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Bio-Inspired Visual Navigation for a Quadcopter
using Optic Flow

Chelsea SabpAlex Copé, Kevin Gurny, Eleni Vasilakf, and James A. R. Marshall
University of Sheffield Sheffield UK, S10 2TN

Small Unmanned Air Vehicles (UAVSs) have become increasingly used in many fields to keep
up with demands for technological growth and due to their unique ability to provide an
“eye-in-the-sky”. However, traditional guidance systems are not always suitable for a
transition to smaller UAVs. Honeybee navigation has long been proposed as a basis for
developing navigation for robotics as they are known to solve complex tasks efficiently and
robustly. An approach for bio-inspired navigation using optic flow is presented here based
on honeybee reactive flight control. This approach istested and verified in the benchmark
hallway navigation problem. It is shown that the control approach can explain a wide-range
of biological behaviorsusing minimal sensorssimilar to flying insects.

I. Introduction

Increasingly over the years, autonomous Unmanned Aerial Vehicles (UAVs}iageused to perform missions that
are considered “dull, dirty, and dangerous”, such as operations in nuclear power plants, agricultural monitoring, wild-

fire surveillance, border patrols, and weather forecasting [1]. This is due to UAV’s unique ability to provide an “eye-
in-thesky” and collect data from countless different sensors. Due to progress initfeumization of electronics,
UAVs are becoming much smaller (<20 Ib) and more affordable. Adsanc®ensors, processing, and batteries have
made these technologies low-weight, low-power, and low-cost and alloesel simall UAVs (sUAVS) to broaden
their user group and applicat®n

The complications of flight for air vehicles are especially compoundeslfak's. They are more likely to operate in
complex missions (such as searching buildings or other confined dreato their agile nature and are much more
heavily affected by small changes in their environment. Since they are morddiligiyat lower altitudes, variations
in terrain need to be taken into consideration. Additionally, winal ¢®nstant challenge as sUAVs fly at a much
“slower” airspeed of about 10-20 meter/second. At 50-100 meters above ground level, wind ishalbaut 5-10 m/s
depending on conditions which means that SUAVs can easily be thfdwourse. Furthermore, the reduced payload
capabilities of small UAVs mean that heavy sensors and processorsarfiest be utilized. It is frequently the case
that GPS is unavailable or imprecise, state estimators are inaccurate, and that weight restrictions don’t allow for the
redundancy of multiple sensors.

The limitations imposed by these constraints are especially acute if the UAV inalbdesan in its control loop. A
key factor limiting UAV growth is therefore their ability to display autonom@and intelligent control with little
human intervention [2]. The study of flying insects is interesting fiieenpoint of view of SUAV design, because
they share similar constraints (i.e. small size, low weight, and low enengyroption). There has been extensive
research in this area in order to enable robots with similar capbditid with comparable efficiency [3].

This research exploits the knowledge of honeybee visual navigation tepl@vkio-inspired control architecture for
a sUAV. This paper gives the biological inspiration and current efetes-art, presents the navigation task, describes
the adapted control methodology, and presents and discusses experieseiital
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1. Honeybee Navigation for UAV Control

Despite their relatively small brains, individual social insects of many speciestingvisingly advanced cognitive
abilities and in particular, a great capacity for learning. These abilities ageiadlspwell demonstrated in the
honeybee Apis mellifera. In particular, there has been extensive reseaetient years into honeybee vision and
flight navigation as bees are known to have impressive capabilities in thesksrégarexample, honeybees will seek
out food over many miles and directly return to their hive, provideigational instructions to each other, use
landmarks for location identification, distinguish colors to idgngidod sources of food, navigate in corridors and
other, complex environments, and morkg [3

Though much focus is on replicating experimental and theoretical navightimmeybees, the mechanisms described
are very similar in other flying insects [4]. Flying insects are capatdgite flight at low speeds, complex obstacle
avoidance, vertical take-off and landing, and hovering for lonipgeat a time. Insects are partially capable of such
a wide range of tasks despite their small brain, sigeause they are able to detect motion in their visual field using
Elementary Motion Detectors (EMD) to discern Optic Flow (OF). Thigscdppw encodes information about the
angular velocity at which any environmental feature moves past the visual field dvel wsed to estimate motion of
an object. Recent studies have shown that the optic flow visual praresagiabilities of honeybees can be uted
control their course, estimate distance travelled and flight duratiord abstacles, regulate flight speed, and land
smoothly [5-8].

