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Abstract

Unmanned Micro Aerial Vehicles (MAVs) have the potential to operate @rsivenvironmentsut
are limited by the lack of robust algorithms for autonomous flight. iSH&rgely due to the sensing
and processing requirements that exceed the weight and power limitdtioisshardware. Recent
research has highlighted the potential to overcome these constraints by todkimgatural world,
in particular to the possibilities of using optical flow. This worlegants a novel biomimetic
algorithm that uses optical flow data generated from the on-board caf@cuadcopter MAV to
avoid obstacles in flight. Simulation results are presented showing the atypsatformance in a
range of flying scenarios. This work also highlights the huge patesf using low resolution
sensors and lightweight algorithms in the field of autonomous vehicteoton

l. I ntroduction

Unmanned Aerial Vehicles (UAVs) have increasingly diverse uses from s&amgscue and environmental
monitoring to military warfare and mine detection [1]. A UAV is preferabla tmanned aircraft for any mission
considered ‘dull, dirty or dangerous’ [2]. They have the potential to carry out complex tasks, such asaonpa
systematic search or navigating a dense unfamiliar environment, witkeédeigaccuracy and reliability than a human
pilot. Between 2005 and 2012, the number of unmanned to maimeeaft operated by the United States Air ¢eor
increased from on&-twenty to onein-three [3], and these systems are seeing considerable worldwide research
investment to develop their civil and military potential.

While technological advances in the aerodynamics, propulsion and materiate scieimproving UAVs all the time,
the vast majority still rely on remote pilot operation. The main reasothis is that they have a limited payload
capacity when compared with ground vehicles; this restricts the size t\waijpower of sensors and processors that
can be carried and imposes constraints on the complexity of algoritynsath employ.

The problem of autonomous control 10AV s has traditionally been regarded as a sub-field of robotics and control
engineering, but recent research has highlighted the potential for exploititigrss provided by nature [4]. Flying
insects and animals are proof that virtuosic aerial proficiency does miterachuge braior a multitude of sensors

or masses of computing power. The goal of this research was tousmkd the current level of understanding by
developing a biomimetic algorithm that mimics object avoidance approachesinusied natural world. The
performance of the algorithm was investigated with simulations condaotedleos of different flying scenarios.
The following paper consists of a brief literature review, problem ditation, methodology, simulation, results and

a discussion.

1. Literature

While UAV size, range and flight characteristics are improving rapidéysame cannot be said of robust autonomous
control techniques. Biomimetic approaches show the most promise tolgpeeagress in this area [4] [3 large
proportion of existing flight control and object avoidance systeelg on large, high power sensors and
microprocessors [6], but MAVs have payload restrictions that severatysiira, weight and power. Consequently,
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ontboard algorithms designed for these systems must be efficient enoughda low power computers and with
data from lightweight sensors [7].

A large body of research has investigated simultaneous localisation anthgnéplpAM) as a possible solution to
the problem of obstacle avoidance. This concept involves using sémg@ther depth data and generate a real-time
map of the vehicle environment, while simultaneously localising the vehithén this map. While conceptually
simple, this approach has often proved challenging to implememaatice [8] Other work has demonstrated that
object avoidance does not require the generation of a perfect 3D mapoctilenvironment. Ross et al. used a novel
imitation learning technique that allowed a small quadcopter UAV to navigate thaatigtiered forest environment
[9]. This approach gave reliable performance, but only after severtldpicted learning test runs, amounting to
over 1000m distance in total. Beyeler et al. developed a fixed-wing UAV plipith cameras weighing less than
7 grams, controlled using a simple microprocessor, that couldatavagitonomously through urban environments
[7]. Simulated flight times of up to 5 minutes were achieved using thigooation in a sparse environment consisting
of large rectangular buildings separated by 50m wide alleys, but it igmparfoe in more dense environments would
be more challenging. This lightweight implementation, which completedeslsuring and calculating on-board, was
only possible due to its reliance on optical flow data.

