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Abstract

The internal noise present in a linear system can be quantified by the equivalent noise

method. By measuring the effect that applying external noise to the system’s input has on

its output one can estimate the variance of this internal noise. By applying this simple “linear

amplifier”model to the human visual system, one can entirely explain an observer’s detec-

tion performance by a combination of the internal noise variance and their efficiency relative

to an ideal observer. Studies using this method rely on two crucial factors: firstly that the

external noise in their stimuli behaves like the visual system’s internal noise in the dimen-

sion of interest, and secondly that the assumptions underlying their model are correct (e.g.

linearity). Here we explore the effects of these two factors while applying the equivalent

noise method to investigate the contrast sensitivity function (CSF). We compare the results

at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based

on pedestal masking data collected from the same observers. We find that the loss of sensi-

tivity with increasing spatial frequency results from changes in the saturation constant of the

gain control nonlinearity, and that this only masquerades as a change in internal noise

under the equivalent noise method. Part of the effect we find can be attributed to the optical

transfer function of the eye. The remainder can be explained by either changes in effective

input gain, divisive suppression, or a combination of the two. Given these effects the effi-

ciency of our observers approaches the ideal level. We show the importance of considering

these factors in equivalent noise studies.

Introduction

The equivalent noise method

The neural signals in the human visual system are perturbed by internal noise from a variety of

sources [1]. According to signal detection theory [2] (SDT) this noise limits our ability to detect

weak signals [3]. The detectability of a stimulus is therefore expressed as the signal-to-noise

ratio d0. Under this analysis many psychophysical paradigms in which “thresholds” are
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measured can instead be thought of in terms of what is happening to the underlying noisy

response distributions in, for example, the target and null intervals of a forced-choice task. In

fact under SDT there is no special “threshold” stimulus magnitude, and references made to

thresholds are a matter of convenience [4, 5]. The fundamental importance of understanding

the visual system’s internal noise has resulted in many studies that have explicitly attempted to

characterise it, and measure how it changes under various conditions [6–12].

The equivalent noise method can be used to measure the internal noise of an observer. The

method is borrowed from the field of electrical engineering [13] and involves increasing the

variance of external noise added to the stimulus until it causes a change in behaviour (i.e. ele-

vating detection thresholds). At this point it is said to have exceeded the equivalent internal

noise. This effect is most easily understood by considering the Linear Amplifier Model (LAM).

In this model the observer receives a response on a trial-by-trial basis from the target interval

rtarg ¼ cþ Nint þ Next; ð1Þ

and the null (target absent) interval

rnull ¼ Nint þ Next; ð2Þ

where c is the target contrast and each of the random variables Nint � N m; 1
2
ŝ

2
int

� �

and Next �
N m; 1

2
s
2
ext

� �

are independent samples drawn from a pair of normal distributions corresponding

to the internal and external noise. These are defined using the notationN ðm; s2Þ to give their
mean μ and variance σ2. The observer makes their decision by taking the difference between

the responses from the two intervals

Dr ¼ cþ Nint þ Next � N 0
int � N 0

ext: ð3Þ

Note that the noise samples from the null interval are distinguished from those from the target

interval by the addition of prime symbols. This is to indicate that there are two independent

random variables sampled from both the internal and external noise sources (one sample in

each interval). These will have different values (and so do not simply cancel) but the same

underlying statistics. Therefore this equation simplifies to

Dr ¼ cþ Xint þ Xext; ð4Þ

where Xint � N ð0; ŝ2
intÞ and Xext � N ð0; s2

extÞ. The signal-to-noise ratio (d0) is

d0 ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
int þ s2

ext

p ; ð5Þ

and solving for d0 = 1 gives the threshold contrast at Pcorrect = 76.02%

cthreshold ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
int þ s2

ext

p

: ð6Þ

One can see in Eq (6) that thresholds will largely be determined by the dominant noise source.

When ŝ int � sext the threshold will be approximately ŝ int and when ŝ int � sext the threshold

will be approximately σext. Where the σext value is given in either the same or at least equivalent

units to c, this is the behaviour of an ideal observer with internal noise. Empirically however

one very often finds that thresholds in dominant external noise are higher than is predicted by

this model. This cannot be due to the internal noise, as it is already established that its effects

are negligible when the external noise is dominant. These effects are instead accounted for
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using a “calculation efficiency” parameter, η, so that

cthreshold ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
int þ s2

ext

p

Z
: ð7Þ

Where the σ values are given in either the same or at least equivalent units to c, this is the effi-

ciency relative to an ideal observer with internal noise (ideal η is 1). Otherwise the value of η

only has a relative meaning (as the ideal η is unknown). One factor that can affect efficiency is

the nature of the integration stage (see Appendix B).

Eq (7) is frequently used as a model of how thresholds are expected to change with different

levels of external noise (σext), and then to infer both the internal noise (ŝ int) and the efficiency

(η). If human vision behaves like the LAM (linear signal transduction and additive noise) then

differences in performance can be wholly explained by these two parameters. This has been

used to investigate contrast detection in normal observers [13, 14], in disease [15–17], and in

ageing [18–21]. However, there are several objections to this approach, as we now outline.

First objection: nonlinearities

Studies that use the LAM to fit contrast threshold data and then report ŝ int as the noise in the

brain assume that the transduction of contrast is linear and that the noise is additive. The first

assumption is challenged by multiple studies that have provided evidence of nonlinear trans-

duction [22–26]. The nonlinearity is typically described as accelerating at low contrasts and sat-

urating at high contrasts. A model of this form was provided by Legge & Foley in 1980 [22].

This model was later modified [27] to introduce a saturation constant which represents a gen-

eral suppression from divisive gain control processes. In this model the contrast response func-

tion transforms the stimulus contrast

fðcÞ ¼ cp

z þ cq
; ð8Þ

where the exponents p and q, and the saturation constant z, control the shape of the function.

Considering a pedestal masking experiment on a trial-by-trial basis, the observer receives a

response from the target interval

rtarg ¼ fðt þmÞ þ Nint; ð9Þ

and the null interval

rnull ¼ fðmÞ þ Nint; ð10Þ

where t andm are the target and mask contrasts respectively. Therefore the d0 for an observer

discriminating between mask (m) and target plus mask (t +m) intervals is

d0 ¼ fðt þmÞ � fðmÞ
sint

: ð11Þ

Note that the σint on the denominator represents the noise across both intervals of the 2IFC

task, as is also the case in Eq (7).

