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ABSTRACT

The aim of this PhD work is to investigate the effect of surface adhesion on the mechanical

behavior of material subjected to nanoindenation. Nanoindentation is an effective technique to

quantify the mechanical properties of various materials. However, surface adhesion becomes

significant due to the increasing ratio of surface area to volume in nanoindentation

environment, and thus it is appropriate to consider the effect of surface forces and adhesion in

nanoindentation testing.

First, nanoindentation, as a “carrier” for surface adhesion, was deduced to quantify the

mechanical properties of calibration materials. The calculated values of these objective

mechanical parameters were compared to their typical values to justify nanoindentation.

Afterwards, this work employed a 2-D finite element method to investigate the effect of

surface adhesion on hard elastoplastic materials subjected to cyclic loading-unloading. The

elastoplastic material took two hardening manners, i.e. isotropic hardening and kinematic

hardening. The surface force obeys the Lennard-Jones potential, which is incorporated into

ANSYS as a user defined subroutine. The results demonstrated that surface adhesion can

induce plastic shakedown in repetitive contact, regardless of the material hardening manner

compared to its non-adhesive counterpart. This indicates the significance of the study on

surface adhesion in miniaturized devices subjected to repetitive contact, e.g.

micro-electronical-mechanical systems (MEMS) or nano-electronical-mechanical systems

(NEMS).
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Finally this work studied the effect of surface adhesion on the mechanical behavior of two

soft materials (two kinds of biological cells) subjected to atomic force microscope (AFM)

indentation, i.e. pancreatic MIN6 cell and hepatocellular carcinoma which were treated by

calcimimetic R568 and fullerenol respectively. They were also indented by different AFM

probes: MIN6 cell by spherical indenter, and cancer cell by Vickers indenter. First of all,

surface adhesion was manifested by the negative value of indentation force. For MIN6 cells，

both JKR and finite element method are used to fit the force-displacement curve obtained by

AFM indentation. For hepatocellular carcinoma, the JKR model is adapted for the Vickers

indenter, and the “adapted” JKR model is used to fit the force-displacement curve. The results

showed that JKR model can best describe the unloading force-displacement behaviors of the

indentation curves, where a new parameter, termed work of adhesion in addition to Young’s

modulus was extracted. Moreover, the difference between two biological cells and their

treated counterparts were detected in terms of the magnitudes of the extracted parameters, i.e.

Young’s modulus and work of adhesion. This implies that the study on the surface adhesion

has potential significance in terms of medical diagnostics.

The main contributions from the present research could be summarized as follows:

i. For hard materials, this study presents a systematic investigation on the effect of

surface adhesion on the shakedown behavior of two hardening materials, i.e. isotropic

and kinematic hardening. The simulative results show that surface adhesion alone can

initiate plastic deformation. In non-adhesive repeated contact, only elastic shakedown

can occur while in adhesive repeated contact, plastic shakedown can occur, which

indicate that surface adhesion force can alter the mechanical response of substrate
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material subjected to repetitive indentation.

ii. For soft materials, this work uses JKR model to fit the force-displacement curve,

yielding a new parameter, i.e. work of adhesion, in addition to Young’s modulus. In

comparison to the Hertzian contact model, the JKR model provides obviously better

fitting to the experimental results, indicating that the adhesion is significant in the cell

interaction. Moreover, the difference between various biological cells could be

characterized by the magnitude of work of adhesion, which implies that this

parameter may also serve medical diagnostics.
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NOMENCLATURE

a contact radius, m

ac contact radius corresponding to occurrence of plasticity, m

A contact area, m2

AH Hamaker constant, J

c length of radial crack, m

C empirical ratio of hardness to yield stress

D diameter of Brinell sphere, m

E Young’s modulus, Pa

ET Tangential modulus, Pa

F applied force, N

G shear modulus, Pa

Foff pull off force

Fc applied force corresponding to occurrence of plasticity, N

Fcap meniscus or capillary force, N

Fchem forces due to chemical bonds or acid–base interactions, N

Fel electrostatic force, N

Fmax maximum indentation force

FvdW van der Waals potential, N

E* effective Young’s modulus, Pa

H hardness, Pa
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H (t) unit step function

J2 second deviatoric stress invariant, Pa 2

J (t) creep compliance, Pa -1

Ke elastic component of stress intensity factor, Pa•m1/2

Kc fracture toughness, Pa•m1/2

Ki hardening parameters

Kr residual stress intensity factor, Pa•m1/2

k Boltzmann constant

h indentation depth, m

ha depth of contact periphery, m

he elastic displacement of indenter during unloading, m

hep elastic displacement for an equivalent punch, m

hp depth beneath the contact periphery, m

hr depth of residual impression

hrp depth of the residual impression for an equivalent punch, m

ht maximum indentation depth, m

l length from center of impression to end of radial crack, m

n strain-hardening exponent, 0 ~ 1

P indentation force, N

Pe elastic field component of applied

Pr plastic field component of applied

p contact pressure, Pa
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xx

R radius of spherical indenter, m

Rc radius of cell, m

Ri radius of the spherical indenter, m

Rp radius of probe, m

Rr radius of curvature at the center of the residual impression, m

r0 radius of the van der Waals bond, m

r intermolecular distance, m

S plasticity parameter

sij deviatoric stress, Pa

T absolute temperature, ℃

UD Debye potential, J

UK Keesom potential, J

UL London potential, J

Up plastic energy, J

UvdW van der Waals potential, J

xV material constant

Y first yield stress, Pa

z0 atomic equilibrium distance, m

α  half-face angle of indenter, °

Δγ work of adhesion, J/m2

γ  shear strain
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δ indentation depth, m

ε strain tensor

ε0 vacuum permittivity, F/m

εeff
p effective plastic strain

η viscosity, Pa•s

λ  transition parameter

μ  Tabor parameter

ν Poisson’s ratio

σ  stress tensor, Pa

σeff effective stress, Pa

τ shear stress, Pa



Abbreviation

xxii

ABBREVIATION

DMT Derjaguin-Muller-Toporov

JKR Johnson-Kendall-Roberts

M-D Maugis-Dugdale

MEMS Micro-Electronic-Mechanical-System

NEMS Nano-Electronic-Mechanical-System
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1 Introduction

1.1 General Background

1.1.1 Application of Nanoindentation

It has been known for a long time that materials exhibit mechanical properties, e.g. elasticity,

plasticity and hardness. The quantitative understanding of mechanical properties of materials

is of significance of guiding for their application and precaution of failure, and they always

involve some measurement techniques. For macroscopic materials, there are a number of

methods to evaluate their mechanical properties of interest. For example, material hardness

is measured by macroscopic indentation tests. In these tests, materials of interest are indented

by an indenter of certain shape (e.g. Brinell sphere), resulting in residual intent. Hardness is

calculated by dividing indentation force by area of the indent, which is measured by optical

method in advance. In another instance, material of cylindrical shape is subjected to uniaxial

loading to determine its elastic modulus and yield stress. However, for miniaturized

materials or devices, e.g. MEMS, NEMS and biological cells, evaluation of mechanical

properties by these methods may not always seem feasible enough in practice. Hence, the

method for characterization of mechanical properties in nanoscale is critical for small scale

materials.

In the last two decades, nanoindentation has proved an important technique to study

mechanical properties of small materials volumes at nano and micrometer range. The general

principle of nanoindentation is to indent the material of interest by a very small tip. The

probe is applied with a pre-set force and the concurrent indentation depth is monitored. The
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resulting force-displacement curve contains massive information from which many

mechanical properties could be calculated, based on relevant theoretical models, such as

elastic modulus, hardness, plastic or viscous parameter and fracture toughness. The

indentation force used in nanoindentation usually ranges from micronewton to milinewton,

and the indentation depth is in the order of nanometers. Different indenters can be used with

different circumstances.

Compared to its macroscopic counterpart, the main advantage of nanoindentation is that it

can access a very small material volume whose characteristic length can even be in the order

of tens of nanometers. In this regard, nanoindentation is a useful technology to evaluate the

mechanical properties of emerging small scale materials, e.g. nanotubes, nanoparticles and

biological cells, etc.

1.1.2 Atomic force microscope

Atomic force microscope originally belongs to a series of scanning probe microscopes, and

its initial function aims to image surfaces of materials and provide topographic

characterization. These series start with scanning tunneling microscope (STM), which could

be used to image surfaces of hard and soft synthetic materials as well as biological structures

(tissues, cells, biomolecules), irrespective of opaqueness or conductivity[1]. With STM, AFM

can even image atoms on a flat surface and provide in situ imaging ability without moving

the sample for scanning and imaging the sample[2]. There are some extra functions in AFM

derived from its imaging function. The Force modulation microscopy (FMM) is used widely

for imaging composition changes in a composite material, analyzing polymer homogeneity

and contaminants detection in manufacturing processes[2]. Besides, two major dynamic AFM
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modes are being developed to measure the topography of a sample surface, i.e. amplitude

modulation atomic force microscope (AM-AFM) and frequency modulation atomic force

microscope (FM-AFM)[3]. The former is used in air or liquid environments while the latter is

commonly used in ultra-high vacuum situation.

Besides maintaining its topography imaging function, AFM has evolved into a powerful

tool for direct measurement of intermolecular force with atomic-resolution characterization,

which makes AFM one of effective realizations for nanoindentation of biological cells (why

AFM). Fig 1.1 shows diagram of AFM. The main components of AFM are laser, light meter,

probe and scanner. The scanner is controlled by piezo electric elements. A laser light is

positioned on the top of the cantilever and reflected to a position-sensitive photodetector (see

the 4 quadrant photo detectors in Fig 1.1). By determining the reflected spot on it, this photo

detector can calculate the bending and torsion deformation of the cantilever. Originally, the

spot is in the center of the detector, and it will move as the cantilever deforms. As can be

seen, signal (A + C) – (B + D) on the detector represents the deflection of the cantilever

whilst signal (A + B) – (C + D) represents the torsion of the cantilever. While scanning, a

topographic image of the sample is obtained by plotting the deflection of the cantilever

against its position on the sample. On the other hand, the force between the tip and substrate

is proportional to the deformation of cantilever (i.e. Hooke theory) which is related to the

shift of the spot on the detector, i.e. the force F is function of the shift. Therefore, by

recording the shift and transforming it to force by the function, one could obtain a

force-displacement curve.
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Fig 1.1 Schematic diagram of an atomic force microscope (AFM)[4]

Owing to these factors, AFM proves an effective means to investigate the mechanical

properties of soft biological cells due to its capability to measure intermolecular force with

atomic-resolution characterization[5][6]. The AFM tip of certain shape indents a fixed cell by

pre-set force, and the concurrent displacement of tip is monitored. Usually the elastic

modulus is obtained by fitting the force-displacement curve with an appropriate theoretical

model. A mechanical model commonly used for extraction of elastic modulus is the Hertzian

contact model, although one cannot expect that living cells do actually meet the assumptions

of Hertz contact model. The extracted elastic modulus is not only an index of cell mechanical

property, but has diagnostic significance. For example, comparison of the elastic modulus of

normal human epithelial cell and their cancerous counterparts indicates that healthy cells

have a Young’s modulus of about one order of magnitude higher that their cancerous

counterparts[7]. After being treated by chitosan, the stiffness of the cancer cells increase,

whereas normal cells are not influenced by chitosan in terms of elastic modulus[8].

Moreover, AFM technique can be used to investigate adhesion forces in biological

applications, such as cell-cell, cell-protein or protein-protein interactions[2]. A quantitative

investigation of these interactions plays a significant role not only in revealing the



Chapter 1

5

mechanism of endocytosis[9], but also in medical applications such as gene/drug delivery and

medical diagnostics[10][11].

It should be borne in mind that AFM can not only be used in soft biological cells, but also

in hard materials. The microelectromechanical (MEMS) system is the technology of

miniaturized devices; it merges at the nano-scale into nanoelectromechanical systems

(NEMS) and nanotechnology. The scale effect is one basic issue in designing MEMS. As its

components dimension decreases, surface adhesion forces begin to emerge, due to the

surface-to-volume ratio increase. Adhesion forces are associated with strong stiction and

friction, rapid wear in MEMS which will reduce its life time[12]. AFM is a valuable tool to

study adhesion force and friction at the micro-and nano-level, and is widely used in testing

anti-stiction coatings for MEMS[13]. A typical application of AFM in MEMS should be

ascribed to a direct test of the forces necessary to move single components of a MEMS

device. Digital mirror devices used in digital projection displays (DMDs) are a typical

MEMS device. AFM is employed to test the frictional and mechanical properties of DMD

hinge and the force necessary to tile the mirrors[14].

1.2 Existing Challenges

As mentioned above, in nanoindentation, the length scale may extend to micrometer or even

nanometer range, and at this scale, surface adhesion force, which seldom manifests itself at

macroscale, is likely to dominate other macroscopic forces, and plays a significant role in the

determination of mechanical behaviors of materials. For one thing, the traditional mechanics,

based on continuous medium hypothesis, does not take real surface morphology of material

and surface forces between two bodies into consideration, and thus cannot provide



Chapter 1

6

reasonable interpretations onsurface effect. What is more, the successful application of

chemical bond theory, which is based on quantum mechanics controlled by Schrödinger

equations, has greatly developed nanomechanics, which is a challenge not only to traditional

continuum mechanics but also to the basis of Newtonian mechanics. However, there are

numerous mathematical difficulties in this quantitative investigation, e.g. it is always

shriveled by massive calculations. Therefore, under the existing conditions the

“from-macrocosm-to-microcosmic” method remains attractive. With endeavor by mechanics

pioneers, the combination of traditional continuum mechanics and scale effect and surface

effect has been greatly developed, making it probable to realize the establishment of

micro/nano mechanics based on Newtonian mechanics. The relevant literature will be

presented in the next chapter.

There are commonly two academic scopes which can manifest surface adhesion in contact:

one is the negative detected force by AFM indentation on soft biological cells, and the other

is to jump into and off contact in AFM indentation on hard materials, as shown by Fig 1.2 (a)

and (b) respectively.

(a)
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(b)

Fig 1.2 Adhesion-induced phenomenon in AFM indentation: (a) negative force in biological cells[15] (b)

jump instability in hard materials[16]. For the soft material, pull off is manifested by stepwise

unbinding events as circled by the black oval in Fig 1.2 (a), and it thus called “ductile” separation in

this work. For hard materials, a sudden jump off manifests itself by the vertical line circled by black

ellipse as shown in Fig 1.2 (b), and hence is called “brittle” separation in this work.

i. Atomic force microscope indentation on soft materials

As mentioned by Sec. 1.1.2, the Hertzian contact model is widely used to determine elastic

property of soft biological cells by means of AFM indentation. However, this method is still

very challenging, since no proper theoretical model accurately accounts for the complication

of biological cells. At nanoscale, the effects of adhesion force on tip begin to emerge, which

is manifested by the negative indentation force and cannot be interpreted by the

non-adhesive Hertz contact model. Although AFM is used to measure the adhesion forces

between adhesive cells, or cell/protein, these kinds of measurements always remain in the

level where magnitude of explicit adhesion force is measured. For example, adhesion is
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always characterized by maximum unbinding force (Fmax) and work of detachment (WD) (i.e. the

shade area circled by red ellipse in Fig 1.2 (a)) obtained from force-versus-displacement curve

(retraction part) by AFM indentation as illustrated in Fig 1.2 (a)[17]. However, these two

parameters may not be sufficiently intrinsic to characterize cell adhesion since both of them are

dependent of some measurement means, e.g. the size and shape of the indenter. Therefore, it is

essential to account for adhesion phenomenon in terms of a contact mechanics model

analogous to the Hertzian contact model where some other parameter should be proposed to

characterize adhesion rather than maximum unbinding force or work of detachment.

ii. Instability jump in AFM indentation on hard materials

For MEMS (or NEMS), adhesive contact between its components may initiate stiction which

will lead to permanent failure of the devices as shown by Fig 1.3. There are some studies that

investigate the adhesion-induced friction effects on MEMS devices by means of AFM as

mentioned above. On the other hand, plasticity caused by surface adhesion can also occur in

these systems, even without externally applied force[18]. Since the components of MEMS are

very likely to be subject to cyclic loading-unloading during service, the adhesion-induced

plasticity may incur plastic shakedown, which can also lead to failure, and hence the

investigation of the adhesion-induced plasticity behavior is of significant importance for

these devices. To the best of our knowledge, there is little work that focuses on these two

aspects in terms of contact mechanics.
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(a) (b)

Fig 1.3 Example of adhesion failure in MEMS[13]: (a) Stiction of micro-cantilevers to substrate. (b)

Adhesion between fingers of a comb structure in a micro-accelerometer.

From the above context, it may be seen that although the nanoindentation technique has

been drawing attention from engineers and researchers, investigations on the effect of

surface adhesion on small scale contact are rare or incomplete. In this regard, the present

work endeavors to investigate the manifestation of surface adhesion at nanoindentation on

soft biological materials and hard materials.

1.3 Objective and outlines of the Thesis

1.3.1 Objectives

The objective of this thesis is to interpret the following two issues.

 For hard materials, what is the exclusive effect that surface adhesion can exert on single

and repetitive contacts in terms of mechanical behavior in small scale, compared to its

non-adhesive counterpart.

 For AFM indentation on soft biological cells, can one utilize a theoretical mechanics

procedure to quantitatively characterize adhesion between indenter and cell in terms of a
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specific parameter, and what the form of this model will be if the AFM indenter changes

its shape (e.g. from sphere to a pyramid) or the cell changes its shape (e.g. from sphere

to a flat plate). Will this procedure have some potential benefits in terms of biomedical

purpose?

1.3.2 Outlines of this thesis

The remainder of this work is arranged as follows.

In Chapter 2, a literature review is presented to introduce the development of macroscopic

indentation. For nanoindentation technology, there levant literature on how to extract

mechanical parameters is reviewed. Then the highlights are given to several classic adhesive

contact models, current computational methods to deal with adhesive contact and AFM

indentation on biological cells.

Chapter 3 provides theoretical knowledge for adhesive contact. First, some fundamental

concepts of intermolecular forces are introduced, and these forces are the foundation of

adhesion between two contacting bodies. Afterwards, a system of contact models, i.e. Hertz

model[ 19 ], Bradley model[ 20 ], JKR (Johnson-Kendall-Roberts) model[ 21 ], DMT

(Derjaguin-Muller-Toporov) model[22] and M-D (Maugis-Dugdale) model[23] is introduced in

detail.

To fulfill the instrumentation part of research framework, in Chapter 4, deduction of

quasi-static nanoindentation on several calibration materials, i.e. copper, fused silica, silicon

wafer and polystyrene is presented, from which some mechanical parameters of interest are

calculated. The determined parameters are compared with their typical values for
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justification. A finite element method is used to simulate materials of interest subjected to

quasi-static nanoindentation. The resulted force-displacement is compared with its

experimental to identify some hypotheses in material constitutive relations.

In chapter 5, contact between a rigid sphere and an elastoplastic half-space is modeled to

simulate contact between MEMS components. The adhesion force obeys Lennard-Jones

force potential[24]. Two basic strain hardening manners of substrate material, i.e. isotropic and

kinematic hardening, are taken into consideration. Both single and cyclic loading-unloading

are applied to adhesive contact, and the resulted mechanical responses are compared with its

non-adhesive counterpart.

In the following two chapters, attention is given to the investigation of adhesion in AFM

indentation on soft biological cells. In chapter 6, pancreatic MIN 6 cell is treated by

calciummimetic R568, and both control (untreated) and treated cells are indented by

spherical probe. Both JKR and “generalized” JKR model[25][26] (with consideration of

substrate thickness) are used to describe the unloading force-displacement behaviors of the

indentation curves. A new parameter termed work of adhesion is employed to quantitatively

characterize adhesion. The difference between control and treated cells is identified in terms

of this new parameter, together with elastic modulus. Moreover, the unloading part of F-d

curve is fitted with that developed by finite element simulation in Chapter 5 for a further

discussion.

In Chapter 7, human hepatocellular carcinoma cells are treated with fullerenol for 24, 48

and 72 hours. These four types of cells (including the untreated cells) are routinely indented

by AFM whose cantilever tip is Vickers. A “transformed” JKR theory adapted to Vickers
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indenter is introduced in advance. The adapted JKR model is adopted to fit the obtained

force-displacement curves, resulting elastic modulus and work of adhesion. The difference

between the four kinds of cells is also verified in terms of Young’s modulus and work of

adhesion. Although biological cells are involved, it should be borne in mind that this work

treats biological cells as one material where adhesion is significant and thus no biological

investigation is involved in this work.

Chapter 8 summarizes the conclusions of this thesis, as well as recommendations

concerning future research in this area.
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2 Literature Review

In this chapter, a literature review on the advent and development of indentation tests and

nanoindentation technology is presented. Then, the classical theories of contact mechanics, i.e.

Hertz model[19], Bradkey model[20], JKR model[21], DMT model[22] and M-D model[23] will be

introduced. Afterwards, simulative methods dealing with adhesive contact are reviewed.

Finally, a review on AFM indentation on biological cells is given.

2.1 Brief History of Macroscopic Indentation

Indentation test has long been used for measurement of the mechanical properties of materials

due to its ease and speedy implementation. Traditional indentation tests employ different

shapes of indenters and loading methods, resulting in different standards of hardness. In this

section, some common indentations tests are reviewed, and an approximate equivalent

hardness conversion chart for different indentation tests is presented.

2.1.1 Brinell Testing: Spherical indenter

At the beginning of 20th century, indentation tests were widely performed by Brinell ball

test[27] to measure hardness of material. Concretely speaking, the material of interest is

indented by a hard steel ball under a known load P, which is held for a predetermined time

period and then removed. The Brinell hardness Hc is then calculated by dividing the load by

the surface area of the indentation[28], i.e.

� � =
�

� � �
(2.1)

where D and δ denote diameter of the ball and indentation depth respectively.
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2.1.2 Shore testing: Dynamic measurement of hardness

For Brinell test, one disadvantage is that the measured hardness increases as the indentation

force increases, which is ascribed to work hardening and increasing of contact area. To solve

this problem, a device called scleroscope was invented by A. F. Shore[29] in 1907. In this

device, a diamond-pointed hammer falls under its gravity along a tube and strikes the

materials of interest. The rebound height of hammer is recorded, from which the material

hardness could be calculated. By repeating Shore scleroscope testing on the same spot, the

hardness will increase with the number of tests, due to work hardening[30].

2.1.3 Other indentation techniques

In 1919, Hugh M. Rockwell patented another technique for hardness measurement termed

Rockwell testing[31][32]. In this test, the diamond indenter is first applied with a minor force

which gives zero or reference position. Afterwards, a major force is applied, and then released

while still maintaining the minor load. The indentation depth variance between the minor

value and major load value is then converted to hardness. Since 1920s, other different

indentation tests were developed by means of using different macroscopic indenters. Vickers

hardness tests[33] use a square pyramid so that geometrical similarity could be maintained.

Knoop testing was invented to meet the need to determine both the recovered and uncovered

dimensions of the indentation impression[34]. The Knoop pyramid has unequal length edges,

with one diagonal being approximately seven times the other diagonal in length[34]. For

four-side indenter, the four edges in the residual impression cannot easily meet in one point,
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and to counter this problem, a three-sided pyramid indenter termed Berkovich[35] was invented.

Since it is more readily fashioned to a sharper point than the four-sided pyramid geometry, the

Berkovich indenter will certainly enjoy enormous popularity in the subsequent development

of commercial indentation testers[36]. Fig 2.1 shows an approximate equivalent transformation

of different hardness standards with respect to Berkovich indentation testing.

Fig 2.1 Approximate equivalent hardness translation chart for different standard hardness test with

respect to Berkovivh hardness[37][38][39].

2.2 Characterization of mechanical properties by

nanoindentation

Nowadays, nanoindentation is one of the few experimental techniques that can directly access the

mechanical properties of material at micro or even nano level. It was introduced as a means for

extraction of elastic modulus and hardness by Oliver and Pharr[40], by studying nanomechanical
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response as a function of penetration depth[41]. The materials involved in nanoindentation cover a

wide range, including metal, glass, ceramics, and even biological materials. Owing to constant

refinement, nanoindentation can also quantify many other mechanical properties. This section will

review some of the relevant literature.

2.2.1 Young’s modulus and hardness

The two mechanical parameters which are frequently determined by naonindentation technique are

Young’s modulus and hardness. In 1992, Oliver and Pharr[40] presented a method to calculate

Young’s modulus and hardness of materials by studying force-indentation depth curve. Their

analysis considers the unloading part is purely elastic thus the Hertzian contact model could be

applied to extract elastic modulus. Unlike macroscopic indentation tests, they developed an

alternative method to determine contact area by measuring the penetration depth of indenter into

the sample surface, rather than optical imaging method. This method undoubtedly facilitates the

calculation of hardness of small scale materials. The detailed interpretation for this method will be

presented in Sec. 4.2.1.

For Oliver and Pharr method, some literature focuses on secondary concepts of potential

significance, including indenter geometry, sink-in and pile-up phenomenon.

There are several different indenter geometries in common use. For macro-micro scale

indentation, the frequently used indenters include Brinell shphere, Rockewell spheres, Vickers

and Knoop pyramids. As mentioned before, the four-sided pyramid indenter has its

disadvantage, in that the inevitable line of conjunction occurs across its tip, especially in small

scale indentation. Berkovich and cube corner indenters, however, are appropriate for
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nanoscale indentation, due to the fact that they can be shaped with very small tip radii by

means of their three sided surfaces. Parameters of common indenters are summarized in Table

2.1.

Table 2.1 Parameters for common indenters[42][43]

Indenter shape Projected area Semi-angle

θ

Equivalent cone

angle

Intercept

factor ε

Geometry

correction factor β

Sphere ≈πRhp N/A N/A 0.75 1

Vickers 4hp
2tan2θ 68° 70.3° 0.75 1.012

Knoop 2hp
2tanθ1 tanθ2 θ1=86.25°

θ2=65°

77.64° 0.75 1.012

Berkovich 33/2 hp
2tan2θ 65.27° 70.3° 0.75 1.034

Cube Corner 33/2 hp
2tan2θ 35.26° 42.28° 0.75 1.034

Cone πhp
2tan2θ θ θ 0.727 1

For simulation convenience, pyramid indenters are treated as conical indenters with a cone

angle, such that it gives the same depth-area functions as the pyramid. This allows the

application of convenient axial symmetric elastic equations. This equivalent treatment is

widely accepted, although there are contact solutions for pyramid indenters[44][45].

Fig 2.2 Plastic zone developed during indentation by conical indenter with different values of Eeff/σy.
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The solid lines and dash lines denote elastic-perfect plastic and work hardening materials

respectively[46].

The Oliver and Pharr method is based on an elastic solution, and works well for hard

ceramics when sink-in predominates, i.e. the substrate material around the indenter is well

beneath the original undeformed surface. However, for soft materials undergoing high loads,

the true contact area could be underestimated by up to 50% by using Oliver and Pharr

method[47]. On the other hand, pile-up (i.e. the substrate material around the indenter is above

the origin surface after indentation) can also occur in material such as Al, which exhibit a low

ratio of yield stress to elastic modulus and little or no strain hardening[48]. This will result in

overestimations of hardness and elastic modulus. Bolshakov and Pharr[46] performed finite

element simulation covering a wide range of elastoplastic materials in order to investigate the

effect of basic mechanical parameters on this behavior. For materials with a high ratio of

effective elastic modulus to yield stress Eeff/σy, pile-up is likely to occur, and increase the

effective contact area as shown by Fig 2.2 (a) and (b). For materials with a low ratio of

modulus to yield stress Eeff/σy, sink-in is prone to emerge, and decrease the effective contact

area as shown by Fig 2.2 (c) and (d). Obviously these two behaviors cause significant error in

measure contact area, and thus elastic modulus and hardness measurement.

