the restrictions (2.10) and (2.11) are φg =

φ(X, t),

φg = 〈φ〉,

u = Ω−1b̂×∇φ(X, t) and

u = Ω−1b̂×∇〈φ〉. (2.12)

We will choose u to take this latter form (2.12). In addition, u must satisfy the

condition

∂τu = (∂t + u ·∇)u ∼ ε2,

where τ corresponds to the time variable in the frame moving with a velocity u

(Artun and Tang, 1994).

We compute our gyrocentre Lagrangian systematically via Lagrangian Lie
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perturbation theory (Littlejohn, 1982, 1983; Cary and Littlejohn, 1983). The

Lie transform used proceeds order by order in ε (2.2) and is given by the operator

T±1 = exp

(
±
∞∑
n=1

εnLn
)
, (2.13)

where Ln are the Lie derivative operators,

LnΓ = ganωabdz
b,

Γ =

∞∑
n=0

εnΓn,

gan are the arbitrary generators,

ωab = 2Γ[b,a] (2.14)

is the Lagrange matrix and Γ[b,a] = 1
2 (Γb,a − Γa,b). By convention (Littlejohn,

1982), T−1 is applied to Γ,

Γ̄ = T−1Γ. (2.15)

For the special case of the perturbation being solely resident within the

Hamiltonian, Hamiltonian Lie perturbation theory (Cary, 1981) is sufficient.

Pertinent examples of the use of Hamiltonian and Lagrangian Lie perturba-

tion theory that admit comparison are Hahm et al. (1988) and Hahm (1988),

respectively.

We start by computing the lowest-nontrivial-order part of the gyrocentre

Lagrangian in the next subsection.

2.3.1 First order

The first-order part of the gyrocentre Lagrangian in terms of the Lie transform

(2.15) is

Γ̄1 =Γ1 − L1Γ0 + dS1 (2.16)
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=Γ1 − ga1ω0abdZ
b + dS1,

where

dS1 = dZa∂aS1

and S1 is the first-order part of a gauge. We can compute the non-zero Lagrange

matrix (2.14) components of Γ0 (2.8) as

ω0Xi′Xj′ = Γ0Xj′ ,Xi′ − Γ0Xi′ ,Xj′ = (A+ u)j′,Xi′ − (A+ u)i′,Xj′ = εi′j′k′Ω
∗
k′ ,

ω0Xµ = −u,µ,

ω0Xt = −∇〈φ〉 − u× (∇× u)− (u ·∇ + ∂t)u,

ω0µt = −〈φ〉,µ − u · u,µ − Ω,

ω0Xv‖ = −b̂,

ω0v‖t = −v‖,

ω0µζ = 1,

(2.17)

where i′, j′, k′ ∈ {1, 2, 3}, εi′j′k′ is the three-dimensional Levi-Civita pseudoten-

sor,

Ω∗ = Ω + ∇× u, (2.18)

and we have used 1
2∇u

2 = u× (∇× u) + (u ·∇)u. We can then write

Γ1 = (−ρ ·∇u) · dX − ρ · u,µdµ− (ρ · u,t + δ1φ̃)dt,

−ga1ω0abdZ
b =(gX1 ×Ω∗ − gµ1u,µ) · dX + (gX1 u,µ + gζ1)dµ− gµ1 dζ

+ {gX1 · [∇〈φ〉+ u× (∇× u)] + gµ1 (〈φ〉,µ + u · u,µ + Ω)}dt

+O(ε3)

and

dS1 = ∇S1 · dX + S1,v‖dv‖ + S1,µdµ+ S1,ζdζ + S1,tdt,
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where we have chosen

g
v‖
1 = gt1 = 0,

as in Hahm (1988).

We may solve for the first-order generator in terms of the first-order gauge

such that the gyrocentre Lagrangian is composed solely of a time component at

first order. This yields the non-zero first-order generators

gX1 = Ω−1[ρ · (b̂×∇)u+ ∇S1 × b̂],

gµ1 = S1,ζ ,

gζ1 = ρ · u,µ − S1,µ,

where, as for the case for weak flows, b̂ · gX1 = 0. The first-order part of the

gyrocentre Lagrangian is then

Γ̄1 = (−δ1φ̃+ ΩS1,ζ)dt+ Γ2,

where

Γ2 = [gX1 × (∇× u)− gµ1u,µ] · dX + gX1 u,µdµ+ {gX1 · u× (∇× u) + gµ1 (〈φ〉,µ

+u · u,µ) + (∂t + u ·∇)(S1 − ρ · u)}dt

= O(ε2)

and, as in Dimits (2010a,b), we have used

(∂t + u ·∇)S1 ∼ ε2,

which is validated upon choosing the first-order part of the gauge.

We choose the first-order part of the gauge such that the gyrocentre La-

grangian is gyroangle independent at first order or, equivalently, such that it

cancels with the first-order gyroangle-dependent terms in the time component
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of the Lagrangian. This yields

S1 = Ω−1δ1Φ̃, (2.19)

where δ1Φ̃ =
∫

dζδ1φ̃, and we have that the first-order part of our gyrocentre

Lagrangian is

Γ̄1 = Γ2.

By substituting for the first-order gauge (2.19), we may now write our non-

zero first-order generators as

gX1 = Ω−2∇Φ̃× b̂,

gµ1 = Ω−1δ1φ̃,

gζ1 = ρ · u,µ − Ω−1δ1Φ̃,µ = −Ω−1Φ̃,µ − u · ρ,µ.

(2.20)

Our first-order spatial generator is the same as that for weak flows. For k⊥ρt ∼ ε,

our gµ1 and gζ1 (2.20) are small compared to those for weak flows. This represents

an enhancement of the Lagrangian Lie perturbation theory.

In order to obtain the crucial polarisation physics (Lee, 1983), the La-

grangian Lie perturbation theory must proceed to second order. We will do

so in the next subsection.

2.3.2 Second order

The second-order part of the gyrocentre Lagrangian in terms of the Lie trans-

form (2.15) is

Γ̄2 = Γ2 − L1Γ1 +
(

1
2L2

1 − L2

)
Γ0 + dS2, (2.21)

where

dS2 = dZa∂aS2

and S2 is the second-order part of the gauge. We can use the expression for

the first-order part of the gyrocentre Lagrangian written in terms of the Lie
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transform (2.16) to write this expression (2.21) as

Γ̄2 = Γ2− 1
2L1Γ1−L2Γ0 + dS2 +O(ε3) = Γ2− 1

2g
a
1ω1abdZ

b− ga2ω0abdZ
b + dS2,

(2.22)

where we have used L1dS1 = 0.

We may compute the Lagrange matrix (2.14) components of Γ1 as

ω1Xµ = ∇u · ρ,µ,

ω1Xζ = ρ,ζ ·∇u,

ω1Xt = −∇δ1φ̃,

ω1µζ = ρ,ζ · u,µ,

ω1µt = −u,t · ρ,µ − δ1φ̃,µ,

ω1ζt = −(ρ · u,t + δ1φ̃),ζ .

We may then write the terms in the expression for the second order part of the

gyrocentre Lagrangian (2.22) as

− 1
2g
a
1ω1abdZ

b = 1
2{ga1ρ,a ·∇u · dX + (gζ1ρ,ζ · u,µ − gX1 ·∇u · ρ,µ)dµ− ga1ρ,ζ · u,adζ

+ [gX1 ·∇δ1φ̃+ gµ1 (u,t · ρ,µ + δ1φ̃,µ) + gζ1(ρ · u,t + δ1φ̃),ζ ]dt},

−ga2ω0abdZ
b = gX2 ×Ω · dX + gζ2dµ− gµ2 dζ + (gX2 ·∇〈φ〉+ gµ2 Ω)dt+O(ε3)

and

dS2 = ∇S2 · dX + S2,v‖dv‖ + S2,µdµ+ S2,ζdζ + S2,tdt,

where we have chosen

g
v‖
2 = gt2 = 0.

We may solve for the second-order generator in terms of the second-order

gauge such that the gyrocentre Lagrangian is composed solely of a time compo-
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nent at second order. This yields the non-zero second-order generators

gX2 = Ω−1
[
gX1 × (∇× u)− gµ1u,µ + 1

2g
a
1ρ,a ·∇u+ ∇S2

]
× b̂,

gµ2 = S2,ζ − 1
2g
a
1ρ,ζ · u,a,

gζ2 = −[gX1 u,µ + 1
2 (gζ1ρ,ζ · u,µ + gX1 ·∇u · ρ,µ) + S2,µ].

At this point, several cancellations are facilitated as a result of having chosen

u to be the E×B drift velocity associated with the ζ-independent potential that

appears in our guiding-centre Lagrangian (2.7). For the particular choice of our

second order generator, the second-order part of the gyrocentre Lagrangian is

Γ̄2 =
[
gµ1 〈φ〉,µ + (∂t + u ·∇)(S1 − ρ · u) + 1

2g
a
1 (δ1φ̃,a − Ωρ,ζ · u,a) + ΩS2,ζ

]
dt

+O(ε3),

where we have used

1
2g
a
1ρ,a · (∂t + u ·∇)u ∼ (∂t + u ·∇)S2 ∼ ε3.

We now choose the second-order gauge such that the second-order part of

the gyrocentre Lagrangian is gyroangle independent. This yields

Γ̄2 = 1
2 〈ga1 (δ1φ̃,a − Ωρ,ζ · u,a)〉dt

=
(

1
2 〈gX1 ·∇φ̃〉+ 1

2Ω−1〈δ1φ̃2〉,µ + b̂× 〈δ1φ̃ρ〉 · u,µ
)
dt, (2.23)

where we have used the first-order generators (2.20) and expanded one of the

factors of δ1φ̃ (2.5). We can also expand the remaining factors of δ1φ̃ (2.5) in

this Lagrangian (2.23) to yield

Γ̄2 =
(

1
2 〈gX1 ·∇φ̃〉+ 1

2Ω−1〈φ̃2〉,µ − u · b̂× 〈φ̃ρ〉,µ + 1
2u

2
)
dt (2.24)

=
(

1
2 〈gX1 ·∇φ̃〉+ 1

2Ω−1〈φ̃2〉,µ − 1
2u

2
)
dt,
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where we have used

u = b̂× 〈φ̃ρ〉,µ

and the only difference between this form of the second-order part of the gyro-

centre Lagrangian and that for weak flows is the presence of u.

Our gyrocentre Lagrangian up to second order is then

Γ̄ =[A(X̄) + v̄‖b̂] · dX̄ + µ̄dζ̄ −
(

1
2 v̄

2
‖ + µ̄Ω + 〈φ〉 − 1

2 〈gX̄1 · ∇̄φ̃〉

− 1
2Ω−1〈φ̃2〉,µ̄

)
dt+ ū · (dX̄ − ūdt).

(2.25)

This Lagrangian (2.25) is identical to the weak-flow gyrocentre Lagrangian up

to second order (1.9) except for the last term. Our gyrocentre Lagrangian up to

second order (2.25) is also substantially simpler than that of Dimits (2010a,b).

In particular, our second-order terms appear only in the Hamiltonian.

The principle of least action leads to an equation for describing the behaviour

of the system under consideration: the Euler-Lagrange equation. We will derive

the explicit form of our Euler-Lagrange equation in the next section.