Models of this general form have been shown to account for behaviour in psychophysical

experiments [22, 27–30], as well as the fMRI BOLD response [25], and electrophysiological

responses from steady-state EEG [31] and single-cell activity [32]. A model featuring this non-

linearity has been suggested to explain results from noise masking studies [33, 34], and it has

been shown previously that the stochastic resonance effect (where low levels of noise facilitate

detection) can be explained by a model of this type [35]. Once the linearity assumption is

What Do Contrast Threshold Equivalent Noise Studies Actually Measure?
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violated the change in ŝ int does not necessarily indicate a change in internal noise, and may

instead be due to other factors. For this reason we use σint to refer to the internal noise in our

nonlinear model (Eq 11) and ŝ int to refer to the internal noise as determined by the LAM (Eq

7) Although this caveat is recognised by leading proponents of noise masking [11] it is often

overlooked when the paradigm is applied, particularly in clinical studies (e.g. [17, 21]).

A diagram of the model we put forward in this paper is provided in Fig 1 and described in

the figure caption. To be clear: when we refer to response levels (r) these are abstractions of the

level of activity (e.g. neural firing rate) that is being input into the decision stage. When we talk

about d0 we are referring the signal-to-noise ratio at the decision stage (that determines the

discriminability of the target and null intervals). Note that the integration stage plays no direct

role in the modelling of our experiments (though it is discussed in Appendix B), as our stimuli

were relatively small and we did not manipulate their spatial extent. It is included in the dia-

gram for the sake of consistency with other established results [36–38]. An alternative to a

model featuring a nonlinear contrast response would be one where the noise scales multiplica-

tively with the signal. The most popular of these is the perceptual template model (PTM) [10].

This is a popular model which has supplanted the LAM in some areas [39–41]. It addresses the

two principal failings of the LAM, which i) predicts greater double pass consistency than is

empirically observed [42], and ii) predicts psychometric functions that are shallower than

those found experimentally. The PTM fixes these problems by adding a nonlinear transducer

and a late-acting multiplicative noise term that is proportional to the mask contrast. It has

been shown however that the discrepancies between the LAM predictions and the data can be

explained by gain control effects arising from the broadband masking noise typically used (see

below [43, 44]). Furthermore, the induced multiplicative noise the PTM relies on may not be

justified. An experiment featuring simultaneous cross-channel and noise masking has shown

behaviour inconsistent with the induced multiplicative noise in the PTM, favouring instead a

divisive gain control model [44]. Another study that measured the ratio between the internal

noise standard deviations at different contrast levels found that it did not increase with con-

trast, and that the masking was due to a compressive nonlinearity [45]. For further discussion

of the limitations of the PTM see also Goris et al. [30].

Fig 1. Diagram of an examplemodel showing how contrast may be processed by the visual system. The pathway for a single mechanism in a single
interval is shown in full. Other mechanisms and intervals are implied by the dashed arrows. The tuned response to the target (c) and any external noise falling
within the mechanism’s passband (Next) undergoes a nonlinear transformation (the mutual suppression pathways between the mechanisms in this stage
have been omitted for clarity). Each mechanism is then affected by internal noise (Nint) and then some integration over their outputs is performed (with its
behaviour resulting in a characteristic efficiency η). The observer then makes a decision based on which of the two intervals has the greater response.

doi:10.1371/journal.pone.0150942.g001
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Second objection: the masking noise

Most noise masking experiments that look at contrast detection use broadband noise, however

this will have an additional effects from cross-channel masking that are not incorporated into

standard models [43, 44]. Most of the energy in a broadband mask will fall outside the passband

of the mechanism that is being investigated. Mechanisms with different tunings will detect these

other spectral components, and their activation will result in divisive suppression of the target

mechanism through the gain control pool [24, 26, 27, 44, 46]. As most of the noise masking liter-

ature uses broadband noise [47, 48] it is difficult to distinguish the effects which can be attributed

to noise masking from those which may result from cross-channel masking. These problems can

be avoided by using “zero-dimensional” contrast-jitter noise [43]. In this method the noise used

is a version of the target stimulus with different randomised contrasts added to both the target

and null intervals (see also Cohn’s work [49] on the detection of luminance increments). It is

superior in that it performs the exact role specified for the external noise in the equivalent noise

method while minimising the additional effects introduced by other types of noise.

Previous experiments using contrast-jitter noise have shown that the principal failings of

the LAM (listed above) that are used to justify the PTM are instead due to the use of broadband

noise [43, 44]. If zero-dimensional noise is used then the expectations of the LAM are met

(double pass consistency is higher and the psychometric function is shallower). The contrast-

jitter noise is analogous to the way in which equivalent noise experiments are typically per-

formed in other domains such as orientation [50]. By switching to this type of noise and

removing the cross-channel effects (which are rarely considered in previous studies) we end up

with a task that more clearly distinguishes the pedestal masking and noise masking paradigms

[44]. It is on this basis that we reconsider the relationship between the information available

from those two tasks here.

This study

In this study we compare pedestal and contrast-jitter noise masking functions using the same

stimuli within a set of observers in order to demonstrate that noise masking results that have

previously been attributed to internal noise effects may be entirely due to changes in gain con-

trol. We chose to make the comparison between two spatial frequencies (0.5 and 6 c/deg) as

the loss of sensitivity with increasing spatial frequency is well-established by the many experi-

ments that have measured the contrast sensitivity function (CSF). Although some of this effect

can be attributed to the eye’s optics, it is clear that neural factors also play a role [51]. The LAM

fits made in Fig 2.1 of Pelli’s thesis on detection in noise [13] indicate the change in sensitivity

with spatial frequency is due to both an increase in internal noise coupled with a loss of effi-

ciency. More recent studies have sought to use the noise masking method to explain how the

CSF changes with age [18–20, 52]. We will address the various factors that may be responsible

for the shape of the CSF in our discussion section.

Methods

Observers

Five psychophysically-experienced observers took part, including two authors (AB and DB).

All observers were tested at McGill University except DB, who was tested at the University of

York. Observers either had normal vision, or wore their prescribed optical correction appropri-

ate to the viewing distance. The experiment was carried out with informed written consent in

accordance with tenets of the Declaration of Helsinki, and approved by the Centre for Applied

Ethics at the McGill University Health Centre.

What Do Contrast Threshold Equivalent Noise Studies Actually Measure?
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Equipment

All experiments were conducted using Matlab 2010a. A Cambridge Research Systems Visage

was used to provide 14 bits of contrast depth on a gamma-corrected CRT monitor. At McGill

the stimuli were presented on a Dell Trinitron with a mean luminance of 83 cd/m2. These

experiments were conducted with natural pupils, however measurements of pupil diameter

under the testing conditions were made for each observer. These were within the range of 2.5-

3.5 mm. At York the monitor was an Iiyama VisionMaster Pro 510, and the mean luminance

was 37 cd/m2. DB had a pupil diameter of approximately 5.5-6 mm.

