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Abstract—In this paper, a dual-hop wireless backhaul and small 

cell access network has been exploited with effective spectrum 

sharing, to provide 1 Gb/s/km2 ultra high capacity density for 5G 

ultra-dense network deployments. We develop a Single-State Q-

learning (SSQL) based radio resource management algorithm for 

dynamic spectrum access creating a self-organized network. It 

intelligently utilizes the instantaneous spectrum observation 

information from spectrum sensing or a database, to learn long-

term optimized decisions based on historical information of the 

system. The conventional Q learning algorithm with state-action 

pairs has been simplified to a stateless format and applied in a 

fully distributed manner on individual data file transmissions, 

which reduces the complexity of the learning model and improves 

the applicability of Q-learning algorithms to self-organized 

wireless networks. The results show that not only does the 

proposed algorithm completely remove the requirement for 

frequency planning, but also it improves the convergence, QoS 

and system capacity substantially by achieving higher link 

capacity on both access and backhaul networks. 

Keywords- 5G, Ultra-dense Network, Radio Resource 

Management, Dynamic Spectrum Access, Self-organized Network, 

Qlearning 

I. INTRODUCTION 

In future 5G radio access networks, ultra-high capacity 

density has been identified as a critical system requirement for 

mobile broadband services in dense urban areas [1]. To 

support this requirement, ultra-dense networks are being 

considered as a possible solution. The idea is to deploy a large 

number of small cell base stations with mobile backhaul 

capability, to effectively improve network spectrum efficiency 

and scalability. In this context, cognitive dynamic spectrum 

management is essential to reduce interference, maximize 

resource utilization and enhance system capacity [2, 3]. The 

network is also required to be self-organized, in order to 

reduce operational expenditure and improve reliability [2, 4]. 

Machine learning technologies have been widely studied to 

allow the radio nodes to intelligently select radio spectrum and 

mitigate interference. They learn from historical experience to 

deliver long-term stable performance in changing radio 

environments, unlike with conventional cognitive radio where  

decisions are made based on instantaneous measurements. 

However, the conventional algorithms such as Q learning 

require an observation of global environment states, which are 

not applicable to self-organized networks [5].  Thus in this 

paper, we developed a novel Single State Q learning (SSQL) 

algorithm, which operates in a fully distributed manner and 

directly utilizes physical environment information. The 

objective is to support both Dynamic Spectrum Access (DSA) 

and Self-organized Network (SON) configurations, and 

achieve 1 Gbps/km
2
 capacity density for 5G ultra-dense 

network requirements. 

A very conservative estimation indicates that in a city 

centre area of a typical European city with an average 

population density of 5000 people/km
2
, the demanded 

throughput density is about 1 Gbps/km
2 
[6]. The figure is even 

greater in large Asian or North American cities where the 

population density is much higher. It is also crucial that 5G 

should provide the required average data rate to all active 

users simultaneously within a service area. This is particularly 

true in highly populated urban city centre areas where the 

demand for wireless broadband service is the highest. The 

throughput density that LTE-A can provide is about 350 

Mbps/km
2 

[6], which may be adequate in less populated areas 

but insufficient for high user density areas. 

A novel dual-hop hierarchical wireless system has been 

recently proposed in [6] to deliver a capacity density of 1 

Gbps/km
2 

in a cost-effective way, providing a 5G wireless 

access in a dense urban city area. On the other hand, the 

system is required to be cost effective, including a maximized 

utilization of the current 20 MHz 4G band and a self-

organized network architecture. This ambitious goal is 

achieved mainly by distributing a relatively large amount of 

short-range, below roof-top Access Base Stations (ABSs), on 

streets to provide sufficient capacity density to MSs. The 

traffic is then aggregated at ABSs and self-backhauled to the 

higher level over roof-top Hub Base Station (HBS) wirelessly. 

By using a multi-beam directional antenna at the HBSs to 

provide sufficient self-backhaul capacity, and below-rooftop 

directional antennas at the ABSs to provide high access 

capacity to the MSs, this novel architecture is able to achieve a 

significant spectral efficiency. 

However, with such a dual-hop architecture, the Radio 

Resource Management (RRM) aspects of the system become 

significantly more important. First, to meet the ambitious goal 

of 1 Gbps/km
2
, it is desirable that the limited 20MHz band is 

reused aggressively. As used for LTE networks, a reuse factor 

of 1 is necessary, where any of a HBS or ABS should have 

access to the entire spectrum band [7]. However, the 

conventional Fractional Frequency Reuse scheme proposed in 

LTE is based on a cellular scenario, which is not applicable to 

this type street coverage configuration. The idea of using 



 

 

below-rooftop ABSs is to take full advantage of the ‘natural’ 
isolation of building blocks normally seen in large cities so 

that the radio frequency can be reused aggressively. Secondly, 

with a relatively larger amount of ABSs deployed on the 

streets, the design of the RRM becomes significantly more 

complex. Dedicated backhaul links, such as microwave and 

fiber, are normally implemented at base stations in various 

systems. However, it is not economically feasible in a dense 

small cell network, because the use of high frequency bands 

require line-of-sight propagation links which are difficult to 

achieve in urban scenarios. In band wireless backhaul has the 

potential to significantly improve spectrum utilization and 

reduce the deployment cost, which is primarily considered for 

the joint self-backhaul and access design. On the other hand, 

this makes the design, implementation, configuration, and 

operation of fixed RRM strategies hard to plan and optimize. 

Therefore, spectrum sharing and self-organization are key 

technologies to reduce the complexity of the RRM design. [8] 

analyses the spectrum sharing schemes between different 

operators, and demonstrates an improvement to spectral 

efficiency with increasing number of users. [9] proposes radio 

access technology selection schemes to use spectrum 

resources provided from different radio access networks. [10] 

investigates spectrum sharing in a D2D network and the data 

rate uploaded to eNBs. A self-organized network requires 

RRM decisions to be based on local observations only, which 

can be potentially achieved from cognitive radio. Spectrum 

sensing has been extensively studied as a key technology to 

achieve cognitive radio. It allows the user, base station or 

network to observe the spectrum environment and utilize 

spectrum holes for data transmission. [11] proposes a 

distributed cooperative spectrum sensing approach using the 

concept of correlated equilibrium from game theory, to 

improve the reliability of detection. However, spectrum 

sensing is constrained by the cost of equipment, time and 

bandwidth, meaning that it cannot provide real time 

information for every user on every data file transmission. 

[12] has addressed this problem and proposes a centralized 

spectrum leasing algorithm to balance the cost of spectrum 

acquisition and QoS, though which is not applicable to a 

distributed SON design, because it requires well established 

spectrum occupancy information exchange between primary 

and secondary users.  

Reinforcement Learning (RL) algorithms have been widely 

studied for cognitive radio to reduce the cost of spectrum 

sensing in achieving DSA. The methodology is to discover 

which actions yield the most reward on a trial and error basis. 

