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Abstract

ABSTRACT

The aim of this PhD work is to investigate the effect of surface adhesion on the mechanical
behavior of material subjected to nanoindenation. Nanoindentation is an effective technique to
quantify the mechanical properties of various materials. However, surface adhesion becomes
significant due to the increasing ratio of surface area to volume in nanoindentation
environment, and thus it is appropriate to consider the effect of surface forces and adhesion in
nanoindentation testing.

First, nanoindentation, as a “carrier” for surface adhesion, was deduced to quantify the
mechanical properties of calibration materials. The calculated values of these objective
mechanical parameters were compared to their typical values to justify nanoindentation.

Afterwards, this work employed a 2-D finite element method to investigate the effect of
surface adhesion on hard elastoplastic materials subjected to cyclic loading-unloading. The
elastoplastic material took two hardening manners, i.e. isotropic hardening and kinematic
hardening. The surface force obeys the Lennard-Jones potential, which is incorporated into
ANSYS as a user defined subroutine. The results demonstrated that surface adhesion can
induce plastic shakedown in repetitive contact, regardless of the material hardening manner
compared to its non-adhesive counterpart. This indicates the significance of the study on
surface adhesion in miniaturized devices subjected to repetitive contact, e.g.
micro-electronical-mechanical systems (MEMS) or nano-electronical-mechanical systems

(NEMS).
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Abstract

Finally this work studied the effect of surface adhesion on the mechanical behavior of two
soft materials (two kinds of biological cells) subjected to atomic force microscope (AFM)
indentation, i.e. pancreatic MING cell and hepatocellular carcinoma which were treated by
calcimimetic R568 and fullerenol respectively. They were also indented by different AFM
probes. MING cell by spherical indenter, and cancer cell by Vickers indenter. First of al,
surface adhesion was manifested by the negative value of indentation force. For MING cells,
both JKR and finite element method are used to fit the force-displacement curve obtained by
AFM indentation. For hepatocellular carcinoma, the JKR model is adapted for the Vickers
indenter, and the “adapted” JKR model is used to fit the force-displacement curve. The results
showed that JKR model can best describe the unloading force-displacement behaviors of the
indentation curves, where a new parameter, termed work of adhesion in addition to Young's
modulus was extracted. Moreover, the difference between two biological cells and their
treated counterparts were detected in terms of the magnitudes of the extracted parameters, i.e.
Young's modulus and work of adhesion. This implies that the study on the surface adhesion

has potential significance in terms of medical diagnostics.

The main contributions from the present research could be summarized as follows:

i For hard materials, this study presents a systematic investigation on the effect of
surface adhesion on the shakedown behavior of two hardening materials, i.e. isotropic
and kinematic hardening. The simulative results show that surface adhesion alone can
initiate plastic deformation. In non-adhesive repeated contact, only elastic shakedown
can occur while in adhesive repeated contact, plastic shakedown can occur, which

indicate that surface adhesion force can alter the mechanical response of substrate
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Abstract

material subjected to repetitive indentation.

For soft materiads, this work uses JKR model to fit the force-displacement curve,
yielding a new parameter, i.e. work of adhesion, in addition to Young's modulus. In
comparison to the Hertzian contact model, the JKR model provides obvioudy better
fitting to the experimental results, indicating that the adhesion is significant in the cell
interaction. Moreover, the difference between various biological cells could be
characterized by the magnitude of work of adhesion, which implies that this

parameter may also serve medical diagnostics.
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NOMENCLATURE

a contact radius, m

a: contact radius corresponding to occurrence of plagticity, m
A contact area, n?

Ay Hamaker constant, J

¢ length of radia crack, m

C empirical ratio of hardnessto yield stress

D diameter of Brinell sphere, m

E Young's modulus, Pa

Er Tangential modulus, Pa

F appliedforce, N

G shear modulus, Pa

For  pull off force

F. applied force corresponding to occurrence of plasticity, N
Feap meniscus or capillary force, N

Fehem forces dueto chemical bonds or acid—base interactions, N
Fa electrostatic force, N

Fmax maximum indentation force

Fww Vvan der Waals potentia, N
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H hardness, Pa
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k  Boltzmann constant
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he, elastic displacement for an equivalent punch, m
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h.  depth of residua impression
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P indentation force, N
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p contact pressure, Pa
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Chapter 1

1 Introduction
1.1 General Background

111  Application of Nanoindentation
It has been known for along time that materials exhibit mechanical properties, e.g. elasticity,
plasticity and hardness. The quantitative understanding of mechanical properties of materias
is of significance of guiding for their application and precaution of failure, and they always
involve some measurement techniques. For macroscopic materials, there are a number of
methods to evaluate their mechanical properties of interest. For example, material hardness
is measured by macroscopic indentation tests. In these tests, materias of interest are indented
by an indenter of certain shape (e.g. Brinell sphere), resulting in residua intent. Hardness is
calculated by dividing indentation force by area of the indent, which is measured by optical
method in advance. In another instance, material of cylindrical shape is subjected to uniaxia
loading to determine its elastic modulus and yield stress. However, for miniaturized
materials or devices, eg. MEMS, NEMS and biological cells, evaluation of mechanica
properties by these methods may not always seem feasible enough in practice. Hence, the
method for characterization of mechanical propertiesin nanoscale is critical for small scale
materials.

In the last two decades, nanoindentation has proved an important technique to study
mechanical properties of small materials volumes at nano and micrometer range. The general
principle of nanoindentation is to indent the material of interest by a very small tip. The

probe is applied with a pre-set force and the concurrent indentation depth is monitored. The



Chapter 1

resulting force-displacement curve contains massive information from which many
mechanical properties could be calculated, based on relevant theoretical models, such as
elastic modulus, hardness, plastic or viscous parameter and fracture toughness. The
indentation force used in nanoindentation usualy ranges from micronewton to milinewton,
and the indentation depth is in the order of nanometers. Different indenters can be used with
different circumstances.

Compared to its macroscopic counterpart, the main advantage of nanoindentation is that it
can access a very small material volume whose characteristic length can even be in the order
of tens of nanometers. In this regard, nanoindentation is a useful technology to evaluate the
mechanical properties of emerging small scale materials, e.g. nanotubes, nanoparticles and

biological cells, etc.

1.1.2 Atomic force microscope

Atomic force microscope originaly belongs to a series of scanning probe microscopes, and
its initial function aims to image surfaces of materials and provide topographic
characterization. These series start with scanning tunneling microscope (STM), which could
be used to image surfaces of hard and soft synthetic materials as well as biological structures
(tissues, cells, biomolecules), irrespective of opagueness or conductivity¥. With STM, AFM
can even image atoms on a flat surface and provide in situ imaging ability without moving
the sample for scanning and imaging the sample/?. There are some extra functions in AFM
derived from its imaging function. The Force modulation microscopy (FMM) is used widely
for imaging composition changes in a composite material, anayzing polymer homogeneity

and contaminants detection in manufacturing processes’?. Besides, two major dynamic AFM
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modes are being developed to measure the topography of a sample surface, i.e. amplitude
modulation atomic force microscope (AM-AFM) and frequency modulation atomic force
microscope (FM-AFM)E. The former is used in air or liquid environments while the latter is
commonly used in ultra-high vacuum situation.

Besides maintaining its topography imaging function, AFM has evolved into a powerful
tool for direct measurement of intermolecular force with atomic-resolution characterization,
which makes AFM one of effective realizations for nanoindentation of biological cells (why
AFM). Fig 1.1 shows diagram of AFM. The main components of AFM are laser, light meter,
probe and scanner. The scanner is controlled by piezo electric elements. A laser light is
positioned on the top of the cantilever and reflected to a position-sensitive photodetector (see
the 4 quadrant photo detectorsin Fig 1.1). By determining the reflected spot on it, this photo
detector can calculate the bending and torsion deformation of the cantilever. Originally, the
spot is in the center of the detector, and it will move as the cantilever deforms. As can be
seen, signal (A + C) — (B + D) on the detector represents the deflection of the cantilever
whilst signal (A + B) — (C + D) represents the torsion of the cantilever. While scanning, a
topographic image of the sample is obtained by plotting the deflection of the cantilever
against its position on the sample. On the other hand, the force between the tip and substrate
is proportional to the deformation of cantilever (i.e. Hooke theory) which is related to the
shift of the spot on the detector, i.e. the force F is function of the shift. Therefore, by
recording the shift and transforming it to force by the function, one could obtain a

force-displacement curve.
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Fig 1.1 Schematic diagram of an atomic force microscope (AFM)!4

Owing to these factors, AFM proves an effective means to investigate the mechanical
properties of soft biological cells due to its capability to measure intermolecular force with
atomic-resolution characterization®®, The AFM tip of certain shape indents a fixed cell by
pre-set force, and the concurrent displacement of tip is monitored. Usualy the elastic
modulus is obtained by fitting the force-displacement curve with an appropriate theoretica
model. A mechanical model commonly used for extraction of elastic modulusisthe Hertzian
contact model, although one cannot expect that living cells do actually meet the assumptions
of Hertz contact model. The extracted elastic modulus is not only an index of cell mechanical
property, but has diagnostic significance. For example, comparison of the elastic modulus of
normal human epithelial cell and their cancerous counterparts indicates that healthy cells
have a Young's modulus of about one order of magnitude higher that their cancerous
counterparts”. After being treated by chitosan, the stiffness of the cancer cells increase,
whereas normal cells are not influenced by chitosan in terms of elastic modulus'®.

Moreover, AFM technique can be used to investigate adhesion forces in biological
applications, such as cell-cell, cell-protein or protein-protein interactions?l. A quantitative

investigation of these interactions plays a significant role not only in revealing the
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mechanism of endocytosis®, but also in medical applications such as gene/drug delivery and
medical diagnosticsY,

It should be borne in mind that AFM can not only be used in soft biological cells, but also
in hard materials. The microelectromechanical (MEMS) system is the technology of
miniaturized devices, it merges at the nano-scale into nanoelectromechanical systems
(NEMS) and nanotechnology. The scale effect is one basic issue in designing MEMS. Asiits
components dimension decreases, surface adhesion forces begin to emerge, due to the
surface-to-volume ratio increase. Adhesion forces are associated with strong stiction and
friction, rapid wear in MEMS which will reduce its life timel*3. AFM is a valuable tool to
study adhesion force and friction at the micro-and nano-level, and is widely used in testing
anti-stiction coatings for MEMS™, A typical application of AFM in MEMS should be
ascribed to a direct test of the forces necessary to move single components of a MEMS
device. Digital mirror devices used in digital projection displays (DMDs) are a typical
MEMS device. AFM is employed to test the frictional and mechanical properties of DMD

hinge and the force necessary to tile the mirrorg*4.

1.2 Existing Challenges

As mentioned above, in nanoindentation, the length scale may extend to micrometer or even
nanometer range, and at this scale, surface adhesion force, which seldom manifests itself at
macroscale, is likely to dominate other macroscopic forces, and plays asignificant role in the
determination of mechanical behaviors of materials. For one thing, the traditional mechanics,
based on continuous medium hypothesis, does not take real surface morphology of material

and surface forces between two bodies into consideration, and thus cannot provide
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reasonable interpretations onsurface effect. What is more, the successful application of
chemical bond theory, which is based on quantum mechanics controlled by Schrddinger
equations, has greatly developed nanomechanics, which is a challenge not only to traditional
continuum mechanics but also to the basis of Newtonian mechanics. However, there are
numerous mathematical difficulties in this quantitative investigation, e.g. it is aways
shriveled by massive calculations. Therefore, under the existing conditions the
“from-macrocosm-to-microcosmic” method remains attractive. With endeavor by mechanics
pioneers, the combination of traditional continuum mechanics and scale effect and surface
effect has been greatly developed, making it probable to realize the establishment of
micro/nano mechanics based on Newtonian mechanics. The relevant literature will be
presented in the next chapter.

There are commonly two academic scopes which can manifest surface adhesion in contact:
one is the negative detected force by AFM indentation on soft biological cells, and the other
isto jump into and off contact in AFM indentation on hard materials, as shown by Fig 1.2 (a)

and (b) respectively.

(@)
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(b)
Fig 1.2 Adhesion-induced phenomenon in AFM indentation: (a) negative force in biological celld*¥ (b)
jump instability in hard materials'®l. For the soft material, pull off is manifested by stepwise
unbinding events as circled by the black oval in Fig 1.2 (a), and it thus called “ductile” separation in
this work. For hard materials, a sudden jump off manifests itself by the vertical line circled by black

elipse asshownin Fig 1.2 (b), and henceis called “brittle’ separation in this work.

i.  Atomic force microscope indentation on soft materials

As mentioned by Sec. 1.1.2, the Hertzian contact model is widely used to determine elastic
property of soft biological cells by means of AFM indentation. However, this method is il
very challenging, since no proper theoretical model accurately accounts for the complication
of biologica cells. At nanoscale, the effects of adhesion force on tip begin to emerge, which
is manifested by the negative indentation force and cannot be interpreted by the
non-adhesive Hertz contact model. Although AFM is used to measure the adhesion forces
between adhesive cells, or cell/protein, these kinds of measurements always remain in the

level where magnitude of explicit adhesion force is measured. For example, adhesion is
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aways characterized by maximum unbinding force (Fmax) and work of detachment (Wb) (i.e. the
shade area circled by red elipse in Fig 1.2 (a)) obtained from force-versus-displacement curve
(retraction part) by AFM indentation as illustrated in Fig 1.2 (a)l*l. However, these two
parameters may not be sufficiently intrinsic to characterize cell adhesion since both of them are
dependent of some measurement means, e.g. the size and shape of the indenter. Therefore, it is
essential to account for adhesion phenomenon in terms of a contact mechanics model
analogous to the Hertzian contact model where some other parameter should be proposed to
characterize adhesion rather than maximum unbinding force or work of detachment.

ii. Instability jumpin AFM indentation on hard materials

For MEMS (or NEMYS), adhesive contact between its components may initiate stiction which
will lead to permanent failure of the devices as shown by Fig 1.3. There are some studies that
investigate the adhesion-induced friction effects on MEMS devices by means of AFM as
mentioned above. On the other hand, plagticity caused by surface adhesion can also occur in
these systems, even without externally applied forcel*®. Since the components of MEMS are
very likely to be subject to cyclic loading-unloading during service, the adhesion-induced
plasticity may incur plastic shakedown, which can also lead to failure, and hence the
investigation of the adhesion-induced plasticity behavior is of significant importance for
these devices. To the best of our knowledge, there is little work that focuses on these two

aspectsin terms of contact mechanics.
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(@ (b)
Fig 1.3 Example of adhesion failure in MEMS™¥: (a) Stiction of micro-cantilevers to substrate. (b)

Adhesion between fingers of a comb structure in a micro-accelerometer.

From the above context, it may be seen that although the nanoindentation technique has
been drawing attention from engineers and researchers, investigations on the effect of
surface adhesion on small scale contact are rare or incomplete. In this regard, the present
work endeavors to investigate the manifestation of surface adhesion at nanoindentation on

soft biological materials and hard materials.

1.3 Objective and outlines of the Thesis

131  Objectives

The objective of thisthesisis to interpret the following two issues.

® For hard materias, what is the exclusive effect that surface adhesion can exert on single
and repetitive contacts in terms of mechanical behavior in small scale, compared to its
non-adhesive counterpart.

® For AFM indentation on soft biological cells, can one utilize a theoretical mechanics

procedure to quantitatively characterize adhesion between indenter and cell in terms of a
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specific parameter, and what the form of this model will be if the AFM indenter changes
its shape (e.g. from sphere to a pyramid) or the cell changes its shape (e.g. from sphere
to aflat plate). Will this procedure have some potential benefits in terms of biomedical

purpose?

132  Outlinesof thisthesis

Theremainder of thiswork is arranged as follows.

In Chapter 2, a literature review is presented to introduce the development of macroscopic
indentation. For nanoindentation technology, there levant literature on how to extract
mechanical parametersis reviewed. Then the highlights are given to several classic adhesive
contact models, current computational methods to deal with adhesive contact and AFM
indentation on biological cells.

Chapter 3 provides theoretical knowledge for adhesive contact. First, some fundamental
concepts of intermolecular forces are introduced, and these forces are the foundation of
adhesion between two contacting bodies. Afterwards, a system of contact models, i.e. Hertz
modell 1, Bradley modell 2!, JKR (Johnson-Kendall-Roberts) modell 21, DMT
(Derjaguin-Muller-Toporov) model? and M-D (Maugis-Dugdale) model® is introduced in
detail.

To fulfill the instrumentation part of research framework, in Chapter 4, deduction of
quasi-static nanoindentation on several calibration materials, i.e. copper, fused silica, silicon
wafer and polystyrene is presented, from which some mechanical parameters of interest are

caculated. The determined parameters are compared with their typical values for
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judtification. A finite element method is used to simulate materials of interest subjected to
quasi-static nanoindentation. The resulted force-displacement is compared with its
experimental to identify some hypothesesin material constitutive relations.

In chapter 5, contact between a rigid sphere and an elastoplastic half-space is modeled to
simulate contact between MEMS components. The adhesion force obeys Lennard-Jones
force potential’®!l. Two basic strain hardening manners of substrate material, i.e. isotropic and
kinematic hardening, are taken into consideration. Both single and cyclic loading-unloading
are applied to adhesive contact, and the resulted mechanical responses are compared with its
non-adhesive counterpart.

In the following two chapters, attention is given to the investigation of adhesion in AFM
indentation on soft biologica cells. In chapter 6, pancreatic MIN 6 cell is treated by
calciummimetic R568, and both control (untreated) and treated cells are indented by
spherical probe. Both JKR and “generalized” JKR model[®![?6] (with consideration of
substrate thickness) are used to describe the unloading force-displacement behaviors of the
indentation curves. A new parameter termed work of adhesion is employed to quantitatively
characterize adhesion. The difference between control and treated cellsis identified in terms
of this new parameter, together with elastic modulus. Moreover, the unloading part of F-d
curve is fitted with that developed by finite element simulation in Chapter 5 for a further
discussion.

In Chapter 7, human hepatocellular carcinoma cells are treated with fullerenol for 24, 48
and 72 hours. These four types of cells (including the untreated cells) are routinely indented

by AFM whose cantilever tip is Vickers. A “transformed” JKR theory adapted to Vickers
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indenter is introduced in advance. The adapted JKR model is adopted to fit the obtained
force-displacement curves, resulting elastic modulus and work of adhesion. The difference
between the four kinds of cells is aso verified in terms of Young's modulus and work of
adhesion. Although biological cells are involved, it should be borne in mind that this work
treats biological cells as one materia where adhesion is significant and thus no biological
investigation isinvolved in this work.

Chapter 8 summarizes the conclusions of this thesis, as well as recommendations

concerning future research in this area.
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2 Literature Review

In this chapter, a literature review on the advent and development of indentation tests and
nanoindentation technology is presented. Then, the classical theories of contact mechanics, i.e.
Hertz model*®!, Bradkey model?, JKR model?!, DMT model?? and M-D model®® will be
introduced. Afterwards, simulative methods dealing with adhesive contact are reviewed.

Finally, areview on AFM indentation on biological cellsis given.

2.1 Brief History of Macroscopic | ndentation

Indentation test has long been used for measurement of the mechanical properties of materials
due to its ease and speedy implementation. Traditional indentation tests employ different
shapes of indenters and loading methods, resulting in different standards of hardness. In this
section, some common indentations tests are reviewed, and an approximate equivalent

hardness conversion chart for different indentation testsis presented.

211 Brindl Testing: Spherical indenter

At the beginning of 20th century, indentation tests were widely performed by Brinell ball
test’?”l to measure hardness of material. Concretely speaking, the material of interest is
indented by a hard sted ball under a known load P, which is held for a predetermined time
period and then removed. The Brinell hardness Hc is then calculated by dividing the load by
the surface area of the indentation!?, i.e.

H, =+

~ Ds (21)

where D and ¢ denote diameter of the ball and indentation depth respectively.
13
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212  Shoretesting: Dynamic measurement of hardness

For Brinell test, one disadvantage is that the measured hardness increases as the indentation
force increases, which is ascribed to work hardening and increasing of contact area. To solve
this problem, a device called scleroscope was invented by A. F. Shore?? in 1907. In this
device, a diamond-pointed hammer falls under its gravity along a tube and strikes the
materials of interest. The rebound height of hammer is recorded, from which the material
hardness could be calculated. By repeating Shore scleroscope testing on the same spot, the

hardness will increase with the number of tests, due to work hardening!®.

21.3  Other indentation techniques

In 1919, Hugh M. Rockwell patented another technique for hardness measurement termed
Rockwell testingt®32, In this test, the diamond indenter is first applied with a minor force
which gives zero or reference position. Afterwards, amajor force is applied, and then released
while still maintaining the minor load. The indentation depth variance between the minor
value and magjor load value is then converted to hardness. Since 1920s, other different
indentation tests were developed by means of using different macroscopic indenters. Vickers
hardness tests*¥ use a square pyramid so that geometrical similarity could be maintained.
Knoop testing was invented to meet the need to determine both the recovered and uncovered
dimensions of the indentation impressiont*¥. The Knoop pyramid has unequal length edges,
with one diagonal being approximately seven times the other diagona in lengtht®). For
four-side indenter, the four edges in the residual impression cannot easily meet in one point,

14
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and to counter this problem, athree-sided pyramid indenter termed Berkovich!® was invented.
Since it is more readily fashioned to a sharper point than the four-sided pyramid geometry, the
Berkovich indenter will certainly enjoy enormous popularity in the subsequent devel opment
of commercial indentation testers®®. Fig 2.1 shows an approximate equivalent transformation

of different hardness standards with respect to Berkovich indentation testing.

1000 -

Brinell 3000kg

Rockwell B

Rockwell A

100 1 Rockwell H

Vickers

Rockwell C

Brinell 500kg

Hardness Number

10 4

Corundum

Orthoclase
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= Rockwell B

Rockwell C

Rockwell H

=== Brinell 500kg
Brinell 3000kg
Shore Scleroscope

——Vickers

Calcite

Gypsum

0.1 1.0 Hardness (GPa) 10.0 100.0

Fig 2.1 Approximate equivalent hardness translation chart for different standard hardness test with

respect to Berkovivh hardness 37381039,

2.2 Characterization of mechanical properties by

nanoindentation

Nowadays, nanoindentation is one of the few experimental techniques that can directly access the
mechanical properties of material at micro or even nano level. It was introduced as a means for
extraction of elastic modulus and hardness by Oliver and Pharr*, by studying nanomechanical
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response as a function of penetration depthi*!!. The materials involved in nanoindentation cover a
wide range, including metal, glass, ceramics, and even biological materials. Owing to constant
refinement, nanoindentation can aso quantify many other mechanical properties. This section will

review some of the relevant literature.

221  Young's modulus and hardness

The two mechanical parameters which are frequently determined by naonindentation technique are
Young's modulus and hardness. In 1992, Oliver and Pharr®) presented a method to calculate
Young's modulus and hardness of materials by studying force-indentation depth curve. Their
analysis considers the unloading part is purely elastic thus the Hertzian contact model could be
applied to extract elastic modulus. Unlike macroscopic indentation tests, they developed an
aternative method to determine contact area by measuring the penetration depth of indenter into
the sample surface, rather than optical imaging method. This method undoubtedly facilitates the
calculation of hardness of small scale materials. The detailed interpretation for this method will be
presented in Sec. 4.2.1.

For Oliver and Pharr method, some literature focuses on secondary concepts of potential
significance, including indenter geometry, sink-in and pile-up phenomenon.

There are several different indenter geometries in common use. For macro-micro scale
indentation, the frequently used indenters include Brinell shphere, Rockewell spheres, Vickers
and Knoop pyramids. As mentioned before, the four-sided pyramid indenter has its
disadvantage, in that the inevitable line of conjunction occurs acrossiitstip, especially in small
scale indentation. Berkovich and cube corner indenters, however, are appropriate for

16
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nanoscale indentation, due to the fact that they can be shaped with very small tip radii by

means of their three sided surfaces. Parameters of common indenters are summarized in Table

21
Table 2.1 Parameters for common indenterg#143
Indenter shape  Projected area Semi-angle  Equivalent cone  Intercept Geometry
0 angle factor ¢ correction factor

Sphere ~nRhp N/A N/A 0.75 1
Vickers 4hytan’0 68° 70.3° 0.75 1.012
Knoop 2htandy tand,  6,=86.25° 77.64° 0.75 1.012

6>=65°

Berkovich 3% hpltarte 65.27° 70.3° 0.75 1.034
Cube Corner 3% hpltartl 35.26° 42.28° 0.75 1.034

Cone nhp?tan?d 0 0 0.727 1

For simulation convenience, pyramid indenters are treated as conical indenters with a cone

angle, such that it gives the same depth-area functions as the pyramid. This alows the

application of convenient axial symmetric elastic equations. This equivalent treatment is

widely accepted, although there are contact solutions for pyramid indenters/443],

Comaereagal | | [(0)] Goscicges) | | |
.................. ok
v N
5 " i
£
X
T Ewo, =326 Ewo, =889 || " Ewlo, =280 | Eulc, = 143
-4000 s hy / Rimasx = 0,95 Fo i B f Pinax = Q.86 frrgrmms E— Hie f Penae = 0,68 Rt/ Nax = 0.52
~1 i ! I S N T | N
50005 7060 2000 300 o0 Zo0 3000 O T006 20503060 70002000000
R (nm} R (nm) R (nm}) R {(nm)

Fig 2.2 Plastic zone developed during indentation by conical indenter with different values of Eei/oy.
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The solid lines and dash lines denote elastic-perfect plastic and work hardening materials

respectivelyl*l,

The Oliver and Pharr method is based on an elastic solution, and works well for hard
ceramics when sink-in predominates, i.e. the substrate material around the indenter is well
beneath the origina undeformed surface. However, for soft materials undergoing high loads,
the true contact area could be underestimated by up to 50% by using Oliver and Pharr
method*). On the other hand, pile-up (i.e. the substrate material around the indenter is above
the origin surface after indentation) can also occur in material such as Al, which exhibit alow
ratio of yield stress to elastic modulus and little or no strain hardening!*®. This will result in
overestimations of hardness and elastic modulus. Bolshakov and Pharr“ performed finite
element simulation covering a wide range of elastoplastic materials in order to investigate the
effect of basic mechanical parameters on this behavior. For materials with a high ratio of
effective elastic modulus to yield stress Ee/oy, pile-up is likely to occur, and increase the
effective contact area as shown by Fig 2.2 (a) and (b). For materials with a low ratio of
modulus to yield stress Eef/ay, Sink-in is prone to emerge, and decrease the effective contact
area as shown by Fig 2.2 (¢) and (d). Obviously these two behaviors cause significant error in
measure contact area, and thus el astic modulus and hardness measurement.

