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Abstract： 
This paper presents an approach for the force analysis of an open TBM gripping-thrusting-regripping mechanism, which is 

a special parallel mechanism driven by hydraulic actuators and constrained by rocky surroundings. The static equilibrium 

equations of the cutterhead-mainbeam-saddle subassembly are formulated first by exploring the reaction forces in the cross 

pin situated between the saddle and the gripper cylinder. This is followed by formulating the static equilibrium equations of 

the inner closed loops formed by the above subassembly, the torque and gripper cylinders. Consequently, the linear map 

between the externally applied wrench imposed on the shield and the equivalent thrust forces of the cylinders is developed. 

The functionality of the force model developed is twofold, i.e. it can be used either to estimate the thrust forces of the cylinders 

required to resist against the tunneling loads, or to predict the tunneling loads using the measured thrust forces of these 

cylinders, thus providing important theoretical basis for the design and control of the mechanism. 
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Nomenclature  

R   Rotation matrix of the O uvw   with respect to the O xyz  

2ia , 2ib   Position vector of 2iA  and 2iB evaluated in the O xyz  

1ia , 1ib , d  Position vectors of 1iA , 1 iB  and D  evaluated in the O xyz  

0 1ia , 0 1ib , 0d   Position vector of 1iA , 1iB  and D  evaluated in the O uvw   

,a il , ,a is   Length and unit vector of the ith propel cylinder 

,b il , ,b is     Length and unit vector of the ith torque cylinder 

,w L$   Tunneling wrench with respect to O  

,a if   Thrust force of the ith propel cylinder 

,b if   Thrust force of the ith torque cylinder 

,d xf , , d zf   Reaction forces of the cross pin at D along the x and z axes 

uf ,  vf   Resultant reaction forces imposed by the surrounding rock along the u and v axes at O  

dragf   Drag resistance of the ground support equipment 

bc , sc   Position vectors of the centroids of the main beam and saddle evaluated in the O xyz  

R   Radius of the shield 

pm , bm ,  sm  Masses of the shield (including the cutterhead ), the main beam and the saddle 

f   Static friction coefficient of the surrounding rock 

Cf    Reaction force of the prismatic joint connecting the main beam with the saddle  

1hf , 2hf    Reaction forces at the spherical joints of the gripper shoes 

ef    Difference between the thrust forces in two chambers of the gripper cylinder  

w$    Equivalent externally applied wrench imposed upon the shield  

,
ˆ

w a$     Equivalent unit wrench of the propel cylinders  

,
ˆ

w bl$ , ,
ˆ

w br$   Equivalent unit wrench of the left and right torque cylinders  

,
ˆ

w e$    Equivalent unit wrench of the gripper cylinder 

,
ˆ

w u$ , ,
ˆ

w v$    Equivalent unit wrench of constraints imposed upon the shield by the surrounding rock  

W     Force Jacobian 

aW , cW   Force Jacobian of actuations and constraints 
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,w G$   Wrench produced by gravity and drag resistance 

 
1. Introduction 

Over the last few decades, open tunnel boring machine (TBM) has been widely used in infrastructure constructions 

such as underground/rail transportation and water conservancy, etc. [1]. The gripping-thrusting-regripping mechanism 

(GTRM) [2] in open TBM plays an important role for implementing continuous, efficient and accurate tunneling. In 

practice, two issues maybe encountered in the design and control aspects. The first is to design the hydraulic system that 

enables to provide sufficient thrust forces required to resist against the tunneling loads. The second is to predict the 

tunneling loads imposed upon the cutterhead by measuring the thrust forces of hydraulic cylinders such that online 

compliant control can be implemented. Both issues constitute the forward and inverse force analysis problems of the 

mechanism. 

The open TBM GTRM is a special parallel mechanism driven by multiple hydraulic cylinders and constrained by 

rocky surroundings. Although a couple of useful methods have been available for the force analysis of parallel 

mechanisms, the Newton-Euler method [3-7], the virtual work principle [8-13], and the screw theory method [14-17], 

for example, it is important to note, however, that the GTRM operates under the constraints of rocky surroundings. 

Because of this very special working condition, the translational movements normal to the cutterhead’s axis are 

uncontrollable. Moreover, the GTRM contains the branched kinematic chains that form the inner loop closures [18] and 

the oil circuits of some hydraulic actuators are connected. All these features make the force analysis of the GTRM quite 

different from that of the conventional parallel mechanisms having certain degrees of freedom and simple limb 

structures. An exhausted literature review shows that little work was reported for the force analysis of such mechanism 

[19-21].  