One of thebee’s most impressive features is its ability to navigate with limited sensory feedback. Sensors used in
navigation for flying insects mainly include the chemical sensors, halrés;ompound eyes and their constituent
ocelli. Honeybee olfaction plays an important role in bees’ daily lives and is what allows them to communicate with
each other, detect dangers, and forage on thousands of flowtesritifetime as it is the primary sense used to
differentiate flowers. Ododetection primarily takes place on the bees’ antennae where the olfactory system has two
tracks to provide two separate bits of information: (1) generatnmaftion about what the odor is and (2) more
specific information about where and when theroaturred[9]. It is likely this parallel processing which allows
navigation to odors cues despite the complexity of many mixeds ¢tif. Aside from optic flow detection, the
compound eyes provide information for object and landmark recognib@tion, and heading correction¥]]. In
addition to reactive heading corrections, bees use a sun compaasif@ation and the ocelli play a role in providing
this information [12 Finally, the halteres are the biological equivalent of a gyroscope andigrestimated
feedback about body angular velocities][13
Honeybee/Flying Insect Bio-Inspired Quadcopter
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Figure 1: Bio-Inspired Control Architecturefor a Quadcopter*
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Currently, little is known about the physiology behind flight contneichanisms14-15]. Experiments suggest that
there are at least two levels of control and that these can be summarized as: lowezaletired, control and higher-
level, active navigation control (§ee Figufe 16][ For low-level control, the halteres, ocelli, and flow feedback from
the compound eyes are used to stabilize flight by mediating corrective refexdsgh-level control, odor cues and
visual feedback are sent to the mushroom bodies for action-seledideaaming L7].

There is a lot of interest in the sSUAV community to develop reactntrol for better low-level autonomy so as to
free up mission control to make better high-level decisions above shows the parallgisnisect sensing
and control with a bio-inspired scheme for SUAVs; the focus inréisisarch is on reaeé control The controlusng
optic flow by bees is often investigated by their capability to navigateritdors (sefe Figure] 2 below). The behavior
in bees (and therefore, the control development discussed in theegtirn) are largely explained by three simple
rules: (1) maintain lateral position by balancing the angular velocity in thardftight eye, (2) uphold forward
velocity by regulating the total angular velocity against an empirical setpoint3padj(st altitude by balancing the
ventral angular velocity against an empirical setpol®&19]. When the environment is static, the optic flow is
approximately equal to the angular velocity, and these terms are ségrnterchangeably.

Figure 2: Navigation of a Honeybeein a Corridor for Visual Input with Varying Spatial Frequencies[20]

The mechanisms behind these behaviors in bees are studied and often itgpgleomemobots so as to better
understand them. Optic flow-based control applications have been stemed with limited performance under
constrained operational situations. Most successful demonstrationbais have used optic flow for autonomous
hovering using a den-ward facing camera [20]. Some have tried to extend this work tadm@osition- and
velocity- control with limited results, and they don’t explain the wide-range of bee capabilities using optic floRd{

27].

Several groups have tried to more accurately represent these bee mectathemnbsan just generating bio-inspired
algorithms. Franceschini’s optic-flow regulator model is shown to control vertical lift of a micrelitopter by
regulating the ventral optic flow, displaying remarkably similar behawionsects in landing, maintaining altitude,
and headwind flight phas§23]. Related further work has exterttthe autopilot and explained how optic flow can be
regulated the same way in the lateral, ventral and dorsal planes by motthalimgvement and control of a bee in a
tunnel through simulatiof24-25]. Some authors have gone on to test this on a hovercraft in ¢cof@éh While the
control methods developed in this work have been verified argliatidy explained navigation in bees, further study
needs to be done. The most comprehensive control methods haveenoexperimentally validated [24-25], and
those that have are limited to simple, constrained robots [26].nGroabots do not experience the same flight
constraints, magnitude of optic flow values, and variations in the opticffidev as flying insects, because their
rotation is limited to yaw corrections, and thus, they do not exerierling and pitching.

