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Bio-Inspired Visual Navigation for a Quadcopter 
using Optic Flow 

Chelsea Sabo1, Alex Cope2, Kevin Gurny3, Eleni Vasilaki4, and James A. R. Marshall5 
University of Sheffield, Sheffield, UK,   S10 2TN 

Small Unmanned Air Vehicles (UAVs) have become increasingly used in many fields to keep 
up with demands for technological growth and due to their unique ability to provide an 
“eye-in-the-sky”. However, traditional guidance systems are not always suitable for a 
transition to smaller UAVs. Honeybee navigation has long been proposed as a basis for 
developing navigation for robotics as they are known to solve complex tasks efficiently and 
robustly. An approach for bio-inspired navigation using optic flow is presented here based 
on honeybee reactive flight control. This approach is tested and verified in the benchmark 
hallway navigation problem. It is shown that the control approach can explain a wide-range 
of biological behaviors using minimal sensors similar to flying insects. 

I. Introduction 

Increasingly over the years, autonomous Unmanned Aerial Vehicles (UAVs) are being used to perform missions that 
are considered “dull, dirty, and dangerous”, such as operations in nuclear power plants, agricultural monitoring, wild-
fire surveillance, border patrols, and weather forecasting [1]. This is due to UAV’s unique ability to provide an “eye-
in-the-sky” and collect data from countless different sensors. Due to progress in the miniaturization of electronics, 
UAVs are becoming much smaller (<20 lb) and more affordable. Advances in sensors, processing, and batteries have 
made these technologies low-weight, low-power, and low-cost and allowed these small UAVs (sUAVs) to broaden 
their user group and applications. 

The complications of flight for air vehicles are especially compounded for sUAVs. They are more likely to operate in 
complex missions (such as searching buildings or other confined areas) due to their agile nature and are much more 
heavily affected by small changes in their environment. Since they are more likely to fly at lower altitudes, variations 
in terrain need to be taken into consideration. Additionally, wind is a constant challenge as sUAVs fly at a much 
“slower” airspeed of about 10-20 meter/second. At 50-100 meters above ground level, wind is already about 5-10 m/s 
depending on conditions which means that sUAVs can easily be thrown off course. Furthermore, the reduced payload 
capabilities of small UAVs mean that heavy sensors and processors often cannot be utilized. It is frequently the case 
that GPS is unavailable or imprecise, state estimators are inaccurate, and that weight restrictions don’t allow for the 
redundancy of multiple sensors. 

The limitations imposed by these constraints are especially acute if the UAV includes a human in its control loop. A 
key factor limiting UAV growth is therefore their ability to display autonomous and intelligent control with little 
human intervention [2]. The study of flying insects is interesting from the point of view of sUAV design, because 
they share similar constraints (i.e. small size, low weight, and low energy consumption). There has been extensive 
research in this area in order to enable robots with similar capabilities and with comparable efficiency [3]. 

This research exploits the knowledge of honeybee visual navigation to develop a bio-inspired control architecture for 
a sUAV. This paper gives the biological inspiration and current state-of-the-art, presents the navigation task, describes 
the adapted control methodology, and presents and discusses experimental results.  
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II. Honeybee Navigation for UAV Control 

Despite their relatively small brains, individual social insects of many species have surprisingly advanced cognitive 
abilities and in particular, a great capacity for learning. These abilities are especially well demonstrated in the 
honeybee Apis mellifera. In particular, there has been extensive research in recent years into honeybee vision and 
flight navigation as bees are known to have impressive capabilities in these regards. For example, honeybees will seek 
out food over many miles and directly return to their hive, provide navigational instructions to each other, use 
landmarks for location identification, distinguish colors to identify good sources of food, navigate in corridors and 
other, complex environments, and more [3]. 