Stimuli

We used cosine-phase horizontal Cartesian-separable log-Gabor [53, 54] patches(Fig 2). These

are defined in the Fourier domain as log-Gaussians radially (controlling the frequency band-

width) multiplied by orthogonal Gaussians (controlling the orientation bandwidth). They had

spatial frequency bandwidths of 1.6 octaves and orientation bandwidths of ±25°, giving them a

similar profile to that of a simple cell receptive field [55, 56]. Their envelopes have a full width

at half magnitude of 0.91 cycles vertically, and 1.17 cycles horizontally. An advantage of using

log-Gabor stimuli is that they are DC-balanced (do not affect global mean luminance) in any

phase. We report their delta-contrast calculated from a luminance matrix L with mean lumi-

nance Lmean

cdelta ¼
maxðjL� LmeanjÞ

Lmean

: ð12Þ

These contrasts are reported in dB cdB = 20 × log10(cdelta). For convenience we also express

some of our model parameters in this same unit. Two spatial frequencies were used in both

Fig 2. An example of the log-Gabor stimuli used in these experiments. The stimulus is shown within the
fixation ring used to reduce uncertainty.

doi:10.1371/journal.pone.0150942.g002
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experiments: 0.5 c/deg and 6 c/deg. Our viewing distance was set to give 48 pixels per degree of

visual angle, so the numbers of pixels per cycle were 96 and 8 respectively. The viewing distance

at both testing locations was 80 cm.

Procedures

All experiments were conducted using a two-interval forced-choice procedure. The stimulus

duration was 100 ms, with both inter-stimulus and inter-trial (post-response) delays of 400 ms.

Target contrast was controlled by a pair of staircases. One was three-down one-up and the

other two-down one-up, so that the combined data from the two would concentrate sampling

at the 70.71% and 79.37% points on the psychometric function (helping us obtain good esti-

mates of psychometric slope). Although the staircases may not actually converge to these

points [57] this is not important, as we obtain our threshold estimates by fitting Weibull psy-

chometric functions in Palamedes [58] and then using the inverse of the Weibull to find the

threshold level that corresponds to 76.02% (where d0 = 1).

The other properties of the staircases were a 6 dB step size before the first reversal followed

by a 3 dB step size thereafter, and a stopping point of 70 trials or 12 reversals (whichever was

reached first). In the noise masking experiment each condition was repeated four times. In the

pedestal masking experiment there were three repetitions. In both cases the data were collapsed

across repetition and psychometric function fits performed on the combined data. Appendix A

includes an example psychometric function from the unmasked condition fitted by both a Wei-

bull function and the CRF model we introduce later.

Observers were only tested on one spatial frequency in each block. To reduce spatial uncer-

tainty and provide a continuous fixation cue the stimuli were surrounded by a ring (radius of

3.75 carrier cycles), as seen in Fig 2. The ring inverted from light to dark around its circumfer-

ence (with a contrast of 15%) meaning it had no effect on the mean luminance. To reduce tem-

poral uncertainty the contrast of the ring inverted during stimulus presentation, and a short

beep was played at stimulus onset. Observers responded as to which interval contained the

higher contrast with the buttons of a mouse, following which they were given feedback (high-

or low-pitched beeps) based on whether they were correct.

For the pedestal masking experiments a version of the target with an identical pedestal con-

trast was added to both intervals in each trial. This pedestal contrast was kept constant in each

testing block. The mask levels were chosen based on the observer’s detection thresholds, as the

“dip” in these functions typically occurs when the pedestal contrast is equal to the unmasked

threshold. Our general method was to test at -12, -6, -3, 0, +3, +6, +12, and +18 dB relative to

the threshold measured for each spatial frequency, and also fixed points at the minimum of 0%

contrast (no mask) and maximum of 44.7% (33 dB). In practise this resulted in some observers

for whom mask levels would either overlap or fall out of range, so for these they were altered

slightly.

For the noise masking experiments we used the “zero-dimensional” contrast-jitter noise

[43], where an independently-generated random contrast offset is added to each interval.

These are drawn from a normal distribution with its mean at zero and its standard deviation

determining the masking noise level. We collected data both without a mask (0%, in addition

to the identical condition tested in the pedestal masking experiments), and with noise standard

deviations of 18, 21, and 24 dB. Trials where the contrast of the jitter noise was greater than

55% had the contrast reduced to that value (this affected at most 0.05% of trials in the 24 dB

condition). Crucially, the stimulus contrasts in this method can be “negative”, in which case

the stimulus polarity is reversed. For this reason we instruct our observers to select the interval

with the highest “positive” contrast, where it is bright in the centre. In the noise masking

What Do Contrast Threshold Equivalent Noise Studies Actually Measure?
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experiments it is possible for the noise to cause the stimulus in the null interval to be a better

“target” (higher positive contrast) than the one in the target interval. This is essentially true of

all noise-masking experiments and is the reason why the ideal observer prediction is that

thresholds should increase in proportion to the standard deviation of the masking noise. For

the purpose of providing feedback to our participants we give the “correct” beep whenever they

pick the interval with the higher positive contrast, whereas for data collection purposes we still

classify correct and incorrect responses based on which interval was initially defined as the tar-

get before the noise was added.

It is important to recognise that the two paradigms we use are closely related. In both pedes-

tal and noise masking one can consider the observer’s task to consist of discriminations made

in a two-dimensional space where the x-axis is the response to the null interval and the y-axis

the response to the target interval. In a pedestal masking experiment the expected x and y coor-

dinates on each trial are specified by the target and pedestal contrasts. In a noise masking

experiment the contrasts in each interval are chosen randomly (albeit with specific means and

standard deviations). The actual contrasts presented in each interval are not usually used in the

analysis of a noise masking experiment (instead the mean and standard deviation are used),

however if one were to save this information it would be possible to rearrange data from suffi-

ciently extensive testing in a way that it could be analysed like the data from a pedestal masking

experiment. The reverse is also true: by including a wide range of target and pedestal contrasts

it would be possible to collect a pedestal masking data set whose trials could be rearranged into

those that would be collected in a noise masking experiment. Therefore, any explanation of the

results from one experiment should be consistent with the results from the other.