While the basic control scheme is generally accepted to be soundjmigegd work has been done to verify this
navigation scheme on a flying vehicle. Conroy et al. has developed adnfiettaccurately representing visual cues
to facilitate corridor navigation for a flying robot (specificallyqaadcopter)27]. The focus in this work was the
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implementation of wide-field integration of optic flow and the aforementionadiysia using a slightly modified
version of the generally accepted control method showing goodstedolwvever like most work2fl-23, 26-27), the
methods verify only some of the behaviors of bees in coriflwere, lateral control) but not all. The lack of robust
development on flying vehicles motivates additional study.

The goal of this research is to further develop and verify visasbation for a sSUAV based on honeybee control
mechanismsExperimental tests show instability of the generally accepted control and tieeds modification to
demonstrate the desired behavior. This work extends adapts the codtesladyzes with experimental testing on a
sUAV that tests the altitude, lateral, and velocity con#kodjuadcopter is chosen as an experimental platform for its
simple mechanical control and its similarity to a honeybee in terms of fliglabd#ies, degreesf-freedom, and
constraints. It also has similar flight modes (e.g. hover, cruise, VE®L). This similarity means it will also
experience similar optic flow fields (unlike ground robots). The robrmnethodology is modified to support
navigation for flying vehicles (and therefore, flying insects) and testeduaalgized experimentally in variations of
the benchmark corridor/hallway navigation task which is commonly used avibedl experiments with bees.

I11. Problem Formulation

The benchmark hallway navigation task is used to formulate the reactivel quoiolem hereWhile true insect
navigation is considerably more complex, optic flow control is comynevaluated and demonstrated by the ability
to navigate in corridors as discussed previously. Therefore, vagatio this scenario were used to develop and test
the entire bio-inspired approach using a quadcopter UAV.

A. Prablem Definition

The navigation task is formulated as depictdd in Figlire 3 below where the hatidi@yvironment are all fixe@he
quadcopter (or bee) travels forward through the hallway and uses vises to result in centering behavior. This
forward navigation represents a single flight mode of the quadcoptee \éreting, hover, take-off, etc. are other
possible modes. As more work has been done on using optic flashieve these simpler tasks, the focus of this
work is on this more complicated scenario. Therefore, the challetmexgplain navigation when bees ar “cruise”
flight mode, and therefore, that mode is used for formulation, rdethgy development, and testing.

As shown above 1, the navigation planner provides high-lerehands while the reactive planner is in
charge of solving this low-level task (cruise). The reactive navigatioblggn becomes how to achieve centering
performance while maintaining altitude and a fixed forward velocity given a lgedataction (here, the heading is

down the corridor.
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Figure 3: Problem Formulation of a Quadcopter in Hallway Benchmark Test
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This is formulated similar to bee navigation where the quadcopter isagtism the camera is front-facing. Therefore,
the quadcopter uses its roll and pitch commadfsand Uy, respectively) to control forward velocity and lateral
position in the hallway. The control methodology must then alsolategaltitude and use the desired heading
direction to calculate yaw and thrust commarigjs éndUr, respectively).

B. Motion Detection

In this problem, motion detection is calculated from visual camera dpmiesti by the quadcopter. Since the
environment is static, all optic flow detected by the quadcopter is a réseffomotion. It is assumed that the
guadcopter has both a front-facing and downward-facing camprauale information about the scene in each of the
frontal and ventral fields. Bees have access to this informationtfreimnearly panoramic fieldf-view due to their
compound eyes [4]. Optic flow calculations can then be done off-bearg a computer vision algorithm.