Drawing mainly on the practical needs for the design and control, this paper investigates a method for the force 

analysis of an open TBM GTRM with particular interest in establishing the relationship between the tunneling loads and 

the thrust forces of hydraulic cylinders. Two examples are given to illustrate how this model could be used to estimate 

the thrust forces required to resist against the tunneling loads, and to predict the tunneling loads provided that the thrust 

forces of these cylinders can be obtained online. 

 
2 System Description 

The CAD and explosive models of the GTRM under consideration are shown in Fig.1. The mechanism is composed 

of the cutterhead, shield, main beam, four torque cylinders, saddle, four propel cylinders, gripper cylinder, gripper shoes 

and rear supporting legs. For the convenience of force analysis, the cutterhead, mainbeam and shield are treated as one 

body by locking the gear transmissions between the cutterhead and mainbeam as well as by locking the hydraulic 

cylinders between the main beam and shield. Two propel cylinders on the left/right side are placed in parallel manner 

and each of them is connected with the main beam at one extremity and with a gripper shoe at the other by a spherical 

joint. Two torque cylinders on the left/right side are placed in parallel and each of them is connected with the saddle and 

the gripper cylinder by a spherical joint. In addition, the saddle is connected with the gripper cylinder by the cross pin 

(composed of a prismatic joint and a spherical joint). The gripper cylinder is connected with the gripper shoe by a 

spherical joint at each end. The schematic diagram of the GTRM is shown in Fig.2, and its topological structure is given 

in Fig.3. Here, S and P represent the spherical and prismatic joint, respectively, and the underlined P represents the 

actuated prismatic joint (i.e. hydraulic cylinder). It is easy to see that the torque cylinders, the saddle and the cross pin 

form the inner loops between the gripper cylinder and the prismatic joint situated on the saddle.  

It should be pointed out that unlike the redundantly actuated parallel mechanisms [22] in which all actuators are 

assumed to be linearly independent, the hydraulic circuits of the propel cylinders, torque cylinders and gripper cylinder  

 

 

 
 

1.cutterhead, 2.mainbeam, 3.torque cylinder, 4.saddle 5.rear supporting leg, 6.gripper cylinder, 
 7.cross pin 8.gripper shoe, 9. propel cylinder, 10. shield  

Fig.1. CAD model(left) and explosive model(right) of the GTRM 
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are intentionally designed as follows. The hydraulic circuits of all four propel cylinders are connected, leading to the 

same thrust forces in these cylinders. This treatment actually produces one independent actuation to resist against the 

tunneling load along the cutterhead axis and to balance the frictional moment arising from gravity of the shield, the 

cutterhead, and the mainbeam. Similarly, the hydraulic circuits of two torque cylinders on the left or right side are 

connected, leading to the same thrust forces in these cylinders. This treatment enables two pairs of torque cylinders on 

both sides to generate two independent actuations to adjust the shield’s pitch angle and to resist against the tunneling 

moment about the cutterhead axis. The hydraulic circuits of the left and right oil chambers of the gripper cylinder are 

connected, leading again to the same thrust forces in these chambers, and thus providing one independent actuation to 

adjust the shield’s yaw angle and to hold two gripper shoes tightly onto the surrounding rock. The above mentioned 

hydraulic circuit arrangements are clearly depicted by the dashed lines as shown in Fig.2 and Fig.3. Hence, the shield 

has four controllable movement capabilities in total, i.e. one translation along and one rotation about the cutterhead axis, 

and two rotations about two axes normal to the cutterhead axis. It is important to note that the shield has two 

uncontrollable translational movements normal to the cutterhead axis. These movements depend upon the physical 

boundary conditions exerted by the surrounding rock. 