Besides the famous Oliver and Pharr method, there are several other analyses that exist for

interpreting force-displacement data from nanoindentation. M.Sakai[49] suggested that the

hysteresis loop energy Up dissipated during the indentation loading-unloading cycle is related

to the true hardness H, given as
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where α and P denote the half-angle of the indenter and indentation load respectively. Thus

hardness H can be extracted by measurement of Up and P according to Eq. (2.2). Field and

Swain[ 50 ] presented a simple model which could describe the entire force versus the

penetration behavior of indentation with a sphere, during loading and unloading in terms of

four test material parameters, i.e. Young's modulus, Poisson's ratio, flow stress at the onset of

full plastic flow and strain hardening index. Following Field and Swain, Fischer-Cripps[51]

presented the relationship between indentation force P and depth h during loading stage by

using the Berkovich indenter, given as

� = � ∗[
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√ � � � � �
�
� ∗

�
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� � � �

�
)�
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�
�
�
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where E*, H and α denote effective Young’s modulus, hardness and half-angle respectively.

E*and H could be extracted by fitting the loading F-d curve with Eq. (2.3).

The above studies focus on monolithic materials, whereas significant challenges emerge

regarding measurement of the mechanical properties of thin films due to potential substrate

effects. Although there are some analytical solutions for indentation on layered

materials[52][53][54], they are either mathematically complicated or case limited. To encounter

this issue, one can calculate elastic modulus and hardness from the initial part of the

unloading curve and then extrapolate to zero indentation depth. Mecik et al[55] summarized

some empirical and semi-empirical formulae for extracting elastic modulus of thin films. Page

et al[56] used the continuous stiffness technique to study the mechanical properties of coated

systems. When extracting film properties by nanoindentation, one needs to know how the

substrate affects the measurements of films modulus and hardness. Thus, Saha et al[57]



Chapter 2

20

examined the effects of substrate on the determined mechanical properties of thin films by

nanoindentation. They showed the effect of substrate on film hardness was negligible when

soft films were coated on hard substrate. However, the substrate effect was observed when

hard film was coated on soft substrate, which is due to substrate yields at indentation depths

of less than the film thickness. To account for the substrate effect, there are several methods

developed to describe the hardness of film-substrate systems. These models are based on the

assumption that the composite hardness is determined by the weighted average of film and

substrate harness in proportion to the relative deformed areas or volumes. Substrate effects are

often ignored by following a common rule of thumb that the indentation depth should be less

than one tenth of the film thickness[58][59][60].

2.2.2 Fracture toughness

Neither elastic modulus nor hardness is unique parameters which could be determined by

nanoindentation. It can also be used to characterize fracture toughness of materials and

interfaces by analogy to that in conventional microscopic tests[51]. This section reviews some

of the literature which evaluates fracture toughness from the measurement of the sizes of

surfaces.

Fig 2.3 Crack systems for Vickers indenter: (a) radial cracks, (b) lateral cracks, (c) median cracks and
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(d) half-penny cracks[61].

Fig 2.4 Schematic of radial crack from side view after removal of indenter.

Fig 2.3 illustrates four typical types of crack, among which radial cracks are very common

in some tough ceramic materials whose lateral view is shown in Fig 2.4. Palmqvist[62]

observed that the radial crack length c is proportional to the force P. Marshall and Lawn[63]

noted this proportionality never held for median/radial crack system. They suggested that P∝

c3/2, and they gave their expression for fracture toughness as

� � = � (
�

�
)�

�

� � �⁄ (2.4)

where n = 0.5, and k is an empirical constant equal to 0.017±0.001 for median crack and

0.032±0.002 for radial crack, respectively. Subsequently Anstis et al[64] determined n = 1.5

and k = 0.0098 for Vickers-induced radial cracks. Laugier[65] observed that crack behaviors in

WC-Co composites were different from that in ceramics, and suggested that

� � = � � (
� � �

�
)� �⁄ (

�

�
)� �⁄ �

� � �⁄ (2.5)

for WC-Co composites subjected to Vickers tip, where l is the distance from the center of

residual impression to the end of the radial crack, and xV = 0.015, is a material constant.

Dukino and Swain[66] compared the load dependence of the radial cracks size of Vickers with
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that of Berkovich and gave the Laugier expression for the Berkovich indenter as

� � = 1.073� � (
� � �

�
)� �⁄ (

�

�
)� �⁄ �

� � �⁄ (2.6)

When the different models above are used to determine fracture toughness of material, one

should be clear which one should be applied in terms of the indenter type, materials of interest

and crack type in the exact nanoindentation. In Chapter 4, nanoindentation will be deduced on

a calibration brittle material, and an appropriate model is chosen based on the specific

circumstance.

2.2.3 Creep parameters

Real materials have more or less viscoelasticity property, which manifests itself as creep or

relaxation phenomenon. In the nanoindentation of viscoelastic materials, time dependent

creep always manifests itself as a variation of indentation depth under a constant applied load.

The physical interpretation would be when viscoelastic materials are subjected to

nanoindentation, the resulted stress filed will yield chemical potential and diffusion fluxes

which lead to the establishment of creep rate equation[67].

In viscoelasticity, the constitutive relationship is always enlightened by the combination of

spring and dashpot element. The spring element means that stress is proportional to strain, i.e.

σ = Eε, whilst the dashpot element means stress is proportional to the rate of strain, i.e. σ =

ηdε/dt, where η denotes viscosity. Different combinations of spring and dashpot elements

represent different constitutive relationships, and Fig 2.5 shows three common models.
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Fig 2.5 Different kinds of mechanical models: (a) Kelvin model (b) Maxwell model (c) three element

model.

Nanoindentation is always abstracted as Boussinesq problem[68], i.e. an infinite half-space is

indented by an arbitrary shape of rigid axisymmetric frictionless punch. There are several

analytical models for Boussinesq problem of viscoelastic materials. One of the pioneering

studies of Boussinesq contact problem for viscoelastic materials is ascribed to Lee and

Radok[69]. They assumed the contact radius a (t) is a monotonically increasing function of

time, and replaced the elastic modulus in the elastic equations of Hertz contact with

viscoelastic operators by correspondence principle. In 1966, Ting[70] considered a more

universal situation, i.e. the indenter is axisymmetric by otherwise arbitrary and the contact

radius function a (t) could be arbitrary, and gave its viscoelastic solutions. However, there are

cumbersome integrals in Ting’s solutions. Greenwood[ 71 ] developed a relative simple

analytical method by superposing an assembly of viscoelastic “Boussinesq” punch

indentations provided that a (t) is non-increasing. His method proved more convenient for the

variation of the displacement of indenter during unloading.

When fitting creep curves to mechanical model, one should be clear what model is being
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used and what parameters are to be measured. In chapter 4, an indentation will be performed

on calibrating viscoelastic materials, and the aim is to set an example for determining

viscoelastic parameters by nanoindentation.

2.2.4 Strain-Hardening exponent

nK 

Fig 2.6 Stress-strain curve for elastic-plastic materials under uniaxial loading. Y denotes the initial yield

stress beyond material begins to exhibit hardening with strain-hardening exponent n.

When the stress exceeds the yield stress Y, plasticity begins to occur in materials. However,

the subsequent yield stress for some materials which has already undergone plastic

deformation will increase if this material is unloaded and then reloaded, and this phenomenon

is termed strain-hardening (or strain hardening). Strain-hardening is attributed to pile-up and

interaction between dislocations in the material. During the hardening stage, power law is a

common relation between stress and strain, i.e.

� = � (
�

�
)� � � (0 ≤ � < 1) (2.7)

where n is strain-hardening exponent. For n = 0, the material is elastic-perfect plastic, and the

corresponding stress-strain curve is denoted by the dash line in Fig 2.6. To determine the
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strain-hardening exponent n, uniaxial loading method is always used. However, in many

practical applications, uniaxial loading is not available or suitable (e.g. small scale materials).

The nanoindentation test, as a non-destructive method, can then serve as an effective approach

to measure the strain-hardening exponent. There are a number of methods to calculate the

strain-hardening exponent. For indentation on power law isotropic hardening materials, Field

and Swain[50] suggested that the ratio of final contact radius a to critical radius ac is related to

the ratio of final load F to critical force Fc, given as

�

� �
= (

�

� �
)

�

� � � (2.8)

where critical force and radius correspond to first occurrence of yield. Shinohara et al[72]

performed ultral-microhardness (Hum) and Vickers hardness indentation on copper, aluminum

and nickel. They observed that ultra-micro hardness Hum is function of load P, i.e. Hum (P),

and this function Hum (P) systematically exhibits linear dependence on the strain-hardening

exponent n. However, their model requires a number of measurements of hardness and load

over a large range and also demands tensile tests. To counter these limitations, a generalized

relation is given as

� ( � )

� � ( � )
= −0.83� + 0.95 (2.9)

where H0(P) is the value of hardness corresponding to elastic-perfect plastic materials. Ahn

and Kwon[ 73 ] performed ball indentation on macroscopic scale and showed that

work-hardening exponent played a main factor affecting the pile up/sink in phenomenon of

various steels. For metals with low yield strain, this effect could be determined by a

dimensionless constant c as

� � =
� �

� ∗� =
�

�

( � � � )

( � � � )
(2.10)
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where a and a* denote real contact radius and contact radius without pile up or sink in

phenomenon respectively. The real contact radius is given by

� � =
�

�

( � � � )

( � � � )
(2 � ℎ�

∗ − ℎ�
∗� ) (2.11)

where R and hc
* denote the sphere radius and plastic depth without correction for pile up or

sink in, respectively.

2.3 Adhesive contact in nanoindentation: surface and scale effect

As mentioned in Sec.1.2, surface effect plays a significant role in the mechanical behavior of

material subjected to nanoindentation with a reduction of scale and surface roughness. This

section presents a literature review that has been proposed for the characterization of adhesive

contact. These studies consider the contact between two spheres or a sphere and an infinite

half-space. They also provide methods for characterization of adhesion force data obtained

from experiments, e.g. AFM indentation performed on biological cells.

2.3.1 Elastic adhesive contact between two bodies

There are several classic contact models that account for contact problems. The first analytical

solution for non-adhesive contact problem (i.e. Boussinesq problem) is attributed to Hertz[19],

who solved the contact problem between two elastic spheres subjected to external compressed

force. In 1932, Bradley[20] investigated the adhesive effect on the contact between two rigid

spheres and gave a formula for the pull-off force Foff i.e.

� � � � = −2 � Δ� � (2.12)

where R is the reduced radius of curvature (R = (1/R1+1/R2)-1,where R1 and R2 are the radii of

curvature of the two spheres, respectively) and Δγ is the work of adhesion (Δγ = γ1 + γ2 - γ12,
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where γ1 and γ2 are the surface energies of the two spheres, respectively, and γ12 is the

interfacial energy) . One of the first studies on adhesive contact between two elastic spheres is

ascribed to Johnson et al[21] (JKR model). In the JKR model, contact edge between two

spheres is treated as an interfacial crack, and by requirement of equilibrium of crack

propagation, applied force and mutual displacement of spheres are related by contact radius.

The adhesion force is confined within the contact area, in conjunction with the Hertzian

contact pressure, yielding a neck phenomenon at the contact periphery on the full off instant,

and the pull-off force is

� � � � = −
�

�
� Δ � � (2.13)

In 1975, Derjaguin et al[22] proposed another model for adhesive contact between two elastic

spheres, known as DMT model. This model considers that adhesion force exists in an annulus

area outside the contact region without deforming the surface profile. Estimation of pull-off

force by DMT model is given as

� � � � = −2 � Δ� � (2.14)

The discrepancy between these two models was mediated by Tabor parameter[74] μ given as

� = (
� � � �

� ∗� � �
� )� �⁄ (2.15)

where E*= [(1-ν1
2)/E1 + (1-ν2

2)/E2 ]-1 is the effective Young’s modulus, (E1, ν1 and E2, ν2

denote the elastic modulus and Possion’s ration of the two contacting spheres, respectively),

and z0 is the atomic equilibrium distance. In general, the DMT model holds for small and

stiffer spheres (μ˂0.1) whilst the JKR model is preferable for large and compliant spheres (μ ˃ 

5)[75]. Maguis[23] used Dugdale theory of fracture mechanics, and presented an analytical

solution corresponding to the transition between DMT and JKR model, which is known as
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M-D model. Johnson and Greenwood[76] presented an adhesive map specifying the valid

regions of above five contact models.

The M-D solution is relatively cumbersome, and may not be feasible enough for

comparison with experimental data such as atomic force microscope (AFM) measurements,

and there are some studies extended from M-D model. Some simpler equations which

approximate M-D solutions are presented by subsequent studies[77][78]. In1998, Greenwood

and Johnson[79] developed an alternative to the M-D model, termed double-Hertz model.

Based on M-D model, Shi and Polycarpou[80] developed a model which considers adhesive

transition from noncontact to contact of elastic spheres, and their model is known as EMD

model (enhanced M-D model). Schwarz[ 81 ] presented an approximate description of

intermediate regime by combining the successful assumptions of JKR and DMT models in an

adapted form.

Following the study by Tabor[74], there is a body of literature reviews[82][83][84] dealing with

the discrepancy between JKR and DMT models. As advised by Tabor, more novel

experiments and critical theories rather than polemics were needed. Therefore, in 1980 Muller

et al[85] specified Lennard-Jones law of force as the interaction between contacting surfaces,

and developed a self-consistent numerical analysis to describe behaviors of two contacting

elastic spheres. The transition from DMT model to JKR model was realized by increasing the

Tabor parameter. Furthermore, Muller et al[86]pointed out that the exact form of molecular

interaction law will not affect the two extremes of the transition, i.e. JKR and DMT models.

In 1992, Attard and Parker[ 87 ] presented self-consistent solutions with more numerical

calculations, and showed the pull-off force is dependent on the history of the sample, and
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increases with increasing maximum applied loads. The numerical solution was repeated more

accurately and in greater details by Greenwood[75], who showed that the force-displacement

curve becomes S-shaped with μ ˃ 1, leading to jump in and out of contact. In order to enhance 

the convergence rate, Feng[ 88 ] used an arc-length continuation algorithm which could

accurately determine jump in and off behavior of contacting bodies when Tabor parameter is

large.

In addition, FEM presents an effective method to solve self-consistent numerical issues. In

2004, Cho and Park[12] modeled the adhesion force as a body force derived from

Lennard-Jones 12-6 potential, and included it as subroutine in FEM. Their results showed that

the dependence of pull-off force on the sphere radius is consistent with that by M-D model.

Radhakrishnan and Mesarovic[ 89 ] performed comprehensive and accurate finite-element

modelling on adhesive contact. They proposed a modified Tabor parameter, in terms of which

they provided meaningful discussion of the number of governing parameters for adhesive

contact. There are also some studies with consideration of non-linear elasticity or

inhomogeneous elasticity. Lin and Chen[90] presented finite element modelling on adhesive

contact between two spheres whose constitutive relations are hyperelastic, and developed a

JKR test of soft elastic materials taking large deformation into consideration. Jin et al[91]

performed finite element modelling on adhesive contact of power-law graded elastic (i.e.

elastic modulus of materials varies spatially) solids, and realized DMT-JKR transition.

2.3.2 Elastoplastic adhesive contact between two bodies

The above literature concerns elastic deformation , however plastic deformation could occur
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in real adhesive contact. Pashley et al[92] indented a pointed stylus of tungsten against a nickel

surface in ultrahigh vacuum, with load ranging from 0.5 to 1000 μN. With clean surfaces

(strong adhesion), their experimental results suggested that surface forces alone can initiate

plastic deformation. Chowdhury and Pollock[93] performed Titanium-Titanium contact in

ultrahigh vacuum (0.1μPa), and their results suggested that plastic deformation can also occur

at the micro-asperities of rough surfaces without external load.

Besides experimental investigations, there are several analytical studies concerning

adhesive contact of elastic-plastic materials with some simplifications. With JKR concept,

Maugis and Pollock[18] reviewed the role of surface forces on deformation and adherence of

metal micro contacts, and concluded that the stresses caused by surface force alone may be

high enough to initiate plastic deformation around Hertz point. Chang et al[94] considered

Lennard-Jones law of forces acting on surface outside the contact area, and presented an

elastic-plastic asperity model analyzing adhesive contact of rough surfaces based on volume

conservation. Mesarovic and Johnson[ 95 ] examined the decohesion of two adhering

elastic-plastic spheres undergoing mutual indentation beyond elastic limit. They assumed the

two contacting bodies only follow elastic deformation during unloading, adapted both JKR

and M-D models to treat the adhesive contact, and finally provided a decohesion map which

describes the effect of different physical mechanisms on decohesion. Gu and Lee[ 96 ]

investigated the adhesive contact of a rigid sphere and an elastic-perfectly plastic half-space.

By taking the variation of curvature within the contacted surface into consideration, they

showed that the plastic pull-force within the contact area is higher than that calculated based

on a constant curvature.
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Thanks to FEM, numerical models and related approaches provide an effective way to

study elastoplastic behavior of contacting bodies subjected to adhesive contact. Kogut and

Etsion[97] relieved some assumptions by Chang et al[94], and used the finite element method to

calculate the separation outside the contact area. Du et al[98] performed finite element

modelling on loading and unloading of adhesive contact between elastic-plastic spheres

(made of ruthenium and aurum), which exhibit linear strain-hardening. They identified ductile

separation (with plasticity) for ruthenium and brittle separation (pure elasticity) for aurum

(see Fig 2.7) respectively. Kadin et al[99][100] also used FEM to investigate loading and

unloading of adhesive contact between rigid flat and elastic-plastic sphere, which, in any case,

obeys linear kinematic hardening, and provided meaningful discussion of elastoplastic

behaviors in terms of plastic shakedown. In their study, nonlinear spring elements were

employed to model the adhesion force, which obeys Lennard-Jones potential. However, as

Tabor parameter increases (e.g. μ ˃ 2), nonlinear spring elements will cause a convergence 

problem in FEM, and thus this work resorts to other solutions to describe interfacial forces

and ensure convergence at the same time.

(a) (b)
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(c)

Fig 2.7 Scanning electron microscope (SEM) images of an aurum contact bump cycled at force of 200

μN. (a) The original bump before cycling; (b) the bump after several cycles and (c) its zoom in titled at

85°. The difference of surface topographies corresponding to (a) and (b) is due to adhesion forces[98].

2.3.3 Solutions of Micro/Nano contact by molecular dynamics

The literature in Sec. 2.3.1 and 2.3.2 investigates adhesive contact in terms of combination of

classic continuum mechanics and interfacial force, and besides molecular dynamics

simulation (MDS) proves another effective method. In 1990, Landman et al[ 101 ] used

molecular dynamics simulation to investigate the atomistic mechanisms of adhesion, contact

formation, nanoindentation, separation and fracture which occurred between a nickel tip and a

gold surface, as shown by Fig 2.8. They recorded indentation force and energy in terms of the

distance between tip and substrate, and pointed out jump in/jump out, neck, and hysteresis of

force compared with displacement during separation. Leng et al[102] conducted molecular
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dynamics to simulate the two-dimensional adhesive contact between a flat-ended wedge and

an elastic half-space. They showed that the pull off forces for contacting surfaces to peel apart

conform well to those predicted by classic continuum mechanics. Zhu et al[103] performed

molecular dynamics to model adhesive contact between rigid cylinders with different radii

and elastic substrate. Their simulation results showed that adhesive hysteresis phenomenon

becomes significant as tip size increases at jump in and off instants, and adhesion forces have

a significant effect on contact process corresponding to tip of small size. It is worth our

attention that these results are also consistent with those by classic continuum mechanics.

(a) (b)

(c) (d)
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(e)

Fig 2.8 Atomic configurations of indentation between nickel indenter and aurum substrate [101] .

2.4 Application of AFM on biological materials

To date, there has been a variety of testing techniques and associated models in the field of

experimental nanomechanics on biological cells. As is described in some reviews in the

literature[ 104 ][ 105 ][ 106 ], these techniques include cell poking, the micropipette aspiration

technique, optical and magnetic tweezers, biomembrane force probe (BFP) and atomic force

microscope. Although these techniques may vary in terms of operating principles, force and

displacement resolutions and magnitude of deformation[105], their fundamental method is to

apply biological cell with pre-set force and monitor the concurrent deformation.

Among these techniques, AFM was invented by Binning et al[107] in 1986 with the function

to explore surface topography. Soon, AFM evolved into a powerful tool for direct

measurement of micro-structural parameters and unraveling intermolecular forces at

nanoscale. Since it has the capability of operating at very high resolution in a liquid

environment[ 108 ], it is widely used to characterize surface topography, mechanical and

interfacial properties of biological cells.
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2.4.1 Application of AFM indentation on probing cell elasticity

By performing AFM in force spectroscopy (AFM-FS) mode with appropriate cantilever tips,

AFM can indent specific points on the cell surface. The elastic modulus of cell can be

extracted by fitting the force-displacement curve with an appropriate model. The first

measurement of microelastic properties of animal tissue (hydrated cow tibia) by AFM

indentation is ascribed to Tao et al[109]. Dramatic variations in elastic properties across

distances as small as 50 nm could be observed at high resolution. Radmacher et al[110]

performed AFM indentation (conical indenter) on cardiomyocytes, and applied Hertz contact

model to determine the elastic modulus, which provides measurements of elastic properties of

living cells in general.

Elson[6] suggested that mechanical properties play a significant role in cellular processes

and can serve as indicators for cellular process. Ohashi et al[111] investigated the elastic

modulus of bovine endothelial cells exposed to shear stress using an atomic force microscopy

(AFM) and the finite element method (FEM). Their results showed that although the elastic

moduli for control and sheared cells determined by means of FEM were higher in comparison

to Hertz model fitting by a large margin, the tendency of elastic modulus between the two

kinds of cells remained the same. Kuznetsova et al[112] reviewed AFM applications for study

of elastic modulus of intact cells associated with different cell events, and presented an

analysis of local mechanical characteristics of different cells. Li et al[113] carried out AFM

indentation to characterize elasticity of benign and cancerous human breast epithelial cells,

and showed Young’s modulus of malignant breast cells was significantly lower than their

non-malignant counterparts. Cross et al[114] investigated the nanomechanical property of lung,
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breast and pancreas cancer directly taken from patients by AFM. The results showed that the

elastic modulus of metastatic cancer cells was more than 70% softer, with a standard

deviation over five times narrower, than the benign counterparts. Thus, they indicated that

mechanical analysis could distinguish cancer cells from their benign counterparts despite that

they exhibited similar shapes.

2.4.2 Investigation of cell adhesion by AFM indentation

Generally speaking, AFM can allow high resolution force measurements over a large range

(5pN-100nN) for displacement up to 100μm. Hence, it has proved an effective tool for 

studying many biological applications such drug/protein interactions, protein/protein

interactions, cell/cell or cell/protein interactions and many biological phenomena governed by

intermolecular forces[22]. An investigation of the interfacial adhesion in molecular level is an

essential part of revealing these phenomena. By using AFM indentation, Dammer et al[115]

measured binding forces intrinsic to adhesion molecules to assess their contribution to the

maintenance of the anatomical integrity of multicellular organisms. Lee and Marchant[116]

measured the debonding interaction forces between RGD peptide-modified AFM probe tip

and a human platelet surface from pN to nN levels of force. The results showed a considerable

extension in the flexible sample surface during detachment process. By increasing pulling

range in AFM, Puech et al[117] presented a new technical method to quantitatively study

cell-cell adhesion events. Friedrichs[118] presented atomic force microscopy (AFM)-based

single-cell force spectroscopy (SCFS) for quantitative study of cell adhesion, and they

showed that AFM-based SCFS exhibited a more versatile force range of detection compared
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to other SCFS assays. Analogous to AFM-based elasticity characterization which could serve

as an index for cell physiological status, some studies also adopt cell adhesion as indicator for

cell identification. Siamantouras et al[17] used a new method to quantify mechanical and

interfacial properties of MIN6 cells treated by calcimimetic R568 using AFM based SCFS. By

investigating the maximum unbinding force and work of detachment, their results showed

calcimimetic R568 increased cell-to-cell adhesion parameters and elastic modulus of single

cells.

2.5 Summary

This chapter reviews the development of macroscopic indentation history, nanoindentation

techniques, methodology on adhesive contact and application of AFM techniques on

biological cells.

In Sec. 2.1, several macroscopic indentation tests were introduced and reviewed in terms of

indenter shapes and characteristics.

In Sec. 2.2, nanoindentation technique was reviewed in terms of its application on

measurement of mechanical properties: elastic modulus, hardness, fracture toughness, creep

parameters, and strain-hardening exponent.

To provide preliminary for surface adhesion in nanoindentation, Sec. 2.3 reviewed some

classic adhesive contact models, finite element method based simulation and molecular

dynamic based simulation concerning adhesive contact. Studies combining surface adhesion

with material plasticity, inhomogeneity and nonlinearity were also reviewed. This literature is

of guiding significance for this work in terms of numerical simulations, analytical solutions
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and experimental procedures of adhesive contact.

In Sec. 2.4, several techniques on measurement of cell mechanical properties were

glimpsed. Multiple function of AFM was mentioned. Some typical literature investigates the

mechanical properties of biological cells were reviewed. Finally, a review of studies of cell

adhesion by AFM indentation was presented, which is of guiding significance for chapter 6

and chapter 7 of the present thesis.

The limitation of present research of is listed as following:

 For hard materials, this work assumes that the substrate materials obey isotropic or

kinematic hardening. The hardening behavior of metal is much more complicated, e.g. it

might be the combination of isotropic and kinematic hardening.

 For soft materials, i.e. biological cells in this work, the cell is treated as homogeneous

while they are inhomogeneous in reality (it is comprised of cytoplasm, cytomembrane

and cell nucleus). Therefore, the modeling of cell in this work corresponds to a gobal

equivalent treatment.
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3 Theoretical Background

This work mainly concentrates on surface forces, however it is essential to present its origin,

i.e. intermolecular forces, without which it may seem very groundless. In this chapter, the first

section presents some fundamental concepts about intermolecular forces, including its

mechanism and mathematic expressions. Then, based on Lennard-Jones potential, the force

between two surfaces is formulated. The second section introduces several classical contact

models based on continuum contact mechanics, e.g. Hertz model[19], JKR model[21] and DMT

model[22].

3.1 Intermolecular and Surface Forces

3.1.1 Forces between two molecular (atoms)

It is a common sense that there are four types of forces in nature: in decreasing order of

intensity, strong interaction, electromagnetic force, weak interaction and gravitation. The

forces between atoms (or molecules) belong to the second category, which can be divided into

strong bonds (i.e. its rupture needs a large absorption of energy, approximately 102 kcal/mole)

and weak bonds (1-10 kcal/mole).

The strong bonds have the following types

 Ionic bond. This is a type of chemical bond due to electrostatic attraction between

oppositely charged ions.

