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Abstract 

Increasingly end-organ injury is being demonstrated late after institution of the Fontan 

circulation, particularly liver fibrosis and cirrhosis. The exact mechanisms for these late phenomena 

remain largely elusive. Hypothesizing that exercise induces precipitous systemic venous hypertension 

and insufficient cardiac output for the exercise demand, i.e. a possible mechanism for end-organ 

injury, we sought to demonstrate the dynamic exercise responses in systemic venous (SVP) and 

concurrent end organ perfusion. Ten stable Fontan patients and 9 control subjects underwent 

incremental cycle ergometry based cardiopulmonary exercise testing. SVP was monitored in the right 

upper limb and regional tissue oxygen saturation was monitored in the brain and kidney using Near 

Infrared Spectroscopy. SVP rose profoundly in concert with workload in the Fontan group, described 

by the regression equation 15.97+0.073 Watts per mm Hg. In contrast SVP did not change in healthy 

controls. Regional renal (p<0.01) and cerebral tissue saturations (p<0.001) were significantly lower 

and fell more rapidly in Fontan patients. We conclude that in a stable group of adult patients with 

Fontan circulation high intensity exercise was associated with systemic venous hypertension and 

reduced systemic oxygen delivery. This physiologic substrate has the potential to contribute to end-

organ injury. 
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Introduction 

The Fontan operation has transformed outcomes for children born with single ventricle 

physiology. 1 This circulation separates pulmonary and systemic venous return, minimizes systemic 

desaturation, and volume offloads the single systemic ventricle at the cost of placing two arteriolar 

capillary resistor beds in series (arterial and pulmonary capillary) downstream from single ventricular 

action. This presents the single ventricle with an enormous total afterload. The venous bed is subject 

to obligatory hypertension. 2 Gravitational hydrostasis contributes to diminished venous conductance 2 

3 as does the terminal location of the pulmonary vascular bed in the venous circulation. Intermittent or 

sustained venous hypertension and diminished cardiac output may contribute to liver damage in 

Fontan patients. 4,5 There is also growing evidence that hepatic fibrosis can be induced by liver 

stiffness and cyclical uniaxial strain pressure strain. 6,7 Very few data exist however describing the 

characteristics of venous pressure responses to exercise in Fontan patients.  In this investigation we 

sought to demonstrate (a) exercise induced changes in SVP and (b) regional renal and cerebral 

oxygenation during exercise, to examine pathophysiological changes in end-organ oxygen delivery 

that may contribute to liver and or other organ injury. 

 

Methods 

The South Central NRES Committee granted ethical approval and Southampton University 

Hospitals NHS Trust (RHM CAR0437) gave local Trust Research and Development approval. Ten 

consecutive stable Fontan patients were recruited using the Southampton Congenital Cardiac 

Database. Patients were excluded if they had uncontrolled arrhythmias or heart failure, were being 

evaluated for surgical or catheter based intervention, or had associated known systemic venous 

thrombosis. All patients had prior cardiac catheterization on clinical grounds and pathway obstruction 

was excluded. Nine healthy age and sex matched control participants were recruited. 

 

Ventilation and gas exchange, and arterial saturation earlobe pulse oximetry were 

prospectively measured during rest and exercise using a metabolic cart (Geratherm Respiratory 

GmbH with Blue Cherry software, Love Medical Ltd, Manchester, UK). The equipment was 
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calibrated and operated to the standards specified in the ATS/ACCP (2003) guidelines. Participants 

initially sat at rest on an electromagnetically braked cycle ergometer (Ergoline 2000) for 3 minutes 

(baseline phase), followed by 3 minutes of unloaded cycling, and then performed a ramp-incremental 

to intolerance (exercise phase). Exercise duration was targeted to range from 8 to 12 minutes and 

power output incrementation individualized accordingly. Power output for Fontan patients was 

increased at 10-15 W/min depending on the patient’s reported and assessed physical ability. The 

ramp-incremental was 30 W/min for controls. In all participants a cadence of 60 rpm was maintained 

throughout. At volitional intolerance the power output was immediately reduced to zero and 

cardiopulmonary variables were monitored for at least 5 minutes (recovery phase).  