 

    
 

 

3 Inverse Displacement Analysis 

In this section, the inverse displacement analysis of the GTRM is carried out for the determination of the lengths and 

unit vectors of the propel cylinders, torque cylinders and gripper cylinder at a given configuration. In order to achieve 

that, a reference frame O xyz  is set as shown in Fig.2. Here, the origin O  is the center of the central line of the 

spherical joints situated on the left and right gripper shoe, the x axis is coincident with the gripper cylinder’s axis, the y 

axis is coincident with the vertical axis of the cross pin, and the z axis satisfies the right hand rule. Meanwhile, a body 

fixed frame O uvw   attached to the shield is placed. Here, the origin O  is the center of its middle plane, the w axis 

is coincident with the cutterhead axis, and the u and v axes are parallel to the x and y axes at the initial configuration. In 

addition, let C be the center of the prismatic joint situated on the saddle with 3CO q  , D the center of the cross pin 

and E the center of the gripper cylinder’s axis. Note that the displacements of E relative to O  along the x and y axes 

can be represented by 1q and 2q  as shown in Fig.2. 

Within a thrusting interval, the pose (i.e. position and orientation) of the cutterhead can be described by the position 

vector  
T

x y zr  of O , the pitch angle about the x axis, the yaw angle  about the y axis, and the roll angle 

  about the z axis. Since the orientation workspace of the cutterhead is sufficiently small, the rotation matrix of 

O uvw   with respect to O xyz  can be approximately expressed as 

       

1

ˆ ˆ ˆRot , Rot , Rot , 1

1

z y x

 

    

 

 
 

   
 
  

R u v w                    (1) 

where û , v̂  and ŵ  are the unit vectors of three orthogonal axes of the O uvw  . 

Thus, at the initial configuration, we have  

Fig.2. Schematic diagram of the GTRM 
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Fig.3 Topological structure of the GTRM  
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0x  , y d , 0z z , 0  , 0  , 0   

where d CD  and 0z  denotes the distance from C  to O  when the length of each propel cylinder takes the 

minimum value.  

The position vector of O  in the kinematic chain 2 1i iO A A O    can also be expressed by 

, , 2 0 1a i a i i il  r s a Ra , 1, ,4i                                 (2)  

where 0 1ia  and 2ia  are the position vectors of 1iA and 2iA  evaluated in the O uvw   and the O xyz respectively 

as shown in Fig.4, with  

 
T

011 1 1 1/ 2x y a za a d a   a ,  
T

021 1 1 1/ 2x y a za a d a   a  

 
T

031 1 1 1/ 2x y a za a d a    a ,  
T

041 1 1 1/ 2x y a za a d a    a  

 
T

12 2 2/ 2x a za d aa ,  
T

22 2 2/ 2x a za d a a  

 
T

32 2 2/ 2x a za d a a ,  
T

42 2 2/ 2x a za d a  a  

,a il  and ,a is  are the length and unit vector of the ith propel cylinder.  

 

 

 

At a given configuration of the shield within a tunneling interval, ,a il and ,a is can be determined by 

   
T

, 2 0 1 2 0 1a i i i i il     r a Ra r a Ra , 
2 0 1

,

,

i i

a i

a il

 


r a Ra
s                     (3) 

At the initial configuration, we have  

,1 ,2a as s , ,3 ,4a as s , ,1 ,2 ,3 ,4a a a al l l l    

In addition, the position vector of O in the kinematic chain O D C O    can be represented by 

0   r Rd d                                        (4) 

where  
T

0 30 d q  d  and  
T

1 2 0q qd  shown in Fig.5 are the position vectors of D  evaluated in the 

O uvw   and the O xyz , respectively. 

  

 

 

Fig.5  Dimensions of the gripper cylinder 
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Expanding Eq.(4) yields 

1 3 1

2 3 2

3 3

1 0

1

1 0

x q d q q

y d q d q q

z q d q

   

  

  

            
        

             
                  

                       (5)

 
Thus, the displacements of the prismatic joints can be determined by  

1q x d z    , 2q y d z   , 3q z d                            (6) 

At the initial configuration, we have  

1 0q  , 2 0q  , 3 0q z  

Finally, the position vector of O  in the kinematic chain 2 1i iO B B C O     can be represented by 

, , 2 0 1b i b i i il  r s b Rb ,  1, ,4i                                 (7) 

where 0 1ib  and 2ib  are the position vectors of 1iB  and 2iB evaluated in the O uvw   and the O xyz respectively 

as shown in Fig.6, with 

 
T

011 1 1 3 / 2x y bb b q d b ,  
T

021 1 1 3 / 2x y bb b q d b  

 
T

031 1 1 3 / 2x y bb b q d  b ,  
T

021 1 1 3 / 2x y bb b q d  b  

 
T

12 1 2 2 / 2x y bq b b d b ,  
T

22 1 2 2 / 2x y bq b b d  b  

 
T

32 1 2 2 / 2x y bq b b d b ,  
T

42 1 2 2 / 2x y bq b b d  b  

And b,il  and ,b is  are the length and unit vector of the ith propel cylinder.  