Bootstrapping

When fitting our psychometric functions, we used the parametric bootstrapping routines in

Palamedes to obtain a population of 1,000 bootstrap samples from which we could calculate a

median and 95% confidence interval. We use the median as the central tendency when we plot

our data because it is the measure most consistent with the use of the 95% confidence interval

from bootstrapping to represent the variability associated with that value. In reality however

the use of the median from bootstrapping rather than the single threshold obtained by fitting

to the raw data made very little difference. Combining data across all conditions and observers

and then subtracting the raw thresholds for each psychometric function from the medians

obtained by bootstrapping gives us a distribution of residuals with a mean of 0.01 dB, a stan-

dard deviation of 0.05 dB, and a maximum difference of 0.25 dB.

We also used bootstrapping to obtain confidence intervals and standard errors for our

model-fitting. For the likelihood-based modelling we performed for our pedestal masking

experiments we randomly sampled individual trials (with replacement) from our empirical

data to obtain 1,000 bootstrap datasets. Parameter bootstrap distributions were obtained by fit-

ting the model to these datasets. For the noise masking experiments we obtained parameter

bootstrap distributions by fitting to the threshold populations generated by Palamedes. For our

figures, we simply present the medians and 95% confidence intervals of these distributions.

When calculating standard error (the standard deviation of the population of bootstrap sam-

ples) for our tables however, the effects of a few outlier bootstrap samples would occasionally

exaggerate the standard errors when compared to the confidence intervals. These outliers

occur because the bootstrapping procedure will sometimes generate sample datasets that do

not adequately constrain the model fit.

To prevent outliers inflating the standard error values, we employed an outlier-removal

method based on that proposed by Tukey [59, 60]. We calculated the interquartile range of our
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bootstrap distribution IQR = Q3 − Q1, and then removed any values below Q1 − 6 × IQR or

above Q3 + 6 × IQR. We chose to use a more conservative method than Tukey’s (who proposed

1.5 × IQR) in order to ensure that the outliers we removed were very far from the “true” boot-

strap distributions. Removing outlier values had no effect on the standard errors reported for

our pedestal masking experiment (the only outliers removed were two out of the thousand

bootstrapped σint samples in the 6 c/deg condition for observer AR). In the LAM fitting for the

noise masking experiment outliers were slightly more common. The most affected case was the

6 c/deg condition for observer AR where we removed nine out of the thousand bootstrapped η

samples. In the fits to the simulated data used to generate the nonlinear model (NLM) predic-

tion, it was only in that same condition for the same observer that outliers were found. Three

of the thousand bootstrap samples were rejected for both the ŝ int and η parameters.

Results and Modelling

Experiment 1: pedestal masking

Pedestal masking functions for each of the five observers are shown in Fig 3. Each panel shows

a different observer, with the two spatial frequencies shown in different colours. The thresholds

have the typical “dipper” shape where lower pedestal levels produce facilitation (reduced

thresholds) and higher pedestal levels produce masking (elevated thresholds), though for

observer AR (Fig 3b) at 6 c/deg the magnitude of the dip is quite small (see Table 1). Consistent

with previous results the pedestal contrasts that provide the greatest facilitation roughly coin-

cide with the unmasked detection thresholds at d0 = 1 [34, 61].

Comparing the results between the two spatial frequencies, the dipper functions translate

upwards (higher thresholds) and to the right (higher pedestal contrast required to induce a

dip) as the spatial frequency is increased. For all observers except AR this results in equal

thresholds for the two spatial frequencies at the highest mask levels. This effect can also be seen

in data from previous studies [62]. The average dip magnitude (difference between unmasked

and lowest masked threshold) and handle slope (straight line fit to the data beyond that lowest

point) are reported in Table 1. We performed paired-sample t-tests in R [63] and found no sig-

nificant difference in either the mean dip across observers (t(4) = 2.14, p = 0.10), or the mean

handle slope (t(4) = 0.37, p = 0.73). We shall return to these data and explain the fitted curves

when we discuss the modelling.

The psychometric function slopes (Weibull β) are plotted in Fig 4. In line with previous

results [28] unmasked slopes are typically more steep (mean across observers and spatial fre-

quencies is 1.8) and become more shallow as the mask level increases (mean for the 33 dB

point is 1.2). The point at which the most pronounced decrease in slope occurs appears to be

that where we see the dip for the thresholds. This effect has been predicted previously [64] and

is a feature of our model (fitted curves). We compared the slopes for the unmasked and 33 dB

mask conditions with a t-test and found the difference not to be significant (t(9) = 1.62,

p = 0.14), however we do not rely on these slopes to support our conclusions. We present them

here merely for illustrative purposes.

We fitted our data with the nonlinear transducer model described by Eq (11). The parameters

are the accelerating and saturating exponents p and q, saturation constant z, and internal noise

σint. Rather than fitting the model to the thresholds obtained from psychometric function fitting,

as is typical, we instead implemented a maximum-likelihood method that allowed us to fit to the

raw data (an explanation is provided in Appendix A). This more powerful method creates a pre-

diction that is two-dimensional: a dipper along one dimension and a psychometric function

along the other [65]. Although we do not fit to the thresholds and slopes that were obtained by

Weibull fitting we can still generate model predictions for them. These are shown by the curves
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Fig 3. Pedestal masking (“dipper”) functions for our five observers.Median thresholds obtained from bootstrapping are plotted against pedestal mask
contrast, with error bars indicating the 95% confidence intervals. The curves show predictions from Eq (11) fitted to the raw data. The parameters for these
fits are provided in Table 2.

doi:10.1371/journal.pone.0150942.g003

Table 1. Magnitudes of the dips (differences between the unmasked and lowest masked thresholds)
and slopes of the handles (straight line fits to the data where the pedestal level was >3 dB above that
which gave the lowest threshold) for the data shown in Fig 3. The mean across observers is reported
with its standard error.

Dip magnitude (dB) Handle slope

0.5 c/deg 6 c/deg 0.5 c/deg 6 c/deg

AB 8.8 9.8 0.48 0.83

AR 7.2 2.3 0.67 0.24

DB 10.4 8.2 0.91 0.53

GS 8.1 6.9 0.52 0.74

JZ 9.4 6.1 0.74 0.69

Mean 8.8 ± 0.5 6.7 ± 1.3 0.66 ± 0.08 0.61 ± 0.10

doi:10.1371/journal.pone.0150942.t001
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in Figs 3 and 4. For the dipper function an increase in the z parameter does not affect the “han-

dle” region on the right where masking is dominant, but does translate the left part of the curve

(from the unmasked threshold to the facilitative dip) diagonally upward and to the right. An

increase in the σint on the other hand translates the entire curve directly upward.