Though much focus is on replicating experimental and theoretical navigation of honeybees, the mechanisms described 
are very similar in other flying insects [4]. Flying insects are capable of agile flight at low speeds, complex obstacle 
avoidance, vertical take-off and landing, and hovering for long periods at a time. Insects are partially capable of such 
a wide range of tasks despite their small brain size, because they are able to detect motion in their visual field using 
Elementary Motion Detectors (EMD) to discern Optic Flow (OF). This optic flow encodes information about the 
angular velocity at which any environmental feature moves past the visual field and can be used to estimate motion of 
an object. Recent studies have shown that the optic flow visual processing capabilities of honeybees can be used to 
control their course, estimate distance travelled and flight duration, avoid obstacles, regulate flight speed, and land 
smoothly [5-8]. 

One of the bee’s most impressive features is its ability to navigate with limited sensory feedback. Sensors used in 
navigation for flying insects mainly include the chemical sensors, halteres, and compound eyes and their constituent 
ocelli. Honeybee olfaction plays an important role in bees’ daily lives and is what allows them to communicate with 
each other, detect dangers, and forage on thousands of flowers in their lifetime as it is the primary sense used to 
differentiate flowers. Odor detection primarily takes place on the bees’ antennae where the olfactory system has two 
tracks to provide two separate bits of information: (1) general information about what the odor is and (2) more 
specific information about where and when the odor occurred [9]. It is likely this parallel processing which allows 
navigation to odors cues despite the complexity of many mixed odors [10]. Aside from optic flow detection, the 
compound eyes provide information for object and landmark recognition, fixation, and heading corrections [11]. In 
addition to reactive heading corrections, bees use a sun compass for navigation and the ocelli play a role in providing 
this information [12]. Finally, the halteres are the biological equivalent of a gyroscope and provide estimated 
feedback about body angular velocities [13]. 

 

Figure 1: Bio-Inspired Control Architecture for a Quadcopter* 
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Currently, little is known about the physiology behind flight control mechanisms [14-15]. Experiments suggest that 
there are at least two levels of control and that these can be summarized as: lower-level, reactive control and higher-
level, active navigation control (see Figure 1) [16]. For low-level control, the halteres, ocelli, and flow feedback from 
the compound eyes are used to stabilize flight by mediating corrective reflexes. For high-level control, odor cues and 
visual feedback are sent to the mushroom bodies for action-selection and learning [17]. 

There is a lot of interest in the sUAV community to develop reactive control for better low-level autonomy so as to 
free up mission control to make better high-level decisions [16]. Figure 1 above shows the parallels in insect sensing 
and control with a bio-inspired scheme for sUAVs; the focus in this research is on reactive control. The control using 
optic flow by bees is often investigated by their capability to navigate in corridors (see Figure 2 below). The behavior 
in bees (and therefore, the control development discussed in the next section) are largely explained by three simple 
rules: (1) maintain lateral position by balancing the angular velocity in the left and right eye, (2) uphold forward 
velocity by regulating the total angular velocity against an empirical setpoint, and (3) adjust altitude by balancing the 
ventral angular velocity against an empirical setpoint [18-19]. When the environment is static, the optic flow is 
approximately equal to the angular velocity, and these terms are often used interchangeably. 

 

Figure 2: Navigation of a Honeybee in a Corridor for Visual Input with Varying Spatial Frequencies [20] 

The mechanisms behind these behaviors in bees are studied and often implemented on robots so as to better 
understand them. Optic flow-based control applications have been demonstrated with limited performance under 
constrained operational situations. Most successful demonstrations on robots have used optic flow for autonomous 
hovering using a down-ward facing camera [20]. Some have tried to extend this work to include position- and 
velocity- control with limited results, and they don’t explain the wide-range of bee capabilities using optic flow [21-
22].  