Optical flow is key to the success of flying animals. It provides an effioi@ans of extracting information about the
structure of the local environment and the potential for action withd [iL0]. Insect and bird brains do not build up
a perfect 3D model of their environment; rather, they extract just anetgil to navigate successfully, relying on
simple laws and movement thresholds to provoke actions like steer@ygtam oncoming obstacles [11] [1R}any
methods exist for calculating optical flow, but they can be broadly aased as sparse, where optiflow is
calculatedat points of interest within an image, and dense, whereafiibav is calculated over the whole image. In
comparison, sparse methods are less computationally demanding but éeesadsmurate than dense methods [13]
[14]. Optical flow based UAV control has been demonstrated with limited success aord#rained operational
situations. Many of these approaches utilise off-board processidgtafin order to carry out the optical flow
calculations [9]. Recent work has shown on-board computation is [dsilh this has mostly been limited to low
density environments with fixed-wing aircraft [7].

1. Problem Formulation

The following section provides an overview of the problem thatitbi& aimed to solve and the software and hardware
that was used.

A. Problem Definition

In this work, the video stream from the forward facing carmé&easmall quadcopter UAV was used as the input to an
algorithm that calculated optical flow data, then used this to determine ste@mngands that would enable the UAV
to avoid obstacles in flight. UAV roll, pitch and thrust commands were fixggvio straight, level flight, and the
algorithm issued commands to avoid obstacles by controlling the yavitée basic control diagram of this approach
is represented in figure 1.
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Figure 1 - Block Diagram of Control Problem
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The circled region of the control diagram indicates the extent of thethlgahat was developed in this research
with the camera feed acting as an input and a steering angle atpah & PID controller would then be used to
convert the steering angle into a yaw command that could be sent to theSink¥.the problem was simplified to

the case of yaw commands, the steering angle, which would act as tharRille, was represented in the drone
lateral field of view. The PID set-point would be at 0 degrees, in othts the PID controller would steer the drone
by trying to centre the steering angle in the drone lateral field of view.

B. Software

The C++ interface of the Open Source Computer Vision (OpenCV) librasyused to carry out optical flow
calculations. OpenCV 3.0.0 was selected as it contained hardware accelerationiesghbilitvould be important to
allow fast optical flow processing needed for real time UAV control. WithenOpenCYV libraries, optical flow
calculations were carried out with the Farneback optical flow function and developed previous work [15] [16]

C. Hardware

The main flying platform was a Parrot ARDrone, a 420 gram quadcefitea built in forward facing camera [17]
Camera data from the drone was transmitted using WiFi to a ground si@tibatRvas used to run the main algorithm.
On completion of the algorithm, the ground station PC would sgrmadvacommand back to the drone to change its
heading. The ARDrone camera transmitted data at 30 frames per sec8hadr{BR resolution of 1280 x 720 pixels.
The experimental environment used in this work was a small reddarflying room that could be configured with
different obstacle layoutsSimulations of thanan algorithm performance were run on test videos obtained from
ARDrone flights conducted in the flying room

IV. Methodology

The solution developed in this work builds upon a range of biologicalaneshs but most significantly, thénd-
thegap’ model proposed by Lin et al [12]. This model was developed to explain the filmths taken by birds flying
through obstacle fields. The researchers found that birds steer toharnter direction of the largest gap in their
optical flow field. An interpretation of this model showed potential to meet roathe requirements of the current
research, particularly in relation to simplicity and speed. For each caraare, fthe algorithm would evaluate a
suitable steering direction by identifying areas of low optical flow sinese regions typically represent gaps or the
location of more distant objects.

The main conceptual steps that the algorithm carried out are showari Ziggind explained in more detail below.

- ~ - ~ -~ ~
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Figure 2 — Algorithm Flow Diagram
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A. Optical Flow Calculations

The algorithm took two successive video frames and generataatieal dow field, which consisted of an array of
vectors that represented the optical flow magnitude at every point in the.ift@goptical flow calculations were
conducted with the Farneback OpenCV function, which implemented a mdtbalduating dense optical flow that
was developed by Farneback [14]. The optical flow calculations could be hynexdying a number of parameters.
Optimizing the Farneback algorithm for use in this work presented a tfddtwEen speed and accuracy in the flow
calculations. These choices are discussed in more detail in a later section.

B. Segmentation

After optical flow had been calculated for each frame, it was split into seps@@geents which corresponded to
potential steering directions. The average value of optical flow was calculated withiofe¢hese segments, and a
new optical flow frame was assembled from these averaged panspExsegmented flow can be seen in figure 3.