 

NIRS (near infra-red spectroscopy) was measured using an Adult Equanox AdvanceTM Sensor 

(Model 8004CA, Nonin, Plymouth, USA) connected to a conversion box (7600 PA Oximeter, Nonin, 

Plymouth, USA). NIRS was used to measure regional cerebral (StO2-C; left frontal lobe) and renal 

(StO2-R; left lumbar region, directly over the left kidney, confirmed by ultrasound) tissue oxygen 

saturation every minute during the rest, exercise, and recovery phases. 

 

A 16-18 Gauge cannula was inserted in a large left antecubital vein prior to the exercise test. 

The cannula was connected to a venous pressure manometer via a transducer set. The transducer was 

individually flushed, de-aired, calibrated and “zeroed” to atmospheric pressure at the level of the right 

atrium. To ensure measurement reliability, the pressure trace was evaluated during a Valsalva 

maneuver, with proximal occlusion of the axillary vein and while raising and lowering the arm. At all 

times during exercise the transducer was kept at the mid-right atrial level and care was taken to ensure 

the arm was kept relaxed and extended. A baseline SVP reading was obtained at rest, and the pressure 

was monitored continuously, and recorded every minute, until a return to baseline following exercise. 

Recordings were only used when a phasic waveform was demonstrable. Peripheral upper limb venous 

pressure in Fontan patients reflects pulmonary artery pressure, and are concordant with central venous 

pressures. 8  
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Statistical analysis was performed with R version 2.4.122 and MedCalc 10.1.2.0 (MedCalc 

Software, Mariakerke, Belgium). For all analyses, a probability value <0.05 was used as the criterion 

for statistical significance. All values are presented as mean ± standard deviation (SD) or median for 

non-normally distributed variables. Categorical variables are presented as frequencies and 

percentages. Exercise gas exchange and ventilatory variables were analyzed and presented at the 

following defined points: resting, unloaded cycling, 20, 40, 50, 60, 80, 100, and 120 W. Comparison 

between Fontan patients and control subjects were performed using an unpaired student’s t-test. 

Changes in physiologic variables with exercise were assessed by random mixed-effects models using 

the R nlme package. Association between physiologic variables during exercise and laboratory 

serology, were assessed using non-parametric correlation (Spearman’s Rho). 

 

 

Results 

There were 8 male and 2 female Fontan subjects (n=10), with a mean age of 26.4 years, range 19 

– 31 years. Their underlying anatomic diagnoses included:  

1. Double inlet left ventricle (n=2) with D-transposition of the great arteries and aortic coarctation, 

with extra-cardiac Fontan connections 

2. Pulmonary atresia (n=1) with intact septum and a lateral tunnel Fontan  

3.  Tricuspid atresia (n=7) with normally related great vessels. Of these 4 had previously had extra 

cardiac revision of an atrio-pulmonary Fontan, 1 had a primary lateral tunnel, and the other had an 

unrevised atrio-pulmonary Fontan connection and 1 had a homograft connection between the RA 

and a diminutive RV. Nine age and gender matched controls ranged from 22-25 yrs (p=0.25 for 

age). 

 

Fontan patients had significantly lower peak power output (119±36 vs. 267±73 W, p=0.022), 

estimated lactate threshold (LT: 0.95±0.30 vs. 1.59±0.48 L/min, p=0.003), peak oxygen uptake (21±8 

vs. 35±8 ml/kg/min, p=0.001), and had a greater ventilatory equivalent for CO2 at LT (VE/VCO2: 

34.9±1.7 vs. 23.4±2.7, p<0.001) compared with control subjects. 