Several groups have tried to more accurately represent these bee mechanisms rather than just generating bio-inspired 
algorithms. Franceschini’s optic-flow regulator model is shown to control vertical lift of a micro helicopter by 
regulating the ventral optic flow, displaying remarkably similar behavior to insects in landing, maintaining altitude, 
and headwind flight phases [23]. Related further work has extended the autopilot and explained how optic flow can be 
regulated the same way in the lateral, ventral and dorsal planes by modelling the movement and control of a bee in a 
tunnel through simulation [24-25]. Some authors have gone on to test this on a hovercraft in corridors [26]. While the 
control methods developed in this work have been verified and adequately explained navigation in bees, further study 
needs to be done. The most comprehensive control methods have not been experimentally validated [24-25], and 
those that have are limited to simple, constrained robots [26]. Ground robots do not experience the same flight 
constraints, magnitude of optic flow values, and variations in the optic flow field as flying insects, because their 
rotation is limited to yaw corrections, and thus, they do not experience rolling and pitching. 

While the basic control scheme is generally accepted to be sound, very limited work has been done to verify this 
navigation scheme on a flying vehicle. Conroy et al. has developed a method for accurately representing visual cues 
to facilitate corridor navigation for a flying robot (specifically, a quadcopter) [27]. The focus in this work was the 
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implementation of wide-field integration of optic flow and the aforementioned analysis using a slightly modified 
version of the generally accepted control method showing good results. However like most work [21-23, 26-27], the 
methods verify only some of the behaviors of bees in corridors (here, lateral control) but not all. The lack of robust 
development on flying vehicles motivates additional study. 

The goal of this research is to further develop and verify visual navigation for a sUAV based on honeybee control 
mechanisms. Experimental tests show instability of the generally accepted control and that it needs modification to 
demonstrate the desired behavior. This work extends adapts the control and analyzes with experimental testing on a 
sUAV that tests the altitude, lateral, and velocity control. A quadcopter is chosen as an experimental platform for its 
simple mechanical control and its similarity to a honeybee in terms of flight capabilities, degrees-of-freedom, and 
constraints. It also has similar flight modes (e.g. hover, cruise, VTOL, etc.). This similarity means it will also 
experience similar optic flow fields (unlike ground robots). The control methodology is modified to support 
navigation for flying vehicles (and therefore, flying insects) and tested and analyzed experimentally in variations of 
the benchmark corridor/hallway navigation task which is commonly used in behavioral experiments with bees. 

III. Problem Formulation 

The benchmark hallway navigation task is used to formulate the reactive control problem here. While true insect 
navigation is considerably more complex, optic flow control is commonly evaluated and demonstrated by the ability 
to navigate in corridors as discussed previously. Therefore, variations on this scenario were used to develop and test 
the entire bio-inspired approach using a quadcopter UAV. 

A. Problem Definition 
The navigation task is formulated as depicted in Figure 3 below where the hallway and environment are all fixed. The 
quadcopter (or bee) travels forward through the hallway and uses visual cues to result in centering behavior. This 
forward navigation represents a single flight mode of the quadcopter where landing, hover, take-off, etc. are other 
possible modes. As more work has been done on using optic flow to achieve these simpler tasks, the focus of this 
work is on this more complicated scenario. Therefore, the challenge is to explain navigation when bees are in “cruise” 
flight mode, and therefore, that mode is used for formulation, methodology development, and testing. 

As shown above in Figure 1, the navigation planner provides high-level commands while the reactive planner is in 
charge of solving this low-level task (cruise). The reactive navigation problem becomes how to achieve centering 
performance while maintaining altitude and a fixed forward velocity given a heading direction (here, the heading is 
down the corridor). 

 

Figure 3: Problem Formulation of a Quadcopter in Hallway Benchmark Test 
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This is formulated similar to bee navigation where the quadcopter is oriented so the camera is front-facing. Therefore, 
the quadcopter uses its roll and pitch commands (戟叶 and 戟提, respectively) to control forward velocity and lateral 
position in the hallway. The control methodology must then also regulate altitude and use the desired heading 
direction to calculate yaw and thrust commands (戟泥 and 戟脹, respectively). 