2.4 Euler-Lagrange equation

Using the Lagrange matrix (2.14) components computed from the gyrocentre

Lagrangian (2.25) up to first-order, or equivalently those computed from the

guiding-centre Lagrangian up to zeroth-order (2.17), in the gyrocentre Euler-

Lagrange equation (Littlejohn, 1983),

ω̄ij
˙̄Zj = ω̄ti,

where j ∈ {1, . . . , 6}, with i = {X̄, v̄‖, µ̄, ζ̄} yields

˙̄X × Ω̄∗ − ˙̄v‖b̂ = ω̄tX̄ (2.26)

b̂ · ˙̄X = v̄‖, (2.27)
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˙̄ζ = Ω + 〈φ〉,µ̄ + ū · ū,µ − ū,µ̄ · ˙̄X, (2.28)

˙̄µ = 0, (2.29)

respectively. By Noether’s theorem, the ζ̄-symmetry of our Lagrangian (2.25)

corresponds to the adiabatic invariance of µ̄ (2.29).

Taking the cross product of b̂ and Equation 2.26, expanding the resultant

triple product and using Equation 2.27 yields

˙̄X = Ω̄∗−1
‖ {Ωū+ b̂× [ū× (∇̄× ū) + (ū · ∇̄ + ∂t)ū] + v̄‖Ω̄

∗}, (2.30)

where

Ω̄∗‖ = b̂ · Ω̄∗. (2.31)

By expanding the triple product and using the vector identity

Ω̄∗ = Ω̄∗‖b̂+ b̂× ū,‖, (2.32)

which is analogous to that in Hahm (1988),

˙̄X = ū+ Ω̄∗−1
‖ b̂× (∂t + ū · ∇̄ + v̄‖∇̄‖)ū+ v̄‖b̂. (2.33)

The second term in ˙̄X (2.33) is the strong-flow term. It is a polarisation drift

that originates from the change of frame and contains centrifugal and Coriolis

drift terms, which are the second and third terms in the parentheses, respec-

tively.

Projecting Equation 2.26 onto Ω̄∗ yields

˙̄v‖ = −Ω̄∗−1
‖ Ω̄∗ · [∇̄〈φ〉+ ū× (∇̄× ū) + (ū · ∇̄ + ∂t)ū].

By using Equation 2.32 with the first and last terms and Equation 2.18 with
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the second term, and expanding the cross product,

˙̄v‖ = −〈φ〉,‖ + Ω̄∗−1
‖ ū,‖ · b̂× (∂t + ū · ∇̄)ū. (2.34)

The second term in ˙̄v‖ (2.34) is the strong-flow term. It is absent from that of

Dimits (2010a,b), although a similar term is present in the second-order part of

˙̄v‖ of Dimits (2010a,b).

Inserting ˙̄X (2.33) into ˙̄ζ (2.28) yields

˙̄ζ = Ω + 〈φ〉,µ̄ − Ω̄∗−1
‖ ū,µ̄ · b̂× (∂t + ū · ∇̄ + v̄‖∇̄‖)ū.

The contributions to the Euler-Lagrange equations from the second-order

part of the gyrocentre Lagrangian are

˙̄X2 = Ω̄∗−1
‖ b̂× ∇̄H̄2,

˙̄v‖2 = −H̄2,‖ + Ω̄∗−1
‖ ū,‖ · b̂× ∇̄H̄2,

˙̄ζ2 = H̄2,µ̄,

H̄2 = 1
2 〈gX1 ·∇φ̃〉+ 1

2Ω−1〈δ1φ̃2〉,µ + b̂× 〈δ1φ̃ρ〉 · u,µ.

where H̄2 is the second-order part of the gyrocentre Hamiltonian (2.23). As is

the case for weak flows, the Euler-Lagrange equations that include the contribu-

tions from the second-order part of the gyrocentre Lagrangian can be simplified

by renormalising the potential.

Now we are in a position to use Liouville’s theorem to obtain a Vlasov equa-

tion. In order to complete the description of a collisionless particle-field system,

state-of-the-art gyrokinetic theory employs non-relativistic classical field theory.

However, symplectic strong flows necessitate a generalisation of conventional gy-

rokinetic field theory. This is described in the next section.
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2.5 Field theory

The particle-field system Lagrangian is

Ls =
∑
n

Ln + Lf , (2.35)

where Ln is the nth particle Lagrangian and Lf is the field part of the system

Lagrangian. Within tokamaks, the large E × B particle-drift kinetic energy

compared to field energy or quasineutrality implies that

Lf = 0.

It is useful to write our system Lagrangian (2.35) in terms of the species

distribution function f(z, t), where the species subscript has been suppressed.

This is analogous to writing the particle number N(t) in terms of the species

distribution function,

N =
∑
n

1 =

∫
d6zf,

where the species sum has been suppressed. Our discrete system Lagrangian

(2.35) then becomes

Ls =

∫
d6zfL. (2.36)

We wish to write our system Lagrangian in terms of our gyrocentre coor-

dinate. Going from our discrete (2.35) to our smooth (2.36) form of system

Lagrangian is coordinate system independent, so we may simply write down

our gyrocentre system Lagrangian as

Ls =

∫
d6Z̄F̄ (Z̄, t)L, (2.37)

where F̄ is the gyrocentre species distribution function.

We may equivalently obtain our gyrocentre system Lagrangian (2.37) by

transforming our original system Lagrangian (2.36) from coordinate z to Z̄.
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The integration element d6z transforms as

d6z = JZ̄→zd
6Z̄, (2.38)

where

JZ̄→z = |∂̄iTZ̄→zZ̄j |

is the Jacobian determinant and TZ̄→z is a mapping from coordinate system Z̄

to z. The distribution function f must transform as a scalar density,

f = (JZ̄→z)
−1F̄ . (2.39)

Performing these two transformations results in all the factors of the Jacobian

cancelling and yields the same gyrocentre system Lagrangian (2.37) as before.

The invariance of the original (2.36) and gyrocentre (2.37) system Lagrangians

is apparent from their manifest covariance.

Conventional gyrokinetic field theory (Sugama, 2000; Brizard and Tronko,

2011) simply transforms f as a scalar, as opposed to a scalar density (2.39),

and so arrives at a form of gyrocentre system Lagrangian that is not manifestly

covariant.

The Poisson equation is obtained from the stationary variation of the system

Lagrangian with respect to the potential. In order to comply with the demand

for general covariance, the variation must be performed on forms (2.35, 2.36,

2.37) of the system Lagrangian whose manifest covariance imply invariance.

Conventional gyrokinetic field theory varies a system Lagrangian that is not

manifestly covariant, so the variation is not guaranteed to be invariant.

Whilst we are able to write our Vlasov-Poisson equations in terms of our

gyrocentre coordinate, we are, ultimately, interested in equations that are writ-

ten in terms of the conventional gyrocentre species distribution function (Dubin
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et al., 1983; Brizard and Hahm, 2007)

F̄ ′(Z̄) = f(TZ̄→zZ̄), (2.40)

where F̄ ′ is ζ-independent,

F̄ ′,ζ = 0. (2.41)

It is, therefore, necessary to use the expression relating our original and gyrocen-

tre distributions functions (2.39) in our gyrocentre system Lagrangian (2.37).

The Jacobian in this expression (2.39) can be written in terms of the gyro-

centre Lagrange matrix (2.14),

JZ̄→z = |ω̄ij |
1
2 . (2.42)

This Lagrange matrix is a function of the symplectic part of the gyrocentre

Lagrangian (2.25), which, in turn, depends on the potential. In order to comply

with the demand for general covariance, the expression (2.39) should only be

used after the variation with respect to the potential has been performed.

Conventional gyrokinetic field theory uses a gyrocentre system Lagrangian

that is written directly in terms the conventional gyrocentre distribution func-

tion (2.40). In the absence of symplectic strong flows, the symplectic part of

the gyrocentre Lagrangian (1.9), the gyrocentre Lagrange matrix ω̄ij and the

gyrocentre Jacobian are all independent of the potential. Thus, care is only

needed for the case of a symplectic strong-flow theory.

The Vlasov equation is obtained from Liouville’s theorem,

˙̄F ′ = 0.

Our gyrocentre Vlasov equation is

F̄ ′,t + ˙̄ZīF̄
′
,̄i = 0. (2.43)
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Conventional gyrokinetic field theory (Brizard, 2000) obtains the Vlasov

equation from the system Lagrangian by prescribing the variation.

We will use the field theory described in this section to derive our Poisson

equation in the next section.

Unlike Dimits (2010a,b), our Vlasov-Poisson system is manifestly conserva-

tive as, ultimately, we obtain it as a whole, directly from our gyrocentre particle

Lagrangian (2.25) (Scott and Smirnov, 2010).

2.6 Poisson equation

We will derive our Poisson equation using both the manifestly conservative,

variational method described in the previous section and the original, direct

method (Dubin et al., 1983).

2.6.1 Variational method

The variation of our gyrocentre system Lagrangian (2.37) with respect to the

potential is

(δLs)φ =

∫
d6Z̄F̄ (δL)φ, (2.44)

where (δL)φ is the variation of the particle Lagrangian with respect to the

potential.

By using a variational method, it is possible to obtain a Poisson equation

from our gyrocentre Lagrangian up to zeroth order.

Zeroth order

Our gyrocentre Lagrangian up to zeroth-order is

Γ̄−1,0 = Γ̄−1+Γ̄0 = [A(X̄)+v̄‖b̂]·dX̄+µ̄dζ̄−
(

1
2 v̄

2
‖+µ̄Ω+〈φ〉

)
dt+ū·

(
dX̄− 1

2 ūdt
)
.

(2.45)
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The potential-dependent part of this Lagrangian (2.45) is

Γ̄−1,0φ = −〈φ〉dt+ ū · (dX̄ − 1
2 ūdt). (2.46)

We can use the expression relating our particle Lagrangian written as a 1- or

0-form (1.3) and express ū in terms of the potential (2.12) in order to vary the

potential-dependent part (2.46) of the Lagrangian (2.45) with respect to the

potential in the variation (2.44). This yields

(δLs−1,0)φ = −
∫

d6Z̄F̄{[〈φ+ δφ〉 − Ω−1∇̄〈φ+ δφ〉 · ( ˙̄X × b̂− 1
2Ω−1∇̄⊥〈φ

+δφ〉)]− [〈φ〉 − Ω−1∇̄〈φ〉 · ( ˙̄X × b̂− 1
2Ω−1∇̄⊥〈φ〉)]}

= −
∫

d6Z̄F̄ [〈δφ〉 − Ω−1∇̄〈δφ〉 · ( ˙̄X × b̂− Ω−1∇̄⊥〈φ〉)], (2.47)

where δφ is the variation of the potential and the pertinent variation is linear

(Morrison, 2005). By performing an integration by parts so as to move the

gyrocentre gradient acting on 〈δφ〉, the variation (2.47) can be written as

(δLs−1,0)φ = −
∫

d6Z̄〈δφ〉[F̄ + Ω−1b̂ · ∇̄× F̄ ( ˙̄X − ū)], (2.48)

where the surface term was evaluated to give zero. Expanding the integration

element as

d6Z̄ = dX̄dv̄‖dµ̄dζ̄, (2.49)

integrating over ζ̄ and expanding the gyroaverage (1.10) in the variation (2.48)

yields

(δLs−1,0)φ = −
∫

d3xδφ

∫
d6Z̄δ(X̄+ ρ̄−x)[F̄ +Ω−1b̂ ·∇̄× F̄ ( ˙̄X− ū)]. (2.50)

Upon requiring stationary variation,

(δLs−1,0)φ = 0,
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we can obtain the Poisson equation from our gyrocentre Lagrangian up to zeroth

order as

0 =

∫
d6Z̄δ(X̄ + ρ̄− x)[F̄ + Ω−1b̂ · ∇̄× F̄ ( ˙̄X − ū)]. (2.51)

For uniform F̄ ′, this Poisson equation (2.51) up to first order is

0 =

∫
d6Z̄δ(X̄ + ρ̄− x)(1 + Ω−1b̂ · ∇̄× ū)F̄ ′. (2.52)

In the weak-flow limit, this Poisson equation (2.52) is identical to the weak-flow

Poisson equation in the k⊥ρt ∼ ε limit up to first order with uniform F̄ ′.