Optic Flow is defined as the apparent motion of brightness patteiethods for computing optic flow can be
classified in two main groups: sparse and dense. The Lucas-Kanade f@8jhisca commonly used sparse method.
It operates by identifying points of interest within an image, and trgdkia movement of these points between
frames. A pyramidal system is used to remove small motions and allow $pag&l movements to be tracked [29].
The main benefit of sparse algorithms is that they are less computaticeraiynding as they only analyze relevant
parts of an image, but they can suffer from a loss of detaldfger movements as tracked points may move out of
the identified area of interest. A common dense optic flow algorithm isdheeback method [30]. This method
approximates neighborhoods of two consecutive image frames by quadratiorpialls, and estimates displacement
by looking at how the polynomial transforms between frames. The algoritle® Igwer errors than LasKanade

but at higher computational cost.

The mathematical limitations of 3D information extraction from optic flow datae tbeen thoroughly investigated.
Koenderink approached this by imagining an optimal algorithm, and aw@tthkhat the major source of error comes
from the opic observations themselves [31]. It was found that the error in thef@edcene direction of motion is
inversely proportional to the width of fielnf-view. This stressethe need for good equipment to generate visual data
to feed into the optic flow algorithm.

Optic flow was derived using the Farneback optic flow function desgriSimilar to many optic flow algorithms,
Farneback uses a pyramidal approach where displacement is obtainedibhy &dlow over successively smaller
windows. This is motivated by the fact that prior iterations of the algor¢guired the motion field to be temporally
consistent which would cause issues with high frequency noise geneydteslflying quadcopter [30]. The function
first converts all images to greyscale and then works on two successive iaiags to determine the flow field
around the robot. This is done by first approximating neighdmuit of pixels by quadratic polynomials and then
looking at how the quadratics transform between the frames \ghiek an estimation of displacement.

Using the resultant values, the optic flow purely due to translation can lieedbthe displacement in each pixel is
approximated by Equations (1) and (2) below using the angulaCitVes @, o, Wpitcn, Wyaw), linear velocities
(T\,T,,T,), and camera focal lengtlf)([30]. From these equations, the optic flow only due to rotation en b
estimated using feedback from the gyroscope. This can then be wtbfram the total flow field to receive purely
translational flow.

X2 % Wpoy X *Y * Wpirch T, T,

u =u+f*wroll_y>"wyaw+ fro - f P +f7x_u?z (1)
2

, V& * Wpitch | X * Y * Wroy T, T

V' =V = f % Opiten + X * Oyaw — fplc f = +f7y_vfz @)

x,y = pixel coordinate from centre of frame
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V. Methodology

The control methodology proposed here is a bio-inspired techhigiliearound the ability of bees to use optic flow
feedback to navigate during cruise flight mode. Again, the control islajgad for a quadcopter sUAV as it can
emulate biological capabilities. The control scheme, optic flow calculatodsfjltering method are described here.

A. Control Scheme

The control scheme developed is based on the reactive flight conbeésfand the interaction with a higher-level,
active navigation planndr (Figur¢ 4). The navigation planner providesriafion about desired directional heading
and flight mode selection to the reactive control scheme. While bees makeerehetiges to their heading, the yaw
control is mainly governed by a higher-level planner. Thereforejdbiged heading is assumed fixed.

Navigation ||Bio-Inspired Reactive
Planner Flight Control

— Attitude v, | Dynamics
Directional Py | —
Heading PID u,

u, | Quadcopter

Selection

Control U,
Flight Mode OFSDKE\

OFFgfz\ Eor, P ——
o \‘J '5 | Motors 4
zPr\ E OFI. Thrust feresrmramnsmsannnaal : -4
2 | PID £.US
e st S SRR