Besides the famous Oliver and Pharr method, there are several other analyses that exist for
interpreting force-displacement data from nanoindentation. M.Sakai*¥ suggested that the
hysteresis loop energy U, dissipated during the indentation loading-unloading cycle is related

to the true hardness H, given as
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1 , 1 (P32
Up = (5 ntanza)ﬁ (2.2)

where o and P denote the half-angle of the indenter and indentation load respectively. Thus

hardness H can be extracted by measurement of U, and P according to Eg. (2.2). Field and
Swain'®! presented a simple model which could describe the entire force versus the
penetration behavior of indentation with a sphere, during loading and unloading in terms of
four test material parameters, i.e. Young's modulus, Poisson's ratio, flow stress at the onset of
full plastic flow and strain hardening index. Following Field and Swain, Fischer-Cripps®Y
presented the relationship between indentation force P and depth h during loading stage by
using the Berkovich indenter, given as
Periin (B Y [ (B oo

where E', H and o denote effective Young’'s modulus, hardness and half-angle respectively.
E and H could be extracted by fitting the loading F-d curve with Eq. (2.3).

The above studies focus on monolithic materials, whereas significant challenges emerge
regarding measurement of the mechanical properties of thin films due to potential substrate
effects. Although there are some analytical solutions for indentation on layered
material 9525354 they are either mathematically complicated or case limited. To encounter
this issue, one can calculate eastic modulus and hardness from the initial part of the
unloading curve and then extrapolate to zero indentation depth. Mecik et al®® summarized
some empirical and semi-empirical formulae for extracting elastic modulus of thin films. Page
et al® used the continuous stiffness technique to study the mechanical properties of coated
systems. When extracting film properties by nanoindentation, one needs to know how the
substrate affects the measurements of films modulus and hardness. Thus, Saha et al®”
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examined the effects of substrate on the determined mechanical properties of thin films by
nanoindentation. They showed the effect of substrate on film hardness was negligible when
soft films were coated on hard substrate. However, the substrate effect was observed when
hard film was coated on soft substrate, which is due to substrate yields at indentation depths
of less than the film thickness. To account for the substrate effect, there are several methods
developed to describe the hardness of film-substrate systems. These models are based on the
assumption that the composite hardness is determined by the weighted average of film and
substrate harness in proportion to the relative deformed areas or volumes. Substrate effects are
often ignored by following a common rule of thumb that the indentation depth should be less

than one tenth of the film thickness/>85960],

2.2.2  Fracture toughness

Neither elastic modulus nor hardness is unique parameters which could be determined by
nanoindentation. It can also be used to characterize fracture toughness of materials and
interfaces by analogy to that in conventional microscopic tests’®. This section reviews some
of the literature which evaluates fracture toughness from the measurement of the sizes of

surfaces.

(a) (b)

(d)

Fig 2.3 Crack systems for Vickers indenter: (a) radial cracks, (b) lateral cracks, (¢) median cracks and
20
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(d) half-penny crackd®d,

—

N N/
—

Fig 2.4 Schematic of radial crack from side view after removal of indenter.

Fig 2.3 illustrates four typical types of crack, among which radial cracks are very common
in some tough ceramic materials whose lateral view is shown in Fig 2.4. Pamqvist(®
observed that the radial crack length c is proportional to the force P. Marshall and Lawn(6?
noted this proportionality never held for median/radial crack system. They suggested that Pe<

¢¥2, and they gave their expression for fracture toughness as

P
c3/2

Ko = k()" 57 (24)
where n = 0.5, and k is an empirical constant equal to 0.017+0.001 for median crack and
0.032+0.002 for radial crack, respectively. Subsequently Anstis et a® determined n = 1.5
and k = 0.0098 for Vickers-induced radial cracks. Laugier®® observed that crack behaviorsin

WC-Co composites were different from that in ceramics, and suggested that

P
c3/2

Ke = xy(CDYV2(D?P - (25)
for WC-Co composites subjected to Vickers tip, where | is the distance from the center of
residual impression to the end of the radial crack, and xv = 0.015, is a material constant.

Dukino and Swain® compared the load dependence of the radial cracks size of Vickers with
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that of Berkovich and gave the Laugier expression for the Berkovich indenter as

K. = 1.073x, (5)Y2(D)3 —

c3/2

(2.6)

When the different models above are used to determine fracture toughness of material, one
should be clear which one should be applied in terms of the indenter type, materials of interest
and crack type in the exact hanoindentation. In Chapter 4, nanoindentation will be deduced on
a caibration brittle material, and an appropriate model is chosen based on the specific

circumstance.

2.2.3 Creep parameters

Real materials have more or less viscoelasticity property, which manifests itself as creep or
relaxation phenomenon. In the nanoindentation of viscoelastic materials, time dependent
creep always manifests itself as a variation of indentation depth under a constant applied load.
The physical interpretation would be when viscoelastic materials are subjected to
nanoindentation, the resulted stress filed will yield chemical potential and diffusion fluxes
which lead to the establishment of creep rate equation(®”.

In viscoelasticity, the constitutive relationship is always enlightened by the combination of
spring and dashpot element. The spring element means that stress is proportional to strain, i.e.
o = Ee, whilst the dashpot element means stress is proportional to the rate of strain, i.e. o =
ndeldt, where 5 denotes viscosity. Different combinations of spring and dashpot e ements

represent different constitutive relationships, and Fig 2.5 shows three common models.
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()

Fig 2.5 Different kinds of mechanical models: (a) Kelvin model (b) Maxwell model (c) three element

model.

Nanoindentation is always abstracted as Boussinesq problem(®, i.e. an infinite half-spaceis
indented by an arbitrary shape of rigid axisymmetric frictionless punch. There are several
analytical models for Boussinesq problem of viscoelastic materials. One of the pioneering
studies of Boussinesg contact problem for viscoelastic materials is ascribed to Lee and
Radok!®, They assumed the contact radius a (t) is a monotonically increasing function of
time, and replaced the elastic modulus in the elastic equations of Hertz contact with
viscoelastic operators by correspondence principle. In 1966, Ting!™ considered a more
universal situation, i.e. the indenter is axisymmetric by otherwise arbitrary and the contact
radius function a (t) could be arbitrary, and gave its viscoelastic solutions. However, there are
cumbersome integrals in Ting's solutions. Greenwood! ™" developed a relative simple
analytical method by superposing an assembly of viscodastic “Boussinesq’ punch
indentations provided that a (t) is non-increasing. His method proved more convenient for the
variation of the displacement of indenter during unloading.

When fitting creep curves to mechanical model, one should be clear what model is being
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used and what parameters are to be measured. In chapter 4, an indentation will be performed
on calibrating viscoelastic materials, and the aim is to set an example for determining

viscoel astic parameters by nanoindentation.

224 Strain-Hardening exponent

o = Ke"

Y/E €
Fig 2.6 Stress-strain curve for elastic-plastic materials under uniaxial loading. Y denotes the initial yield

stress beyond material begins to exhibit hardening with strain-hardening exponent n.

When the stress exceeds the yield stress Y, plasticity begins to occur in materials. However,
the subsequent yield stress for some materials which has already undergone plastic
deformation will increase if this material is unloaded and then rel oaded, and this phenomenon
Is termed strain-hardening (or strain hardening). Strain-hardening is attributed to pile-up and
interaction between dislocations in the material. During the hardening stage, power law is a
common relation between stress and strain, i.e.
=Y (0<n<1) (27)

where n is strain-hardening exponent. For n = 0, the material is elastic-perfect plastic, and the
corresponding stress-strain curve is denoted by the dash line in Fig 2.6. To determine the
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strain-hardening exponent n, uniaxial loading method is aways used. However, in many
practical applications, uniaxial loading is not available or suitable (e.g. small scale materias).
The nanoindentation test, as a non-destructive method, can then serve as an effective approach
to measure the strain-hardening exponent. There are a number of methods to calculate the
strain-hardening exponent. For indentation on power law isotropic hardening materials, Field
and Swain!®” suggested that the ratio of final contact radius a to critical radius a. is related to
theratio of final load F to critical force F¢, given as
L= Dy 29

where critical force and radius correspond to first occurrence of yield. Shinohara et al™
performed ultral-microhardness (Hum) and Vickers hardness indentation on copper, aluminum
and nickel. They observed that ultra-micro hardness Hum is function of load P, i.e. Hum (P),
and this function Hum (P) systematically exhibits linear dependence on the strain-hardening
exponent n. However, their model requires a number of measurements of hardness and load
over alarge range and also demands tensile tests. To counter these limitations, a generalized
relation is given as

HP) _
oy = 0830 +0.95 (29)

where Ho(P) is the value of hardness corresponding to elastic-perfect plastic materias. Ahn
and Kwonl 1 performed ball indentation on macroscopic scale and showed that
work-hardening exponent played a main factor affecting the pile up/sink in phenomenon of
various steels. For metals with low yield strain, this effect could be determined by a
dimensionless constant ¢ as

2 _ a® _5(2-%)

€= T3 (4+x) (2.10)
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where a and a" denote real contact radius and contact radius without pile up or sink in

phenomenon respectively. Thereal contact radiusis given by

2 _ E(Z_x) * _ %2
a? = 222 (2Rh: - ) W)

where R and h," denote the sphere radius and plastic depth without correction for pile up or

sink in, respectively.

2.3 Adhesive contact in nanoindentation: surface and scale effect

As mentioned in Sec.1.2, surface effect plays a significant role in the mechanical behavior of
material subjected to nanoindentation with a reduction of scale and surface roughness. This
section presents a literature review that has been proposed for the characterization of adhesive
contact. These studies consider the contact between two spheres or a sphere and an infinite
half-space. They also provide methods for characterization of adhesion force data obtained

from experiments, e.g. AFM indentation performed on biological cells.

23.1  Eladtic adhesive contact between two bodies

There are several classic contact models that account for contact problems. The first analytical
solution for non-adhesive contact problem (i.e. Boussinesq problem) is attributed to Hertz9,
who solved the contact problem between two el astic spheres subjected to external compressed
force. In 1932, Bradley® investigated the adhesive effect on the contact between two rigid
spheres and gave aformulafor the pull-off force F i.€.

Forp = —2mAyR (2.12)
where R is the reduced radius of curvature (R = (1/Ri+1/R;)*,where R, and R; are the radii of

curvature of the two spheres, respectively) and Ay is the work of adhesion (4y = y1 + y2 - y12,
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where y1 and y, are the surface energies of the two spheres, respectively, and y» is the
interfacial energy) . One of the first studies on adhesive contact between two elastic spheresis
ascribed to Johnson et a?¥ (JKR model). In the JKR model, contact edge between two
spheres is treated as an interfacial crack, and by requirement of equilibrium of crack
propagation, applied force and mutual displacement of spheres are related by contact radius.
The adhesion force is confined within the contact area, in conjunction with the Hertzian
contact pressure, yielding a neck phenomenon at the contact periphery on the full off instant,
and the pull-off forceis

Fops = —%nAyR (2.13)
In 1975, Derjaguin et al?? proposed another mode! for adhesive contact between two eastic
spheres, known as DMT model. This model considers that adhesion force exists in an annulus
area outside the contact region without deforming the surface profile. Estimation of pull-off
force by DMT model is given as

Forp = —2mAyR (2.14)
The discrepancy between these two models was mediated by Tabor parameter!™ 4 given as

h= G (215

where E'= [(1-1?)/E1 + (11v?)/E: ] is the effective Young's modulus, (Ei, vi and Ep, v2
denote the elastic modulus and Possion’s ration of the two contacting spheres, respectively),
and z is the atomic equilibrium distance. In general, the DMT model holds for small and
stiffer spheres (4<0.1) whilst the JKR model is preferable for large and compliant spheres (u >
5)". Maguis® used Dugdale theory of fracture mechanics, and presented an analytical

solution corresponding to the transition between DMT and JKR model, which is known as
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M-D model. Johnson and Greenwood™ presented an adhesive map specifying the valid
regions of above five contact models.

The M-D solution is relatively cumbersome, and may not be feasible enough for
comparison with experimental data such as atomic force microscope (AFM) measurements,
and there are some studies extended from M-D model. Some simpler equations which
approximate M-D solutions are presented by subsequent studiesl’”[78. 1n1998, Greenwood
and Johnson™ developed an alternative to the M-D model, termed double-Hertz model.
Based on M-D model, Shi and Polycarpoul® developed a model which considers adhesive
transition from noncontact to contact of elastic spheres, and their model is known as EMD
model (enhanced M-D model). Schwarzl! presented an approximate description of
intermediate regime by combining the successful assumptions of JKR and DMT modelsin an
adapted form.

Following the study by Tabor!™, there is a body of literature reviews®aE#4 dealing with
the discrepancy between JKR and DMT models. As advised by Tabor, more novel
experiments and critical theories rather than polemics were needed. Therefore, in 1980 Muller
et al® specified Lennard-Jones law of force as the interaction between contacting surfaces,
and developed a self-consistent numerical analysis to describe behaviors of two contacting
elastic spheres. The transition from DMT model to JKR model was realized by increasing the
Tabor parameter. Furthermore, Muller et al®pointed out that the exact form of molecular
interaction law will not affect the two extremes of the transition, i.e. JKR and DMT models.
In 1992, Attard and Parker®”] presented self-consistent solutions with more numerical
calculations, and showed the pull-off force is dependent on the history of the sample, and

28



Chapter 2

increases with increasing maximum applied loads. The numerical solution was repeated more
accurately and in greater details by Greenwood!™, who showed that the force-displacement
curve becomes S-shaped with 1 > 1, leading to jump in and out of contact. In order to enhance
the convergence rate, Feng'®) used an arc-length continuation algorithm which could
accurately determine jump in and off behavior of contacting bodies when Tabor parameter is
large.

In addition, FEM presents an effective method to solve self-consistent numerical issues. In
2004, Cho and Park*¥ modeled the adhesion force as a body force derived from
Lennard-Jones 12-6 potential, and included it as subroutine in FEM. Their results showed that
the dependence of pull-off force on the sphere radius is consistent with that by M-D model.
Radhakrishnan and Mesarovicl®! performed comprehensive and accurate finite-element
modelling on adhesive contact. They proposed a modified Tabor parameter, in terms of which
they provided meaningful discussion of the number of governing parameters for adhesive
contact. There are also some studies with consideration of non-linear elasticity or
inhomogeneous elasticity. Lin and Chenl®@ presented finite element modelling on adhesive
contact between two spheres whose constitutive relations are hyperelastic, and developed a
JKR test of soft elastic materials taking large deformation into consideration. Jin et al(®¥
performed finite element modelling on adhesive contact of power-law graded elastic (i.e.

elastic modulus of materials varies spatially) solids, and realized DMT-JKR transition.

232 Elastoplastic adhesive contact between two bodies
The above literature concerns elastic deformation , however plastic deformation could occur
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in real adhesive contact. Pashley et all®@ indented a pointed stylus of tungsten against a nickel
surface in ultrahigh vacuum, with load ranging from 0.5 to 1000 xN. With clean surfaces
(strong adhesion), their experimental results suggested that surface forces alone can initiate
plastic deformation. Chowdhury and Pollock!®®! performed Titanium-Titanium contact in
ultrahigh vacuum (0.1uPa), and their results suggested that plastic deformation can also occur
at the micro-asperities of rough surfaces without external load.

Besides experimental investigations, there are several analytical studies concerning
adhesive contact of elastic-plastic materials with some simplifications. With JKR concept,
Maugis and Pollock!*® reviewed the role of surface forces on deformation and adherence of
metal micro contacts, and concluded that the stresses caused by surface force alone may be
high enough to initiate plastic deformation around Hertz point. Chang et a® considered
Lennard-Jones law of forces acting on surface outside the contact area, and presented an
elastic-plastic asperity model analyzing adhesive contact of rough surfaces based on volume
conservation. Mesarovic and Johnsonl %! examined the decohesion of two adhering
elastic-plastic spheres undergoing mutual indentation beyond elastic limit. They assumed the
two contacting bodies only follow elastic deformation during unloading, adapted both JKR
and M-D models to treat the adhesive contact, and finally provided a decohesion map which
describes the effect of different physica mechanisms on decohesion. Gu and Leel®!
investigated the adhesive contact of arigid sphere and an elastic-perfectly plastic half-space.
By taking the variation of curvature within the contacted surface into consideration, they
showed that the plastic pull-force within the contact area is higher than that cal culated based
on a constant curvature.
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Thanks to FEM, numerical models and related approaches provide an effective way to
study elastoplastic behavior of contacting bodies subjected to adhesive contact. Kogut and
Etsion®” relieved some assumptions by Chang et all®, and used the finite element method to
calculate the separation outside the contact area. Du et all®® performed finite element
modelling on loading and unloading of adhesive contact between elastic-plastic spheres
(made of ruthenium and aurum), which exhibit linear strain-hardening. They identified ductile
separation (with plasticity) for ruthenium and brittle separation (pure elasticity) for aurum
(see Fig 2.7) respectively. Kadin et al®'% aso used FEM to investigate loading and
unloading of adhesive contact between rigid flat and elastic-plastic sphere, which, in any case,
obeys linear kinematic hardening, and provided meaningful discussion of elastoplastic
behaviors in terms of plastic shakedown. In their study, nonlinear spring elements were
employed to model the adhesion force, which obeys Lennard-Jones potential. However, as
Tabor parameter increases (e.g. > 2), nonlinear spring elements will cause a convergence
problem in FEM, and thus this work resorts to other solutions to describe interfacial forces

and ensure convergence at the same time.

(a (b)
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(©
Fig 2.7 Scanning electron microscope (SEM) images of an aurum contact bump cycled at force of 200
uN. (a) The original bump before cycling; (b) the bump after several cycles and (c) its zoom in titled at

85°. The difference of surface topographies corresponding to (a) and (b) is due to adhesion forces'®®l,

233  Solutionsof Micro/Nano contact by molecular dynamics

The literature in Sec. 2.3.1 and 2.3.2 investigates adhesive contact in terms of combination of
classic continuum mechanics and interfacia force, and besides molecular dynamics
simulation (MDS) proves another effective method. In 1990, Landman et a!*t used
molecular dynamics simulation to investigate the atomistic mechanisms of adhesion, contact
formation, nanoi ndentation, separation and fracture which occurred between a nickel tip and a
gold surface, as shown by Fig 2.8. They recorded indentation force and energy in terms of the
distance between tip and substrate, and pointed out jump in/jump out, neck, and hysteresis of
force compared with displacement during separation. Leng et al'® conducted molecular
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dynamics to simulate the two-dimensional adhesive contact between a flat-ended wedge and
an elastic half-space. They showed that the pull off forces for contacting surfacesto peel apart
conform well to those predicted by classic continuum mechanics. Zhu et al*® performed
molecular dynamics to model adhesive contact between rigid cylinders with different radii
and elastic substrate. Their simulation results showed that adhesive hysteresis phenomenon
becomes significant as tip size increases at jump in and off instants, and adhesion forces have
a significant effect on contact process corresponding to tip of small size. It is worth our

attention that these results are also consistent with those by classic continuum mechanics.
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Fig 2.8 Atomic configurations of indentation between nickel indenter and aurum substrate 191

24 Application of AFM on biological materials

To date, there has been a variety of testing techniques and associated models in the field of
experimental nanomechanics on biological cells. As is described in some reviews in the
literaturel 1041010510106] - these techniques include cell poking, the micropipette aspiration
technique, optical and magnetic tweezers, biomembrane force probe (BFP) and atomic force
microscope. Although these techniques may vary in terms of operating principles, force and
displacement resolutions and magnitude of deformation®), their fundamental method is to
apply biological cell with pre-set force and monitor the concurrent deformation.

Among these techniques, AFM was invented by Binning et al**7l in 1986 with the function
to explore surface topography. Soon, AFM evolved into a powerful tool for direct
measurement of micro-structural parameters and unraveling intermolecular forces at
nanoscale. Since it has the capability of operating at very high resolution in a liquid
environment(1%! it is widely used to characterize surface topography, mechanical and

interfacial properties of biological cells.
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241  Application of AFM indentation on probing cell elasticity

By performing AFM in force spectroscopy (AFM-FS) mode with appropriate cantilever tips,
AFM can indent specific points on the cell surface. The elastic modulus of cell can be
extracted by fitting the force-displacement curve with an appropriate model. The first
measurement of microelastic properties of animal tissue (hydrated cow tibia) by AFM
indentation is ascribed to Tao et all'®. Dramatic variations in eastic properties across
distances as small as 50 nm could be observed at high resolution. Radmacher et all*'
performed AFM indentation (conical indenter) on cardiomyocytes, and applied Hertz contact
model to determine the elastic modulus, which provides measurements of elastic properties of
living cellsin general.

Elsonl® suggested that mechanical properties play a significant role in cellular processes
and can serve as indicators for celular process. Ohashi et al'¥ investigated the elastic
modulus of bovine endothelia cells exposed to shear stress using an atomic force microscopy
(AFM) and the finite element method (FEM). Their results showed that although the eastic
moduli for control and sheared cells determined by means of FEM were higher in comparison
to Hertz model fitting by a large margin, the tendency of elastic modulus between the two
kinds of cells remained the same. Kuznetsova et al**3 reviewed AFM applications for study
of elastic modulus of intact cells associated with different cell events, and presented an
analysis of local mechanical characteristics of different cells. Li et al™? carried out AFM
indentation to characterize elasticity of benign and cancerous human breast epithelia cells,
and showed Young's modulus of malignant breast cells was significantly lower than their
non-malignant counterparts. Cross et al*** investigated the nanomechanical property of lung,
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breast and pancreas cancer directly taken from patients by AFM. The results showed that the
elastic modulus of metastatic cancer cells was more than 70% softer, with a standard
deviation over five times narrower, than the benign counterparts. Thus, they indicated that
mechanical analysis could distinguish cancer cells from their benign counterparts despite that

they exhibited similar shapes.

242 Investigation of cell adhesion by AFM indentation

Generally speaking, AFM can alow high resolution force measurements over a large range
(5pN-100nN) for displacement up to 100pum. Hence, it has proved an effective tool for
studying many biological applications such drug/protein interactions, protein/protein
interactions, cell/cell or cell/protein interactions and many biological phenomena governed by
intermolecular forces?d. An investigation of the interfacial adhesion in molecular level is an
essential part of revealing these phenomena. By using AFM indentation, Dammer et al(*'d
measured binding forces intrinsic to adhesion molecules to assess their contribution to the
maintenance of the anatomical integrity of multicellular organisms. Lee and Marchant!!¢l
measured the debonding interaction forces between RGD peptide-modified AFM probe tip
and a human platelet surface from pN to nN levels of force. The results showed a considerable
extension in the flexible sample surface during detachment process. By increasing pulling
range in AFM, Puech et all*l presented a new technical method to quantitatively study
cell-cell adhesion events. Friedrichs**® presented atomic force microscopy (AFM)-based
single-cell force spectroscopy (SCFS) for quantitative study of cell adhesion, and they
showed that AFM-based SCFS exhibited a more versatile force range of detection compared
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to other SCFS assays. Analogous to AFM-based elasticity characterization which could serve
as an index for cell physiological status, some studies also adopt cell adhesion asindicator for
cell identification. Siamantouras et al*” used a new method to quantify mechanical and
interfacial properties of MING cells treated by calcimimetic R568 using AFM based SCFS. By
investigating the maximum unbinding force and work of detachment, their results showed
calcimimetic R568 increased cell-to-cell adhesion parameters and elastic modulus of single

cells.

25 Summary

This chapter reviews the development of macroscopic indentation history, nanoindentation
techniques, methodology on adhesive contact and application of AFM techniques on
biological cells.

In Sec. 2.1, several macroscopic indentation tests were introduced and reviewed in terms of
indenter shapes and characteristics.

In Sec. 2.2, nanoindentation technique was reviewed in terms of its application on
measurement of mechanical properties: elastic modulus, hardness, fracture toughness, creep
parameters, and strain-hardening exponent.

To provide preliminary for surface adhesion in nanoindentation, Sec. 2.3 reviewed some
classic adhesive contact models, finite element method based smulation and molecular
dynamic based simulation concerning adhesive contact. Studies combining surface adhesion
with material plasticity, inhomogeneity and nonlinearity were also reviewed. This literature is
of guiding significance for this work in terms of numerical simulations, analytical solutions
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and experimental procedures of adhesive contact.

In Sec. 2.4, several techniques on measurement of cell mechanical properties were

glimpsed. Multiple function of AFM was mentioned. Some typical literature investigates the

mechanical properties of biological cells were reviewed. Finally, a review of studies of cell

adhesion by AFM indentation was presented, which is of guiding significance for chapter 6

and chapter 7 of the present thesis.

The limitation of present research of islisted as following:

® For hard materials, this work assumes that the substrate materials obey isotropic or

kinematic hardening. The hardening behavior of metal is much more complicated, e.g. it

might be the combination of isotropic and kinematic hardening.

® [or soft materids, i.e. biological cells in this work, the cell is treated as homogeneous

while they are inhomogeneous in reality (it is comprised of cytoplasm, cytomembrane

and cell nucleus). Therefore, the modeling of cell in this work corresponds to a gobal

equivalent treatment.
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3 Theoretical Background

This work mainly concentrates on surface forces, however it is essential to present its origin,
i.e. intermolecular forces, without which it may seem very groundless. In this chapter, the first
section presents some fundamental concepts about intermolecular forces, including its
mechanism and mathematic expressions. Then, based on Lennard-Jones potential, the force
between two surfaces is formulated. The second section introduces several classical contact
models based on continuum contact mechanics, e.g. Hertz model*¥!, JKR model?¥ and DMT

model(?.

3.1 Intermolecular and Surface Forces

311  Forces between two molecular (atoms)

It is a common sense that there are four types of forces in nature: in decreasing order of

intensity, strong interaction, electromagnetic force, weak interaction and gravitation. The

forces between atoms (or molecules) belong to the second category, which can be divided into

strong bonds (i.e. its rupture needs a large absorption of energy, approximately 102 kcal/mole)

and weak bonds (1-10 kcal/mole).

The strong bonds have the following types

® |onic bond. This is a type of chemical bond due to electrostatic attraction between
oppositely charged ions.

® Covalent bond. This bond is also a chemical bond involving the sharing of electron pairs
between atoms.
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® Metdlic bond. This is a result of electromagnetism and describes the electrostatic
attractive force that occurs between conduction electrons and positively charged metal
ions.

The weak bonds include:

® Keesomforce: force between two permanent dipoles.

® Debyeforce: force between a permanent dipole and a corresponding induced dipole

® | ondon dispersion force: force between two instantaneously induced dipoles.

® Hydrogen bond: attraction between the lone pair of an electronegative atom and a
hydrogen atom that is bonded to nitrogen, oxygen, or fluorine.