We will now obtain the Poisson equation from our gyrocentre Lagrangian

up to second order (2.25).

Second order

The potential-dependent part of our gyrocentre Lagrangian up to second order

(2.25) is

Γ̄φ = −(〈φ〉 − 1
2 〈gX̄1 · ∇̄φ̃〉 − 1

2Ω−1〈φ̃2〉,µ̄)dt+ ū · (dX̄ − ūdt). (2.53)

We can use the expression relating our particle Lagrangian written as a 1- or

0-form (1.3) and express gX̄1 (2.20) and ū (2.12) in terms of the potential in

order to vary the potential-dependent part (2.53) of this Lagrangian (2.25) with

respect to the potential in the variation (2.44). This yields

(δLs)φ = −
∫

d6Z̄F̄{[〈φ+ δφ〉 − 1
2Ω−2〈∇̄(Φ̃ + δΦ̃)× b̂ · ∇̄(φ̃+ δφ̃)〉

− 1
2Ω−1〈(φ̃+ δφ̃)2〉,µ̄ − Ω−1∇̄〈φ+ δφ〉 · ( ˙̄X × b̂

−Ω−1∇̄⊥〈φ+ δφ〉)]− [〈φ〉 − 1
2Ω−2〈∇̄Φ̃× b̂ · ∇̄φ̃〉 − 1

2Ω−1〈φ̃2〉,µ̄

−Ω−1∇̄〈φ〉 · ( ˙̄X × b̂− Ω−1∇̄⊥〈φ〉)]}

= −
∫

d6Z̄F̄ [〈δφ〉 − Ω−2〈∇̄Φ̃× b̂ · ∇̄δφ〉 − Ω−1〈φ̃δφ〉,µ̄

−Ω−1∇̄〈δφ〉 · ( ˙̄X × b̂− 2Ω−1∇̄⊥〈φ〉)]. (2.54)
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By performing integrations by parts so as to move the derivatives acting on δφ,

the variation (2.54) can be written as

(δLs)φ =−
∫

d6Z̄〈δφ[(1 + Ω−2∇̄Φ̃× b̂ · ∇̄ + Ω−1φ̃∂µ̄)F̄

+ Ω−1b̂ · ∇̄× F̄ ( ˙̄X − 2ū)]〉,
(2.55)

where the surface terms have been evaluated to give zero. Expanding the inte-

gration element (2.49), integrating over ζ̄ and expanding the gyroaverage (1.10)

in the variation (2.55) yields

(δLs)φ =−
∫

d3xδφ

∫
d6Z̄δ(X̄ + ρ̄− x)[(1 + Ω−2∇̄Φ̃× b̂ · ∇̄ + Ω−1φ̃∂µ̄)F̄

+ Ω−1b̂ · ∇̄× F̄ ( ˙̄X − 2ū)].

(2.56)

Upon requiring stationary variation, we can obtain our Poisson equation as

0 =

∫
d6Z̄δ(X̄ + ρ̄− x)[(1 + Ω−2∇̄Φ̃× b̂ · ∇̄ + Ω−1φ̃∂µ̄)F̄

+ Ω−1b̂ · ∇̄× F̄ ( ˙̄X − 2ū)].

(2.57)

We present an alternative, direct method to derive our Poisson equation in

the next subsection.

2.6.2 Direct method

Here, the Poisson equation is

0 = ρc, (2.58)

where ρc is the charge density. The charge density can be written in terms of

the distribution function such that this Poisson equation (2.58) becomes

0 =

∫
d3vf. (2.59)
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This Poisson equation (2.59) can be written in terms of an integral over z as

0 =

∫
d6zδ(x− r)f, (2.60)

where r is the position.

This Poisson equation (2.60) can be equivalently evaluated in terms of either

our guiding-centre or gyrocentre coordinate.

Guiding-centre coordinate

We can perform a change of variables from our original coordinate z to our

guiding-centre coordinate Z.

The integration element transforms as

d6z = JZ→zd
6Z.

We can use this, the relation between our original and guiding-centre position

(1.6) and the conventional guiding-centre species distribution function

F ′(Z) = f(TZ→zZ)

in the Poisson equation (2.60) to yield

0 =

∫
JZ→zd

6Zδ(X + ρ− r)F ′.

Once again, we are interested in equations that are written in terms of the

conventional gyrocentre distribution function. In order to achieve this, we may

use the action of the Lie transform (2.13) on scalars,

Lnf = gan∂af, (2.61)

to relate the conventional guiding-centre and gyrocentre distribution functions
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as

F ′ = TF̄ ′(Z).

The Poisson equation is then

0 =

∫
JZ→zd

6Zδ(X + ρ− r)TF̄ ′. (2.62)

The guiding-centre Jacobian determinant is

JZ→z = |∂̄iTZ→zZj | = Ω∗‖+ρ ·Ω×u,µ+Ω−1εi′j′ui′,1uj′,2 +ρi′uj′,µui′,j′ , (2.63)

where the guiding-centre Jacobian matrix is

∂i′TZ→zZj′ =



1 0 0 0 −v2v
−2
⊥ ρ2

0 1 0 0 v1v
−2
⊥ −ρ1

0 0 1 0 0 0

u1,1 u1,2 u1,z 0 u1,µ + ρ2ρ
−2 v2

u2,1 u2,2 u2,z 0 u2,µ − ρ1ρ
−2 −v1

0 0 0 1 0 0


and εi′j′ is the two-dimensional Levi-Civita pseudotensor. We obtain the same

result by evaluating this Jacobian written in terms of the Lagrange matrix

(2.42), where the non-zero Lagrange matrix components are

ωX′iX′j = εi′j′k′Ω
∗
k′ ,

ωXv‖ = −b̂,

ωXµ = v−1
⊥ ρ̂ ·∇u− u,µ

ωXζ = ρv̂⊥ ·∇u

ωµζ = 1 + ρv̂⊥ · u,µ.
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By using the guiding-centre Jacobian (2.63) up to first order

JZ→z0,1 = Ω∗‖ + ρ ·Ω× u,µ

and the action of the Lie transform on scalars (2.13, 2.61) up to first order

(T±1F̄ ′)0,1 = (1± gi1∂i)F̄ ′, (2.64)

an evaluation of the direct Poisson equation (2.62) up to first order yields the

same expression as the variational Poisson equation up to first order (2.67), up

to a dummy variable (Dubin et al., 1983).

We may equivalently evaluate the direct Poisson equation (2.60) in terms of

our gyrocentre coordinate.

Gyrocentre coordinate

We transform directly from our original to gyrocentre coordinate.

We may transform the integration element, particle position and original

distribution function as before (2.38, 1.6, 2.40). This yields

0 =

∫
JZ̄→zd

6Z̄δ(X + ρ− r)F̄ ′.

The particle position (1.6) may then be transformed (Brizard and Hahm, 2007)

as

X + ρ = TZ̄→Z(X̄ + ρ̄),

yielding

0 =

∫
JZ̄→zd

6Z̄δ[TZ̄→Z(X̄ + ρ̄)− r]F̄ ′.

We may write this delta function in terms of the Lie transform (2.13) (Brizard

and Hahm, 2007) as

δ[TZ̄→Z(X̄ + ρ̄)− r] = T−1δ(X̄ + ρ̄− r).
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This yields

0 =

∫
JZ̄→zd

6Z̄[T−1δ(X̄ + ρ̄− r)]F̄ ′. (2.65)

By using the action of the Lie transform on scalars up to first order (2.64) and

performing an integration by parts so as to move the derivative within this Lie

transform, an evaluation of this gyrocentre direct Poisson equation (2.65) up to

first order again yields the same expression as the variational Poisson equation

up to first order (2.67), given that the surface terms can be evaluated to give

zero and

∂̄iḡ
i
1 = Ω−1v̄⊥ · ū,µ̄.

Weak-flow gyrokinetics is a very well established theoretical tool (Krommes,

2012). Symplectic strong-flow gyrokinetic theories have been criticised (Miyato

et al., 2009; Scott and Smirnov, 2010; Scott, 2013) for a lack of weak-flow con-

sistency. We consider the weak-flow limit of our Poisson equation (2.57) in the

next subsection.

2.6.3 Weak-flow limit

In order to take the weak-flow limit consistently, we will consider uniform F̄ ′.

We can evaluate our gyrocentre Jacobian written in terms of the gyrocentre

Lagrange matrix (2.42) as

JZ̄→z = Ω̄∗‖, (2.66)

where the non-zero gyrocentre Lagrange matrix components are

ωX̄i′ X̄j′
= εi′j′k′Ω̄

∗
k′ ,

ωX̄v̄‖
= −b̂,

ωX̄µ̄ = −ū,µ̄,

ωµ̄ζ̄ = 1.

This Jacobian (2.66) is not equal to the guiding-centre Jacobian (2.63). This
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arises from the symplectic dependence of the Jacobians (2.42) and the symplectic

parts of the guiding-centre (2.7) and gyrocentre (2.25) Lagrangians differing by

a gyroangle-dependent term. For weak flows, the two Jacobians are identical as

the symplectic parts of the two Lagrangians are identical.

By using an alternative form for the second-order part of our gyrocentre

Lagrangian (2.24) and our gyrocentre Jacobian (2.66), our Poisson equation up

to first order is

0 =Ω

∫
d6Z̄δ(X̄ + ρ̄− x)[(1 + Ω−1φ̃∂µ̄)F̄ ′ + Ω−2∇̄2

⊥〈φ〉F̄ ′

− Ω−1ρ̄ · (F̄ ′∇̄〈φ〉),µ̄].

(2.67)

By using a Fourier-space representation of the gyrocentre gradient of the gy-

roaveraged potential,

∇̄〈φ〉 =

∫
d3k(∇̄〈φ〉)keik·X̄ ,

the last two terms in this Poisson equation (2.67) are

2πi

∫
dv̄‖dµ̄d3k{k⊥Ω−1J0(k⊥ρ̄)− [ρ̄J1(k⊥ρ̄)],µ̄}(∇̄〈φ〉)keik·xF̄ ′ = 0.

Our Poisson equation (2.67) then becomes

0 = Ω

∫
d6Z̄δ(X̄ + ρ̄− x)(1 + Ω−1φ̃∂µ̄)F̄ ′. (2.68)

In the weak-flow limit, this Poisson equation (2.68) is identical to the weak-flow

Poisson equation up to first order with uniform F̄ ′.

We now have explicit forms for our Vlasov-Poisson equations.

The fluid limit is pertinent to turbulence analysis (Brizard and Hahm, 2007;

Miyato et al., 2009). We may now obtain a fluid equation for our system in the

next section.
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2.7 Fluid equation

We will obtain our fluid equation both by taking moments of our Vlasov equation

and by deriving a strong-flow reduced fluid equation.