B. Motion Detection 
In this problem, motion detection is calculated from visual camera data supplied by the quadcopter. Since the 
environment is static, all optic flow detected by the quadcopter is a result of egomotion. It is assumed that the 
quadcopter has both a front-facing and downward-facing camera to provide information about the scene in each of the 
frontal and ventral fields. Bees have access to this information from their nearly panoramic field-of-view due to their 
compound eyes [4]. Optic flow calculations can then be done off-board using a computer vision algorithm. 

Optic Flow is defined as the apparent motion of brightness patterns. Methods for computing optic flow can be 
classified in two main groups: sparse and dense. The Lucas-Kanade method [28] is a commonly used sparse method. 
It operates by identifying points of interest within an image, and tracking the movement of these points between 
frames. A pyramidal system is used to remove small motions and allow larger spatial movements to be tracked [29]. 
The main benefit of sparse algorithms is that they are less computationally demanding as they only analyze relevant 
parts of an image, but they can suffer from a loss of detail for larger movements as tracked points may move out of 
the identified area of interest. A common dense optic flow algorithm is the Farneback method [30]. This method 
approximates neighborhoods of two consecutive image frames by quadratic polynomials, and estimates displacement 
by looking at how the polynomial transforms between frames. The algorithm gives lower errors than Lucas-Kanade 
but at higher computational cost.  

The mathematical limitations of 3D information extraction from optic flow data have been thoroughly investigated. 
Koenderink approached this by imagining an optimal algorithm, and concluded that the major source of error comes 
from the optic observations themselves [31]. It was found that the error in the predicted scene direction of motion is 
inversely proportional to the width of field-of-view. This stresses the need for good equipment to generate visual data 
to feed into the optic flow algorithm. 

Optic flow was derived using the Farneback optic flow function described. Similar to many optic flow algorithms, 
Farneback uses a pyramidal approach where displacement is obtained by looking at flow over successively smaller 
windows. This is motivated by the fact that prior iterations of the algorithm required the motion field to be temporally 
consistent which would cause issues with high frequency noise generated by the flying quadcopter [30]. The function 
first converts all images to greyscale and then works on two successive image frames to determine the flow field 
around the robot. This is done by first approximating neighborhoods of pixels by quadratic polynomials and then 
looking at how the quadratics transform between the frames which gives an estimation of displacement. 

Using the resultant values, the optic flow purely due to translation can be obtained. The displacement in each pixel is 
approximated by Equations (1) and (2) below using the angular velocities (降追墜鎮鎮 ┸ 降椎沈痛頂朕 ┸ 降槻銚栂), linear velocities 

(劇掴 ┸ 劇槻 ┸ 劇佃), and camera focal length (血) [30]. From these equations, the optic flow only due to rotation can be 

estimated using feedback from the gyroscope. This can then be subtracted from the total flow field to receive purely 
translational flow. 

 憲嫗 噺 憲 髪 血 茅 降追墜鎮鎮 伐 検 茅 降槻銚栂 髪 捲態 茅 降追墜鎮鎮血 伐 捲 茅 検 茅 降椎沈痛頂朕血 髪 血 劇掴傑 伐 憲 劇佃傑  (1) 

 懸嫗 噺 懸 伐 血 茅 降椎沈痛頂朕 髪 捲 茅 降槻銚栂 伐 検態 茅 降椎沈痛頂朕血  髪 捲 茅 検 茅 降追墜鎮鎮血 髪 血 劇槻傑 伐 懸 劇佃傑  (2) 

捲┸ 検 噺 喧件捲結健 潔剣剣堅穴件券欠建結 血堅剣兼 潔結券建堅結 剣血 血堅欠兼結  
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IV. Methodology 

The control methodology proposed here is a bio-inspired technique built around the ability of bees to use optic flow 
feedback to navigate during cruise flight mode. Again, the control is developed for a quadcopter sUAV as it can 
emulate biological capabilities. The control scheme, optic flow calculations, and filtering method are described here. 

