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INDEFINITENESS IN SEMI-INTUITIONISTIC SET THEORIES:
ON A CONJECTURE OF FEFERMAN

MICHAEL RATHJEN

Abstract. The paper proves a conjecture of Solomon Feferman concerning the indefiniteness of the
continuum hypothesis relative to a semi-intuitionistic set theory.

§1. Introduction. Frege in [13, Section 68] wrote: Ich setze voraus, dass man wisse,
was der Umfang eines Begriffes sei.1 Dummett’s diagnosis of the failure of Frege’s
logicist project in the final chapter of [8] focusses on the adoption of classical quan-
tification over domains comprised of objects falling under an indefinitely extensible
concept. He repudiates the classical view as illegitimate and puts forward reasons
in favor of an intuitionistic interpretation of quantification. Solomon Feferman,
in recent years, has argued that the Continuum Hypothesis (CH) might not be a
definite mathematical problem (see [10–12]2).

My reason for that is that the concept of arbitrary set essential to its formulation
is vague or underdetermined and there is no way to sharpen it without violating
what it is supposed to be about. In addition, there is considerable circumstantial
evidence to support the view that CH is not definite. ([10, p.1]).

In particular the power set, P(A), of a given set A may be considered to be an
indefinite collection whose members are subsets of A, but whose exact extent is
indeterminate (open-ended). In [10], Feferman proposed a logical framework for
what’s definite and for what’s not.

One way of saying of a statement ϕ that it is definite is that it is true or false; on a
deflationary account of truth that’s the same as saying that the Law of Excluded
Middle (LEM) holds of ϕ, i.e., one has ϕ ∨ ¬ϕ . Since LEM is rejected in
intuitionistic logic as a basic principle, that suggests the slogan, “What’s definite
is the domain of classical logic, what’s not is that of intuitionistic logic.” [. . . ]
And in the case of set theory, where every set is conceived to be a definite totality,
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we would have classical logic for bounded quantificationwhile intuitionistic logic
is to be used for unbounded quantification. ([10, p. 23])

At the end of [10] he made that idea more precise by suggesting semi-intuitionistic
set theories as frameworks for formulating questions of definiteness and studying the
definiteness of specific set-theoretic statements. In relation to CH, he conjectured
that this statement is not definite in the specific case of a semi-intuitionistic set
theory T, in the sense that T does not prove CH ∨ ¬CH. The set-theoretical point
of view expressed by T accepts the definiteness of the continuum in its guise as the
arithmetical/geometric structure of the real line, but does not allow the powerset
operation to be applied to arbitrary sets.
The objective of this paper is to prove Feferman’s conjecture. In this sense it is a
technical paper. It lays out new evidence for the reader to consider. However, as far
as the ongoing discussions of the foundational status of CH are concerned, readers
will have to form their own conclusions.
A chief technique applied in this article is realizability over relativized con-
structible hierarchies combined with forcing. More widely the impression is that
CH is not an isolated case in that other statements could be proved to be indefinite
relative to semi-intuitionistic set theories in this way. At any rate, it appears that the
paper adds a hitherto unexplored tool to the weaponry earmarked for engineering
specific realizability models and proving independence results.
An outline of the paper reads as follows: Section 2 introduces formal systems of
semi-intuitionistic set theory and in particular the theory T. Section 3 is devoted
to the relativized constructible hierarchy L[A] and its properties. In Section 4,
L[A] features as a domain of computation which gets utilized in Section 5 as a
realizability universe for T. By carefully designing sets of ordinals C and E and
employing results from forcing, realizability of T over L[C ] and L[C ∪ E] yields
conflicting information that leads to a contradiction, and thus provides a proof of
the desired conjecture.