The implementation scenario of reinforcement learning is the 

Markov Decision Process (MDP), where a learning agent 

interacts with its environment to achieve a goal. Such a 

scenario is well suited to RRM, where the action of resource 

allocation interacts with the spectrum environment, and the 

goal is to achieve effective spectrum separation among 

adjacent users. In order to provide effective RRM in a SON 

architecture under the DSA scenario, a learning engine is 

expected to perform 1) self-adaption: identify environment 

changes and make subsequent decisions; 2) self-optimization: 

exploit and improve the best action space in specific 

environment state; 3) fast convergence: fix on the preferred 

action space and resist rapid environment changes. 

Reinforcement learning based channel assignment can be 

generally categorized into centralised algorithms where 

channels are assigned at a centralized server, and distributed 

algorithms where spectrum decisions are made by individual 

users. Research work in the field has largely focused on 

centralised scenarios prior to the introduction of cognitive 

radio. The centralized Q-learning based dynamic channel 

assignment was originally proposed in [13], which assigns 

channels on a call-by-call basis by utilizing the information 

gained through Q learning. It has been shown that Q-learning 

outperforms the Fixed Channel Assignment under different 

traffic conditions. This work has been extended in [14], which 

introduces Call Admission Control (CAC) when updating the 

Q-values of channels.   

With the rapid development of Cognitive Radio, 

distributed RL algorithms have received more attention 

recently. A secondary cognitive radio system model based on 

IEEE 802.22 standard is considered in [15], where distributed 

Q-learning based techniques are applied to learn how to 

control the transmit power in order to reduce the aggregated 

interference at Primary Users (PUs) receivers. The system 

state is defined jointly by the aggregated interference at PUs, 

the approximate distance between the Secondary Users (SUs), 

the PU protection contour, and the transmit power level at 

SUs. A theoretical study of a simple 2 SU x 2 channel case has 

been carried out in [16]. No PU is assumed in the paper and 

spectrum sensing is ignored. The system state is defined by the 

availability of channels, which in practice would require 

system level information. A fixed set of rewards are also 

assumed throughout the learning process. Multi-agent 

reinforcement learning for cognitive radio has been studied in 

a more realistic scenario in [17]. A Q-learning based joint 

channel and power allocation scheme has been proposed. The 

state of the system has been defined by using the transmit 

power level and the channel utilization information of all 

users. In [18, 19], the authors studied a multi-agent 

reinforcement learning algorithm in a Carrier Sense Multiple 

Access (CSMA) based system. It is assumed that the Q-values 

are updated after every packet transmission. The learning 

model in their work requires the location information of 

entities at the system level in order to define the system states. 

However, most of the existing work only concerns the 

access link of the network, and also in most cases system level 

information is required to define the system state S in the 

learning model. The state-action formulation is an important 

process in any RL model, including Q-learning. Properly 

defined system state-action pairs are often of fundamental 

importance to any learning based system. 

The wireless communication system is a multi-server 

multi-user queueing system [20], where the physical state is 

usually referred to the number of resources (channels) that a 

base station provides to the users. In this context, global state 

information is required when applying conventional multi-



 

 

state Q learning for RRM [13]. This requires a centralized 

network controller or a fully coordinated control plane 

protocol, which is highly complex in the dual-hop architecture 

with joint access and backhaul design, and is not applicable to 

SON. More importantly, the convergence time of centralized 

Q learning highly relies on the size and format of the network 

topology. It takes a significantly long trial-and-error process 

for the network to obtain optimized solutions on every 

distributed node, which is inefficient in large ultra-dense 

networks. Furthermore, it is difficult to define the states in Q 

learning that match the physical states in the network. Thus in 

this paper, we introduce a stateless Q learning algorithm 

where the state formulation is no longer required, and the 

actions can be modelled as channels assigned to data file 

transmissions in the network. As a result, the SSQL algorithm 

can effectively model the physical behaviour of the wireless 

system in a fully distributed manner without the observation of 

global states, which reduces the complexity of the system 

control plane architecture. 

In summary, a system state formulation is required in all 

the algorithms reviewed above, which in practice is not 

straightforward. This is particularly true in a fully distributed 

network where only local observation is available. Thus in our 

previous work [21], a simple reinforcement learning algorithm 

without state formulation has been developed for a simplified 

transceiver pair system. This has been further extended in [22] 

for the application on a multi-hop backhaul network. 

However, none of them has been investigated in the context of 

a joint access and backhaul system. 

The Single-State Q-Learning (SSQL) based RRM 

algorithm proposed here is designed to utilize not only the 

instantaneous spectrum sensing measurements but also the 

historical information of the system. Such information has not 

been sufficiently utilized in normal wireless systems to 

facilitate the optimization process which could prove wasteful. 

This work also aims to evaluate and compare the capacity 

density performance of the dual-hop beyond next generation 

mobile broadband system with different RRM strategies, 

including the conventional frequency planning algorithm and 

cognitive RRM with sensing information only. 

The novel contribution of this work lies mainly in four 

aspects: (1) The SSQL algorithm is applied jointly to both the 

access and self-backhaul network. In other words, we consider 

the joint RRM design of access and self-backhaul links based 

on SSQL which has not been addressed before. (2) Unlike 

most of the previous work, this paper adapts a SSQL model 

where the issue of state-action pair formulation is less 

significant. Hence the complexity of the Q-learning model is 

reduced, and because the system state formulation is no longer 

required, the adaptability of such a model to wireless 

communication systems is significantly improved; (3) The 

traditional Q-learning model is modified to take the physical 

measurement of the wireless system as rewards, e.g. data rate 

or Signal-to-Noise plus Interference Ratio (SINR). Most of the 

existing literature, on the contrary, uses sets of predetermined 

reward values which are not directly linked to the physical 

state of the wireless system. By properly linking the learning 

model to the wireless system, the learning model is tailored to 

utilize as much system information as possible so that the 

benefit of applying learning is maximized. (4) For the first 

time, the capacity of the dual-hop beyond next generation high 

capacity density mobile broadband system is evaluated on a 

large scale at the system level with different RRM algorithms, 

i.e. fixed frequency planning, cognitive RRM, and SSQL 

based RRM. 

The rest of the paper is organized as follows: Section II 

introduces the dual-hop ultra-dense network model. Section III 

specifies the detail of distributed SSQL learning model. In 

Section IV, system-level simulation is conducted and the 

performance of the proposed algorithm is compared with the 

fixed frequency planning and cognitive RRM algorithm. 

Finally the conclusion is given in Section V. 