A. Control Scheme  
The control scheme developed is based on the reactive flight control of bees and the interaction with a higher-level, 
active navigation planner (Figure 4). The navigation planner provides information about desired directional heading 
and flight mode selection to the reactive control scheme. While bees make reactive changes to their heading, the yaw 
control is mainly governed by a higher-level planner. Therefore, the desired heading is assumed fixed. 

 

Figure 4: Bio-Inspired Reactive Flight Control Scheme 

The reactive control scheme then regulates the desired roll, pitch, and altitude using optic flow cues where the 
maximum desired roll and pitch are 5° (~0.5 m/s) and 20° (~2 m/s), respectively. Similar to heading, the “desired” 
optic flow setpoints come from the high-level navigation planner and are dependent on the flight mode selection. The 
setpoint for the forward optic flow (頚繋庁呑) governs the forward velocity, the side optic flow setpoint (頚繋聴呑) governs 

the lateral position in the tunnel, and the setpoint for ventral optic flow (頚繋跳呑) governs the altitude. As the cruise 

flight mode during navigation in a hallway is the focus of this work, those calculations are described here below. 
However, it is easy to see how these would be adapted for different flight modes. For example, the forward optic flow 
setpoint (頚繋庁呑) would be equal to 0 for hover but set to an empirical value for cruise. 

Given the setpoints from the high-level planner, the control scheme uses PID control to minimize the error between 
the desired and actual values of optic flow. The feedback come from the camera optic flow calculations that are then 
fed into a filter which estimates the actual values (discussed further below). The errors in the side, forward, and 
ventral optic flow values (頚繋聴呑, 頚繋庁呑, and 頚繋跳呑) with the PID control can then be used to calculate a desired roll, 

pitch, and thrust (叶帖, 肯帖, and 劇帖), respectively. These values along with the desired heading are used by the attitude 
PID control to send motor commands to the quadcopter. 

The generally accepted control scheme discussed in previous work is not suitable to achieve reliable hallway 
navigation. This is due to the fact that at low forward velocity and transitional periods, the optic flow values vary 
widely, and instabilities cause the control to fail. Therefore, an alteration to the altitude and forward control method is 
proposed. In Figure 4 above, the dashed boxes and lines represent where the scheme was altered from the original and 
depict the additional feedback used (motor speed sensors and ultrasound here). The adapted control is expanded on 
below in Figure 5 where the dashed lines correspond to the alterations made to the original scheme 
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Instead of velocity being directly regulated, optic flow is used to generate a desired forward velocity (VD). The 
corresponding error (供V) is calculated using additional sensing data to estimate the actual velocity (慎) and is then 
inputted into the PID control to produce the desired pitch. Similarly, the attitude is regulated using additional 
feedback from an ultrasonic sensor. This results in the same behavior as regulating forward velocity according to total 
optic flow (or altitude using ventral optic flow) but does so indirectly. 

 

Figure 5: Adapted Method from General Optic Flow Control Scheme 

B. Optic Flow Calculations 
Again, the values of the desired optic flow setpoints are dependent on the flight mode selection, come from the 
higher-level planner, and are fixed from the viewpoint of the reactive control system. Depending on the flight mode, 
the calculations of the actual optic flow values vary. As the focus is on cruise, this is what is expanded on below 
(though the same concepts behind the calculations can easily be applied to other modes). 

Evidence shows that bees maintain a forward velocity by fixing the summation of the optic flow across the entire 
visual field to an empirical value and that this value is about 300 degrees/s [4]. This same method is used here to 
calculate a desired pitch with the exception that we vary the setpoint to achieve various maximum velocities. As 
translational optic flow in the x-direction is a better indicator in forward motion, this is used to calculate the actual 
forward optic flow (頚繋庁) as shown below in Equation (3). It is also important to note that during forward motion this 
flow in the left half of the visual field will be negative (and the right half, positive) which needs to be accounted for. 