§2. Semi-intuitionistic set theory. The study of subsystems of ZF formulated in
intuitionistic logic with Bounded Separation was apparently initiated by Pozsgay
[21, 22] and then pursued more systematically by Tharp [29], Friedman [14] and
Wolf [30]. These systems are actually semi-intuitionistic as they contain the law of
excluded middle for bounded formulae.
Classical Kripke–Platek set theory, KP, is an important theory that accommo-
dates a great deal of set theory. Its transitive models, called admissible sets, have
been a major source of interaction between model theory, recursion theory and set
theory (cf. [3]). KP arises from ZF by completely omitting the power set axiom and
restricting separation and collection to bounded formulae. Here we are interested
in its intuitionistic cousin.

Definition 2.1. Intuitionistic Kripke–Platek set theory, IKP, is formulated in the
usual language of set theory containing ∈ as the only non-logical symbol besides =.
Formulae are built from prime formulae a ∈ b and a = b by use of proposi-
tional connectives and quantifiers ∀x,∃x. Quantifiers of the forms ∀x ∈ a, ∃x ∈ a
are called bounded. Bounded or Δ0-formulae are the formulae wherein all quan-
tifiers are bounded. IKP is based on intuitionistic logic and has the following
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non-logical axioms: Extensionality, Pair, Union, Infinity (in the specific version that
there is a smallest set containing the empty set 0 and closed under the successor
operation, x′ = x ∪ {x}), Bounded Separation

∃x ∀u [u ∈ x ↔ (u ∈ a ∧ ϕ(u))]

for all bounded formulae ϕ(u), Bounded Collection

∀x ∈ a ∃y �(x, y) → ∃z ∀x ∈ a ∃y ∈ z �(x, y)
for all bounded formulae �(x, y), and Set Induction

∀x [
(∀y ∈ x �(y))→ �(x)] → ∀x �(x)

for all formulae �(x).

Feferman in [9] proceeded to add several further schemata to the axiomsof IKP. The
most basic principle that he added follows from the idea that in semi-constructive
set theory each set is considered to be a definite totality. As a consequence of Δ0
separation one obtains a restricted LEM:

(Δ0−LEM) ϕ ∨ ¬ϕ, for all Δ0-formulae ϕ.
Markov’s principle in the form

(MP) ¬¬∃xϕ → ∃xϕ, for all Δ0-formulae ϕ
is another principle that is frequently added in this context.
Some further principles that are considered in [9] are (BOS) (Bounded
Omniscience Scheme) and ACSet (Axiom of Choice).

(BOS) ∀x ∈ a [ϕ(x) ∨ ¬ϕ(x)]→ [∀x ∈ a ϕ(x) ∨ ∃x ∈ a ¬ϕ(x)]
for all formulae ϕ(x).

(ACSet) ∀x ∈ a ∃y �(x, y)→ ∃f [Fun(f) ∧ dom(f) = a ∧ ∀x ∈ a ϕ(x,f(x))]
for all formulae �(x, y), where Fun(f) expresses in the usual set-theoretic form
that f is a function, and dom(f) = a expresses that the domain of f is the set a.
Feferman [9, Theorem 6] shows that SCS := IKP + (Δ0−LEM) + (MP) +
(BOS) + (ACSet) has the same proof-theoretic strength as KP (and therefore the
same as IKP). His proof uses a functional interpretation. The same result can be
obtained via a realizability interpretation using codes for Σ1 partial recursive set
functions as realizers along the lines of Tharp’s 1971 arcticle [29].

Remark 2.2.

(i) SCS proves the full replacement schema ofZF.Moreover, SCS proves strong
collection, i.e., all formulae

∀x ∈ a ∃y ϕ(x, y)→ ∃z [∀x ∈ a ∃y ∈ z ϕ(x, y) ∧ ∀y ∈ z ∃x ∈ a ϕ(x, y)],
where ϕ(x, y) is an arbitrary formula.
Strong collection is an axiom schema of Constructive Zermelo-Fraenkel
set theory, CZF (cf. [1, 2]) and also of Tharp’s set theory [29].