M
A

N
U

S
C

R
IP

T

 

A
C

C
E

P
T
E

D

ACCEPTED MANUSCRIPT

6 
 

 

SVP was significantly greater in Fontan patients at rest (14±4 vs. 6±2 mm Hg, p<0.0001), during 

unloaded exercise (16±4 vs. 7±3 mm Hg, p=0.0001), and at peak exercise (25±6 vs. 9±3 mm Hg, 

p<0.0001).  SVP increased abruptly at exercise onset in both Fontan and control participants, but 

unlike the control, SVP continued to increase progressively during exercise in Fontan. The rate of the 

exercise-induced SVP increase was significantly greater in Fontan than control (0.087±0.045 vs. 

0.006±0.011 mm Hg/W, p=0.0001) (Figure 1, 2). 

 

Resting StO2-C (76±4 vs. 66±7 %, p=0.001) and StO2-R (79 ±9 vs. 65±9 %,p=0.001) were lower 

in Fontan patients than controls (Figure 3): both declined during exercise more rapidly in Fontans 

than controls (peak StO2-C 74±6 vs. 55±6 %; peak StO2-R 70±6 vs. 48±10 %).This significantly 

lower StO2 values in Fontans were sustained into the recovery period (p<0.02). StO2-C fell 

significantly from mid to peak exercise in Fontan patients, but not in controls. While resting arterial 

saturation (by pulse oximetry) was greater in controls than Fontan (99±1 vs. 93±6 %, p=0.01), 

exercise induced arterial desaturation was not significant in Fontan (-3±5 %, p=0.26) or controls (-1±1 

%, p=0.09), and was not different between groups (p=0.15). Three Fontan patients had resting 

desaturation due to veno-venous collateralization. 

 

Discussion 

The main findings of this study are that (a) there is a clear relationship between exercise 

power output and SVP augmentation in stable adult patients with a Fontan circulation, and (b) high 

intensity exercise in Fontan patients is associated with co-existent and intensified renal and cerebral 

deoxygenation. We believe these observations present a plausible premise for the development and 

perpetuation of end organ dysfunction such as hepatic fibrosis during the natural history of the Fontan 

circulation. 

 

We demonstrated significant exercise induced systemic venous hypertension in adults with a 

Fontan circulation. The SVP rise during exercise was similar to the increment observed in central 
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venous and pulmonary arterial pressures by others. 9-11 Peak power output was lower in Fontan 

patients than controls, and this was associated with a steep rise in SVP during exercise. In the two 

Fontan patients with greatest peak power output, the baseline and increase in SVP response was the 

least impaired and similar to controls (Figure 1). During maximal exercise in normal individuals, 

cardiac output may increase 4- to 5-fold 12,13 with a concomitant decrease in pulmonary vascular 

resistance, accommodating the augmented flow. Pulmonary artery pressures still rise however 

because the fall in PVR is insufficient. The transpulmonary pressure gradient therefore rises, typically 

from a mean of ~12 to ~26 mm Hg. Despite these changes in pulmonary artery pressures, however, 

SVP does not increase when there is a functioning sub-pulmonic pump, as confirmed in our control 

subjects. In Fontan circulations, passive blood flow through the pulmonary vasculature depends on 

the gradient generated between central venous pressure and ventricular end-diastolic pressures, as 

well as resistance across the pulmonary vascular bed. Exercise induced elevation in ventricular EDP 

and/or PVR de facto will increase SVP.  

 

Our data support the notion that there is considerable individual variation in the composite 

resistance to blood flow across the pulmonary vascular bed, constituted by the combination of 

proximal conduit vessel compliance, pulmonary vascular tone, and exercise induced systemic 

ventricle end-diastolic pressures. The observation that an abrupt and marked SVP increase is 

associated with poorer exercise tolerance suggests that despite this precipitous rise in venous pressure, 

systemic ventricular pre-load may still be inadequate. In this study we did not assess left ventricular 

compliance, pulmonary vascular resistance, or cardiac output. A prior study showed diastolic 

dysfunction was present in 57% of Fontan patients assessed and was associated with a reduced peak 

VO2 and peak power, and none showed the expected decrease in PVR on exercise. 9 

 