II. DUAL-HOP ULTRA-DENSE 5GARCHITECTURE  

2.1. System Model 

A novel dual-hop hierarchical architecture has been 

proposed as an ultra-dense network solution for 5G [6]. In 

order to enable a cost-efficient way of delivering high capacity 

density in the service area, the system is composed of an 

access network and a self-backhaul network. The key elements 

of the novel architecture are: 

 Hub Base Station (HBS): an entity that is connected to 

the operator’s backhaul network, which can be co-

located with conventional Macrocell BSs. A multi-beam 

directional antenna is deployed over roof-top at HBSs, 

providing a high capacity self-backhaul link to the access 

network entities. 

 Access Base Station (ABS): a low-cost entity that 

provides the access to the Mobile Subscribers (MS). A 

large number of ABSs will be mounted below roof-top 

on electricity poles, traffic lights, traffic signs, etc, which 

establishes a dense small cell network. The ABSs have 

several single-beam directional antennas. This includes 

one above-rooftop backhaul antenna and two to four 

below roof-top access antennas which point in opposite 

directions to provide spatial diversity to MSs on streets. 

Self-backhaul network

MS

Access network

ABS

HBS

MS

MS

MS
MS

MS

MS

MS

MS
MS

ABS
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MS

MS

MS

MS
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Fig. 1. Dual-hop High Capacity Density Network Model 



 

 

A large number of these low-cost ABSs are deployed along 

the streets, providing sufficient capacity to MSs in the Access 

Network. The aggregated traffic at the ABSs is then 

transmitted to the associated HBSs wirelessly via the 

dedicated directional antennas. Therefore, by carefully 

designing advanced RRM techniques, the dual-hop beyond 

next generation mobile network has the potential to meet the 

much desired 1 Gbps/km
2 
capacity density. 

We consider a wireless network with 𝑀 HBSs. Each HBS 

has 𝐿 beams, serving 𝑁 ABSs. Each ABS provides service to 𝐾  MSs. Then the HBS transmit power can be denoted as 𝑃𝐻 = (𝑝1𝐻,1 ⋯ 𝑝1𝐻,𝐿⋮ ⋱ ⋮𝑝𝑀𝐻,1 ⋯ 𝑝𝑀𝐻,𝐿), where 𝑝𝑚𝐻,𝑙
 is the transmit power of 

beam 𝑙 of HBS 𝑚. The ABS transmit power can be expressed 

as𝑃𝐴 = ( 𝑝1𝐴,1 … 𝑝𝑁𝐴,1⋮ ⋱ ⋮𝑝1𝐴,𝑀 … 𝑝𝑁𝐴,𝑀), where 𝑝𝑛𝐴,𝑚
 denotes the transmit 

power of ABS 𝑛, which is associated with HBS 𝑚.  

The BuNGee architecture uses Frequency-division 

Duplexing (FDD), where the uplinks and downlinks are 

allocated a pair of fully separated and equal band assignments  

[6]. Within each band, the access and backhaul links on the 

same direction may interfere with each other. However in the 

FDD context, the uplink-downlink interference can be 

effectively eliminated by sufficient spectrum band separation. 

FDD remains one of the preferred methods of duplexing by 

operators for mobile deployments today, owing to its general 

ease of use. Moreover, future 5G communication systems are 

likely to have a large amount of data traffic on both uplinks 

and downlinks, particularly in dense city areas. As a result, the 

uplinks and downlinks will exhibit similar system 

performance from the RRM perspective, as they are allocated 

equal and separated spectrum. In order to not be unduly 

repetitive, we focus solely on the downlink performance in 

this paper. If we assume that there are 𝑈 channels available in 

total, and each channel is divided into 𝑅 OFDM subchannels. 

2.2. System Architecture 

As we discussed previously, the primary objective of the 

dual-hop wireless system is to provide sufficient capacity 

density to the dense city centre area. Therefore, the simulator 

is based on a grid like system illustrated in Fig. 3, where the 

building heights are 6m, and the ABS antennas are located 

below rooftop height on the street lamps. The building block 

size is 75*75m, and the street width is 15m. Such layouts are 

seen in many modern cities today. This was originally 

modelled on the Diagonal district in Barcelona in Spain and 

has also been adopted as basis for modelling these dual hop 

architectures in the ETSI report [6]. The simulator 

characterises the performance in 3 spatial dimensions, to 

model the benefits of isolation caused by buildings in this 

scenario, and over roof-top transmissions of the self-backhaul 

links. 

The HBSs are placed above roof-top at the centre of each 

square cell covering 25 buildings. A directional antenna with 

20 beams is placed at the HBS to provide high-capacity self-

backhaul links. The beams of the HBS antenna point towards 

different ABSs in the cell. The ABSs are located below 

rooftop at the horizontal and vertical streets cross. Each ABS 

has two single-beam directional antennas pointing in two 

opposing directions either North-South (N-S) or East-West (E-

W) along the streets. The corner ABSs have 4 beams covering 

the N-S and E-W neighbouring streets. Dedicated backhaul 

antennas at the ABSs are directed in the direction of the 

largest power ray towards the centre of the cell as suggested in 

[23]. 

A number of channel models have been used to calculate 

the path loss in the simulation, which effectively models the 

real environment, including random effects such as variable 

attenuation due to shadowing. The ray-tracing based channel 

model introduced in [6] is used to estimate the path loss 

between entities with the self-backhaul network. WINNER II 

provides a comprehensive set of channel models that are 

capable of covering the propagation environment of the access 

network of the system. In this simulation, WINNER II B1 is 

used to calculate the pass loss between ABS and MS that is 

located outside of a building block. The path loss between the 

ABS and MS inside a building block is estimated using 

WINNER II B4 [24]. 

HBS 1 HBS 2

HBS 3

HBS 4 HBS 5

(m)

(m)

13509004500
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Fig. 2. Square Cell Deployment Scenario: A 5 HBS case 

2.2. Self-Backhaul network 

The SINR for ABS 𝑛 is (signal transmitted from HBS 𝑚in 

channel 𝑢 and subchannel 𝑟): 

 

𝛾𝑛,𝑢,𝑟𝑚,𝑙= 𝑝𝑚𝐻,𝑙𝑔𝑢,𝑟𝐵,𝑚,𝑙,𝑛∑ ∑ 𝑝𝑖𝐻,𝑗𝑔𝑢,𝑟𝐵,𝑖,𝑗,𝑛 +𝐿𝑗=1 ∑ 𝑝𝑚𝐻,𝑖𝑔𝑢,𝑟𝐵,𝑚,𝑖,𝑛𝐿𝑖=1,𝑖≠𝑙𝑀𝑖=1,𝑖≠𝑚 + 𝜎2 
(1) 

where  𝑔𝑢,𝑟𝐵,𝑚,𝑙,𝑛
 is the gain of the wireless link from the 𝑙 th 

beam of HBS 𝑚  to ABS 𝑛 . ∑ ∑ 𝑝𝑖𝐻,𝑗𝑔𝑢,𝑟𝐵,𝑖,𝑗,𝑛𝐿𝑗=1𝑀𝑖=1,𝑖≠𝑚 is the 

interference from other HBSs to ABS 𝑛. ∑ 𝑝𝑚𝐻,𝑖𝑔𝑢,𝑟𝐵,𝑚,𝑖,𝑛𝐿𝑖=1,𝑖≠𝑙 is 

the interference from the other beams of HBS 𝑚, using the 

same channel 𝑢 and subchannel 𝑟.𝜎2is the noise power. 