 Covalent bond. This bond is also a chemical bond involving the sharing of electron pairs

between atoms.
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 Metallic bond. This is a result of electromagnetism and describes the electrostatic

attractive force that occurs between conduction electrons and positively charged metal

ions.

The weak bonds include:

 Keesom force: force between two permanent dipoles.

 Debye force: force between a permanent dipole and a corresponding induced dipole

 London dispersion force: force between two instantaneously induced dipoles.

 Hydrogen bond: attraction between the lone pair of an electronegative atom and a

hydrogen atom that is bonded to nitrogen, oxygen, or fluorine.

Generally speaking, Keesom, Debye and London dispersion forces are grouped together

and termed van der Waals forces. They include attractions and repulsions between atoms,

molecules, and surfaces, as well as other intermolecular forces. They are different from

covalent and ionic bonding, in that they are caused by correlations in the fluctuating

polarizations of nearby particles. Although van der Waals forces are weaker compared to

covalent ionic bonds, they play a significant role in fields as diverse as supramolecular

chemistry, structural biology, polymer science, nanotechnology, surface science, and

condensed matter physics. For example, van der Waals forces determine the stability and the

coagulation of colloids, in the physisorption of a molecule onto a surface.

The van der Waals force between atoms and/or molecules is the sum of the three different

forces, which are all proportional to 1/r6, where r is the distance between atoms or molecules.

The corresponding potentials are Keesom potential UK(r), Debye potential UD(r) and London

potential UL(r) whose expressions, given as
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(3.3)

where ε0 ——vacuum permittivity

μi (i = 1,2) —— the ith dipolar moment

k —— Boltzmann constant

T —— absolute temperature

r —— distance between two molecules (atoms)

     α0i (i = 1,2) —— electronic polarizability

hνi (i = 1,2) —— first ionization energy of the molecules, where h denotes Planck

constant

The total van der Waals potential energy UvdW is the sum of the above three terms, i.e.

� � � � = � � + � � + � � = −
�

� �
(3.4a)

and the van der Waals force FvdW is

� � � � =
� � � � �

� �
=

� �

� �
(3.4b)

where C is the constant in the atom-atom pair potential.

Actually, the energy of interaction does not tend towards infinity as indicated by Eq. (3.4)

as r approaches zero. The reason is a repulsive force emerges when the electronic clouds

begin to overlap, as if the molecules were impenetrable. One of the usual empirical equations

for the energy of interaction is Lennard-Jones Potential[119], given as

� =
�

� � �
−

�

� �
= 4 � � � �

�

�
�
� �

− �
�

�
�
�
� (3.5)

where r is the distance between the two molecules (atoms), a is the distance at which the
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potential is minimum, and U0 denotes the minimum potential energy, i.e. U0 = C/2r0
6 where r0

= 21/6 =1.12a. r0 defines the radius of the van der Waals bond (approximately 0.1-0.2 nm). Fig

3.1 and 3.2 show the variation of normalized Lennard-Jones potential energy and interaction

force versus normalized intermolecular distance, respectively. As can be seen from Fig 3.1

and 3.2, the total intermolecular potential and force are obtained by summing up both the

repulsive and attractive components, and the range of repulsive potential (force) is shorter

than its attractive counterpart.

Fig 3.1 Lennard-Jones potential versus distance between two molecules (atoms) in reduced coordinates.

Fig 3.2 Lennard-Jones force versus distance between two molecules (atoms) in reduced coordinates.
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3.1.2 Force between two surfaces

In general, the adhesion force Fad is a combination1 of the electrostatic force Fel, the van der

Waals force FvdW, the meniscus or capillary force Fcap and forces due to chemical bonds or

acid–base interactions Fchem, i.e.

� � � = � � � + � � � � + � � � � + � � � � � (3.6)

However, the predominant component of adhesion force varies at different circumstance. In

gaseous environments, capillary force always exists due to capillary condensation and

adsorption of thin water films at surface. This attractive interaction is dependent on the

relative humidity and the hydrophilicity of tip and sample. Therefore in dry conditions, the

capillary force will disappear and van der Waals force and electrostatic force become the

dominant. In aqueous solutions, most surfaces become charged due to dissociation of surfaces

groups and electrostatic forces are important. However, the magnitude of electrostatic force is

also dependent on electrolyte concentration and in distilled water it will disappear (so as

capillary force), leaving van der Waals force as the main component of adhesion force. If

chemical end-groups exist on the surfaces, chemical bonds may form during contact of

surfaces, and chemical interactions dominate the adhesion force. After all, van der Waals

force always contributes in most adhesive cases, and thus deserves our attention.

3.1.2.1 Van der Waals force between two semi-infinite planes

Before calculating the interaction force between two surfaces, consider the force between a

single molecular (atom) and a plane as schematically illustrated in Fig 3.3. A sole molecule M

(atom) is situated by a distance d from an infinite half-space which has n molecules per unit

volume (i.e. molecular density). A is an ordinary molecule (atom) within the plane, and its
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distance from M is r. α is the plane which contains A and parallel to the surface plane, and the

distance between M and plane α is z. Point O is the projection of M on plane α.θ denotes the

angle∠AMO.

M

A
O





d

z

r

Fig 3.3 Schematic of the van der Waals force between a single molecule (atom) and a semi-infinite

space

The projection of the attractive between M and A on OM (vertical direction) is, from Eq.

(3.4b),

� � �� � � � � =
� � � � � �

� �
(3.7)

The volume of the infinitesimal annulus is

� � = 2π� �
� � � �

� � � � �
� � � � (3.8)

Since van der Waals force can be added up, the sum of the vertical component of the

attractive force within this infinitesimal annulus is

� � � �� � � � � =
� � � � � �

� �
� � � � � � � � =

� � � � �

� �
� � � � � � � � � � � � � (3.9)

Integrating the attractive force between a molecule and a semi-space yields
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i.e.

� � � � � � � � � � � � � � � =
� � �

� � �
(3.11a)

and the corresponding potential energy is

� � � � � � � � � � � � = −
� � �

� � �
(3.11b)

The interaction force between two semi-spaces separated by as distance d is

� � � � � � � � � � � � = ∫
� � �

� � �
�

�
� � =

� � � �

� � �
(3.12a)

whose corresponding potential energy is

� � � � � � � � � � � � = −
� � � �

� � � �
(3.12b)

Here, one introduces Hamaker constant, i.e. AH = π2n2C (for two different bodies � � � =

� � � � � � � � � ), and its typical value is 10-19J in vacuum. Then Eq. (3.12) could be written as

� � � � � � � � � � � � =
� �

� � � �
(3.13a)

� � � � � � � � � � � � = −
� �

� � � � �
(3.13b)

3.1.2.2 Lennard-Jones forces between two semi-infinite planes

By analogy to 3.1.2.1, it can be easy to deduce the Lennard-Jones force σ(z) between two

semi-infinite planes with a separation of z, given as

� (� ) =
� �

� � � �
−

�

� �
(3.14)

Eq. (3.14) contains one unknown, i.e. B. One introduces an equilibrium distance z0, i.e. σ (z0)

= 0. Then it yields

� (� ) =
� �

� � � �
� [�

� �

�
�
�

− �
� �

�
�
�

] (3.15)

and the unknown B could be derived from σ(z0) = 0. The corresponding potential energy is
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The work required to separate two surfaces of unit area from the equilibrium to infinity is

given as

� � � = ∫ � (� )� � =
�

� �

� �

� � � � �
� (3.17)

and Wad is normally termed work of adhesion (units of J/m2).

On the other hand, the creation of surface is accompanied with the disruption of

intermolecular bonds, which is quantified by surface energy γ. Therefore, the work of

adhesion Wad equals the difference of surface energy Δγ during separation, i.e.

� � � = ∆ � = ∫ � (� )� �
�

� �
(3.18)

where

∆ � = � � + � � − � � � (3.19)

where γi (i = 1,2) denotes the surface energy of the two solids and γ12 is their interfacial energy.

In this work, surface energy Δγ will be treated as the work of adhesion, unless specified

particularly. Equating Eq. (3.17) to Δγ results in

� � = 16 � � �
� ∆� (3.20)

Substituting Eq. (3.20) into (3.15), one has

� (� ) =
� ∆ �

� � �
[�
� �

�
�
�

− �
� �

�
�
�

] (3.21)

Eq. (3.21) gives the dependence of surface-surface interaction forces in terms of of adhesion

∆γ, equilibrium distance z0, and the separation z. Differentiating Eq. (3.21) with respect to z

and letting dσ(z)/dz = 0 indicate that the maximum interaction force σmax equals 1.0264Δγ/z0,

at z = 1.2 z0. Fig 3.4 illustrates the dependence of the normalized interaction force σ/σmax on

normalized separation z/z0, together with its attractive and repulsive components. As can be
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seen, the range of attractive force is larger than its repulsive counterpart. When z ˃ z0,

attractive force exceeds repulsive force and when z ˂ z0, repulsive force surpasses attractive

force. The attractive and repulsive forces are equal and opposite at z = z0 and the resultant

force is zero. Therefore, in theory two flat solid surfaces will stand still with an equilibrium

interfacial separation of z0.

Fig 3.4 Lennard-Jones force corresponding to two parallel surfaces as a function of separation.

Eq. (3.21) accounts for the interaction forces between two parallel planes. However, in

most cases the two pairwise surfaces are curved or inclined to each other. In fact,

Derjaguin[120] proposed this issue in terms of energy, and insisted that the interaction energy

between two surfaces of small objects, whether or not parallel to each other, is the same as the

energy per unit area between two parallel surfaces as long as the separation is much smaller

than the size of objects involved (known as Derjaguin approximation). In this work,

especially in the finite element method, Eq. (3.21) will be adopted to specify the interaction

force between a sphere and an infinite half-space based on Derjaguin approximation.
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3.2 Classical Contact Models

Last section provides a brief introduction on the intermolecular force between two molecules

(atoms) and interaction force between parallel planes. As can be seen from the expression of

Lennard-Jones force, it becomes increasingly significant as the two planes approach each

other from infinite distance, which can potentially result in deformation of the involved planes

if they are deformable. This section will provide an introduction of several contact models in

the theory of classic contact mechanics. As pointed out in Sec.1.2, these contact models can

generally be treated as the combination of classic continuum mechanics and surface effect,

and some of them still prevail in relevant areas.

3.2.1 Hertz model: a non-adhesive contact model

Classic contact mechanics is mostly associated with Heinrich Hertz. In 1882, Hertz[19] solved the

problem of normal contact between two elastic spheres, as shown by Fig 3.5 (a), i.e. he formulated

the relationship between the normal force and the normal mutual approach of the two spheres.

There are several assumptions for Hertz model, namely:

 The material of the two contacting spheres is homogenous, isotropic and linearly elastic. No

plastic deformation occurs during contact process.

 The radius of contact area is much smaller than either radius of the two contacting spheres or,

to be strict, radius of the curvature of the curved contact area.

 The contacting surfaces are smooth, frictionless and no adhesive stress exists.

 The elastic deformations are small and hence geometric nonlinearities are not taken into

consideration.
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Fig 3.5 Schematic of (a) contact of two elastic spheres subjected to normal force F and (b) the

distribution of compressive pressure in contact area.

Based on these assumptions, the dependence of force F on contact radius a is given as:

� =
� � ∗ � �

� �
(3.22)

where R is the reduced radius of curvature (R = (1/R1+1/R2)-1,where R1 and R2 are the radii of

curvature of the two spheres, respectively), E*= [(1-ν1
2)/E1 + (1-ν2

2)/E2 ]-1 is the effective

Young’s modulus, (E1, ν1 and E2, ν2 denote the elastic modulus and Possion’s ration of the two

contacting spheres, respectively). In an extreme case, if Ri→∞ (i = 1, 2), the ith sphere will

tend to be an infinite half-space, and then the reduced radius of curvature R equals the that of

the finite sphere. Therefore, the contact between an infinite half-space is treated as a special

circumstances for contact between spheres. The relationship between mutual approach δ and

contact radius a is given as:

� =
� �

�
(3.23)
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where δ = δ1 + δ2, and δi (i = 1, 2) denotes the displacement of ith sphere center during the

elastic deformation. If one sphere remains still during contact, mutual approach can also be

regarded as penetration of one sphere into the other. Therefore, in this work, we do not

deliberately distinguish mutual approach from penetration unless specified particularly.

The distribution of compressive pressure p(r) in contact region is given as:

� (� ) =
�

�

�

� � �
� 1 − (

�

�
)� (3.24)

which exhibits an elliptical profile as shown in Fig 3.5(b). As can be seen from Eq. (3.24), the

ratio of maximum compressive stress to its average counterpart is 1.5. Besides, there are two

derivative forms of Hertzian contact model for cylindrical and conical indenter, which are

listed in Table 3.1.

Table 3.1 Solution for non-adhesive contact of cylindrical and conical indenter

Shape F-a δ-a Contact pressure

Cylinder � = 2 � � ∗ � N/A � (� ) = −
�

2 � � �
[1 − (

�

�
) � ]� � �⁄

Cone � =
�

2
� ∗ � � � � � � � =

�

2
� � � � � � (� ) = −

�

� � �
� � � ℎ � � (

�

�
)

In a macroscopic scale, the interaction forces between two contacting surfaces are

insignificant compared with other dominant forces e.g. gravity, and thus the Hertz model,

without consideration of adhesion forces, has proved a decent description for contact behavior

in this case. However, as the characteristic length of the two contacting bodies reduces, the

ratio of surface area to volume increases, and thus adhesion forces resulting from

intermolecular forces cannot be ignored any longer. In 1930, London theory of van der Waals
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forces[121] was presented, and since then many efforts were made to investigate the effect of

intermolecular adhesion on the contact behavior of two bodies. In the following context,

several adhesive contact models will be introduced based on relevant assumptions.

3.2.2 Bradley Model: Adhesive contact between two rigid bodies

When two clean, smooth and dry surfaces are brought into close proximity, they will stick to

each other by the attractive van der Waals forces. In 1932, Bradley[20] presented a means to

calculate the adhesion forces between two rigid spheres with perfectly smooth surface. As

illustrated in Fig 3.6, when two rigid spheres approach each other, the attractive force F can

be assessed by integration, since intermolecular forces can be added up.

1R

2R

Fig 3. 6 Schematic of non-contact adhesion between two rigid spheres

� = 2 � ∫ � � (ℎ)� �
�

�
(3.25)

where σ(h) is the local interaction force and h is the local separation. By approximating the

spherical shape to a parabolic shape, the dependence of local separation h on local radius r is

given as

ℎ(� ) = ℎ� +
� �

� �
(3.26)
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where R is the reduced radius of curvature and h0 is the surface separation at r=0.

Differentiating h with respect to r yields

� � ℎ = � � � (3.27)

Substituting Eq. (3.27) into right side of Eq. (3.25) yields

� = 2 � � ∫ � (ℎ)� ℎ
�

� �
(3.28)

The integral on the right hand of Eq. (3.28) represents the area enclosed by the σ(h)-h curve

from h=h0 to infinity, and thus the force needed to maintain equilibrium of the two rigid

spheres is solely dependent on h0, once σ(h) is specified. By letting h0 = z0, the integral on the

right hand of Eq. (3.28) is actually the expression of work of adhesion ∆γ (see Eq. (3.18)), i.e.

the maximum value of this integral. Therefore, the maximum value of adhesion force can be

expressed as

� � � � = 2 � � ∆ � (3.29a)

irrespective of the exact dependence of interaction forces σ(h) on separation h. The maximum

adhesion force is the force needed to tear two stick rigid spheres from h0 = z0 to infinity, and it

is termed pull-off force, i.e.

� � � � = 2 � � ∆ � (3.29b)

As can be seen from the derivation process, Bradley model does not take deformation into

consideration, which restricts its application. Owing to this disadvantage, the subsequent

adhesive contact models consider deformable bodies.
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Fig 3.7 Distribution of contact stress (2-D) predicted by different contact models. The positive pressure

denotes compressive force whilst the negative pressure denotes attractive force.

3.2.3 JKR model: reference to fracture mechanics

In 1971, Johnson et al[21] studied the adhesive contact between two elastic spheres. By

reference to fracture mechanics, the contact periphery is regarded as a crack. According to the

Griffith's criterion, the equilibrium of crack propagation is achieved when the release rate of

strain energy G equals the work of adhesion, i.e. G = Δγ, they presented an analytical solution

as

� =
� �

�
− �

� � � ∆ �

� ∗ (3.30)

� = �
� � �

� � ∗ � 1 +
� � ∆ � �

�
+ � � � ∆ � �

�
+ �

� � ∆ � �

�
�
�
� �

� �⁄

(3.31)

where δ, a and F denote mutual approach (penetration), contact radius and external force. It

can be seen from above equations that if no adhesion is assumed i.e. ∆γ = 0, the equations
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(3.30) and (3.31) are reduced to Herzian contact model. Substituting Eq. (3.31) into Eq. (3.30)

can yield the dependence of force F on mutual approach δ, which is illustrated by Fig 3.8(a)

in reduced coordinates. At the point M, adhesive force reaches its maxima, which is termed

full off force for JKR model. Further calculation indicates

� � � � =
�

�
� ∆ � � (3.32)

and the corresponding minimum contact radius is given as

� � � � = �
� � ∆ � � �

� � ∗ �
� �⁄

(3.34)

The contact pressure in contact region is expressed as

� ( � ) =
� � ∗ �

� �
[1 − �

�

�
�
�

] � �⁄ − �
� ∆ � � ∗

� �
�
� �⁄

� 1 − �
�

�
�
�
�
� � �⁄

( � �˂ ) (3.35)

and its distribution is shown by Fig 3.7 (dotted line). The negative pressure denotes attractive

force as expected, and it acts only within the contact region. Because of adhesion forces, the

contact area (radius) predicted by JKR model is larger than its Hertzian counterpart given the

same external load. From the second term at the right side of Eq. (3.35), it can be seen that the

pressure will exhibit a square root singularity as r → a-, which is consistent with the stress

singularity occurring at the crack tip in linear elastic fracture mechanics.

Essentially, in JKR model, a strong adhesive force is supposed to act at the equilibrium

distance z0, which could be treated as a delta function[81] as illustrated by Fig 3.8(b). For any

distance larger that z0, interaction forces disappears. In JKR model the attractive force is a

short-range force with almost infinite magnitude at equilibrium distance z0, and this explains

why there are no interaction forces outside the contact zone and stress singularity at the

contact periphery.
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

0z

(a) (b)

Fig 3.8 (a) Relation between force F and mutual approach δ, in reduced coordinates. (b) The interaction

forces in JKR (bold line) in comparison with realistic interaction (thin line), and positive and negative

value represent repulsive and attractive interaction forces, respectively.

3.2.4 DMT model: the profile outside the contact area remains its Hertzian counterpart

In 1975, Derjaguin et al[22] presented another adhesive contact model (known as DMT model)

using a “thermodynamic” approach. Unlike JKR model, DMT model assumes that adhesion

forces exist at an annular zone outside the contact region without deforming the contacting

bodies. Although this model does not result in any analytical solution, it estimates that the

pull-off force is 2π∆γR, i.e. the same as that of Bradley model. In an approximation to the

initial DMT model, Maugis[23] proposed the following effective Hertzian force FH
DMT-M

� �
� � � � � = � + 2 � ∆ � � (3.36)

where F denotes the externally applied force. He stated that the dependence of effective

Hertzian force FH
DMT-M on contact radius a still obeys that of Hertz model, i.e.

� �
� � � � � =

� � ∗ � �

� �
(3.37)
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Substituting Eq. (3.37) into Eq. (3.36) yields

� =
� � ∗ � �

� �
− 2 � ∆ � � (3.38)



Fig 3.9 Schematic of the interaction forces in DMT model (bold line) compared with realistic

interaction (thin line).

Since DMT model ignores the effect of adhesion forces outside the contact area on the

profile, the stress distribution should obey Hertzian compressive stress inside the contact area,

as shown by Fig 3.7. In essence, the adhesion forces in DMT model could be treated as

long-range forces of basically van der Waals type[81] (see Fig 3.9), which explains why there

are attractive forces outside the contact zone, as assumed by this model.

As can be seen from Eq. (3.32) and (3.38), there is an apparent discrepancy at the

prediction for the pull-off force between JKR and DMT model, and this discrepancy even led
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to conflict. In 1976, Tabor[74] compared these two models, and indicated that the main

disadvantage of JKR model was the neglect of adhesion forces outside the contact region,

whilst that of DMT model was neglect of deformation due to adhesion forces outside the

contact area. He also pointed out that besides JKR model, there was also stress discontinuity

in DMT model, i.e. the stress tends to zero at r = a-, whereas it becomes negative (attractive)

at r = a+ as can be seen in Fig 3.7. Tabor estimated the discontinuity of displacement at the

contact periphery was in the order of (Δγ2R/E*2)1/3, stating that if this discontinuity of

displacement is close to equilibrium distance z0, JKR model should be modified to account for

attractive force outside the contact region. Finally, this conflict was mediated by the

introduction of Tabor number[74], i.e.

� = �
� ∆ � �

� ∗� � �
� �
� �⁄

(3.39a)

or more concretely

� = �
( � � � � )� � ∆ � �

� � � �
� �

� �⁄

(3.39b)

which could be viewed as the ratio of the elastic surface displacement at the instant of

separation to the effective range of surface force characterized by the atomic equilibrium

distance z0
[75]. In general, the DMT model applies for μ ˂ 0.1 (hard materials, small radius of 

curvature and low work of adhesion), whilst the JKR model applies for μ ˃ 5 (soft materials, 

large radius of curvature and high work of adhesion).

3.2.5 Maugis–Dugdale (M-D) model: a transition from DMT to JKR model
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

0z

0

0

Fig 3.10 Schematic of the interaction force used in M-D (bold solid line) in comparison with realistic

interaction (thin line). The area enclosed by the bold solid line with respect to abscissa is the same as

that of the thin line, implying the interaction force used in M-D model gives the same work of adhesion

as that of the real one.

In 1992, Maugis[23] introduced an analytical solution to account for intermediate range

between JKR and DMT model based on Dugdale model[122], known as Maugis-Dugdale (M-D)

model. This model considers the interaction forces between two surfaces follow Dugdale

model, as shown by Fig 3.10, i.e.

� (ℎ) = �
− � � 		� � < ℎ ≤ � �
0 ℎ > � �

(3.40)

where h denotes the distance between two surfaces. The magnitude of σ0 is selected so that it

coincides with the maximum Lennard-Jones interaction force, i.e. σ0 = 1.0264Δγ/z0; since the

work of adhesion in Dugdale model should equals Δγ (work of adhesion of Lennard-Jones

law), i.e. Δγ = σ0δ0, it can be shown that δ0 = 0.9743z0. In contrast to JKR model, in M-D

model the adhesion force of intensity –σ0 extends a distance of δ0 above the surface (see Fig
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3.7), which can account for long-range interaction forces. By analogy to JKR model, this

model treats the region in proximity to contact periphery as a crack, and according Griffith

criterion (see Sec. 3.2.3), M-D model presents an analytical solution for external force F and

mutual approach (penetration) δ in terms of contact radius a, i.e.

� =
� � � � ∗

� �
− 2 � � � [� √� � − � � + � � � � � � � � 	(

�

�
)] (3.41a)

δ =
� �

�
−

� � �

� ∗ √�
� − � � (3.41b)

respectively, where c denotes the critical radius at which Dugdale force vanishes, as shown by

Fig 3.7. The contact radius a and critical radius c are related by

� � � �

� � ∆ �
� (� � − 2)� � � � � � � + √� � − 1 � +

� � �
� �

� � ∗∆ �
� √� � − 1 � � � � � � � − � + 1 � = 1 (3.42)

where m = c/a. By introducing the following dimensionless parameters

� = � (
� � ∗

� � ∆ � � �
)� �⁄ (3.43a)

� = � (
� � ∗

� � ∆ � � �
)� �⁄ (3.43b)

λ = � � (
� �

� � � � � ∗)� �⁄ (3.43c)

� =
�

� � � �
(2.46d) (3.43d)

� = � (
� � � ∗�

� � � ∆ � � � �
)� �⁄ (3.43e)

where λ is termed transition parameter, and it is related to Tabor parameter by λ = 1.16μ. Eq.

(3.41a) and (3.42) can be rewritten as

� � = � � � − � � � � � √� � − 1 + � � � � � � � � � � (3.44a)

� = � � � −
� � �

�
√� � − 1 (3.44b)

and

� � � �

�
� (� � − 2)� � � � � � � + √� � − 1 � +

� � � � �

�
� √� � − 1 � � � � � � � − � + 1 � = 1 (3.45)

respectively.
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M-D model also gives the distribution of the contact pressure as

� (� ) = �
−

� �

�
� � � � � � �

� � � � � � � � �

� � � � �
� +

� � � ∗

� �
� 1 − (

�

�
)�

− � � 																												� ≤ � ≤ �
, � ≤ 	� (3.46)

As can be seen from Eq. (3.46), contact stress exhibits continuity at r = a and attractive forces

are never confined to the contact region, i.e. it remains –σ0, which is consistent to Fig 3.7.

Although DMT model results in analytical solutions, there is inconvenience for its

application which is due to its implicit form. To counter this disadvantage, many subsequent

studies developed simpler solutions, which provide good approximation to M-D

model[77][78][81].

3.2.6 Comparison of five contact models and subsequent studies

Fig 3.11 shows the dependence of reduce force F/πΔγR on reduced penetration 

δ/(3π2Δγ2R/16E*2)1/3 for the four contact models (except Bradley model). As can be seen, there is

no adhesion force in Hertz model. As transition parameter λ increases, the force-penetration curve,

and the pull-off force predicted by M-D model exhibit decent transition from DMT to JKR model.

Fig 3.11 Dependence of reduced force on reduced penetration corresponding to Hertz, JKR, M-D and
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DMT models.

In 1997, Johnson and Greenwood[76] presented an adhesive map specifying the application

range of the above contact models, as shown by Fig 3.12. As can be seen, when the external

force is larger than adhesion force by a large margin, i.e. Fext/πΔγR >>1, the latter can be

neglected, which corresponds to Hertz model. DMT model is appropriate for small adhesion

force (0.01˂ λ ˂0.1), while JKR model is suitable for large adhesion force (λ˃10). For the 

intermediate range (0.1˂ λ ˂10), M-D model is advisable. The comparisons of hypothesis and 

limitation corresponding to these five models are listed in Table 3.2.

*
F

Fig 3.12 Adhesive map[76]. The vertical coordinates denotes external load reduced by πΔγR, i.e. 

F*=Fext/πΔγR . The map applies to contact between pure elastic bodies.