= St Gyroscope [+
OFs, OF, OF: ~— Optic Flow

“Filter + Estimate

Camera |+

Figure 4: Bio-Inspired Reactive Flight Control Scheme

The reactive control scheme then regulates the desired roll, pitch, and alsindeoptic flow cues where the
maximum desired roll and pitch are 5° (~@a%) and 20° (~2 m/s), respectively. Similar to heading, the “desired”
optic flow setpoints come from the high-level navigation planner and aendept on the flight mode selection. The
setpoint for the forward optic flonOF,,) governs the forward velocity, the side optic flow setpaiti() governs
the lateral position in the tunnel, and the setpoint for ventral optic (i, ) governs the altitude. As the cruise
flight mode during navigation in a hallway is the focus of this worksehcalculations are described here below.
However, it is easy to see how these would be adapted for different fliglesimeor example, the forward optic flow
setpoint QFr,) would be equal to O for hover but set to an empirical valuertose.

Given the setpoints from the high-level planner, the control scheme iIBesmrol to minimize the error between
the desired and actual values of optic flow. The feedback cometlimrmamera optic flow calculations that are then
fed into a filter which estimates the actual values (discussed further bé&log)errors in the side, forward, and
ventral optic flow valuesdFs,, OF,, andOF; ) with the PID control can then be used to calculate a desired roll,
pitch, and thrustd,,, 8,, andT}), respectively. These values along with the desired heading are udesldititude

PID control to send motor commands to the quadcopter.

The generally accepted control scheme discussed in previous wotk Buiteble to achieve reliable hallway
navigation. This is due to the fact that at low forward velocity anditianal periods, the optic flow values vary
widely, and instabilities cause the control to fail. Therefore, an altetatitre altitude and forward control method is
proposed. I4 above, the dashed boxes and lines representhgremheme was altered from the original and
depict the additional feedback used (motor speed sensors and ultrde®. The adapted control is expanded on
below inj Figure b where the dashed lines correspond to the alterationsortiaeleriginal scheme
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Instead of velocity being directly regulated, optic flow is used to generatesired forward velocit§/p). The
corresponding errof€y) is calculated using additional sensing data to estimate the actual véiocipd is then
inputted into the PID control to produce the desired pitch. Similarly.attieide is regulated using additional
feedback from an ultrasonic sensor. This results in the same behawguking forward velocity according to total
optic flow (or altitude using ventral optic flow) but does soriectiy.

ﬂ@e__ ?fﬁ; "° ...... 3 el P;:;h 8 U, u, | Quadcopter
vi Attitude Dynamics
H U, U
OFz, (7)o Thrust | To Control T
-/ PID

...................................................................

":: ool La L et Gyroscope [+
OF:, OF; — - Optic Flow v P

~Filter + Estimate =

Camera [+

Figure5: Adapted Method from General Optic Flow Control Scheme

B. Optic Flow Calculations

Again, the values of the desired optic flow setpoints are dependent dligltthenode selection, come from the

higher-level planner, and are fixed from the viewpoint of the reactiveot@ystem. Depending on the flight mode,
the calculations of the actual optic flow values vary. As the focus @wse, this is what is expanded on below
(though the same concepts behind the calculations can easily be apptieertmodes).

Evidence shows that bees maintain a forward velocity by fixing the sumnudtitve optic flow across the entire
visual field to an empirical value and that this value is about 300 degféesTfis same method is used here to
calculate a desired pitch with the exception that we vary the setpoint to aghiémes maximum velocities. As
translational optic flow in the x-direction is a better indicator iwéyd motion, this is used to calculate the actual
forward optic flow QF:) as shown below in Equation (3} is also important to note that during forward motion this
flow in the left half of the visual field will be negative (and the right hadkitive) which needs to be accounted for.

OF; = z—u'+2u' (3)

x<0 x20

During normal cruise conditions, the desired roll is set to 0 forestdight. The quadcopter can achieve this by
balancing the optic flow in the left and right halves of the visual field. Meatistically, the bee is probably

balancing either the left or right optic flow against an empirical setpoint sitoil@nove as this would also explain
the wall-following behavior which is common in bees. Therefore nieihod is used as shown in Equation (4).