Based on previous results [22] we fixed the values of the exponents p and q at 2.4 and 2

respectively. These values provide good fits to the data here, as they have also done in other

studies [29, 66, 67]. We then fitted the remaining two parameters in order to find the values

that maximised the likelihood of the fit, reported in Table 2. We also calculated the deviance

(D) of the fits relative to the saturated model [68]. Immediately there appears to be a much

greater difference in z than σint between the two spatial frequencies. Over the 12-fold increase

in spatial frequency there was an 84-fold increase in z, but only a 1.4-fold increase in σint. As

the change in σint was small we considered a model where it was fixed across spatial frequency,

however the AICc (corrected Akaike’s Information Criterion) scores of this model were higher

and so the inclusion of individual parameters was preferred [69, 70]. We also fitted the model

to each of the thousand sample datasets generated by a nonparametric bootstrapping proce-

dure (sampling individual trial responses with replacement), and report the median fitted

Fig 4. Median psychometric slopes obtained from bootstrapping plotted as a function of pedestal mask contrast for each observer. The error bars
show 95% confidence intervals. As in Fig 3, the curves show the predictions from Eq (11).

doi:10.1371/journal.pone.0150942.g004
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parameters with 95% confidence intervals in Fig 5. The changes in z vastly exceed the confi-

dence intervals provided by the bootstrapping. Although the changes in σint are much smaller

the confidence intervals only overlap for AB, indicating that the small differences present for

the other observers are still significant.

Experiment 2: noise masking

In our noise masking experiments we obtain the typical result where thresholds increase with

the standard deviation of the masking noise (Fig 6). The unmasked thresholds are higher for 6

c/deg than for 0.5 c/deg, however at high mask levels the results from the two spatial frequen-

cies converge. Note that the masked thresholds roughly correspond to the standard deviation

Table 2. Fitted model parameters (in dB) for each observer, with the log-likelihoods of the fits and the
deviances relative to the saturatedmodel. Standard errors provided are calculated from the bootstrap dis-
tributions. Briefly, differences in z indicate changes in contrast gain whereas σ is the standard deviation of the
internal noise. The predictions based on these parameters are shown in Figs 3 and 4. The mean across
observers is reported with its standard error.

z (dB) σint (dB)

0.5 c/deg 6 c/deg 0.5 c/deg 6 c/deg logL D

AB 3.6 ± 1.3 37.1 ± 1.2 -6.0 ± 0.5 -5.0 ± 0.5 -2836 296

AR -1.9 ± 1.4 58.3 ± 3.4 -4.9 ± 0.5 3.8 ± 0.6 -3146 344

DB 9.8 ± 1.2 46.6 ± 0.8 -7.7 ± 0.6 -4.8 ± 0.4 -3755 346

GS 5.4 ± 1.4 42.9 ± 1.0 -2.4 ± 0.4 -4.2 ± 0.4 -2952 293

JZ 10.3 ± 1.0 34.8 ± 1.6 -7.6 ± 0.6 -5.1 ± 0.6 -2917 316

Mean 5.4 ± 2.2 44.0 ± 4.2 -5.7 ± 1.0 -3.0 ± 1.7

doi:10.1371/journal.pone.0150942.t002

Fig 5. Median parameter estimates obtained by fitting to the bootstrapped pedestal masking data, with 95% confidence intervals. These values
differ slightly from those in Table 2 as those were obtained by fitting to the empirical data.

doi:10.1371/journal.pone.0150942.g005
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of the masking noise, which is the behaviour expected from an ideal observer. The exception is

the observer AR (Fig 6b), whose noise masking curves do not converge. This was also the case

for their dipper functions. It appears AR has a reduced efficiency for the 6 c/deg stimuli.

Despite our efforts to control for this factor, it is possible that the the small target size is making

this observer uncertain of its location (see Appendix B).

We performed a brief analysis of the psychometric slopes (Weibull β). Looking at the data,

the mean slope decreased from 2.0 for the unmasked conditions to 1.5 for the conditions with

masking noise. This is consistent with Birdsall linearisation [71] where dominant external

noise shallows psychometric slopes in nonlinear systems [42, 43], though the linearisation falls

short of reaching the expected slope of Weibull β = 1.3. A two-way within-subjects ANOVA

(factors of spatial frequency and masking noise level) found no significant effects or interac-

tions however, meaning that this decrease in slopes was not statistically significant.

The dashed curves in Fig 6 are the fitted LAM (Eq 7) functions. The parameters for these

fits are provided in Table 3. The LAM provides a good fit to the data, with most of the change

between the two frequencies being due to an increase in internal noise ŝ int. The solid curves in

Fig 6. Noisemasking functions for our five observers.Median thresholds obtained from bootstrapping are plotted against the standard deviation of the
masking noise, with error bars indicating the 95% confidence intervals. The curves show predictions from the LAM and NLM fitted to the median thresholds.
The parameters for these fits are provided in Tables 3 and 4.

doi:10.1371/journal.pone.0150942.g006
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Fig 6 show predictions generated by the nonlinear model (NLM). These are not fitted to the

noise masking data, but are instead calculated based on the parameters obtained from the dip-

per functions in Experiment 1. The contrast response function (Eq 8) is used in the equivalent

noise model (Eq 3) to give

Dr ¼ fðcþ NextÞ � fðN 0
extÞ þ Xint: ð13Þ

The threshold is the value of c where the expected mean of a population of Δr samples is equal

to its expected standard deviation (i.e. d0 = 1). In order to approximate this value and so gener-

ate noise masking predictions, we used Eq (13) as the generating model in a Monte Carlo simu-

lation. We generated 500 samples at 1,161 values of c (-18 dB to 40 dB in 0.05 dB steps) and 6

mask levels (-21 dB to 39 dB in 12 dB steps). For each mask level we found the value of c where

the difference between the mean and standard deviation of the population of Δr samples was at

its minimum. This gave us six simulated data points that in all cases followed the shape

expected by the LAM (initially flat, followed by a unity slope).

It is expected that the NLM curves will have a very similar shape to those from the LAM

(aside from a small facilitation at very low noise levels due to stochastic resonance [35]). We are

interested in how changes in the parameters of the NLM will be reflected in the LAM fit, there-

fore it is not necessary to collect data at more mask levels than would ordinarily be used to char-

acterise the LAM.We fit the simulated NLM data with the LAM in order to demonstrate the

fitted LAM parameters expected on the basis of the dipper functions we collected. These parame-

ters are provided in Table 4, and the curves are shown in Fig 6. Note that although the main dif-

ference seen between the two spatial frequencies in Table 4 is the internal noise ŝ int of the fitted

LAM function, most of this effect is actually arising as a result of the different z parameters in the

nonlinear contrast response function (the σint used in our simulations varied only slightly

between the spatial frequencies, based on the pedestal masking results). This is the reason why

the fitted LAM ŝ int is distinguished from the actual σint by decoration with a hat and illustrates

one of the key points of this paper: changes in the fitted LAM ŝ int may not (and do not in this

case) correspond to changes in the actual σint in a nonlinear system.