Table 3.2 Comparison of the different assumptions and limitations for the five contact models

model Assumption Limitation

Hertz non-adhesive, linear elastic, small deformation invalid at low ration of load to contact surface

Bradley Contacting bodies are rigid invalid for deformable bodies

JKR interaction forces confined in contact region underestimation of load

DMT interaction forces has no effect on profile underestimation of contact area

M-D interaction forces follow Dugdale model The solution is implicit and cumbersome
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Although these five contact models are regarded as classic, they have been undergoing

refinement and development. In 1995, Maugis[123] extended the JKR model by using the exact

expression for the profile of elastic sphere, so that it can account for adhesive contact with

large contact area. The results were in good agreement with published experiments. Yao et

al[124] pointed out that previous contact models neglected the requirement that adhesion

strength must not exceed the theoretical strength, and hence there should be overestimation

and misguidance in the adhesive map. They took strength limit into consideration and made

corresponding modification for the adhesive map. Sun et al[125] investigated the interaction

forces between two silica nanospheres after contact, including the van der Waals (vdW)

attraction, Born repulsion, and mechanical contact forces by molecular dynamics (MD)

simulations. They conducted a comparison between JKR and DMT models in terms of

force-displacement curve and contact radius, and showed that these two models can only be

used to provide the first approximation, with some deviation from the MD simulated results.
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4 Quantification of Mechanical Properties by Nanoindentation:

a carrier for surface force study

4.1 Introduction

Although this work concentrates on surface adhesion, it is nevertheless appropriate to start it

by deducing nanoindentation, which could be viewed as a “carrier” of surface adhesion, and

without which study on surface adhesion may not always find its significance of the

application.

This chapter presents a routine procedure to show how to quantify mechanical properties,

i.e. elastic modulus, hardness, fracture toughness and viscosity of calibration materials by

nanoindentation. In Sec. 4.2, basic analyses for quantification of above mentioned mechanical

properties are discussed; Sec. 4.3 will introduce the instruments employed in this chapter and

several materials suitable for calibration standards; results and discussion will be presented in

Sec.4.4, and Sec.4.5 gives summary.

4.2 Experiment-based Methods

As mentioned previously, the force-displacement curve obtained by nanoindentation contains

a wealth of information. The quantification of mechanical properties from the information

involves theoretical models based on various assumptions. This section will introduce

credible means to assess elasticity, hardness, fracture toughness and viscosity of materials.

4.2.1 Oliver and Pharr Method
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Fig 4.1 A typical force-indentation depth (displacement) curve obtained from nanoindenation.

Nanoindentation instruments are typically load-controlled machines, with concurrent

measurement of indentation depth of a hard probe tip. Fig 4.1 illustrates a typical

force-indentation depth curve (F-d curve) obtained from nanoindentation on metal. Unlike

uniaxial, multiaxial or pure shear testing where stress-strain curve could be obtained

straightforwardly, the determination of mechanical parameters of material by nanoindentation

is indirect. During the loading stage, several kinds of material responses to strain may occur,

e.g. elasticity, plasticity and even phrase transformation (e.g. monocrystalline silicon

subjected to indentation). However, for most materials, response to the unloading part is

mainly composed of elastic deformation (to be strict, materials with kinematic hardening can

also exhibit plasticity during unloading). Although there are many analyses for extraction of

elastic modulus and hardness from force-displacement curve (see Sec. 2.2.1), Oliver and

Pharr[40] method is used in this chapter.

maxF

F

fh
ph maxh
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4.2.1.1 Cylindrical indenter

Fig 4.2(a) illustrates the substrate material indented by a cylindrical punch. The distinguishing

feature of cylindrical punch indentation is that the contact radius remains constant throughout

the whole loading-unloading process. Therefore, the F-d curve exhibits a straight line at the

beginning of loading and the whole unloading stage as shown by Fig 4.2 (b). During

retraction, indentation force F and indentation depth h are related by

� = 2 � � ∗ℎ (4.1)

where a and E* denote radius of the cylinder (contact radius) and effective Young’s modulus

respectively. Differentiating Eq. (4.1) with respect to h yields

� �

� �
= 2 � � ∗ = 2 �

�

�
� ∗ (4.2)

where A and dF/dh denote the contact area and slope of the unloading line. Pharr et al[126]

suggested that Eq. (4.2) holds for any axisymmetric indenter. On the other hand, as can be

seen from Fig 4.2 (b), one has

� �

� �
=

� � � �

� �
(4.3)

where Fmax and he denote the maximum indentation force and elastic displacement during

unloading respectively, which could be directly measured from the F-d curve. Thus equating

Eq. (4.3) to (4.2) enables one to calculate effective elastic modulus E* and further E.
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eh

rh

at hh 

maxF
F

h
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ehrh

dh

dF

(a) (b)

Fig 4.2 Schematic of substrate material indented by cylinder punch. (b) The corresponding F-d curve.

ht and hr denote the maximum indentation depth and depth of residual impression respectively. ha is the

depth of the contact periphery.

In mechanics theory, the constant stiffness exhibited in unloading part of F-d curve

corresponding to cylindrical indentation is attributed to its linear boundary conditions, i.e. the

contact area remains invariant. However, for other kinds of indenters, e.g. conic, Berkovich or

sphere, this invariance never holds and the situation is more complicated.

4.2.1.2 Berkovich indenter

Some studies classify cylinder punch as blunt indenter, since plasticity occurs late in the F-d

curve during loading, as shown by Fig 4.2 (b), which implies considerable load is needed to

initiate yield. In this regard, cylinder punch does not enjoy as much popularity as sharp

indenter, e.g. Berkovich and conic where plasticity could occur at very early stage as shown

by Fig 4.3 (c).
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rh
epa hh 
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dF

F

h

eh

(c)

Fig 4.3 (a) Schematic of Berkovich. α denotes the half-angle to face. (b) Schematic of substrate

material indented by conic indenter. (c) The corresponding F-d curve.

Fig 4.3 (a) illustrates the schematic of a Berkvoich indenter, with a face angle α = 65.27°

which gives the same projected area-to-depth ratio as Vickers. Fig 4.3 (b) shows the whole

retraction process. At the maximum indentation position B, for a Berkvoich indenter the

dependence of the projected contact area A on the depth beneath the contact periphery hp is

given as

� = 3√3ℎ�
� � � � � 65.27 = 24.5ℎ�

� (4.4)
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For the purpose of simplification, Berkvoich is always approximated as a conic with a

semi-angle β = 70.3° which gives the same projected area-to-depth ratio as the Berkovich

indenter. The stage from point B to D (see Fig 4.3(b)) consists of only elastic deformation.

According to Hertzian contact model, for a conic indenter, the relationship between maximum

indentation force Fmax and unloading elastic deformation he is

� � � � =
� � ∗ � � � �

�
ℎ�
� (4.5)

The local vertical displacement h of the substrate surface is a function of local radial distance

r from the symmetry axis, given as

ℎ = (
�

�
−

�

�
)� � � � � (4.6)

where a denotes contact radius at maximum loading. According to Eq. (4.6), on the contact

periphery, i.e. r = a, one has

ℎ� = (
�

�
− 1)� � � � � (4.7)

where ha denotes the depth of the periphery beneath the original surface. On the symmetry

axis one has

ℎ� =
�

�
� � � � � (4.8)

Combining Eq. (4.7) and (4.8) results in

ℎ� = (1 −
�

�
)ℎ� (4.9)

From Fig 4.3 (c), one can directly obtain total indentation depth ht, elastic deformation he and

depth of residual impression center hr. It is apparently shown that

ℎ� = ℎ� + ℎ� = ℎ� + ℎ� (4.10)

Substituting Eq. (4.9) into Eq. (4.10) one gets

ℎ� = ℎ� − (1 −
�

�
)ℎ� (4.11)
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Substituting Eq. (4.11) back into Eq. (4.4) yields

� = 24.5[ℎ� − (1 −
�

�
)ℎ� ]� (4.12)

Doerner and Nix[127] noticed for Berkovich indenter, the F-d curve corresponding to the

beginning of unloading is a line segment for a lot of materials, as shown by the section

between point B and C in Fig 4.3 (c). Consider Fig 4.3 (b), at the beginning of retraction (the

section between B and C), the contact region remains fairly steady, which is analogous to

cylindrical indentation as shown by Fig 4.2 (b). Doerner and Nix[127] considered that Eq. (4.2)

still holds during this stage, regardless of the exact shape of indenter. Substituting Eq. (4.12)

into Eq. (4.2) results in

� ∗ =
�

�
�

�

� � . �

� �

� �

�

[ � � � ( � �
�

�
) � � ]

(4.13)

where dF/dh denotes the slope of curve at beginning of retraction, which could also be

measured directly from experimental data. One can also obtain value of hardness according to

its definition, given as

� ≡
� � � �

�
=

� � � �

� � . � [� � � ( � �
�

�
) � � ]�

(4.14)

4.2.1.3 Spherical indenter
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Fig 4.4 (a) Schematic of substrate material indented by spherical indenter. (b) The corresponding F-d

curve. Ri denotes the radius of the sphere, and Rr denotes the radius of curvature at the center of the

residual impression.

Besides the above two indenters, spherical indenter is also commonly used. Fig 4.4 (a)

illustrates substrate material indented by a spherical indenter. During the unloading stage

(From point A to B), only elastic deformation occurs, and thus one can apply Hertz contact

model for this stage. According to Hertz model, the elastic deformation at the symmetry axis

is twice the displacement of the contact periphery, i.e.

ℎ� =
�

�
ℎ� (4.15)

The contact radius is given by

� = � � ℎ� (4.16)

where R denotes the effective radius, given by

� =
� � � �

� � � � �
(4.17)
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where Ri and Rr denote the radius of indenter and radius of curvature at the center of the

residual impression, respectively. In this case, the projected contact area at maximum loading

A is

� = � � � = � � ℎ� (4.18)

At the beginning of unloading, the contact between indenter and substrate surface remains

steady, and thus the slope of F-d curve is constant as shown by Fig 4.4(b). Therefore the

cylindrical punch equations (i.e. Eq. (4.2)) can be applied. Substituting Eq. (4.18) into Eq.

(4.2) yields

� ∗ =
�

�

� �

� �

�

� � � �
(4.19)

Likewise, one has the expression for hardness according to its definition:

� ≡
� � � �

�
=

� � � �

� � � �
(4.20)

where Fmax, he and dF/dh could be measured in Fig 4.4(b).

4.2.2 Fracture toughness

As introduced in Sec. 2.2.2, when indentation test is performed on brittle materials, cracks are

often observed around the impression. In material science, crack is characterized by fracture

toughness, which quantifies the ability of a material containing a crack to resist fracture.

There are a number of studies accounting for extraction of fracture toughness of material by

nanoindentation, and this chapter presents one widely used means developed by Lawn et

al[63][64][128].
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Fig 4.5 Schematic of median crack: (a) elastic-plastic configuration at full load (b) residual

configuration of complete unloading (c) radial crack

Fig 4.5 shows the crack configuration produced by Berkovich indentation on brittle

material (e.g. silicon wafer). Pe and Pr denote the elastic and plastic field component of

applied load, respectively. α is the face angle of the Berkovich indenter. a, b, d, and h

denote characteristic contact dimension, characteristic dimension of impression in radial

direction, indentation depth and dimension of median crack. c represents the length of

surface crack from corner to the end as shown by Fig 4.5 (c). By experiment, Marshall and
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Lawn[63] showed that, for the fully developed median/radial cracks, as shown by Fig 4.5 (a),

the proportionality Ke∝Pe/h3/2 always holds, i.e.

� � =
� � �

� � �⁄ (4.21)

where χe is a constant, dependent on indenter angles, contact friction and free surface effects,

and Ke denotes the elastic component of stress intensity factor[129]. An analogous expression

could also be given for the residual stress intensity factor Kr, given as

� � =
� � �

� � �⁄ (4.22)

where χr is another dimensionless indenter-substrate constant.

When the growth evolution of median cracks is under equilibrium conditions, the stress

intensity factor K caused by externally applied load equals fracture toughness Kc, i.e.

� = � � + � � = � � (4.23)

During the loading stage, substituting Eq. (4.21) and (4.22.) into Eq. (4.23) yields

� � =
� � �

� � �⁄ +
� � �

� � �⁄ (4.24a)

By analogy, during unloading stage, one has

� � =
� � �

� � �⁄ +
� � � �

� � �⁄ (4.24b)

where Pm denotes the maximum indentation force. During its growth, if the crack maintains

a semicircular front throughout its evolution, the equilibrium median radius at maximum

load P = Pm is

ℎ� = [
( � � � � � ) � �

� �
]� �⁄ (4.25a)

And the equilibrium radius at completely unloading P = 0 is

ℎ� = (
� � � �

� �
)� �⁄ (4.25b)

The elastic-plastic configuration in Fig 4.5 (a) could be subdivided into elastic
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component at full load plus residual component at complete unload. For elastic situation,

the elastic component of Kc reaches its maxima when P = Pm and will disappear at complete

unloading. The plastic component of Kc reaches its maxima when P = Pm but will maintain

this maximum value during unloading. The crack growth is irreversible, so that Eq. (4.25b)

cannot represent an attainable equilibrium configuration unless hR ˃ hM. The only way to

realize this inequality is let χe
R ˂ 0, i.e. suppress crack growth during the loading 

(superposing a reversible surface compressive stress[63]). Therefore, the median crack

reaches its maxima during loading and radial crack continues its growth until complete

unloading. Since our work focuses on the radial crack after complete unloading, the elastic

component could be neglected and thus Eq. (4.23) could be rewritten as

� � = � � =
� � � �

� � �⁄ (4.26)

where the constant χr is to be estimated in order to calculate Kc.

Consider the indented surface in the unloaded state as shown by Fig 4.5 (b). One has the

following assumptions to evaluate χr

(1) The characteristic area (shaded area) in Fig 4.5 (a) is removed from prospective contact

site, and replaced by an unstressed elastic half space.

(2) The impression will induce plastic deformation for the removed segment, whose contact

radius, and indentation depth are a and d respectively, so that the irreversible strain

associated with the impression is accommodated by an expansion in characteristic zone

dimension at constant volume of material. Let δV and V denote the volume of the

impression and volume of the zone respectively. Consider the material volume remains

invariant, one has
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� �

�
=

� � �

� � �
=

� � � �

�
(
�

�
)� (4.27)

(3) In order to restore the removed segment to its original characteristic radius b, a

hydrostatic compression across the outer boundary

� � = �
� �

�
=

� � � �

�

�

( � � � )
(
�

�
)� (4.28)

is applied, where κ denotes bulk modulus, i.e. κ = E/3(1 - ν). It should be borne in mind

that it is different from that obtained at the impression at load P, i.e. the indentation

hardness,

� =
�

� � �
� (4.29)

where α0 is a indenter geometry constant.

(4) One reinserts the compressed segment into its initial position, restores coherence at the

interface, and let the system relax. In doing so, the plastic zone can induce effective

outward residual force Pr on the crack as shown by Fig 4.5 (b). Assuming that pb

remains invariant during crack growth, the value of Pr could be obtained by integrating

the horizontal stress components of pb over the zone cross section within the crack zone,

i.e.

� � = � � � �
� (4.30)

   where ζ is an integration constant.  

When the crack is well developed, i.e. h˃˃b, Pr could be simplified as a concentrated

force. Assuming the crack geometry is penny-like, the stress intensity corresponding to

residual field force may be written as

� � =
� ( � ) � �

� � �⁄ (4.31)
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where f(φ) is an angular function introduced to allow for the effects of the free surface. For

the case involved in this work, Eq. (4.22) turns into

� � =
� � �

� � �⁄ (4.32)

Substituting Eq. (4.28) into (4.30), and combining it with Eq. (4.31) and (4.32) yield

� � =
� � ( � )

� � � ( � � � )

�

�

�

�
� � � � (4.33)

For an infinite isotropic elastic-plastic matrix, according to Lawn’s theory, one has

�

�
≈ (

�

�
)� (� � � � )� �⁄ (4.34)

where m ≈ 1/2. Substituting Eq. (4.34) into (4.33) results in  

� � = � � (� )(
�

�
)� �⁄ (� � � � )� �⁄ (4.35)

where λr is a dimensionless term independent of the indenter/substrate system. Substituting

Eq. (4.35) back into (4.26) yields

� � =
� (
�

�
) � �⁄ �

� � �⁄ (4.36)

where ε = λr(φ)(cotα)2/3. ε is a dimensionless term which is only dependent on radial crack

configuration caused by impression, and its typical value is 0.016.

4.2.3 Viscosity parameter

Creep phenomenon is often observed in indentation testing for some viscoelastic materials

such as polymer. Originally speaking, creep is the tendency of a solid material to move slowly

or deform permanently under the influence of constant mechanical stresses. In indentation

testing, creep manifests itself as the phenomenon that indentation depth is still increasing

when the indentation force remains constant (known as hold period) as shown by the red

curve in Fig 4.6. Ascribed to the viscoelasticity, a blowing out or “nose” at the beginning of

retraction will be observed if without hold period, as shown by the black curve in Fig 4.6. In
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“nose” situation, the slope is negative which will paralyze the application of Oliver and Pharr

method. Therefore, the indentation force is always maintained at its maxima for a period to

relieve or exclude the “nose” effect as shown by the red curve in Fig 4.6.

Fig 4.6 Illustration of Force-displacement curves for PMMA (Poly Methyl Methacrylate, viscoelastic

material).

The viscoelastic property of material could be characterized by different combinations of

discrete elastic and viscous elements, i.e. spring and dashpot. It is known that the spring

element (see Fig 4.7 (a)) obeys Hookean theory, i.e.

� = � � (4.37a)

� = � � (4.37b)

where σ, τ, ε and γ denote normal stress, shear stress, normal strain and shear strain

respectively; E, G represent Young’s modulus and shear modulus respectively. One of most

distinguishing feature for elastic constitutive relation is its time-independence, e.g.

instantaneous elastic deformation and recovery, as shown by Fig 4.7 (b).
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1t 2t

1t 2t

Fig 4.7 Schematic of elastic component of viscoelastic materials

The dashpot element obeys newton law of viscosity as shown by Fig 4.8 (a), i.e.

� = �
� �

� �
(4.38a)

� = � �
� �

� �
(4.38b)

where η and η1 denote viscosity, and dε/dt is strain rate. Dashpot exhibits rheological behavior.

For example, if the stress is a step function, i.e. σ = σ0H(t), the corresponding strain is ε =

σ0t/η according to Eq. (4.38b), i.e. steady state flow, as illustrated by Fig 4.8(b). H(t) denotes

unit step function, i.e.

� (� ) = �
1, � ≥ 0
0, � < 0

(4.39)
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0

Fig 4.8 Schematic of viscous component of viscoelastic materials

Generally speaking, there are three common models, termed:

 Kelvin–Voigt model. This is comprised of a dashpot and a spring connected in parallel,

as illustrated by Fig 4.9 (a). Its constitutive relation is given as

� = � � + �
� �

� �
(4.40)

 Maxwell model. This can be represented by a spring and a dashpot connected in series,

as illustrated by Fig 4.9 (b). This model can be represented by the following equation:

� �

� �
=

�

�
+

�

�

� �

� �
(4.41)

 Three element model. This consists of a dashpot and a spring connected in parallel, and

then connected to another spring in series, as illustrated by Fig 4.9 (c). The

corresponding constitutive relation is given as

σ +
�

� � � � �

� �

� �
=

� � � �

� � � � �
� +

� � �

� � � � �

� �

� �
(4.42)

where σ and ε denote overall stress and strain as shown by Fig 4.9 (a), (b) and (c).
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Fig 4.9 Three common mechanical models: (a) Kelvin–Voigt model (b) Maxwell model (c) Three

element model.

In creep indentation tests, the load is controlled, and thus the concurrent displacement of

the indenter is monitored. In general, the load is applied such that it reaches its maxima Fmax in

a very short time compared with its subsequent hold time. In this regard, the indentation force

F(t) could be approximated as a Heaviside step function, i.e.

� (� ) = � � � � � (� ) (4.43)

If the indenter is a conic, for the elastic case, one has

ℎ � =
�

�

( � � � � )

�
� (4.44)

where h and F denote indentation depth and force respectively. For its viscoelastic counterpart,

both Radok[69] and Ting[70] offered a general solution to linear viscoelastic Boussinesq

problem provided the contact radius is non-decreasing as mutual approach increases.

According to their theory, substituting the elastic modulus in the Hertz contact model with the

modulus-displacement convolution in the time domain leads to the relationship between the

indentation depth and the applied force as:

ℎ � (� ) =
�

�
� � � � (1 − � � )� (� ) ∗ � (� ) (4.45)

where J(t) denotes the creep compliance, which is the dependence of strain on time provided
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unit constant stress. Table 4.1 lists the expression of creep compliance for the above three

models. The asterisk denotes convolution, i.e.

� (� ) ∗ � (� ) = ∫ � (� − � )
�

� �

�

� � � �
� (� )� � (4.46)

Performing Laplace transform on both sides of Eq. (4.45) yields

ℒ[ℎ � (� )] =
�

�
� � � � (1 − � � )ℒ[� (� )]ℒ[

� � ( � )

� �
] (4.47)

Substituting Eq. (4.43) into right side of Eq. (4.47) results in

ℒ[ℎ � (� )] =
�

�
� � � � (1 − � � )ℒ[� (� )] � � � � (4.48)

Performing inverse Laplace transform on Eq. (4.48) yields

ℎ � (� ) =
�

�
� � � � (1 − � � )� (� )� � � � (4.49)

Generally speaking, it is always assumed that some soft materials are incompressible, i.e. ν =

0.5. Therefore, fitting Eq. (4.49) with the h2-t curve obtained by experiment can determine the

viscoelastic parameters. It should be borne in mind that Eq. (4.49) is only valid when the

force-time function F(t) is approximated as a Heaviside step function. In order to realize this

approximation, the loading time tl is controlled in a small range whilst the hold time th is set

very long, and an advisable ratio of tl/th is 1/10. Besides, Eq. (4.49) is only applicable for

conic indenter, and the cylindrical and spherical counterparts can be obtained by analogous

derivation, as summarized in Table 4.2.

Table 4.1 Creep Compliance for the three common models

Model Name Creep Compliance J(t)

Kelvin–Voigt (1 − � � � � �⁄ )

�

Maxwell 1

�
+

1

�
�

Three element
1/E2 + (1 – e-t/τ)/E1

�

� �
+

� � � � � �⁄

� �
where τ = η/E1
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Table 4.2 Dependence of indentation depth on time for different indenters corresponding to Heaviside

step load

Indenter Type h(t) Notes

Cylinder (1 − � � )

2 �
� (� ) � � � �

a denotes the radius of the

cylinder

Sphere
[
3(1 − � � )

4√ �
� ( � )� � � � ] � �⁄

R denotes the radius of the

sphere

Conic
[
(1 − � � ) �

2
� � � � � (� ) � � � � ]� �⁄

α denotes the half angle of the 

conic

4.3 Experiment Process and Instrument Introduction

4.3.1 Instrumentation

Generally speaking, many instrumented indentation systems (i.e. nanoindentation) can be

illustrated by Fig 4.10 regardless of differences. The force is often applied by using either

electromagnetic or electrostatic actuation, and a capacitive sensor is usually utilized to

measure concurrent displacement[130]. There are many commercial instrumented indentation

systems available developed by various manufacturers such as Hysitron, Inc. (Minneapolis,

MN), CSIRO (Australia), Nano Instruments (MTS System Corp.), Micro Materials Ltd. (UK)

and CSM Instruments (Switzerland). The instrumented indentation systems by different

manufacturers are almost identical with some minor differences. For example, the axis of

indenter of instruments systems by CSM is vertical, as shown by Fig 4.10, so as CSIRO,

Hysitron, Nano Instruments, but for Micro Materials, its indenter is horizontal. To take

another example, Hysitron instruments systems adopt the same sensor to measure indentation

force and displacement, whilst the rest four instruments measure force and displacement by

different means.
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Fig 4.10 Schematic illustration of an instrumented indentation system.

4.3.2 Nanoindentation Tester NHT2

Fig 4.11 The Nano Indentation Tester NHT2 manufactured by CSM instruments

The instrumented indentation systems employed in this work is Nanoindentation Tester NHT2,
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and it belongs to CSM Instruments. Fig 4.11 shows its photography and main components.

The NHT2 is designed to provide low loads with depth measurements in the nanometer scale.

The system can characterize a broad spectrum of materials, e.g. organic, inorganic, hard and

soft materials. The mechanical properties which can be measured by this system include

hardness, elastic modulus, creep, fracture toughness, etc. The maximum force can reach

500mN with a resolution of 0.01μN, and the maximum indentation depth is 200 μm with a

resolution of 0.01nm. The load frame stiffness is much larger than 107N/m.

The NHT2 uses an already established method detailed, as follows. An indenter tip with

known geometry is driven into s specific site of the material of interest. An increasing normal

load is applied, and after reaching a pre-set maximum value, it is reduced until partial or

complete relaxation. This procedure can be performed repeatedly. The relative position of the

indenter with respect to the sample surface (i.e. indentation depth) is precisely monitored by a

differential capacitive transducer. The NHT2 can operate in dynamic or quasi-static loading

model where the latter model is adopted throughout this chapter.

Fig 4.12 Schematic of profile map of the NHT2 head
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The core of NHT2 is the indenter head, whose main components are illustrated in Fig 4.12.

At the beginning of indentation, the head is moved downwards until the reference ring

touches the substrate sample. The load is applied by a displacement actuator which consists of

an electromagnetic coil. The coil is used to control the movement of the indenter shaft. The

capacitive sensor, which is mounted near the indenter tip, records the vertical displacement of

the indenter. It is noteworthy that in NHT2 the applied load could be accurately specified by

the electromagnetic coil which is different from the loading method in AFM as mentioned in

Sec. 1.1.2.

(a) (b)

Fig 4.13 (a) Microscope of the Berkovich diamond indenter (b) Typical residual impression induced by

the Berkovich indenter on ductile materials

There are many kinds of indenter available in NHT2, and the Berkovich indenter is

employed throughout this chapter, whose microscope is shown in Fig 4.13 (a). The Berkovich

pyramid used in this work is made of diamond brazed into steel, as can be seen from Fig 4.13

(a). It has a face angle α = 65.27° ± 0.3°, with a tip radius < 0.2µm. Before penetration into

sample, the NHT2 operation system determines the location of the material surface. The
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typical residual impression on ductile materials induced by the Berkovich indenter is shown

in Fig 4.13 (b).

4.3.3 Sample Preparation

(a) (b)

(c) (d)

Fig 4.14 (a) Copper and (b) Fused silica (c) Silicon Wafer (d) polystyrene

Fig 4.14 shows the samples used in nanoindentation test. Copper and fused silica are provided

by CSM Instruments company. The silicon wafer and polystyrene were glued to an iron sheet,

which acts as substrate to support the sample. Both copper and fused silica were indented for

calibration of elastic modulus and hardness. Silicon wafer and polystyrene were indented for

calibration of fracture toughness and viscoelastic parameters, respectively. The typical values
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of these parameters are listed in Table 4.3 and 4.4.

Table 4.3 Material properties of copper, fused silica and silicon wafer.

Typical Value Elastic

modulus

(GPa)

Hardness

(GPa)

Yield

Stress

(MPa)

Poisson’s ratio fracture toughness

(MPa•m1/2)

Copper[131] 128 3.8 440 0.34 N/A

Fused

silica[132]

72 8.8 1150 0.17 N/A

Silicon

wafer[133][134]

150 10 950 0.22-0.28 0.83-0.95

Table 4.4 Viscoelastic properties of polymeric materials[51]

Model 2-element 3-element 4-element

GPa/GPa•s E η E1 E2 η E1 E2 η1 η2

Copolymer 0.09 1.69 0.16 0.103 0.135 0.17 0.14 2.9 0.7

Cross-linked 0.94 41.2 1.03 2.73 11.2 1.05 4.7 72.6 7.7

4.3.4 Experimental Procedure

4.3.4.1 Copper and fused silica

The maximum force for copper and fused silica are 50mN and 20 mN respectively. In order to

relieve the viscosity effect, the indentation force is set to pause at the maximum force for 10 s.