 OF庁 噺 布 伐憲旺掴猪待 髪 布 憲旺掴兆待  (3) 

During normal cruise conditions, the desired roll is set to 0 for stable flight. The quadcopter can achieve this by 
balancing the optic flow in the left and right halves of the visual field. More realistically, the bee is probably 
balancing either the left or right optic flow against an empirical setpoint similar to above as this would also explain 
the wall-following behavior which is common in bees. Therefore, this method is used as shown in Equation (4). 

 OF聴 噺 argmax 煩蕃布 伐憲旺掴猪待 否 ┸ 蕃布 憲旺掴兆待 否晩 (4) 

Finally, altitude regulation is achieved similarly. However instead, the optic flow is determined using the downward 
facing camera, and therefore, large changes in the y-direction of optic flow are indicative of a closer distance to the 
ground when at a fixed velocity. This means altitude can be regulated using another empirical setpoint corresponding 
to the desired altitude and Equation (5) below. 

 OF跳 噺 布 伐懸旺槻  (5) 



Page 8 of 14 
American Institute of Aeronautics and Astronautics 

C. Filter 
Due to large variations in the optic flow field, a moving average filter was implemented on the actual values before 
inputting into the control system. Here, an Exponential Moving Average (EMA) was used with a long time constant 
to adjust for the large variations in flow. The EMA is a type of Finite Impulse Response (FIR) filter that is widely-
used to filter out noise from random fluctuations by weighing newer data points more heavily [32]. The optic flow 
exponential moving average (頚繋ｅ継警畦沈) uses a smoothing parameter between 0 and 1 (g) that represents the degree 
of weighting of a new data point (頚繋沈) as shown below in Equation (6). The smoothing parameter is then tuned such 
that it filters unwanted fluctuations but actually represents the underlying curve. 

 OFｅEMA沈 噺 糠 ゲ 頚繋沈 髪 岫な 伐 糠岻 ゲ OFｅEMA沈貸怠 (6) 

V. Testing and Results 

As discussed, this methodology is tested and verified experimentally using the benchmark hallway navigation task. A 
total of 3 tests were completed to verify the various components of the control scheme. The results show information 
about position, optic flow, and velocity as the quadcopter travels down the hallway. This section describes the setup, 
gives results, and discusses the outcomes. 

A. Experimental Setup 
For this task, a commercially-available AR Parrot Drone 2.0 [33] was used as a testbed, because they are inexpensive 
and have been widely used for independent projects. Due to this, there is a fair amount of support in forums so a lot of 
issues like setting up communication and sending wireless commands have already been solved [34]. The AR Parrot 
Drone is fitted with a front-facing HD and downward-facing QVGA camera which are both used for optic flow 
calculations and is depicted below in Figure 6. The structure is made of carbon fiber tubes, making it very 
lightweight, and comes with both an indoor and outdoor hull. Additionally, it has 4 brushless motors that can be 
reprogrammed for full control. The system has built-in stabilization, 8-10 minutes of flying-time battery life, and 165-
meter range and 50-meter height. 

The lab was configured with two walls along the length (fitted with generic graphics well suited for the drone camera 
and optic flow algorithm) and a motion tracking system providing ground truth data (Figure 6). Sensor data from the 
drone was sent over Wi-Fi to an off-board workstation where feedback is processed and control commands are 
computed. 

    

Figure 6: Experimental Setup: Depiction of AR Drone Quadcopter and Lab Configuration 
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B. Testing Results 
As shown in the following results, trying to tune and control the desired roll, pitch, and thrust (叶帖, 肯帖, and 劇帖) 
simultaneously using optic flow is incredibly difficult. A large contributing factor is the fact that the magnitude of the 
optic flow values are very dependent on the forward velocity, and so if the velocity is inconsistent, results can be 
mixed. Therefore, the tests were broken down such that precise motion tracking data was used in the tests to fix 1 or 2 
control modes so as to test the ability of the optic flow control in the other mode/s. This was completed using 3 tests 
with 10 trails each as follows: 

Test #1: Verification of roll control using lateral optic flow balancing. Altitude and pitch are fixed and controlled 
using precise feedback. 