(ii) SCS is a subtheory of Tharp’s semi-intuitionistic set theory IZF [29], for if
∀x ∈ a ∃y ϕ(x, y) holds, then there is a set d such that∀x ∈ a ∃z ∈ d ∃y[z =
〈x, y〉 ∧ ϕ(x, y)] and ∀z ∈ d ∃x ∈ a ∃y[z = 〈x, y〉 ∧ ϕ(x, y)] using (strong)
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collection, and by axiom 6 of IZF, d is the surjective image of an ordinal,
i.e., there is an ordinal α and a function g with domain α and range d . Note
that d is a set of ordered pairs. Now define a function f with domain a by
letting f(x) be the second projection of g(�) where � is the least ordinal< α
such that the first projection of g(�) equals x.

As it turns out, some of the axioms of SCS are redundant.

Proposition 2.3. IKP+ (ACSet) proves (Δ0−LEM) and (BOS).
Proof. First we prove (Δ0−LEM), using Diaconescu’s old constructions [7].
Let 0 be the empty set, 1 := {0} and A = {0, 1}. Note that (intuitionistically)
∀x, y ∈ A [x = y ∨ x �= y] (where x �= y abbreviates ¬x = y) since 0 �= 1 as 0 ∈ 1
and 0 /∈ 0. Suppose ϕ is Δ0. Define

a := {n ∈ A | n = 0 ∨ [n = 1 ∧ ϕ]}
and

b := {n ∈ A | n = 1 ∨ [n = 0 ∧ ϕ]}.
a and b are sets by Δ0 separation. Obviously we have

∀z ∈ {a, b} ∃k ∈ A k ∈ z
since 0 ∈ a and 1 ∈ b. So wemay apply (ACSet) to obtain a functionf with domain
{a, b} such that f(a), f(b) ∈ A. We thus have f(a) = f(b) or ¬(f(a) = f(b)).
In the first case, we can infer that ϕ. In the second case, we have a �= b. As ϕ implies
a = b, we get ¬ϕ.
To show (BOS) assume

∀x ∈ a [�(x) ∨ ¬�(x)],
where �(x) is an arbitrary formula. Thus,

∀x ∈ a ∃y [(�(x) ∧ y = 0) ∨ (¬�(x) ∧ y = 1)].
With the help of (ACSet) there is a function f with domain a such that

∀x ∈ a [(�(x) ∧ f(x) = 0) ∨ (¬�(x) ∧ f(x) = 1)] (1)

and hence ∀x ∈ a [f(x) = 0) ∨ f(x) = 1]. Using (Δ0−LEM) we have ∃x ∈
a f(x) = 1 or ∀x ∈ a f(x) = 0. In the former case we deduce ∃x ∈ a ¬�(x) from
(1), whereas in the latter case we infer that ∀x ∈ a �(x). 

Definition 2.4. Let T be the theory

SCS+ ‘R is a set’,

where SCS is from Definition 2.1 and ‘R is a set’ asserts that the reals, R, form a
set. Since SCS has classical logic for Δ0-formulae it is not necessary to pay much
attention to the question of how the reals are actually formalized as is so often
the case in intuitionistic contexts. Thus, any of the following equivalent statements
could be used to formalize the existence of R as a set:

• The collection of all functions from N to N, NN, is a set.
• The collection of all subsets of N is a set.
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Remark 2.5. The proof-theoretic strength of T resides strictly between full clas-
sical second order arithmetic and Zermelo set theory. In particular all theorems of
classical second order arithmetic are theorems of T.

CH is the statement that every infinite set of reals is either in one-one
correspondence with N or with R. More formally, this can be expressed as follows:

∀x ⊆ R [x �= ∅ → (∃f f : � � x ∨ ∃f f : x � R)],

where f : y � z signifies that f is a surjective function with domain y and
co-domain z.