For both materials, the loading and unloading speeds are 100mN/min.

4.3.4.2 Silicon wafer

For silicon wafer, the maximum force is 400 mN, with a pause of 2.5 s, and the

loading/unloading rate is 200mN/min. After complete unloading, optical microscope was

employed to measure the length of radial crack, as shown by Fig 4.5 (c).

4.3.4.3 Polystyrene

The maximum force for polystyrene was 1.7 mN applied by ramp loading within 12s,
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followed by a pause of 120 s. Since the loading time is only one tenth of the pause time, the

force-time relationship could be approximated as Heaviside step function.

4.4 Finite Element Analysis

With the availability of finite element analysis program, it is appropriate to perform a

numerical approach to the simulation of force-displacement responses for substrate

undergoing nanoindentation.

In the finite element method, the specification of material mechanical property plays a

paramount role in determining the simulative results. In the absence of detailed information

about the materials of interest, a linear elastic and elastic-perfectly plastic material response

usually give enough results. Von Mises yield criterion (yield criterion will be elaborated in

next chapter) is specified to realize the transition from elastic to plastic deformation.

Finite element simulations were performed with the multi-purpose finite code ABAQUS

(version 6.13-4). The ABAQUS/STANDARD solver was used in all simulations throughout

this chapter. To simulate the Berkovich indenter, a conic with semi-angle 70.3° was modeled,

which gives the same projected area-to-depth ratio as the Berkovich indenter. To mediate the

matter of fact, the apex of the conic indenter is modeled with spherical tip with a radius R =

0.2μm (see Fig 4.15). The half-space was densely partitioned for a swallow depth while

coarser partition was adapted as the depth increases. The finite element mesh was designed to

provide a high density of nodes at the contact region, to capture the details of the

displacement and stress fields, as shown by Fig 4.15. The distance between two adjacent

surface nodes of the refined mesh is equal to ~ 0.01R. The half-space was modeled with

31100 four-node, bilinear, axisymmetric, quadrilateral elements (CAX4) consisting of 31361
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nodes. The nodes at the bottom and left boundaries of the mesh were constrained against

displacement in the vertical and horizontal directions, respectively.

Fig 4.15 Finite element model of a rigid conic in close proximity with a deformable half-space. The

indenter-substrate is axial symmetrical, and thus only one section is plotted for illustration.

4.5 Results and Discussion

4.5.1 Copper and Fused Silica

4.5.1.1 Indentation Impression

Fig 4.16 (a) shows a microscope image of the indent on copper by the Berkovich indenter.

The wrinkles and convex edge circled by the ellipse indicates occurrence of pile-up. In

pile-up phenomenon, the material plastically uplifts around the contact impression which is

schematically illustrated in Fig 4.16 (b). When pile-up occurs, the contact area is larger than

predicted by elastic contact theory, and hence both hardness and elastic modulus are

overestimated. The effect of pile-up on the estimated hardness and elastic modulus will be
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discussed in Sec.4.5.1.2. For each sample, indentations were repeated in a matrix comprised

of 100 indentation spots. Within the matrix, each indent was aligned with constant interval of

25μm as shown by Fig 4.16 (c).

(a) (b)

(c)

Fig 4.16 (a) A single indentation impression on copper substrate; (b) Cross sectional view of pile-up

during indentation; (c) A matrix of indentation impressions where the distance between two adjacent

spots is 25 μm.

4.5.1.2 Force-displacement curve
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(a) (b)

Fig 4.17 Force-displacement curve for Berkovich indenter on (a) copper and (b) fused silica. Both the

loading and unloading rate is 100mN/min with a pause of 10s at the maximum force. The displacement

origin is set where the indentation depth is zero such that they are identical. The corresponding

maximum indentation depth ht, depth of residual impression hr and depth beneath the contact periphery

hp are marked in the plot.

Fig 4.17 (a) and (b) show a typical force-displacement (F-d) curve for copper and fused

silica respectively. As expected, the gap area between loading and unloading curve indicates

plastic deformation. The slope of the unloading part remains constant during most part of

retraction, revealing that the Berkovich indenter maintains good contact with the substrate

during this period. For both materials, the maximum indentation depth is smaller than 1.5 μm

which is much smaller than 1/10 of sample height (see Fig.4.14 (a) and (b)), and thus the

substrate effect could be excluded. As can be seen from the circle part of F-d curve in Fig

4.17, the indenter keeps penetrating the material when the force pauses at its maximum value,

revealing that copper and fused silica also exhibit creep. As can be seen from Fig 4.17 (a), the

slope of the retraction is high, while its counterpart in Fig 4.17 (b) is low, indicating that

copper exhibits higher stiffness than that of fused silica.
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Fig 4.18 (a) and (b) show the repeatability of F-d curves obtained by the NHT2. As can be

seen from Fig 4.18 (a), there is some substantial difference in the F-d curves from 100 curves,

which may be due to thermal drift or (and) material inhomogeneity. The curves of retraction

are nearly parallel with appreciable offsets. Since parallel retraction curves will produce the

same unloading stiffness dF/dh, and hp, they will in turn yield similar effective Young’s

modulus E* and hardness H according to Eq. (4.13) and (4.14). On the other hand, the

difference between individual F-d curves obtained from fused silica is not significant as can

be seem from Fig 4.18 (b).

(a)



Chapter 4

93

(b)

Fig 4.18 Force-displacement curves corresponding to 100 repeated indentations for (a) copper and (b)

fused silica.

(a) (b)

Fig 4.19 Distribution of density of (a) Young’s modulus and (b) hardness for copper

(a) (b)

Fig 4.20 Distribution of density of (a) Young’s modulus and (b) hardness for fused silica

Table 4.5 List of the statistics results for the two determined parameters

Young’s modulus (GPa) Hardness (GPa)

mean Std dev median mean Std dev median

copper 123.17 6.71 123.39 1.51 0.078 1.51
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fused silica 77.09 0.4 77.12 10.5 0.98 10.61

Fig 4.21 Dependence of hardness on indentation depth corresponding to several materials[135][136][137].

After using the Oliver and Pharr method on the 100 F-d curves, statistics was performed on

the calculated Young’s modulus and hardness, and the results are shown in Fig 4.19, 4.20 and

Table 4.5. From Table 4.5, it can be seen that the estimated Young’s moduli of the two

materials are close to their typical value as listed in Table 4.3. The estimated hardness for the

two materials, however, differs from their typical values by a considerable margin, and the

interpretation is as follows. As can be seen from Eq. (4.13) and (4.14), the modulus is

proportional to 1/A1/2 while hardness depends on 1/A, i.e. hardness is more severely affected

by contact area A than modulus. Therefore, any phenomenon that can affect contact area, e.g.

pile-up and sink-in could induce more derivation to estimated hardness than that to elastic

modulus. As reviewed in Sce.2.2.1, Bolshakov and Pharr[46] performed extensive finite

element analysis on the effect of material properties on the shape of deformation zone during

simulative indentation. Materials with high ratio of elastic modulus to hardness, i.e. E/H tend



Chapter 4

95

to exhibit pile-up phenomenon, which will overestimate hardness as analyzed in Sec.4.5.1.1.

In addition to pile-up and sink-in, hardness is also affected by indentation depth, termed

Indentation Size Effect. This effect is characterized by an increase in hardness by decreasing

the ratio indentation depth/size, which is accounted for by a large body of literature[135][136][137].

Fig 4.21 illustrates hardness as a function of indentation depth for several materials. As can be

seen, the hardness of fused silicon is not sensitive to indentation depth, and thus it is mainly

influenced by pile-up (or sink in) phenomenon. For copper, hardness decreases monotonically

as indentation depth increases. Although pile-up phenomenon can overestimate hardness,

indentation size effect becomes dominant in deep indentation depth (1000nm). Notably, the

copper harness corresponding to indentation depth of 1000 nm in Fig 4.21 approximates our

estimated value (see Table 4.5), whose corresponding indentation depth is also close to 1000

nm, as shown in Fig 4.17 (a). Thus the calculated values of hardness of copper and fused are

justified.

4.5.1.3 Comparison of Simulative and Experimental Results

(a) (b)

Fig 4.22 Comparison between FEM results and experimental data corresponding to (a) copper and (b)
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fused silica

In FEM, displacement was controlled in order to ensure convergence of iteration, and hence

the maximum indentation depth obtained from experiment was used as input. For the property

setup, the Young’s moduli determined from experimental data were input as elasticity

parameter. In order to specify the elastic-perfect plastic properties, the initial yield stress σY

needs to be well estimated. Experiments[51] show that the hardness H is proportional to the

material yield or flow stress Y in compression as:

� ≈ � � (4.50)

Y is the stress where first plastic yielding occurs. For material with high ratio E/Y (such as

copper), one has C ≈ 3, while for material with low ratio E/Y (such as fused silica), one has C

≈ 1.5. In this section, the parameter Y in FEM was input according to Eq. (4.50).

Fig 4.22 (a) and (b) show the force-displacement curve produced by finite element method

and nanoindentation corresponding to coper and fused silica respectively. It can be seen that

the FEM results differ from its experimental counterpart significantly, and interpretations are

as follows. First, the FEM uses elastic-perfect plastic manner with no strain hardening.

However, the real material may exhibit more complicated strain hardening manners, e.g.

isotropic hardening, kinematic hardening or their combination (the concept of isotropic and

kinematic hardening will be elaborated in Chapter 5). In elastic-perfect plastic manner,

material transits from elastic to plastic response abruptly (see Fig 2.6), while in practice,

especially for metals, a gradual transition is more to be expected. Second, even if the material

obeys elastic-perfect plastic manner, Eq. (4.50) is merely an empirical relationship between

hardness and yield stress, and its validity depends on indenter shape, size, open angle, the
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ratio E/Y and pile-up (or sink in) phenomenon. As a matter of fact, as can be seen from Table

4.3, the ratio H/Y ≈ 8.6 for copper and 7.6 for fused silica respectively which are far from 

their empirical values as provided by Eq. (4.50).

4.5.2 Silicon Wafer

Fig 4.23 Typical Force-displacement curve for silicon wafer.

Fig 4.24 Optical microscope of an indentation impression at 400 mN force in silicon wafer.

Fig 4.23 shows a typical force-displacement curve for silicon wafer subjected to Berkovich
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nanoindentation. There are several discontinuities during loading and unloading, termed

pop-in (during loading) and pop-out (during unloading) respectively. A possible reason is

sudden crack occurs during loading and unloading, as indicated by the circle in Fig 4.24.

Significant evidence produced by some study[138] suggested that a pressure-induced phrase

transformation occurs in pure silicon subjected to indentation which manifests itself as the

above mentioned pop-in and pop-out events.

Fig 4.24 shows the optical morphology of the residual impression after complete unloading.

The crack circled by the left bottom ellipse denotes radial crack, and the top right ellipse

circles lateral crack. This lateral crack originates from beneath the surface and results in

chipping of the silicon surface[51].

The Oliver and Pharr method was routinely employed to calculate Young’s modulus and

hardness, and the length of radial crack was measured by optical microscope built-in NHT2

nanoindenter (see Fig 4.11). With Young’s modulus E = 172.29 GPa, a hardness H = 22.7 GPa

and a radial crack length c = 8.45 μm, one can obtain fracture toughness of almost 0.718

MPa•m1/2 according to Eq. (4.36), which is close to its typical value as shown by Table 4.3.

4.5.3 Polystyrene

Consider the three element model (see Fig 4.9 (c)) whose creep compliance is

� (� ) =
�

� �
+

�

� �
(1 − �

�
� �
�
�
) (4.51)

mathematically speaking, as E2→∞, Eq. (4.51) will reduce to the creep compliance of Kelvin

model, and as E1→0, Eq. (4.46) will reduce to the creep compliance of Maxwell model. 

Therefore, three element model is a universal form, and both Maxwell and Kelvin model can

be viewed its special circumstances. Hence, the three element model is used to fit the creep
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curve. In order to fit the creep curve of the polystyrene sample, judicious adjustment of E1, E2

and η are used. Values of these parameters that provide a good fit are selected as the measured

viscoelastic parameters of the sample as shown by Fig 4.25, and their order of magnitude can

almost coincide with the typical value as shown in Table 4.4.

Fig 4.25 Displacement-time curve and its best fitting by using three element model.

4.6 Chapter Summary

In this chapter, the applications of nanoindentation techniques were performed on several

calibration materials. Based on the experimental results, quantification of mechanical

properties was conducted in terms of relevant basic analyses. Meanwhile, finite element

method was employed to verify some assumptions. The following conclusions can be made in

this chapter:

(1) The determined Young’s moduli of copper and fused silica approximate their typical

counterparts, but the case for hardness is different. For fused silica, the deviation of

hardness is probably ascribed to pile-up phenomenon, whilst for copper, the offset may
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also be attributed to indentation size effect and pile-up, where the former dominates the

latter.

(2) Creep phenomenon was observed in copper and fused silica by nanoindentation, and thus

it can be seen that nominally elastic materials may more or less consist of viscous

properties.

(3) By finite element simulation, it is indicated that the empirical relation between hardness

and yield stress may not be a good description to account for plastic properties and work

hardening.

(4) Silicon wafer is a typical brittle material. Both pop-in and pop-out events were observed

during nanoindentation on silicon wafer. Radial and lateral cracks occur in the residual

impression in microscope, and the latter causes chipping of the silicon surface. The

fracture toughness of silicon wafer estimated by Lawn’s method approaches its typical

value.

(5) The three element model proves a good characterization for viscoelastic constitutive

relationship of polystyrene. By fitting with the experimental data, both elastic moduli and

viscosity coincide with the typical values in order of magnitude.
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5 Effects of adhesion on shakedown behavior of

microcontacting bodies

5.1 Introduction

Theoretical analysis, numerical simulation and experiments are referred to as three basic

means of scientific research. In this chapter, studies are conducted mainly by the second

method. Nanoindentation belongs to microcontact, and it is appropriate to consider surface

effects on microcontact where adhesion forces dominate bulk forces due to high ratio of

surface area to volume. In this chapter, nanoindentation is viewed as microcontact in general.

Chapter 3 introduces several classic contact models taking surface adhesion into consideration.

Nevertheless, adhesion-induced deformation is assumed to be purely elastic in these models,

while in practice, a high adhesion force can induce plastic deformation, even without

externally applied load. On the other hand, the interfacial forces used in these models are

approximation to their real counterpart, and there are substantial differences. Owing to these

two aspects, it is still impossible to obtain analytical solution for most real adhesive contact

problems where interfacial forces and the surface profile are mutually dependent, and the

constitutive relation exhibits elastic-plastic property. In this regard, computational simulation

proves to be an efficient means to solve such self-consistent adhesive contact problems.

The investigation of adhesion effects on microcontact is of guiding significance for the

studying the durability of miniaturized systems subjected to cyclic loading. Obviously contact

fatigue and wear due to surface adhesion forces exert adverse effect on the lifetime of
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miniaturized systems subjected to cyclic loading, e.g. microelectromechanical (MEMS)

system[139][140], nanoelectromechanical (NEMS) system, and head/disk interface (HDI)[141]. By

means of finite element simulation, a number of analyses interpret the above issues by the

model of nanoindentation, i.e. microcontact subjected to cyclic loading, and they suggest that

adhesion forces play a significant role in affecting the mechanical behavior of contacting

bodies.

Fig 5.1 Schematic of stress-strain curve for (a) pure elastic (b) elastic shakedown (c) plastic

shakedown and (d) ratchetting[142].

Generally speaking, the mechanical response of engineering structures to cyclic loading is

dependent on its mechanical properties (e.g. elastic modulus, initial yield stress and work

hardening rules) and features of the cyclic load (e.g. its maximum and minimum values).

When the effective stress is below elastic limit, only elastic deformation occurs as shown by

Fig 5.1 (a). If the stress is slightly higher that the elastic limit, plastic deformation will emerge

in the first cycle, which causes residual stress such that only elastic deformation occur in

subsequent cycles. Since the initial elastic-plastic response of the structure shakes down to

wholly elastic behavior, this phenomenon is known as elastic shakedown, as illustrated in Fig

5.1 (b). Once the stress exceeds elastic shakedown limit, the structure may exhibit reverse or
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alternating plasticity over each cycle known as plastic shakedown as shown by Fig 5.1 (c).

Structures undergoing plastic shakedown will fail after a finite number of load cycles due to

low-cycle fatigue. Alternatively the structure may provide net increments of plastic strain

within each cycle as illustrated by Fig 5.1 (d), and the strain will accumulate until gross

plastic deformation and eventually incremental plastic collapse occurs. This response is called

as ratchetting.

For microcontact, not only elastic shakedown limit, but also the surface forces are crucial to

understanding failure of microcontact subjected to cyclic loading. Kadin[99] used finite

element method and Lennard-Jones potential to model repetitive adhesive contact between a

rigid surface and an elastoplastic sphere. By specifying the sphere with a kinematic strain

hardening manner, they investigated the effect of surface adhesion on the shakedown

behaviors of the inenter-substrate system. Song and Komvopoulos[143] used the same means to

simulate repetitive adhesive contact between a rigid sphere and an elastic-perfect plastic

half-space, and their results showed that plastic shakedown can also occur even for a small

maximum normal displacement due to the low yield strength of the material. Nevertheless,

there are rare studies on the shakedown behavior of isotropic hardening materials subjected to

repetitive adhesive contact.

The main goal of this chapter is to investigate the effect of adhesion forces on shakedown

behavior of spherical microcontact subjected to cyclic loading. To accomplish this objective,

an elastoplastic half-space is modeled to be indented by a rigid sphere subjected to cyclic

loading-unloading. To provide a thorough investigation, the work hardening rule of indented

material takes two basic forms, i.e. isotropic hardening and kinematic hardening, to account
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for potential plastic shakedown. The interaction force between the rigid spherical indenter and

the substrate obeys a more accurate law, i.e. Lennard-Jones potential. Finite element method

is employed to solve the self-consistent adhesive contact problem due to mutual dependence

of interaction forces and the surface profile.

5.2 Propaedeutics

In physics and materials science, plasticity describes the deformation of a material undergoing

non-reversible changes of shape in response to applied forces[144]. The physical mechanisms

for plasticity can vary widely. For brittle materials such as rock and concrete, plasticity is

mainly due to slip at microcracks, and for metal, plasticity is a consequence of dislocations at

crystalline scale.

5.2.1 Yield criteria

It is common sense that if the load on a material exceeds a critical value, the deformation is

irreversible. Consider a simple case, i.e. a metal rod whose section area is Ac is loaded by a

tensile force F as shown by Fig 5.2. The tensile stress on the section of the rod σ equals F/Ac.

If σ is within elasticity range, the corresponding deformation is reversible, e.g. point A in Fig

5.2. Once this stress exceeds a critical value Y (i.e. point B in Fig 5.2), plastic (irreversible)

deformation occurs. This point is known as yield point, and the critical stress Y is termed yield

stress. The standard to determine the occurrence of yield is called yield criterion. For uniaxial

loading (tensile or compressive), yield criterion is given as

� =
�

� �
= � (5.1)

where yield stress Y can be tensile or compressive.
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p e

Y

Fig 5.2 Stress–strain curve showing typical yield behavior for nonferrous alloys in uniaxial loading

In practice, materials are subjected to multiaxial loading, and yield criterion is given by a

universal form as

� � (� � ) = 0 (5.2)

where σi (i = 1, 2, 3) denotes three principal stresses which constitute a principal stress space.

The points whose three principal stresses satisfy Eq. (5.2) in stress space will generate a

curved surface, termed yield surface. Thus the concept of yield criterion is often expressed as

yield surface. There are two commonly used yield criteria, namely Tresca criterion and the

von Mises criterion.

5.2.1.1 Tresca criterion

Tresca criterion assumes yield occurs when the maximum shear stress τmax exceeds a critical

value k, i.e.

� � � � ≥ � (5.3)

The maximum shear stress can be given in terms of the maximum principle stress σ1 and



Chapter 5

106

minimum principle stress σ3 as

� � � � =
� � � � �

�
(5.4)

Substituting Eq. (5.4) into Inequality (5.3) yields

� � � � �

�
≥ � (5.5)

Tresca criterion proves a relatively good assumption for metals. It is observed that this

criterion does not take the middle principle stress σ2 into consideration, and this issue is

countered in von Mises criterion.

5.2.1.2 Von Mises criterion

Von Mises criterion is based on Tresca criterion, but considers that hydrostatic stresses do not

contribute to the yield. It suggests that yield occurs when the second deviatoric stress

invariant J2 reaches a critical value, given as

� � =
�

�
[(� � − � � )� + (� � − � � )� + (� � − � � )� ] =

� �

�
(5.6)

where Y denotes yield stress in uniaxial loading. It is part of a plasticity theory that applies

best to ductile materials, such as metals.

5.2.2 Work hardening

For uniaxial loading, as shown by Fig 5.2, after stress exceeds yield stress, if the material is

unloaded and then reloaded, one can find the subsequent yield stress (see point C in Fig 5.2)

is higher than the previous one, and this phenomenon is known as work hardening (or strain

hardening, cold working). The physical mechanisms for work hardening are dislocation

movements and dislocation generation within the crystal structure of the material[ 145 ].

Although it is observed in uniaxial loading, work hardening can be extended to more general
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case, where the yield surface may change size, shape and even position, and can be described

as

� � � � � , � � � = 0 (5.7)

where Ki denotes one or some hardening parameters which vary during plastic deformation

and determine the evolution of yield surface, and σij (i, j = 1, 2, 3) represents stress component.

The description of the dependence of yield surface change on plastic deformation is called

hardening rule. There are three main common hardening rules, i.e. isotropic hardening,

kinematic hardening and mixed hardening. In the following, a brief introduction to isotropic

and kinematic hardening rules is presented, and mixed hardening is a combination of isotropic

and kinematic hardening.

5.2.2.1 Isotropic hardening

1

2

Fig 5.3 Schematic for the expanding of yield surface in isotropic hardening

Isotropic hardening postulates that the yield surface expands uniformly about its origin of

stress space while the location of its center remains invariant as illustrated by Fig 5.3. In
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particular, the yield surface can be formulated as

� � � � � , � � � = � � � � � � � − � � = 0 (5.8)

where f0(•) denotes the initial yield surface. For the von Mises yield surface, at initial yield,

one has

� � � � � � � = �
( � � � � � )� � ( � � � � � )� � (� � � � � ) �

�
− � = 0 (5.9)

or more universally

� � � � � � � = �
�

�
� � � � � � − � = 0 (5.10)

where Y is the first yield stress for uniaxial tension, � � � denotes deviatoric stress, i.e.

� � � = � � � −
� � � � � � � �

�
� � � (5.11)

where repeated subscripts denote Einstein summation convention. Here δij represents

Kronecker delta function, i.e.

� � � = �
0		� � 	� ≠ �
1		� � 	� = �

(5.12)

Substituting Eq. (5.9) into (5.8) yields

� � � � � � = �
( � � � � � ) � � (� � � � � ) � � ( � � � � � ) �

�
− (� + � � ) = 0 (5.13)

How hardening parameter Ki changes with plastic deformation should be determined by other

assumptions.

5.2.2.2 Kinematic hardening

The kinematic hardening dictates that the yield surface translates from its initial position

during plastic deformation while its profile remains unchanged as shown by Fig 5.4.

Kinematic hardening implies that if the material undergoes stretch in one direction, its tensile

yield strength in this direction is increased, while the local initial compressive yield strength

after stretch is actually reduced. This phenomenon is termed Bauschinger effect as shown by
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Fig. 5.5. The equation for the yield surface takes the general form as

� � � � � , � � � = � � (� � � − � � � ) (5.14)

1

2

Fig 5.4 Schematic for the translation of yield surface in kinematic hardening. Although point E is

within the initial yield surface, it is no longer contained by subsequent yield surface, and thus plasticity

occurs during the path from D to E.

where the hardening parameter αij (i, j = 1, 2, 3) is known as shift-stress. For the von Mises

yield surface again, one can easily get the equation for the strengthened yield surface as

� � � � � , � � � = �
�

�
(� � � − � � �

� )(� � � − � � �
� ) − � = 0 (5.15)

where αij
d denotes the deviatoric part of αij, i.e. αij

d = αij – δij•(α11 + α22 + α33)/3.

1Y
Kinematic

Isotropic

Y

2Y
1Y

Fig 5.5 Comparison between isotropic and kinematic hardening in terms of stress-strain curve
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5.2.2.3 Mixed hardening rules

More complicated hardening rules can be used. For example, the mixed hardening rule can be

viewed as the combination of both isotropic and kinematic hardening, whose general form is

� � � � � , � � � = � � � � � � − � � � � − � � (5.16)

where αij and Ki are determined by other presumptions.

5.2.3 Flow curve

The idea of modelling plastic deformation and hardening in a multiaxial situation is analogous

to the data from a simple test. For example, in uniaxial loading, after the stress exceeds the

yield stress Y for the first time, one can have the data shown in Fig 5.6 (a), and further extract

the dependence of stress σ on plastic strain εp, i.e. σ = h(εP). Before extending this dependence

to multiaxial situation, it is essential to define a scalar effective stress σeff and a scalar effective

plastic strain εeff
p, and then the following assumption is introduced: for a complicated

multiaxial loading case, the dependence of effective stress on effective plastic strain is the

same as its uniaxial loading counterpart, as shown by Fig 5.6 (b).
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Fig 5.6 The flow curve for (a) uniaxial stress-plastic strain and (b) effective stress-effective plastic

strain

For a von Mises material (i.e. materials obeying von Mises yield criterion), it is appropriate

to define the effective stress as

� � � � � � � � � = � 3 � � = �
( � � � � � )� � ( � � � � � ) � � (� � � � � ) �

�
(5.17)

which has the essential property that at yield in uniaxial loading, effective stress equals yield

stress. The effective plastic strain (Von Mises plastic strain) is defined as

� � � �
�

= ∫ � � � � �
�

= ∫ �
�

�
� � � �

�
� � � �

�
=

√�

�
� ( � � �

�
− � � �

�
)� + ( � � �

�
− � � �

�
)� + ( � � �

�
− � � �

�
) � (5.18)

where εi
p (i = 1, 2, 3) denotes three principle plastic strains (see Fig 5.2) and εij

p (i, j = 1, 2, 3)

denote plastic strain components in strain space. In this chapter, two basic hardening manners

are considered, i.e. power law isotropic hardening and bilinear kinematic hardening whose

relationship between effective stress and effective plastic strain are given in Table 5.1, and

illustrated in Fig 5.7.
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Table 5.1 Details of the two hardening models used in this chapter

Hardening Rule Formulae Notes

power law isotropic hardening � � � �

�
= (

�

�
� � � �
�

+
� � � �

�
)� (5.19)

0 ≤ n < 1, � � � � > �

E denotes Young’s modulus

bilinear kinematic hardening
� � � � =

� � �

� � � �
� � � �
�

+ � (5.20)
ET denotes tangential modulus

� � � � > � � � < �
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Fig 5.7 Schematic of dependence of effective stress on effective plastic strain for (a) power law

isotropic hardening and (b) bilinear kinematic hardening.