Figure 3 - 16 x 12 segmentation

C. Determine Steering Direction

The algorithm then used the segmented flow data to determine an ¢egpurgsdirection that would avoid obstacles
This was achieved by identifying the column of segments withotlvest average optical flow value and representing
the lateral co-ordinates of this region as the output steering angle. The stieritign was smoothed by using a
moving average over several fragne

V. Simulation

This section outlines the simulation environment used in this work. Itlatads the process of optimising the algorithm
performance.

A. DataAcquisition & Simulation

Videos from ARDrone flights were captured to be used to simulate thetlalggerformance. Flight videos were
recorded from the drone forward facing camera in small flyingnroextured cubical blocks were used to simulate
obstacles. The test flights involved a range of flight scenarios anthage of altitudes and speeds, both with and
without a fisheye lens adapter attached to the drone camera. Flights iguditeict collisions were also recorded. All
calculations were run on a laptop computer running a 2.2GHz Intel Coregrbeessor.
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Figure 4 — Still images from the UAV camera from arange of flying scenarios

B. Optical Flow — Farneback Optimization

As discussed, real time control was an important objective in thik. Wiese constraints suggested the entire
algorithm should run at a minimum frame rate of about 15 FPS (os @@mframe). This would allow optical flow
calculations on alternate frames.

Both the output quality and the speed of the optical flow algorithm Werefore importantOptical flow data was
used in the algorithm as the sole means of determining the appropriate slgedtign. Since the algorithm looked
for this direction by carrying out numerical calculations on the flow dtateas important for the data to have low
levels of noise, distortion, blurring, and otherwise to provide anratectepresentation of the physical environment
of the drone. Despite this, the segmentation averaging process that wageenhgtier in the algorithm meant that a
lot of flow detail would be lost, and therefore the speed of the flow calmsatould be given priority over the
accuracy.

The optical flow algorithm used in this work was the Farneback funfioom the OpenCYV libraryThe Farneback
function had 6 parameterEhe following approach was taken to tune these 6 parameters:

Initially all values were set to their default, and raw output from the Farkdbaction, along with the frame rate
achieved at this configuration,asrecorded. Following this, a first parameter was varied over a rdngdues and
the resulting changes to flow output and frame rate were obsenampromise between the quality and speed of
flow calculations was determined based on the considerations outlined abovevositifferent test video scenarios.
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Once this value had been determined it was set as the new default. Tdeisspcontinued for the 5 remaining
parameters until all had been tuned to a new value.

To illustrate this process, data is presented from the 14th frame of ke sadew of the drone flying towards a fixed
obstacle. The figures show the raw flow output after each successmeter had been set to its new value. Two
parameters had no noticeable effect on the flow data output and are therefhr@wotin the figure. In the greyscale
raw flow data, areas of high optical flow magnitude are depicted by ligteas and areas of low flow magnitude by
darker areas. The frame rate was calculated as the average for teeddngy frames in the sequence and is shown
in figure 5.

Parameter Changed Frame Rate (FPS)
All default values 5.3

Pyramid Scale 7.1

Pyramid Layers 7.1

Averaging Window Size 7.1

Iterations per Level 9.4

Pixel Neighborhood Size 10.4

Gaussian Standard Deviation | 10.4

Figure 5 — Table showing framerate after each tuning stage
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Figure 6 - Compound image showing optical flow output after each parameter optimization. Top left isoriginal cameraimage, top
right after pyramid scale, middle left after window size, middleright after iterations, bottom left after size of pixel neighborhood, and
bottom right final result after poly sigma

Figures 5 and 6 show the impact of successively tuning each gtaraon the optical flow output. The flow output
after optimization showed a small increase in noise levels and a small decreasgrig ioen compared to the
default, alongside a significant increase in speed. The final flow datefwagable quality to clearly determine the
outlines of obstacles and other structural features present in thimabiigage. This was accompanied by a 96%
increase in speed, giving a final frame rate of 10.4 FPS. While this ratstildelow the goal of 15 FPS, it should
be noted that the calculations were executed on a laptop computer with arst@sspr and without hardware
acceleration. The ground station PC used for controlling the drone wppedjwith a faster processor and a graphics
card, which would allow OpenCV to utilize hardware acceleration and shith wiuthe calculation to the graphics
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card, significantly increasing performance. It is fully expected tiese factors would provide an increase in speed
enough to achieve the desired frame rate of 15 FPS.