(Z){2)

Finally, altitude regulation is achieved similarly. However instead, the optic flowteymined using the downward
facing camera, and therefore, large changes in the y-direction of logtiarfe indicative of a closer distance to the
ground when at a fixed velocity. This means altitude can be reguksiteglanother empirical setpoint corresponding
to the desired altitude and Equation (5) below.

OF, = Z - (5)

y

OFs = argmax
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C. Filter

Due to large variations in the optic flow field, a moving average filterimagemented on the actual values before
inputting into the control system. Here, an Exponential Moving AvefalygA) was used with a long time constant
to adjust for the large variations in flow. The EMA is a type of Finitpulse Response (FIR) filter that is widely-
used to filter out noise from random fluctuations by weighing nelaéa points more heavily [32]he optic flow
exponential moving averagék_EMA;) uses amoothing parameter between 0 and 1 (a) that represents the degree

of weighting of a new data poin®f;) as shown below in Equation (6). The smoothing parameter is thed suich
that it filters unwanted fluctuations but actually represents the underlying. cur

OF_EMA,; = a - OF, + (1 — a) - OF_EMA,_, (6)

V. Testing and Results

As discussed, this methodology is tested and verified experimentallytbsibgnchmark hallway navigation task.
total of 3 tests were completed to verify the various componentg abtiitrol scheme. The results show information
about position, optic flow, and velocity as the quadcopter travels ttoavhallway. This section describes the setup,
gives results, and discusses the outcomes.

A. Experimental Setup

For this task, a commercially-available AR Parrot Drond23pwas used as a testbed, because they are inexpensive
and have been widely used for independent projects. Due to thesjgteefair amount of support in forums so a lot of
issues like setting up communication and sending wireless commands have lawadplved [34 The AR Parrot
Drone s fitted with a front-facing HD and downward-facing QVGA camera which até kbised for optic flow
calculations and is depicted below[in Figure 6. The structure is madariadn fiber tubes, making it very
lightweight, and comes with both an indoor and outdoor hull. Additionillyas 4 brushless motors that can be
reprogrammed for full control. The system has built-in stabiliza8el) minutes of flying-time battery life, and 165-
meter range and 50-meter height.

The lab was configured with two walls along the length (fitted with genenahgswell suited for the drone camera
and optic flow algorithm) and a motion tracking system providing gdotnuth datg (Figure|6). Sensor data from the
drone was sent over Wi-Fi to an off-board workstation where fedis processed and control commands are
computed.

517mm

Camera:
720p
30fps

517mm

Figure 6: Experimental Setup: Depiction of AR Drone Quadcopter and Lab Configuration
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B. Testing Results

As shown in the following results, trying to tune and conthe desired roll, pitch, and thrusty, 8,, andTp)
simultaneously using optic flow is incredibly difficult. A large conttibg factor is the fact that the magnitude of the
optic flow values are very dependent on the forward velocity, andtke Welocity is inconsistent, results can be
mixed. Therefore, the tests were broken down such that precise matkingrdata was used in the tests to fix 1 or 2
control modes so as to test the ability of the optic flow control in the otbde/s. This was completed using 3 tests
with 10 trails each as follows:

Test #1: Verification of roll control using lateral optic flow balancing. Altieieind pitch are fixed and controlled
using precise feedback.

Test #2: Verification of altitude control using ground optic flow balanciRgll and pitch are fixed and
controlled using precise feedback.

Test #3: Verification of simultaneous roll and pitch control using lateral anaefrd optic flow balancing.
Altitude is fixed and controlled using precise feedback.

Test #1

Test #1 was completed to verify the roll control using lateral optie fflalancing while altitude and pitch were fixed
and controlled using precise feedback. With this, the ability to regulétindateral degreeffreedom could be
isolated. This allowed for the analysis of the proposed approactetmdding the complexity of also regulating the
forward and altitude degreeg-freedom using optic floyy. Figurd 7 below shows the results gfakie traversed and
the mean path over the trial runs.