5.3 Finite element model

It is an appropriate means to abstract microcontact as contact between two spheres or one

sphere with infinite semi-space. In this chapter, for simplicity, the latter model is used as

shown by Fig 5.8. Prior to contact, the half-space retains its original shape if no interfacial

forces exist as shown by Fig 5.8 (a), whereas the presence of interfacial forces will deform the

half-space as shown by Fig 5.8 (b). Assuming that the interaction forces between the rigid

spherical indenter and the infinite half-space obey Lennard-Jones potential given by Eq.

(3.21), one has
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� (� ) =
� ∆ �

� � �
{[

� �

� ( � )
]� − [

� �

� ( � )
]� } (5.21)

where σ(z) and H(r) denote local interaction forces and local separation between indenter

surface and substrate surface respectively, as shown by Fig 5.8 (b).

O 

R

,E 

,P

P

O 

R

,E 

(a) (b)

Fig 5.8 Schematic of (a) non-adhesive contact and (b) adhesive contact between a rigid spherical

indenter and a deformable half-space
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(a) (b)

Fig 5.9 Schematic of FE model of adhesive contact between a rigid sphere and a deformable half-space

for (a) overview and (b) its amplification at contact region.

Based on the model in Fig 5.8, the commercial ANSYS 14.5 package was used to solve the

axisymmetrical (2D) elastoplastic adhesive contact problem with only one half of the

axisymmetric hemisphere section (see Fig 5.9). The nonlinear geometry option was selected

to accommodate potential large deformation. The mesh and boundary conditions were

conducted in the same way as that in Sec.4.4, as can be seen from Fig 5.9 (a) and (b). The

Lennard-Jones force given by Eq. (5.21) was included by using the user subroutine

USERINTER in ANSYS. To ensure convergence, the finite element simulation in this chapter

adopted displacement-control method. Before specifying plastic property, only elastic

parameters, i.e. E and ν were input for running, and the resulted elastic responses were

compared with existing results obtained by self-consistent method[75] for justification. In the

property manager, The von Mises yield criterion was used as yield criterion. Work hardening

was realized by two means, i.e. power law isotropic hardening and bilinear kinematic
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hardening listed in Table 5.1.

5.4 Results and discussions

5.4.1 Pure elastic adhesive contact

Rigid Sphere

F

0zAtomic equilibrium distance

0zSeparation (Penetration)

Elastic infinite semi-half space

R

Original position

Current position

Fig 5.10 Schematic of a pure elastic half-space indented by a rigid spherical indenter. The interaction

force obeys Lennard-Jones potential, where the dotted line represents zero force space.

Fig 5.10 illustrates adhesive contact between a rigid sphere and an elastic half-space. α 

denotes the vertical distance between the apex of the sphere and the zero force line. Positive α

and negative α represent separation and penetration respectively. F denotes resultant

interaction force between the indenter and the half-space. Positive F and negative F represent

attraction and repulsion. According to Eq. (3.39b), if one adjusts Young’s modulus E and fixes

the rest four parameters whose values are as listed in Table 5.2, Tabor parameter μ can vary

correspondingly.
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Table 5.2 Parameters studied in the adhesive contact

Work of adhesion ∆γ 

(J/m2)

Atomic equilibrium

distance � � (nm)

Radius of the rigid sphere

R (nm)

Poisson’s ratio ν

0.46 0.34 1000 0.1

(a) μ = 0.5 (b) μ = 0.75
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Fig 5.11 Dependence of normalized force F/πRΔγ on normalized penetration –α/z0 for (a) μ=0.5,

(b) μ = 0.75, (c) μ = 1.0 and (d) μ = 2.0. The blue line and red asterisk represent results by using our FE

simulation and self-consistent method[75], respectively.
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Fig 5.12 Dependence of jump-in and jump-out position (in terms of normalized penetration –α/z0) on

Tabor parameter μ.

The comparison between FEM results and its self-consistent counterpart is mainly in terms

of the force-penetration curve and the dependence of instability jump positions on Tabor

parameter. Fig 5.11 shows the relationship between normalized force F/πRΔγ and normalized

penetration –α/z0 of four different μ values by using FEM and self-consistent method. As can

be seen from Fig 5.11 (a) and (b), as μ˂1, the results by FEM coincide with its self-consistent 

counterpart well. As μ≥1, i.e. Fig 5.11 (c) and (d), the normalized force-penetration curve by

FEM almost overlap its self-consistent counterpart except the jump-in and jump-out instants.

Greenwood pointed out that, the jump-in and jump-out phenomena manifest themselves by

the “S” shaped curve in self-consistent method, whereas in the finite element method, this

instability jump is characterized by vertical lines (i.e. “brittle” jump), and thus the divergence

here is ascribed to these two different computational methods. In addition, the dependence of

instability location (–α/z0) on Tabor parameter μ obtained by FEM is consistent with its

self-consistent counterpart, as shown by Fig 5.12. Therefore, on the whole, the finite element
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method developed in this chapter is verified.

5.4.2 Power law isotropic hardening

As is indicated by Fig 5.11, and also by many other studies[75][87][88], for pure elastic adhesive

contact, the dimensionless load-displacement curves are solely dependent on Tabor parameter

μ. In this chapter, i.e. elastoplastic adhesive contact, similar to the finding by some previous

studies, the dimensionless load-displacement curves are also dependent on another

dimensionless called plasticity parameter S[98][99], given as

� =
∆ �

� � �
(5.22)

where Y denotes the initial yield stress of the elastoplastic material. High value of S indicates

considerable plastic deformation with contact region. According to Eq. (5.22), if initial yield

stress Y is adjusted while the values of rest two parameters are chosen by reference to Table

5.2, S can also vary correspondingly.

5.4.2.1 Von Mises Plastic Fields

Although Sec.5.4.1 provides one verification method for FEM in Sec. 5.3, it still conforms to

elastic constitutive relationship. In this section, analyses of the plastic strain fields are

presented to verify the adoption of plastic properties, i.e. hardening manner.
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(a) μ = 1, n = 0.5, Y = 1GPa, δ/z0 = -0.65

(b) μ = 1, n = 0.5, Y = 1GPa, δ/z0 = -1.24
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(c) μ = 1, n = 0.5, Y = 1GPa, δ/z0 = -8.82

(d) μ = 1, n = 0.5, Y = 1GPa, δ/z0 = 3.67

Fig 5.13 Von Mises plastic strain fields during indentation for different penetrations where μ = 1, S =

1.35.
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(a) μ = 1, n = 0.5, Y = 0.5GPa, δ/z0 = 1.68

(b) μ = 1 (Tabor parameter), n = 0.5, Y = 0.5GPa, δ/z0 = -8.82

Fig 5.14 Von Mises plastic strain fields during indentation for different penetrations where μ = 1, S =
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2.7 for (a) first plastic deformation (b) maximum indentation position

Fig 5.13 presents the von Mises plastic strain fields of the half-space (elastic-perfect plastic

material, n = 0), corresponding to four different values of indentation depth. Herewith, δ 

denotes the vertical distance between the lower apex of the spherical indenter and the original

surface as shown in Fig 5.10, i.e. δ = α + z0. Positive δ and negative δ represent separation

and penetration respectively. For non-adhesive contact (i.e. S = 0) between a rigid spherical

indenter and an elastoplastic half-space, Chang et al94 gave the critical penetration δc to

initiate first plastic deformation as

� � = −(
� � �

� � ∗ )� � (5.23)

where K = 0.454 + 0.41ν, H = 2.8Y denotes the hardness of substrate material. Substituting the

parameter values in Table 5.2 into Eq. (5.23) yields the critical penetration δc ≈ -2.59z0. For

adhesive contact, this critical penetration δc is -0.65z0, corresponding to a plastic strain up to

0.3% as shown by Fig 5.13 (a) (i.e. S = 1.35). For a lager value of S = 2.7, the first plastic

strain up to 1.4% can be observed, even if the indenter is not in contact with the substrate as

indicated by Fig 5.14 (a), i.e. positive δ. Therefore, the critical δ to initiate first yield stress

increases as S increases.

As the approach increases, the region beneath the surface along the axis of symmetry

begins to yield as shown in Fig 5.13 (b). At maximum approach (i.e. maximum penetration),

the plastic strain (about 2%) at this region has exceeded that at the contact periphery (about

0.8%), as shown in Fig 5.13 (c). It can be seen that the plastic strain fields are maintained as if

frozen during retraction by comparison Fig 5.13 (c) and (d). In fact, this is due to isotropic

hardening, i.e. during loading stage, only elasticity can occur, and thus plastic strain remains
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unaffected. Therefore, it can be concluded that the isotropic hardening manner is implanted

into FEM, and the following results should be trustworthy.

5.4.2.2 Multiple loading-unloading cycles

(a)
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(b)

(c)

Fig 5.15 Normalized force versus normalized displacement for four consecutive loading-unloading

cycles with μ = 0.45, Y = 0.5GPa, δmax/z0 = -8.82, S=2.7 for (a) n = 0.75, (b) n = 0.15 and (c) n = 0.1.
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Fig 5.16 Normalized force versus normalized displacement for four consecutive loading-unloading

cycles corresponding to non-adhesive contact. Y = 0.5GPa, δmax/z0 = -8.82, n = 0.15.

Fig 5.1 provides one means to judge the types of shakedown behavior when a structure is

subjected to cyclic loading, i.e. from the stress-strain relationship curve, which anyhow is

obviously infeasible in practice. In this section, the force-penetration curve is analyzed to

investigate the shakedown types.

Fig 5.15 shows the dependence of the normalized force on a normalized approach

consisting of 4 consecutive approach and retraction corresponding to three hardening

exponents, i.e. n = 0.75, 0.15, 0.1. For n = 0.75, it can be seen that plastic deformation almost

occurs in the first loading-unloading cycle since the subsequent curves almost coincide as

shown by Fig 5.15(a), which indicates elastic shakedown at a stable state. This is analogous to

the case in non-adhesive repetitive contact, where theoretically speaking, plastic deformation

only occurs during the first cycle, and the subsequent cycles absolutely overlap with each

other. For n = 0.15 (see Fig 5.15 (b)), one can see there is enclosed area by each subsequent
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cycle implying it does not shake down to elastic behavior. Since the value of enclosed area

remains steady, and the maximum indentation force tends to converge with increasing number

of loading-unloading cycles, one can judge that it is not ratchetting. In fact, the

indenter-substrate system shakes down to a steady state of non-accumulative cyclic plastic

deformation which resembles plastic shakedown. Fig 5.16 illustrates the non-adhesive

counterpart of Fig 5.15 (b), and as can be seen that plastic deformation only occurs in the first

cycle, with subsequent cycles shaking down to pure elastic behaviors. Thus, by comparing Fig

5.15 (b) and Fig 5.16, it is indicated that surface adhesion causes plastic shakedown in this

situation.

As n decreases to 0.1 (see Fig 5.15 (c)), the enclosed area by each subsequent cycle is

larger than that in Fig 5.15 (b), implying that material with lower hardening exponent n is

more likely to undergo plastic shakedown provided other identical conditions. On the other

hand, this implication is due to that plasticity is prone to occur in material with lower

hardening exponent n, and hence plastic shakedown (or ratchetting) rather than elastic

shakedown is more preferable. For a further interpretation, consider two extrema:

 n→1, i.e. pure elastic situation, and then only elastic shakedown is possible. 

 n→0, i.e. elastic-perfect plastic material, plasticity is very likely to emerge, so as 

plastic shakedown or ratchetting in cyclic loading situations.
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Fig 5.17 Normalized force versus displacement for four consecutive loading-unloading cycles with μ =

1, Y = 0.5GPa, δmax/z0 = -8.82, S=2.7, n = 0.1.

Fig 5.17 shows the variation of normalized force with the normalized approach for μ = 1, S

= 2.7, and n = 0.1. First one can judge it resembles to plastic shakedown by the same means

as last paragraph. Compared with Fig 5.15 (c), the enclosed area by each subsequent

loading-unloading cycle is smaller, implying accumulative plastic strain is less significant as

Tabor parameter increases. This trend can be interpreted as follows: the substrate material is

more compliant (lower E) as tabor parameter increases, and can accommodate less plastic

work compared with that in more stiffer material (material corresponding to high tabor

parameter) given the same indentation depth, resulting a relief in plastic shakedown as

indicated by the smaller enclosed area in Fig 5.17 compared with Fig 5.15(c). To facilitate

further explanation, consider an extrema, i.e. μ→∞, the material is extremely compliant 

-6 -4 -2 0 2 4 6 8 10
-6

-4

-2

0

2

4

6

8

10

12

Normalized Approach, /z
0

N
o
rm

a
liz

e
d

E
x
te

rn
a
l
F

o
rc

e
,

F
e
/ 

R



1st cycle

2nd cycle

3rd cycle

4th cycle

1st approach

2nd-4th approach

1st-4th retraction



Chapter 5

128

(E→0), and thus plasticity is unlikely to happen, i.e. only elastic shakedown is possible.  

Fig 5.18 Normalized force versus displacement for four consecutive loading-unloading cycles with μ =

1, Y = 1GPa, δmax/z0 = -8.82, S=1.35, n = 0.1.

If the value of S is decreased by increasing yield stress Y (values of Δγ and z0 are

maintained as that in Fig 5.17), one can see the plastic deformation almost occurs in the first

cycle and subsequent cycles nearly overlap with each other, resembling to elastic shakedown,

as shown by Fig 5.18. It should be borne in mind that the present elastic shakedown is

different from classical elastic shakedown, where the loading and unloading paths should

overlap with each other absolutely. In the present case, although the small area (as circled by

the red ellipse) enclosed by each subsequent cycle indicates energy dissipation, it is due to

jump instabilities rather than plastic dissipation. In the finite element method, artificial

damping was used to compensate for local instabilities. Therefore, since plastic dissipation
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does not occur in subsequent cycles, the cyclic behavior should be regarded as elastic

shakedown. Since the yield stress is increased in this case, which means the yield threshold is

enhanced, plasticity is unlikely to occur, and so is plastic shakedown.

5.4.3 Bilinear Kinematic Hardening Model

5.4.3.1 Von Mises Strain Fields

(a) δ/z0 = 0.08
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(b) δ/z0 = -1.39

(c) δ/z0 = -5.8
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(d) δ/z0 = -8.82

(e) δ/z0 = 1.95
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(f) δ/z0 = 5.13

Fig 5.19 Von Mises plastic strain fields for different penetration where μ = 0.5, Y = 0.5GPa, S=2.7, ET/E

= 0.5

In this section, plastic strain fields are routinely analyzed for the same reason as that in Sec.

5.4.2.1. Fig 5.19 presents the von Mises plastic strain filed inside the half-space

corresponding to six approach values with the same combination of μ = 0.5, Y = 0.5GPa,

S=2.7, ET/E = 0.5. As can be seen from Fig 5.19 (a), an initial plastic strain up to 0.1% is

observed at the contact periphery corresponding to δ = 0.08z0. As approach increases,

plasticity also appears on the axis of symmetry beneath the surface as shown in Fig 5.19(b),

and the value of plastic strain corresponding to this area begins to exceed that at contact

periphery with further approach as shown by Fig 5.19(c). At the maximum approach δ =

-8.82z0, the maxium plastic strain up to 0.78% is observed at the axis of symmetry, while at

the contact periphery, the plastic strain is up to 0.4% as shown in Fig 5.19(d). During
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unloading stage, one can observe that the plastic strain fields keep altering by comparing Fig

5.19 (d), (e) and (f) (e.g. the circled area), which differs from the phenomenon in Sec.5.4.2.1

where plastic strain fields are maintained. Essentially, this is the distinguishing feature of

kinematic hardening whose subsequent yield surface is translated and plastic deofation can

still occur during unloading as illustrated by Fig 5.4.

5.4.3.2 Multiple loading-unloading cycles

Fig 5.20 Normalized force versus displacement for four consecutive loading-unloading cycles with μ =

1, Y = 0.5GPa, S=2.7, ET/E = 0.5
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Fig 5.21 Normalized force versus displacement for four consecutive loading-unloading cycles

corresponding to non-adhesive contact.

In this section, analysis of dimensionless force-penetration curve is routinely presented for the

same purpose as that in Sec. 5.4.2.2. Unlike Sec.5.4.2.2, the ratio ET/E replaces the hardening

exponent n, and together with μ and S acts as governing parameters.

Fig 5.20 shows the variation of normalized force with the normalized approach for μ = 1,

S=2.7, ET/E = 0.5. Except the loading half of first cycle, each loading half of subsequent three

cycles can overlap with each other, and each unloading half of the four cycles can also

coincide. The areas enclosed by the three subsequent cycles are almost identical, implying a

steady-state plastic shakedown. Compared with Fig 5.17, it is indicated that the whole system

can converge to a steady-state plastic shakedown with less cycles in kinematic hardening

situation. Fig 5.21 is the non-adhesive counterpart of Fig 5.20, it can be seen that for

kinematic materials, plastic deformation only occurs in the first cycle and the subsequent
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cycles shake down to elastic behaviors if no surface adhesion exists.

If S is halved by doubling yield stress Y while other two governing parameters (i.e. Δγ and

z0) in Fig 5.20 are maintained, it can be seen that plastic shakedown is inconspicuous as

indicated by Fig 5.22. In fact, as can be seen, the subsequent cycles almost overlap with each

other, implying a trend to elastic shakedown, and this is due to that material with high yield

stress is unlikely to undergo plastic deformation, and thus plastic shakedown as is previously

interpreted.

Fig 5.22 Normalized force versus displacement for four consecutive loading-unloading cycles with μ =

1, Y = 1GPa, S=1.35, ET/E = 0.5.
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Fig 5.23 Normalized force versus displacement for four consecutive loading-unloading cycles with μ =

0.5, Y = 1GPa, S=1.35, ET/E = 0.5.

If Tabor parameter μ decreases to 0.5 while the rest parameters in Fig 5.22 are maintained,

one can find plastic shakedown reoccur as shown by Fig 5.23. The interpretation for this

difference is that stiffer materials (low value of Tabor parameter μ) are likely to undergo

plastic deformation given other identical conditions as former interpretation.

Consider tangential modulus ET decreases to one tenth of E with other two parameters

unchanged as that in Fig 5.23, one can observe that plastic shakedown also occurs in this

situation (see Fig 5.24) with difference that the enclosed area by subsequent cycles is

significantly larger than that in Fig 5.23. The potential reason for this difference is that

materials with low value of ET/E are more likely to undergo plasticity provided other same

conditions. For a further interpretation, consider two extrema:
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 ET/E→1, i.e. elastic material, then elastic shakedown is more likely to occur 

 ET/E→0, i.e. elastic-perfect plastic material, then plasticity is more likely to happen, and 

so as plastic shakedown.

Fig 5.24 Normalized force versus displacement for four consecutive loading-unloading cycles with μ =

0.5, Y = 1GPa, S=1.35, ET/E = 0.1.

5.5 Summary

In this chapter, repetitive adhesive contact between a rigid spherical indenter and an

elastoplastic half-space was studied by means of finite element simulation. The following

conclusions can be made in this chapter

 By only inputting elastic parameters in FEM, the results coincide well with that by using

self-consistent method in terms of force-penetration curve and relationship between the
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position of instability jump and Tabor parameter. In FEM, jump instabilities manifest

themselves as brittle jumps.

 Apart from Tabor parameter for its elastic counterpart, in adhesive contact, there is

another parameter S governing the mechanic behavior of the indenter-substrate system.

In adhesive contact, lower indentation depth is needed to initiate first yield of substrate

material compared with its non-adhesive counterpart. As S increases, the first yield can

even occur before contact.

 The plastic strain field is an important index for the implementation of hardening manner

in finite element simulation. Plastic strain field is maintained in isotropic hardening

materials during retraction of indenter, which differs from its kinematic hardening

counterpart.

 In non-adhesive repetitive contact, only elastic shakedown can happen, whereas in its

adhesive counterpart, there is probability for the occurrence of plastic shakedown, as

long as the relevant governing parameters are appropriately selected. It is surface

adhesion that incurs potential plastic shakedowns.

 Plastic shakedown can also occur in isotropic hardening materials undergoing repetitive

adhesive contact. For isotropic hardening material, Tabor parameter, plasticity parameter

and hardening exponent govern the dimensionless force-penetration curve. Low Tabor

parameter, high plasticity parameter and low hardening exponent result in plastic

shakedown, whilst high Tabor parameter, low plasticity parameter and high hardening

exponent lead to elastic shakedown.

 For kinematic hardening material, Tabor parameter, plasticity parameter and ratio of ET/E.



Chapter 5

139

Low Tabor parameter, high plasticity parameter and low ratio of ET/E yield to plastic

shakedown, opposed to high Tabor parameter, low plasticity parameter and high ratio of

ET/E that cause elastic shakedown.
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6 Determination of Work of Adhesion of Pancreatic MIN6 cells

under AFM indentation (Spherical probe)

6.1 Introduction

As quantified initially by Tabor parameter, if the contacting bodies are extremely soft,

adhesion forces become significant. Johnson-Kendall-Roberts model of adhesion has proved

successful in quantifying the work of adhesion between two soft elastic bodies. Shull[25][26]

provided a remarkable view of this theory and the experimental methods, where he indicated

that adhesion forces are important when the contacting bodies are sufficiently small or

extremely compliant, including living cells and soft tissues i.e. adhesion forces should play an

important role in cell indentation.

Conventionally speaking, cell indentation is frequently realized by means of atomic force

microscope (AFM) instrumentation. As mentioned in Chapter 1, the atomic force microscope

(AFM) is a powerful instrument for studying topographical and mechanical properties such as

elastic modulus and viscoelasticity for biological materials[146]. The high resolution and

reasonably fast speed of AFM measurements have made it possible to investigate the

topography and mechanical properties of living biological cells or tissues[147][148], which is of

significant biomedical importance. The topography and mechanical properties are reliable

indicators of cellular physiological status, because they are determined by cytoskeleton

together with the cytoplasm membrane and numerous proteins[8]. Any change in cellular

physiology may cause alternations in its topographical or mechanical behaviors. As a result,

the correlations between cytoskeleton and its topographical and mechanical properties could
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lead to possible medical diagnosis of pathological cells by comparing these properties

determined from AFM indentation with its normal counterpart. A pioneering example using

AFM in medical diagnostics was reported by Zachee[8] where changes in shape of red blood

cells were observed in patients after splenectomy. Another typical example is given by

Lekka[7] who showed that chitosan has more significant effect on stiffness of normal than

cancer cells.

However, in many of the AFM indentations, conditions were chosen such that the van der

Waals forces are expected to dominate1. The adhesion, characterized as adhesion force, is

mainly derived from van der Waals forces. As a result, adhesion forces are inevitably

associated with performance in atomic force microscopy (AFM) indentation. On the other

hand, since the adhesion between cells or micro-particles is interfacial property affected by

combination of cyto-membrane and cytoskeleton, detection of variation in cell adhesion

behavior may serve as alternative method for single-cell-based diagnostics.

Since the adhesion between the cell membrane and the micro-particle is crucial, a model

that could quantitatively study cell adhesion would be necessary for results interpretation.

Although Hertz contact theory has been routinely used for determination of cell elasticity

based on AFM indentation experiments, it might not work appropriately for adhesive contact

as indicated by analyses in Chapter 1. Generally, for cell-to-cell indentation, adhesion has

been characterized the maximum unbinding force (Fmax) and work of detachment (WD)

obtained from force-versus-displacement curve (retraction part) acquired from AFM

indentation[17][149][150], as illustrated in Fig 6.1. As pointed in Chapter 1, these two parameters

may not be intrinsic enough to feature cell adhesion since both of them are dependent of the
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size and profile of the indenter as well as the indentation depth. Alternatively, a previous

study[151] adapted work of adhesion to characterize cell adhesion since it is independent of

indentation depth and AFM tip geometry and thus might depict cell adhesion essentially.

Displacement of the indenter
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Fig 6.1 Schematic of the retraction part of force-displacement curve from cell AFM indentation. The

green area enclosed by the curve and horizontal axis denotes work of detachment (WD) whilst the

minimum (negative) value of indentation force denotes maximum unbinding force (Fmax).

In this chapter, in light of adhesive contact between AFM tip and cell, the cell is first

considered as a spherical shape, and Johnson-Kendall-Roberts (JKR) model is applied to fit

the force-displacement curves obtained from AFM indentation experiments[17]. Then the cell

is treated as a layer with finite thickness to provide more realistic modeling. In this regard, a

more “generalized” JKR model[25][26] is used to fit the force-displacement curves. It is found

that both the models provide good agreement with experimental results of force-displacement

curves. The “generalized” model has the potential to be implemented in various studies that

are investigating malignant cells for the accurate detection of work adhesion in AFM



Chapter 6

143

indentation.

6.2 Methodology

6.2.1 Data preparation

The data used for testing the theoretical model (see Fig 6.1) were extracted from the recently

reported AFM indentation experiments of pancreatic cells[17][152]. The cell preparation and

experimentation have been described in detail elsewhere[17]. Herewith, we have used MIN6

cells cultured for 48h with low glucose which are named as Sample A and cells cultured in

48h +R568 are named as Sample B[17][152] (In following context, Cell B is also termed as

treated cell).

6.2.2 Theoretical model

In general, the cells spread on substrate in various shapes, some like spheres and some like

pancakes[17][152]. Therefore, this chapter considers cells to have either spherical or flattened

shapes, as shown in Fig 6.2 (a) and (b), respectively.

(a)
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(b)

Fig 6.2 Schematic diagrams of the AFM bead tip in contact with cells of (a) spherical shape and (b)

flattened shape

In this chapter, the cell is firstly treated as a homogeneous, incompressible and linear elastic

sphere with a typical diameter of 25µm, where the pre-stress tension in cyto-membrane can be

neglected[151] (assumption of pure elasticity of the cell will be justified in the next section).

Here, the assumption of homogeneity is given, and thus a global equivalent elastic model of

the cell can be studied[153]. Moreover, only pure elastic deformation occurs in loading and

unloading stages with no plastic deformation being considered.

As indicated by Sec.3.2.4, both DMT[22] and JKR[21] models are applicable to adhesive

contact between two micro-particles. Sec.3.2.4 has claimed the application range of these two

models in terms of Tabor parameter μ given as.

� = �
� � � � ∆ � �

� � � �
∗� � �

� �
� �⁄

(6.1)

where ∆γ denotes the work of adhesion of the probe-cell system, Ep-c
*= [(1-νp

2)/Ep +

(1-νc
2)/Ec ]-1 is the effective Young’s modulus, (Ep, νp and Ec, νc denote elastic modulus and
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Possion’s ratio of the two contacting spheres, probe and cell, respectively), Rp-c is the reduced

radius of curvature (Rp-c = (1/Rp+1/Rc)-1), where Rp and Rc denote the radius of the probe and

cell respectively, and z0 is the atomic equilibrium distance at which the repulsive force equals

to attractive force. For the adhesive contact between a cell and a polystyrene bead

(polystyrene bead is used in the AFM indentation because it is easier to glue to the AFM

cantilever), the radius of MIN6 cell Rc is typical of 12.5μm, and the elastic modulus Ec of cell

is in the order of several hundred Pascal. Previous studies have found the value of Ec is about

500Pa by using Hertz contact theory to fit the F-d curve of an AFM indented MIN6 cell[17].

The work of adhesion ∆γ ranges from 20 to 100μJ/m2, and here ∆γ is assumed to be

50μJ/m[2][151]. A typical value for z0 is 0.5nm and cell is treated as incompressible, i.e.