The link gain 𝑔𝑢,𝑟𝑖,𝑗
 between two entities i,j is obtained by: 



 

 

 𝑔𝑢,𝑟𝑖,𝑗 = 𝐺𝑖(𝜃𝑖)𝐺𝑗(∅𝑗)𝑃𝐿(𝑑𝑖𝑗)  (2) 

Where PL(.) is path loss, 𝐺𝑖(𝑥𝑖) is antenna gain of entity i on 

horizontal and vertical directions, which can be obtained by: 

 𝐺(𝑥) = 𝐷(𝑥)𝐸𝑎 (3) 𝐸𝑎 is the antenna efficiency and 𝐷(𝑥) is the directivity of the 

antenna. 𝐷(𝑥) is obtained by [25] 

 𝐷(𝑥) = 𝐷𝑚𝑎𝑥(cos 𝑥)𝜇 (4) 

and 

 𝐷𝑚𝑎𝑥 = 32 log 2𝜃3𝑑𝐵2 + ∅3𝑑𝐵2  (5) 

where  𝜃3𝑑𝐵  and ∅3𝑑𝐵  are 3dB beamwidth on horizontal and 

vertical directions, respectively. 

The directional antenna is an important part of the network. 

By using directional antennas at the base stations, the 

interference between the self-backhaul links and the 

interference between the ABS beams are kept to a minimum. 

Therefore, in order to clearly identify the impact of the 

directional antenna, equation (1) can be rewritten as: 

 

𝛾𝑛,𝑢,𝑟𝑚,𝑙 = 𝑝𝑚𝐻,𝑙𝐷𝑚𝑎𝑥𝐻 (cos 𝜃𝑚,𝑙)𝜇𝐻𝐸𝑎𝐻𝐷𝑚𝑎𝑥𝐴 (cos 𝜃𝑛)𝜇𝐴𝐸𝑎𝐴𝑃𝐿(𝑑𝑚,𝑛) ⁄
{∑ ∑ 𝑝𝑖𝐻,𝑗𝐷𝑚𝑎𝑥𝐻 (cos 𝜃𝑖,𝑗)𝜇𝐻𝐸𝑎𝐻𝐷𝑚𝑎𝑥𝐴 (cos 𝜃𝑛)𝜇𝐴𝐸𝑎𝐴𝑃𝐿(𝑑𝑖,𝑛)𝐿𝑗=1𝑀𝑖=1,𝑖≠𝑚+ ∑ 𝑝𝑚𝐻,𝑖𝐷𝑚𝑎𝑥𝐻 (cos 𝜃𝑚,𝑖)𝜇𝐻𝐸𝑎𝐻𝐷𝑚𝑎𝑥𝐴 (cos 𝜃𝑛)𝜇𝐴𝐸𝑎𝐴𝑃𝐿(𝑑𝑚,𝑛)𝐿𝑖=1,𝑖≠𝑙 + 𝜎2}

 (6)  

2.3. Access Network 

When carrying out the interference study of the dual-hop 

wireless system, two categories of interference need to be 

considered: the interference within each hop of the network, 

and the interference between the access network and the self-

backhaul network. In the case of the downlink, the potential 

interference at the MS not only comes from entities within the 

access network, but also the interference from the self-

backhaul network. The SINR at MS 𝑘 is a little more 

complicated to calculate than the SINR at the ABSs. The 

SINR for MS 𝑘  is (signal transmitted from ABS 𝑛 (associated 

with HBS 𝑚) in channel 𝑢 and subchannel 𝑟): 

 

 

𝛾𝑘,𝑞,𝑟𝑛,𝑚 = 𝑝𝑛𝐴,𝑚𝑔𝑢,𝑟𝐴,𝑛,𝑘 { ∑ ∑ 𝑝𝑗𝐴,𝑖𝑔𝑢,𝑟𝐴,𝑗,𝑘 +𝑁
𝑗=1

𝑀
𝑖=1,𝑖≠𝑚⁄ ∑ 𝑝𝑖𝐴,𝑚𝑔𝑢,𝑟𝐴,𝑖,𝑘𝑁

𝑖=1,𝑖≠𝑛+ ∑ ∑ 𝑝𝑖𝐻,𝑗𝑔𝑢,𝑟𝐵,𝑖,𝑗,𝑘 +𝐿
𝑗=1 ∑ 𝑝𝑚𝐻,𝑖𝑔𝑢,𝑟𝐵,𝑚,𝑖,𝑘𝐿

𝑖=1,𝑖≠𝑙
𝑀

𝑖=1,𝑖≠𝑚 + 𝜎2}  (7)  

where 𝑔𝑢,𝑟𝐴,𝑛,𝑘
 is the link gain between ABS 𝑛  and MS 𝑘 . ∑ ∑ 𝑝𝑗𝐴,𝑖𝑔𝑢,𝑟𝐴,𝑗,𝑘𝑁𝑗=1𝑀𝑖=1,𝑖≠𝑚 is the interference from all the ABSs 

in other cells that are using the same frequency. ∑ 𝑝𝑖𝐴,𝑚𝑔𝑢,𝑟𝐴,𝑖,𝑘𝑁𝑖=1,𝑖≠𝑛 is the interference from other ABSs in the 

same cell. ∑ ∑ 𝑝𝑖𝐻,𝑗𝑔𝑢,𝑟𝐵,𝑖,𝑗,𝑘𝐿𝑗=1𝑀𝑖=1,𝑖≠𝑚 is the interference from the 

HBS beams in other cells and  ∑ 𝑝𝑚𝐻,𝑖𝑔𝑢,𝑟𝐵,𝑚,𝑖,𝑘𝐿𝑖=1,𝑖≠𝑙  is the 

interference from the HBS beam within the same cell. 𝜎2is the 

noise power. 