2.7.1 Moment equation

Our Vlasov equation (2.43) is

F̄ ′,t + ˙̄XīF̄
′
,̄i + ˙̄v‖F̄

′
,v̄‖

= 0, (2.69)

where we have used the invariance of the magnetic moment (2.29) and the

gyroangle-independence of the distribution function (2.41). We can take a

gyrocentre-velocity moment of this Vlasov equation as in Brizard (1990), or

equivalently Miyato et al. (2009), to yield

ngy,t + ˙̄X⊥īngy,̄i = 0, (2.70)

where

ngy = Ω

∫
d6Z̄δ(X̄ + ρ̄− x)F̄ ′ (2.71)

is our gyrocentre density, we consider a dominance of perpendicular turbulence

(Hasegawa and Mima, 1977) and we have used

ngy,v̄‖ = 0.

We will now consider a two-species system by redefining ngy as our ion

gyrocentre density and writing our quasineutrality equation as

ngy = ne − np, (2.72)
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where ne is the electron density,

np = n0b̂ · ∇̄× ˙̄Xl

is the linearised (Scott and Smirnov, 2010) polarisation density in the k⊥ρt ∼ ε

limit up to second order,

n0 =

∫
d6Z̄δ(X̄ + ρ̄− x)F̄ ′0,

F̄ ′0 is uniform and static, ˙̄Xl is ˙̄X (2.33) in the k⊥ρt ∼ ε limit and we use units,

here and in the remainder of the thesis, such that

Ω = 1,

so as to admit comparison to the derivation of the Hasegawa-Mima equation

(Horton and Hasegawa, 1994) and aid numerical analysis. Furthermore, we will

take our electron density to be uniform and static,

ne = n0. (2.73)

We may then write our moment equation (2.70) as

d
dt b̂ · ∇̄× ˙̄Xl = 0, (2.74)

where

d
dt = ∂t + ˙̄Xl · ∇̄, (2.75)

˙̄Xl = ūl + b̂× (∂t + ūl · ∇̄)ūl (2.76)

and

ūl = b̂× ∇̄φ̄.

Symplectic strong-flow theories have been criticised (Scott and Smirnov, 2010;
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Scott, 2013) for a lack of consistency with reduced fluid equations. In the weak-

flow limit, this moment equation is identical to the Hasegawa-Mima equation,

which we describe in the next subsection, with ne = n0.

Our moment equation (2.74) is a gyrofluid equation (Brizard and Hahm,

2007; Miyato et al., 2009), which includes FLR physics, and, like the Hasegawa-

Mima equation, it is a vorticity equation.

We obtain our fluid equation by deriving a strong-flow reduced fluid equation

in the next subsection.

2.7.2 Reduced fluid equation

The derivation of the Hasegawa-Mima equation (Horton and Hasegawa, 1994)

uses an ordering similar to our strong-flow ordering (2.2) and makes use of the

Lorentz Force, ion continuity and quasineutrality equations. The procedure

is to construct an equation for the parallel vorticity Ω‖ by taking the curl of

the Lorentz Force equation and to then combine this with the ion continuity

and quasineutrality equations. The equation obtained, the Hasegawa-Mima

equation, is

d
dt (Ω‖ − lnne) = 0, (2.77)

where d
dt = ∂t + ūl · ∇̄ is the weak-flow limit of the d

dt (2.75) given in the

previous subsection, that is to say, with ˙̄Xl (2.76) containing the E × B but

not the polarisation drift, Ω‖ = b̂ · ∇̄× ūl is the weak-flow limit of the parallel

vorticity given in the previous subsection, that is to say, again, with ˙̄Xl (2.76)

containing the E × B but not the polarisation drift, ne = n0e
φ is an adiabatic

electron density, we use units, here and in the remainder of the thesis, such that

Te = 1

and Te is the electron temperature.

We can take the strong-flow limit of this equation (2.77) by including the

polarisation drift in d
dt and Ω‖. Additionally, we take the electron density to be
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uniform and static, as in the previous subsection, which corresponds to taking

the large-electron-temperature limit of the adiabatic response. By doing so,

we obtain a strong-flow reduced fluid equation that is identical to our moment

equation (2.74).

We present a numerical solution of the arbitrary-wavelength, dynamic-strong-

flow gyrokinetic theory presented in this chapter in the following chapter.
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Chapter 3

Discretisation

Symplectic strong-flow theories have been criticised (Miyato et al., 2009; Scott

and Smirnov, 2010; Madsen, 2011; Scott, 2013) for equation sets that depend

implicitly on the potential and its time derivative (Wang and Hahm, 2010).

In this chapter, we demonstrate the tractable nature of our Vlasov-Poisson

equations (2.33, 2.34, 2.57, 2.69),

F̄ ′,t + ˙̄XīF̄
′
,̄i + ˙̄v‖F̄

′
,v̄‖

= 0,

˙̄X = ū+ Ω̄∗−1
‖ b̂× (∂t + ū · ∇̄ + v̄‖∇̄‖)ū+ v̄‖b̂,

˙̄v‖ = −〈φ〉,‖ + Ω̄∗−1
‖ ū,‖ · b̂× (∂t + ū · ∇̄)ū,

0 =

∫
d6Z̄δ(X̄ + ρ̄− x)[(1 + Ω−2∇̄Φ̃× b̂ · ∇̄ + Ω−1φ̃∂µ̄)F̄

+ Ω−1b̂ · ∇̄× F̄ ( ˙̄X − 2ū)].

We describe our numerical scheme in the next section.

3.1 Scheme

From the pertinent numerical scheme options (Garbet et al., 2010), we choose

the particle-in-cell method. Here, Monte-Carlo markers are used to represent

distribution function quanta that are evolved along trajectories according to
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consistent fields. This is shown in Figure 3.1. We use a combination of spectralNucl. Fusion 50 (2010) 043002 Topical Review

x

v

t

A: load

B: push

C: assign
D: solve fields

Figure 4. In Lagrangian-PIC methods, marker initial positions are loaded pseudo- (or quasi-) randomly in phase space (A). Markers are
evolved along their orbits (B). Charge and current perturbations are assigned (projected) to real space (C). Field equations are solved (D),
e.g. on a fixed grid in real space.

x

v

t

D: solve fields

A: fixed grid

B: finite differences

)( ttfij ∆−C:

Figure 5. In Eulerian methods, a fixed grid is defined in phase space (A). Finite difference expressions are used (B) in order to obtain the
value of f at grid points at the next time step (C). Field equations are then solved (D) after integration over velocity space.

estimator. Indefinitely increasing N is not possible due to
the cpu time limitation: nonlinear gyrokinetic simulations are
very demanding in computer resources. Thus, several control
variates methods to reduce V have been applied. First, instead
of discretizing the whole distribution function f using markers,
it is better to write f = f0 + δf , with f0 a given function
of phase space coordinates, and use markers to discretize
δf only. The f0 contribution to the charge or current is
treated analytically and is usually considered as an equilibrium
distribution function f0 = feq. The question of the choice of
feq will be discussed in the next subsection. To obtain δf ,
an equation of evolution is integrated numerically along the
perturbed orbits: this is called the ‘δf scheme’ [69, 79–81].

More precisely, δf is written as a weighted Klimontovitch
distribution, with the particle weights wp = δf/g, g being the
PDF of the distribution of markers in phase space. The quantity
1/g can be viewed as the phase space volume ‘represented’ by
the marker and is conserved along the marker motion (Liouville
theorem). Another approach is to obtain δf directly from the
constancy of f along orbits Z(t): δf = f (Z(t)) − f0(Z(t))

[82]. For core turbulence, we have |δf | 
 feq, and the
sampling error is thus reduced by the corresponding large
factor. Further improvements to the δf scheme have been
devised, in particular in order to treat electromagnetic (EM)
perturbations, such as split-weight schemes [83–85]. The idea
is to separate out the adiabatic response, f = f0+f0eφ/T +δ̃f ,

10

Figure 3.1: In the particle-in-cell method, markers are loaded in phase space

(A), evolved or pushed along trajectories (B) and their charges are interpolated

or assigned onto real space (C). Alongside this, fields that are consistent with

the charge assignment (C) are solved for in real space (D) (Garbet et al., 2010).

(Frigo and Johnson, 2005) and central finite-difference methods for the fields.

In order to control the Monte-Carlo noise, a δf method is usually employed

(Garbet et al., 2010). Here, we write

F̄ ′ = F̄ ′0 + δF̄ ′, (3.1)

where we choose the analytic part F̄ ′0 to be Maxwellian,

F̄ ′0 = (2πT )−
3
2 e−

1
2 v̄

2T−1

,

43



we use units, here and in the remainder of the thesis, such that n0 = 1, T is the

ion temperature and the discrete part

δF̄ ′ ∼ ε.

We describe this discretisation in the next section.

3.2 Distribution function

We can define for marker n a weight

wn(t) = δF̄ ′nVpn, (3.2)

where δF̄ ′n is the average value of δF̄ ′ within our chosen marker phase-space

volume

Vpn = d5zdN−1

and dN is the number of markers in the redefined

d5z = Ω̄∗‖d
2X̄dv̄‖dµ̄dζ̄.

We distribute our markers uniformly (Jolliet, 2009) in the redefined

Z̄ = (X̄1, X̄2, v̄‖, v̄⊥), (3.3)

where X̄1 and X̄2 are both in the perpendicular plane. This corresponds to

(Jolliet, 2009)

dN = N(LxLyπ
2v̄2

maxT )−1d2X̄dv̄‖dv̄⊥dζ̄

and, therefore,

Vpn = Ω̄∗‖nv̄⊥nLxLyπ
2v̄2

maxTN
−1, (3.4)

where N is the number of markers, Lx and Ly are the lengths of the periodic two-
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dimensional spatial simulation domain in the x and y directions, respectively,

and we choose the input parameter v̄max to be given by

v̄max = 5v̄t.

The marker weight (3.2) is initialised by assuming

Ω̄∗‖ = Ω

in the marker phase-space volume (3.4).

Markers are initialised in Z̄ (3.3) using quasirandom, Hammersley sequences

(Rafaj lowicz and Schwabe, 2006). The marker phase space coordinate Z̄n is

initialised via

Z̄n = [X̄1n, X̄2n, arctan(v̄⊥nv̄
−1
‖n ), v̄n] (3.5)

= [h1
nLx, h

2
nLy, h

3
nπ, (nN

−1T )
1
2 v̄max],

where arctan(v̄⊥v̄
−1
‖ ) is the pitch angle,

hmn =
∑
o≥0

cmo(n)p−(o+1)
m ∈ (0, 1)

are the Hammersley sequences, n ∈ {1, . . . , N}, N is the number of markers,

cmo(n) is the oth coefficient in the unique expansion of n in base pm,

n =
∑
o≥0

cmo(n)pom, (3.6)

and is uniquely defined in terms of this unique expansion (3.6), and pm is a

prime number. From this (3.5), we compute Z̄n as before (3.3).

We choose the spatial dependence of δf in order to specify the desired po-

tential initialisation.

The code has been Message-Passing-Interface parallelised by distributing
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markers amongst processors. The field discretisation is unparallelised. The

code exhibits excellent strong scaling up to at least 512 processors.

We describe our field discretisation in the next section.

3.3 Poisson equation

Our Poisson equation (2.57) depends implicitly on the time derivative of the

potential. This is not the case for the weak-flow Poisson equation (Hahm,

1988). Thus, the method of solution of our Poisson equation deviates from that

for weak flows.