Poisson’s ratio νc = 0.5. The elastic modulus of the bead can be treated infinite since it is very

rigid compared with the delicate cell, i.e. Ep-c
*= Ec/(1-νc

2). Substituting these parameter values

into Eq. (6.1), the Tabor parameter is calculated approximately µ = 556 and thus the JKR

model is more preferable in this case (µ>5).

Fig 6.2(a) illustrates schematically the spherical cell subjected to a micro-bead indenter.

According to JKR model, the applied indentation force F and the indentation depth δ are

related by:

� =
� �

� � � �
− �

� � � ∆ �

� � � �
∗ (6.2)

� = �
� � � � � �

� � � � �
∗ � 1 +

� � ∆ � � � � �

�
+ � � � ∆ � � � � �

�
+ �

� � ∆ � � � � �

�
�
�

� �

� �⁄

(6.3)

where a denotes contact radius.
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6.3 Results and Discussions

Fig 6.3 shows the result of force against displacement corresponding to MIN6 cells. The

micro-bead was initially made contact to the cell with the applied force of 100pN as the

baseline. The maximum indentation depth of cell is approximately 0.7μm. Thus, the substrate

effect is negligible since the indentation is smaller than 10% of the sample

thickness[154][155][156].
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(b)

Fig 6.3 Example of force-versus-displacement curves obtained by AFM indentation on (a) sample A

and (b) sample B cells.

6.3.1 Verification of Cellular Viscous Properties

The enclosed area between the loading and unloading curves where force is positive

(compressive force) reveals that the cell exhibits viscoelastic property, as shown in Fig 6.3.

The gap suggests the energy supplied by the tip is not fully recovered by the cell (while in an

absolute elastic material it will be fully recovered), which confirms that living cells are

viscoelastic[157]. The viscoelastic behavior is ascribed to intrinsic viscoelasticity of the

cytoplasm[158]. Viscous relaxation time is one typical time scale for characterizing this

viscoelastic behavior which causes difference in force indentation measurements if different

indentation velocities are applied[113][159]. The influence of viscosity effect on cell indentation
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can be reduced or even neglected if an indentation is performed in a time that is much longer

than the force relaxation time of the cell[160]. Therefore, before fitting JKR model to the

experimental data, the viscous relaxation time of the cell-AFM indentation system has to be

estimated and then the evaluated viscous relaxation time can be compared with the

characteristic time of indentation (loading time). In general, elastic properties are derived

from the unloading curve as the unloading process is of purely elastic nature. As one assumes,

there is no plastic deformation occurs in the cell indentation. Thus the energy loss is

considered due to viscoelastic properties. Viscoelastic Hertz contact model can be fitted to the

loading part of the F-d curve to determine the viscous relaxation time. According to Hertz

model, if the cell is regarded as pure elastic, the dependence of indentation force (F) on

indentation depth (δ) is expressed as:

� =
� √ �

� ( � � � � )
� � � �⁄ (6.4)

where E, ν denote the Young’s modulus and Poisson’s ratio of the cell respectively. For its

viscoelastic counterpart, according to Sec.4.2.3, substituting the elastic modulus in the Hertz

contact model with the modulus-displacement convolution in the time domain leads to the

relationship between the indentation depth δ(t) and the applied force F(t) as:

� (� ) =
� √ �

� ( � � � � )
� (� ) ∗ [� (� )]� �⁄ (6.5)

where E(t) is the relaxed modulus, and

� (� ) ∗ [� (� )]� �⁄ = ∫ � (� − � )
�

� �

�

� � � �
[� (� )]� �⁄ � � 	 (6.6)

In our indentation experiment, because the bead approached and detached the cell in a

constant speed v, the indentation depth can be described as:

� (� ) = � � (6.7)
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In order to determine the viscoelastic response for this indentation system, Eq. (6.5) is

transformed into the Laplace domain and solved for stress/strain ratios:

� (� ) =
� √ �

� ( � � � � )
� (� ) · � (� )� �⁄ (6.8)

where � (� ) = ∫ � (� ) � � � � � � ,
�

�
� (� ) = ∫ � (� ) � � � � � � ,

�

�
and � (� )� �⁄ = ∫ [� (� )]� �⁄ � � � �

�

�
� �

Substitution of Eq. (6.7) into Eq. (6.8) yields:

� (� ) =
� √ � � � �⁄

� ( � � � � )
� ( � ) ·

� ( � �⁄ )

� � �⁄ (6.9)

Where Γ(•) is gamma function. In this chapter a Kelvin model was applied to describe the

viscoelasticity of MIN6 cells shown in Fig 6.4. Here E denotes the Young’s modulus and η is

the viscosity coefficient.

Fig 6.4 Schematic diagram of Kelvin model where a dashpot is in parallel with a spring undergoing the

same deformation.

Thus, the constitutive relationship for the cell is:

� = � � + �
�

� �
� (6.10)

where σ and ε denote stress and strain for any point within the cell. Transforming Eq. (6.10)

into its Laplace domain results in:

� ( � )

� ( � )
= (� + � � ) (6.11)

where � (� ) = ∫ � (� )� � � � � �
�

�
, � (� ) = ∫ � (� )� � � � � �

�

�
. According to the correspondence

principle69, the general elastic and viscoelastic solutions can be combined in the Laplace
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domain to obtain an equation describing the modulus of Young’s modulus, i.e.

� (� )� � � � � � =
� ( � )

� ( � )
= (� + � � ) (6.12)

Substituting of Eq. (6.12) into Eq. (6.9), and transforming the Laplace form back into its time

domain, yields:

� (� ) =
� √ � � � � �⁄

� ( � � � )
� � � �⁄ +

�

�
� � � �⁄ � (6.13)

where τ = η/E is the relaxation time.

It should be borne in mind that Kelvin model is just one special circumstance of

three-element solid and the estimated viscous relaxation time should coincide in order with its

Kelvin counterpart if the loading curve is fitted by a more universal three-element model.

However, since this model can allow an explicit expression between force and time, Kelvin

model is preferred herewith for simplicity of calculation.

(a) (b)

Fig 6.5 Typical force-versus-time curves during loading part and the best fitting curves by using Kelvin

model for (a) sample A and (b) sample B.
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Fig 6.6 Viscous relaxation time of the two type cells. The data are presented as average values with

standard deviations.

Fig 6.5 (a) and (b) show the force-time curves obtained from the loading part and their best

fitting curves by Kelvin model corresponding to MIN6 cells. Therefore are 24 of sample A

and 3 of sample B F-d curves. The determined viscous relaxation time of MIN6 cells is shown

in Fig 6.6. The average value of viscous relaxation time of sample A is 0.01sec which is less

than one tenth of loading time as seen in Fig 6.5(a), and for sample B, the value is 0.004 sec

which is almost 1/60 of the loading time as shown in Fig 6.5(b). As a result, the influence of

viscoelasticity can be excluded if the MIN6 cell is treated as pure elastic.

6.3.2 Fitting results by using JKR model of bead on spherical cell

Fig 6.7 presents typical results of the force-displacement curves obtained by AFM indentation

and the best fitting curves by using JKR model for the retraction part of MIN6 cells. During

the loading stage (as illustrated in blue lines in Fig 6.7), the sensed reaction force is

dominated initially by the stiffness of the AFM cantilever and then by the stiffness of the
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measured cell. For the unloading process, as show in red lines in Fig 6.7, the indentation force

decreases to a negative region which represents adhesive forces between the cell and the

indenter. The adhesion force is characterized as a short-range force (the adhesive force in JKR

model is considered as short-range force), and will not significantly affect the

force-displacement curve during the loading stage. Before the contact breaks, the short-range

adhesion force start to show the effect, and thus the adhesion force is characterized as

pull-force (the negative force region in Fig 6.7) which is needed to overcome the adhesion

force during indenter retraction. Consequently, only the retraction stage, as shown in red lines

in Fig 6.7, can be used to facilitate a direct fitting by JKR model even though theoretically

speaking both loading and unloading parts are influenced by adhesion force[151]. It can be seen

that the JKR model fits very well with most of the unloading curve data except for the

beginning part. This is because the initial unloading part was influenced by the creeping effect

of the cell-indenter interaction. Therefore, the JKR model can best describe the experimental

results of the unloading curve as shown above.
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Fig 6.7 Typical force-displacement curves and the best fitting curves by using JKR model for (a)

Sample A and (b) Sample B cells.
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Fig 6.8 Statistics of (a) Young’s modulus and (b) work of adhesion respectively.
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minimum value implying the bead begins to detach the cell. A further retraction of the probe

suggests the indentation force begins to yield accompanying with some sudden abrupt

decrease of adhesion force as shown in Fig 6.7. This jump-off phenomenon is very commonly

observed in some cell AFM indentation experiments. In practice this part of the retraction

curve is difficult to model and many efforts have been made previously. Sirghi et al[151]

observed this jump-off instability in their mouse fibroblast AFM indentation experiments and

attributed this sudden decrease of adhesion force to discontinuous decrease of tip-cell

membrane contact area. According to his assumption, tethering of cell membrane to the AFM

tip surface at a certain contact line will result in jump in contact area, and this tethering is

followed by a sudden detachment and tethering to another contact line. Moreover, such

consecutive tethers and detaches of the cell and AFM tip are also reported and analyzed by

Sun et al[ 161 ] Fitting JKR model to this abrupt force variation will cause errors in

determination of the work of adhesion and thus this abrupt discontinuous part after maximum

adhesion force has been discarded during fitting.

Fig 6.8 shows the fitting results of extracted Young’s modulus and work of adhesion from

24 of sample A and 3 of sample B force-displacement curves by using JKR model of bead on

spherical cell. Fig 6.8(a) shows the average elastic modulus for sample A cells is 380Pa, and

sample B is 570Pa, whilst the average work of adhesion is 36.7μJ/m2for sample A and

15.4μJ/m2for sample B, as shown in Fig 6.8 (b). It is worth noting that the determined work of

adhesion coincides with the previously reported values[151] in the same order of magnitude.

6.3.3 Fitting results by JKR model of bead on flattened cell
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In the previous section, cell was assumed as a sphere subjected to AFM indentation. The

contact radius is small enough compared with the thickness of the cell, and thus the cell can

be treated as semi-infinite space. However, this assumption does not always hold because cell

may exhibit mobility under indentation. The height of the cell may be reduced to a finite-size

compared with contact radius and in this regard the extracted parameters will be influenced by

the effect of finite size. In this section, cell is considered to be flattened with finite thickness,

and this represents a more realistic model. Here, we first propose a thickness value of 25μm,

the same as the diameter of the spherical cell. Compared with the bead on a spherical cell, the

effect of finite-size on the determined parameters needs to be verified. For simplicity, the cell

can be regarded as a flat sheet with finite thickness subjected to AFM indenter, as illustrated

in Fig 6.9 (a).

(a)
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(b)

Fig 6.9 (a) Schematic diagram of the non-adhesive contact between a rigid bead and an elastic layer

with finite thickness h. (b) Scheme of the adhesive contact between a rigid bead and an elastic layer.

First, the contact is treated as non-adhesive, frictionless, and for this case, Shull et al[25][26]

gave a semi-empirical approximation for the dependence of applied load P’, indentation depth

δ’ and compliance C on the contact radius a as

� � = � � (� )� � �
�

�
� , � � �

�

�
� = 1 + � (

�

�
)� (6.14)

� � = � � (� )� � �
�

�
� , � � �

�

�
� = 0.4 + 0.6 � ( �

� .� �

�
)

(6.15)

� = � � (� )� � �
�

�
� , � �

� � �
�

�
� = 1 + [

� . � �

( � �⁄ ) � (� �⁄ )�
+

� . � ( � � � � )

( � �⁄ )
]� � (6.16)

where Ph and δh are the externally applied load and indentation depth respectively

corresponding to a contact radius a in Hertzian contact model. Ch is the compliance of Hertz

contact model with a contact radius a, i.e.

� � (� ) =
� � � �

� ( � � � � ) �
(6.17)

� � (� ) = � � �⁄ (6.18)

� � (� ) =
�

� � � ∗ (6.19)

β = 0.15 for the frictionless case, and β = 0.33 for the full-friction case. fp(•) and fδ(•) are

geometric factors which mediate the effect of thickness. From Eq. (6.14) and (6.15), it is

shown that P’ and δ’ will reduce to Ph and δh when h˃˃a.

Second, by analogy to the derivation of JKR model, Shull[25][26] developed the “generalized”

JKR model to describe the adhesive contact between a rigid indenter and a flat sheet with

finite thickness, as shown in Fig 6.9(b). In this “generalized” model, the expressions for the

energy release rate ℊ is extended to the adhesion of relatively thin layers by using the
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approximation of compliance given by Eq. (6.16). Simple expressions are only available for

incompressible materials with ν = 0.5 as

ℊ =
� � � � � �

�

� � � ∗ � �
� � � �

�

�
� , � � � �

�

�
� =

� . � � � � . � (� �⁄ )� � ( � �⁄ ) �

[� . � � � ( � �⁄ ) � ( � �⁄ ) � ]�
(6.20)

ℊ =
� ∗ � � � � � �

�

� � �
� � � �

�

�
� , � � � �

�

�
� = 1 + 2.67 �

�

�
� + 5.33 �

�

�
�
�

(6.21)

where P’ and δ’ are the applied load and indentation depth corresponding to contact radius a

as given by Eq. (6.14) and (6.15) when adhesion is absent. fGp(•) and fGδ(•) are also geometric

correction factors. By letting ℊ = ∆γ, equilibrium is reached and thus the externally applied

load P and indentation depth δ are related by the contact radius a by transforming Eq. (6.20)

and (6.21) into

� = � � − � 8 � � ∗ � � ∆ � � � �
� � (

�

�
) (6.22)

� = � � − �
� � � ∆ �

� ∗ � � �
� � (

�

�
) (6.23)

where P and δ are the indentation force and depth respectively in flattened cell indentation.

For comparison purpose, we have carried out the modelling process on flattened cells with

variable thickness of 25μm (case 1), 14μm (case 2), 9μm (case 3) and 3μm (case 4). As

mentioned before, the cells may have spread on substrate with different shapes and

thicknesses. Thus the penetration depth within 10% of the film thickness could not be

guaranteed in reality. To accommodate the situation, we have chosen the possible film

thickness from the thickest (case 1) to the thinnest (case 4).
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(a)

(b)

Fig 6.10 Typical force-displacement curves and the best fitting curves by using “generalized” JKR

model for (a) normal and (b) treated cells corresponding to case 1.
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(a)

(b)

Fig 6.11 Typical force-displacement curves and the best fitting curves by using “generalized” JKR

model for (a) normal and (b) treated cells corresponding to case 2.
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(a)

(b)

Fig 6.12 Typical force-displacement curves and the best fitting curves by using “generalized” JKR

model for (a) normal and (b) treated cells corresponding to case 3.
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(a)

(b)

Fig 6.13 Typical force-displacement curves and the best fitting curves by using “generalized” JKR
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model for (a) normal and (b) treated cells corresponding to case 4.

(a) (b)

Fig 6.14 The statistics of (a) Young’s modulus and (b) work of adhesion for both sample cells

determined by all the models in this chapter

Table 6.1 Values of Young’s modulus determined by the two JKR models and Hertz model.

Cell Type Bead on

Spherical

Cell (Pa)

Bead on

Flatten Cell

Case 1(Pa)

Bead on

Flatten Cell

Case 2(Pa)

Bead on

Flatten Cell

Case 3(Pa)

Bead on

Flatten Cell

Case 4(Pa)

Hertz

contact

model

sample A 570±107 434±72 343±55 291±45 171±16.7 558±67

sample B 383±20 270±18 207±20 206±14 54±4 360±53

Table 6.2 Values of work of adhesion determined by the two JKR models.

Cell Type Bead on

Spherical Cell

(μJ/m2)

Bead on

Flatten Cell

Case 1 (μJ/m2)

Bead on

Flatten Cell

Case 2 (μJ/m2)

Bead on

Flatten Cell

Case 3 (μJ/m2)

Bead on

Flatten Cell

Case 4 (μJ/m2)

sample A 15.39±3.73 11±2.5 10.6±2.5 10.1±2.9 9.92±2.32

sample B 36.67±7.64 36.7±4.4 26.3±4.9 25±4.2 19.3±3.08

Fig 6.10-6.13 present the aforementioned force-displacement curves obtained by AFM

indentation and the best fitting curves by the “generalized” JKR model with four different
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thicknesses. It is suggested that the “generalized” JKR model can also fit the experimental

results of the unloading curve.

Fig 6.14 (a) and (b) show the statistics of determined Young’s modulus and work of

adhesion from the aforementioned 24 sample A and 3 sample B force-displacement curves,

and the calculated values are listed in Table 6.1 and 6.2.

For comparison purpose, one has also applied Hertz contact model to fit the loading part of

the force-displacement curve, and found out that the calculated Young’s modulus of the MIN6

cells is very close to that determined by basic JKR fitting. However, the fitting result by Hertz

model is not as good as those by JKR and “generalized” JKR models as indicated by Fig 6.15.

Fig 6.15 Typical force-indentation depth curve (loading part) and the best fitting curves by Hertz

contact model

It can be seen from Fig 6.14 (a), for sample B, the elastic modulus calculated by

“generalized” JKR model is close to that of basic JKR for case 1, remains fairly steady for the

cases 2 and 3, and decreases to a much smaller value for the very thin case 4. The results
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show that the elastic modulus of Sample A is in general higher that of Sample B. For the

determined work of adhesion of cells, Sample B is much higher than Sample A. This indicates

that sample B cells are softer and exhibit higher adhesion.

Fig 6.16 Statistics of Young’s modulus (bold solid lines) and work of adhesion (thin solid lines) for

Sample A (blue lines) and Sample B (red lines) with four thickness cases.

Fig 6.16 presents a direct comparison between the four cases for sample A and B in terms

of Young’s modulus (Pa) and work of adhesion (μJ/m2). The determined work of adhesion of

Sample A maintains almost the same value of 10μJ/m2 regardless of the cell thickness, while

the counterpart sample B decreases dramatically as cell thickness decreases (see the red thin

solid line in Fig 6.16), which is attributed to the fact that softer material (sample B) is more

sensitive to the substrate effect. For both samples, the determined Young’s modulus decreases

as the cell thickness decreases. This trend seems inconsistent with the general perception that

substrate effect may lead to an increase in the calculated Young’s modulus. However, it
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should be born in mind that the situation here is very different and can be explained as follows.

For the four cases, we use different thicknesses to fit the same force-displacement curve. If we

use Eq. (6.14) – (6.16) to fit the loading part of the F-d curve, the compliance C is fixed

regardless of the cell thickness. Substituting Eq. (6.19) into (6.16) yields

� =
� � ( � �⁄ )

� � � ∗ (6.24)

For the same contact radius a, smaller thickness h corresponds to larger a/h, resulting to lower

fc(a/h), and hence the determined E* should decrease in order to keep the same compliance C.

Although we used Eq. (22) and (23) to fit the retraction part of the F-d curve, the involvement

of work of adhesion will not alter the effect of cell thickness on the determined Young’s

modulus in general, and conclusively, thinner thickness will produce lower Young’s modulus

by fitting the same F-d curve. It is worth noting that the case 1 and case 4 are two extreme

situations and cases 2 and 3 are more realistic representation of the concerned cells.

6.3.4 Finite element simulation

In JKR model, a strong adhesive force is assumed to act at the equilibrium distance z0, which

is treated as a Delta function enclosing an area ∆γ[81] as shown by Fig 3.8 (b). Since the results

by self-consistent method can be applied to JKR model if μ ≥ 5 (see Sec. 3.2.4), the 

force-displacement curve by FEM method developed in Sec. 5.4 could be used to fit the

existing F-d data from MIN6 cell indentation with respect to retraction part.
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(a) (b)

Fig 6.17 Typical force-displacement curves and the best fitting curves by using FEM (μ = 5) for (a)

Sample A and (b) Sample B cells (in reduced coordinates). The red bold and thin blue lines denote

experimental data and FEM simulation results, respectively.

Fig 6.17 shows the fitting results corresponding to FEM and experimental data. For the

FEM, the value of R, z0 and Δγ are listed in Table 5.2, while for the experimental data, R = Rp-c

= (1/Rp+1/Rc)-1, E and Δγ were selected such that good fit would be presented. As may be seen

from Fig 6.17, the F-d curve by FEM can mostly overlap its experimental counterpart except

the area circled by the ellipses. For the cells, the stepwise curve is due to multiple tethers as

analyzed in Sec 6.3.2, which is ascribed to cell inhomogeneity after all. In the FEM,

nevertheless, the elastic substrate is assumed to be homogeneous, resulting in the “brittle”

separation as shown by the vertical curve in Fig 6.17. In general, the FEM can also describe

the retraction process of cell with AFM probe.
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(a) (b)

Fig 6.18 Results of extracted Young’s modulus and work of adhesion respectively. The data are

presented as average values with standard deviations.

Fig 6.18 shows the fitting results of extracted Young’s modulus and work of adhesion from

24 (sample A) and 3 (sample B) force-displacement curves by using FEM model of bead on

spherical cell. Fig 6.18 (a) shows the average elastic modulus for sample A cells is 435Pa,

and sample B is 386Pa, whilst the average work of adhesion of sample A and B is 5.2μJ/m2 is

24.5μJ/m2 respectively as shown in Fig 6.18(b). Although the values of these two parameters

differ from that in Fig 6.8 by a small margin, the tendency of them (E and Δγ) between cell A

and B is the same.

6.4 Summary

In this chapter, the adhesion between the surface of polystyrene micro-bead and

cyto-membrane of biological cells has been investigated. The adhesion at the contact between

AFM tip and the cell, Johnson-Kendall-Roberts (JKR) model has been used to fit the

force-displacement curves obtained. The effect of viscoelasticity of cell under the AFM

indentation can be neglected since the extracted viscous relaxation time is very small
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compared with the loading time period. The MIN6 cell has been modeled as first a sphere and

then a flattened cell with different thicknesses. Firstly, the cell and the indenter are modeled as

two spheres, and the JKR model has been applied to fit the experimental data of the retraction

part of the force-displacement curves. Secondly, the indented cell is treated as a layer with

four different finite thicknesses, and “generalized” JKR model is used to fit the same

force-displacement curves. Summary is listed as follows:

 The results have shown that both the basic JKR and “generalized” JKR models can

effectively describe the behavior of the unloading force-deformation curves.

 The “generalized” JKR model can be used for more realistic cell modelling with various

cell thicknesses and both models can identify the property variations of the two types of

cells.

 FEM proves an effective means to simulate the F-d curve. Although the values of

parameters extracted by FEM differs from that of JKR fitting, the tendency of them

between control cell and treated cell remain the same.
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7 Determination of Work of Adhesion of human hepatocellular

carcinoma by AFM indentation (Vickers probe)

7.1 Introduction

In last chapter, JKR model was applied to a very soft material, i.e. MIN6 cells, to characterize

its surface adhesion. Both Young’s modulus, and work of adhesion can identify the difference

between normal and treated cell. In terms of this method, this chapter will apply JKR model

to characterize the difference between another biological cell and its treated counterpart, i.e.

human hepatocellular carcinoma and its fullerenol treated counterpart.

Fullerene family has been playing an important role for potential applications in

biomedicine such as cancer diagnosis and therapy[162][163][164]. The fullerenol can induce

apoptosis process which is associated with cytoskeleton disruption[165]. Cancer cells affected

by fullerenols could exhibit variations in mechanical properties such as elastic stiffness and

these changes in cancer progression are helpful to understand the individual differences

between normal and cancer cells[166][167]. The atomic force microscope (AFM) indentation can

offer an accurate mechanical measurement of individual living cells[110][168][169]. On the other

hand, the adhesion phenomenon, characterized as negative force in the experimental

force-displacement curves obtained in AFM indentation, was widely reported over the last

two decades[150][160][170][171]. The adhesion behavior of cells with other nanoparticles is crucial

for the biocompatibility of implants[172]. In recent years, it has become clear that adhesion

molecules are involved in tethering cells to specific locations[173]. Adhesion molecules are

transmembrane molecules that are linked to cytoskeletal elements (actin)[117]. Since fullerenols
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have appreciable effect on cytoskeletal structures, the adhesion property of cancer

cyto-membrane may also alter due to fullerenol treatment.

This chapter will present investigation of mechanical properties by AFM nanoindentation

on human hepatocellular carcinoma cells treated with fullerenol for 24, 48 and 72 hours.

Atomic force microscope is routinely used to investigate the morphology and biomechanical

properties of living carcinoma cells, and adhesion phenomenon (negative force) is detected in

the obtained force-displacement curves. It is found that adhesion phenomenon is dependent

on time duration of fullerenol treatment. The control cells and the cells exposed to fullerenol

for 24 hours showed insignificant adhesion while the rest two kinds of cells exhibited

conspicuous adhesion. The fitted JKR model provides good agreement with the experimental

results. The changes of the determined work of adhesion (Δγ) due to different periods of

fullerenol treatment are provided.

7.2 Methodology

7.2.1 Cell Preparation

SMCC-7721 cells were obtained from Roswell Park Memorial Institute (RPMI)-1640 media

with 10% of fetal bovine serum (FBS) and antibiotics (penicillin–streptomycin solution). The

commercial water-soluble fullerenol powder with the general formula C60(OH)24 was

dissolved in deionized water at a concentration of 2.7mM/ml, and it was then diluted with

RPMI-1640 media with 10% of FBS to 0.53mM/ml, which was used for the fullerenol

treatment solution stored at 41℃ . The Maintenance of SMCC-7721 cells and sample

preparation have been described in detail elsewhere[167]. Here, one labeled control cells as cell

A, which were not exposed to fullerenol and being cultured for 24 hours in the physiological
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solution, and marked cells exposed to fullerenol for 24, 48 and 72 hours as cell B, C and D

respectively. In this chapter, cell B (treated for 24 hours) consists of 12 live cells, while others

are 7 cells each.

7.2.2 Atomic force microscope

The module of the AFM employed in this chapter is JPK NanoWizard® 3 Bioscience, which

was used for both indentation and cell imaging. It was mounted on an inverted microscope,

allowing the AFM and optical microscope imaging together. The criterion for cantilever

selection is that the compliance of the cantilever should be around the range of the sample

compliance. For very soft and delicate cells, the softest cantilevers are available with spring

constants ranging from 10 to 30mN/m. Therefore, a silicon nitride cantilever whose spring

constant is 30mN/m, was adopted for cell-bead indentation in this chapter. The probe is a

square pyramid tip (Vickers) with a half-opening angle of 25° (half-angle to face), and its

radius and height are 10 nm and 2.5 – 8 μm respectively as illustrated in Fig 7.1. The approach

and retraction speeds were kept constant at approximately 2.5 μm/s for all experiments to

relieve viscosity effect.

(a) (b)
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Fig 7.1 Microscope of (a) top of cantilever and (b) the silicon nitride indenter.

Fig 7.2 Scheme of principle of force-displacement measurement by AFM.

Fig 7.2 illustrates the principle how AFM obtains the force-displacement curve. The sample

substrate is fixed by setup. The AFM cantilever is moved vertically by the piezoelectric

scanner. Owing to the compliance of the cantilever, the vertical displacement z of bottom of

the cantilever does not equal the indentation depth δ after the apex of indenter begins to

penetrate the sample substrate. The cantilever itself will undergo a deflection x as shown by

Fig 7.2. For geometrical relation, one has

� = � + � (7.1)

If the deflection of cantilever is small, the indentation force F will be proportional to the

deflection x as

� = � � (7.2)

As mentioned Sec. 1.1.2, the deflection of the cantilever x could be measured in terms of the

signal (A + C) – (B + D), and the vertical displacement z is pre-set. The remaining two

unknowns, i.e. F and δ could be determined by combination of Eq. (7.1) and (7.2).