 

 

 

Once 0 1ib  and 2ib  are determined by 1q  and 3q using Eq.(6), ,b il  and ,b is  can be obtained by  

   
T

, 2 0 1 2 0 1b i i i i il     r b Rb r b Rb , 
2 0 1

,

,

i i

b i

b il

 


r b Rb
s , 1, ,4i                  (8) 

At the initial configuration, we have  

,1 ,2b bs s , ,3 ,4b bs s , ,1 ,2 ,3 ,4b b b bl l l l    

 

4 Static Modeling 

This section deals with the inverse and forward force analyses of the GTRM. The gravitational forces of all hydraulic 

cylinders and the torsional moment between the shield and surrounding rock are assumed to be negligible since they are 

much smaller than those of other factors.  

As shown in Fig.7, the cutterhead-mainbeam-saddle subassembly is taken as the study object in the first place. In 

Fig.7, the blue arrows are used to indicate the external (tunneling) wrench imposed upon the cutterhead [23], the 

component gravity, and the drag resistance of ground support equipment, respectively. The red arrows are used to 

Fig.6 Dimensions of the torque cylinder 

x

42B

O
12B

32B

z y E

2 yb
22B 1q

 

 

 

 

2xb

bd

C

v

u

w

11B

21B

31B

41B
O

3q

1xb

bd

1yb



6 
 

indicate the thrust forces of the propel cylinders and torque cylinders, the reaction forces at the center of the cross pin, 

and the friction force between the shield and surrounding rock. Note that the reaction force of the cross pin only 

contains two components along the x and y axes since it is a compound joint consisting of a prismatic joint and a 

spherical joint.  

 

 
 

The symbols shown in Fig.7 are listed as follows:  

 
T

T T

,w L L L f τ$ ——the tunneling wrench with respect to O . 

,a if —the ith propel cylinder thrust force. 

,b if —the ith torque cylinder thrust force. 

,d xf , , d zf —the reaction forces of the cross pin at D along the x and z axes. 

uf ,  vf —the resultant reaction forces imposed by the surrounding rock to the shield along the u and v axes at O . 

dragf —the drag resistance of the ground support equipment along the z axis. 

bc , sc —the position vectors of the centroids of the main beam and saddle, evaluated in the O xyz . 

R —the radius of the shield. 

pm , bm ,  sm ——the masses of the shield (including the cutterhead ),the main beam and the saddle. 

f —the static friction coefficient of the surrounding rock. 

1 0 1i ia Ra , 1 0 1i ib Rb ——the position vectors of 1iA  and 1 iB  evaluated in the O xyz . 

 

The static force and moment equilibrium equations of the cutterhead-mainbeam-saddle subassembly can be 

formulated as 

   
4 4

drag , , , , , ,

1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ
L p b s a i a i b i b i d x d z u v f

i i

f m m m g f f f f f f 
 

             0f z y s s x z u v w         (9) 

           
4 4

, 1 , , 1 , , ,

1 1

ˆ ˆ ˆ ˆˆ
L b b s s a i i a i b i i b i d x d z f v

i i

m g m g f f f f Rf
 

               0τ c y c y a s b s d x d z u  (10) 

where x̂ , ˆ y  and ẑ  denote the unit vectors of three orthogonal axes of the O xyz  frame. 

In order to find the relationship between the reaction forces in the cross pin and the thrust forces of the torque and 

gripper cylinders, the force equilibrium equations of the saddle and the gripper cylinder are formulated using the free 

body diagrams as shown in Fig.8 and Fig.9. 

4

, , , ,

1

ˆ ˆˆ
b i b i d x d z s C

i

f f f m g


     s x z y f 0                             (11)
 

1

4

, , , , 2
ˆ ˆ

b i b i d x d z h h

i i

f f f


      s x z f f 0                             (12) 

where Cf  is the reaction force of the prismatic joint connecting the main beam with the saddle, 
1hf  and 2hf  are the 

reaction forces at the spherical joints of the gripper shoes. 