Generally speaking, Keesom, Debye and London dispersion forces are grouped together
and termed van der Waals forces. They include attractions and repulsions between atoms,
molecules, and surfaces, as well as other intermolecular forces. They are different from
covalent and ionic bonding, in that they are caused by correlations in the fluctuating
polarizations of nearby particles. Although van der Waals forces are weaker compared to
covaent ionic bonds, they play a significant role in fields as diverse as supramolecular
chemistry, structural biology, polymer science, nanotechnology, surface science, and
condensed matter physics. For example, van der Waals forces determine the stability and the
coagulation of colloids, in the physisorption of a molecule onto a surface.

The van der Waals force between atoms and/or molecules is the sum of the three different
forces, which are al proportional to 1/r6, wherer is the distance between atoms or molecules.
The corresponding potentias are Keesom potential Ux(r), Debye potential Up(r) and London
potential U (r) whose expressions, given as
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Uo = — L 20iK3 1 )
K (4meg)? 3KT 16
Un = — 1 agaui+aoski (3.2)
D (41eg)? ré '
1 3agiag2hvv
UL 01402 1Y2 (33)

- (4meg)? 2(vi+vy)re

where g

vacuum permittivity

i (i =1,2) —— theith dipolar moment

k —— Boltzmann constant
T —— absolute temperature
r —— distance between two molecules (atoms)

aoi (I = 1,2) —— electronic polarizability

hvi (i = 1,2) —— first ionization energy of the molecules, where h denotes Planck
constant
Thetota van der Waals potential energy Uvaw is the sum of the above three terms, i.e.

Uvaw = Ug + Up + Uy = — = (34a)
and the van der Waals force Fuaw is
Foaw = T2 = 22 (3.4b)

where C isthe constant in the atom-atom pair potential.

Actually, the energy of interaction does not tend towards infinity as indicated by Eq. (3.4)
as r approaches zero. The reason is a repulsive force emerges when the electronic clouds
begin to overlap, asif the molecules were impenetrable. One of the usual empirical equations
for the energy of interaction is Lennard-Jones Potentia !9, given as

U2 _

c 12 a\6
2 F-M%KJ‘WQJQQ
where r is the distance between the two molecules (atoms), a is the distance at which the
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potential is minimum, and U, denotes the minimum potential energy, i.e. Uo = C/2r¢® wherero
= 2¥6=1.12a. ro defines the radius of the van der Waals bond (approximately 0.1-0.2 nm). Fig
3.1 and 3.2 show the variation of normalized Lennard-Jones potential energy and interaction
force versus normalized intermolecular distance, respectively. As can be seen from Fig 3.1
and 3.2, the total intermolecular potential and force are obtained by summing up both the
repulsive and attractive components, and the range of repulsive potentia (force) is shorter

than its attractive counterpart.
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Fig 3.1 Lennard-Jones potential versus distance between two molecules (atoms) in reduced coordinates.
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Fig 3.2 Lennard-Jones force versus distance between two molecules (atoms) in reduced coordinates.
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3.12  Force between two surfaces

In general, the adhesion force Fagis a combination1 of the electrostatic force Fq, the van der
Waals force Fuaw, the meniscus or capillary force Feap and forces due to chemical bonds or
acid-base interactions Fehem, i.€.

Foa = For + Fyaw + Feap + Fenem (3.6)

However, the predominant component of adhesion force varies at different circumstance. In
gaseous environments, capillary force aways exists due to capillary condensation and
adsorption of thin water films at surface. This attractive interaction is dependent on the
relative humidity and the hydrophilicity of tip and sample. Therefore in dry conditions, the
capillary force will disappear and van der Waals force and electrostatic force become the
dominant. In agueous solutions, most surfaces become charged due to dissociation of surfaces
groups and electrostatic forces are important. However, the magnitude of electrostatic forceis
also dependent on electrolyte concentration and in distilled water it will disappear (so as
capillary force), leaving van der Waals force as the main component of adhesion force. If
chemical end-groups exist on the surfaces, chemica bonds may form during contact of
surfaces, and chemica interactions dominate the adhesion force. After al, van der Waals

force always contributes in most adhesive cases, and thus deserves our attention.

3.1.2.1 Vander Waals force between two semi-infinite planes

Before calculating the interaction force between two surfaces, consider the force between a
single molecular (atom) and a plane as schematically illustrated in Fig 3.3. A sole molecule M
(atom) is situated by a distance d from an infinite half-space which has n molecules per unit

volume (i.e. molecular density). A is an ordinary molecule (atom) within the plane, and its
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distance from M isr. a is the plane which contains A and parallel to the surface plane, and the
distance between M and plane « is z. Point O is the projection of M on plane .6 denotes the

angleZAMO.

Fig 3.3 Schematic of the van der Waals force between a single molecule (atom) and a semi-infinite

space

The projection of the attractive between M and A on OM (vertical direction) is, from Eq.

(3.4b),
6C 0
Fom =~ (37)
The volume of theinfinitesmal annulusis
_ 2 sinf
dV = 2nz Cos3ed9dz (3.8)

Since van der Waals force can be added up, the sum of the vertica component of the

attractive force within this infinitessmal annulusis

12nnC

_ 6Ccosb cos’OndV = — cos>0sinfdOdz (3.9)

z7

dFam

Integrating the attractive force between a molecule and a semi-space yields
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wdz/

Frnotecute—plane = | dFom = 12mnC [ _, c0559sm9d9 (3.10)

7'mC
Fmolecule—plane = (3 11a)

and the corresponding potential energy is

nnC

Upoint—plane = T edd (3.11b)

The interaction force between two semi-spaces separated by as distance d is
Fytane-ptane = [ e dz = "% (3122)
whose corresponding potential energy is
Upiane-piane = 12d2 (3 12b)
Here, one introduces Hamaker constant, i.e. An = z°n°C (for two different bodies A;, =
m?nyn,C;,), and itstypical valueis 101°J in vacuum. Then Eq. (3.12) could be written as

Fplane—plane = on d3 (3.139)

Uplane—plane =TT dz (3.13b)

3.1.2.2 Lennard-Jonesforces between two semi-infinite planes
By analogy to 3.1.2.1, it can be easy to deduce the Lennard-Jones force o(2) between two

semi-infinite planes with a separation of z, given as

o(2) = 6AH 5 (314

Eg. (3.14) contains one unknown, i.e. B. One introduces an equilibrium distance z, i.e. o (2)

=0. Thenityields

o) = 2 1(2) - (2)] G19)

and the unknown B could be derived from o(z) = 0. The corresponding potential energy is
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U(z) = - 121:;102 [(2?0)2 _%(2?0)8] (3.16)
The work required to separate two surfaces of unit area from the equilibrium to infinity is
given as
Wyy = fzo: o(z)dz :16?1_202 (3.17)
and Wag is normally termed work of adhesion (units of J/m?).

On the other hand, the creation of surface is accompanied with the disruption of
intermolecular bonds, which is quantified by surface energy y. Therefore, the work of
adhesion W.q equal s the difference of surface energy Ay during separation, i.e.

Wy = Ay = fZO:a(z)dZ (3.18)
where
Ay =y1+v2— V12 (319)
where y;i (i = 1,2) denotes the surface energy of the two solids and y1» istheir interfacial energy.
In this work, surface energy Ay will be treated as the work of adhesion, unless specified
particularly. Equating Eq. (3.17) to Ay resultsin
Ay = 16mz,%Ay (3.20)

Substituting Eg. (3.20) into (3.15), one has

o= 521(2) - (2)1 62
Eq. (3.21) gives the dependence of surface-surface interaction forces in terms of of adhesion
Ay, equilibrium distance z, and the separation z. Differentiating Eq. (3.21) with respect to z
and letting do(2)/dz = 0 indicate that the maximum interaction force omax equals 1.02644y/z,
at z= 1.2 z. Fig 3.4 illustrates the dependence of the normalized interaction force o/omax0n

normalized separation z/'z,, together with its attractive and repulsive components. As can be
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seen, the range of attractive force is larger than its repulsive counterpart. When z > z,
attractive force exceeds repulsive force and when z < z, repulsive force surpasses attractive
force. The attractive and repulsive forces are equal and opposite at z = z, and the resultant
force is zero. Therefore, in theory two flat solid surfaces will stand still with an equilibrium

interfacial separation of z.
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Fig 3.4 Lennard-Jones force corresponding to two parallel surfaces as afunction of separation.

Eqg. (3.21) accounts for the interaction forces between two parallel planes. However, in
most cases the two pairwise surfaces are curved or inclined to each other. In fact,
Derjaguin*®d proposed this issue in terms of energy, and insisted that the interaction energy
between two surfaces of small objects, whether or not parallel to each other, isthe same asthe
energy per unit area between two parallel surfaces as long as the separation is much smaller
than the size of objects involved (known as Derjaguin approximation). In this work,
especidly in the finite element method, Eq. (3.21) will be adopted to specify the interaction

force between a sphere and an infinite half-space based on Derjaguin approximation.
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3.2 Classical Contact Moded's

Last section provides a brief introduction on the intermolecular force between two molecules
(atoms) and interaction force between parallel planes. As can be seen from the expression of
Lennard-Jones force, it becomes increasingly significant as the two planes approach each
other from infinite distance, which can potentially result in deformation of the involved planes
if they are deformable. This section will provide an introduction of several contact modelsin
the theory of classic contact mechanics. As pointed out in Sec.1.2, these contact models can
generally be treated as the combination of classic continuum mechanics and surface effect,

and some of them still prevail in relevant areas.

3.2.1 Hertz model: a non-adhesive contact model

Classic contact mechanics is mostly associated with Heinrich Hertz. In 1882, Hertz'%¥ solved the

prablem of normal contact between two elastic spheres, as shown by Fig 3.5 (a), i.e. he formulated

the relationship between the normal force and the normal mutual approach of the two spheres.

There are several assumptions for Hertz model, namely:

® The material of the two contacting spheres is homogenous, isotropic and linearly elastic. No
plastic deformation occurs during contact process.

® Theradius of contact areais much smaller than either radius of the two contacting spheres or,
to be strict, radius of the curvature of the curved contact area.

® The contacting surfaces are smooth, frictionless and no adhesive stress exists.

® The elastic deformations are small and hence geometric nonlinearities are not taken into

consideration.
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Fig 3.5 Schematic of (a) contact of two elastic spheres subjected to normal force F and (b) the

distribution of compressive pressure in contact area.

Based on these assumptions, the dependence of force F on contact radius a is given as:

4E*q3
F = R (3.22)

where R is the reduced radius of curvature (R = (1/Ri+1/R;)*,where R, and R; are the radii of
curvature of the two spheres, respectively), E'= [(1-vi?)/E1 + (1vA)/E; 17 is the effective
Young's modulus, (Ei, v1 and E, v» denote the elastic modulus and Possion’s ration of the two
contacting spheres, respectively). In an extreme case, if R—o (i = 1, 2), the ith sphere will
tend to be an infinite half-space, and then the reduced radius of curvature R eguals the that of
the finite sphere. Therefore, the contact between an infinite half-space is treated as a special
circumstances for contact between spheres. The relationship between mutual approach ¢ and
contact radius ais given as:

2
5= % (3.23)
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where 6 = 61+ d2, and di (i = 1, 2) denotes the displacement of ith sphere center during the
elastic deformation. If one sphere remains still during contact, mutual approach can also be
regarded as penetration of one sphere into the other. Therefore, in this work, we do not
deliberately distinguish mutual approach from penetration unless specified particularly.

Thedistribution of compressive pressure p(r) in contact region is given as:

3 F
2 wa?

p(r) = 1-()? (3.24)
which exhibits an elliptical profile as shown in Fig 3.5(b). As can be seen from Eq. (3.24), the
ratio of maximum compressive stress to its average counterpart is 1.5. Besides, there are two

derivative forms of Hertzian contact model for cylindrical and conical indenter, which are

listed in Table 3.1.

Table 3.1 Solution for non-adhesive contact of cylindrical and conical indenter

Shape F-a o-a Contact pressure
Cylinder F =2aE*$ N/A p(r) =-— l [1- (z)z]‘l/2
2ma? a
Cone F = E*a?cota 8 = = acota __f h
=2 ~2 () = =z cosh™ (D)

In a macroscopic scale, the interaction forces between two contacting surfaces are
insignificant compared with other dominant forces e.g. gravity, and thus the Hertz model,
without consideration of adhesion forces, has proved a decent description for contact behavior
in this case. However, as the characteristic length of the two contacting bodies reduces, the
ratio of surface area to volume increases, and thus adhesion forces resulting from

intermolecular forces cannot be ignored any longer. In 1930, London theory of van der Waals
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forced*? was presented, and since then many efforts were made to investigate the effect of
intermolecular adhesion on the contact behavior of two bodies. In the following context,

several adhesive contact modelswill be introduced based on relevant assumptions.

322 Bradley Model: Adhesive contact between two rigid bodies

When two clean, smooth and dry surfaces are brought into close proximity, they will stick to
each other by the attractive van der Waals forces. In 1932, Bradley® presented a means to
calculate the adhesion forces between two rigid spheres with perfectly smooth surface. As
illustrated in Fig 3.6, when two rigid spheres approach each other, the attractive force F can

be assessed by integration, since intermolecular forces can be added up.

TN
[ R 1 \‘
\
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\\\\///

Fig 3. 6 Schematic of non-contact adhesion between two rigid spheres

F=2m fom ra(h)dr (3.25)
where o(h) is the local interaction force and h is the local separation. By approximating the
spherical shape to a parabolic shape, the dependence of local separation h on loca radiusr is
given as
TZ
h(r) = ho + - (3.26)
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where R is the reduced radius of curvature and hy is the surface separation at r=0.
Differentiating h with respect to r yields
Rdh = rdr (3.27)
Substituting Eqg. (3.27) into right side of Eqg. (3.25) yields
F =2nR fh": o(R)dh (3.28)

The integral on the right hand of Eq. (3.28) represents the area enclosed by the o(h)-h curve
from h=hg to infinity, and thus the force needed to maintain equilibrium of the two rigid
spheres is solely dependent on ho, once a(h) is specified. By letting ho = z, the integral on the
right hand of Eq. (3.28) is actually the expression of work of adhesion Ay (see Eqg. (3.18)), i.e.
the maximum value of this integral. Therefore, the maximum value of adhesion force can be
expressed as

Frax = 2mRAy (3.29a)
irrespective of the exact dependence of interaction forces a(h) on separation h. The maximum
adhesion force is the force needed to tear two stick rigid spheres from hy = z to infinity, and it
istermed pull-off force, i.e.

Forr = 2mRAy (3.290)

As can be seen from the derivation process, Bradley model does not take deformation into

consideration, which restricts its application. Owing to this disadvantage, the subsequent

adhesive contact models consider deformable bodies.
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Fig 3.7 Distribution of contact stress (2-D) predicted by different contact models. The positive pressure

denotes compressive force whilst the negative pressure denotes attractive force.

323  JKRmodel: reference to fracture mechanics

In 1971, Johnson et a® studied the adhesive contact between two elastic spheres. By
reference to fracture mechanics, the contact periphery is regarded as a crack. According to the
Griffith's criterion, the equilibrium of crack propagation is achieved when the release rate of
strain energy G equals the work of adhesion, i.e. G = Ay, they presented an analytical solution

as

1/3

2
a= {3sz [1 +37tAyR+\/6nAyR+ (3nAyR) ]} (331)
4E F F F

where 9, a and F denote mutual approach (penetration), contact radius and external force. It

can be seen from above equations that if no adhesion is assumed i.e. Ay = 0, the equations
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(3.30) and (3.31) are reduced to Herzian contact model. Substituting Eq. (3.31) into Eq. (3.30)
can yield the dependence of force F on mutual approach ¢, which isillustrated by Fig 3.8(a)
in reduced coordinates. At the point M, adhesive force reaches its maxima, which is termed
full off force for JKR model. Further calculation indicates

Fops = %nAyR (3.32)
and the corresponding minimum contact radiusis given as

1/3
(3.34)

__ (9mAyR?
Amin = SE*

The contact pressure in contact region is expressed as

-1/2

p(r) = 2E4pg _ (1)2]1/2 _ (LW)I/Z [1 - (1)2] (r<a) (3.35)

TR a Ta a

and its distribution is shown by Fig 3.7 (dotted line). The negative pressure denotes attractive
force as expected, and it acts only within the contact region. Because of adhesion forces, the
contact area (radius) predicted by JKR model is larger than its Hertzian counterpart given the
same external load. From the second term at the right side of Eq. (3.35), it can be seen that the
pressure will exhibit a square root singularity as r — a’, which is consistent with the stress
singularity occurring at the crack tip in linear elastic fracture mechanics.

Essentially, in JKR model, a strong adhesive force is supposed to act at the equilibrium
distance zo, which could be treated as a delta function®! as illustrated by Fig 3.8(b). For any
distance larger that z, interaction forces disappears. In JKR model the attractive force is a
short-range force with amost infinite magnitude at equilibrium distance z, and this explains
why there are no interaction forces outside the contact zone and stress singularity at the

contact periphery.
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Fig 3.8 (a) Relation between force F and mutual approach 4, in reduced coordinates. (b) The interaction
forcesin JKR (bold line) in comparison with realistic interaction (thin line), and positive and negative

value represent repulsive and attractive interaction forces, respectively.

324  DMT mode: the profile outside the contact arearemains its Hertzian counterpart
In 1975, Derjaguin et al?? presented another adhesive contact mode! (known as DMT model)
using a “thermodynamic” approach. Unlike JKR model, DMT model assumes that adhesion
forces exist a an annular zone outside the contact region without deforming the contacting
bodies. Although this model does not result in any analytical solution, it estimates that the
pull-off force is 2zAyR, i.e. the same as that of Bradley model. In an approximation to the
initial DMT model, Maugis?¥ proposed the following effective Hertzian force FPM™

FRMT-M = F 4 2mAyR (3.36)
where F denotes the externally applied force. He stated that the dependence of effective
Hertzian force Fs®M™ on contact radius a still obeysthat of Hertz model, i.e.

FRMT-M — %:‘3 (3.37)
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Substituting Eqg. (3.37) into Eq. (3.36) yields

4E*a3
F J—

— 2mAyR (3.38)

Force/area

DMT

>
——>

distance

Fig 3.9 Schematic of the interaction forces in DMT model (bold line) compared with realistic

interaction (thin line).

Since DMT model ignores the effect of adhesion forces outside the contact area on the
profile, the stress distribution should obey Hertzian compressive stress inside the contact area,
as shown by Fig 3.7. In essence, the adhesion forces in DMT model could be treated as

long-range forces of basicaly van der Waals typel® (see Fig 3.9), which explains why there

are attractive forces outside the contact zone, as assumed by this model.

As can be seen from Eq. (3.32) and (3.38), there is an apparent discrepancy at the

prediction for the pull-off force between JKR and DMT model, and this discrepancy even led
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to conflict. In 1976, Taborl™ compared these two models, and indicated that the main
disadvantage of JKR model was the neglect of adhesion forces outside the contact region,
whilst that of DMT model was neglect of deformation due to adhesion forces outside the
contact area. He also pointed out that besides JKR model, there was also stress discontinuity
in DMT moddl, i.e. the stress tends to zero a r = &, whereas it becomes negative (attractive)
atr = a" ascan be seen in Fig 3.7. Tabor estimated the discontinuity of displacement at the
contact periphery was in the order of (Ay’RIE?)Y, stating that if this discontinuity of
displacement is close to equilibrium distance z,, JKR model should be modified to account for
attractive force outside the contact region. Finally, this conflict was mediated by the

introduction of Tabor number™, i.e.

_[RAY? 1/3
u= [E*Zzg] (3.39)
or more concretely
1—=v2)2RAy2 1/3
u= [%] (3.390)

which could be viewed as the ratio of the elastic surface displacement at the instant of
separation to the effective range of surface force characterized by the atomic equilibrium
distance z™!. In general, the DMT model applies for i < 0.1 (hard materials, small radius of
curvature and low work of adhesion), whilst the JKR model applies for x > 5 (soft materials,

large radius of curvature and high work of adhesion).

325  Maugis-Dugdale (M-D) model: atransition from DMT to JKR model
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Force/area
<
O

>

distance

Fig 3.10 Schematic of the interaction force used in M-D (bold solid line) in comparison with realistic
interaction (thin line). The area enclosed by the bold solid line with respect to abscissa is the same as
that of the thin line, implying the interaction force used in M-D model gives the same work of adhesion

as that of the real one.

In 1992, Maugis?® introduced an analytical solution to account for intermediate range
between JKR and DMT model based on Dugdale model*??, known as Maugis-Dugdae (M-D)
model. This model considers the interaction forces between two surfaces follow Dugdale
model, as shown by Fig 3.10, i.e.
a(h) = {60" %o < ;ll f 56(? (3.40)

where h denotes the distance between two surfaces. The magnitude of oo is selected so that it
coincides with the maximum Lennard-Jones interaction force, i.e. oo = 1.0264Ay/zo; since the
work of adhesion in Dugdale model should equals Ay (work of adhesion of Lennard-Jones

law), i.e. Ay = 60do, it can be shown that 8o = 0.97432. In contrast to JKR model, in M-D

model the adhesion force of intensity —oo extends a distance of do above the surface (see Fig
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3.7), which can account for long-range interaction forces. By analogy to JKR model, this
model treats the region in proximity to contact periphery as a crack, and according Griffith
criterion (see Sec. 3.2.3), M-D model presents an analytical solution for external force F and

mutual approach (penetration) ¢ in terms of contact radius a, i.e.

4a3E*
3R

F =

— 2a0y[avc? —a? + czarcsec(g)] (3.41a)

8=a_2 200

c2 — q?

respectively, where ¢ denotes the critical radius at which Dugdale force vanishes, as shown by

Fig 3.7. The contact radius a and critical radius c are related by

a’ay
TTRAy

400

[(m — 2)arcsecm + -1

[\/ — larcsecm —m + 1] =1 (342

where m = c¢/a. By introducing the following dimensionless parameters

—)1/3 (3.43a)

Ql
Il

a(

3nAyR2

T ~)1/3 (3.43b)

c(

3nAyR2

A= 00(5mm, E*)1/3 (3.43¢)

= F
F = M (246d) (3.43d)

= 16E*2
0 =6(————
(9n2Ay2R2

)1/3 (3.43¢)
where 1 is termed transition parameter, and it is related to Tabor parameter by 4 = 1.16u. Eq.
(3.41a) and (3.42) can be rewritten as

F = a® — 2a*[Vm2 — 1 + m%arcsecm]| (3.44a)

§=a>—"2VmZ—1 (3.440)

and

%[(mz — 2)arcsecm +Vm? — 1] + 4); =[Vm? — Tarcseem —m +1] = 1 (3.45)
respectively.
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M-D model also gives the distribution of the contact pressure as

gy Zaz—cz—rz) 2aE* T2
p(r) = - arccos( =7 )t a 1 (a) r< a (346)
—0p a<r<c

As can be seen from Eq. (3.46), contact stress exhibits continuity at r = a and attractive forces
are never confined to the contact region, i.e. it remains —oo, which is consistent to Fig 3.7.
Although DMT model results in analytical solutions, there is inconvenience for its
application which is due to its implicit form. To counter this disadvantage, many subsequent
studies developed simpler solutions, which provide good approximation to M-D

model (77178181

3.26 Comparison of five contact models and subsequent studies

Fig 3.11 shows the dependence of reduce force F/mAyR on reduced penetration
8/(3m?Ay?RI16E?)Y3 for the four contact models (except Bradley model). As can be seen, there is
no adhesion force in Hertz model. As transition parameter 4 increases, the force-penetration curve,

and the pull-off force predicted by M-D model exhibit decent transition from DMT to JKR model.

3l — Hertz
—— JKR
) —+—M-D »=0.01 s
| ——MDx=01
—+—MDx=1
iq 1r DMT
<
S
LL 0,
-17
_2,

-1 0 1 2 3
8/(37°Ay°RI16E2)13)

Fig 3.11 Dependence of reduced force on reduced penetration corresponding to Hertz, KR, M-D and
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DMT models.

In 1997, Johnson and Greenwood!(™ presented an adhesive map specifying the application
range of the above contact models, as shown by Fig 3.12. As can be seen, when the external
force is larger than adhesion force by a large margin, i.e. Fed/zdyR >>1, the latter can be
neglected, which corresponds to Hertz model. DMT model is appropriate for small adhesion
force (0.01< A <0.1), while JKR model is suitable for large adhesion force (A>10). For the
intermediate range (0.1< A <10), M-D model is advisable. The comparisons of hypothesis and

limitation corresponding to these five models are listed in Table 3.2.

Dimensionless load ™

Bradley

, | .
1072 10°2 10" 10° 1 102
Elasticity parameter A

Fig 3.12 Adhesive map™. The vertical coordinates denotes external load reduced by mAYR, i.e.

F*=Fedm4yR . The map applies to contact between pure elastic bodies.

Table 3.2 Comparison of the different assumptions and limitations for the five contact models

model Assumption Limitation

Hertz non-adhesive, linear elastic, small deformation invalid at low ration of load to contact surface
Bradley Contacting bodies are rigid invalid for deformable bodies

KR interaction forces confined in contact region underestimation of load

DMT interaction forces has no effect on profile underestimation of contact area

M-D interaction forces follow Dugdale model The solution isimplicit and cumbersome
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Although these five contact models are regarded as classic, they have been undergoing
refinement and development. In 1995, Maugis™*?® extended the JKR mode! by using the exact
expression for the profile of elastic sphere, so that it can account for adhesive contact with
large contact area. The results were in good agreement with published experiments. Yao et
al® pointed out that previous contact models neglected the requirement that adhesion
strength must not exceed the theoretical strength, and hence there should be overestimation
and misguidance in the adhesive map. They took strength limit into consideration and made
corresponding modification for the adhesive map. Sun et al'® invegtigated the interaction
forces between two silica nanospheres after contact, including the van der Waals (vdwW)
attraction, Born repulsion, and mechanical contact forces by molecular dynamics (MD)
simulations. They conducted a comparison between JKR and DMT models in terms of
force-displacement curve and contact radius, and showed that these two models can only be

used to provide the first approximation, with some deviation from the MD simulated results.
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4 Quantification of Mechanical Properties by Nanoindentation:

acarrier for surface force study

4.1 Introduction

Although this work concentrates on surface adhesion, it is nevertheless appropriate to start it
by deducing nanoindentation, which could be viewed as a “carrier” of surface adhesion, and
without which study on surface adhesion may not always find its significance of the
application.

This chapter presents a routine procedure to show how to quantify mechanical properties,
i.e. elastic modulus, hardness, fracture toughness and viscosity of calibration materias by
nanoindentation. In Sec. 4.2, basic analyses for quantification of above mentioned mechanical
properties are discussed; Sec. 4.3 will introduce the instruments employed in this chapter and
several materias suitable for calibration standards; results and discussion will be presented in

Sec.4.4, and Sec.4.5 gives summary.