Similarly, if we rewrite equation (7) the same way as we 

did for equation (1) to consider the impact of directional 

antennas, the following equation can be obtained: 

 

𝛾𝑘,𝑢,𝑟𝑛,𝑚 = 𝑝𝑛𝐴,𝑚𝐷𝑚𝑎𝑥𝐴 (cos 𝜃𝑛)𝜇𝐴𝐸𝑎𝐴𝐺𝑀𝑃𝐿(𝑑𝑚,𝑛,𝑘){ ∑ ∑ 𝑝𝑗𝐴,𝑖𝐷𝑚𝑎𝑥𝐴 (cos 𝜃𝑖,𝑗)𝜇𝐴𝐸𝑎𝐴𝐺𝑀𝑃𝐿(𝑑𝑖,𝑗,𝑘)𝑁
𝑗=1

𝑀
𝑖=1,𝑖≠𝑚⁄

+ ∑ 𝑝𝑖𝐴,𝑚𝐷𝑚𝑎𝑥𝐴 (cos 𝜃𝑚,𝑖)𝜇𝐴𝐸𝑎𝐴𝐺𝑀𝑃𝐿(𝑑𝑚,𝑖,𝑘)𝑁
𝑖=1,𝑖≠𝑛+ ∑ ∑ 𝑝𝑖𝐻,𝑗𝐷𝑚𝑎𝑥𝐻 (cos 𝜃𝑖,𝑗)𝜇𝐻𝐸𝑎𝐻𝐺𝑀𝑃𝐿(𝑑𝑖,𝑘)𝐿

𝑗=1
𝑀

𝑖=1,𝑖≠𝑚+ ∑ 𝑝𝑖𝐴,𝑚𝑝𝑚𝐻,𝑖𝐷𝑚𝑎𝑥𝐻 (cos 𝜃𝑚,𝑖)𝜇𝐻𝐸𝑎𝐻𝐺𝑀𝑃𝐿(𝑑𝑚,𝑘)𝑁
𝑖=1,𝑖≠𝑛 + 𝜎2}

 (8) 

where 𝐺𝑀 is the antenna gain of mobile handset antenna. 𝐺𝑀 is a fixed value regardless of 𝜃  since we assume 

omnidirectional antenna at the MS end. 

Adaptive modulation is assumed and the truncated 

Shannon bound (TSB) is considered in this work to represent 

the achievable data rates in practice given an Adaptive 

Modulation and Coding (AMC) codeset [26]. The achievable 

data rate of the self-backhaul links is given by: 

 

𝐶𝑛,𝑢,𝑟𝑚,𝑙
= { 0 𝑖𝑓 𝛾𝑛,𝑢,𝑟𝑚,𝑙 ≤ 𝑆𝐼𝑁𝑅𝑚𝑖𝑛𝛼𝐵𝑟 log2(1 + 𝛾𝑛,𝑢,𝑟𝑚,𝑙 ) 𝑖𝑓 𝑆𝐼𝑁𝑅𝑚𝑖𝑛 ≤ 𝛾𝑛,𝑢,𝑟𝑚,𝑙 ≤ 𝑆𝐼𝑁𝑅𝑚𝑎𝑥𝐵𝑟𝐶𝑚𝑎𝑥 𝑖𝑓 𝑆𝐼𝑁𝑅𝑚𝑎𝑥 ≤ 𝛾𝑛,𝑢,𝑟𝑚,𝑙  

(9) 

where 𝛼  is an attenuation factor, 𝑆𝐼𝑁𝑅𝑚𝑖𝑛  denotes the 

minimum SINR of the AMC codeset, 𝑆𝐼𝑁𝑅𝑚𝑎𝑥  is the 

maximum SINR of the codeset, 𝐶𝑚𝑎𝑥  is the maximum 

achievable capacity and 𝐵𝑟  is the bandwidth. A set of 

parameter values customized to the dual-hop high capacity 

density system is used where 𝛼 = 0.65, 𝑆𝐼𝑁𝑅𝑚𝑖𝑛 = 1.8 dB, 𝑆𝐼𝑁𝑅𝑚𝑎𝑥 = 40 dB and 𝐶𝑚𝑎𝑥 = 8.6 bps/Hz[26]. Similarly, the 

capacity of the access links can be denoted as: 

 

𝐶𝑘,𝑢,𝑟𝑛,𝑚
= { 0 𝑖𝑓 𝛾𝑘,𝑢,𝑟𝑛,𝑚 ≤ 𝑆𝐼𝑁𝑅𝑚𝑖𝑛𝛼𝐵𝑟 log2(1 + 𝛾𝑘,𝑢,𝑟𝑛,𝑚 ) 𝑖𝑓 𝑆𝐼𝑁𝑅𝑚𝑖𝑛 ≤ 𝛾𝑘,𝑢,𝑟𝑛,𝑚 ≤ 𝑆𝐼𝑁𝑅𝑚𝑎𝑥𝐵𝑟𝐶𝑚𝑎𝑥 𝑖𝑓 𝑆𝐼𝑁𝑅𝑚𝑎𝑥 ≤ 𝛾𝑘,𝑢,𝑟𝑛,𝑚  

(10) 

Therefore, the end-to-end link (HBS to MS) capacity is 

obtained by: 

 𝐶𝑚,𝑘 = 𝑚𝑖𝑛(𝐶𝑛,𝑢,𝑟𝑚,𝑙 , 𝐶𝑘,𝑢,𝑟𝑛,𝑚 ) (11) 



 

 

III. SINGLE-STATE Q-LEARNING FOR RADIO RESOURCE 

MANAGEMENT OF SELF-BACKHAUL AND ACCESS NETWORK 

As indicated previously in Section II, delivering sufficient 

capacity density is the key aim of the dual-hop mobile 

broadband system. This requires a relatively large amount of 

small access cells (ABSs) to be deployed on streets with 

sufficient self-backhauling capacity as illustrated in Fig. 3, 

which in turn demands sophisticated RRM to maximize the 

spectrum efficiency. Due to the large number of base stations 

and directional antennas in the system, the conventional fixed 

frequency planning approach proposed in BuNGee is 

extremely complex. Moreover, system capacity can be largely 

constrained by the band size, because the user traffic has 

significant spatial variation in different directions of the street. 

The purpose of introducing self-organizing techniques, like 

SSQL, is to significantly reduce the complexity of the RRM 

design. With the capability of self-organizing RRM schemes, 

the requirement for a detailed frequency plan can be partially 

or even completely removed. It is assumed that all the entities 

in this work share the same pool of frequency resources. No 

‘hard’ frequency plan is used and the interference control is 

done entirely by spectrum sensing and the SSQL algorithm. 

Thus, the requirement for frequency planning is completely 

removed, which in any case is extremely complicated because 

of the excessive number of small cells and the unpredictable 

small-scale propagation effects, and the ‘in band’ self-
backhauling. In this section we will first only briefly introduce 

Q-learning, then a comprehensive introduction of the proposed 

SSQL algorithm will be given. 

3.1. Single State Q-learning 

The standard Q-learning model is represented in Fig. 3[27]. 

Here the learning process can be defined as a Markov 

Decision Process (MDP), where an agent perceives a set of 

distinct environment states 𝑆 = {𝑠1, ⋯ , 𝑠𝑛} , and a set of 

actions 𝐴 = {𝑎1, ⋯ , 𝑎𝑚}. At each discrete time t, the agent 

senses the environment 𝑠𝑡 ∈ 𝑆.  Based on 𝑠𝑡, an action 𝑎𝑡 ∈ 𝐴 

is selected and performed. By performing 𝑎𝑡, the environment 

changes to a new state 𝑠𝑡+1  and a reward 𝑟𝑡 = 𝑟(𝑠𝑡 , 𝑎𝑡)  is 

given to the agent. 