3.3.1 Quasistatic solution

For simplicity of illustration, we may write our Poisson equation (2.57) symbol-

ically as

φ = W + Iφ,t, (3.7)

where W represents the part of our Poisson equation (2.57) that is analogous to

the weak-flow Poisson equation (Hahm, 1988) and is related to the gyrodensity

(2.71) and the reciprocal of spatial polarisation operators and I represents the

part of our Poisson equation (2.57) that is related to the implicit dependence

on the time derivative of the potential and the reciprocal of spatial polarisa-

tion operators. For short timescales, we may write the general solution of this

equation (3.7) as

φ = φW + φIe
tI−1

, (3.8)

where φW is the inhomogeneous solution and φI ∼ 1 is a constant. According

to our strong-flow ordering (2.2),

I ∼ ε.
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This implies that potential initialisations (3.8) are allowed that violate the

fundamental low frequency ordering contained within our strong-flow ordering

(2.2).

In general, we have that

I ∈ C

and that, as the strong-flow formalism is an extension of the weak-flow one,

Re(I) ≤ 0.

We can, therefore, choose to solve our Vlasov-Poisson system in the quasistatic

limit by iterating the solution of our Poisson equation (3.7), where the first

iteration uses

φ = W.

For a spatially uniform F̄ ′0, our linearised Poisson equation does not contain

a term involving the time derivative of the potential and an alternative solution

method from that for weak flows is unnecessary.

3.3.2 Uniform background

We will use interpolation to pass information between our markers to our grid.

Using the simplest possible, nearest-neighbour interpolation, a one-dimensional

grid quantity is given by

Gn =
N∑
m=1

Mmi0(x̄m · ê1 − xn),
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where n ∈ {1, . . . , Nx}, Nx is the number of grid points in the x direction, M

is the value of a quantity at a marker,

i0(x) =


0, x < − 1

2∆x

1, − 1
2∆x ≤ x < 1

2∆x

0, x ≥ 1
2∆x

is the interpolant, ∆x = LxN
−1
x is the grid spacing in the x direction and xn is

the grid point position in the x direction.

The smoothness of this interpolation can be improved by instead using a

linear interpolant given by the convolution of i0 with itself,

i1(x) =


x+ 1, x ≤ 0

1− x, x > 0.

Simplicity and smoothness may be maximally optimised by using a minimal set

of contiguous piecewise polynomials or B-spline as an interpolant.

Our fluctuating density,

δn = Ω

∫
d6Z̄δ(X̄ + ρ̄− x)δF̄ ′,

is then

δnnm =

N∑
o=1

woN
−1
go

Ngo∑
p=1

i3(x̄o − xnm),

where m ∈ {1, . . . , Ny}, Ny is the number of grid points in the y direction,

Ng = max[ceiling(32v̄⊥v̄
−1
max), 4]

is the v̄⊥-dependent or adaptive number of gyroaveraging points (Hatzky et al.,

2002), i3 is a cubic B-spline interpolant (Jolliet, 2009) and xnm is the grid point

position. The density and potential for a single marker are shown in Figures 3.2
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Figure 3.2: The fluctuating density for a single marker on the two-dimensional

spatial gyrokinetic simulation domain. We see that markers do not represent

pseudo particles but pseudo gyrorings.

and 3.3, respectively. We see that markers do not represent pseudo particles

but psuedo gyrorings.

By using our δf method (3.1) to linearise (Scott and Smirnov, 2010) our

Poisson equation (2.57) up to first order, we obtain a Poisson equation that is

identical to the weak-flow Poisson equation (Hahm, 1988) up to first order with

uniform F̄ ′0 (2.68). By using this Poisson equation (2.68) with our quasineu-

trality equation (2.72), we find our k⊥-space fluctuating density (Dubin et al.,

1983) as

δnk⊥ = T−1[1− I0(Tk2
⊥)e−Tk

2
⊥ ]φk⊥ ,

where

δnk⊥ =
∑
k⊥

δne−ik·x,
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Figure 3.3: The fluctuating electrostatic potential for a single marker on the

two-dimensional spatial gyrokinetic simulation domain. We see that markers do

not represent pseudo particles but pseudo gyrorings.

In is the modified Bessel function of the first kind, n ∈ R and

φk⊥ =
∑
k⊥

φe−ik·x.

In general, spectral methods (Frigo and Johnson, 2005) have an error due to

the finite discretised spectral range or aliasing.

We are now able to specify our potential initialisation. We now wish to use

this to evolve the markers.

3.4 Vlasov equation

Our Vlasov equation depends implicitly on the time derivative of the potential.

Thus, we evolve our markers by modifying our chosen fourth-order Runge-Kutta
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time integrator such that it incorporates iteration.

3.4.1 Iterative solver

The fourth-order Runge-Kutta time integrator,

qm(t+ ∆t) = qm(t) + ∆t
6 (e1 + 2e2 + 2e3 + e4),

e1 = q̇m(qm(t), t), (3.9)

e2 = q̇m

(
qm(t) + ∆t

2 e1, t+ ∆t
2

)
, (3.10)

e3 = q̇m

(
qm(t) + ∆t

2 e2, t+ ∆t
2

)
, (3.11)

e4 = q̇m(qm(t) + ∆te3, t+ ∆t), (3.12)

where ∆t is the time step, uses evaluations of the potential and its derivatives at

the beginning (3.9), middle (3.10, 3.11) and end (3.12) of the time-step interval.

The evaluation of the potential and its spatial derivatives at these points (3.9,

3.10, 3.11, 3.12) does not pose a problem.

However, in order to evaluate the time derivative of the potential at these

points (3.9, 3.10, 3.11, 3.12), it is necessary, and sufficient, to additionally eval-

uate the potential, and some of its spatial derivatives, at time t+ ∆t
4 within the

time-step interval,

e0 = q̇m

(
qm(t) + ∆t

4 e1, t+ ∆t
4

)
. (3.13)

The evaluation of the time derivative of the potential at the beginning (3.9) and

middle (3.10, 3.11) of the time-step interval can be computed from forward,

φ̇(t) =
(

∆t
4

)−1[
φ
(
t+ 1

4∆t
)
− φ(t)

]
, (3.14)

and backward,

φ̇
(
t+ 1

2∆t
)

=
(

1
4∆t

)−1[
φ
(
t+ 1

2∆t
)
− φ

(
t+ 1

4∆t
)]
,

differences, respectively, that use this additional evaluation point (3.13). The
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evaluation of the time derivative of the potential at the end of the time-step

interval (3.12) can be computed from a backward difference that uses the eval-

uations at the middle of the time-step interval (3.10, 3.11),

φ̇(t+ ∆t) =
(

1
2∆t

)−1[
φ(t+ ∆t)− φ

(
t+ 1

2∆t
)]
.

We can create the additional evaluation point (3.13) by iterating a quarter

Euler time step,

qm(t+ 1
4∆t) = qm(t) + ∆t

4 q̇m(qm(t), t),

and a forward-difference evaluation of the time derivative of the potential (3.14),

where the first iteration neglects the polarisation drift and each iteration uses

the closest known value of the marker phase-space volume (3.4). The spatial

derivatives of the potential evaluated at the beginning of the time-step interval

are precomputed outside of this iteration loop.

Each of the original integrator evaluations (3.9, 3.10, 3.11, 3.12) are then

iterated with each iteration using the closest known value of the marker phase-

space volume (3.4).

In general, we expect the accuracy of our modified time integrator to be less

than that of the standard one.

For non-uniform F̄ ′0, we may consider simply using our δf method (3.1) to

find the time derivative of δF̄ ′ as

˙δF̄ ′ = − ˙̄F ′0

= − ˙̄R1L
−1
n F̄ ′0 − F̄ ′0ū(∂t + ū · ∇̄)ū

= − ˙̄R1L
−1
n F̄ ′0 +O(ε2),

(3.15)

where Ln � Lx is the density nonuniformity length scale in the x direction.

We now present convergence studies for our iterative method.
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Convergence

Our convergence simulations used 223 markers. A circularly symmetric solution,

as shown in Figures 3.4 and 3.5, is a static solution of our Vlasov-Poisson system.

Figure 3.4: The fluctuating density associated with a circularly symmetric so-

lution of the Vlasov-Poisson system on the two-dimensional spatial gyrokinetic

simulation domain. The simulation parameters are as in Subsection 3.4.1.

This static potential solution can be modified to give a dynamic solution by

adding a constant to the equation for ˙̄X1 (2.33) such that we have ū ∼ 1.

The relative error per iteration is shown in Figure 3.6. The convergence

ratio per iteration is of order ε.

We present the verification of our code in the next section.

3.5 Verification

We first present weak- and then strong-flow code verification.
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Figure 3.5: The fluctuating electrostatic potential associated with a circularly

symmetric solution of the Vlasov-Poisson system on the two-dimensional spatial

gyrokinetic simulation domain. The simulation parameters are as in Subsection

3.4.1.

3.5.1 Weak flows

As described in Subsection 2.7.1, the Hasegawa-Mima equation is a limiting case

of our Vlasov-Poisson system. The Hasegawa-Mima equation exhibits cascade

and inverse cascade phenomena (Horton and Hasegawa, 1994). Specifically, the

mode coupling coefficient contains the factor b̂ · k1 × k2, where k1 and k2 are

the wavevectors of two modes. Analytic linear growth rates may be computed

(Horton and Hasegawa, 1994) by using

|φk1
| � |φk2

| ∼ |φk3
| � |φkn

|, n 6= 1, 2, 3, (3.16)

where φkm
is the complex Fourier mode amplitude and n,m ∈ Z+.

Weak-flow verification was performed by computing linear simulated and
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Figure 3.6: The logarithm of the relative error εr as a function of the number of

iterations Ni in the iterative forth-order Runge-Kutta time integrator for time

step ∆t = Ω−1 (solid), 2Ω−1 (dashed). The simulation parameters are as in

Subsection 3.4.1.

semi-analytic Kelvin-Helmholtz instability growth-rate spectra. The Kelvin-

Helmholtz instability is brought about by the presence of velocity shear and

manifests as the exponential growth of the perturbation of a shear layer.

The simulations used 224 markers, cold ions, adiabatic electrons, a uniform

background ion density, ∆t = 1 and Ni = 0. The potential was initialised

to contain background and perturbation sinusoidal components in the y and x

directions, respectively,

φ = A(sin kyy + 10−4 cos kxx),

where A is the background potential amplitude, and kx and ky are the wavenum-

bers in the x and y directions, respectively. An example potential initialisation

55



is shown in Figures 3.7 and 3.8, where the magnetic field is in the z direction,

the flow is in the x direction and there is velocity shear in the y direction.

The evolution is such that the perturbed and coupled modes grow exponen-

tially, as shown in Figures 3.7 and 3.8. We see that we have many growing

modes. Thus, we do expect agreement with analytic, three-wave-coupling lin-

ear growth rates (3.16). Examples of the late time, saturated state of these

simulations is shown in Figures 3.9 and 3.10.

Distinct transient, linear and nonlinear evolutionary periods are visible in

the evolution of the growth rate of the perturbation, as shown, for example,

in Figures 3.11 and 3.12. Whilst we do not expect agreement with analytic,

three-wave-coupling linear growth rates (3.16), we do expect agreement with

semi-analytic linear growth rates computed in a similar manner to that of Rogers

and Dorland (2005).

During the linear period, our potential is given by

φa = A sin(kyy) + eγt+ikxx
∞∑

n=−∞
φne

inkyy, (3.17)

where γ is the linear growth rate and i in an exponent is the imaginary unit.