4.2 Experiment-based M ethods

As mentioned previoudly, the force-displacement curve obtained by nanoindentation contains
a wealth of information. The quantification of mechanical properties from the information
involves theoretical models based on various assumptions. This section will introduce

credible means to assess elasticity, hardness, fracture toughness and viscosity of materials.

421 Oliver and Pharr Method
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max

Fig 4.1 A typical force-indentation depth (displacement) curve obtained from nanoindenation.

Nanoindentation instruments are typically load-controlled machines, with concurrent
measurement of indentation depth of a hard probe tip. Fig 4.1 illustrates a typical
force-indentation depth curve (F-d curve) obtained from nanoindentation on metal. Unlike
uniaxial, multiaxial or pure shear testing where stress-strain curve could be obtained
straightforwardly, the determination of mechanical parameters of material by nanoindentation
Is indirect. During the loading stage, several kinds of material responses to strain may occur,
e.g. eladticity, plasticity and even phrase transformation (e.g. monocrystaline silicon
subjected to indentation). However, for most materials, response to the unloading part is
mainly composed of elastic deformation (to be strict, materials with kinematic hardening can
also exhibit plasticity during unloading). Although there are many analyses for extraction of
elastic modulus and hardness from force-displacement curve (see Sec. 2.2.1), Oliver and
Pharr®? method is used in this chapter.
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4.2.1.1 Cylindrica indenter
Fig 4.2(a) illustrates the substrate material indented by a cylindrical punch. The distinguishing
feature of cylindrical punch indentation is that the contact radius remains constant throughout
the whole loading-unloading process. Therefore, the F-d curve exhibits a straight line at the
beginning of loading and the whole unloading stage as shown by Fig 4.2 (b). During
retraction, indentation force F and indentation depth h are related by
F =2aE*h (4.1)

where a and E denote radius of the cylinder (contact radius) and effective Young's modulus
respectively. Differentiating Eq. (4.1) with respect to h yields

& =2aE" = Z\EE* (4.2)
where A and dF/dh denote the contact area and slope of the unloading line. Pharr et al*?®
suggested that Eq. (4.2) holds for any axisymmetric indenter. On the other hand, as can be

seen from Fig 4.2 (b), one has

dar

Fmax
ah " h, (4.3

where Frax and he denote the maximum indentation force and eastic displacement during
unloading respectively, which could be directly measured from the F-d curve. Thus equating

Eq. (4.3) to (4.2) enables one to calculate effective elastic modulus E” and further E.
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F A
Elastic / F o
//
.. . /
Position where Loading /
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punch begins to a / /' /Unloading
detach sampl T
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Maximum loading position o 5
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Fig 4.2 Schematic of substrate material indented by cylinder punch. (b) The corresponding F-d curve.
h: and h, denote the maximum indentation depth and depth of residual impression respectively. h, isthe

depth of the contact periphery.

In mechanics theory, the constant stiffness exhibited in unloading part of F-d curve
corresponding to cylindrical indentation is attributed to its linear boundary conditions, i.e. the
contact area remains invariant. However, for other kinds of indenters, e.g. conic, Berkovich or

sphere, thisinvariance never holds and the situation is more complicated.

4.2.1.2 Berkovich indenter

Some studies classify cylinder punch as blunt indenter, since plasticity occurs late in the F-d
curve during loading, as shown by Fig 4.2 (b), which implies considerable load is needed to
initiate yield. In this regard, cylinder punch does not enjoy as much popularity as sharp
indenter, e.g. Berkovich and conic where plasticity could occur at very early stage as shown

by Fig4.3(c).
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1 B: Maximum loading position
h
hm : C Position where substrate begins
— . to detach the indenter
h h, D: Position where substrate
a ep, * detaches the indenter totally
@) (b)
A
B
Fmax
Elastic
I C
| /
| Loading / Unloading
/ /
/ / /
)/ dF
/
, | dn
/
A/ ~ D !
«—h = 4#—»
hp hrp h _ h
a — ‘ep
«—h, —*— h, ——»
hz

Fig 4.3 (a) Schematic of Berkovich. a denotes the half-angle to face. (b) Schematic of substrate

material indented by conic indenter. (c) The corresponding F-d curve.

Fig 4.3 (a) illustrates the schematic of a Berkvoich indenter, with a face angle o = 65.27°
which gives the same projected area-to-depth ratio as Vickers. Fig 4.3 (b) shows the whole
retraction process. At the maximum indentation position B, for a Berkvoich indenter the
dependence of the projected contact area A on the depth beneath the contact periphery hp is

given as

A = 3V3h2tan?65.27 = 24.5h2 (4.4)
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For the purpose of smplification, Berkvoich is always approximated as a conic with a
semi-angle f = 70.3° which gives the same projected area-to-depth ratio as the Berkovich
indenter. The stage from point B to D (see Fig 4.3(b)) consists of only elastic deformation.
According to Hertzian contact model, for a conic indenter, the relationship between maximum
indentation force Fmax and unloading elastic deformation he is

__ 2E*tanf

Fax = hZ (4.5)

T

Thelocal vertica displacement h of the substrate surface is afunction of local radia distance
r from the symmetry axis, given as

h= (G —2D)acotB (46)
where a denotes contact radius at maximum loading. According to Eq. (4.6), on the contact
periphery, i.e.r = a, one has

hq = G — acotB (47)
where h, denotes the depth of the periphery beneath the original surface. On the symmetry
axisone has

h, = gacotﬁ (4.8
Combining Eq. (4.7) and (4.8) resultsin
ha = (1 - 2h, (49)
From Fig 4.3 (c), one can directly obtain total indentation depth h, elastic deformation heand
depth of residual impression center h;. It is apparently shown that
he = he + Ry = hy + hy, (4.10)
Substituting Eq. (4.9) into Eq. (4.10) one gets
hy = he = (1= Dh, (411)
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Substituting Eqg. (4.11) back into Eq. (4.4) yields

A=245[h, — (1 — —)he]2 (4.12)
Doerner and Nix*?! noticed for Berkovich indenter, the F-d curve corresponding to the
beginning of unloading is a line segment for a lot of materias, as shown by the section
between point B and C in Fig 4.3 (c). Consider Fig 4.3 (b), at the beginning of retraction (the
section between B and C), the contact region remains fairly steady, which is analogous to
cylindrical indentation as shown by Fig 4.2 (b). Doerner and Nix[*?) considered that Eq. (4.2)
still holds during this stage, regardless of the exact shape of indenter. Substituting Eq. (4.12)
into Eq. (4.2) resultsin

E =} e o 4
where dF/dh denotes the slope of curve at beginning of retraction, which could also be
measured directly from experimental data. One can also obtain value of hardness according to

its definition, given as

H = Fmax _ Fmax ( 14)

A4 245[h=(1-Dhel?

4.2.1.3 Spherical indenter

.\
e
N }
hA iy h=h /2
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(@)

(b)

Fig 4.4 (a) Schematic of substrate material indented by spherical indenter. (b) The corresponding F-d
curve. R denotes the radius of the sphere, and R denotes the radius of curvature at the center of the

residual impression.

Besides the above two indenters, spherical indenter is also commonly used. Fig 4.4 (a)
illustrates substrate material indented by a spherical indenter. During the unloading stage
(From paint A to B), only elastic deformation occurs, and thus one can apply Hertz contact
model for this stage. According to Hertz model, the elastic deformation at the symmetry axis
Is twice the displacement of the contact periphery, i.e.

ha = 3he (4.15)
The contact radiusis given by

a = /Rh, (4.16)

where R denotes the effective radius, given by

RyR;
Ry—R;
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where R and R denote the radius of indenter and radius of curvature at the center of the
residual impression, respectively. In this case, the projected contact area at maximum loading
Ais
A =ma? = nRh, (4.18)
At the beginning of unloading, the contact between indenter and substrate surface remains
steady, and thus the slope of F-d curve is constant as shown by Fig 4.4(b). Therefore the
cylindrical punch equations (i.e. Eq. (4.2)) can be applied. Substituting Eq. (4.18) into Eq.
(4.2) yidds
« _1dF 1

= s e (419

Likewise, one has the expression for hardness according to its definition:

H= Fnax — Fmax (4 20)
- A TRhe

where Frax, he and dF/dh could be measured in Fig 4.4(b).

4.2.2  Fracture toughness

Asintroduced in Sec. 2.2.2, when indentation test is performed on brittle materials, cracks are
often observed around the impression. In material science, crack is characterized by fracture
toughness, which quantifies the ability of a material containing a crack to resist fracture.
There are a number of studies accounting for extraction of fracture toughness of material by

nanoindentation, and this chapter presents one widely used means developed by Lawn et

2l[631064][128]
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Fig 4.5 Schematic of median crack: (a) elastic-plastic configuration at full load (b) residual

configuration of complete unloading (c) radial crack

Fig 4.5 shows the crack configuration produced by Berkovich indentation on brittle
materia (e.g. silicon wafer). Pe and P; denote the elastic and plastic field component of
applied load, respectively. a is the face angle of the Berkovich indenter. a, b, d, and h
denote characteristic contact dimension, characteristic dimension of impression in radia
direction, indentation depth and dimension of median crack. ¢ represents the length of

surface crack from corner to the end as shown by Fig 4.5 (c). By experiment, Marshall and
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Lawn(® showed that, for the fully developed median/radial cracks, as shown by Fig 4.5 (a),

the proportionality Keo< Po/h¥? always holds, i.e.

Ko =222 (4.21)
where ye is a constant, dependent on indenter angles, contact friction and free surface effects,
and K. denotes the elastic component of stress intensity factor™??. An analogous expression
could also be given for the residual stressintensity factor K, given as
K, = ,)1‘3—/"2 (4.22)

where y; is another dimensionless indenter-substrate constant.

When the growth evolution of median cracks is under equilibrium conditions, the stress
intensity factor K caused by externally applied load equals fracture toughness K, i.e.

K =K, 4K, = K. (4.23)

During the loading stage, substituting Eg. (4.21) and (4.22.) into Eq. (4.23) yields

XeP | XrP
Ko =2 + X2 (4.200)

By analogy, during unloading stage, one has

Ko =%+ 50m (4.24p)
where P, denotes the maximum indentation force. During its growth, if the crack maintains
a semicircular front throughout its evolution, the equilibrium median radius at maximum
load P = Pnis
hy = [(Xe+liccr)Pm]2/3 (4.253)
And the equilibrium radius at completely unloading P =0 is
he = (F2)2/% (4.25)

The elastic-plastic configuration in Fig 4.5 (a) could be subdivided into elastic
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component at full load plus residua component at complete unload. For elastic situation,
the elastic component of K. reaches its maximawhen P = P, and will disappear at complete
unloading. The plastic component of K. reaches its maxima when P = Pr, but will maintain
this maximum value during unloading. The crack growth isirreversible, so that Eq. (4.25Db)
cannot represent an attainable equilibrium configuration unless hg> hu. The only way to
redize this inequality is let yo° < 0, i.e. suppress crack growth during the loading
(superposing a reversible surface compressive stress®). Therefore, the median crack
reaches its maxima during loading and radia crack continues its growth until complete
unloading. Since our work focuses on the radial crack after complete unloading, the elastic
component could be neglected and thus Eq. (4.23) could be rewritten as

er
K., =K, = ),‘13 T (4.26)

where the constant y; isto be estimated in order to calculate K.

Consider the indented surface in the unloaded state as shown by Fig 4.5 (b). One has the

following assumptions to evaluate y;

(1) The characteristic area (shaded area) in Fig 4.5 (a) is removed from prospective contact
site, and replaced by an unstressed elastic half space.

(2) Theimpression will induce plastic deformation for the removed segment, whose contact
radius, and indentation depth are a and d respectively, so that the irreversible strain
associated with the impression is accommodated by an expansion in characteristic zone
dimension at constant volume of material. Let 6/ and V denote the volume of the
impression and volume of the zone respectively. Consider the material volume remains
invariant, one has
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8V _ a%’d _ cota ,a\3
Vw2 ) (42D

(3) In order to restore the removed segment to its original characteristic radius b, a

hydrostatic compression across the outer boundary

_KzSV_cota E
P =Ky =" 1

(5)*(428)
Is applied, where x denotes bulk modulus, i.e. x = E/3(1 - v). It should be borne in mind
that it is different from that obtained at the impression at load P, i.e. the indentation

hardness,

P

aya?

H =

(4.29)

where ao is aindenter geometry constant.

(4) One reinserts the compressed segment into itsinitial position, restores coherence at the
interface, and let the system relax. In doing so, the plastic zone can induce effective
outward residual force P; on the crack as shown by Fig 4.5 (b). Assuming that pe
remains invariant during crack growth, the value of P; could be obtained by integrating
the horizontal stress components of p, over the zone cross section within the crack zone,
e

P. = {pyb? (4.30)
where ( is an integration constant.
When the crack is well developed, i.e. h>>b, P: could be simplified as a concentrated
force. Assuming the crack geometry is penny-like, the stress intensity corresponding to

residual field force may be written as

_ f(@)Pr
KT — c3/2

(4.31)
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where f(p) is an angular function introduced to alow for the effects of the free surface. For

the caseinvolved in thiswork, Eq. (4.22) turnsinto

XrP
K. =575 (432)
Substituting Eqg. (4.28) into (4.30), and combining it with Eq. (4.31) and (4.32) yield
_ _Sf@) aE

"= m (o b A cota (4.33)
For an infinite isotropic e astic-plastic matrix, according to Lawn’s theory, one has

b E

=~ ()™ (cota)'/? (4.34)
where m= 1/2. Substituting Eq. (4.34) into (4.33) results in

Xr = e (@)() 2 (cota)?/3(4.35)

where /; is a dimensionless term independent of the indenter/substrate system. Substituting

Eq. (4.35) back into (4.26) yields

_ @
KC - c3/2

(4.36)

where & = A(¢p)(cota)?>. ¢ is a dimensionless term which is only dependent on radia crack

configuration caused by impression, and its typical valueis 0.016.

4.2.3  Viscosity parameter

Creep phenomenon is often observed in indentation testing for some viscoelastic materials
such as polymer. Originally speaking, creep is the tendency of a solid material to move slowly
or deform permanently under the influence of constant mechanical stresses. In indentation
testing, creep manifests itself as the phenomenon that indentation depth is still increasing
when the indentation force remains constant (known as hold period) as shown by the red
curve in Fig 4.6. Ascribed to the viscoelasticity, a blowing out or “nose” at the beginning of

retraction will be observed if without hold period, as shown by the black curve in Fig 4.6. In
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“nose” situation, the slope is negative which will paralyze the application of Oliver and Pharr
method. Therefore, the indentation force is always maintained at its maxima for a period to

relieve or exclude the “nose” effect as shown by thered curvein Fig 4.6.

Hold period of 120 s
No hold period

Nose —/

Indentation force

v

Indentation depth

Fig 4.6 Illustration of Force-displacement curves for PMMA (Poly Methyl Methacrylate, viscoelastic

material).

The viscoelastic property of material could be characterized by different combinations of
discrete elastic and viscous elements, i.e. spring and dashpot. It is known that the spring
element (see Fig 4.7 (a)) obeys Hookean theory, i.e.

o = Ee (4.37a)

T =Gy (4.37b)
where o, 7, ¢ and y denote normal stress, shear stress, normal strain and shear strain
respectively; E, G represent Young's modulus and shear modulus respectively. One of most
distinguishing feature for elastic condtitutive relation is its time-independence, e.g.

instantaneous el astic deformation and recovery, as shown by Fig 4.7 (b).
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(a) (b)

Fig 4.7 Schematic of elastic component of viscoelastic materials

The dashpot element obeys newton law of viscosity as shown by Fig 4.8 (a), i.e.
o= % (4.38a)
=1, (4380)
where # and 7, denote viscosity, and de/dt is strain rate. Dashpot exhibits rheological behavior.
For example, if the stress is a step function, i.e. ¢ = goH(t), the corresponding strain is ¢ =
oot/ according to Eq. (4.38Db), i.e. steady state flow, as illustrated by Fig 4.8(b). H(t) denotes

unit step function, i.e.

1,t>0
H(t) = {O,t = 439
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(@) (b)

Fig 4.8 Schematic of viscous component of viscoelastic materials

Generally speaking, there are three common models, termed:
® Kaelvin-\Voigt model. Thisis comprised of a dashpot and a spring connected in parallel,
asillustrated by Fig 4.9 (a). Its congtitutive relation is given as
= Ee +n% (440
g = Ee + 17— (440)
® Maxwell model. This can be represented by a spring and a dashpot connected in series,

asillustrated by Fig 4.9 (b). Thismodel can be represented by the following equation:

de

o ldo
o Tra 44

® Threeelement model. This consists of a dashpot and a spring connected in parallel, and

then connected to another spring in series, as illustrated by Fig 4.9 (c). The

corresponding constitutive relation is given as

do ELE E, de¢
129 = 22 oy 072 28 49)

o+

where ¢ and ¢ denote overall stress and strain as shown by Fig 4.9 (a), (b) and (c).
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P
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(@ (0 (c)

Fig 4.9 Three common mechanical models. (a) Kelvin-Voigt model (b) Maxwell model (¢) Three

element model.

In creep indentation tests, the load is controlled, and thus the concurrent displacement of
the indenter is monitored. In general, the load is applied such that it reaches its maxima Fruxin
avery short time compared with its subsequent hold time. In this regard, the indentation force
F(t) could be approximated as a Heaviside step function, i.e.

F(t) = FnaxH(t) (443)
If the indenter is a conic, for the elastic case, one has

)
W2 =200 (4a9)

where h and F denote indentation depth and force respectively. For its viscoel astic counterpart,
both Radok® and Ting™ offered a general solution to linear viscoelastic Boussinesq
problem provided the contact radius is non-decreasing as mutual approach increases.
According to their theory, substituting the elastic modulus in the Hertz contact model with the
modul us-displacement convolution in the time domain leads to the relationship between the
indentation depth and the applied force as:

R2(t) = gcomu —v2)J(t) * F(t) (4.45)

where J(t) denotes the creep compliance, which is the dependence of strain on time provided
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unit constant stress. Table 4.1 lists the expression of creep compliance for the above three
models. The asterisk denotes convolution, i.e.
a
J@© *F(©) = [y J(E =) FF)dE (446)

Performing L aplace transform on both sides of Eq. (4.45) yields

dF(t)
dt

LIR?(8)] = 7 cota(l — VALY (O]L[—,7] (447)
Substituting Eq. (4.43) into right side of EqQ. (4.47) resultsin
L[R2 (0)] = Z cota(l = VALY ()] Fnax  (448)
Performing inverse Laplace transform on Eq. (4.48) yields
R2(t) = gcomu —V2)J(t)Epax (4.49)

Generaly speaking, it is always assumed that some soft materials are incompressible, i.e. v =
0.5. Therefore, fitting Eq. (4.49) with the h?-t curve obtained by experiment can determine the
viscoelastic parameters. It should be borne in mind that Eqg. (4.49) is only valid when the
force-time function F(t) is approximated as a Heaviside step function. In order to redize this
approximation, the loading time t; is controlled in a small range whilst the hold time t, is set
very long, and an advisable ratio of ti/t, is 1/10. Besides, Eq. (4.49) is only applicable for

conic indenter, and the cylindrical and spherical counterparts can be obtained by analogous

derivation, as summarized in Table 4.2.

Table 4.1 Creep Compliance for the three common models

Model Name Creep Compliance J(t)
Kelvin-Voigt (1 — e™Et/m)
E
Maxwell 1 1
—+-t
E 7
Three element 1 1e-t/T
VE,+(1-e")/Ey, —+—— wherer=y/E;
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Table 4.2 Dependence of indentation depth on time for different indenters corresponding to Heaviside

step load
Indenter Type h(t) Notes
Cylinder (1-v?) a denotes the radius of the
2a J (O Fnax cylinder
Sphere 3(1—v?) R denotes the radius of the
[—](t)Fmax] 2/3
4R sphere
Conic 1-v)m 12 a denotes the half angle of the
[ c0ta) () Fna] conic

4.3 Experiment Process and I nstrument I ntroduction

43.1  Instrumentation

Generaly speaking, many instrumented indentation systems (i.e. nancindentation) can be
illustrated by Fig 4.10 regardless of differences. The force is often applied by using either
electromagnetic or electrostatic actuation, and a capacitive sensor is usualy utilized to
measure concurrent displacement!**?, There are many commercial instrumented indentation
systems available developed by various manufacturers such as Hysitron, Inc. (Minneapoalis,
MN), CSIRO (Austraia), Nano Instruments (MTS System Corp.), Micro Materias Ltd. (UK)
and CSM Instruments (Switzerland). The instrumented indentation systems by different
manufacturers are amost identical with some minor differences. For example, the axis of
indenter of instruments systems by CSM is vertical, as shown by Fig 4.10, so as CSIRO,
Hysitron, Nano Instruments, but for Micro Materias, its indenter is horizontal. To take
another example, Hysitron instruments systems adopt the same sensor to measure indentation
force and displacement, whilst the rest four instruments measure force and displacement by

different means.
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Load Application Device

Spring

Displacement Sensor

Spring

Fig 4.10 Schematic illustration of an instrumented indentation system.

432 Nanoindentation Tester NHT?2

microscope and cammera
Indentation head equipped with objective

Sample Sample holder

motor X & Y precision
up to micron

Anti-vibration
table

Fig 4.11 The Nano Indentation Tester NHT? manufactured by CSM instruments

The instrumented i ndentation systems employed in this work is Nanoindentation Tester NHT?,
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and it belongs to CSM Instruments. Fig 4.11 shows its photography and main components.
The NHT? is designed to provide low loads with depth measurements in the nanometer scale.
The system can characterize a broad spectrum of materials, e.g. organic, inorganic, hard and
soft materials. The mechanical properties which can be measured by this system include
hardness, elastic modulus, creep, fracture toughness, etc. The maximum force can reach
500mN with a resolution of 0.01./N, and the maximum indentation depth is 200 wum with a
resolution of 0.01nm. The load frame stiffness is much larger than 10'N/m.

The NHT? uses an aready established method detailed, as follows. An indenter tip with
known geometry is driven into s specific site of the material of interest. An increasing normal
load is applied, and after reaching a pre-set maximum value, it is reduced until partial or
complete relaxation. This procedure can be performed repeatedly. The relative position of the
indenter with respect to the sample surface (i.e. indentation depth) is precisely monitored by a
differential capacitive transducer. The NHT? can operate in dynamic or quasi-static loading

model where the latter model is adopted throughout this chapter.

Fig 4.12 Schematic of profile map of the NHT? head
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The core of NHT? is the indenter head, whose main components are illustrated in Fig 4.12.
At the beginning of indentation, the head is moved downwards until the reference ring
touches the substrate sample. The load is applied by a displacement actuator which consists of
an electromagnetic coil. The coil is used to control the movement of the indenter shaft. The
capacitive sensor, which is mounted near the indenter tip, records the vertical displacement of
the indenter. It is noteworthy that in NHT? the applied load could be accurately specified by
the electromagnetic coil which is different from the loading method in AFM as mentioned in

Sec. 1.1.2.

@ (b)
Fig 4.13 (a) Microscope of the Berkovich diamond indenter (b) Typical residual impression induced by

the Berkovich indenter on ductile materials

There are many kinds of indenter available in NHT?, and the Berkovich indenter is
employed throughout this chapter, whose microscope is shown in Fig 4.13 (a). The Berkovich
pyramid used in this work is made of diamond brazed into steel, as can be seen from Fig 4.13
(a). It has aface angle a = 65.27° + 0.3°, with atip radius < 0.2um. Before penetration into

sample, the NHT? operation system determines the location of the materia surface. The
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typical residua impression on ductile materias induced by the Berkovich indenter is shown

inFig 4.13 (b).

433  Sample Preparation

@) (b)

(©) (d)

Fig 4.14 (a) Copper and (b) Fused silica (c) Silicon Wafer (d) polystyrene

Fig 4.14 shows the samples used in nanoi ndentation test. Copper and fused silica are provided
by CSM Instruments company. The silicon wafer and polystyrene were glued to an iron shest,
which acts as substrate to support the sample. Both copper and fused silica were indented for
calibration of elastic modulus and hardness. Silicon wafer and polystyrene were indented for

calibration of fracture toughness and viscoel astic parameters, respectively. The typical values
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of these parametersare listed in Table 4.3 and 4.4.

Table 4.3 Material properties of copper, fused silica and silicon wafer.

Typical Value Elastic Hardness Yield Poisson’sratio  fracture toughness
modulus (GPa) Stress (MPasm'?)
(GPa) (MPa)
Copper(t3l 128 3.8 440 0.34 N/A
Fused 72 8.8 1150 0.17 N/A
silica*®d

Silicon 150 10 950 0.22-0.28 0.83-0.95

Waf er[ 133][134]

Table 4.4 Viscoel agtic properties of polymeric material g1

Model 2-element 3-element 4-element
GPalGPars E n E: E> n E; E, nm 72
Copolymer 0.09 1.69 0.16 0.103 | 0.135 0.17 0.14 29 0.7
Cross-linked | 0.94 41.2 1.03 273 11.2 1.05 4.7 72.6 7.7

434  Experimenta Procedure

4.34.1 Copper and fused silica

The maximum force for copper and fused silica are 50mN and 20 mN respectively. In order to
relieve the viscosity effect, the indentation force is set to pause at the maximum force for 10 s.
For both materials, the loading and unloading speeds are 100mN/min.

4.3.4.2 Silicon wafer

For silicon wafer, the maximum force is 400 mN, with a pause of 25 s and the
loading/unloading rate is 200mN/min. After complete unloading, optical microscope was
employed to measure the length of radial crack, as shown by Fig 4.5 (c).

4.3.4.3 Polystyrene

The maximum force for polystyrene was 1.7 mN applied by ramp loading within 12s
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followed by a pause of 120 s. Since the loading time is only one tenth of the pause time, the

force-time relationship could be approximated as Heaviside step function.

4.4 Finite Element Analysis

With the availability of finite element analysis program, it is appropriate to perform a
numerical approach to the simulation of force-displacement responses for substrate
undergoing nanoi ndentation.

In the finite element method, the specification of material mechanical property plays a
paramount role in determining the simulative results. In the absence of detailed information
about the materials of interest, a linear elastic and elastic-perfectly plastic material response
usually give enough results. Von Mises yield criterion (yield criterion will be elaborated in
next chapter) is specified to realize the transition from elastic to plastic deformation.