 

Fig.7  Free-body diagram of the cutterhead-mainbeam-saddle assembly 
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Taking the dot product on both sides of Eq.(11) with ŵ and that on both sides of Eq.(12) with x̂ , leads to 

4
T T T T

, , , ,z

1

ˆ ˆ ˆ ˆ ˆ ˆˆ 0b i b i d x d s

i

f f f m g


    w s w x w z w y                           (13) 

4
T

, , ,

1

ˆ
d x e b i b i

i

f f f


  x s
4

T

, , ,

1

ˆ
d x e b i b i

i

f f f


  x s                            (14) 

where  
1 2

T

ˆ
e h hf  f f x  denotes the trust force in the gripper cylinder.

 
 

Substituting Eq.(14) into Eq.(13), results in 

 
4 4

T T T T

,z , , , ,T
1

1
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ
d b i b i e b i b i s

i i i

f f f f m g
 

  
      

  
 w s x s w x w y

w z
                   (15) 

This means that the reaction forces of the cross pin ,d xf  and ,d zf  can be expressed as a function of the thrust forces 

of the gripper and torque cylinders, as well as the saddle’s gravity. 

Substituting Eqs.(14) and (15) into Eqs.(9) and (10) results in  

4 4

, , , , , , , , ,

1 1

w a i w a i b i w b i e w e u w u v w v

i i

f f f f f
 

     $ $ $ $ $ $                        (16) 

where 

 

   

T

drag T

T

T

ˆ ˆ
ˆ ˆ ˆ

ˆˆ

ˆ ˆ
ˆ ˆ

ˆˆ

s

L p s b

w

s

L b b s s

m g
m m m g f

m g
m g m g

 
     

 
 

     
 

w y
f y z z

z w

w y
τ c c y d z

z w

$  

 

 

T T

, , ,T
,

, , , ,

T T1 ,

1 , , ,T

1
ˆ ˆ ˆ ˆ

ˆˆ
,  

1
ˆ ˆ ˆ ˆ

ˆˆ

b i b i b i
a i

w a i w b i

i a i

i b i b i b i

 
   

   
        

 

s x s n w s z
s z w

a s
b s d x s n w s z

z w

$ $  

, , ,T

ˆ ˆˆ ˆ1
ˆ ˆ ˆ,   ,   ,    

ˆˆˆˆ

f

w e w u w v

fR





    
              

v wn u
n y w

ud nz w
$ $ $

0  

It is worthwhile pointing out again that unlike the redundantly actuated parallel mechanisms where all actuators are 

assumed to be linearly independent [22], the hydraulic systems in the GTRM are elaborately designed in the following 

ways to avoid presence of pre-stress possibly arising from redundant actuation. The hydraulic circuits of all four propel 

cylinders are connected and their piston’s cross sections are identical. Consequently, the thrust forces of these cylinders 

are the same in magnitude, i.e.  

, ,2 ,3 ,4a i a a a af f f f f                                         (17) 

Meanwhile, the hydraulic circuits of two torque cylinders on each side are connected and their piston’s cross sections 

Fig.8  Free-body diagram of the saddle   Fig.9  Free-body diagram of the gripper cylinder  
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ˆ
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,
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,1 ,1b bf s
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C

D

y
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ˆ

d xf x
11B
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are identical, leading to the same thrust forces in these cylinders, i.e.  

,1 ,2b b blf f f  ， ,3 ,4b b brf f f                                 (18) 

Hence, substituting Eqs.(17)-(18) into Eq.(16) , finally results in the force model of the GTRM. 

w wWρ$                                         (19) 

 a cW W W , , , , ,
ˆ ˆ ˆ ˆ

a a w a bl w bl br w br e w e    
 

W $ $ $ $ , , ,
ˆ ˆ

c u w u v w v  
 

W $ $  

4 2 4

, , , , , , , , ,

1 1 3

1 1 1ˆ ˆ ˆ
4 2 2

a w a w a i bl w bl w b i br w br w b i

i i i

  
  

    $ $ $ $ $ $ , , , , , , ,
ˆ ˆ ˆ w e e w e w u w u v w v w v   $ $ $ $ $ $  

 
T

T T

w wa wcρ ρ ρ ,  
T

4 2 2wa a bl br ef f f fρ ,  
T

wc u vf fρ  

where w$  is the equivalent externally applied wrench imposed upon the shield, which is composed of the wrenches 

due to the tunneling loads, gravity and drag resistance of the ground support equipment. ,
ˆ

w a$ , ,
ˆ

w bl$ , ,
ˆ

w br$  and ,
ˆ

w e$  

denote the equivalent unit wrench of actuations imposed upon the shield by the propel cylinders, the left and right 

torque cylinders, and the gripper cylinder. ,
ˆ

w u$  and ,
ˆ

w v$  denote the equivalent unit wrench of constraints imposed 

upon the shield by surrounding rock. W  is a 6 6 matrix known as the force Jacobian that maps the equivalent 

actuated and virtual joint forces onto the externally applied wrench. aW  and cW  are known respectively as the force 

Jacobian of actuations and constraints. 