Agent

Environment

Action atReward ctState st

 

Fig. 3. Standard Q-learning Model 

Therefore, a learning model normally consists of the 

following elements: 

1. 𝑆: a finite set of environment states 

2. 𝐴: a finite set of actions 

3. 𝑟: 𝑆 × 𝐴 → 𝑅: a reward function 

4. 𝑃: 𝑆 × 𝐴 → P (𝑆): a state transition function 

The objective is to find an optimized policy 𝜋∗ and 

maximize its accumulated reward. The optimized value 

function 𝑉∗(𝑠) under the optimized policy 𝜋∗is defined as: 

 𝑉∗(𝑠) = max𝑎 (𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋∗(𝑠′)𝑠′∈𝑆 ) (12) 

where 𝑃(𝑠′|𝑠, 𝑎) is the state transition probability from 𝑠 to 𝑠′ by taking an action 𝑎. 𝛾 is the learning rate (0 ≤ 𝛾 < 1). 𝑟(𝑠, 𝑎) is effectively the cumulative reward of state 𝑠  and ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋∗(𝑠′)𝑠′∈𝑆  is the expected feedback of the 

successor state 𝑠′. Then the optimized policy can be derived 

after computing the optimized value function 𝑉∗(𝑠): 

 𝜋∗(𝑠) = argmax𝑎 (𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑉𝜋∗(𝑠′)𝑠′∈𝑆 ) (13) 

Q learning is used to compute 𝑉𝜋∗(𝑠′) when the cognitive 

agent has lack of information regarding the state transition 

probability 𝑃(𝑠′|𝑠, 𝑎)  and the estimated reward 𝑟(𝑠, 𝑎) . In 

other words, it allows the agent to choose among actions 

rather than system states based on the Q value. For a policy 𝜋, 

the Q value of an action in a specific system state can be 

obtained recursively as [27] 

 
𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼(𝑟(𝑠, 𝑎) + 𝛾 max𝑎 𝑄(𝑠′, 𝑎)− 𝑄(𝑠, 𝑎)) 

(14) 

It is clear from the above functions that in order to apply 

Q-learning techniques to any systems, the formulation of state-

action pairs is important. However, the physical state from the 

RRM perspective refers to the number of resource blocks that 

are available to the user, which requires a centralized 

observation of the network. Furthermore, the state-action pair 

in Q learning cannot effectively model the physical states. In a 

queueing system, two state transitions occur on file arrival and 

departure, which requires only one action of resource 

allocation. On the other hand, a user may take multiple actions 

simultaneously when a number of files are in transmission. In 

order to make the learning system fully distributed and 

effectively model the network’s physical behaviour, we 

introduce the Single-State Q-Learning where the formulation 

of state-action pairs is less of an issue. 

Single-State Q-Learning is originally proposed to solve 

stateless games in Computer Science [28]. A reformulation of 

the standard Q-learning algorithm is carried out so that the Q 

values of actions are effectively the estimation of the 

usefulness of the actions in the next step of the learning 

process. By maintaining a Q value for each action, the agent is 

able to select the action based entirely on its Q value and the Q 

value of the selected action will be updated by receiving a 

reward. The update function is defined as: 

 𝑄(𝑎) ← 𝑄(𝑎) + 𝛾(𝑟(𝑎) − 𝑄(𝑎)) (15) 𝛾 is the learning rate (0 ≤ 𝛾 < 1) and 𝑟(𝑎) is the immediate 

reward of choosing action 𝑎. 

In our previous work [29], we have analysed the effect of 

learning rate on the changes of Q values. By considering the 



 

 

function updated on action a with reward r(a) recursively by t 

iterations: 𝑄𝑡(𝑎) = (1 − 𝛾)𝑡𝑄0(𝑎) +𝛾𝑟(𝑎)((1 − 𝛾)𝑡−1 + (1 − 𝛾)𝑡−2 + ⋯ + (1 − 𝛾)0) = (1 − 𝛾)𝑡𝑄0(𝑎) + 𝑟(𝑎) − 𝑟(𝑎)(1 − 𝛾)𝑡 

(16) 

 lim𝑡→∞𝑄𝑡(𝑎) = 𝑟(𝑎) 
 

(17) 

 

It can be concluded that the Q value of an action will 

ultimately stabilize if it receives the same reward value. By 

computing the time derivative of 𝑄𝑡(𝑎), we have 

 
𝑑𝑑𝑡 𝑄𝑡(𝑎) = (1 − 𝛾)𝑡(𝑄0(𝑎) + 𝑟(𝑎)) ln(1 − 𝛾) (18) 

This indicates that the slope of Q value decreases as more 

iterations t have been taken on action a. Unlike the 

reinforcement learning algorithm we have developed in [21], 

the historical information will not dominate the decision 

making even though the cognitive agent stabilizes on an action 

for a long time. The reward value can quickly change the 

converged Q value, which allows the cognitive agent 

effectively adapt to the dynamic environment.  

Comparing with the following traditional update function, 

it can be seen that not only the state-action formation is not 

required, but also the information of the successor state 𝑠′ is 

irrelevant. This reduces the complexity of the learning model 

and enhances the applicability of Q-learning to distributed 

wireless network. 

In conventional Q learning, the Q values are usually 

arbitrarily initialized from the start, and updated iteratively by 

trial-and-error with a reward process. The Q table in the initial 

stage has a lack of information about the radio environment, 

thus an exploration approach is introduced to allow the 

cognitive agent make decisions from observation of the 

environment. The ɛ-Greedy method is commonly used to 

provide a random decision making with a probability of ɛ. In 
this paper, we use this method together with interference 

measurement to reduce the arbitrary effects of the initial Q 

values. 

Instead of pursuing the optimized policy 𝜋∗, the objective 

of each agent 𝑖 is to find the action with the highest estimated 

Q-value Q
*
.  In this case the reward 𝑟(𝑎) needs to be properly 

defined so that the feedback of taking an action reflects the 

successfulness of such actions correctly. Particularly in 

wireless communication systems, the reward is better to be 

associated with physical measurements of the system in order 

to facilitate the learning process. In this work, the link 

capacity is used as reward 𝑟(𝑎) to update the Q-values in 

equation (15). Therefore, if the HBS m takes the action ato use 

channel u subchannel r in order to transmit data to ABS n, 

then the update function of the self-backhaul link can be 

defined as: 

 𝑄𝑛,𝑢,𝑟𝑚,𝑙 (𝑎) ← 𝑄𝑛,𝑢,𝑟𝑚,𝑙 (𝑎) + 𝛾(𝐶𝑛,𝑢,𝑟𝑚,𝑙 − 𝑄𝑛,𝑞,𝑟𝑚,𝑙 (𝑎)) (19) 

Similarly the update function of the access link can be defined 

as: 

 𝑄𝑘,𝑢,𝑟𝑛,𝑚 (𝑎) ← 𝑄𝑘,𝑢,𝑟𝑛,𝑚 (𝑎) + 𝛾(𝐶𝑘,𝑢,𝑟𝑛,𝑚 − 𝑄𝑘,𝑢,𝑟𝑛,𝑚 (𝑎)) (20) 

where 𝐶𝑛,𝑢,𝑟𝑚,𝑙
 , 𝐶𝑘,𝑢,𝑟𝑛,𝑚

 are defined by equation (9), (10). 