7.3 Theoretical model
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c

e

(a)

(b)

Fig 7.3 Schematic of (a) non-adhesive and (b) adhesive contact between a Vickers indenter and a

compliant semi-infinite space. α denotes the half-angle to face. The neck area in the circle in (b) is

ascribed to adhesion force.

Fig 7.3 illustrates the schematic of a soft living cell indented by a Vickers indenter, and in this

chapter, it is routinely simplified by contact between a conic and substrate material. During

the approach and retraction processes, the viscosity effect can be neglected, and only elastic

deformation is considered. As can be seen from Fig 7.1, the tip size of the silicon nitride probe

is less than that of size of SMCC-7721 cell (see Fig 7.8) by at least two orders of magnitude,

and thus the cell could be treated as a semi-infinite space. For a non-adhesive contact between
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an elastic half space and an axis symmetric indenter, Sneddon[174] gave the vertical depth of

the contact periphery δe and the contact depth δc as

� � = � � (7.3a)

� � = (1 − � )� (7.3b)

where δ denotes indentation depth, and ε is a coefficient dependent on the geometry of the

indenter-sample contact. For a conical indenter ε = 1- 2/π. During the retraction, the stiffness

of the indenter-substrate, is given as

� =
� �

� �
=

� � �

( � � � � )
(7.4)

where a denotes the radius of the contact periphery and ν is the Poisson’s ratio which is set as 0.5,

indicating the cytoplasm is incompressible[110]. P is the load applied on the indenter. For a

non-adhesive situation, elastic force Fe is the sole component of P.

� = � � (7.5)

For a conic, the contact depth δc and the contact radius a are related by

� = � � � � � � (7.6)

For a pyramid indenter, Eq. (7.4) never holds because the contact area is no long a circle. However,

numerical analysis[175][176] indicate that Eq. (7.6) is still valid if a is substituted by an effective

contact radius

� = � ∗ = �
�

�
(7.7)

where A is the projected contact area, and the corresponding error for a square pyramid

indenter is 0.012 compared with conical indenter. According to the geometry shown in Fig 7.3

(a), one has

� = (2 � � � � � � )� (7.8)
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Substituting Eq.(7.8) into Eq.(7.7) yields

� ∗ =
� � � � � �

� � �⁄ (7.9)

Substituting Eq.(7.9) into Eq.(7.4) and integrating the stiffness S with respect to δ results in

� = � � =
� � � � � �

( � � � � ) � � �⁄ � � (7.10)

If the adhesion is taken into consideration, the force applied on the indenter P should be

comprised of elastic (Fe) and adhesion (Fa) terms, i.e.

� = � � + � � (7.11)

The adhesion component term can be given as

� � = −
�

� �
(−Δ � � � ) (7.12)

where Δγ and Ac denote work of adhesion and contact area respectively. The latter is given as

� � = 4 � �
� � � � �

� � � �
(7.13)

Ignoring the effect of adhesion on the deformation, the contact depth δc is still determined by

Eq. (7.3b). Substituting Eq.(7.13) into Eq.(7.12) yields

� � = −
� � � � � � � �

� � � � � �
� (7.14)

Substituting Eq. (7.14) into (7.11) results in

� =
� � � � � �

� � �⁄ ( � � � � )
� � −

� � � � � � � �

� � � � � �
� (7.15)

Owing to the second term in Eq. (7.15), negative value of force is given when the

indentation depth is small enough, which is commonly observed in many AFM indentation

experiments on living cells[160][170]. As indicated, when Δγ equals zero (no adhesion), Eq. (7.15)

will reduce to its non-adhesive counterpart, i.e. Eq. (7.10).

7.4 Results and discussion

7.4.1 Post-processing of indentation data
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Fig 7.4 Processing of raw force-displacement curve obtained from AFM indentation.

Fig 7.4 shows a raw force-displacement curve obtained from AFM indentation. The notch

peaks at the right side of the curve is attributed to environmental noise or particles on the

media. The enclosed area between the loading and unloading curves may be ascribed to

viscoelasticity of the cytoplasm and energy dissipation caused by cell stretching of cell

membrane during indentation. Due to movement of the aqueous solution, function (1) is

adopted to remove the baseline offset in vertical deflection before further processing. In

general, the part of the curve on the right is flat, and there is no force between tip and surface,

giving the force baseline. Afterwards, function (2) is selected to automatically determine the

point where the force curve crossed the zero force line, and this point is set as origin of the x

axis. It is worth noting that this point does not necessarily equal the contact point where the

AFM indenter touch the cyto-membrane and therefore only could be treated as an indication

point for fitting a mechanical model[177]. When the “contact point” is determined, function (3)

is used to translate the coordinated system so that the origin overlaps with the “contact point”.
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The following operation (4) automatically corrects the deflection value for the bending of the

cantilever, and gives the tip sample separation. This operation is very important for the

application of fitting by Hertz or JKR model.

7.4.2 Original experimental data

During indentation measurements, live cells were generally indented 3-4 times at the same

spot and 5 different spots for one cell. Fig 7.5 shows the repeatability of F-d curves obtained

by the AFM indentations. It may be seen that there is insignificant difference between F-d

curves from the same indentation point within one cell as shown by Fig 7.5 (a). Likewise, the

F-d curves corresponding to different positions within the same cell just differ by a small

margin with each other as shown by Fig 7.5 (b), which is likely ascribed to height variation of

the cell.
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(b)

Fig 7.5 Typical F-d curves corresponding to (a) repeated indentations at the same point and (b)

different indentation positions within the same cell.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

0

500

1000

1500

2000

2500

Displacement of the Vicker indenter (m)

F
o
rc

e
(p

N
)

Retract

Approach



Chapter 7

179

(a)

(b)

-3 -2 -1 0 1 2 3

0

500

1000

1500

2000

2500

Displacement of the Vicker indenter (m)

F
o
rc

e
(p

N
)

Approach

Retract

-2 -1 0 1 2 3

0

500

1000

1500

2000

2500

Displacement of the Vicker indenter (m)

F
o
rc

e
(p

N
)

Retract

Approach



Chapter 7

180

(c)

(d)
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Fig 7.6 Example of force-displacement curves obtained by AFM indentation on (a) control cells, cells

exposed to fullerenol for (b) 24 hours, (c) 48 hours and (d) 72hours respectively.

(a) (b)

(c) (d)

Fig 7.7 Top view of microscope of AFM of (a) control cells, cells exposed to fullerenol for (b) 24 hours,

(c) 48 hours and (d) 72hours respectively. The triangle is the AFM cantilever.
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(a) (b)

(c) (d)

Fig 7.8 AFM deflection imaging of (a) control cells, cells exposed to fullerenol for (b) 24 hours, (c) 48

hours and (d) 72hours.

Fig 7.6 presents the result of force-displacement curves for the four types of

SMCC-7721cells after the above mentioned treatments. The maximum indentation force is

approximately 2500 pN regardless of type of the cells, while the maximum indentation depth

varies from cell to cell, and it is estimated that the maximum indentation depth ranges from 1

to 2 μm. For the cell C and D, adhesion force is characterized by the negative force region
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during retraction of AFM indenter, as illustrated by the red line in Fig 7.6 (c) and (d).

However, adhesion force is not noticeable for cell A and B during retraction as shown in Fig

7.6 (a) and (b).

Fig 7.7 shows the optical morphological imaging the living SMCC-7721 cells. It indicates

that the cells were cultured in monolayers and organized in low proximity between each other.

Fig 7.8 shows the AFM vertical deflection imaging of living SMCC-7721 cells. From the

scale bar, one may predict the diameter of the cell may ranges from 20 to 30 μm, and hence

the indentation depth is less than 10% of the cell height so that the substrate effect could be

excluded.

(a)
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(b)

(c)
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(d)

Fig 7.9 Tether rupture events during unloading stage for (a) control cells, cells exposed to fullerenol for

(b) 24 hours, (c) 48 hours and (d) 72hours. The vertical solid line indicates the unbinding event.

As mentioned in Fig 1.2, the adhesion force is manifested by the stepwise jump events

(also shown by Fig 7.9 (c) and (d)), which implies ductile unbinding. In addition, the type of

force curves that show steps are adhesion curves from cell binding events. The usual

interpretation for these steps is membrane tethers pulled out from the cell surface as discussed

in last chapter. Therefore, we use the function of step fitting to investigate the unbinding

events in the retraction process of the force-displacement curve. The unbinding events are

characterized by the displacement plateaus corresponding to a fairly constant force. With the

same fit parameters, significant unbinding events are observed for cell C and D as shown in

Fig 7.9(c) and (d), while unbinding events are inconspicuous for cell A and B as shown in Fig

7.9(a) and (b). This observation result is consistent with foregoing conclusion that adhesion

mainly occurs in retraction part of force-displacement curve of cell C and D.
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7.4.3 Control cells and cells exposed to fullerenol for 24 hours (Non-adhesion case)

Since adhesion phenomenon is insignificant in cell A and B, the non-adhesive Hertz contact

model (Eq. (7.10)) is adopted to fit the retraction part of the force-displacement curve

corresponding to cell A and B. To calculate elastic modulus, the JPK data processing software

itself offers a function called Elasticity fit which is based on Hertz contact model as shown by

Fig 7.10. The Hertz model can fit most part of the retraction curve except the place where the

indenter detaches the cell, as circled in Fig 7.10.

Fig 7.10 The retraction part of F-d curve obtained from cell A and B is fitted by Hertz model.

Table 7.1 Young’s modulus from cell A2 (Unit: kPa)

location 1st 2nd 3rd 4th Average Std

1 2.697 2.403 2.171 2.096 2.34 0.27

2 2.033 2.113 2.253 2.179 2.14 0.094

3 2.146 2.82 2.565 2.389 2.48 0.284

4 2.401 2.024 2.321 2.512 2.31 0.209

5 2.568 2.356 2.86 2.028 2.45 0.351
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Table 7.2 Young’s modulus from cell B1 (Unit: kPa)

location 1st 2nd 3rd 4th Average Std

1 1.76 1.811 1.879 1.109 1.64 0.36

2 1.332 1.562 1.663 1.531 1.5 0.14

3 1.699 1.773 1.715 1.82 1.75 0.056

4 1.831 1.923 2.234 2.324 2.08 0.24

5 1.985 2.099 2.065 1.887 2.01 0.094

Tables 7.1 and 7.2 give the extracted Young’s modulus at five different positions within the

same cell. Four indentations were repeated in every position. It can be seen that the

determined Young’s modulus values from different positions within the same cell remain

steady. The calculated Young’s modulus values for all cells are shown in Fig 7.11. Each

individual bar represents one cell, expressed as average ± standard deviation. It is noted that

the determined Young’s modulus varies from one cell to another. For cell A, the Young’s

modulus mainly ranges from 2 to 3.1 kPa, and only Young’s modulus values of cell A1 and A6

are beyond this range by a considerable margin. For cell B, most Young’s modulus ranges

from 1 to 2 kPa or even lower, and only Young’s modulus values of B3, B8 and B12 are

beyond this range. Fig 7.12 shows the overall result for the control cells and the cells treated

for 24 hours. The data indicate that fullerenol decreased the elastic modulus by 43% after 24

hour treatment, suggesting that cells treated with fullerenol become considerably compliant.
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(a) (b)

Fig 7.11 The determined Young’s modulus for (a) control cell and (b) cells exposed to fullerenols for

24 hours. The data are presented as average values with standard deviations.

Fig 7.12 The comparison of determined Young’s modulus between cell A and B.

7.4.4 Cells exposed to fullerenol for 48 and 72 hours (Adhesion case)
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(c)

(d)

Fig 7.13 Typical force-displacement curves and the best fitting curves by using JKR model. The zoom

box denotes the “local fitting”.

Fig 7.13 presents typical results of the force-displacement curves obtained by AFM
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indentation on cells C and D, and the best fitting curves by using JKR model for the retraction

parts. Sudden jumps of indentation force occur during retraction process, which is

characterized by the “wave” as shown in the zoom box area. These sudden variations of the

force can be ascribed to discontinuous decrease of the contact area between the tip and cell

membrane. This is due to one tethering of cell membrane to AFM tip surface followed by a

sudden detachment and tethering to another contact line[151], as shown by Fig 7.14. Since

fitting of F-d curve with discontinuous steps will cause error in the estimation of work of

adhesion, the last section of F-d curve corresponding to considerable discontinuous adhesive

force, as indicated by oval circle in Fig 7.13, were discarded from fitting[151]. Moreover, if the

curve itself consists of significant and abrupt force discontinuity, it will be discarded for

numeral statistics too, as shown by Fig 7.15 as an example. In general, the JKR model can

best describe the experimental results of the unloading curve as shown above.

Fig 7.14 Scheme of cyclic tethering and detachment during unloading161.
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Fig 7.15 F-d curve with considerable force discontinuity during the retraction fraction was discarded

for statistics

This chapter explores two ways of fitting the unloading part of F-d curve as detailed below.

The first way is fitting from beginning of retraction to the place where the indentation force

exhibits severe discontinuities as shown by the big plot in Fig 7.13, which is termed “global

fitting”. The second method is fitting the fraction of F-d curve from the point where

indentation force decreases to null to where force is significantly discontinuous (this “swale”

area corresponds to low indentation depth), as shown by the zoom box area in Fig 7.13, which

is termed “local fitting”. The R-square value in the zoom box corresponds to the fit goodness

when the extracted parameters produced by “global fitting” are used to describe the “swale”

area. It is suggested that when the R-square value in the zoom box is around 0.5 or even

higher, there are no significant difference between the fitting results by the two approaches as

illustrated by Fig 7.13 (a)-(c). However, when this value is fairly small, significant variation

of extracted parameters is observed between the two methods as shown by Fig 7.13(d).
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Therefore, it can be concluded that in this “swale” area, adhesion force plays a dominant role

for fitting result and has a considerable effect on the extracted parameters.

Table 7.3 Extracted parameters from one cell C2

time 1 st 2nd 3rd 4th Average Std

Point E (kPa) E (kPa) E (kPa) E (kPa) (kPa) (kPa)

1 2.99 3.12 2.99 3.64 3.19 0.31

2 3.74 4.05 4.38 - 4.06 0.32

3 2.8 3.74 3.53 - 3.36 0.49

4 3.64 4.99 4.73 - 4.45 0.72

5 2.2 2.33 2.99 2.88 2.6 0.39

time 1 st 2nd 3rd 4th Average Std

Point Δγ 

(mJ/m2)

Δγ 

(mJ/m2)

Δγ 

(mJ/m2)

Δγ 

(mJ/m2)

(mJ/m2) (mJ/m2)

1 0.789 0.592 1 0.48 0.715 0.229

2 1 0.758 0.572 - 0.777 0.215

3 0.744 0.699 0.796 - 0.746 0.049

4 0.733 0.789 0.655 - 0.726 0.067

5 0.558 0.423 0.482 0.556 0.505 0.065

Table 7.4 Extracted parameters from one cell D2

time 1st 2nd 3rd 4th Average Std

Point E (kPa) E (kPa) E (kPa) E (kPa) (kPa) (kPa)

1 1.15 1.11 0.925 0.84 1.01 0.15

2 1.01 0.92 1.09 1.16 1.05 0.10

3 1.08 0.96 1.05 0.97 1.02 0.06

4 0.93 0.97 0.83 0.98 0.93 0.07

5 0.83 0.8 0.84 0.88 0.84 0.03

time 1st 2nd 3rd 4th Average Std

Point Δγ 

(mJ/m2)

Δγ 

(mJ/m2)

Δγ 

(mJ/m2)

Δγ 

(mJ/m2)

(mJ/m2) (mJ/m2)

1 0.234 0.252 0.339 0.275 0.275 0.046

2 0.305 0.227 0.358 0.244 0.284 0.06

3 0.338 0.319 0.345 0.267 0.317 0.035

4 0.199 0.361 0.308 0.148 0.254 0.098

5 0.294 0.362 0.273 0.308 0.309 0.038
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(a) (b)

Fig 7.16 Histograms showing the determined (a) Young’s modulus and (b) work of adhesion for each

cell C subject.

(a) (b)

Fig 7.17 Results of the determined (a) Young’s modulus and (b) work of adhesion for each cell D

subject.

Tables 7.3 and 7.4 list the extracted Young’s modulus and work of adhesion corresponding

to one cell group (cell C or D) by the “global fitting” method. This indicates that these two

parameters do not exhibit significant differences within one cell in adhesion circumstance.

Likewise, one performed statistical analysis on F-d curve corresponding to each cell, and the

extracted Young’s modulus and work of adhesion are shown in Fig 7.16 and Fig 7.17. The

average value of the two parameters varies from one cell to another cell, and cells with larger
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Young’s modulus exhibits larger work of adhesion approximately. For cell C, the Young’s

modulus and work of adhesion mostly range between 3 to 5 kPa and 0.5 to 0.8 mJ/m2,

respectively. For cell D, the Young’s modulus and work of adhesion mostly range between 1

to 4 kPa and 0.1 to 0.4 mJ/m2, respectively. Fig 7.18 shows the statistics results (average value)

taking all cells into consideration. For cell C Young’s modulus and work of adhesion have an

average of 4.88kPa and 0.825 mJ/m2 respectively, while for cell D Young’s modulus and work

of adhesion have an average of 2.32kPa and 0.365 mJ/m2 respectively. The determined value

of work of adhesion in our procedure can almost coincide with the value in a former study[151]

in order of magnitude which in turn justifies this procedure. The difference between the

heights of histograms suggests that both cell stiffness and adhesion effect is decreased by

fullerenol treatment during the last 24 hours.

(a) (b)

Fig 7.18 The comparison of determined (a) Young’s modulus and (b) work of adhesion between cell C

and D.
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Fig 7.19 Results of Young’s moduli of the four group cells by using the JKR model.

Fig 7.20 Results of Young’s moduli of the four group cells, by using Hertzian contact model to fit the

loading parts of F-d curves.

Fig 7.19 is the combination of Fig 7.12 and Fig 7.18(a). The effect of duration of

fullerenols treatment on extracted modulus seems different from that reported by a former

study[167]. In general, the Young’s modulus is derived from the loading curve of the F-d curves

by Herzian contact model. In order to make a comparison, we have tried to apply the Hertzian

contact model to fit the loading part of the F-d curves of the four groups of cells. The results

(average ± std) are plotted in Fig 7.20. It can be seen that the pattern of the calculated Young’s
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modulus values of the four group cells are almost the same as that in Fig 7.19. Therefore, the

difference is more likely due to the variation of different batch of cells and the fullerenols

treatment.

7.5 Summary

In this chapter, AFM was employed to investigate the adhesion between the AFM indenter and

the cells treated by fullerenol with different durations. F-d curves corresponding to cell A and

B were fitted by Hertz contact model because most of the curves do not exhibit significant

adhesion force. On the other hand, there are adhesion force in the F-d curves corresponding to

cells C and D, and hence JKR model was employed for fitting those data accordingly. The

summary is listed as follows:

 The results show that both Hertz and JKR contact model can describe very well the

behavior of retraction curves.

 In non-adhesion case, fitting by Hertz model indicates 24 hours treatment of fullerenol

may make the treated cells more compliant.

 In adhesion case, “global” fitting by the JKR model suggested both stiffness and

adhesion of the treated cells were decreased by a large margin during the last 24 hours

treatment of fullerenol.

 The results suggest that the experimental study of cell-tip adhesion may also provide

some insights into potential cancer progression in addition to cell stiffness.
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8 Conclusions and Future work

8.1 Research Highlights and Conclusions

In this work, a sufficient analysis of surface adhesion in nanoindentation is made from two

main aspects, i.e.

 Effect of surface adhesion on shakedown behavior of repetitive microcontact of

elastoplastic materials (hard materials).

 Quantitative characterization of surface adhesion in on soft materials subjected to AFM

indentation, i.e. biological cells, and its potential application in biomedical diagnostics.

First, an intrinsic physical mechanism accounting for surface adhesion was introduced, and

interaction forces between different geometrical bodies were formulated. Several classic

adhesive contact models based on contact mechanics were discussed in terms of their

characteristics, among which JKR model, DMT model and M-D model were emphasized. The

application fields of these adhesive contact models were schematically interpreted. Since

surface adhesion is somehow brought up by nanoindentation, nanoindentation, viewed as

“carrier” for surface adhesion, was conducted. Based on relevant theoretical models, several

mechanical properties of materials were quantitatively investigated, and compared with their

typical values for justification. It is worth noting that although nanoindentation is not the

focus of this work, it plays as a role of breeding ground for surface adhesion, and thus a

routine experimental review of nanoindentation was of significant importance. Following this,

the effect of surface adhesion was manifested in repetitive microcontact of elastoplastic
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materials (hard materials) in terms of shakedown behavior. A finite element method was

employed to simulate surface adhesion force which obeys Lennard-Jones potential and was

incorporated into ANASYS as a user defined subroutine. Finally, this work provides a method

to quantitatively characterize surface adhesion of soft materials in terms of a new parameter,

i.e. work of adhesion. The soft materials include two types of biological living cells, i.e.

pancreatic MIN6 cell and human hepatocellular carcinoma together with their medicine

treated counterparts. MIN6 cells were treated by +R568 for 48 hours, while hepatocellular

carcinoma were treated by fullerenol for 24, 48 and 72 hours (marked as Cell B, Cell C and

Cell D, respectively). AFM indentation was performed to quantify the mechanical behavior of

biological cells, i.e. force-displacement curve. For MIN6 cells, the AFM tip indenter is a

polystyrene sphere, while the cancer cells were indented by a Vickers indenter. JKR contact

model, as expert for adhesion circumstance of soft materials, was used to fit the obtained

force-displacement curves, resulting in the above mentioned new parameter besides elastic

modulus. For MIN6 cell, the original JKR model, its “generalized” form (i.e. with

consideration of cell thickness) and finite element simulation were used for fitting the

retraction part of F-d curve. For the cancer cell, the original JKR model was modified to adapt

itself for Vickers indenter, and this adapted JKR model was utilized for fitting. Hertz model

was fitted to the retraction part of F-d curves of control cell and Cell B while the adapted JKR

model was fitted to the unloading part of F-d curves of Cell C and Cell D. On the other hand,

the loading part of F-d curves of these four type cells were fitted by Hertz model. The

difference between the above mentioned biological cells and their medicine treated

counterparts were verified in terms of magnitude of this new parameter and together with
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Young’s modulus. Towards the objectives presented in Chapter 1, conclusions are made as

follows.

In terms of the first issue, the following conclusions are established:

i. FEM can simulate instability jumps in adhesive contact. The jump in and jump off

phenomena are manifested by vertical F-d lines which resemble to “brittle” jump.

ii. In adhesive contact, the indentation depth of rigid indenter corresponding to first yield of

substrate material is lower than its non-adhesive counterpart, regardless of the strain

hardening manner (i.e. whether isotropic hardening or kinematic hardening). For a larger

plasticity parameter S, first yield strain can observed at the contact periphery even before

the two materials contact with each other which can never occur in its non-adhesive

counterpart. This means that surface adhesion force alone can alter the mechanical

response of substrate material subjected to indentation, in terms of plasticity.

iii. In terms of cyclic loading-unloading of non-adhesive contact, regardless of strain

hardening manner (i.e. whether isotropic hardening or kinematic hardening), plastic

deformation can only occur during the first loading half of the first cycle, followed by

elastic deformation in subsequent cycles, i.e. the indenter-substrate system shakes down

to wholly elastic behavior. However, with the presence of surface adhesion force, by

adjusting relevant governing parameters appropriately, closed-cycle plasticity could be

observed not only in the first cycle but also in subsequent cycles (i.e. plastic shakedown),

regardless of strain hardening manner of substrate materials. Moreover, kinematic

hardening material shakes down to plastic behavior more quickly than its isotropic

hardening counterpart. By comparing to the non-adhesive circumstance, this
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phenomenon means the occurrence of plastic shakedown is due to surface adhesion force.

Since structures exhibiting plastic shakedown will fail after a finite number of load

cycles due to low-cycle fatigue, it is of guiding significance for future work to consider

surface adhesion force in contact.

In terms of the second issue, the following conclusions may be drawn:

i. Surface adhesion force manifests itself by the negative force monitored in

force-displacement curve of biological cells subjected to AFM indentation. When the

AFM tip probe detaches the cell, stepwise jumps were observed due to adhesion forces.

Because the separation is continuous, it resembles “ductile” separation.

ii. For MIN6 cells, the fitting curve by JKR model coincided well with the retraction part of

F-d curve, except some discontinuity part. The discontinuity part consists of many

stepwise jumps, which is due to sudden detachment, and thus it is inappropriate to let this

part join in the fitting process. The resulted elastic modulus and work of adhesion agreed

with that reported by former studies in order of magnitude. Although the values of these

two parameters calculated by original JKR model were higher in comparison to

“generalized” JKR model fitting, the tendency of these two parameters between control

and treated cells was the same, i.e. Young’s moduli of treated cells were lower that their

control counterparts, while work of adhesion of the latter cells was higher than that of

former cells.

iii. For hepatocellular carcinoma, surface adhesion was insignificant in control cell and Cell

B but significant in Cell C and Cell D, in terms of negative force monitored in F-d curve.
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The stepwise jumps were also observed in Cell C and Cell D, but not significant in

control cell and Cell B. The adapted JKR model proved to fit well with the unloading

part of F-d curves corresponding to Cell C and Cell D, except some discontinuity

segments which was analyzed by analogy to ii. The extracted elastic moduli and work of

adhesion were also in their normal range reported by previous studies. A considerable

difference was observed between different types of cells in terms of elastic moduli and

work of adhesion.

8.2 Future work

In terms of the objectives in this work, future work can be summarized as follows:

i. The elastoplastic material in this work is homogeneous. Since inhomogeneous materials

have been emerging as function-aimed materials, more detailed work is required to

achieve a good understanding of shakedown behavior of inhomogeneous materials

subjected to repetitive adhesive contact. Functionally graded materials and laminated

materials are two common inhomogeneous materials, and there are already some studies

focusing on the adhesive contact of these materials which are the footstone of future

work.

ii. This work mainly focuses on the effect of surface adhesion on normal contact. However,

in practice, miniaturized devices are subjected to a complicated situation, e.g. both

normal and tangential relative movements. Therefore, it is essential to consider the effect

of surface adhesion on the tangential behavior. In other words, friction and stiction would

be affected by surface adhesion.
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iii. The cell is treated as homogeneous in this work, whereas inhomogeneity prevails with in

cell which consists of cytoplasm, cytomembrane and cell nucleus. Hence it is appropriate

to develop a more realistic model which takes cell inhomogeneity into consideration. On

the other hand, although this work considers the shape diversity of cell, i.e. regarding the

cell as a plate with finite thickness, it still conforms to homogeneity assumption. In this

regard, it is advisable to treat the plate as laminated materials.

iv. The JKR model was adopted to fit the force-displacement curve which implies the

interaction force between AFM probe surface and cytomembrane is a short range force.

However, in practice this interaction force may take a more complicated form, and there

is a need to provide a more accurate simulation in terms of interaction force.
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