In order to facilitate the forward and inverse force analyses, the equivalent externally applied wrench is decomposed 

into two components 

, ,w w L w G $ $ $                                       (20) 

where ,w G$  represents the wrench caused by gravity and drag resistance. It is important to note that the tunneling 

wench ,w L$  is always evaluated in the O uvw   and its components along the v and u axes are negligible[24]. 

Partitioning 
,w L$  and 

,w G$  according to the controllable and uncontrollable degrees of freedom, leads to  

, 2 1

, ,

,

,

,

0

0

L w

w L w L

L u La

L v

L w

f









 
 
 
   

         
 
 
  

T T T
f

0
$ $ , 

 

   

T

drag T

, T

T

ˆ ˆ
ˆ ˆ ˆ

ˆˆ

ˆ ˆ
ˆ ˆ

ˆˆ

s

p s b
Gc

w G

Gas

b b s s

m g
m m m g f

m g
m g m g

 
    

     
   

    
 

w y
y z z

fz w

fw y
c c y d z

z w

$ , 
 

  
 

R
T

R
 (21) 

Consequently, Eq. (20) can be rewritten as 

2 1 T Tca cc wa Gc ca cc wa Gc

La aa ac wc Ga aa ac wc Ga


               

                               

W W ρ f W W ρ f
T T

f W W ρ f W W ρ f

0
                (22) 

On one hand, suppose that  
T

, , , ,La L w L u L v L wf       f  can be estimated using the geological conditions and 

tunneling parameters, the required
waρ and 

wcρ can then be obtained by 

 1 wc cc ca wa Gc

    ρ W W ρ f ,    
1

1 1

wa aa ac cc ca La Ga ac cc Gc


            ρ W W W W f f W W f            (23) 

On the other hand, suppose that the thrust forces of hydraulic cylinders can be obtained by pressure sensors and 

low-pass filters, La
f  can in turn be estimated by 

 1 1

La aa ac cc ca wa ac cc Gc Ga

            f W W W W ρ W W f f                           (24) 

Eqs.(23) and (24) embody the merits of this article.  
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5 Example 
By taking a GTRM whose cutterhead diameter is eight meters as an example, we demonstrate how to use the force 

model developed in Section 3 to estimate the thrust forces of hydraulic cylinders using the estimated tunneling loads in 

the design stage, and to predict the tunneling loads using the measured thrust forces in an actual tunneling process. The 

geometric and physical parameters given in [25] for the simulation are listed in Table 1 and Table 2. 

 

 
 

(1) Inverse force analysis: The rated tunneling force F  along and the rated tunneling moment M about the 

cutterhead axis (the w axis) are approximately estimated using the empirical formulas given in [26] 

2,  F n M SD   

where n  is the number of cutters,  is the cutter rated load, D is the cutterhead’s diameter, and S is the torque 

coefficient. By taking 60n  , 300  , S=60, 8D  , and considering adequate unbalanced moments about the u 

and v axes according to [27], we have  

 
T

18000KN 1000KNm 100KNm 3840KNmLa
 f   

Fig.10 shows the variations of the thrust forces of the propel cylinder, the left (right) torque cylinder and the gripper 

cylinder versus l，(
0l z z  ) ,   and   provided that 

La
f  keeps unchanged within a thrusting interval. Therefore, 

the absolute maximum thrust forces of the cylinders required to resist against the tunneling loads can be determined, a 

key step in the design of the hydraulic systems. 

 

(2) Forward force analysis: Suppose that the thrust forces of all hydraulic cylinders have been detected by the 

pressure sensors at the initial configuration ( 0,  0,  0l     ) such that 

 5489 KNaf  ,  , 838 KNb lf  ,  , 259 KNb rf  ,  0 KNef   

The tunneling loads can then be estimated by Eq.(24)  

 
T

15700KN 10KNm 0KNm 2540KNmLa
 f  

It is easy to see that the unbalanced moments in this case are negligible. Now, suppose that three cases of thrust 

forces of the hydraulic cylinder maybe detected at the end of the tunneling interval where the orientation of the 

cutterhead keeps unchanged （ 1800,l   0  ,  0  ）. Then, the tunneling loads given in Table 3 can be predicted 

using Eq.(23) for each case. 