It has been demonstrated in equation (16) and (17) that, the 

Q value varies according to the link capacity 𝐶𝑛,𝑢,𝑟𝑚,𝑙
 or 𝐶𝑘,𝑢,𝑟𝑛,𝑚

. In 

this context, the cognitive agent will stabilize on actions that 

frequently receive a high link capacity, while also reacting 

quickly to capacity changes. 

3.2. SSQL-based RRM 

As explained earlier, one of the most difficult problems for 

5G high capacity density networks is the extremely complex 

RRM task generated by the utilization of a large number of 

small cells. This is especially true in our case where not only a 

large number of ABSs are deployed, but also the wireless self-

backhauling directional links share the same pool of frequency 

resources with the access links. Thus, self-organising features 

are desirable for such networks. This section introduces our 

SSQL based RRM algorithms.  

It is assumed that all the entities in our network, including 

HBSs, ABSs, and the MSs share the same pool of frequency 

resources. The cognitive engine is applied to RRM as 

demonstrated in Fig. 4. The cognitive agents observe the 

available channels based on interference measurement from 

distributed spectrum sensing [11], make decisions on channel 

selection, take actions on file transmission, and update the 

learning function based on the rewards from the action. 

 

Fig. 4. Cognitive Engine 

The SSQL-based RRM algorithm is illustrated in Fig. 4. 

The ɛ-greedy exploration algorithm is applied where the 

learning agent explores a random action with a probability of ɛ. 
An interference threshold Ithre is applied to obtain available 

channels from the spectrum pool, which will be specified in 

the simulation parameters. 
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The cognitive engine is proposed to be implemented at the 

ABS only, which is responsible for decision making on both 

the HBS-ABS backhaul and ABS-MS access links. This 

significantly simplifies the network architecture, making it 

widely applicable to different types of mobile devices, whilst 

also requiring fewer hardware amendments. In the basic 

cognitive radio approach, spectrum sensing (interference 

measurement) is operated on an ABS prior to data 

transmission, where the subchannels with an interference level 

higher than a predefined threshold are excluded from spectrum 

assignment. In the SSQL algorithm, the ABSs update the Q-

values based on the Q learning function. The subchannels are 

assigned based on both spectrum sensing and Q-value vector. 

The SSQL algorithm uses a one-dimensional Q table because 

it only has a single state. This significantly reduces the 

computational complexity compared to multi-state Q learning, 

which should use a multi-dimensional matrix to model 

different system states and calculate state transition 

probability. In SSQL, the ABS should build two Q tables 

separately for access and backhaul subchannels. However, the 

implementation cost is reduced compared to the conventional 

approach, as the algorithm is largely simplified.

 
Algorithm 1.SSQL based RRM algorithm 

 
1. let t = 0,  assign random value to Q(a) 
2. Interference measurement on the channels within allocated band 
3. Obtain available action set a, where ∀I(a)<Ithre 
4. Generate random number k between 0 and 1 
5. if (k<ɛ)  
6. select an random action at from a  
7. else  
8. select the action at with the maximum Q-value from a  
9. end if 
10. if on backhaul link 
11. HBS assigns at for data transmission 
12. else if on access link 
13. MS verifies at and sends a response back to the ABS 
14. ABS assigns at for data transmission 
15. end if 
16. receive reward r(at) ( link capacity) 

17. update the Q-value vector:
 

 

18. t = t + 1 

 

IV. PERFORMANCE EVALUATION AND DISCUSSION 

This section presents the results obtained from an event 

driven simulation in MATLAB. The performance of our 

SSQL-based algorithm is compared with the fixed frequency 

planning approach described in Section 2.5, and a basic 

cognitive radio approach where the RRM entities rely only on 

spectrum sensing measurements at the ABSs with a -80 dBm 

interference threshold when making subchannel selection 

decisions [6]. Data traffic is modelled on the downlinks only, 

with other traffic types likely to have similar performance on 

uplinks. This is modelled using a file transfer based traffic 

model, where the file size and the inter-arrival time follow a 

Pareto distribution, which simulates a succession of packets 

delivered in the network [30]. The inter-arrival time and file 

size are modelled as long-tailed Pareto distribution. Any 

blocked or interrupted files will be back off for a random time 

and retransmitted until successfully delivered. 

The key simulation parameters are listed in Table III. The 

base station antenna profile, gain and transmit power are 

defined in [23]. We consider a typical 20 MHz 4G spectrum in 

the 3.5 GHz licensed band. 

TABLE I. SIMULATION PARAMETERS 

Parameters Values 

Area  1350*1350m 

Building size 75*75m 

Street width 15m 

Number of HBS/ABS/MS 5/96/2000 

Transmit Power of HBS/ABS/MS 37/37/23 dBm 

Antenna Gain HBS/ABS  19 dBi – 21 dBi / 17 dBi 

Antenna Height HBS/ABS/MS 25/5/1.5 m 

Antenna beams HBS: 20; ABS: 2 (corner: 4) 

Carrier Frequency 3.5 GHz 

Spectrum Size 20 MHz 

Number of Channels 4 (5 MHz each) 

Number of Resource Blocks 120 

Log-normal shadowing factor 6 dB 

Noise floor -114 dBm/MHz 

Interference threshold -80 dBm 

Propagation 

Model 

HBS-ABS Ray-tracying [6] 

ABS-MS WINNER II B1 [24] 

Traffic Model Inter-arrival time Pareto distribution: α=4 

File size 100 kB 

4.1. Fixed Frequency Planning    

Radio Resource Management in BuNGee is achieved 

through a fixed frequency planning approach, which will be 

used as a baseline comparison. The details of the frequency 

plan are shown in Fig. 5. The entire downlink spectrum band 

is divided into four 5 MHz channels which are shared between 

the backhaul and access network. At the HBS side, 4 different 

channels are used for each group of 4 neighbouring beams in 

the order from channel 1 to channel 4. ABSs located at the top 

and bottom of the cell are designed to serve N-S streets, and 

ABSs on the left and right serve the E-W streets. The two 

ABS beams pointing in opposite directions should use two 

different channels. ABSs that serve N-S streets use two 

different channels from those that serve E-W streets. 
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Fig. 5. Downlink Frequency Plan for Square Cells 
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It can be seen that the potential interference between the 

beams using the same channel have been minimized by the 

frequency plan where the immediate neighbouring beams 

utilize different frequency channels. Thus, by exploiting the 

natural isolation of building blocks, the novel hierarchical 

system is expected to deliver a high throughput density. 