C. Segmentation

As outlined in the methods section, optical flow data was split into segmeatgésent potential steering directions.
The size and shape of the segments was expected to have a large inthagbenformance of the algorithm. The
segmented flow data needed to retain sufficient information about the strofctiheedrone environment, but also to
divide the flow into gaps large enough for the drone to fly throlrglddition, increasing the number of segments
would increase the number of splitting and averaging calculations trélaig was required to perform on each video
frame, reducing the frame rate and the possibility of real time control.

The composite figures, 8 and 9 show the algorithm output for increasingly fine unifeegngentation. Frames from
three different flying scenarios were used in order to simulate fibet ef’er a range of data. Scenario 1 involved an
approach passing a single obstacle, scenario 2 involved an appetaekibtwo obstacles and scenario 3 involved a
flight past a group of obstacles with the use of a fish-eye lens adapter.

The results highlighted that in order to recover a similar level of detail contwiitieid the original flow data, a
relatively fine segmentation approach was needed. For the example &laowes, this level of detail was reached
with flow segmentation approximately 64 segments wide and 32 séghigh (64 x 32). This result is unsurprising
since the flow segments were effectively being viewed like image pixelsasing the number of ‘pixels’ gave a
higher image resolution. More unexpected was the amount of udefuhation that could be observed with a coarsely
segmented flow. In figures 7 and 8, the 4x2 and 8x4 segmemstétith show clear dark regions in the direction of
gaps that would have represented good steering choices. The flow dgtaéndfifrom the fish-eye adapter shows a
less detailed overall view, with gap regions not as clearly differentiable ahwisiicindard lens.

The calculation time to segment the optical flow data increased roughly limétirithe number of segments making

up the flow. Importantly, the timing data showed that the algorithuld segment the optical flow data very quickly.
A 16x8 segmentation could be carried out in 4.4 milliseconds, vidicter 20 times quicker than the time taken to
calculate the optical flow, which took 96 milliseconds as optimized previously
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Figure7— Segmented flow output for
¥ Test Scenario 1. Segmentations 4x2,
8x4, 16x8, 32x16, 64x32, 128x64 shown

Figure 8 — Segmented flow output for Figure 9 — Segmented flow output for
Test Scenario 2. Segmentations 4x2, 8,4, Test Scenario 2. Segmentations 4x2, 8,4,
16x8, 32x16, 64x32 and 128x64 shown.  16x8, 32x16, 64x32 and 128x64 shown.
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D. Gap-finding Simulations

The final stage of the algorithm used the segmented optical flow data to detdvenidtene steering direction. This

was achieved by identifying the location of the column of segmeitiistiie lowest optical flow magnitude and

representing it as a steering angle in degrees. The ability of the algorithoutataly and reliably identify the gap

direction was heavily influenced by the size of segments usedhgitie focus of the first part of this section.
Additionally, the steering output generated from this process wns unsteady, since switching between flow
columns generated step changes in the steering output.

Simulations in this section were conducted with two test videos. Videolvau/the drone flying towards a single
obstacle just to the right of center, while video 2 involved a flightipad®etween two obstacles. Figure shows a
still from test video 1 indicating the axis system used in thelations. The lens field of view was 68 degrees, and
the origin was located at the geometric image center

(-38,0) | (+34,0)

Figure 10 — Simulation axis system

In order to simulate the gap direction, for each frame in a video thanéfright edges of the gap were identified
visually and converted into an angle in degrees. In the followingdigthe left and right edges of the main gap (there
may have been more than one present) as viewed from the drone eamplatted as dashed blue and red lines
respectively.

Timing data is not presented for the gap finding section of the algdotcause all operations took <1ms.

Segmentation
The algorithm identified a steering direction by evaluating the segmentnregth the lowest optical flow.
Simulations for a range of segmentation approaches showed the steering dij@eti@nvery unsteady output. The
output oscillated over the gap direction and also showed a tendency to switekrbeps if more than one was
present. Coarser segmentation gave a lower mean steering error, but @sbrapt changes in steering direction
and less range. A 4x2 segmentation was identified as giving a good casghmiween these factors.