Finite element simulations were performed with the multi-purpose finite code ABAQUS
(version 6.13-4). The ABAQUS/STANDARD solver was used in al ssimulations throughout
this chapter. To simulate the Berkovich indenter, a conic with semi-angle 70.3° was modeled,
which gives the same projected area-to-depth ratio as the Berkovich indenter. To mediate the
matter of fact, the apex of the conic indenter is modeled with spherical tip with aradius R =
0.2um (see Fig 4.15). The half-space was densely partitioned for a swallow depth while
coarser partition was adapted as the depth increases. The finite element mesh was designed to
provide a high density of nodes at the contact region, to capture the details of the
displacement and stress fields, as shown by Fig 4.15. The distance between two adjacent
surface nodes of the refined mesh is equal to ~ 0.01R. The half-space was modeled with

31100 four-node, bilinear, axisymmetric, quadrilateral elements (CAX4) consisting of 31361
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nodes. The nodes at the bottom and left boundaries of the mesh were constrained against

displacement in the vertical and horizontal directions, respectively.

; /» Conic indenter
/ /Substrate material

T

i
il

,n{}r}}u,}:u

iy

Fig 4.15 Finite element model of arigid conic in close proximity with a deformable half-space. The

indenter-substrate is axial symmetrical, and thus only one section is plotted for illustration.

4.5 Results and Discussion

451  Copper and Fused Silica

45.1.1 Indentation Impression

Fig 4.16 (a) shows a microscope image of the indent on copper by the Berkovich indenter.
The wrinkles and convex edge circled by the elipse indicates occurrence of pile-up. In
pile-up phenomenon, the material plasticaly uplifts around the contact impression which is
schematically illustrated in Fig 4.16 (b). When pile-up occurs, the contact area is larger than
predicted by elastic contact theory, and hence both hardness and elastic modulus are

overestimated. The effect of pile-up on the estimated hardness and elastic modulus will be
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discussed in Sec.4.5.1.2. For each sample, indentations were repeated in a matrix comprised
of 100 indentation spots. Within the matrix, each indent was aligned with constant interval of

25um as shown by Fig 4.16 (c).

Indented material

(a (b)

(©
Fig 4.16 (a) A single indentation impression on copper substrate; (b) Cross sectional view of pile-up

during indentation; (c) A matrix of indentation impressions where the distance between two adjacent

spotsis 25 um.

45.1.2 Force-displacement curve
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Fig 4.17 Force-displacement curve for Berkovich indenter on (a) copper and (b) fused silica. Both the
loading and unloading rate is 100mN/min with a pause of 10s at the maximum force. The displacement
origin is set where the indentation depth is zero such that they are identical. The corresponding
maximum indentation depth h;, depth of residual impression h, and depth beneath the contact periphery

h, are marked in the plot.

Fig 4.17 (a) and (b) show a typica force-displacement (F-d) curve for copper and fused
silica respectively. As expected, the gap area between loading and unloading curve indicates
plastic deformation. The dope of the unloading part remains constant during most part of
retraction, revealing that the Berkovich indenter maintains good contact with the substrate
during this period. For both materials, the maximum indentation depth is smaller than 1.5 um
which is much smaller than /10 of sample height (see Fig.4.14 (a) and (b)), and thus the
substrate effect could be excluded. As can be seen from the circle part of F-d curve in Fig
4.17, the indenter keeps penetrating the material when the force pauses at its maximum value,
revealing that copper and fused silica aso exhibit creep. As can be seen from Fig 4.17 (a), the
slope of the retraction is high, while its counterpart in Fig 4.17 (b) is low, indicating that

copper exhibits higher stiffness than that of fused silica.
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Fig 4.18 (a) and (b) show the repeatability of F-d curves obtained by the NHT2. As can be
seen from Fig 4.18 (@), there is some substantial differencein the F-d curves from 100 curves,
which may be due to thermal drift or (and) material inhomogeneity. The curves of retraction
are nearly parallel with appreciable offsets. Since paralel retraction curves will produce the
same unloading stiffness dF/dh, and hp, they will in turn yield smilar effective Young's
modulus E* and hardness H according to Eq. (4.13) and (4.14). On the other hand, the
difference between individual F-d curves obtained from fused silica is not significant as can

be seem from Fig 4.18 (b).
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(b)
Fig 4.18 Force-displacement curves corresponding to 100 repeated indentations for (a) copper and (b)

fused silica.
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Fig 4.19 Distribution of density of (a) Young's modulus and (b) hardness for copper
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Fig 4.20 Distribution of density of (a) Young's modulus and (b) hardness for fused silica
Table 4.5 List of the statistics results for the two determined parameters
Young's modulus (GPa) Hardness (GPa)
mean Std dev median mean Std dev median
copper 123.17 6.71 123.39 151 0.078 151
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fused silica 77.09 04 77.12 105 0.98 10.61

Fig 4.21 Dependence of hardness on indentation depth corresponding to several material 13313610137,

After using the Oliver and Pharr method on the 100 F-d curves, statistics was performed on
the calculated Young's modulus and hardness, and the results are shown in Fig 4.19, 4.20 and
Table 4.5. From Table 4.5, it can be seen that the estimated Young's moduli of the two
materials are close to their typical value as listed in Table 4.3. The estimated hardness for the
two materias, however, differs from their typical values by a considerable margin, and the
interpretation is as follows. As can be seen from Eq. (4.13) and (4.14), the modulus is
proportional to 1/AY2 while hardness depends on /A, i.e. hardness is more severely affected
by contact area A than modulus. Therefore, any phenomenon that can affect contact area, e.g.
pile-up and sink-in could induce more derivation to estimated hardness than that to elastic
modulus. As reviewed in Sce.2.2.1, Bolshakov and Pharrl*® performed extensive finite
element analysis on the effect of materia properties on the shape of deformation zone during
simulative indentation. Materials with high ratio of elastic modulus to hardness, i.e. E/H tend
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to exhibit pile-up phenomenon, which will overestimate hardness as analyzed in Sec.4.5.1.1.
In addition to pile-up and sink-in, hardness is aso affected by indentation depth, termed
Indentation Size Effect. This effect is characterized by an increase in hardness by decreasing
the ratio indentation depth/size, which is accounted for by alarge body of literature!**°1161137],
Fig 4.21 illustrates hardness as a function of indentation depth for several materials. As can be
seen, the hardness of fused silicon is not sensitive to indentation depth, and thus it is mainly
influenced by pile-up (or sink in) phenomenon. For copper, hardness decreases monotonically
as indentation depth increases. Although pile-up phenomenon can overestimate hardness,
indentation size effect becomes dominant in deep indentation depth (1000nm). Notably, the
copper harness corresponding to indentation depth of 1000 nm in Fig 4.21 approximates our
estimated value (see Table 4.5), whose corresponding indentation depth is also close to 1000
nm, as shown in Fig 4.17 (a). Thus the calculated values of hardness of copper and fused are

justified.

4.5.1.3 Comparison of Simulative and Experimental Results

80
e  Experimental data, E = 115.2 GPa, H = 1.55 GPa

701 FEM, E = 115.2 GPa, oy = 513MPa, i.e. C=3 e Experimental data, E = 68.11GPa, H = 10.49 GPa
% FEM, E = 68.11GPa, o, = 7GPa, ie.C=15
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Fig 4.22 Comparison between FEM results and experimental data corresponding to (a) copper and (b)
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fused silica

In FEM, displacement was controlled in order to ensure convergence of iteration, and hence
the maximum indentation depth obtained from experiment was used as input. For the property
setup, the Young's moduli determined from experimental data were input as elasticity
parameter. In order to specify the elastic-perfect plastic properties, the initid yield stress oy
needs to be well estimated. Experiments®! show that the hardness H is proportiona to the
materia yield or flow stress'Y in compression as.
H = CY (4.50)

Y is the stress where first plastic yielding occurs. For material with high ratio E/Y (such as
copper), one has C = 3, while for material with low ratio E/Y (such as fused silica), one has C
~ 1.5. In this section, the parameter Y in FEM was input according to Eq. (4.50).

Fig 4.22 (a) and (b) show the force-displacement curve produced by finite element method
and nanoindentation corresponding to coper and fused silica respectively. It can be seen that
the FEM results differ from its experimental counterpart significantly, and interpretations are
as follows. First, the FEM uses elastic-perfect plastic manner with no strain hardening.
However, the real materia may exhibit more complicated strain hardening manners, e.g.
isotropic hardening, kinematic hardening or their combination (the concept of isotropic and
kinematic hardening will be elaborated in Chapter 5). In elastic-perfect plastic manner,
material transits from elastic to plastic response abruptly (see Fig 2.6), while in practice,
especialy for metals, a gradual transition is more to be expected. Second, even if the materia
obeys elastic-perfect plastic manner, Eqg. (4.50) is merely an empirical relationship between

hardness and yield stress, and its validity depends on indenter shape, size, open angle, the
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ratio E/Y and pile-up (or sink in) phenomenon. As a matter of fact, as can be seen from Table
4.3, the ratio H/Y = 8.6 for copper and 7.6 for fused silica respectively which are far from

their empirical values as provided by Eq. (4.50).

45.2 Silicon Wafer

Pop-in
E = 172.29 GPa
300 H=227GPa

Pop-out

0 200 400 600 800 1000 1200
Indentation depth (nm)

Fig 4.23 Typica Force-displacement curve for silicon wafer.

Lateral crack

Radial cracké—/

Fig 4.24 Optical microscope of an indentation impression at 400 mN forcein silicon wafer.

Fig 4.23 shows a typica force-displacement curve for silicon wafer subjected to Berkovich
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nanoindentation. There are several discontinuities during loading and unloading, termed
pop-in (during loading) and pop-out (during unloading) respectively. A possible reason is
sudden crack occurs during loading and unloading, as indicated by the circle in Fig 4.24.
Significant evidence produced by some study™*® suggested that a pressure-induced phrase
transformation occurs in pure silicon subjected to indentation which manifests itself as the
above mentioned pop-in and pop-out events.

Fig 4.24 shows the optical morphology of the residual impression after complete unloading.
The crack circled by the left bottom ellipse denotes radial crack, and the top right elipse
circles lateral crack. This lateral crack originates from beneath the surface and results in
chipping of the silicon surfacel®Y.

The Oliver and Pharr method was routinely employed to calculate Young's modulus and
hardness, and the length of radial crack was measured by optical microscope built-in NHT?
nanoindenter (see Fig 4.11). With Young's modulus E = 172.29 GPa, ahardnessH = 22.7 GPa
and a radial crack length ¢ = 8.45 um, one can obtain fracture toughness of almost 0.718

MPasm¥2 according to Eq. (4.36), which is close to its typical value as shown by Table 4.3.

453  Polystyrene
Consider the three element model (see Fig 4.9 (¢)) whose creep complianceis

J@t) = Eiz + Eil 1- e_%t) (4.51)
mathematically speaking, as E;—o0, EQ. (4.51) will reduce to the creep compliance of Kelvin
model, and as Ei—0, Eq. (4.46) will reduce to the creep compliance of Maxwell model.
Therefore, three element model is a universa form, and both Maxwell and Kelvin model can

be viewed its specia circumstances. Hence, the three element model is used to fit the creep
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curve. In order to fit the creep curve of the polystyrene sample, judicious adjustment of E;, E,

and 7 are used. Values of these parameters that provide a good fit are selected as the measured

viscoelastic parameters of the sample as shown by Fig 4.25, and their order of magnitude can

amost coincide with the typica value as shown in Table 4.4.
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Fig 4.25 Displacement-time curve and its best fitting by using three element model.

4.6 Chapter Summary

In this chapter, the applications of nanoindentation techniques were performed on several

calibration materials. Based on the experimenta results, quantification of mechanica

properties was conducted in terms of relevant basic analyses. Meanwhile, finite element

method was employed to verify some assumptions. The following conclusions can be made in

this chapter:

(1) The determined Young's moduli of copper and fused silica approximate their typical

counterparts, but the case for hardness is different. For fused silica, the deviation of

hardness is probably ascribed to pile-up phenomenon, whilst for copper, the offset may
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)

©)

(4)

©)

also be attributed to indentation size effect and pile-up, where the former dominates the
latter.

Creep phenomenon was observed in copper and fused silica by nanoindentation, and thus
it can be seen that nominally elastic materials may more or less consist of viscous
properties.

By finite element simulation, it is indicated that the empirical relation between hardness
and yield stress may not be a good description to account for plastic properties and work
hardening.

Silicon wafer is a typical brittle material. Both pop-in and pop-out events were observed
during nanoindentation on silicon wafer. Radial and lateral cracks occur in the residual
impression in microscope, and the latter causes chipping of the silicon surface. The
fracture toughness of silicon wafer estimated by Lawn’s method approaches its typical
value.

The three element model proves a good characterization for viscoelastic constitutive
relationship of polystyrene. By fitting with the experimental data, both elastic moduli and

viscosity coincide with the typical valuesin order of magnitude.
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5 Effects of adhesion on shakedown behavior of

microcontacting bodies

5.1 Introduction
Theoretical analysis, numerical simulation and experiments are referred to as three basic
means of scientific research. In this chapter, studies are conducted mainly by the second
method. Nanoindentation belongs to microcontact, and it is appropriate to consider surface
effects on microcontact where adhesion forces dominate bulk forces due to high ratio of
surface area to volume. In this chapter, nanoindentation is viewed as microcontact in general.
Chapter 3 introduces several classic contact models taking surface adhesion into consideration.
Nevertheless, adhesion-induced deformation is assumed to be purely elastic in these models,
while in practice, a high adhesion force can induce plastic deformation, even without
externally applied load. On the other hand, the interfacial forces used in these models are
approximation to their real counterpart, and there are substantial differences. Owing to these
two aspects, it is still impossible to obtain analytical solution for most real adhesive contact
problems where interfacial forces and the surface profile are mutualy dependent, and the
constitutive relation exhibits el astic-plastic property. In this regard, computational simulation
proves to be an efficient means to solve such self-consistent adhesive contact problems.

The investigation of adhesion effects on microcontact is of guiding significance for the
studying the durability of miniaturized systems subjected to cyclic loading. Obviously contact
fatigue and wear due to surface adhesion forces exert adverse effect on the lifetime of
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miniaturized systems subjected to cyclic loading, e.g. microelectromechanical (MEMYS)
system(*¥91340 - nanoel ectromechanical (NEMS) system, and head/disk interface (HDI)[4Y. By
means of finite element simulation, a number of analyses interpret the above issues by the
model of nanoindentation, i.e. microcontact subjected to cyclic loading, and they suggest that
adhesion forces play a significant role in affecting the mechanical behavior of contacting

bodies.

(@) (b) (©) @
Fig 5.1 Schematic of stress-strain curve for (a) pure elastic (b) elastic shakedown (c) plastic

shakedown and (d) ratchetting!*42.

Generally speaking, the mechanical response of engineering structures to cyclic loading is
dependent on its mechanical properties (e.g. elastic modulus, initial yield stress and work
hardening rules) and features of the cyclic load (e.g. its maximum and minimum values).
When the effective stress is below eastic limit, only elastic deformation occurs as shown by
Fig 5.1 (a). If the stressis dightly higher that the elastic limit, plastic deformation will emerge
in the first cycle, which causes residual stress such that only elastic deformation occur in
subsequent cycles. Since the initial elastic-plastic response of the structure shakes down to
wholly elastic behavior, this phenomenon is known as elastic shakedown, asillustrated in Fig
5.1 (b). Once the stress exceeds e astic shakedown limit, the structure may exhibit reverse or
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aternating plagticity over each cycle known as plastic shakedown as shown by Fig 5.1 ().
Structures undergoing plastic shakedown will fail after a finite number of load cycles due to
low-cycle fatigue. Alternatively the structure may provide net increments of plastic strain
within each cycle as illustrated by Fig 5.1 (d), and the strain will accumulate until gross
plastic deformation and eventually incremental plastic collapse occurs. Thisresponseis called
as ratchetting.

For microcontact, not only elastic shakedown limit, but also the surface forces are crucia to
understanding failure of microcontact subjected to cyclic loading. Kadin® used finite
element method and Lennard-Jones potential to model repetitive adhesive contact between a
rigid surface and an elastoplastic sphere. By specifying the sphere with a kinematic strain
hardening manner, they investigated the effect of surface adhesion on the shakedown
behaviors of the inenter-substrate system. Song and Komvopoul osi**¥ used the same means to
simulate repetitive adhesive contact between a rigid sphere and an elastic-perfect plastic
half-space, and their results showed that plastic shakedown can aso occur even for a small
maximum normal displacement due to the low yield strength of the material. Nevertheless,
there are rare studies on the shakedown behavior of isotropic hardening materials subjected to
repetitive adhesive contact.

The main goa of this chapter is to investigate the effect of adhesion forces on shakedown
behavior of spherical microcontact subjected to cyclic loading. To accomplish this objective,
an elastoplastic half-space is modeled to be indented by a rigid sphere subjected to cyclic
loading-unloading. To provide a thorough investigation, the work hardening rule of indented
material takes two basic forms, i.e. isotropic hardening and kinematic hardening, to account
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for potentia plastic shakedown. The interaction force between the rigid spherical indenter and
the substrate obeys a more accurate law, i.e. Lennard-Jones potential. Finite element method
is employed to solve the self-consistent adhesive contact problem due to mutual dependence

of interaction forces and the surface profile.

5.2 Propaedeutics

In physics and materials science, plasticity describes the deformation of a material undergoing
non-reversible changes of shape in response to applied forces!**4. The physical mechanisms
for plasticity can vary widely. For brittle materials such as rock and concrete, plasticity is
mainly due to dip at microcracks, and for metal, plagticity is a consequence of dislocations at

crystalline scale.

521 Yieldcriteria
It is common sense that if the load on a material exceeds a critical value, the deformation is
irreversible. Consider a simple case, i.e. a metal rod whose section areais Ac is loaded by a
tensile force F as shown by Fig 5.2. The tensle stress on the section of the rod ¢ equals F/A..
If o iswithin elagticity range, the corresponding deformation is reversible, e.g. point A in Fig
5.2. Once this stress exceeds a critical value Y (i.e. point B in Fig 5.2), plastic (irreversible)
deformation occurs. This point is known asyield point, and the critical stress 'Y istermed yield
stress. The standard to determine the occurrence of yield is called yield criterion. For uniaxia
loading (tensile or compressive), yield criterion is given as

a=£=Y6@
whereyield stress Y can be tensile or compressive.

104



Chapter 5

5 A
g c
)
Y B
reload//4
' [
unload¥ F@ 4 #>F
1B e
A
'—gp—ﬁ‘—gp—ﬂ Strai'n €

Fig 5.2 Stress—strain curve showing typical yield behavior for nonferrous aloysin uniaxial loading

In practice, materials are subjected to multiaxial loading, and yield criterion is given by a
universal form as
foloy) =0 (52
where g; (i = 1, 2, 3) denotes three principal stresses which constitute a principal stress space.
The points whose three principal stresses satisfy Eq. (5.2) in stress space will generate a
curved surface, termed yield surface. Thus the concept of yield criterion is often expressed as
yield surface. There are two commonly used yield criteria, namely Tresca criterion and the

von Mises criterion.

5211 Trescacriterion
Tresca criterion assumes yield occurs when the maximum shear stress zmax exceeds a critical
vauek,i.e.

Tmax = k (5.3)

The maximum shear stress can be given in terms of the maximum principle stress o1 and
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minimum principle stress o; as

01—03

Timax = > (54)

Substituting Eg. (5.4) into Inequality (5.3) yields

22k (55)
Tresca criterion proves a relatively good assumption for metals. It is observed that this
criterion does not take the middle principle stress o» into consideration, and this issue is

countered in von Mises criterion.

5212 Von Misescriterion
Von Mises criterion is based on Tresca criterion, but considers that hydrostatic stresses do not
contribute to the yield. It suggests that yield occurs when the second deviatoric stress
invariant J. reaches a critical value, given as

2= %[(01 —0,)% 4 (0, — 03)* + (03 — 01)?] = y?z (5.6)
where Y denotes yield stress in uniaxia loading. It is part of a plasticity theory that applies

best to ductile materials, such as metals.

522  Work hardening

For uniaxia loading, as shown by Fig 5.2, after stress exceeds yield stress, if the material is
unloaded and then reloaded, one can find the subsequent yield stress (see point C in Fig 5.2)
is higher than the previous one, and this phenomenon is known as work hardening (or strain
hardening, cold working). The physical mechanisms for work hardening are dislocation
movements and dislocation generation within the crystal structure of the material(4%].

Although it is observed in uniaxia loading, work hardening can be extended to more general
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case, where the yield surface may change size, shape and even position, and can be described
as
f(oij,Ki) =0 (5.7)

where K; denotes one or some hardening parameters which vary during plastic deformation
and determine the evolution of yield surface, and g (i, ] = 1, 2, 3) represents stress component.
The description of the dependence of yield surface change on plastic deformation is called
hardening rule. There are three main common hardening rules, i.e. isotropic hardening,
kinematic hardening and mixed hardening. In the following, a brief introduction to isotropic
and kinematic hardening rulesis presented, and mixed hardening is a combination of isotropic

and kinematic hardening.

5.2.2.1 Isotropic hardening

Elastic unloading —=——»-+ }(’

e >
/*\ «—— Plastic deformation (hardening)
: |

// __+B<—;“‘—Initial yield stress
/ "J
/ /

A / Elastic loading
) / / >
VR "0,

Initial yield surface——>/ / /
/ [ /
‘\ /

_~<—— Subsequent yield surface

Fig 5.3 Schematic for the expanding of yield surface in isotropic hardening
Isotropic hardening postulates that the yield surface expands uniformly about its origin of
stress space while the location of its center remains invariant as illustrated by Fig 5.3. In
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particular, the yield surface can be formulated as
f(oij,K;) = fo(oi;) —Ki =0 (5.8)

where fo(*) denotes the initial yield surface. For the von Mises yield surface, at initial yield,

one has

—_o.)2 —g.)2 —5.)2
fO(Gij) — \/(01 a2)%+ (0, 203) +(g3-0) —Y=0 (5.9)

or more universaly

3
fo(aij) = J35iSij —Y =0 (5.10)
where Yisthefirst yield stressfor uniaxial tension, s;; denotes deviatoric stress, i.e.

01+0,+03 6

Sij = O-ij ij (511)

where repeated subscripts denote Einstein summation convention. Here d; represents

Kronecker deltafunction, i.e.

0ifi#j
5”_{ fi#]

=1 ifiej 62

Substituting Eqg. (5.9) into (5.8) yields

f(o'ij) _ \/(01—02)2+(02—203)2+(a3—01)2 —(Y+K) =0 (513)
How hardening parameter K; changes with plastic deformation should be determined by other

assumptions.

5.2.2.2 Kinematic hardening

The kinematic hardening dictates that the yield surface translates from its initial position
during plastic deformation while its profile remains unchanged as shown by Fig 5.4.
Kinematic hardening implies that if the material undergoes stretch in one direction, itstensile
yield strength in this direction is increased, while the local initial compressive yield strength

after stretch is actually reduced. This phenomenon is termed Bauschinger effect as shown by
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Fig. 5.5. The equation for the yield surface takes the general form as

f(oij, Ki) = foloy — a) (5.14)

Initial yield surface > ——
£

A V.
Plastic unloading - D T‘/ \\
/ . |

/

>0,
'~1—//'Elastic unloading

/

/
/
Elastic loading

/
/

\

\\%7/// g ‘ ’/':LSubsequent yield surface
Plastic deformation (hardening) _T» e e

Fig 5.4 Schematic for the trandation of yield surface in kinematic hardening. Although point E is

within the initial yield surface, it is no longer contained by subsequent yield surface, and thus plasticity

occurs during the path from D to E.

where the hardening parameter o;j (i, ] = 1, 2, 3) is known as shift-stress. For the von Mises

yield surface again, one can easily get the equation for the strengthened yield surface as

f(O'ij,Ki) = \/% (Sij - afj)(sij - ag) -Y=0 (515)

where a;* denotes the deviatoric part of aij, i.€. ai® = aij — dije(ans + o2z + az3)/3.

Kinematic—

|sotropi c—

Fig 5.5 Comparison between isotropic and kinematic hardening in terms of stress-strain curve
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5.2.2.3 Mixed hardening rules

More complicated hardening rules can be used. For example, the mixed hardening rule can be

viewed as the combination of both isotropic and kinematic hardening, whose general formis
f(oij, Ki) = fo(oy; — aij) — K; (5.16)

where a;; and K; are determined by other presumptions.

523  Flowcurve

The idea of modelling plastic deformation and hardening in a multiaxia situation is analogous
to the data from a smple test. For example, in uniaxial loading, after the stress exceeds the
yield stress Y for the first time, one can have the data shown in Fig 5.6 (a), and further extract
the dependence of stress ¢ on plastic strain ¢, i.e. ¢ = h(eP). Before extending this dependence
to multiaxial situation, it is essential to define ascalar effective stress o« and a scalar effective
plastic strain e«”, and then the following assumption is introduced: for a complicated
multiaxial loading case, the dependence of effective stress on effective plastic strain is the

same asits uniaxia loading counterpart, as shown by Fig 5.6 (b).
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_ p
o = h(gp) Ge[[‘ - h<€e[‘[)

Stress ¢
Stress o

o Plastic strain & , @ Plastic strain & .

@) (b)
Fig 5.6 The flow curve for (a) uniaxia stress-plastic strain and (b) effective stress-effective plastic

strain

For avon Mises materia (i.e. materials obeying von Misesyield criterion), it is appropriate

to define the effective stress as

(01-02)%+(02-03)?+(03-01)?
oerr (1) = 3)2 =\/"1 R TR (5.17)

which has the essential property that at yield in uniaxial loading, effective stress equalsyield

stress. The effective plastic strain (Von Mises plastic strain) is defined as

efff = fdefff = Edefjdei’} = ?\/(def —deb)? + (de}) — del)? + (deb — del)? (5.18)
where &P (i = 1, 2, 3) denotes three principle plastic strains (see Fig 5.2) and &;° (i, ] = 1, 2, 3)
denote plastic strain components in strain space. In this chapter, two basic hardening manners
are considered, i.e. power law isotropic hardening and bilinear kinematic hardening whose
relationship between effective stress and effective plastic strain are given in Table 5.1, and

illustrated in Fig 5.7.
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Table 5.1 Details of the two hardening models used in this chapter

Hardening Rule Formulae Notes

power law isotropic hardening 0=<n<1,0,>Y

Oeff E.p Oeffy\n
—+ = (€, +—— 5.19
Y (y eff Uy " (5:19) E denotes Young's modulus

bilinear kinematic hardening Er denotes tangential modulus

_ EET 1
aeff = _E—ET seff +Y (520) o ” Sy ET <E
e

q, Stress @
Q Stress o

- _ T P
~ Ourr = E Eopr T Y

/ “

%g”—.kigﬂﬂ Strain ¢ %g“—ﬂ‘iaﬂ Strain” ¢

(a) (b)

Fig 5.7 Schematic of dependence of effective stress on effective plastic strain for (a) power law

isotropic hardening and (b) bilinear kinematic hardening.