The NLM prediction curves in Fig 6 are generally close to those from the LAM fits. At 0.5 c/

deg the curves are very similar for all observers. At 6 c/deg there is some disagreement, however

for all observers except AR it is only at the left hand side where the internal noise is dominant.

The predictions then converge at the high mask levels. This indicates a small difference in the

internal noise (ŝ int), but very similar efficiency. In Table 3 we see that the fitted efficiency η is

close to 0 dB (100%) in all cases apart from the 6 c/deg condition for AR. The efficiency values

Table 3. Parameters obtained by fitting the LAMmodel to the data for each observer, with the RMS
error of the fit. Standard errors are calculated from the bootstrap distributions. Predictions for these parame-
ters are shown by the dashed curves in Fig 6. The mean across observers is reported with the standard error.

η (dB) ŝ int (dB) RMSe (dB)

0.5 c/deg 6 c/deg 0.5 c/deg 6 c/deg 0.5 c/deg 6 c/deg

AB 0.4 ± 0.5 0.1 ± 0.7 -0.3 ± 0.9 10.7 ± 1.2 0.33 0.71

AR -0.2 ± 0.9 -4.7 ± 1.9 1.2 ± 1.8 17.6 ± 3.5 0.68 1.99

DB -0.5 ± 0.6 -0.9 ± 1.0 1.3 ± 0.8 16.5 ± 1.5 0.74 0.18

GS -1.6 ± 0.8 -2.2 ± 0.6 2.3 ± 1.0 13.5 ± 1.0 1.41 1.26

JZ -0.5 ± 0.5 -0.9 ± 0.7 2.2 ± 0.9 10.2 ± 1.3 0.90 0.87

Mean -0.5 ± 0.3 -1.7 ± 0.8 1.4 ± 0.5 13.7 ± 1.5

doi:10.1371/journal.pone.0150942.t003
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in Table 4 are also close to 0 dB, though there is no component of the nonlinear model simulat-

ing these data that behaves like the efficiency parameter in the LAM. The deviations from 0 dB

are simply due to the stochastic nature of the nonlinear model. A parameter controlling effi-

ciency could be built into this model (see Appendix B), however we did not include it because

our noise masking results indicate that efficiency is close to 100% for this task [44, 72]. Note

that we report efficiency as

20� log 10ðZÞ; ð14Þ

here, which is equivalent to the use of

10� log 10

observed d0

ideal d0

� �2

; ð15Þ

by some previous studies. By comparing the internal noise parameters between Tables 3 and 4

we can see that at 0.5 c/deg they are very similar, however at 6 c/deg the ŝ int obtained by fitting

to the data is slightly lower than that expected based on the nonlinear simulation. We will

return to this in our bootstrap analysis below. Note that the reason why the standard errors in

Table 4 are so much smaller than those in Table 3 is that the underlying dataset used to gener-

ate Table 4 is from the pedestal masking experiment, whereas Table 3 is generated based on the

noise masking experiment data.

We conducted a further analysis based on bootstrapping in order to get an idea of the size of

our effects relative to the variability in the data. The thousand sets of thresholds generated dur-

ing the bootstrapping process were each fitted with the LAMmodel, allowing us to plot the

median value of each parameter here with 95% confidence intervals. We were also able to gen-

erate a bootstrapped version of the nonlinear model prediction using the parameters summa-

rised in Fig 5 (where the bootstrapping was performed on the dipper function data to generate

a population of CRF parameters). At this point we also introduce another version of the non-

linear model, that where the internal noise σint parameter used in the simulation process is

fixed across the two spatial frequencies (set at the mean of two fitted σint values). This allows us

to demonstrate that the large differences in the fitted ŝ int value in the noise masking experiment

are due to differences in z. This comparison can be made in Fig 7: predictions from the nonlin-

ear model with variable σint are shown by square symbols, and the fixed σint by diamonds.

There is little difference between them.

Comparing the nonlinear simulations in Fig 7 against the parameters obtained by fitting to

the bootstrapped data, the behaviour at 0.5 c/deg is predicted very accurately by our model. At

Table 4. Parameters (in dB) obtained by fitting the LAMmodel to simulated nonlinear model (NLM)
data, that were generated based on each observer’s dipper function. Standard errors provided are calcu-
lated from the bootstrap distributions. Predictions for these parameters are shown by the solid curves in Fig 6.
The mean across observers is reported with the standard error.

η (dB) ŝ int (dB)

0.5 c/deg 6 c/deg 0.5 c/deg 6 c/deg

AB -0.17 ± 0.29 -0.04 ± 0.32 1.0 ± 0.5 14.5 ± 0.5

AR -0.81 ± 0.28 0.29 ± 0.42 -0.5 ± 0.7 28.2 ± 0.7

DB -0.24 ± 0.29 0.15 ± 0.34 1.8 ± 0.5 18.7 ± 0.5

GS -0.63 ± 0.29 0.29 ± 0.34 4.1 ± 0.6 17.7 ± 0.5

JZ -0.23 ± 0.28 0.20 ± 0.31 2.2 ± 0.5 13.9 ± 0.6

Mean -0.42 ± 0.13 0.18 ± 0.06 1.7 ± 0.8 18.6 ± 2.6

doi:10.1371/journal.pone.0150942.t004
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6 c/deg the median parameter estimates from AR indicate lower efficiency and internal noise

than we predict, however there is a large variability associated with these. The 95% confidence

intervals for the efficiency parameter overlap with our prediction, and those for the internal

noise parameter approach it. For other observers there is a tendency for the fitted ŝ int to be

slightly lower at 6 c/deg than we predict. This residual effect may be due to a task-dependent

change in either the internal noise σint or the saturation constant z. In general however we can

account for most of the change in ŝ int with a generating model based on the measured changes

in z with a fixed σint, indicating that in this case the result seen in the “internal noise” parameter

of the noise masking data is not due to noise.

Discussion

Noise masking confounds internal noise measurements with
nonlinearities

Our results demonstrate that effects which appear to be changes in internal noise when mea-

sured by the noise masking paradigm may instead be due to changes in gain control properties.