By substituting this potential (3.17) into the Hasegawa-Mima equation (2.77),

we obtain the eigenvalue equation

∞∑
n=−∞

(γ(n2k2
y+k2

x+1)+iAkxky((n2−1)k2
y+k2

x) cos(kyy))φne
inkyy = 0. (3.18)

By using
∞∑

n=−∞
φne

inkyy =

∞∑
n=0

an cosnkyy +

∞∑
n=1

bn sinnkyy

and the orthogonality of sine and cosine, the eigenvalue equation (3.18) can be

written in the form

Ma = γa, (3.19)

where M ∈ Cn×n is an infinite square matrix, n ∈ Z+, a = am and m ∈ Z∗. The
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Figure 3.7: The fluctuating electrostatic potential on the two-dimensional spa-

tial domain at the start (top) and transition from the linear to the nonlinear

period (bottom) of the gyrokinetic simulation of the Kelvin-Helmholtz instabil-

ity. The simulation parameters are as in Subsection 3.5.1.
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Figure 3.8: The Fourier-space fluctuating electrostatic potential at the start

(top) and transition from the linear to the nonlinear period (bottom) of the

gyrokinetic simulation of the Kelvin-Helmholtz instability. The simulation pa-

rameters are as in Subsection 3.5.1.
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Figure 3.9: The saturated two-dimensional fluctuating electrostatic potential in

real (top) and Fourier (bottom) space early in the nonlinear period of a gyroki-

netic simulation of the Kelvin-Helmholtz instability. The simulation parameters

are as in Subsection 3.5.1.
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Figure 3.10: The saturated two-dimensional fluctuating electrostatic potential

in real (top) and Fourier (bottom) space late in the nonlinear period of a gyroki-

netic simulation of the Kelvin-Helmholtz instability. The simulation parameters

are as in Subsection 3.5.1.
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Figure 3.11: The fluctuating electrostatic potential perturbation growth-rate

evolution during a Kelvin-Helmholtz instability. The simulation parameters are

as in Subsection 3.5.1.

eigenvalue equation in this form (3.19) can be solved numerically by computing

the maximum real eigenvalues of a truncation of M that corresponds to our

finite dicretised spectral range.

The simulated, semi-analytic (3.19) and analytic (3.16) linear Kelvin-Helmholtz

instability growth-rate spectra are shown in Figure 3.13. As expected, we

only have good quantitative agreement between the simulated and semi-analytic

(3.19) spectra.

Our simple implementation (3.15) of nonuniformity in F̄ ′0 agrees with the

drift-wave velocity (Horton and Hasegawa, 1994) given by the Hasegawa-Mima

equation for k⊥ρt ∼ ε, with a relative error of 4.72× 10−2.

We present the strong-flow verification of our code in the next subsection.
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Figure 3.12: The fluctuating electrostatic potential perturbation growth-rate

evolution during a Kelvin-Helmholtz instability. The simulation parameters are

as in Subsection 3.5.1.

3.5.2 Strong flows

Strong-flow verification was performed by comparing the simulated and analytic

Kelvin-Helmholtz instability growth-rate spectra of a shear layer.

Strong-flow verification simulations used 223 markers, ∆t = 1 and Ni = 16.

The potential was initialised to contain a shear layer with ū ∼ 1 dominated by

a single sign of the parallel vorticity and a sinusoidal perturbation in the y and

x directions, respectively. An example initialisation is shown in Figures 3.14

and 3.15.

The evolution is such that the perturbation grows exponentially, as shown

in Figure 3.14. Distinct evolutionary periods are visible in the evolution of the

growth rate of the perturbation, as shown in Figure 3.16. We can compare the

linear-period Kelvin-Helmholtz growth rate to that of an FLR MHD analysis of

a thin, incompressible shear layer (Nagano, 1978).
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Figure 3.13: The simulated (points), semi-analytic (3.19) (solid) and analytic

(3.16) (dashed) linear Kelvin-Helmholtz instability growth-rate spectra. The

simulation parameters are as in Subsection 3.5.1.

From Nagano (1978), the positive and negative parallel vorticity growth rates

are given by

γ± =
(
ū2k2

x ∓ 1
2ρ

2
t Ωū|k3

x|
) 1

2 , (3.20)

respectively. The dependence on the sign of the parallel vorticity is due to the

chirality of gyromotion (Nagano, 1978; Gingell et al., 2012). That is to say, the

net flow depends on whether the shear flow and gyromotion are correspondent.

The asymmetry is manifest in our Vlasov equation (2.33, 2.34, 2.69) through

Ω̄∗‖ (2.31). The effect has also been observed with hybrid models (Gingell et al.,

2012). It can be thought of as FLR or strong-flow symmetry breaking.

The simulated and analytic growth-rate spectra are shown in Figure 3.17.

We have good qualitative agreement between these spectra, with the changes in

the growth rate with the sign of the parallel vorticity having a relative error of
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Figure 3.14: The fluctuating electrostatic potential on the two-dimensional spa-

tial domain at the start (top) and transition from the linear to the nonlinear

period (bottom) of the gyrokinetic simulation of a Kelvin-Helmholtz unstable

shear layer. The simulation parameters are as in Subsection 3.5.2.
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Figure 3.15: The gyroaveraged E×B velocity initialisation in the y direction of

the gyrokinetic simulation of a Kelvin-Helmholtz unstable shear layer. Simula-

tion parameters are as in Subsection 3.5.2.

0.488.

We present the applications of our code to more general scenarios in the next

chapter.
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Figure 3.16: The fluctuating electrostatic potential perturbation growth-rate

evolution during a Kelvin-Helmholtz instability of a shear layer. The simulation

parameters are as in Subsection 3.5.2.
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Figure 3.17: The negative and positive parallel vorticity analytic (3.20) (solid

and dashed, respectively) and simulated (dotted and dot-dashed, respectively)

Kelvin-Helmholtz instability growth-rate spectra of a shear layer. The simula-

tion parameters are as in Subsection 3.5.2.
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Chapter 4

Applications

We have applied our code to more general shear layers as well as plasma filaments

or blobs, as shown in Figures 4.1 and 4.2, respectively. The edge of tokamak

Figure 4.1: A classic, GYRO tokamak simulation showing multiple shear layers

(Candy, 2008).

plasmas is associated with the formation and propagation of these blobs, as

shown in Figures 4.3 and 4.4. The propagation is due to ∇B polarisation and

is in the major radial direction of a tokamak torus, as shown in Figures 4.5 and

4.6. The damage to tokamaks caused by blobs motivates the understanding

of, for example, blob transport.
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Figure 4.2: A Mega Ampère Spherical Tokamak shot showing plasma filaments

or blobs during an edge localised mode (Kirk, 2012).

We may investigate the effects of strong-flows on blob transport by assuming

that blob formation and ∇B polarisation has already transpired. Thus, we

model a blob simply as a dipole potential, as in Figures 4.4 and 4.5.

We first consider more general shear layer scenarios in the next section.

4.1 Shear layer

In order to aid analytic comparison, the shear layer simulations presented in

Subsection 3.5.2 were initialised to be dominated by a single sign of parallel

vorticity. In this section, we will present more general simulations of the Kelvin-

Helmholtz instability of a shear layer.

The simulations used 223 markers, Ni = 16 and ∆t = 1. The potential was

initialised to contain a shear layer and a sinusoidal perturbation in the y and x

directions, respectively. Example potential initialisations are shown in Figures

4.7 and 4.8.

The evolution is analogous to that of our simpler shear layers in the previous

chapter, as shown in Figures 4.7 and 4.8. Additionally, by visual inspection, we

observe that the weak-flow evolution accords with the symmetry

φ(x, y) = −φ(−x,−y), (4.1)
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Plasma and Fusion Research: Review Articles Volume 4, 019 (2009)

to closed magnetic surfaces (ρ < 0) and scrape-off layer
(0 < ρ < 1) and wall shadow regions (ρ > 1) with strong
damping of all dependent variables to account for transport
along field lines intersecting material walls. All profiles
evolve self-consistently with order unity fluctuation levels.
Time series of the plasma parameters at fixed radial posi-
tions are recorded and analyzed similar to the experimental
data [48–50].

For a large range of model parameters, the numeri-
cal simulations show intermittent eruptions of plasma and
heat into the scrape-off layer. An example of the structures
observed in these simulations is presented in Fig. 5. Asso-
ciated with the blob structures are large amplitude bursts in

Fig. 5 Motion of blob-like structures in the particle density from
two-dimensional turbulence simulations. The vertical
line labeled ρ = 0 corresponds to the last closed flux
surface while the line labeled ρ = 1 corresponds to the
wall radius. The bottom panel follows a time 30/ωci af-
ter the top panel, where ωci = eB/mi is the ion gyration
frequency. The size of the simulation domain is 150 ρs

in the radial direction (horizontal axis) and 100 ρs in the
poloidal direction (vertical axis), where ρs = Cs/ωci.

the probe time series, as shown in Fig. 4. These were the
first simulations to reproduce the salient experimental ob-
servations and a detailed comparison with probe measure-
ments on TCV showed excellent agreement for the tempo-
ral correlations and statistical distribution of the particle
density and turbulence-driven transport in the scrape-off
layer [28–30].

Probe measurements in the TCV scrape-off layer
demonstrate that the fluctuations have universal proper-
ties for a large variation in experimental control parame-
ters [26–31]. This is clearly demonstrated in Figs. 6 and
7, which show the rescaled conditional averages and prob-
ability distribution functions of the particle density for a
scan in line-averaged density (ne measured in 1019 m−3)
and plasma current (Ip measured in kA). The probabil-
ity distribution functions of the particle density signals are
positively skewed and flattened due to the many large-
amplitude bursts in the time series. When appropriately
rescaled, the conditional averages and distribution func-
tions have similar shapes across both the density and cur-
rent scans. This strongly suggests that the same physical
mechanism underlies the fluctuations in all these parameter
regimes.

Fig. 6 Conditionally averaged particle density fluctuations in
TCV scrape-off layer for a scan in line-averaged density
and plasma current.

019-4

Figure 4.3: A simulation showing plasma filament or blob formation in terms of

density on a 150ρt× 100ρt spatial domain, where the bottom panel is at a time

30Ω−1 after that of the top panel and, here, ρ = 0 denotes the last closed flux

surface and ρ = 1 denotes the wall radius (Garcia, 2009).

as shown in Figure 4.7. However, for strong flows, we do not observe this

symmetry (4.1) and instead have strong-flow or, equivalently, FLR symmetry

breaking with

φ(x, y) 6= −φ(−x,−y), (4.2)
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chamber filled with argon gas at 10�5–10�4 torr. Since the
plasma density is typically 2� 1016 m�3, the ionization
fraction is only about 1%, and there is a constant back-
ground of neutrals even after breakdown.

The plasma is tracked by an array of 200 Langmuir
probes. The tip spacing is 7 cm horizontally and 7 cm
vertically, with triple resolution (horizontally) near the
center. The main Langmuir probe array is located at a
single toroidal angle, but other Langmuir probes are used
to verify the azimuthal symmetry of the blobs. The other
probes (not shown in Fig. 1) include 3 vertical lines of
stainless-steel cylinders and a horizontal line of cylindri-
cally shaped, heated tungsten filaments. These filaments
are used to measure the full I-V characteristic (analyzed by
taking into account finite sheath size, i.e., using ABR
theory [15]), and hence the electron temperature and
plasma potential. Heating the filaments between discharges
eliminates important surface contamination effects, and
prevents overestimation of the electron temperature (see,
e.g., [16,17]).