It is also observed that the tunneling force/moment along/about the cutterhead axis increases compared with that at 

the initial configuration and the unbalanced moments about the u and v axes are negligible for Case 1. The tunneling 

force/moment along/about the cutterhead axis keeps almost unchanged compared with that at the initial configuration 

and the unbalanced moment about the x axis occurs for Case 2. The tunneling force/moment along/about the cutterhead 

axis decreases compared with that at the initial configuration and the unbalanced moment about the y axis occurs for 

Case 3. For the last two cases, appropriate rectifications should be made accordingly. The other cases encountered in 

practice can also be treated in the similar manner. 

 

Table 1  Geometrical parameters  

 
Parameter Value(mm) Parameter Value(mm) 

1xa  1648 bd  6248 

1ya  286 2xb  656 

1za  6248 2 yb  1914 

ad  1143 d  7800 

2xa  3185 1q  0 

2za  1836 2q  0 

1xb  1258 3q  11964 

1yb  1900   

 

Table 2  Workspace and physical parameters  

 
Parameter Value 

Thrusting stroke 1800 mmL   

Orientation capabilities 
0.718 0.718 

=0
1.676 1.676 






  

  
，  

Friction coefficient 0.3 

Drag resistance  2100 KNdragf   

Component gravity 

Cutterhead 4500 KNpm g   

Main beam 1200 KNbm g   

Saddle    300 KNsm g   
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Table 3 Estimations of the tunneling loads using the thrust forces   

 

 

 

 

 

 

 

 
6 Conclusions 

This paper presents an approach for force analysis of an open TBM GTRM and the following conclusions are drawn: 

(1) The GTRM is a special parallel mechanism driven by multiple hydraulic cylinders and working under constraints 

of surrounding rock. Since the hydraulic circuits of four propel cylinders are connected, and so are those of the 

torque cylinders and the gripper cylinder on the left and right side, the mechanism has four independent actuations.  

(2) The models for the forward and inverse force analyses of the GTRM have been developed. These models can be 

used to estimate the thrust forces of the hydraulic cylinders required to resist the tunneling loads, and to predict the 

tunneling loads provided that the trust forces in the cylinders can be obtained by measurements. They thereby 

provide important theoretical basis for the design and control of the mechanism. 
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Listing of figure captions: 

 
Fig. 1  CAD model(left) and explosion model(right) of the GTRM 

 
Fig. 2  Schematic diagram of the GTRM 

 

Fig. 3  Topological structure of the GTRM 
 

Fig. 4  Dimensions of the propel cylinder 

 
Fig. 5  Dimensions of the torque cylinder  

 

Fig. 6  Dimensions of the gripper cylinder 
 

Fig. 7  Free-body diagram of the cutterhead-mainbeam-saddle assembly  

 
Fig. 8  Free-body diagram of the saddle 

 

Fig. 9  Free-body diagram of the gripper cylinder 
 

Fig. 10  Variations of the thrust forces versus l,   and   
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Table 1.  Geometrical parameters  

 
Parameter Value(mm) Parameter Value(mm) 

1xa  1648 bd  6248 

1ya  286 2xb  656 

1za  6248 2 yb  1914 

ad  1143 d  7800 

2xa  3185 1q  0 

2za  1836 2q  0 

1xb  1258 3q  11964 

1yb  1900   

 



14 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.  Workspace and physical parameters  

 
Parameter Value 

Thrusting stroke 1800 mmL   

Orientation capabilities 
0.718 0.718 

=0
1.676 1.676 






  

  
，  

Friction coefficient 0.3 

Drag resistance  2100 KNdragf   

Component gravity 

Cutterhead 4500 KNpm g   

Main beam 1200 KNbm g   

Saddle    300 KNsm g   
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Table 3 Estimations of the tunneling loads using the thrust forces   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Number af  ,b lf  ,b rf  ef  a
F  

1 5840 912 229 0  17000;48;0;3000  

2 5329 742 171 0  15026;3033;0;2506  

3 5039 787 247 86  14035;70;1029;2398  