5.3 Finite element model

It is an appropriate means to abstract microcontact as contact between two spheres or one
sphere with infinite semi-space. In this chapter, for simplicity, the latter model is used as
shown by Fig 5.8. Prior to contact, the half-space retains its original shape if no interfacia
forces exist as shown by Fig 5.8 (a), whereas the presence of interfacial forces will deform the
half-space as shown by Fig 5.8 (b). Assuming that the interaction forces between the rigid
spherical indenter and the infinite half-space obey Lennard-Jones potentia given by Eq.

(3.21), one has
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8AY ¢r_Zo 13 _ [_%0 19
(s~ 1) (52

o(r) =

where ¢(z) and H(r) denote local interaction forces and local separation between indenter

surface and substrate surface respectively, as shown by Fig 5.8 (b).

original surface
E.v half-space half-space

e

@ (b)

Fig 5.8 Schematic of (a) non-adhesive contact and (b) adhesive contact between a rigid spherical

indenter and a deformable half-space
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- ANSYS

C) (b)
Fig 5.9 Schematic of FE model of adhesive contact between arigid sphere and a deformable half-space

for (a) overview and (b) its amplification at contact region.

Based on the model in Fig 5.8, the commercial ANSY S 14.5 package was used to solve the
axisymmetrical (2D) elastoplastic adhesive contact problem with only one half of the
axisymmetric hemisphere section (see Fig 5.9). The nonlinear geometry option was selected
to accommodate potential large deformation. The mesh and boundary conditions were
conducted in the same way as that in Sec.4.4, as can be seen from Fig 5.9 (a) and (b). The
Lennard-Jones force given by Eq. (5.21) was included by using the user subroutine
USERINTER in ANSY S. To ensure convergence, the finite element simulation in this chapter
adopted displacement-control method. Before specifying plastic property, only elastic
parameters, i.e. E and v were input for running, and the resulted elastic responses were
compared with existing results obtained by self-consistent method!™ for justification. In the
property manager, The von Mises yield criterion was used as yield criterion. Work hardening

was redlized by two means, i.e. power law isotropic hardening and bilinear kinematic
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hardening listed in Table 5.1.

5.4 Results and discussions

541 Pure € astic adhesive contact

T ,
R

/ Rigid Sphere

»

Separation

Original position

Current position

Attractive
Repulsive
Lennard-Jones law

Separation (Penetration) N

< o>

Atomic equilibrium distance Z,

A

Elastic infinite semi-half space

Fig 5.10 Schematic of a pure elastic half-space indented by a rigid spherical indenter. The interaction

force obeys Lennard-Jones potential, where the dotted line represents zero force space.

Fig 5.10 illustrates adhesive contact between a rigid sphere and an elastic half-space. o
denotes the vertical distance between the apex of the sphere and the zero force line. Positive o
and negative a represent separation and penetration respectively. F denotes resultant
interaction force between the indenter and the half-space. Positive F and negative F represent
attraction and repulsion. According to Eqg. (3.39b), if one adjusts Young's modulus E and fixes
the rest four parameters whose values are as listed in Table 5.2, Tabor parameter x4 can vary

correspondingly.
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Table 5.2 Parameters studied in the adhesive contact

Work of adhesion Ay Atomic equilibrium Radius of therigid sphere  Poisson’sratio v
(I/rr?) distance z, (nm) R (nm)
0.46 0.34 1000 0.1

normalized force ( F/RAy )
w
normalized force ( F/RAy )
N

*

*
1 . I . I . | g A . . . . . .

2 -1 0 1 2 3 4 5 6 -3 -2 -1 0 1 2 3 4 5

normalized penetration ( —u/zo ) normalized penetration ( -m/z0 )

@u=05 (b) «=0.75

& ‘ Unloading

normalized force ( F/RAy)

Unloading

Loading ‘ ‘

1.2 114 1‘.6 118 ‘2 2‘,2 2‘,4 2.‘6 2‘,8 é 3.‘2
normalized penetration ( -a/zD )
(©ou=10 (du=20
Fig 5.11 Dependence of normalized force F/zRAy on normalized penetration —a/zy for (a) ©=0.5,

(b) #=0.75, (c) u = 1.0 and (d) x = 2.0. The blue line and red asterisk represent results by using our FE

simulation and self-consistent method!™!, respectively.
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+  jump-in location by FEM
8 e jump-off location by FEM
jump-in location by Greenwood
jump-off location by Greenwood

Nomalized penetration —a/z0

O I I I I I I I Il I Il
0.5 1 15 2 2.5 3 3.5 4 4.5 5

Tabor parameter g
Fig 5.12 Dependence of jump-in and jump-out position (in terms of normalized penetration —a/z;) on

Tabor parameter u.

The comparison between FEM results and its self-consistent counterpart is mainly in terms
of the force-penetration curve and the dependence of instability jump positions on Tabor
parameter. Fig 5.11 shows the relationship between normalized force F/zRAy and normalized
penetration —a/z of four different x values by using FEM and self-consistent method. As can
be seen from Fig 5.11 (&) and (b), as u<1, the results by FEM coincide with its self-consistent
counterpart well. As>1, i.e. Fig 5.11 (c) and (d), the normalized force-penetration curve by
FEM amost overlap its self-consistent counterpart except the jJump-in and jump-out instants.
Greenwood pointed out that, the jump-in and jump-out phenomena manifest themselves by
the “S’ shaped curve in self-consistent method, whereas in the finite element method, this
instability jump is characterized by vertical lines (i.e. “brittle” jump), and thus the divergence
here is ascribed to these two different computational methods. In addition, the dependence of
instability location (—a/zp) on Tabor parameter ¢ obtained by FEM is consistent with its

self-consistent counterpart, as shown by Fig 5.12. Therefore, on the whole, the finite element
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method developed in this chapter is verified.

54.2  Power law isotropic hardening

Asisindicated by Fig 5.11, and also by many other studies™®18 for pure elastic adhesive
contact, the dimensionless |oad-displacement curves are solely dependent on Tabor parameter
u. In this chapter, i.e. elastoplastic adhesive contact, similar to the finding by some previous
studies, the dimensionless load-displacement curves are also dependent on another
dimensionless called plasticity parameter 3%, given as

S = YA—ZVO (5.22)

where Y denotes the initial yield stress of the elastoplastic material. High value of Sindicates
considerable plastic deformation with contact region. According to Eqg. (5.22), if initid yield
stress Y is adjusted while the values of rest two parameters are chosen by reference to Table

5.2, Scan aso vary correspondingly.

54.2.1 VonMisesPlastic Fields
Although Sec.5.4.1 provides one verification method for FEM in Sec. 5.3, it still conforms to
elastic congtitutive relationship. In this section, analyses of the plastic strain fields are

presented to verify the adoption of plastic properties, i.e. hardening manner.
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NODAL SCLUTICN ANSRY“SS
STEP=1 APR 4 2015
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TIME=1

EPPLEQV  (AVG)

DMX =5

SMxX =.015278

(©)u=1,n=0.5Y=1GPqg, d/zo=-8.82

(d)«=1,n=05,Y = 1GPa, §/z = 3.67

Fig 5.13 Von Mises plastic strain fields during indentation for different penetrations where u = 1, S=

1.35.
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Fig 5.14 Von Mises plastic strain fields during indentation for different penetrations where u = 1, S=
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2.7 for (a) first plastic deformation (b) maximum indentation position

Fig 5.13 presents the von Mises plastic strain fields of the half-space (el astic-perfect plastic
material, n = 0), corresponding to four different values of indentation depth. Herewith, ¢
denotes the vertical distance between the lower apex of the spherical indenter and the origina
surface as shown in Fig 5.10, i.e. 6 = a + zo. Positive § and negative J represent separation
and penetration respectively. For non-adhesive contact (i.e. S = 0) between a rigid spherical
indenter and an elastoplastic half-space, Chang et a® gave the critical penetration . to

initiate first plastic deformation as

nKH
2E*

6c = —(

)2R (5.23)

where K = 0.454 + 0.41v, H = 2.8Y denotes the hardness of substrate material. Substituting the
parameter values in Table 5.2 into Eq. (5.23) yields the critical penetration dc~ -2.59z. For
adhesive contact, this critical penetration Jc is -0.65z0, corresponding to a plastic strain up to
0.3% as shown by Fig 5.13 (a) (i.e. S= 1.35). For alager value of S= 2.7, the first plastic
strain up to 1.4% can be observed, even if the indenter is not in contact with the substrate as
indicated by Fig 5.14 (a), i.e. positive J. Therefore, the critical o to initiate first yield stress
increases as Sincreases.

As the approach increases, the region beneath the surface along the axis of symmetry
begins to yield as shown in Fig 5.13 (b). At maximum approach (i.e. maximum penetration),
the plastic strain (about 2%) at this region has exceeded that at the contact periphery (about
0.8%), as shown in Fig 5.13 (c). It can be seen that the plastic strain fields are maintained as if
frozen during retraction by comparison Fig 5.13 (c) and (d). In fact, this is due to isotropic

hardening, i.e. during loading stage, only elasticity can occur, and thus plastic strain remains
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unaffected. Therefore, it can be concluded that the isotropic hardening manner is implanted

into FEM, and the following results should be trustworthy.

5.4.2.2 Multipleloading-unloading cycles
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(b)
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(©
Fig 5.15 Normalized force versus normalized displacement for four consecutive loading-unloading

cycleswith u = 0.45, Y = 0.5GPa, dmax/Z0 = -8.82, S=2.7 for (a) n =0.75, (b) n=0.15and (c) n=0.1.
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Fig 5.16 Normalized force versus normalized displacement for four consecutive loading-unloading

cycles corresponding to non-adhesive contact. Y = 0.5GPa, dmax/Z0 = -8.82, n = 0.15.

Fig 5.1 provides one means to judge the types of shakedown behavior when a structure is
subjected to cyclic loading, i.e. from the stress-strain relationship curve, which anyhow is
obviously infeasible in practice. In this section, the force-penetration curve is analyzed to
investigate the shakedown types.

Fig 5.15 shows the dependence of the normalized force on a normalized approach
consisting of 4 consecutive approach and retraction corresponding to three hardening
exponents, i.e. n = 0.75, 0.15, 0.1. For n = 0.75, it can be seen that plastic deformation amost
occurs in the first loading-unloading cycle since the subsequent curves amost coincide as
shown by Fig 5.15(a), which indicates elastic shakedown at a stable state. Thisis analogous to
the case in non-adhesive repetitive contact, where theoretically speaking, plastic deformation
only occurs during the first cycle, and the subsequent cycles absolutely overlap with each

other. For n = 0.15 (see Fig 5.15 (b)), one can see there is enclosed area by each subsequent
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cycle implying it does not shake down to elastic behavior. Since the value of enclosed area
remains steady, and the maximum indentation force tends to converge with increasing number
of loading-unloading cycles, one can judge that it is not ratchetting. In fact, the
indenter-substrate system shakes down to a steady state of non-accumulative cyclic plastic
deformation which resembles plastic shakedown. Fig 5.16 illustrates the non-adhesive
counterpart of Fig 5.15 (b), and as can be seen that plastic deformation only occursin the first
cycle, with subsequent cycles shaking down to pure elastic behaviors. Thus, by comparing Fig
5.15 (b) and Fig 5.16, it is indicated that surface adhesion causes plastic shakedown in this
situation.

As n decreases to 0.1 (see Fig 5.15 (¢)), the enclosed area by each subsequent cycle is
larger than that in Fig 5.15 (b), implying that material with lower hardening exponent n is
more likely to undergo plastic shakedown provided other identical conditions. On the other
hand, this implication is due to that plasticity is prone to occur in materia with lower
hardening exponent n, and hence plastic shakedown (or ratchetting) rather than elastic
shakedown is more preferable. For afurther interpretation, consider two extrema:

® n—1,i.ec. pure elastic situation, and then only elastic shakedown is possible.

® n—0, i.e. elastic-perfect plastic material, plasticity is very likely to emerge, so as

plastic shakedown or ratchetting in cyclic loading situations.
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Fig 5.17 Normalized force versus displacement for four consecutive loading-unloading cycles with u =

1, Y =0.5GPa, dmax/zo = -8.82, S=2.7,n = 0.1.

Fig 5.17 shows the variation of normalized force with the normalized approach for =1, S
= 2.7, and n = 0.1. First one can judge it resembles to plastic shakedown by the same means
as last paragraph. Compared with Fig 5.15 (c¢), the enclosed area by each subsequent
loading-unloading cycle is smaller, implying accumulative plastic strain is less significant as
Tabor parameter increases. This trend can be interpreted as follows: the substrate material is
more compliant (lower E) as tabor parameter increases, and can accommodate less plastic
work compared with that in more stiffer material (material corresponding to high tabor
parameter) given the same indentation depth, resulting a relief in plastic shakedown as
indicated by the smaller enclosed area in Fig 5.17 compared with Fig 5.15(c). To facilitate

further explanation, consider an extrema, i.e. u—oo, the material is extremely compliant
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(E—0), and thus plasticity is unlikely to happen, i.e. only elastic shakedown is possible.

12
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Fig 5.18 Normalized force versus displacement for four consecutive loading-unloading cycles with u =

1,Y=1GPa, dmaxlzo = -8.82, S=1.35, n = 0.1.

If the value of S is decreased by increasing yield stress Y (values of 4y and z are
maintained as that in Fig 5.17), one can see the plastic deformation almost occurs in the first
cycle and subsequent cycles nearly overlap with each other, resembling to elastic shakedown,
as shown by Fig 5.18. It should be borne in mind that the present elastic shakedown is
different from classical elastic shakedown, where the loading and unloading paths should
overlap with each other absolutely. In the present case, although the small area (as circled by
the red ellipse) enclosed by each subsequent cycle indicates energy dissipation, it is due to
jump instabilities rather than plastic dissipation. In the finite element method, artificial

damping was used to compensate for local instabilities. Therefore, since plastic dissipation
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does not occur in subsequent cycles, the cyclic behavior should be regarded as elastic
shakedown. Since the yield stressis increased in this case, which means the yield threshold is

enhanced, plasticity is unlikely to occur, and so is plastic shakedown.

543 Bilinear Kinematic Hardening Model

54.3.1 VonMises Stran Fields
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(f) 6/20=5.13
Fig 5.19 Von Mises plagtic strain fields for different penetration where i« = 0.5, Y = 0.5GPa, S=2.7, E+/E

=05

In this section, plastic strain fields are routinely analyzed for the same reason as that in Sec.
54.2.1. Fig 519 presents the von Mises plastic strain filed insde the half-space
corresponding to six approach values with the same combination of 4 = 0.5, Y = 0.5GPa,
S=2.7, Ev/E = 0.5. As can be seen from Fig 5.19 (a), an initial plastic strain up to 0.1% is
observed at the contact periphery corresponding to 6 = 0.082. As approach increases,
plasticity also appears on the axis of symmetry beneath the surface as shown in Fig 5.19(b),
and the value of plastic strain corresponding to this area begins to exceed that at contact
periphery with further approach as shown by Fig 5.19(c). At the maximum approach ¢ =
-8.82z, the maxium plastic strain up to 0.78% is observed at the axis of symmetry, while at
the contact periphery, the plastic strain is up to 0.4% as shown in Fig 5.19(d). During
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unloading stage, one can observe that the plastic strain fields keep atering by comparing Fig
5.19 (d), (e) and (f) (e.g. the circled areq), which differs from the phenomenon in Sec.5.4.2.1
where plastic strain fields are maintained. Essentialy, this is the distinguishing feature of
kinematic hardening whose subsequent yield surface is trandlated and plastic deofation can

still occur during unloading asillustrated by Fig 5.4.

5.4.3.2 Multipleloading-unloading cycles
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Fig 5.20 Normalized force versus displacement for four consecutive loading-unloading cycles with x =

1,Y=0.5GPa, S=2.7, Ef/E= 0.5
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Fig 5.21 Normalized force versus displacement for four consecutive loading-unloading cycles

corresponding to non-adhesive contact.

In this section, analysis of dimensionless force-penetration curve is routinely presented for the
same purpose as that in Sec. 5.4.2.2. Unlike Sec.5.4.2.2, the ratio E7/E replaces the hardening
exponent n, and together with x4 and S acts as governing parameters.

Fig 5.20 shows the variation of normalized force with the normalized approach for x4 = 1,
S=2.7, E+/E = 0.5. Except the loading half of first cycle, each loading half of subsequent three
cycles can overlap with each other, and each unloading half of the four cycles can also
coincide. The areas enclosed by the three subsequent cycles are amost identical, implying a
steady-state plastic shakedown. Compared with Fig 5.17, it is indicated that the whole system
can converge to a steady-state plastic shakedown with less cycles in kinematic hardening
situation. Fig 5.21 is the non-adhesive counterpart of Fig 5.20, it can be seen that for
kinematic materials, plastic deformation only occurs in the first cycle and the subsequent
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cycles shake down to elastic behaviorsif no surface adhesion exists.

If Sis halved by doubling yield stress Y while other two governing parameters (i.e. 4y and

Zy) in Fig 5.20 are maintained, it can be seen that plastic shakedown is inconspicuous as

indicated by Fig 5.22. In fact, as can be seen, the subsequent cycles amost overlap with each

other, implying a trend to elastic shakedown, and this is due to that material with high yield

stress is unlikely to undergo plastic deformation, and thus plastic shakedown as is previoudy

interpreted.
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Fig 5.22 Normalized force versus displacement for four consecutive loading-unloading cycles with x =

1,Y=1GPa, S=1.35, Ef/E=0.5.
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Fig 5.23 Normalized force versus displacement for four consecutive loading-unloading cycles with u =

0.5, Y =1GPa, S=1.35, Ef/E = 0.5.

If Tabor parameter 1« decreases to 0.5 while the rest parameters in Fig 5.22 are maintained,

one can find plastic shakedown reoccur as shown by Fig 5.23. The interpretation for this

difference is that stiffer materials (low value of Tabor parameter 1) are likely to undergo

plastic deformation given other identical conditions as former interpretation.

Consider tangential modulus Er decreases to one tenth of E with other two parameters

unchanged as that in Fig 5.23, one can observe that plastic shakedown also occurs in this

situation (see Fig 5.24) with difference that the enclosed area by subsequent cycles is

significantly larger than that in Fig 5.23. The potential reason for this difference is that

materials with low value of Er/E are more likely to undergo plasticity provided other same

conditions. For afurther interpretation, consider two extrema:
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® FE/E—1,i.c. elastic material, then elastic shakedown is more likely to occur

® FE/E—0, i.c. elastic-perfect plastic material, then plasticity is more likely to happen, and

So as plastic shakedown.
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Fig 5.24 Normalized force versus displacement for four consecutive loading-unloading cycles with x =

0.5, Y =1GPa, S=1.35, Ef/E = 0.1.

5.5 Summary

In this chapter, repetitive adhesive contact between a rigid spherical indenter and an

elastoplastic half-space was studied by means of finite element smulation. The following

conclusions can be made in this chapter

® By only inputting elastic parameters in FEM, the results coincide well with that by using
self-consistent method in terms of force-penetration curve and relationship between the
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position of instability jump and Tabor parameter. In FEM, jump instabilities manifest
themselves as brittle jumps.

Apart from Tabor parameter for its elastic counterpart, in adhesive contact, there is
another parameter S governing the mechanic behavior of the indenter-substrate system.
In adhesive contact, lower indentation depth is needed to initiate first yield of substrate
material compared with its non-adhesive counterpart. As S increases, the first yield can
even occur before contact.

The plastic strain field is an important index for the implementation of hardening manner
in finite element simulation. Plastic strain field is maintained in isotropic hardening
materials during retraction of indenter, which differs from its kinematic hardening
counterpart.

In non-adhesive repetitive contact, only elastic shakedown can happen, whereas in its
adhesive counterpart, there is probability for the occurrence of plastic shakedown, as
long as the relevant governing parameters are appropriately selected. It is surface
adhesion that incurs potential plastic shakedowns.

Plastic shakedown can also occur in isotropic hardening materials undergoing repetitive
adhesive contact. For isotropic hardening material, Tabor parameter, plasticity parameter
and hardening exponent govern the dimensionless force-penetration curve. Low Tabor
parameter, high plasticity parameter and low hardening exponent result in plastic
shakedown, whilst high Tabor parameter, low plasticity parameter and high hardening
exponent lead to elastic shakedown.

For kinematic hardening material, Tabor parameter, plasticity parameter and ratio of Et/E.
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Low Tabor parameter, high plasticity parameter and low ratio of Er/E yield to plastic

shakedown, opposed to high Tabor parameter, low plasticity parameter and high ratio of

E+/E that cause e astic shakedown.
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6 Determination of Work of Adhesion of Pancreatic MING cells

under AFM indentation (Spherical probe)

6.1 Introduction

As quantified initially by Tabor parameter, if the contacting bodies are extremely soft,
adhesion forces become significant. Johnson-K endall-Roberts model of adhesion has proved
successful in quantifying the work of adhesion between two soft elastic bodies. Shull!Z1128l
provided a remarkable view of this theory and the experimental methods, where he indicated
that adhesion forces are important when the contacting bodies are sufficiently small or
extremely compliant, including living cells and soft tissuesi.e. adhesion forces should play an
important role in cell indentation.

Conventionally speaking, cell indentation is frequently realized by means of atomic force
microscope (AFM) instrumentation. As mentioned in Chapter 1, the atomic force microscope
(AFM) is a powerful instrument for studying topographical and mechanical properties such as
elastic modulus and viscoelagticity for biologica materials’*l. The high resolution and
reasonably fast speed of AFM measurements have made it possible to investigate the
topography and mechanical properties of living biological cells or tissues!*#8l which is of
significant biomedical importance. The topography and mechanical properties are reliable
indicators of cellular physiological status, because they are determined by cytoskeleton
together with the cytoplasm membrane and numerous proteins®. Any change in cellular
physiology may cause alternations in its topographical or mechanical behaviors. As a result,

the correlations between cytoskeleton and its topographical and mechanical properties could
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lead to possible medical diagnosis of pathological cells by comparing these properties
determined from AFM indentation with its normal counterpart. A pioneering example using
AFM in medical diagnostics was reported by Zacheel® where changes in shape of red blood
cells were observed in patients after splenectomy. Another typical example is given by
Lekka” who showed that chitosan has more significant effect on stiffness of normal than
cancer cells.

However, in many of the AFM indentations, conditions were chosen such that the van der
Waals forces are expected to dominatel. The adhesion, characterized as adhesion force, is
mainly derived from van der Waals forces. As a result, adhesion forces are inevitably
associated with performance in atomic force microscopy (AFM) indentation. On the other
hand, since the adhesion between cells or micro-particles is interfacial property affected by
combination of cyto-membrane and cytoskeleton, detection of variation in cell adhesion
behavior may serve as aternative method for single-cell-based diagnostics.

Since the adhesion between the cell membrane and the micro-particle is crucial, a model
that could quantitatively study cell adhesion would be necessary for results interpretation.
Although Hertz contact theory has been routinely used for determination of cell elasticity
based on AFM indentation experiments, it might not work appropriately for adhesive contact
as indicated by analyses in Chapter 1. Generally, for cell-to-cell indentation, adhesion has
been characterized the maximum unbinding force (Fma) and work of detachment (Wb)
obtained from force-versus-displacement curve (retraction part) acquired from AFM
indentation(*11149150 g jllustrated in Fig 6.1. As pointed in Chapter 1, these two parameters
may not be intrinsic enough to feature cell adhesion since both of them are dependent of the
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size and profile of the indenter as well as the indentation depth. Alternatively, a previous
study™Y adapted work of adhesion to characterize cell adhesion since it is independent of

indentation depth and AFM tip geometry and thus might depict cell adhesion essentially.

Indentation force

0.0 Displacement of the indenter

Fig 6.1 Schematic of the retraction part of force-displacement curve from cell AFM indentation. The
green area enclosed by the curve and horizontal axis denotes work of detachment (Wb) whilst the

minimum (negative) value of indentation force denotes maximum unbinding force (Frax).

In this chapter, in light of adhesive contact between AFM tip and cell, the cell is first
considered as a spherical shape, and Johnson-Kendall-Roberts (JKR) model is applied to fit
the force-displacement curves obtained from AFM indentation experimentsi*”). Then the cell
is treated as a layer with finite thickness to provide more realistic modeling. In this regard, a
more “generalized” JKR model®?9 js used to fit the force-displacement curves. It is found
that both the models provide good agreement with experimental results of force-displacement
curves. The “generalized” model has the potential to be implemented in various studies that

are investigating malignant cells for the accurate detection of work adhesion in AFM
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indentation.

6.2 Methodology

6.21  Datapreparation

The data used for testing the theoretical model (see Fig 6.1) were extracted from the recently
reported AFM indentation experiments of pancreatic cells*7*%3, The cell preparation and
experimentation have been described in detail elsewherel’’l. Herewith, we have used MING
cells cultured for 48h with low glucose which are named as Sample A and cells cultured in
48h +R568 are named as Sample B[*11352 (In following context, Cell B is also termed as

treated cell).

6.2.2  Theoretica model
In general, the cells spread on substrate in various shapes, some like spheres and some like
pancakes 1152, Therefore, this chapter considers cells to have either spherical or flattened

shapes, as shown in Fig 6.2 (a) and (b), respectively.

AFM indenter

143



Chapter 6

AFM indenter

C czl > Substrate

(b)
Fig 6.2 Schematic diagrams of the AFM bead tip in contact with cells of (a) spherical shape and (b)

flattened shape

In this chapter, the cell isfirstly treated as a homogeneous, incompressible and linear elastic
sphere with atypical diameter of 25um, where the pre-stress tension in cyto-membrane can be
neglected™Y (assumption of pure elagticity of the cell will be justified in the next section).
Here, the assumption of homogeneity is given, and thus a global equivalent elastic model of
the cell can be studied*>3. Moreover, only pure elastic deformation occurs in loading and
unloading stages with no plastic deformation being considered.