We observe experimentally for the first time the mush-
room blob shape, which has been seen in many simulations
(e.g., [13,18]). This shape is displayed in Fig. 2, which
shows the propagation of a typical blob in poloidal cross
section. The time step between adjacent density plots is
100 �s, and the first plot occurs 25 �s after the micro-

waves are turned off. The blob shape exhibits ‘‘wings,’’
which develop about a blob length away from the creation
region. The right-hand part of Fig. 2 shows the floating
potential with some overlaid density contours. The poten-
tial is obtained by combining data from a vertical array and
a horizontal array.

The propagation seen in Fig. 2 can be quantified and it is
found to depend on the neutral pressure in the chamber.
This dependence is explored in separate plasma discharges
covering a range of neutral pressures. As Fig. 3 shows, we
find that the blob’s center-of-mass speed is inversely pro-
portional to the neutral pressure. The speed measurement is
based on a time-of-flight calculation using density traces at
multiple probes. Also plotted is a line indicating that the
sound speed (cs �

�������������
Te=mi

p
� 2� 103 m=s assuming 2 eV

electrons) is an upper bound on the blob velocity. However,
the three low-pressure points that give evidence for this
bound are from blobs with different shape and very low
density.

To describe the blob propagation, we use the standard
vorticity equation [19] derived from MHD, with the addi-
tion of a neutral-collision term,

 r �
min

B2

Dr?�
Dt

�rkJk�
2

B
b�� �rp�r �

min

B2 �r?�;

(1)

where ? and k are defined with respect to the magnetic
field, D=Dt � @=@t� v � r, b � B=B, � � b � rb is the
magnetic curvature, � is the ion-neutral collision fre-
quency, and we have assumed v� cs and jB=rBj 	
jn=rnj 
 jv=rvj. The vorticity is given by r� v �
r2�=B (where v � �r�� B=B2). Equation (1) may be
simplified for our experimental geometry. We have purely
toroidal magnetic field B � Be� / 1=R, so that b � e�
and � � �eR=R. We then neglect rkJk, since the toroi-

FIG. 2 (color). Poloidal cross section of typical blob at 3
different times (�t � 100 �s), showing characteristic mush-
room shape. The density is calculated from ion saturation cur-
rent; its decrease is consistent with the expansion of the blob.
The blob propagation is consistent with the vertical electric field,
which is reflected in the potential structure at right. The overlaid
E�B velocity arrows show the velocity field of a vortex pair.
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FIG. 3. Blob center-of-mass speed versus neutral pressure
(Pn). The speed scales inversely with the pressure, but this
scaling appears to break down at low pressure. The error in
speed is approximated by the standard deviation of the inferred
blob speed as it fluctuates in time.

PRL 101, 015003 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
4 JULY 2008

015003-2

Figure 4.4: An experimental observation of the cross section of a plasma filament

or blob in terms of density at three different times each separated by 100µs (left)

and floating potential with density and velocity overlaid (right) (Katz et al.,

2008). S.I. Krasheninnikov / Physics Letters A 283 (2001) 368–370 369

Fig. 1.∇B plasma polarization and associated�E × �B drift result in
outward motion of plasma blob in tokamak far scrape off layer.

2. Equations and estimates

The ∇B drift of charged particles in a tokamak
magnetic field results in plasma polarization and,
correspondingly, the�E × �B plasma flow. This effect
of �E × �B flow becomes rather strong in the SOL
due to effective “sheath resistivity” [11] when plasma
contact with diverter targets at some distance from the
separatrix where the effects of strong magnetic shear
induced by X-point [12] can be neglected. Unlike [11]
we assume that perpendicular plasma motion is fast
and neglect impact of parallel plasma flow.

For simplicity we assume that the SOL plasma
temperature,T , is constant. Then, for a small plasma
resistivity electrostatic potential,ϕ, caused by the∇B
drift, is constant along�B and can be found from the
equation for electric current

(1)∇ �j⊥ + ∇||j|| = 0,

with �j⊥ = c( �B × ∇P)/B2, whereP = nT , n is the
plasma density,c is the light speed. Integrating Eq. (1)
along the field line and using boundary conditions
j|||target≈ entCs(eϕ/T ) at the targets (we assume that
|eϕ|< T ) we find

(2)
eϕ

T
= ρi

2ntB

∫
d�∇�nB · ( �B × ∇n),

wherent is the plasma density near the targets,Cs =√
T/M is the plasma sound speed,M is the ion mass,

e is the elementary charge,ρi is the ion gyro-radius,
and the coordinate� goes along the magnetic field
line. Consider plasma blob of densitynb with parallel
length �b situated around midplane and neglect the

effects of magnetic shear from Eq. (2) we have

(3)
eϕ

T
= �bρi

2Rnt

∂nb

∂y
,

where we used∇�nB = �ex/R, R is the tokamak ma-
jor radius, andx andy are the coordinates along major
radius and poloidal direction, respectively. Using ex-
pression (3) to find�E× �B drift velocity we write blob
plasma continuity equation in the form

∂nb

∂t
+Cs ρ

2
i

2

�b

R

{
∂

∂x

[
nb
∂

∂y

(
1

nt

∂nb

∂y

)]

− ∂

∂y

[
nb
∂

∂x

(
1

nt

∂nb

∂y

)]}
= 0.

(4)

For the casent = ξnb , whereξ = const, we find that
separable solution

(5)nb(t, x, y)= n(x)b (t, x)n(y)b (y),
with n(y)b (y) ∝ exp(−(y/δ)2), whereδ is the poloidal
scale length of the blob, transforms Eq. (4) to ballistic
equation forn(x)b (t, x), (∂t + Vb∂x)n(x)b = 0, with

(6)Vb = Cs
(
ρi

δ

)2
�b

R

nb

nt
,

which sets the velocity of a blob propagation in radial
direction. Notice that separable solution does not set
radial scale of the blobs.

Even though separable solution is just an example
it gives an estimate for radial velocity of the blobs
and allows to estimate radial distance,∆b, at which
blob can travel at it’s life time,τb ≈ �b/Cs , before
disappearing due to parallel plasma flows. Taking, as
an estimate,�b ∼ qR, whereq is the safety factor,
from Eq. (6) we find

(7)∆b ≈ Vbτb ≈ R
(
qρi

δ

)2
nb

nt
.

Analysis of radial motion of isolated blobs makes
sense only when∆b > δ, which gives

(8)δ < δmax=R
{(
qρi

R

)2
nb

nt

}1/3

and limits number of plasma particles in a blob,Nb ≈
nb�bδ

2,

Figure 4.5: ∇B polarisation and propagation of a blob (Krasheninnikov, 2001).

as shown in Figure 4.8.

Given our constant electron density (2.73), the fluctuating density may be

used as a proxy for the parallel vorticity. Thus, we may examine the mono-

71



Since, their theoretical description has been fastly
developing [44–47]. For the evolution of blobs in
the SOL it is important to understand that the
plasma in the SOL is not confined, but streaming
off along magnetic field lines toward the divertor
target plates. Plasma parameters thus change drasti-
cally along as well as across magnetic field lines,
opposite to the confined region. In the SOL flux sur-
faces can still be constructed, but loose their impor-
tance as on a SOL flux surface the plasma pressure
is not constant. Assuming that plasma is ejected as a
blob from the edge into the SOL over a finite paral-
lel extend, in a poloidal window of unfavorable cur-
vature, the blob will be a plasma cloud expanding
along magnetic field lines into vacuum while propa-
gating radially across magnetic field lines. Fig. 3
contrasts the blob evolution in the SOL with the
drift type dynamics in the edge region. With perpen-
dicular velocities of plasma filaments (VBlob) of a
couple of percent of the ion-sound speed cs [6], blobs
can move radially across the SOL, which typically is
a couple of centimeters wide (DSOL), before they
expand to the divertor target plates which are
meters ðLkÞ away: Lk=Cs � DSOL=V Blob.

The SOL does not honor the resistive MHD
equilibrium existing in the closed field line plasma
region. The Pfirsch–Schlüter current system can,
for example, not be closed and thus plasma proper-

ties are characterized by a balance between parallel
and perpendicular transport. Once again the time
averaged flow velocities do not reflect the redistribu-
tion of energy and particles during intermittent
transport events. There is no useful separation
between fluctuations and background in the SOL
and fluctuations easily exceed the long time average
values which define the background. In the SOL
fueling from the edge in interplay with losses to
the divertor determines the average profiles without
any relation to an equilibrium.

The description and simulation of blobs in the
SOL has made significant progress in the last few
years. Initial models were restricted to the SOL
and accounted for sheath dominated parallel losses
only [48–50]. Recently, 2D simulations with the par-
allel losses being due to parallel expansion of an
originally poloidally localised structure and encom-
passing a fueling edge region in addition to the
SOL, have had tremendous success in reproducing
detailed properties of the SOL, as transport statis-
tics. Predicting the SOL profiles of the Lausanne
based TCV Tokamak [51,24] and modeling of the
JET SOL profiles appears to be in reach [52].

With ever more detailed simulations available, it
should be noted that it becomes increasingly impor-
tant to also model the experimental diagnostics in
the simulations. Fig. 4 shows an ESEL simulated

Fig. 3. Difference of drift wave dynamics on closed field lines (left panel) to situation of a blob in the SOL (right panel).
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Since, their theoretical description has been fastly
developing [44–47]. For the evolution of blobs in
the SOL it is important to understand that the
plasma in the SOL is not confined, but streaming
off along magnetic field lines toward the divertor
target plates. Plasma parameters thus change drasti-
cally along as well as across magnetic field lines,
opposite to the confined region. In the SOL flux sur-
faces can still be constructed, but loose their impor-
tance as on a SOL flux surface the plasma pressure
is not constant. Assuming that plasma is ejected as a
blob from the edge into the SOL over a finite paral-
lel extend, in a poloidal window of unfavorable cur-
vature, the blob will be a plasma cloud expanding
along magnetic field lines into vacuum while propa-
gating radially across magnetic field lines. Fig. 3
contrasts the blob evolution in the SOL with the
drift type dynamics in the edge region. With perpen-
dicular velocities of plasma filaments (VBlob) of a
couple of percent of the ion-sound speed cs [6], blobs
can move radially across the SOL, which typically is
a couple of centimeters wide (DSOL), before they
expand to the divertor target plates which are
meters ðLkÞ away: Lk=Cs � DSOL=V Blob.

The SOL does not honor the resistive MHD
equilibrium existing in the closed field line plasma
region. The Pfirsch–Schlüter current system can,
for example, not be closed and thus plasma proper-

ties are characterized by a balance between parallel
and perpendicular transport. Once again the time
averaged flow velocities do not reflect the redistribu-
tion of energy and particles during intermittent
transport events. There is no useful separation
between fluctuations and background in the SOL
and fluctuations easily exceed the long time average
values which define the background. In the SOL
fueling from the edge in interplay with losses to
the divertor determines the average profiles without
any relation to an equilibrium.

The description and simulation of blobs in the
SOL has made significant progress in the last few
years. Initial models were restricted to the SOL
and accounted for sheath dominated parallel losses
only [48–50]. Recently, 2D simulations with the par-
allel losses being due to parallel expansion of an
originally poloidally localised structure and encom-
passing a fueling edge region in addition to the
SOL, have had tremendous success in reproducing
detailed properties of the SOL, as transport statis-
tics. Predicting the SOL profiles of the Lausanne
based TCV Tokamak [51,24] and modeling of the
JET SOL profiles appears to be in reach [52].