Test #2: Verification of altitude control using ground optic flow balancing. Roll and pitch are fixed and 
controlled using precise feedback. 

Test #3: Verification of simultaneous roll and pitch control using lateral and forward optic flow balancing. 
Altitude is fixed and controlled using precise feedback. 

Test #1 
Test #1 was completed to verify the roll control using lateral optic flow balancing while altitude and pitch were fixed 
and controlled using precise feedback. With this, the ability to regulating the lateral degree-of-freedom could be 
isolated. This allowed for the analysis of the proposed approach before adding the complexity of also regulating the 
forward and altitude degrees-of-freedom using optic flow. Figure 7 below shows the results of the path traversed and 
the mean path over the trial runs.  

 

Figure 7: Path Traversed by Quadcopter in Hallway Navigation Test #1 

The results above show suitable performance at centering over the length of the tests. While there were some 
oscillations, it is expected that these would dampen out over a longer trial run and is also consistent with honeybee 
experiments [18]. Furthermore, the deviation from the centerline was consistent over the trials indicating that the 
control method is sound and that there was some object/s causing a large increase in optic flow in the left visual field. 

This was further verified by looking at the optic flow, wall-distance (from left wall), and velocity over a single trial as 
shown below in Figure 8. It can be seen that the left optic flow is quite large compared to the right even though the 
quadcopter is in the center of the hallway. However, this verifies the control method as this would naturally produce a 
roll and change of position to the right (as is shown). When the quadcopter gets too close to the right wall, the optic 
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flow values in the right field sharply increase which produces the desired effect of a roll to the left. While the lateral 
control is confirmed, it can be seen that even small variations in velocity cause large variations in optic flow. 

    

Figure 8: Test #1 Example Trial Depicting Optic Flow, Distance from Wall, and Velocity Data 

Test #2 
Test #2 was completed to verify the altitude control using ground optic flow balancing while roll and pitch were fixed 
and controlled using precise feedback. With this, the altitude control could be isolated. Figure 9 below shows the 
results of the path traversed and the mean path over the trial runs. The thin black line represents the altitude which 
would correspond to the desired OF altitude setpoint (頚繋跳呑) under the experimental conditions. 

It can be seen that the performance is reasonable over individual trials and that the overall average performance is 
very good with little overshoot, few oscillations, and quick return to the desired altitude. The results also are 
especially good in that they did not result in instabilities over any individual trial whereas the method using optic flow 
to directly regulate altitude did almost every trial (not shown). 

 

Figure 9: Path Traversed by Quadcopter in Hallway Navigation Test #2 

The results are further studied by looking at the optic flow, wall-distance (same as altitude in this test), and velocity 
over a single trial as shown below in Figure 10. Despite the first few seconds where it sharply increases, the forward 
velocity is very consistent. During this period where variations in velocity are minor (t>4s), the relationship between 
the wall distance and optic flow is clearer. That is, the optic flow increases as the distance to the wall decreases. This 
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reinforces the proposed control scheme. However, this trial also perfectly highlights the need for further investigation 
and where the more general control scheme fails. During the transitional period where velocity varies quickly, the 
optic flow values are low even though the distance to the wall is small and velocity is increasing. This is where an 
instability would occur for the general method but where the adapted control method produces the desired result.  