As indicated by Sec.3.2.4, both DMT?2 and JKR?! models are applicable to adhesive
contact between two micro-particles. Sec.3.2.4 has claimed the application range of these two

modelsin terms of Tabor parameter u given as.

where Ay denotes the work of adhesion of the probe-cell system, Eyc'= [(1-vd)/Ep +
(1-vd)/Ec 1tis the effective Young's modulus, (Ep, ve and E, vc denote elastic modulus and
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Possion’s ratio of the two contacting spheres, probe and cell, respectively), Ry is the reduced
radius of curvature (R = (VRy+1/R.)?), where R, and R denote the radius of the probe and
cell respectively, and z is the atomic equilibrium distance at which the repulsive force equals
to attractive force. For the adhesive contact between a cell and a polystyrene bead
(polystyrene bead is used in the AFM indentation because it is easier to glue to the AFM
cantilever), the radius of MING cell R istypical of 12.5um, and the elastic modulus E. of cell
isin the order of several hundred Pascal. Previous studies have found the value of E: is about
500Pa by using Hertz contact theory to fit the F-d curve of an AFM indented MING cel i,
The work of adhesion Ay ranges from 20 to 100uJ/n?, and here Ay is assumed to be
50uJ/mi25U - A typical value for z is 0.5nm and cell is treated as incompressible, i.e.
Poisson’s ratio ve = 0.5. The elastic modulus of the bead can be treated infinite sinceit is very
rigid compared with the delicate cell, i.e. Epc = Ed/(1-vc?). Substituting these parameter values
into Eq. (6.1), the Tabor parameter is calculated approximately p = 556 and thus the JKR
model is more preferable in this case (u>5).

Fig 6.2(a) illustrates schematically the spherical cell subjected to a micro-bead indenter.
According to JKR model, the applied indentation force F and the indentation depth ¢ are

related by:

a 2mwaldy

: (6.2)

Rp—c Ep—c

1/3
_ |3FRy_c 3mAYRp—¢ J6nApr_c 3mAYRp—\?
a= {4Ep_c* [1 e e (6.3)

where a denotes contact radius.
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6.3 Resultsand Discussions

Fig 6.3 shows the result of force against displacement corresponding to MING cells. The
micro-bead was initially made contact to the cell with the applied force of 100pN as the
baseline. The maximum indentation depth of cell is approximately 0.7um. Thus, the substrate
effect is negligible since the indentation is smaller than 10% of the sample

thicknesg/1541[155[156]
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Fig 6.3 Example of force-versus-displacement curves obtained by AFM indentation on (a) sample A

and (b) sample B cells.

6.3.1  Veification of Cellular Viscous Properties

The enclosed area between the loading and unloading curves where force is positive
(compressive force) reveals that the cell exhibits viscoelastic property, as shown in Fig 6.3.
The gap suggests the energy supplied by the tip is not fully recovered by the cell (whilein an
absolute elastic materia it will be fully recovered), which confirms that living cells are
viscoelastic!®®), The viscoelastic behavior is ascribed to intrinsic viscoelagticity of the
cytoplasm(8l, Viscous relaxation time is one typical time scale for characterizing this
viscoelastic behavior which causes difference in force indentation measurements if different
indentation velocities are applied™31, The influence of viscosity effect on cell indentation
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can be reduced or even neglected if an indentation is performed in a time that is much longer
than the force relaxation time of the celll*®. Therefore, before fitting JKR model to the
experimental data, the viscous relaxation time of the cell-AFM indentation system has to be
estimated and then the evaluated viscous relaxation time can be compared with the
characteristic time of indentation (loading time). In general, elastic properties are derived
from the unloading curve as the unloading processis of purely elastic nature. As one assumes,
there is no plastic deformation occurs in the cell indentation. Thus the energy loss is
considered due to viscodlastic properties. Viscoelastic Hertz contact model can be fitted to the
loading part of the F-d curve to determine the viscous relaxation time. According to Hertz
model, if the cell is regarded as pure elastic, the dependence of indentation force (F) on

indentation depth (9) is expressed as:

F= 4R

3/2
=309 EéS (6.4)

where E, v denote the Young's modulus and Poisson’s ratio of the cell respectively. For its
viscoelastic counterpart, according to Sec.4.2.3, substituting the elastic modulus in the Hertz
contact model with the modulus-displacement convolution in the time domain leads to the

relationship between the indentation depth 6(t) and the applied force F(t) as:

4R

F(t) = 3(1-v2)

E(t) * [§(D]*? (65)

where E(t) is the relaxed modulus, and
E() *[8O12 = [, EC - O£ [6©OF2d  (68)
In our indentation experiment, because the bead approached and detached the cell in a
constant speed v, the indentation depth can be described as:
§(t) =vt (6.7)
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In order to determine the viscoelastic response for this indentation system, Eq. (6.5) is

transformed into the Laplace domain and solved for stresg/strain ratios:

4R
3(1-v?)

F(s) = E(s)-8(s)3% (69)
where F(s) = [° F(De~stdt, E(s) = J, E(t)e~stdt, and 8(s)3/2 = ["[8(6)]*/2e s dt

Substitution of Eq. (6.7) into Eq. (6.8) yields:

=< _ 4/Rv3/? I(5/2)
F(s)= 309 E(s) —5m (69)

Where I'(*) is gamma function. In this chapter a Kelvin model was applied to describe the
viscoelasticity of MING cells shown in Fig 6.4. Here E denotes the Young's modulus and 7 is

the viscosity coefficient.

Fig 6.4 Schematic diagram of Kelvin model where a dashpot isin parallel with a spring undergoing the

same deformation.

Thus, the constitutive relationship for the cell is:
a
o=E¢ -HIES (6.20)
where ¢ and ¢ denote stress and strain for any point within the cell. Transforming Eqg. (6.10)

into its Laplace domain resultsin:

25 = (E +1s) (6.10)

&(s)

where o(s) = [ a()e~stdt, &(s) = J, e(t)e~stdt. According to the correspondence

principle®, the general eastic and viscoelastic solutions can be combined in the Laplace
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domain to obtain an equation describing the modulus of Young's modulus, i.e.

E®=22=(E+n) (612

&(

Substituting of Eqg. (6.12) into Eq. (6.9), and transforming the Laplace form back into its time

domain, yields:

4/REV3/?

F) = 3(1-v)

(£3/2 +22¢1/2) (6.13)
where r = 5/F is the relaxation time.

It should be borne in mind that Kelvin model is just one specia circumstance of
three-element solid and the estimated viscous rel axation time should coincide in order with its
Kelvin counterpart if the loading curve is fitted by a more universa three-element model.

However, since this model can alow an explicit expression between force and time, Kelvin

model is preferred herewith for simplicity of calculation.
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Fig 6.5 Typical force-versus-time curves during loading part and the best fitting curves by using Kelvin

model for (a) sample A and (b) sample B.
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Fig 6.6 Viscous relaxation time of the two type cells. The data are presented as average values with

standard deviations.

Fig 6.5 (a) and (b) show the force-time curves obtained from the loading part and their best
fitting curves by Kelvin model corresponding to MING cells. Therefore are 24 of sample A
and 3 of sample B F-d curves. The determined viscous relaxation time of MING cellsis shown
in Fig 6.6. The average value of viscous relaxation time of sample A is 0.01sec which is less
than one tenth of loading time as seen in Fig 6.5(a), and for sample B, the value is 0.004 sec
which is amost 1/60 of the loading time as shown in Fig 6.5(b). As aresult, the influence of

viscoelasticity can be excluded if the MING cell istreated as pure elastic.

6.3.2  Fitting results by using JKR model of bead on spherical cell

Fig 6.7 presents typical results of the force-displacement curves obtained by AFM indentation
and the best fitting curves by using JKR model for the retraction part of MING cells. During
the loading stage (as illustrated in blue lines in Fig 6.7), the sensed reaction force is

dominated initially by the stiffness of the AFM cantilever and then by the stiffness of the
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measured cell. For the unloading process, as show inred linesin Fig 6.7, the indentation force
decreases to a negative region which represents adhesive forces between the cell and the
indenter. The adhesion force is characterized as a short-range force (the adhesive forcein JKR
model is considered as short-range force), and will not significantly affect the
force-displacement curve during the loading stage. Before the contact breaks, the short-range
adhesion force start to show the effect, and thus the adhesion force is characterized as
pull-force (the negative force region in Fig 6.7) which is needed to overcome the adhesion
force during indenter retraction. Consequently, only the retraction stage, as shown in red lines
in Fig 6.7, can be used to facilitate a direct fitting by JKR model even though theoretically
speaking both loading and unloading parts are influenced by adhesion forcel®Y. It can be seen
that the JKR model fits very well with most of the unloading curve data except for the
beginning part. Thisis because theinitial unloading part was influenced by the creeping effect
of the cell-indenter interaction. Therefore, the JKR model can best describe the experimenta

results of the unloading curve as shown above.
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Fig 6.7 Typica force-displacement curves and the best fitting curves by using JKR model for (a)

Sample A and (b) Sample B célls.
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Fig 6.8 Statistics of (a) Young's modulus and (b) work of adhesion respectively.

During the loading section, the indentation force increases monotonically as the indenter
approaches the cell until the preset indentation depth of 12.72um is reached with the
maximum force of 1357pN. Afterwards, the force decreases monotonically to zero and then
becomes negative as the indenter retracts. The force decreases and then bottoms at its
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minimum value implying the bead begins to detach the cell. A further retraction of the probe
suggests the indentation force begins to yield accompanying with some sudden abrupt
decrease of adhesion force as shown in Fig 6.7. This jump-off phenomenon is very commonly
observed in some cell AFM indentation experiments. In practice this part of the retraction
curve is difficult to model and many efforts have been made previously. Sirghi et all*>V
observed this jump-off instability in their mouse fibroblast AFM indentation experiments and
attributed this sudden decrease of adhesion force to discontinuous decrease of tip-cell
membrane contact area. According to his assumption, tethering of cell membrane to the AFM
tip surface at a certain contact line will result in jump in contact area, and this tethering is
followed by a sudden detachment and tethering to another contact line. Moreover, such
consecutive tethers and detaches of the cell and AFM tip are also reported and analyzed by
Sun et al*l Fitting JKR model to this abrupt force variation will cause errors in
determination of the work of adhesion and thus this abrupt discontinuous part after maximum
adhesion force has been discarded during fitting.

Fig 6.8 shows the fitting results of extracted Young's modulus and work of adhesion from
24 of sample A and 3 of sample B force-displacement curves by using JKR model of bead on
spherical cell. Fig 6.8(a) shows the average elastic modulus for sample A cells is 380Pa, and
sample B is 570Pa, whilst the average work of adhesion is 36.7uJ/néfor sample A and
15.4p)/mPfor sample B, as shown in Fig 6.8 (b). It is worth noting that the determined work of

adhesion coincides with the previously reported values*>¥ in the same order of magnitude.

6.3.3  Fitting results by JKR model of bead on flattened cell
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In the previous section, cell was assumed as a sphere subjected to AFM indentation. The
contact radius is small enough compared with the thickness of the cell, and thus the cell can
be treated as semi-infinite space. However, this assumption does not always hold because cell
may exhibit mobility under indentation. The height of the cell may be reduced to a finite-size
compared with contact radius and in this regard the extracted parameters will be influenced by
the effect of finite size. In this section, cell is considered to be flattened with finite thickness,
and this represents a more realistic model. Here, we first propose a thickness value of 25um,
the same as the diameter of the spherical cell. Compared with the bead on a spherical cell, the
effect of finite-size on the determined parameters needs to be verified. For smplicity, the cell
can be regarded as aflat sheet with finite thickness subjected to AFM indenter, as illustrated

inFig 6.9 (a).

AFM indenter

| Substrate |

AFM indenter

Substrate
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(b)
Fig 6.9 (a) Schematic diagram of the non-adhesive contact between a rigid bead and an elastic layer

with finite thickness h. (b) Scheme of the adhesive contact between arigid bead and an elastic layer.

First, the contact is treated as non-adhesive, frictionless, and for this case, Shull et al[231[26]

gave a semi-empirical approximation for the dependence of applied load P, indentation depth
J and compliance C on the contact radius a as
P =pP@fy (5). £ (5) =1+8E)° (619
1.8a

8 =6n(@)fs (3) £ (5) = 04+ 0.6 1) (6.15)

_ a\ _q(a) _ 0.75 2.8(1-2v),_1
¢ = Ch(@fe (h)’fC (h) =1+ [(a/h)+(a/h)3 + (a/h) 17" (6.16)

where P, and Jn are the externally applied load and indentation depth respectively

corresponding to a contact radius a in Hertzian contact model. Chis the compliance of Hertz

contact model with a contact radius a, i.e.
Py(a) = % (6.17)
8y (a) = a®/R (6.18)
Ch(a) = 7 (6.19)
S = 0.15 for the frictionless case, and f = 0.33 for the full-friction case. fy(*) and fs() are
geometric factors which mediate the effect of thickness. From Eg. (6.14) and (6.15), it is
shown that P and ¢ will reduce to P, and 6» when h>>a.
Second, by analogy to the derivation of JKR model, Shull?5281 devel oped the “generalized”
JKR model to describe the adhesive contact between a rigid indenter and a flat sheet with
finite thickness, as shown in Fig 6.9(b). In this “generalized” model, the expressions for the

energy release rate g is extended to the adhesion of relatively thin layers by using the
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approximation of compliance given by Eq. (6.16). Simple expressions are only available for

incompressible materialswith v = 0.5 as

_ (p'-pP)’ a @\ _ 056+15(a/h)+3(a/h)?
9 = snras fop (h) fep (h) T [0.75+(a/h)+(a/h)3]?

_E(5'-9)°
- 2ma

(6.20)

fos (3) fos (5) = 1+ 267 (%) +5.33 (%)3 (6.21)

where P and § are the applied load and indentation depth corresponding to contact radius a
as given by Eq. (6.14) and (6.15) when adhesion is absent. fgp(*) and fg;s(*) are also geometric
correction factors. By letting g = Ay, equilibrium is reached and thus the externally applied

load P and indentation depth ¢ are related by the contact radius a by transforming Eq. (6.20)

and (6.21) into

P=pP — \/8nE*a3Any_p1(%) (6.22)

, 2maly ,_
5§=6— / ”;y G;(%) (6.23)

where P and ¢ are the indentation force and depth respectively in flattened cell indentation.

For comparison purpose, we have carried out the modelling process on flattened cells with
variable thickness of 25um (case 1), 14um (case 2), 9um (case 3) and 3um (case 4). As
mentioned before, the cells may have spread on substrate with different shapes and
thicknesses. Thus the penetration depth within 10% of the film thickness could not be
guaranteed in redlity. To accommodate the situation, we have chosen the possible film

thickness from the thickest (case 1) to the thinnest (case 4).
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Fig 6.10 Typical force-displacement curves and the best fitting curves by using “generalized” JKR

model for (a) normal and (b) treated cells corresponding to case 1.
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Fig 6.11 Typical force-displacement curves and the best fitting curves by using “generalized” JKR

model for (a) normal and (b) treated cells corresponding to case 2.
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Fig 6.12 Typical force-displacement curves and the best fitting curves by using “generalized” JKR

model for (a) normal and (b) treated cells corresponding to case 3.
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Fig 6.13 Typical force-displacement curves and the best fitting curves by using “generalized” JKR
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model for (a) normal and (b) treated cells corresponding to case 4.
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Fig 6.14 The statistics of (a) Young's modulus and (b) work of adhesion for both sample cells

determined by all the modelsin this chapter

Table 6.1 Values of Young's modulus determined by the two JKR models and Hertz model.

Cell Type Bead on Bead on Bead on Bead on Bead on Hertz
Spherical Flatten Cell  Flatten Cell  Flatten Cell  Flatten Cell contact
Cell (Pa) Case1l(Pa) Case2(Pa) Case3(Pa) Case4(Pa) model

sample A 570+107 434+72 343+55 291+45 171+16.7 558+67

sample B 383+20 270+18 207+20 206+14 54+4 360+53

Table 6.2 Values of work of adhesion determined by the two JKR models.

Cell Type Bead on Bead on Bead on Bead on Bead on
Spherical Cell Flatten Cell Flatten Cell Flatten Cell Flatten Cell
(w/m?) Casel (w/m? Case2 (ut/m?) Cased (w/m? Cased (u/m?)
sample A 15.39+3.73 11+25 10.6+2.5 10.1+2.9 9.92+2.32
sample B 36.67+7.64 36.7+4.4 26.3+4.9 25+4.2 19.3+3.08

Fig 6.10-6.13 present the aforementioned force-displacement curves obtained by AFM

indentation and the best fitting curves by the “generalized” JKR model with four different
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thicknesses. It is suggested that the “generalized” JKR model can also fit the experimental
results of the unloading curve.

Fig 6.14 (a) and (b) show the statistics of determined Young's modulus and work of
adhesion from the aforementioned 24 sample A and 3 sample B force-displacement curves,
and the calculated values are listed in Table 6.1 and 6.2.

For comparison purpose, one has also applied Hertz contact model to fit the loading part of
the force-displacement curve, and found out that the calculated Young's modulus of the MING
cellsis very closeto that determined by basic JKR fitting. However, the fitting result by Hertz

model is not as good as those by JKR and “generalized” JKR models asindicated by Fig 6.15.

1400

e  Experimental data (loading part)
best fit by Hertz model
1200 -
1000+ /’
//'
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e
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

indentation depth (um)

Fig 6.15 Typical force-indentation depth curve (loading part) and the best fitting curves by Hertz

contact model

It can be seen from Fig 6.14 (a), for sample B, the eastic modulus calculated by
“generalized” JKR model is closeto that of basic JKR for case 1, remains fairly steady for the

cases 2 and 3, and decreases to a much smaller value for the very thin case 4. The results
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show that the elastic modulus of Sample A is in genera higher that of Sample B. For the
determined work of adhesion of cells, Sample B is much higher than Sample A. Thisindicates

that sample B cells are softer and exhibit higher adhesion.
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Fig 6.16 Statistics of Young's modulus (bold solid lines) and work of adhesion (thin solid lines) for

Sample A (blue lines) and Sample B (red lines) with four thickness cases.

Fig 6.16 presents a direct comparison between the four cases for sample A and B in terms
of Young's modulus (Pa) and work of adhesion (w//n). The determined work of adhesion of
Sample A maintains almost the same value of 10uJ/n¥ regardless of the cell thickness, while
the counterpart sample B decreases dramatically as cell thickness decreases (see the red thin
solid line in Fig 6.16), which is attributed to the fact that softer material (sample B) is more
sensitive to the substrate effect. For both samples, the determined Young's modul us decreases
as the cell thickness decreases. This trend seems inconsistent with the general perception that
substrate effect may lead to an increase in the caculated Young's modulus. However, it
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should be born in mind that the situation here is very different and can be explained as follows.
For the four cases, we use different thicknessesto fit the same force-displacement curve. If we
use Eq. (6.14) — (6.16) to fit the loading part of the F-d curve, the compliance C is fixed
regardless of the cell thickness. Substituting Eq. (6.19) into (6.16) yields
¢ =190 (629

For the same contact radius a, smaller thickness h corresponds to larger a/h, resulting to lower
fo(a’h), and hence the determined E" should decrease in order to keep the same compliance C.
Although we used Eq. (22) and (23) to fit the retraction part of the F-d curve, the involvement
of work of adhesion will not ater the effect of cell thickness on the determined Young's
modulus in general, and conclusively, thinner thickness will produce lower Young's modulus

by fitting the same F-d curve. It is worth noting that the case 1 and case 4 are two extreme

situations and cases 2 and 3 are more realistic representation of the concerned cells.

6.3.4 Finite element smulation

In JKR model, a strong adhesive force is assumed to act at the equilibrium distance z, which
istreated as a Delta function enclosing an area Ay®Y as shown by Fig 3.8 (b). Since the results
by self-consistent method can be applied to JKR model if 4 > 5 (see Sec. 3.2.4), the
force-displacement curve by FEM method developed in Sec. 5.4 could be used to fit the

existing F-d data from MING6 cell indentation with respect to retraction part.
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Fig 6.17 Typical force-displacement curves and the best fitting curves by using FEM (u« = 5) for (a)

Sample A and (b) Sample B cells (in reduced coordinates). The red bold and thin blue lines denote

experimental data and FEM simulation results, respectively.

Fig 6.17 shows the fitting results corresponding to FEM and experimental data. For the
FEM, the value of R, zypand Ay arelisted in Table 5.2, while for the experimental data, R= Ry
= (UR,+1/R.)%, E and 4y were selected such that good fit would be presented. As may be seen
from Fig 6.17, the F-d curve by FEM can mostly overlap its experimental counterpart except
the area circled by the ellipses. For the cells, the stepwise curve is due to multiple tethers as
analyzed in Sec 6.3.2, which is ascribed to cell inhomogeneity after al. In the FEM,
nevertheless, the elastic substrate is assumed to be homogeneous, resulting in the “brittle”
separation as shown by the vertical curve in Fig 6.17. In general, the FEM can also describe

the retraction process of cell with AFM probe.
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Fig 6.18 Results of extracted Young's modulus and work of adhesion respectively. The data are

presented as average values with standard deviations.

Fig 6.18 shows the fitting results of extracted Y oung’s modulus and work of adhesion from
24 (sample A) and 3 (sample B) force-displacement curves by using FEM model of bead on
spherical cell. Fig 6.18 (a) shows the average elastic modulus for sample A cdlls is 435Pa,
and sample B is 386Pa, whilst the average work of adhesion of sample A and B is 5.2uJ/n? is
24.5u/n7 respectively as shown in Fig 6.18(b). Although the values of these two parameters
differ from that in Fig 6.8 by a small margin, the tendency of them (E and 4y) between cell A

and B is the same.

6.4 Summary

In this chapter, the adhesion between the surface of polystyrene micro-bead and
cyto-membrane of biological cells has been investigated. The adhesion at the contact between
AFM tip and the cell, Johnson-Kendall-Roberts (JKR) model has been used to fit the
force-displacement curves obtained. The effect of viscoelasticity of cell under the AFM

indentation can be neglected since the extracted viscous relaxation time is very small
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compared with the loading time period. The MING cell has been modeled as first a sphere and

then aflattened cell with different thicknesses. Firstly, the cell and the indenter are modeled as

two spheres, and the JKR model has been applied to fit the experimental data of the retraction

part of the force-displacement curves. Secondly, the indented cell is treated as a layer with

four different finite thicknesses, and “generaized” JKR model is used to fit the same

force-displacement curves. Summary is listed as follows:

® The results have shown that both the basic JKR and “generalized” JKR models can
effectively describe the behavior of the unloading force-deformation curves.

® The “generalized” JKR model can be used for more realistic cell modelling with various
cell thicknesses and both models can identify the property variations of the two types of
cells.

® FEM proves an effective means to simulate the F-d curve. Although the vaues of
parameters extracted by FEM differs from that of JKR fitting, the tendency of them

between control cell and treated cell remain the same.
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7 Determination of Work of Adhesion of human hepatocellular

carcinoma by AFM indentation (Vickers probe)

7.1 Introduction

In last chapter, JKR model was applied to a very soft materia, i.e. MING cells, to characterize
its surface adhesion. Both Young's modulus, and work of adhesion can identify the difference
between normal and treated cell. In terms of this method, this chapter will apply JKR model
to characterize the difference between another biological cell and its treated counterpart, i.e.
human hepatocellular carcinoma and its fullerenol treated counterpart.

Fullerene family has been playing an important role for potential applications in
biomedicine such as cancer diagnosis and therapy!'6211631164 The fullerenol can induce
apoptosis process which is associated with cytoskeleton disruption!*®®. Cancer cells affected
by fullerenols could exhibit variations in mechanical properties such as elastic stiffness and
these changes in cancer progression are helpful to understand the individua differences
between normal and cancer cell %6167, The atomic force microscope (AFM) indentation can
offer an accurate mechanical measurement of individual living cellsO8I1169 - On the other
hand, the adhesion phenomenon, characterized as negative force in the experimental
force-displacement curves obtained in AFM indentation, was widely reported over the last
two decaded 1501607071 The adhesion behavior of cells with other nanoparticles is crucial
for the biocompatibility of implants™™. In recent years, it has become clear that adhesion
molecules are involved in tethering cells to specific locations!*”®. Adhesion molecules are
transmembrane molecules that are linked to cytoskeletal elements (actin)**"). Since fullerenols
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have appreciable effect on cytoskeletal structures, the adhesion property of cancer
cyto-membrane may also alter dueto fullerenol treatment.

This chapter will present investigation of mechanical properties by AFM nanoindentation
on human hepatocellular carcinoma cells treated with fullerenol for 24, 48 and 72 hours.
Atomic force microscope is routinely used to investigate the morphology and biomechanical
properties of living carcinoma cells, and adhesion phenomenon (negative force) is detected in
the obtained force-displacement curves. It is found that adhesion phenomenon is dependent
on time duration of fullerenol treatment. The control cells and the cells exposed to fullerenol
for 24 hours showed insignificant adhesion while the rest two kinds of cells exhibited
conspicuous adhesion. The fitted JKR model provides good agreement with the experimenta
results. The changes of the determined work of adhesion (4y) due to different periods of

fullerenol treatment are provided.

7.2 Methodology

721  Cell Preparation

SMCC-7721 cells were obtained from Roswell Park Memorial Institute (RPM1)-1640 media
with 10% of fetal bovine serum (FBS) and antibiotics (penicillin—streptomycin solution). The
commercial water-soluble fullerenol powder with the general formula Cey(OH)24 was
dissolved in deionized water at a concentration of 2.7mM/ml, and it was then diluted with
RPMI1-1640 media with 10% of FBS to 0.53mM/ml, which was used for the fullerenol
treatment solution stored at 41 C. The Maintenance of SMCC-7721 cells and sample
preparation have been described in detail elsewherel’®l. Here, one labeled control cells as cell

A, which were not exposed to fullerenol and being cultured for 24 hours in the physiological
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solution, and marked cells exposed to fullerenol for 24, 48 and 72 hours as cell B, C and D
respectively. In this chapter, cell B (treated for 24 hours) consists of 12 live cells, while others

are 7 cdlls each.

7.2.2  Atomic force microscope

The module of the AFM employed in this chapter is JPK NanoWizard® 3 Bioscience, which
was used for both indentation and cell imaging. It was mounted on an inverted microscope,
alowing the AFM and optical microscope imaging together. The criterion for cantilever
selection is that the compliance of the cantilever should be around the range of the sample
compliance. For very soft and delicate cells, the softest cantilevers are available with spring
constants ranging from 10 to 30mN/m. Therefore, a silicon nitride cantilever whose spring
constant is 30mN/m, was adopted for cell-bead indentation in this chapter. The probe is a
square pyramid tip (Vickers) with a half-opening angle of 25° (half-angle to face), and its
radius and height are 10 nmand 2.5 — 8 um respectively asillustrated in Fig 7.1. The approach
and retraction speeds were kept constant at approximately 2.5 uml/s for al experiments to

relieve viscosity effect.

(@ (b)
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Fig 7.1 Microscope of (a) top of cantilever and (b) the silicon nitride indenter.

Fig 7.2 Scheme of principle of force-displacement measurement by AFM.