With ever more detailed simulations available, it
should be noted that it becomes increasingly impor-
tant to also model the experimental diagnostics in
the simulations. Fig. 4 shows an ESEL simulated

Fig. 3. Difference of drift wave dynamics on closed field lines (left panel) to situation of a blob in the SOL (right panel).
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Figure 4.6: Blob propagation through the edge, last closed flux surface (LCFS)

and scrape-off layer (SOL), where cs is the sound speed (Naulin, 2007).

tonically increasing weak- and strong-flow parallel vorticity at the end-state of

the simulation. This is shown in Figures 4.9 and 4.10. For weak flows, the

distribution of parallel vorticity is symmetric. For strong flows, the magnitudes

of the positive values of the parallel vorticity peak more than those of the nega-

tive values, however, there is a greater spread in the negative than the positive

values of the parallel vorticity.

We consider a circularly symmetric shear layer in the next subsection.

4.1.1 Circular symmetry

We may examine the Kelvin-Helmholtz instability of a shear layer with circular

symmetry.

The simulations used 223 markers, Ni = 16 and ∆t = 1. The potential was

initialised to contain a circularly symmetric shear layer. An example initialisa-

tion is shown in Figures 4.11 and 4.12.

The circularly symmetric shear layer is Kelvin-Helmholtz unstable, as shown

in Figures 4.11 and 4.12. Once again, we have the symmetric, weak-flow evolu-

tion (4.1), as shown in Figures 4.13, 4.14, 4.15 and 4.16, and the asymmetric,

strong-flow evolution (4.2), as shown in Figures 4.17, 4.18, 4.19 and 4.20.
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Figure 4.7: The weak-flow fluctuating electrostatic potential initialisation (top)

and symmetric evolution (bottom) of a Kelvin-Helmholtz unstable shear layer

on the two-dimensional spatial gyrokinetic simulation domain. The simulation

parameters are as in Section 4.1.
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Figure 4.8: The strong-flow fluctuating electrostatic potential initialisation (top)

and asymmetric evolution (bottom) of a Kelvin-Helmholtz unstable shear layer

on the two-dimensional spatial gyrokinetic simulation domain. The simulation

parameters are as in Section 4.1.
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Figure 4.9: The magnitude of the monotonically increasing weak-flow fluctuat-

ing density with the predominantly negative (solid) and predominantly positive

(dashed) values overlaid. The simulation parameters are as in Section 4.1.

We present the application of our code to the simulation of strong-flow blob

transport in the next section.

4.2 Blobs

The simulations used 226 markers, Ni = 16 and ∆t = 1. The potential was

initialised as a dipole. Example potential initialisations are shown in Figures

4.21 and 4.22. We may consider the dipole to be a pair of interacting point

vortices with equal but opposite parallel vorticities,

Ω‖1 = −Ω‖2. (4.3)

We observe propagation of this dipole, as shown in Figures 4.21 and 4.22.
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Figure 4.10: The magnitude of the monotonically increasing strong-flow fluctu-

ating density with the predominantly negative (solid) and predominantly posi-

tive (dashed) values overlaid. The simulation parameters are as in Section 4.1.

We may write the parallel vorticities (4.3) as the parallel components of curls

of velocity fields,

b̂ ·∇× v1 = −b̂ ·∇× v2.

We then have that the equal but opposite circulations are given by

∫
S1

∇× v1 · dS1 = −
∫
S2

∇× v2 · dS2,

where S1 and S2 are surfaces in the x-y plane and are enclosed by circles

centred around the each respective pole of the dipole. By Stokes’ theorem,

the circulations may also be given by

∮
∂S1

v1 · dl1 = −
∮
∂S2

v2 · dl2.
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Figure 4.11: The weak-flow, circularly symmetric, Kelvin-Helmholtz unstable

shear layer fluctuating density initialisation (top) and evolution (bottom) dom-

inated by positive parallel vorticity on the two-dimensional spatial gyrokinetic

simulation domain. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.12: The weak-flow, circularly symmetric, Kelvin-Helmholtz unstable

shear layer electrostatic potential initialisation (top) and evolution (bottom)

dominated by positive parallel vorticity on the two-dimensional spatial gyroki-

netic simulation domain. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.13: The weak-flow fluctuating density on the two-dimensional spatial

domain in the nonlinear period of the gyrokinetic simulation of a circularly

symmetric, Kelvin-Helmholtz unstable shear layer dominated by positive paral-

lel vorticity. The simulation parameters are as in Subsection 4.1.1.

In terms of azimuthal velocities, with the origin centred on each the vortex,

2πl1v1θ = −2πl2v2θ.

We may write these azimuthal velocities in terms of their respective circulations

as

v1θ = (2πl1)−1

∫
S1

∇× v1 · dS1 = −v2θ = −(2πl2)−1

∫
S2

∇× v2 · dS2.

The corresponding radial velocities are

v1r = v2r = 0.
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Figure 4.14: The weak-flow fluctuating density on the two-dimensional spatial

domain in the nonlinear period of the gyrokinetic simulation of a circularly sym-

metric, Kelvin-Helmholtz unstable shear layer dominated by negative parallel

vorticity. The simulation parameters are as in Subsection 4.1.1.

In other words, we have that each point vortex pulls the other around its centre

with equal but opposite azimuthal velocities, resulting in propagation.

For weak flows, the blob travels in a straight line, as shown in Figure 4.23.

For the corresponding Cartesian velocities of the point vortices, we have that

v1x = v2x

and

v1y = v2y = 0.

For the corresponding blob velocity vb, we have that

v̇b = 0,
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Figure 4.15: The weak-flow fluctuating electrostatic potential on the two-

dimensional spatial domain in the nonlinear period of the gyrokinetic simulation

of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

positive parallel vorticity. The simulation parameters are as in Subsection 4.1.1.

that is, the blob centre moves with a constant velocity and the each of the

vortices do not move relative to the blob centre or each other.

For strong flows, the blob does not travel in a straight line and instead

performs circular motion, as shown in Figures 4.22, 4.24 and 4.25. The effects

of strong flows manifest as velocity perturbations and shifts in the rotation

frequency of each of the point vortices that depend on the sign of the parallel

vorticity. This results in azimuthal point vortex velocities that are no longer

equal in magnitude. The motion consists of the point centred between the

point vortices performing circular motion and the point vortices performing

circular motion about this point, with all circular motions having equal angular

frequencies.

The simulated radius of curvature of the circular motion of the strong-flow
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Figure 4.16: The weak-flow fluctuating electrostatic potential on the two-

dimensional spatial domain in the nonlinear period of the gyrokinetic simulation

of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

negative parallel vorticity. The simulation parameters are as in Subsection 4.1.1.

blob is 2.36 × 103. By using similar triangles, we may estimate the analytic

radius of curvature of the circular motion of our interacting point vortex pair

model based on the initialisation of our strong-flow blob simulation (Figure 4.22)

as 2.48× 103.

We present the conclusion and future scope of this thesis in the next chapter.
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Figure 4.17: The strong-flow fluctuating density on the two-dimensional spa-

tial domain in the nonlinear period of the gyrokinetic simulation of a circularly

symmetric, Kelvin-Helmholtz unstable shear layer dominated by positive paral-

lel vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.18: The strong-flow fluctuating density on the two-dimensional spatial

domain in the nonlinear period of the gyrokinetic simulation of a circularly sym-

metric, Kelvin-Helmholtz unstable shear layer dominated by negative parallel

vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.19: The strong-flow fluctuating electrostatic potential on the two-

dimensional spatial domain in the nonlinear period of the gyrokinetic simulation

of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

positive parallel vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.20: The strong-flow fluctuating electrostatic potential on the two-

dimensional spatial domain in the nonlinear period of the gyrokinetic simulation

of a circularly symmetric, Kelvin-Helmholtz unstable shear layer dominated by

negative parallel vorticity. The simulation parameters are as in Subsection 4.1.1.
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Figure 4.21: The weak-flow dipole fluctuating electrostatic potential blob model

initialisation (top) and evolution (bottom) on the two-dimensional spatial gy-

rokinetic simulation domain. The simulation parameters are as in Subsection

4.2.
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Figure 4.22: The strong-flow dipole fluctuating electrostatic potential blob

model initialisation (top) and evolution (bottom) on the two-dimensional spatial

gyrokinetic simulation domain. The simulation parameters are as in Subsection

4.2.
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Figure 4.23: The weak-flow dipole fluctuating electrostatic potential blob model

on the two-dimensional spatial domain late in gyrokinetic simulation. The sim-

ulation parameters are as in Subsection 4.2.
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Figure 4.24: The strong-flow dipole fluctuating electrostatic potential blob

model on the two-dimensional spatial domain late in the gyrokinetic simula-

tion. The simulation parameters are as in Subsection 4.2.
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Figure 4.25: The path of the centre of the strong-flow dipole fluctuating electro-

static potential blob model on the two-dimensional spatial domain during the

gyrokinetic simulation. The simulation parameters are as in Subsection 4.2.
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Chapter 5

Conclusion

Gyrokinetics is a maximally optimal description of low-frequency magnetised

plasma turbulence.

We have presented a generalisation of gyrokinetic theory that allows dynamic

strong flows and is valid for arbitrary wavelength electrostatic potential pertur-

bations in slab magnetic geometry. We have obtained a substantially simpler

gyrocentre Lagrangian (2.25) than that of Dimits (2010a,b). We have presented

a symplectic strong-flow generalisation of gyrokinetic field theory such that,

unlike Dimits (2010a,b), our Vlasov-Poisson system (2.33, 2.34, 2.57, 2.69) is

manifestly conservative as, ultimately, we obtain it as a whole, directly from our

gyrocentre particle Lagrangian (2.25) (Scott and Smirnov, 2010). Despite the

symplectic representation of our strong-flow theory, our Poisson equation (2.57)

is consistent with that for weak flows (Hahm, 1988) at all wavelengths and the

fluid equation (2.74) obtained from our Vlasov-Poisson system is consistent with

fluid theory.

Again, despite our symplectic representation, we have demonstrated numeri-

cal tractability by solving implicit dependences using an iterative scheme. Weak-

and strong-flow code verification have been performed in limits that admit an-

alytic comparison.

Simulations show strong-flow symmetry breaking of the Kelvin-Helmholtz in-
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stability of a shear layer and blobs that manifest as asymmetries in the growth

rate and propagation, respectively, that depend on the sign of the parallel vor-

ticity.

We discuss the future scope of this thesis in the next section.

5.1 Future scope

The implementation of the gyrokinetic theory presented here in global gyroki-

netic codes such as ORB5 (Jolliet et al., 2007) would require a generalisation of

the theory to allow the treatment of electromagnetic potential perturbations in

general magnetic geometry. This is being pursued for the case with a velocity-

independent ū (Sharma and McMillan, 2015b).

The Hamiltonian representation of the strong-flow theory of Miyato et al.

(2009) admits proof of toroidal momentum conservation (Scott and Smirnov,

2010). A Hamiltonian formulation of our theory could be considered.

An improvement in our electron model and an extension of the code to three

spatial dimensions would allow full drift instability simulations to be performed.

We have used a spectral method for our field solver. Alternatively, an intrin-

sically conservative, arbitrary-wavelength finite-element method may be used

(Dominski et al., 2014).

Additionally, the iterative numerical scheme presented here may be gener-

alised by incorporating δF̄ ′ polarisation.

Finally, this thesis, and work derived from it, may lead to a fusion energy

solution.
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