NIRS derived StO2 has been used as a marker of the adequacy of end-organ O2 delivery 

relative to demand. 14 We demonstrated profound changes in StO2-C and StO2-R in Fontan patients at 

rest and during exercise. By contrast, control subjects showed only a mild decline in StO2-R, and no 

decline in StO2-C. In Fontan, StO2-R likely reflects diminished renal perfusion as is expected as blood 
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flow is redistributed to the exercising muscle. This effect was however more profound and occurred 

earlier in exercise in the Fontan patients than controls. StO2-C declined in the later phase of exercise 

in Fontan patients. Frontal lobe desaturation is common in high-intensity exercise associated with 

ventilatory compensation for a metabolic acidosis and reduced PaCO2, and is implicated in exercise 

limitation in athletes and patients. 15 Although, the magnitude of the exercise-induced cerebral 

desaturation is mild, the absolute StO2-C is low throughout rest and exercise and therefore cannot be 

ruled out as a limiting factor for exercise. We hypothesize that the decline in StO2-C in this cohort 

probably reflects an inadequately augmented cardiac output relative to the demands of the exercising 

muscle. This phenomenon of constrained cerebral blood-flow provides an interesting additional 

potential mechanism for exercise restraint. 14 Resting cerebral oxygen saturation (StO2-C) values 

below 30% have been associated with biochemical and histologic evidence of injury in many animal 

models, and time-dependency has also been demonstrated. 16  

 

Direct pressure transmission to the liver parenchyma at rest and during exercise has the ability 

to activate mechanical matrix transduction and stellate cell activation leading to fibromyoblast 

transformation and deposition of fibrosis. 6 7 Chronic congestive cardiac failure for example has long 

been recognized to cause fibrosis bridging between central veins (reversed lobulation), associated 

centrilobular hepatocyte loss, reticulin condensation, thickening of central veins and perivenous 

fibrous spur formation.17,18   

 

These effects are likely to be amplified in the presence of tissue ischemia, which has been 

implicated in the development of liver fibrosis via hypoxia-inducible factor-1α signaling. 19,20,21 We 

demonstrated markedly lower StO2-R in Fontan patients throughout rest and exercise compared with 

controls, with a striking acceleration in StO2-R decline approaching peak exercise. The superimposed 

effects of this hypoxic environment together with increased mechanical tension provide the ideal 

conditions to promote the hepatic fibrosis observed in multiple clinical observational studies.  

 

Study Limitations 
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This study has several limitations. The sample size was small. However, the observed results 

were concordant with other studies documenting elevation in right atrial and pulmonary arterial 

pressures during exercise. While muscle tone during exercise may have confounded SVP 

measurements, we attempted to minimize the influence of this by measuring SVP in the upper limb 

(rather than lower limb), and by ensuring that the upper limb was in an extended relaxed position 

throughout the exercise test. We were limited by the absence of more invasive techniques to assess 

the exact cause of the observed venous hypertension. Interpretation of NIRS results in the presence of 

venous hypertension and distension needs careful consideration as preferential venous pooling may 

contribute to the tissue deoxygenation. Similarly, exercise induced arterial hypoxemia could 

contribute to renal or cerebral tissue deoxygenation, and this was slightly, although not significantly, 

greater in Fontans. 
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Figure legends 

 

Figure 1. Individual systemic venous pressure (SVP) responses during exercise in Fontan 

patients and controls. In Fontan the SVP change (in mm Hg) relative to power output is described 

by: 15.97+0.073*Watts. In Control the SVP change (in mm Hg) relative to power output is described 

by: 7.52+0.005*Watts (p<0.0001). 

 

Figure 2: The relationship between peak ramp-incremental power output and SVP rate of 

increase for Fontan patients and controls. 

 

Figure 3: NIRS (Near Infrared Spectroscopy) derived renal (-R) and cerebral (-C) tissue 

saturation (StO2) in Fontan patients and controls from rest to peak exercise and recovery. 

* p<0.02 Fontan vs. Control at the same power or time point. # p<0.001 Fontan vs. Control at peak. 

The numbers in the Fontan group indicate the number of participants included in the mean. R on the 

x-axis indicates rest. 
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