Fig 7.2 illustrates the principle how AFM obtains the force-displacement curve. The sample

substrate is fixed by setup. The AFM cantilever is moved vertically by the piezoelectric

scanner. Owing to the compliance of the cantilever, the vertical displacement z of bottom of

the cantilever does not equal the indentation depth o after the apex of indenter begins to

penetrate the sample substrate. The cantilever itself will undergo a deflection x as shown by

Fig 7.2. For geometrical relation, one has

z=x+96 (71

If the deflection of cantilever is small, the indentation force F will be proportional to the

deflection x as

F=kx (7.2

As mentioned Sec. 1.1.2, the deflection of the cantilever x could be measured in terms of the

signa (A + C) — (B + D), and the vertical displacement z is pre-set. The remaining two

unknowns, i.e. F and ¢ could be determined by combination of Eq. (7.1) and (7.2).

7.3 Theoretical model
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Cell

(b)

Fig 7.3 Schematic of (a) non-adhesive and (b) adhesive contact between a Vickers indenter and a
compliant semi-infinite space. o denotes the half-angle to face. The neck area in the circle in (b) is

ascribed to adhesion force.

Fig 7.3 illustrates the schematic of a soft living cell indented by a Vickers indenter, and in this
chapter, it is routinely simplified by contact between a conic and substrate material. During
the approach and retraction processes, the viscosity effect can be neglected, and only elastic
deformation is considered. As can be seen from Fig 7.1, the tip size of the silicon nitride probe
Is less than that of size of SMCC-7721 cell (see Fig 7.8) by at least two orders of magnitude,
and thus the cell could be treated as a semi-infinite space. For a non-adhesive contact between
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an elastic half space and an axis symmetric indenter, Sneddon*"¥ gave the vertica depth of
the contact periphery J. and the contact depth J. as
S, = €6 (7.39)
8. =(1—-¢€)d (7.3b)
where ¢ denotes indentation depth, and ¢ is a coefficient dependent on the geometry of the
indenter-sample contact. For a conical indenter ¢ = 1- 2/z. During the retraction, the stiffness

of the indenter-substrate, is given as

_4apP _  2Ea
T a5 T (1-v?)

(7.4)
where a denotes the radius of the contact periphery and v is the Poisson’s ratio which is set as 0.5,
indicating the cytoplasm is incompressible?, P is the load applied on the indenter. For a
non-adhesive situation, elastic force Fe is the sole component of P.
P=F, (15)
For a conic, the contact depth J. and the contact radius a are related by
a = §.tana (7.6)
For a pyramid indenter, Eq. (7.4) never holds because the contact areais no long a circle. However,
numerical analysig'™I178 indicate that Eq. (7.6) is still vaid if a is substituted by an effective
contact radius
a=a"= \/% 7.7

where A is the projected contact area, and the corresponding error for a square pyramid
indenter is 0.012 compared with conical indenter. According to the geometry shown in Fig 7.3
(a), one has

A = (26 .tana)? (7.8)
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Substituting Eq.(7.8) into Eq.(7.7) yields

« _ 46tana
— p3/2

(7.9)

Substituting Eq.(7.9) into Eq.(7.4) and integrating the stiffness Swith respect to ¢ resultsin

_ 4Etana
T (1-v)ns/2

P=F, 5% (7.10)

If the adhesion is taken into consideration, the force applied on the indenter P should be

comprised of eastic (Fe) and adhesion (F.) terms, i.e.
P=F,+F, (7.11)

The adhesion component term can be given as
d
Fy = —==(=AyA.) (7.12)
where Ay and Ac denote work of adhesion and contact area respectively. The latter is given as

tana
p— (7.13)

A, = 462
Ignoring the effect of adhesion on the deformation, the contact depth Jc is still determined by

Eq. (7.3b). Substituting Eq.(7.13) into Eq.(7.12) yields

Fa _ _ 32Aytana6 (7.14)

m2cosa
Substituting Eq. (7.14) into (7.11) resultsin

4Etana 2 32Aytana

- w3/2(1-v2) n2cosa 6 (7.15)
Owing to the second term in Eq. (7.15), negative value of force is given when the
indentation depth is small enough, which is commonly observed in many AFM indentation

experiments on living cellg69179 As indicated, when 4y equals zero (no adhesion), Eq. (7.15)

will reduce to its non-adhesive counterpart, i.e. Eq. (7.10).

7.4 Results and discussion

74.1  Post-processing of indentation data
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Fig 7.4 Processing of raw force-displacement curve obtained from AFM indentation.

Fig 7.4 shows a raw force-displacement curve obtained from AFM indentation. The notch
peaks at the right side of the curve is attributed to environmental noise or particles on the
media. The enclosed area between the loading and unloading curves may be ascribed to
viscoelasticity of the cytoplasm and energy dissipation caused by cell stretching of cell
membrane during indentation. Due to movement of the aqueous solution, function (1) is
adopted to remove the baseline offset in vertical deflection before further processing. In
general, the part of the curve on theright is flat, and there is no force between tip and surface,
giving the force baseline. Afterwards, function (2) is selected to automatically determine the
point where the force curve crossed the zero force line, and this point is set as origin of the x
axis. It is worth noting that this point does not necessarily equa the contact point where the
AFM indenter touch the cyto-membrane and therefore only could be treated as an indication
point for fitting a mechanical model*”. When the “contact point” is determined, function (3)

is used to trand ate the coordinated system so that the origin overlaps with the * contact point”.
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The following operation (4) automatically corrects the deflection value for the bending of the
cantilever, and gives the tip sample separation. This operation is very important for the

application of fitting by Hertz or JKR mode!.

742  Original experimental data

During indentation measurements, live cells were generally indented 3-4 times at the same
spot and 5 different spots for one cell. Fig 7.5 shows the repeatability of F-d curves obtained
by the AFM indentations. It may be seen that there is insignificant difference between F-d
curves from the same indentation point within one cell as shown by Fig 7.5 (a). Likewise, the
F-d curves corresponding to different positions within the same cell just differ by a small
margin with each other as shown by Fig 7.5 (b), which is likely ascribed to height variation of

the call.
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Fig 7.5 Typica F-d curves corresponding to (a) repeated indentations at the same point and (b)

different indentation positions within the same cell.
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Fig 7.6 Example of force-displacement curves obtained by AFM indentation on (a) control cells, cells

exposed to fullerenol for (b) 24 hours, (¢) 48 hours and (d) 72hours respectively.

@ (b)

(0 (d)

Fig 7.7 Top view of microscope of AFM of (a) control cells, cells exposed to fullerenol for (b) 24 hours,

(c) 48 hours and (d) 72hours respectively. The triangle is the AFM cantilever.
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@ (b)

(© (d)
Fig 7.8 AFM deflection imaging of (a) control cells, cells exposed to fullerenol for (b) 24 hours, (c) 48

hours and (d) 72hours.

Fig 7.6 presents the result of force-displacement curves for the four types of
SMCC-7721cells after the above mentioned treatments. The maximum indentation force is
approximately 2500 pN regardless of type of the cells, while the maximum indentation depth
varies from cell to cell, and it is estimated that the maximum indentation depth ranges from 1

to 2 um. For the cell C and D, adhesion force is characterized by the negative force region
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during retraction of AFM indenter, as illustrated by the red line in Fig 7.6 (c) and (d).
However, adhesion force is not noticeable for cell A and B during retraction as shown in Fig
7.6 (a) and (b).

Fig 7.7 shows the optical morphological imaging the living SMCC-7721 cells. It indicates
that the cells were cultured in monolayers and organized in low proximity between each other.
Fig 7.8 shows the AFM vertica deflection imaging of living SMCC-7721 cells. From the
scale bar, one may predict the diameter of the cell may ranges from 20 to 30 wm, and hence
the indentation depth is less than 10% of the cell height so that the substrate effect could be

excluded.
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Vertical Deflection: Extend (nh)

e

(d)
Fig 7.9 Tether rupture events during unloading stage for (a) control cells, cells exposed to fullerenol for

(b) 24 hours, (c) 48 hours and (d) 72hours. The vertical solid line indicates the unbinding event.

As mentioned in Fig 1.2, the adhesion force is manifested by the stepwise jump events
(also shown by Fig 7.9 (c) and (d)), which implies ductile unbinding. In addition, the type of
force curves that show steps are adhesion curves from cell binding events. The usual
interpretation for these steps is membrane tethers pulled out from the cell surface as discussed
in last chapter. Therefore, we use the function of step fitting " toinvest gate the unbinding
events in the retraction process of the force-displacement curve. The unbinding events are
characterized by the displacement plateaus corresponding to a fairly constant force. With the
same fit parameters, significant unbinding events are observed for cell C and D as shown in
Fig 7.9(c) and (d), while unbinding events are inconspicuous for cell A and B as shown in Fig
7.9(a) and (b). This observation result is consistent with foregoing conclusion that adhesion

mainly occursin retraction part of force-displacement curve of cell C and D.
185

(NU) puspa uoRaayaq (eapan



Chapter 7

743  Control cells and cells exposed to fullerenol for 24 hours (Non-adhesion case)

Since adhesion phenomenon is insignificant in cell A and B, the non-adhesive Hertz contact
model (Eq. (7.10)) is adopted to fit the retraction part of the force-displacement curve
corresponding to cell A and B. To calculate elastic modulus, the JPK data processing software
itself offers afunction called Elagticity fit which is based on Hertz contact model as shown by

Fig 7.10. The Hertz model can fit most part of the retraction curve except the place where the

indenter detachesthe cell, ascircled in Fig 7.10.

Vertical Deflection: Extend (nM)

Fig 7.10 The retraction part of F-d curve obtained from cell A and B isfitted by Hertz model.

Table 7.1 Young's modulus from cell A2 (Unit: kPa)

-05
Tip-Sample Separation (um)

location 1st 2nd 3rd 4th Average Std
1 2.697 2403 2171 2.096 2.34 0.27
2 2033 2113 2253 2179 2.14 0.094
3 2146 282 2565 2.389 2.48 0.284
4 2401 2024 2321 2512 231 0.209
5 2568 2.356 2.86 2.028 2.45 0.351
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Table 7.2 Young's modulus from cell B1 (Unit: kPa)

location 1st 2nd 3rd 4th Average Std
1 1.76 1.811 1879 1109 164 0.36
2 1332 1562 1663 1531 15 0.14
3 1699 1.773 1715 1.82 1.75 0.056
4 1.831 1923 2234 2324 208 0.24
5 1.985 2.099 2065 1887 201 0.094

Tables 7.1 and 7.2 give the extracted Young's modulus at five different positions within the

same cell. Four indentations were repeated in every position. It can be seen that the

determined Young's modulus values from different positions within the same cell remain

steady. The calculated Young's modulus values for all cells are shown in Fig 7.11. Each

individual bar represents one cell, expressed as average + standard deviation. It is noted that

the determined Young's modulus varies from one cell to another. For cell A, the Young's

modulus mainly ranges from 2 to 3.1 kPa, and only Young's modulus values of cell Al and A6

are beyond this range by a considerable margin. For cell B, most Young's modulus ranges

from 1 to 2 kPa or even lower, and only Young's modulus values of B3, B8 and B12 are

beyond this range. Fig 7.12 shows the overall result for the control cells and the cells treated

for 24 hours. The dataindicate that fullerenol decreased the elastic modulus by 43% after 24

hour treatment, suggesting that cells treated with fullerenol become considerably compliant.
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Fig 7.11 The determined Young's modulus for (a) control cell and (b) cells exposed to fullerenols for

24 hours. The data are presented as average values with standard deviations.

Elastic modulus (kPa)

CellA CellB
Cell Type

Fig 7.12 The comparison of determined Young's modulus between cell A and B.

744  Cellsexposed to fullerenol for 48 and 72 hours (Adhesion case)
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Fig 7.13 Typical force-displacement curves and the best fitting curves by using JKR model. The zoom

box denotes the “local fitting”.

Fig 7.13 presents typica results of the force-displacement curves obtained by AFM
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indentation on cells C and D, and the best fitting curves by using JKR model for the retraction
parts. Sudden jumps of indentation force occur during retraction process, which is
characterized by the “wave’ as shown in the zoom box area. These sudden variations of the
force can be ascribed to discontinuous decrease of the contact area between the tip and cell
membrane. This is due to one tethering of cell membrane to AFM tip surface followed by a
sudden detachment and tethering to another contact linel*Y, as shown by Fig 7.14. Since
fitting of F-d curve with discontinuous steps will cause error in the estimation of work of
adhesion, the last section of F-d curve corresponding to considerable discontinuous adhesive
force, asindicated by oval circlein Fig 7.13, were discarded from fitting™*>Y. Moreover, if the
curve itself consists of significant and abrupt force discontinuity, it will be discarded for
numeral statistics too, as shown by Fig 7.15 as an example. In general, the JKR model can

best describe the experimental results of the unloading curve as shown above.

Force

Displacement

Fig 7.14 Scheme of cyclic tethering and detachment during unloading?6:.
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Fig 7.15 F-d curve with considerable force discontinuity during the retraction fraction was discarded

for statistics

This chapter explores two ways of fitting the unloading part of F-d curve as detailed below.
The first way is fitting from beginning of retraction to the place where the indentation force
exhibits severe discontinuities as shown by the big plot in Fig 7.13, which is termed “global
fitting”. The second method is fitting the fraction of F-d curve from the point where
indentation force decreases to null to where force is significantly discontinuous (this “swale”
area corresponds to low indentation depth), as shown by the zoom box areain Fig 7.13, which
istermed “local fitting”. The R-square vaue in the zoom box corresponds to the fit goodness
when the extracted parameters produced by “global fitting” are used to describe the “swal€”
area. It is suggested that when the R-square value in the zoom box is around 0.5 or even
higher, there are no significant difference between the fitting results by the two approaches as
illustrated by Fig 7.13 (a)-(c). However, when this value is fairly small, significant variation

of extracted parameters is observed between the two methods as shown by Fig 7.13(d).
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Therefore, it can be concluded that in this “swale” area, adhesion force plays a dominant role

for fitting result and has a considerable effect on the extracted parameters.

Table 7.3 Extracted parameters from one cell C2

time 14 2nd 3rd 4th Average Std
Point E(kPa) E(kPa) E(kPa) E (kPa) (kPa) (kPa)

1 2.99 3.12 2.99 3.64 3.19 0.31
2 3.74 4.05 4.38 - 4.06 0.32
3 2.8 3.74 3.53 - 3.36 0.49
4 3.64 4.99 4.73 - 4.45 0.72
5 2.2 2.33 2.99 2.88 2.6 0.39
time 1t 2nd 3rd 4th Average Std
Point Ay Ay Ay Ay (mIm?)  (mI/n?)
(mIm?)  (MmIm?)  (mIm?)  (mImd)
1 0.789 0.592 1 0.48 0.715 0.229
2 1 0.758 0.572 - 0.777 0.215
3 0.744 0.699 0.796 - 0.746 0.049
4 0.733 0.789 0.655 - 0.726 0.067
5 0.558 0.423 0.482 0.556 0.505 0.065
Table 7.4 Extracted parameters from one cell D2
time 1st 2nd 3rd 4th Average Std

Point E(kPa) E(kPa) E(kPa) E(kPa) (kPa) (kPa)

1 1.15 11 0.925 0.84 1.01 0.15

2 1.01 0.92 1.09 1.16 1.05 0.10

3 1.08 0.96 1.05 0.97 1.02 0.06

4 0.93 0.97 0.83 0.98 0.93 0.07

5 0.83 0.8 0.84 0.88 0.84 0.03
time 1st 2nd 3rd 4th Average Std
Point Ay Ay Ay Ay (MIm?)  (MmIm?)

(mIm?)  (mIm?)  (mIn)  (mI/nv)

0234 0252 0339 0275 0275 0046
0305 0227 0358 0244 0284 006
0338 0319 0345 0267 0317 0035
0199 0361 0308 0148 0254  0.098
0294 0362 0273 0308 0309 0.038

QW |N|F
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Fig 7.16 Histograms showing the determined (a) Young's modulus and (b) work of adhesion for each

cell C subject.
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Fig 7.17 Results of the determined (a) Young's modulus and (b) work of adhesion for each cell D

subject.

Tables 7.3 and 7.4 list the extracted Young's modulus and work of adhesion corresponding
to one cell group (cell C or D) by the “global fitting” method. This indicates that these two
parameters do not exhibit significant differences within one cell in adhesion circumstance.
Likewise, one performed statistical analysis on F-d curve corresponding to each cell, and the
extracted Young's modulus and work of adhesion are shown in Fig 7.16 and Fig 7.17. The

average value of the two parameters varies from one cell to another cell, and cells with larger
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Young's modulus exhibits larger work of adhesion approximately. For cell C, the Young's
modulus and work of adhesion mostly range between 3 to 5 kPa and 0.5 to 0.8 mJ/m?,
respectively. For cell D, the Young's modulus and work of adhesion mostly range between 1
to 4 kPaand 0.1 to 0.4 mJ/m?, respectively. Fig 7.18 shows the statistics results (average value)
taking all cdlsinto consideration. For cell C Young's modulus and work of adhesion have an
average of 4.88kPaand 0.825 mJ/m? respectively, while for cell D Young's modulus and work
of adhesion have an average of 2.32kPa and 0.365 mJ/m? respectively. The determined value
of work of adhesion in our procedure can almost coincide with the value in aformer study!*sY
in order of magnitude which in turn justifies this procedure. The difference between the
heights of histograms suggests that both cell stiffness and adhesion effect is decreased by

fullerenol treatment during the last 24 hours.
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Fig 7.18 The comparison of determined (a) Young's modulus and (b) work of adhesion between cell C

and D.

195



Chapter 7

Elastic modulus (kPa)

CellA CellB CellC CellD
Cell Type

Fig 7.19 Results of Young's moduli of the four group cells by using the JKR model.
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Fig 7.20 Results of Young's moduli of the four group cells, by using Hertzian contact model to fit the

loading parts of F-d curves.

Fig 7.19 is the combination of Fig 7.12 and Fig 7.18(a). The effect of duration of
fullerenols treatment on extracted modulus seems different from that reported by a former
study7. In general, the Young's modulus is derived from the loading curve of the F-d curves
by Herzian contact model. In order to make a comparison, we have tried to apply the Hertzian
contact model to fit the loading part of the F-d curves of the four groups of cells. The results

(average + std) are plotted in Fig 7.20. It can be seen that the pattern of the calculated Young's
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modulus values of the four group cells are almost the same as that in Fig 7.19. Therefore, the
difference is more likely due to the variation of different batch of cells and the fullerenols

treatment.

7.5 Summary

In this chapter, AFM was employed to investigate the adhesion between the AFM indenter and

the cells treated by fullerenol with different durations. F-d curves corresponding to cell A and

B were fitted by Hertz contact model because most of the curves do not exhibit significant

adhesion force. On the other hand, there are adhesion force in the F-d curves corresponding to

cells C and D, and hence JKR model was employed for fitting those data accordingly. The

summary islisted as follows:

® The results show that both Hertz and JKR contact model can describe very well the
behavior of retraction curves.

® |n non-adhesion case, fitting by Hertz model indicates 24 hours treatment of fullerenol
may make the treated cells more compliant.

® |n adhesion case, “global” fitting by the JKR model suggested both stiffness and
adhesion of the treated cells were decreased by a large margin during the last 24 hours
treatment of fullerenol.

® The results suggest that the experimental study of cell-tip adhesion may also provide

some insights into potential cancer progression in addition to cell stiffness.
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8 Conclusionsand Futurework

8.1 Research Highlightsand Conclusions

In this work, a sufficient analysis of surface adhesion in nanoindentation is made from two
main aspects, i.e.
® FEffect of surface adhesion on shakedown behavior of repetitive microcontact of
elastoplastic materials (hard materias).
® Quantitative characterization of surface adhesion in on soft materials subjected to AFM
indentation, i.e. biological cells, and its potential application in biomedical diagnostics.
First, an intrinsic physical mechanism accounting for surface adhesion was introduced, and
interaction forces between different geometrical bodies were formulated. Severa classic
adhesive contact models based on contact mechanics were discussed in terms of their
characteristics, among which JKR model, DMT model and M-D model were emphasized. The
application fields of these adhesive contact models were schematically interpreted. Since
surface adhesion is somehow brought up by nanocindentation, nanoindentation, viewed as
“carrier” for surface adhesion, was conducted. Based on relevant theoretical models, several
mechanical properties of materials were quantitatively investigated, and compared with their
typical values for justification. It is worth noting that although nanoindentation is not the
focus of this work, it plays as a role of breeding ground for surface adhesion, and thus a
routine experimental review of nanoindentation was of significant importance. Following this,
the effect of surface adhesion was manifested in repetitive microcontact of elastoplastic
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materials (hard materials) in terms of shakedown behavior. A finite element method was
employed to simulate surface adhesion force which obeys Lennard-Jones potential and was
incorporated into ANASY S as a user defined subroutine. Finaly, this work provides a method
to quantitatively characterize surface adhesion of soft materials in terms of a new parameter,
i.e. work of adhesion. The soft materials include two types of biological living cells, i.e.
pancreatic MIN6 cell and human hepatocellular carcinoma together with their medicine
treated counterparts. MING cells were treated by +R568 for 48 hours, while hepatocellular
carcinoma were treated by fullerenol for 24, 48 and 72 hours (marked as Cdll B, Cell C and
Cell D, respectively). AFM indentation was performed to quantify the mechanical behavior of
biological cells, i.e. force-displacement curve. For MING cells, the AFM tip indenter is a
polystyrene sphere, while the cancer cells were indented by a Vickers indenter. JKR contact
model, as expert for adhesion circumstance of soft materials, was used to fit the obtained
force-displacement curves, resulting in the above mentioned new parameter besides eastic
modulus. For MIN6 cell, the origina JKR model, its “generalized” form (i.e. with
consideration of cell thickness) and finite element simulation were used for fitting the
retraction part of F-d curve. For the cancer cell, the original JKR model was modified to adapt
itself for Vickers indenter, and this adapted JKR model was utilized for fitting. Hertz model
was fitted to the retraction part of F-d curves of control cell and Cell B while the adapted JKR
model was fitted to the unloading part of F-d curves of Cell C and Cell D. On the other hand,
the loading part of F-d curves of these four type cells were fitted by Hertz model. The
difference between the above mentioned biological cells and their medicine treated
counterparts were verified in terms of magnitude of this new parameter and together with

199



Chapter 8

Young's modulus. Towards the objectives presented in Chapter 1, conclusions are made as
follows.

In terms of thefirst issue, the following conclusions are established:

FEM can simulate instability jumps in adhesive contact. The jump in and jump off
phenomena are manifested by vertical F-d lines which resembleto “brittle” jump.

In adhesive contact, the indentation depth of rigid indenter corresponding to first yield of
substrate material is lower than its non-adhesive counterpart, regardless of the strain
hardening manner (i.e. whether isotropic hardening or kinematic hardening). For a larger
plasticity parameter S first yield strain can observed at the contact periphery even before
the two materials contact with each other which can never occur in its non-adhesive
counterpart. This means that surface adhesion force alone can alter the mechanical
response of substrate material subjected to indentation, in terms of plasticity.

In terms of cyclic loading-unloading of non-adhesive contact, regardless of strain
hardening manner (i.e. whether isotropic hardening or kinematic hardening), plastic
deformation can only occur during the first loading half of the first cycle, followed by
elastic deformation in subsequent cycles, i.e. the indenter-substrate system shakes down
to wholly elastic behavior. However, with the presence of surface adhesion force, by
adjusting relevant governing parameters appropriately, closed-cycle plasticity could be
observed not only in the first cycle but also in subsequent cycles (i.e. plastic shakedown),
regardless of strain hardening manner of substrate materials. Moreover, kinematic
hardening material shakes down to plastic behavior more quickly than its isotropic
hardening counterpart. By comparing to the non-adhesive circumstance, this
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phenomenon means the occurrence of plastic shakedown is due to surface adhesion force.

Since structures exhibiting plastic shakedown will fail after a finite number of load

cycles due to low-cycle fatigue, it is of guiding significance for future work to consider

surface adhesion force in contact.

In terms of the second issue, the following conclusions may be drawn:

Surface adhesion force manifests itself by the negative force monitored in

force-displacement curve of biological cells subjected to AFM indentation. When the

AFM tip probe detaches the cell, stepwise jumps were observed due to adhesion forces.

Because the separation is continuous, it resembles “ductile’ separation.

For MING cells, the fitting curve by JKR model coincided well with the retraction part of

F-d curve, except some discontinuity part. The discontinuity part consists of many

stepwise jumps, which is due to sudden detachment, and thusiit isinappropriate to let this

part join in the fitting process. The resulted elastic modulus and work of adhesion agreed

with that reported by former studies in order of magnitude. Although the values of these

two parameters calculated by origind JKR model were higher in comparison to

“generalized” JKR model fitting, the tendency of these two parameters between control

and treated cells was the same, i.e. Young's moduli of treated cells were lower that their

control counterparts, while work of adhesion of the latter cells was higher than that of

former cells.

For hepatocellular carcinoma, surface adhesion was insignificant in control cell and Cell

B but significant in Cell C and Cell D, in terms of negative force monitored in F-d curve.
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The stepwise jumps were also observed in Cell C and Cell D, but not significant in
control cell and Cell B. The adapted JKR model proved to fit well with the unloading
part of F-d curves corresponding to Cell C and Cell D, except some discontinuity
segments which was analyzed by analogy to ii. The extracted elastic moduli and work of
adhesion were aso in their normal range reported by previous studies. A considerable
difference was observed between different types of cells in terms of eastic moduli and

work of adhesion.

8.2 Futurework

In terms of the objectivesin this work, future work can be summarized as follows:

The elastoplastic material in this work is homogeneous. Since inhomogeneous materials
have been emerging as function-aimed materials, more detailed work is required to
achieve a good understanding of shakedown behavior of inhomogeneous materials
subjected to repetitive adhesive contact. Functionally graded materials and laminated
materials are two common inhomogeneous materials, and there are already some studies
focusing on the adhesive contact of these materials which are the footstone of future
work.

This work mainly focuses on the effect of surface adhesion on normal contact. However,
in practice, miniaturized devices are subjected to a complicated situation, e.g. both
normal and tangential relative movements. Therefore, it is essential to consider the effect
of surface adhesion on the tangential behavior. In other words, friction and stiction would
be affected by surface adhesion.
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The cell istreated as homogeneous in this work, whereas inhomogeneity prevails with in
cell which consists of cytoplasm, cytomembrane and cell nucleus. Hence it is appropriate
to develop a more realistic model which takes cell inhomogeneity into consideration. On
the other hand, although this work considers the shape diversity of cell, i.e. regarding the
cell as a plate with finite thickness, it still conforms to homogeneity assumption. In this
regard, it is advisable to treat the plate as laminated materials.

The JKR model was adopted to fit the force-displacement curve which implies the
interaction force between AFM probe surface and cytomembrane is a short range force.
However, in practice this interaction force may take a more complicated form, and there

is aneed to provide a more accurate simulation in terms of interaction force.
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