Fig 7. Parameters from LAM fits to simulated data from the nonlinear model (using the parameter populations presented in Fig 5) compared
against the parameters (medians with 95% confidence intervals) obtained by fitting the bootstrapped empirical thresholds.

doi:10.1371/journal.pone.0150942.g007
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Specifically, an increased saturation constant z behaves like a change in internal noise. Other

studies [33] have previously suggested a noise masking model based on contrast gain control

effects, and a recent meta-analysis [34] showed that z was more likely responsible for individual

differences in contrast sensitivity than σint. The work we present here however is the first time

that the relationship between the two paradigms has been directly explored, thanks to the use

of the “zero-dimensional” contrast-jitter noise paradigm. This allows us to present the same sti-

muli for our noise and pedestal masking experiments. We show that one can use the contrast

response function obtained from a pedestal masking experiment to mostly predict an observ-

er’s behaviour in a noise masking experiment, and that when doing so the human decision

stage approaches ideal performance. Demonstrating this result with the more conventional

white- or pink-noise masking method would also require a model of how the off-target stimu-

lation from the broadband noise mask serves to suppress the detection of the target [43]. To

our knowledge however these effects are typically not considered, and there is no noise mask-

ing model that takes account of them.

Internal noise does not change much with spatial frequency

Although the primary purpose of this paper was as a proof-of-concept, with the manipulation

of spatial frequency chosen as an example, our results still provide a novel insight into why sen-

sitivity declines with spatial frequency. We must first estimate how much of the sensitivity loss

can be attributed to optical factors. The lowpass Optical Transfer Function (OTF) of the eye

attenuates higher spatial frequencies more than lower spatial frequencies. Attenuation by the

eye’s optics will reduce the input gain of the system. In Eq (11) an input gain parameter g could

be incorporated

fðcÞ ¼ ðgcÞp

z þ ðgcÞq ; ð16Þ

however when this is done the effects of the new parameter overlap almost entirely with those

of the existing z parameter. To show this we set the z parameter in Eq (16) to 1 and then

adjusted the g parameter to fit the output of Eq (11) with a varying z parameter. We also set the

p and q parameters to 2.4 and 2, as was the case in our experiments. A log-log plot of the best-

fitting g values against the values of z used in the generating model gives a straight line (within

the range of z values we find in this experiment). The parameters from a straight line fit then

allow us to say that for an x dB change in z, we expect a 0.41x dB translation both upward and

to the right in the dipper functions. This can be confirmed by comparing the differences in the

z values in Table 2 against the dipper functions in Fig 3.

To calculate our expected optical effects we will refer to the formula provided by Watson

[73], who developed a descriptive model to account for the OTF of young healthy eyes. The

shape of the OTF depends on the pupil diameter, with wider pupils resulting in a steeper

decline. For the observers tested at McGill the diameters were within the range of 2.5-3.5 mm.

The expected relative attenuation difference between our two spatial frequencies will be in the

range of 2.0-3.0 dB for pupils of 2.5-3.5 mm. This is equivalent to a 4.9-7.3 dB change in z. For

DB the pupil size was 5.5 mm. This would give an attenuation difference of 7.7 dB, equivalent

to a 18.8 dB change in z. By comparing these values against the differences in z reported in

Table 2 one can see that optical factors account for only a small part of the shift in the dipper

functions for the observers tested at McGill. For observer DB the effect attributable to optical

effects is larger (half of the change in z). One must take these effects into account, particularly

in situations where comparisons are made between groups of subjects in whom differences in

OTF may be expected (e.g. ageing populations [74]).
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Once the optical effects are accounted for the remaining difference in z should have a neural

basis. One possible explanation is that performance at different spatial frequencies is limited by

the number of cone photoreceptors contributing to the receptive field [75, 76]. An ideal combi-

nation of cone outputs within the footprint of a receptive field predicts large differences in

threshold between our two spatial frequencies (>18 dB in the appendix of Baldwin, Meese &

Baker’s study [54] which is far bigger than the neural effect left to be explained). However, if

sensitivity is limited by cone density alone then the predicted threshold vs. eccentricity func-

tions for different spatial frequency stimuli are parallel when eccentricity is expressed in

degrees, whereas in reality they are parallel when eccentricity is expressed relative to stimulus

wavelength [54, 77]. The steepening of the OTF with eccentricity would partially correct the

cone-sampling prediction toward scale invariance, but the magnitude predicted for that effect

from previous data is far too small to actually reach it [78]. It is possible to envision different

(non-ideal) sampling strategies, or weights on the gain applied to the tuned outputs, that

would result in a scale invariant system with a neural transfer function matching our results.

Such a model could not be constrained by our data. A third possible neural factor would be

divisive suppression from contrast gain control processes, which is what the z parameter in our

contrast response function can be considered to represent.

The results we report here are the effects seen over only a relatively small distance in the spa-

tial and temporal frequency space. It is possible that comparisons between more remote spatial

frequencies or between different temporal frequencies would demonstrate greater changes in

internal noise. Another possibility is that there is a single limiting source of noise for all con-

trast detection tasks, in which case all differences in contrast sensitivity would be attributed to

differences in gain.

Implications for the noise masking literature

Our key finding is that one cannot report changes in the fitted internal noise parameter of a

LAM function as actual changes in internal noise without first establishing that the system

being investigated is linear. We also show that the noise masking paradigm itself confounds

changes in internal noise with changes in the nonlinearity, meaning that an alternative model

that did feature those effects could not be constrained by noise masking data alone. Examples

of these nonlinearity effects would be changes in sampling of the input, the gain, or the subse-

quent divisive inhibition within a contrast gain control process. Where previous noise masking

experiments have found effects attributed to internal noise these may in fact be partially or

wholly due to changes in these nonlinear aspects of the system being investigated. While it is

true that some of these studies were carried out with the knowledge that the effects they are

attributing to “equivalent internal noise” differences may have multiple possible explanations

(the majority of which being unrelated to actual changes in noise) these caveats are often left

unexpressed. Where changes in the internal noise in a system are of interest one can use pedes-

tal masking experiments to distinguish between those effects and those due to differences in

the nonlinear response. The inadequacy of using the noise masking method on its own to con-

strain our interpretation of the actual processes occurring in the brain is only supported by

Dao, Lu & Dosher [79], who in their appendices demonstrate how the PTM can produce equiv-

alent noise masking results to a model based on contrast gain control. A more sophisticated

experiment is necessary to distinguish between the two [44].