Wall
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Figure 7: Path Traversed by Quadcopter in Hallway Navigation Test #1

The results above show suitable performance at centering over the ténith tests. While there were some
oscillations, it is expected that these would dampen out over a liedeun andis also consistent with honeybee
experiments 18]. Furthermore, the deviation from the centerline was consistent over the tdaiatiimg that the
control method is sound and that there was some object/s causing a large inocopéis flow in the left visual field.

This was further verified by looking at the optic flow, wall-distancen(fieft wall), and velocity over a single trial as
shown below i8t can be seen that the left optic flow is quite large comparecetdght even though the
guadcopter is in the center of the hallway. However, this verifies theobomthod as this would naturally produce a
roll and change of position to the right (as is shown). When thecqpted gets too close to the right wall, the optic
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flow values in the right field sharply increase which produces the desfezd eff a roll to the left. While the lateral
control is confirmed, it can be seen that even small variations in vetatige large variations in optic flow.
Hallway Navigation Results - Optic Flow

T T

T
~-Left OF
o --Right OF

Hallway Navigation Results - Velocity and Distance
T T T

T T T T

Optic Flow
i

Vélocnmy (m/é)

7

|
Distance from Wall (m)
T

3
’

-+~ Dist from Wall (meters) '

\
oo

! ! [ [ | == Velocity (metersisec)

Time (seconds)

0 © 1

' Time (seés)
Figure 8: Test #1 Example Trial Depicting Optic Flow, Distance from Wall, and Velocity Data
Test #2

Test #2 was completed to verify the altitude control using ground optid#tamncing while roll and pitch were fixed
and controlled using precise feedback. With this, the altitude comtutd de isolated. Figure| 9 below shows the
results of the path traversed and the mean path over the trialThashin black line represents the altitude which
would correspond to the desired OF altitude setpGifij () under the experimental conditions.

It can be seen that the performance is reasonable over individual tdalkaarihe overall average performance is
very good with little overshoot, few oscillations, and quick return todigred altitude. The results also are

especially good in that they did not result in instabilities over any individuaiMnedeas the method using optic flow
to directly regulate altitude did almost every trial (not shown).

T

Mean
Path

o
®

o
o

Z Position (meters)

04

02—

Wall |

Time (seconds)

Figure 9: Path Traversed by Quadcopter in Hallway Navigation Test #2

The results are further studied by looking at the optic flow, walkdi® (same as altitude in this test), and velocity
over a single trial as shown belo Despite the first few seconds where it sharply increases, the forward
velocity is very consistent. During this period where variations in velocitynarer (t>4s), the relationship between
the wall distance and optic flow is clearer. That is, the optic flow increaske distance to the wall decreases. This
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reinforces the proposed control scheme. However, this trial also pefgilights the need for further investigation
and where the more general control scheme fails. During the transitional ywbeoel velocity varies quickly, the
optic flow values are low even though the distance to the wall is small and védoicityeasing. This is where an
instability would occur for the general method but where the adaptedlometthod produces the desired result.

Hallway Navigation Results - Optic Flow and Z Desired

Hallway Navigation Results - Position and Velocity

T
,
2
>
>
1

Optic Flow

T

-+ Dist from Wall (meters)
; ; ; , ; ==Velocity (0 Isec)

) ) 0 B

Z Desired (meters)
Distance from Wall (m)
. .
el
|
Velocity (m/s)

Time (secs)

Figure 10: Test #2 Example Trial Depicting Optic Flow, Desired Z Position, Distance from Wall, and Velocity Data

Test #3

While the optic flow control scheme can be verified by regulating a singleotonode at a time as above, it
becomes much more difficult once trying to control them simultesigotihis is due to the natural, large variations
in the flow field from regular quadcopter motion. Test #3 was completedrwol roll and pitch simultaneously
using lateral and forward optic flow balancing while the altitude was fattl controlled using motion tracking
feedback. This test verifies that controlling multiple modes usingptie flow reactive scheme is possible, Hut
also highlights the subtleties, and therefore difficulties, of usingniethod. It also further verifies and reinforces
the use of the adapted control scheme.