    

Figure 10: Test #2 Example Trial Depicting Optic Flow, Desired Z Position, Distance from Wall, and Velocity Data 

Test #3 
While the optic flow control scheme can be verified by regulating a single control mode at a time as above, it 
becomes much more difficult once trying to control them simultaneously. This is due to the natural, large variations 
in the flow field from regular quadcopter motion. Test #3 was completed to control roll and pitch simultaneously 
using lateral and forward optic flow balancing while the altitude was fixed and controlled using motion tracking 
feedback. This test verifies that controlling multiple modes using the optic flow reactive scheme is possible, but it 
also highlights the subtleties, and therefore difficulties, of using this method. It also further verifies and reinforces 
the use of the adapted control scheme. 

 

Figure 11: Path Traversed by Quadcopter in Hallway Navigation Test #3 

Similar to Test #1, the results in Figure 11 above show suitable performance at centering over the length of the tests. 
Again, there were some oscillations that would be expected to dampen out over time. This test further verifies the 
lateral control method as it was completed while also regulating forward velocity. 
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The results can be further analyzed by looking at the optic flow, wall-distance (from left wall), and velocity over a 
single trial as shown below in Figure 12. Left and right optic flow values are as expected as the distance from the wall 
varies. Additionally, the forward velocity is regulated according to the changes in total optic flow producing the 
desired velocity regulation effect. However, there were large variations in forward velocity still. It is possible this 
would settle out over time, but it highlights the challenges and underwhelming performance at low velocities. 

    

Figure 12: Test #3 Example Trial Depicting Optic Flow, Distance from Wall, and Velocity Data 

C. Discussion 
While the control scheme is verified in these tests, an adapted method had to be adopted to stabilize the system using 
additional feedback. The adapted method shows good results and is consistent with observed behavioral experiments 
in biology. It is possible this also has biological relevance as bees could have estimates of forward speed and altitude 
from other sensory input (e.g. muscle feedback, sensilla, etc.) though this needs further study.  

However, the results could be significantly improved. The methodology certainly explains the underlying 
mechanisms but unfortunately, not all of the behavior. The main challenge comes from the large variations in the 
optic flow due to artifacts in the visual field, corrections made by the quadcopter, and errors from the optic flow 
algorithm. This makes the algorithm not very effective at low forward speeds (<0.5m/s) as noise and rotational flow 
can overpower navigation cues. While some of this is due to the consequence of implementation on robots, the rest is 
not unique to robots and implies that bees are performing a much more complex algorithm than previously thought. 

VI. Conclusions 

UAVs are being increasingly used to perform missions that are either too boring, unsafe, or undesirable for humans. 
A large subset of this growing industry is small UAVs (sUAVs) which are more agile and require only a single 
operator, but traditional guidance systems for UAVs are not always suitable for a transition to sUAVs. State-of-the-art 
guidance for UAVs typically rely on high-quality GPS and Inertial Measurement Units (IMUs). However, these are 
not always available when flying indoors or for small, lightweight UAVs where power is limited and sUAVs must 
make careful decisions about how to best utilize that power. 

Traditional control techniques for UAVs tend to be insufficient as they fail in the face of dynamic and uncertain 
environments. New navigation techniques for sUAVs are motivated by the performance of small insects and the lack 
of current reliable methods. In this research, a bio-inspired control method using vision-based optic flow is motivated 
by bee navigation in hallways. The results show an adapted method both explains behavioral results and achieves 
stability despite large variations in feedback. Furthermore, this work represents one of very few that has been done to 
try to go on and verify the method on a flying vehicle. 

More complete study is needed in the area of the optic flow from different optic flow algorithms themselves, over 
various visual inputs, from corrections made by the flying robot, and filtering methods. The Green Brain Project is 
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investigating the area of bee visual processing by modelling the regions of the brain in charge of optic flow 
calculations as little is currently known from a biological viewpoint [35]. With this, the control method can be 
improved and include the subtleties that this method requires. This would also allow for further simulated study of the 
control methods under variations in parameters. Ultimately, this might allow for the benefits that this method permits 
like automatic altitude and speed regulation when in proximity to terrain or obstacles and navigating narrow corridors. 
Furthermore, this scheme would also explain and permit obstacle avoidance.  
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