Appendix A: Using maximum likelihood to fit the CRF

The typical method [28] used to find the CRF is by performing an experiment where the

threshold target contrast (tthresh) corresponding to a particular d
0 (e.g. d0 � 1.273 if tthresh is the
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α parameter of a fitted Weibull function) is found for multiple mask levels (the vectorm). An

iterative search procedure is then used to find the values of the CRF parameters (p, q, z & σint)

that minimise the difference between the model’s predicted set of tthresh values and those found

in the data. This method has several disadvantages: i) the initial psychometric function fitting

stage that finds the empirical tthresh values requires sufficient data to perform a stable fit at each

mask level inm, ii) because only the threshold parameter of the psychometric function is used,

the information from the slope of the psychometric function is discarded, and iii) the nested

search that is used to find the predicted tthresh for each set of parameters slows down the fitting

procedure. All these disadvantages can be avoided using a maximum-likelihood fitting proce-

dure [65, 81, 82]. This method takes advantage of the fact that each set of parameters put into

Eq (11) describes a family of psychometric functions (one for each mask level, e.g. Fig 8). This

entire family of functions can be fit simultaneously to the raw data (the number of trials n and

correct responses c) for each target level (t) and mask level (m). Using a maximum-likelihood

method to choose the best-fitting parameters also allows the data to be weighted by the number

of observations made for each condition. In this method, Eq (11) is used to find the d0 predicted
by the current parameter set for the testedm and t. These d0 values are then converted using

the normal integral (F) to their corresponding percent-correct values for each condition (i)

PiðcÞ ¼ Fðd0
iÞ; ð17Þ

(for 2IFC the equation given for this step usually divides d0 by
ffiffiffi

2
p

, but this is already accounted

for in Eq (11) because σint represents the combined noise from both intervals). The log-

Fig 8. Example psychometric function (unmasked detection threshold for observer DB with binomial error bars) showing the fits from both the
Weibull psychometric function and the CRFmodel. Each data point is labelled with the number of trials tested at that contrast level. TheWeibull fit is
made just to the data presented in this figure, whereas the CRF fit is made to the data from all mask levels simultaneously.

doi:10.1371/journal.pone.0150942.g008
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likelihood of that parameter set is then calculated as

logLðp; q; z; sintjm; tÞ ¼
P

ci log ½PiðcÞ� þ ðni � ciÞ log ½1� PiðcÞ�: ð18Þ

This is derived from the likelihood function

Lðp; q; z; sintjm; t; n; cÞ ¼QLi; ð19Þ

where the combined likelihood L is the product of the likelihoods for each condition

Li ¼ Lðp; q; z; sintjmi; ti; ni; ciÞ: ð20Þ

These likelihoods are based on the probability that each of the trial-by-trial responses (correct

and incorrect) made in that condition would occur, given the current parameter set. They are

calculated using the “and rule”, where P(A \ B) = P(A)P(B)

Li ¼
Y

ci

j¼1

Pðcjmi; ti; p; q; z; sintÞ
Y

ni�ci

k¼1

½1� Pðcjmi; ti; p; q; z; sintÞ�: ð21Þ

Taking Pi(c) = P(c|mi, ti;p, q, z, σint), we can simplify this (because the values of j and k are not

used) and rewrite Eq (19) as

Lðp; q; z; sintjm; t; n; cÞ ¼
Q

PiðcÞ
ci ½1� PiðcÞ�

ni�ci
: ð22Þ

Taking the log of Eq (22) gives us Eq (18). Fitting the log-likelihood function lets us avoid

using very small numbers that may fall below the precision limit of the software used for the

computation. It also makes the calculation faster due to the nature of the mathematical opera-

tions involved.

The best-fitting parameters are found by using the fminsearch function in Matlab to

minimise the negative log-likelihood (� logL). This is equivalent to finding the maximum like-

lihood solution.

Appendix B: What role is left for efficiency?

In our experiments we find efficiency to be close to that of an ideal observer. Previous noise

masking studies have typically found lower efficiencies. One reason for this difference will be

the type of masking noise used. A broadband noise mask will likely cause uncertainty about the

expected target, and so reduce efficiency [83–85]. Another possible explanation involves spatial

summation: if a target is detected by multiple mechanisms (e.g. spatially adjacent receptive

fields) then they must be able to linearly pool their outputs together in order to achieve ideal

performance. If the combination is nonlinear then performance will fall below the ideal [86].

The greatest nonlinearity is a max() operator, where only the response of the mechanism

which is most activated by the stimulus in each interval contributes to the decision as to which

interval contained the target. We used the stochastic Monte Carlo method to generate effi-

ciency predictions for a system that behaves in this way (with n spatially-adjacent contrast-

detecting mechanisms that are affected by uncorrelated noise), relative to that of an ideal

observer. This is shown in Fig 9 (see caption for simulation details). As the number of relevant

mechanisms increases the efficiency drops dramatically. The max() operator can be considered

as Minkowski summation with an infinitely high exponent (m =1)

routput ¼
X

n

i¼1

rmi

 !

1

m
;

ð23Þ
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therefore as the exponent decreases we expect efficiency to increase (as the other mechanisms

which are not the most activated begin to make more of a contribution) from that shown in Fig

9 and eventually reach ideal performance (y = 0) when the exponent is 1.

This raises the question of why our results do not show overall lower efficiencies, consider-

ing that we find nonlinear signal transduction in our pedestal masking experiment. Our expla-

nation is that we used a small target which was approximately the size of a V1 receptive field.

In previous summation experiments [53, 87] it has been demonstrated that spatial summation

over such a short range (considered to be “within” a V1 receptive field) is linear, with nonlinear

summation occurring for larger stimuli. It is possible that if we increased the size of our stimuli

we would see a decline in efficiency (as has been shown previously in broadband noise [86]). If

this effect were sufficiently large it could be used to measure the receptive field size of the linear

mechanisms. A similar situation in which we would expect to see an effect on efficiency is if the

observer is operating in conditions of uncertainty. Note that the work in this appendix is

related to how Birdsall’s Theorem breaks down in multichannel systems [88, 89].

Fig 9. Efficiency of an observer who combines signals over multiple channels by picking the
maximum, expressed relative to that of a linear ideal observer.We obtained by simulating the detection
of various levels of signal (-42 to 36 dB in 3 dB steps) by independently noisy channels with different standard
deviations (6 to 18 dB in 3 dB steps). We simulated 5,000 trials per combination of signal and noise level,
both for a system where the outputs were summed (ideal) before comparison between the two intervals and
for a system where the max() was taken. The data from this simulation were fit by a psychometric function
(see Methods), and then the average efficiency of the max() observer was calculated relative to the ideal.

doi:10.1371/journal.pone.0150942.g009
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