I

Wall |

Y Position (meters)

Wall

| | | | |

Time (seconds)
Figure 11: Path Traversed by Quadcopter in Hallway Navigation Test #3
Similar to Test #1, the resultg in Figur#labove show suitable performance at centering over the lengthtesthe

Again, there were some oscillations that would be expdoteédmpen out over time. This test further verifies th
lateral control method as it was completed while also regulating forvedwdity.
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The results can be further analyzed by looking at the optic flow, wall-déstd@rom left wall), and velocity over a
single trial as shown below(in Figuté] Left and right optic flow values are as expected as the distance from the wall
varies. Additionally, the forward velocity is regulated according to thegdsaim total optic flow producing the
desired velocity regulation effect. However, there were large variationsvirfb velocity still. It is possible this
would settle out over time, but it highlights the challenges and uhééning performance at low velocities.

Hallway Navigation Results - Optic Flow Hallway Navigation Results - Velocity and Distance

--=Total OF
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-=Right OF

T

T

-+-+Dist from Wall (meters)
==Velocity (meters/sec)
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Distance from Wall (m)

Time (seconds) Time (secs)

Figure 12: Test #3 Example Trial Depicting Optic Flow, Distance from Wall, and Velocity Data

C. Discussion

While the control scheme is verified in these tests, an adapted methoddeaddopted to stabilize the system using
additional feedback. The adapted method shows good results angisgestrwith observed behavioral experiments
in biology. It is possible this also has biological relevance as be&slwe estimates of forward speed and altitude
from other sensory input (e.g. muscle feedback, sensillatteagh this needs further study.

However, the results could be significantly improved. The methodologiairdgr explains the underlying
mechanisms but unfortunately, not all of the behavior. The main challorges from the large variations in the
optic flow due to artifacts in the visual field, corrections made bygtrecopter, and errors from the optic flow
algorithm. This makes the algorithm not very effective at low forward sge@dsm/s) as noise and rotational flow
can overpower navigation cues. While some of this is due to ttsegoence of implementation on robots, the rest is
not unique to robots and implies that bees are performing a muehcmmiplex algorithm than previously thought.

V1. Conclusions

UAVs are being increasingly used to perform missions that are eitheotiog,bunsafe, or undesirable for humans.
A large subset of this growing industry is small UAVs (sUAVs) which are ragile and require only a single
operator, but traditional guidance systems for UAVs are not alwayslsuibala transition to sUAVs. Statd-the-art
guidance for UAVs typically rely on high-quality GPS and Inertial Measuretdeits (IMUs). However, these are
not always available when flying indoors or for small, lightweight UAVs whgwer is limited and sUAVS must
make careful decisions about how to best utilize that power.

Traditional control techniques for UAVs tend to be insufficient as they fail ifate of dynamic and uncertain
environments. New navigation techniques for SUAVs are motivated by therpanice of small insects and the lack
of current reliable methods. In this research, a bio-inspireticdanethod using vision-based optic flow is motivated
by bee navigation in hallways. The results show an adapted methoéxpidins behavioral results and achieves
stability despite large variations in feedback. Furthermore, thik kepresents one of very few that has been done to
try to go on and verify the method on a flying vehicle.

More complete study is needed in the area of the optic flow from diffepgit flow algorithms themselves, over
various visual inputs, from corrections made by the flying robot,fitedng methods. ThigSreen Brain Projefis

Pagel2 of 14
American Institute of Aeronautics and Astronautics


http://www.greenbrainproject.co.uk/

investigating the area of bee visual processing by modelling the regiotiee brain in charge of optic flow
calculations as little is currently known from a biological viewpoir8][3Vith this, the control method can be
improved and include the subtleties that this method requires. This woulallals for further simulated study of the
control methods under variations in parameters. Ultimately, this might alotd benefits that this method permits
like automatic altitude and speed regulation when in proximity to terraibstacles and navigating narrow corridors.
Furthermore, this scheme would also explain and permit obstacle asaidan
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