Moreover, the channels allocated to a backhaul beam are 

different to the connected access beams on an ABS, which 

reduces the backhaul-access interference. The antenna 

beamwidth on both HBS and ABS is 30
o
. We can see from 

Fig. 3 that on a HBS the angle between neighbouring beams 

using the same channel is 72
o
, which is large enough to avoid 

interference between backhaul links. 

4.2. Results and discussion    

Fig. 6 shows the average link data rate per Hz in both the 

access and the backhaul network over up to 5000 simulation 

trials. The red curves represent the performance of the SSQL-

based RRM algorithm and the blue curves represent the basic 

cognitive radio approach where only spectrum sensing takes 

place without frequency planning and learning. It can be seen 

that with SSQL, the data rates of the links in both the access 

network and the self-backhaul network are significantly higher 

than the basic cognitive radio approach. Not only does the 

SSQL scheme enable a faster convergence, but also it achieves 

a better performance after convergence.  

 

Fig. 6. Link capacity over 5,000 learning trials 

The main end-to-end system performance measurements 

including both the access and backhaul network are system 

throughput density, delay and the probability of retry. The 

end-to-end downlink average throughput density can be 

defined as: 

 𝑇ℎ𝑟𝐷 = 𝑇ℎ𝑟𝑠 𝐴𝑠⁄  (21) 

Where As is the service area. Thrs is the system throughput that 

can be defined as: 

 𝑇ℎ𝑟𝑠 = ∑ ∑ 𝐶(𝑡) ∙ 𝑡(𝑘)𝑛𝑖𝑘=1𝑁𝑢𝑖=1 𝑡𝑠  (22) 

C(t) is the data rate of a link obtained at time t, and it is 

updated constantly in the simulation. t(k) is the transmission 

time of the k
th 

file of an entity, and ni is the total number of 

transmissions that have been finished by the i
th

 entity in the 

simulation. Nu is the total number of entities in the simulation. 

ts is the simulation time. 

The end-to-end delay can be obtained by: 

 𝑇ℎ𝑟𝑠 = ∑ ∑ 𝑡𝑇(𝑘) ∙ 𝑡𝐵(𝑘)𝑛𝑖𝑘=1𝑁𝑢𝑖=1 𝑁𝑢  (23) 

Where tT(k) is the transmission time of the k
th 

file and tB(k) is 

the backoff time of the k
th 

file. ni is the total number of files 

that have been transmitted by the i
th

 entity in the simulation. 

Nu is the total number of entities in the simulation. 

The end-to-end retry probability is also used in this simulation 

to describe the probability that the current file transmission 

request has been rejected by the system. The probability of 

retry at time t is obtained by: 

 𝑃𝑟𝑒𝑡𝑟𝑦 = 𝑁𝑟 𝑁𝑎(𝑡)⁄  (24) 

Where Pretry(t) is the probability of retry at time t. Nr(t) is the 

total number of rejected file transmissions of the system by 

time t, and Na(t) is the total number of file transmission 

requests (including retries) of the system by time t. 

Fig. 7 shows the performance of the aforementioned 

schemes. It can be seen that a downlink throughput density of 

500Mbps/km
2 

has been achieved by the SSQL-based scheme 

where the throughput density of the frequency planning and 

the basic cognitive radio approach is around 450Mbps/km
2
. It 

is clear that not only is the SSQL-based RRM scheme is able 

to remove the requirements for frequency planning completely, 

while also achieving a better overall throughput density 

throughout because higher data rates have been reached at 

both the access links and the self-backhaul links. Furthermore, 

as the FDD system uses an additional frequency band of the 

same size for the uplinks, the entire system capacity density 

can reach 1 Gb/s/km
2
, which achieves the ultra-dense network 

requirement in 5G. 

 

Fig. 7. System downlink throughput density versus downlink traffic 
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Fig. 8 and Fig. 9 compare the end-to-end delay and retry 

probability of the system respectively. The system delay and 

retry probability of the SSQL-based scheme are significantly 

lower due to greatly improved link capacity, e.g. the retry 

probability of the SSQL-based approach is around 5% when 

the downlink offered traffic density is 0.4 Gbps/km
2
. 

However, the retry probability of the frequency planning 

approach is about 27% at the same offered traffic level and the 

figure for the basic cognitive radio approach is around 12%.  

This result in particular highlights the problem of the 

frequency planning approach, with 27% of the subchannel 

selection decisions being initially wrong.  This is a result of 

the reuse behaviour being difficult to predict even with a 

‘Manhattan Grid’ type environment. In less regular high 
capacity density environments frequency planning will 

become even more difficult and less effective, or a more 

conservative reuse factor will be required.  However, due to its 

inherent flexibility, the SSQL scheme should be applicable in 

various network scenarios for the delivery of self-organized 

RRM for dynamic spectrum management, even when there are  

irregular building heights, street layouts ABS placement and 

user distributions. 

 

Fig. 8. System delay versus system downlink throughput density 

 

Fig. 9. Probability of retry versus system downlink traffic density 

V. CONCLUSIONS 

In this paper, a novel SSQL-based RRM algorithm has been 

developed for dual-hop 5G ultra-dense mobile networks, 

where the access and self-backhaul network share the same 

radio spectrum. The SSQL-based RRM algorithm is able to 

completely remove the need and complexity of frequency 

planning while achieving a significantly better performance. It 

is also proven to effectively control the inter-cell and access-

backhaul interference in a fully distributed manner, providing 

a highly efficient way of supporting the self-organization 

requirements in 5G networks. Compared with traditional Q-

learning algorithms, it can be seen that not only is a state-

action formation not required, but also the information of the 

successor state 𝑠′  is irrelevant. This reduces the complexity 

and convergence time of the learning model, and enhances the 

applicability of Q-learning to distributed wireless networks. 

By introducing the SSQL-based algorithm, the data rates of 

the links in both the access and self-backhaul networks are 

significantly higher than with the basic cognitive radio 

approach. Not only does the SSQL-based scheme enable a 

faster convergence, it achieves a better data rate performance 

after convergence. The retry probability of SSQL scheme is 

15% lower than the frequency planning scheme, and 5% lower 

than the basic cognitive radio scheme. This also contributes to 

significant lower system delay at medium traffic levels. 

Furthermore, we demonstrate the downlink throughput density 

of SSQL scheme reaches above 0.5 Gbps/ km
2
. Thus, in a 

FDD system where uplinks use an equal spectrum band, a 1 

Gbps/ km
2
 capacity density can be achieved for the 5G ultra-

dense network deployments.  
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