Moving Average
The steering output was smoothed using a moving average. Simulatiomsdsti@ introduction of the moving
average reduced the mean error and smoothed the oscillations that were pridseatiginal output. Simulations
were used to investigate the effect of increasing the number of frachedeid in the moving average on the steering
output. Figure 11 shows the steering angle against time in relation &ottied gap direction (dashed line) with a
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different number of frames included in the moving averageastfound that the optimum level varied with different
scenarios, but including around 60 frames gave good behavior isibotfation cases, as can be seen from figure

12.
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Figure 11 - Graph showing algorithm output against time with different moving aver ages for
scenario 1. Visual gap direction is shown for comparison
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Figure 12 - Graph showing simulation mean error against number of moving aver age frames
for two test scenarios. Scenario 1 isshown in blue and scenario 2 isshown in red

VI. Results
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This section outlines the algorithm performance after the optimisatiaitedkin the previous section.

The final algorithm performance was evaluated using simulation videos¢hatdifferent from those used in the
optimization process described previously. Two video scenarios were diexssmse they presented a challenging
object avoidance problem. Scenario 3 (figure 13) involveddiitie drone through the center of a very narrow gap.
Scenario 4 (figure 14) involved flying the drone towards an obstaefemaking a sharp right turn to avoid it, before
steering left again through another gap. The results were obtained usi@gsegdwentation and with a 60 frame
moving average.

-34.0
-30.0
-26.0
-22.0
-18.0

__-140

-10.0
W\/\\
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26.0
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34.0

Angle (degrees

Left Edge = Right Edge Algorithm Output

Figure 13— Algorithm steering output compared with visual gap direction for narrow gap navigation scenario

The results of video 3 shows the algorithm steering output when travidtimggh a narrow gaffigure 13) At the
beginning of the simulation, the gap represented about 10 degrdes drone field of view. The steering output
remained within the gap direction for the majority of the simulationshadved a low mean error of 3 degrees. At
approximately 5 seconds, the steering output was observed to divergels the left edge of the gap. This was
followed by a strong steering direction in the opposite direction, befereutput returned to the gap center. Despite
this behavior, the short period of the divergence and the nature ofrtipegsatory motion mean that it is probable
that the drone would have navigated successfully through the gap preesehtedgimulation.
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Figure 14 — Algorithm steering output compar ed with visual gap direction for alter native scenario

The simulation on video 4 (figure 14) shows the algorithm perfocemana challenging scenario. The steering output
demonstrated two discrete periods of divergence, occurring at 6 ssetdds, which were followed tan over-
compensatory movement in the opposite direction. This behavior resultéiim\ealue of mean error of 12 degrees
from the gap center. While the algorithm steering commands did coincidéheitieneral gap direction, the two
divergent behaviors mean that it is questionable whether the drand have successfully navigated the field of
obstacles in this simulation. A longer moving average might have dueelivergent tendency, although it would
also have slowed the response speed.

VII. Conclusion

This work has demonstrated a novel biomimetic algorithm for use with Uitaole avoidance. By simplifying the
control problem down to yaw control, a simple algorithm was able tsbd to simulate obstacle avoidance in a range
of flying scenarios. The main bendfitthe approach highlighted in this work - using optical flow injeoction with

a simple control algorithm - is that it does not require a lot of sensing qrutioig power. This makes it particularly
suitable for use with small, lightweight UAVs. While some promising resudte obtained in the simple simulations
outlined, testing the performance of the algorithm using more rigmioudation techniques and ultimately with a
real flying scenario is important before firm conclusions can be reached

Contrary to the assumption$a lot of existing optical flow research, this work shows that the qualitptiéal flow

data generated from camera motion through an environment is relativatgithge to the camera motion. The range

of translatory and rotational movement that naturally arise from thiemaf a camera attached to a moving vehicle
produce optical flow output with a consistently high level of structdesdil. A limiting factor in a lot of previous
work has been the weight and power requirements of the micegsars and sensors that were needed, but the current
research shows that lightweight approaches have the potential to fulfill thegealerof the field. Taken together,
these findings suggest an alternative approach to developing autonomalssvéitat can yield better progress.
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Rather than becoming preoccupied by the quest to capture ever morgexdetia, we should take inspiration from
nature by finding better ways of using the data we already have.
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