Conjecture 2.6 (Feferman). T does not prove CH ∨ ¬CH.
When one ponders how to prove the conjecture one of the first ideas that comes
to mind is that intuitionistic set theories S very often have the disjunction prop-
erty, i.e., if S � � ∨ � then S � � or S � � (cf. [25, 26]). If this property held
for T it would certainly settle the conjecture in the affirmative. However, T being
semi-intuitionistic, the disjunction property does not hold for it. The technique
of realizability certainly springs to mind when tackling such problems and conse-
quently one would like to show that there is a realizability interpretation of T that
has no realizer for CH ∨ ¬CH. There are several essentially different forms of real-
izability for set theories to choose from (cf. [4, 5, 14, 19, 20, 23–27, 29]). Moreover,
what should the realizers be and how should the realizability universe be defined?

§3. The relativized constructible hierarchy. Later we shall look at realizability
interpretations in the relativized constructible hierarchy. The latter comes in two
versions: For a set A we haveL(A) and L[A]. L(A) is the smallest inner model that
contains A. In L(A), the transitive closure of A is added at level 0 and for higher
levels the definition is the same as for L, whereas in L[A], A acts as an additional
predicate for defining sets. The two hierarchies can be quite different. E.g., in general
L(A) is not a model of the axiom of choice, AC, whereas L[A] is always a model
of AC. Another difference is that L[R] = L whereas L �= L(R) when R /∈ L.3 Only
L[A] is interesting for the purposes of this paper.

Definition 3.1. Let L∈ be the language of set theory and L∈(P) be its augmen-
tation by a unary predicate symbol P. Let A be a set. Any set X gives rise to a
structure 〈X,∈, A ∩ X 〉 for L∈(P) with domain X where the elementhood symbol
is interpreted by the elementhood relation restricted to X ×X and P is interpreted
as A ∩ X . Thereby A acts as a unary predicate on X . A subset Y of X is said to
be definable in 〈X,∈, A ∩X 〉 if there is a formula ϕ(x, y1, . . . , yr) of L∈(P) with all
free variables exhibited and b1, . . . , br ∈ X such that for all a ∈ X ,

a ∈ Y iff 〈X,∈, A ∩ X 〉 |= ϕ(a, b1, . . . , br),
where, of course, 〈X,∈, A ∩ X 〉 |= ϕ(a, b1, . . . , br) signifies that ϕ holds in the
structure under the variable assignment x �→ a and yi �→ bi .
3Note that in the buildup of L[R], R is just used as a predicate. By identifying R with the set of all

functions from N to N, this is merely the predicate of being such a function, which is Δ0 in N, hence
absolute. Thus nothing outside of L can be generated in this way.
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The sets Lα[A] are defined by recursion on α as follows:

(i) DefA(X ) := {Y ⊆ X | Y definable in 〈X,∈, A ∩ X 〉}.
(ii) L0[A] = ∅.
(iii) Lα+1[A] = Def

A(Lα [A]).
(iv) L� =

⋃
�<� L�[A] for limits �.

(v) L[A] =
⋃
α Lα[A].

The next proposition lists some important properties ofLα[A]. Bounded quantifiers
are of the form ∀x ∈ y and ∃x ∈ y. A bounded or Δ0-formula ofL∈(P) is a formula
in which all quantifiers appear bounded. A formula of L∈(P) of the form ∃zϕ(z)
(∀zϕ(z)) with ϕ bounded is said to be Σ1 (Π1). Let α > 0. A relation on Lα [A]
is said to be ΣLα [A]1 (ΠLα [A]1 ) if it is definable (with parameters) on the structure
〈Lα [A],∈, A∩Lα [A]〉 via a Σ1 (Π1) formula of L∈(P). A relation onLα [A] is Δ

Lα [A]
1

if it is both ΣLα [A]1 and ΠLα [A]1 .
For a set X , |X | denotes the cardinality of X . For further unexplained notions
and proofs see [6, II. pp. 102–104] or [15,18].

Proposition 3.2.

1. α ≤ 	 ⇒ Lα[A] ⊆ L	 [A].
2. α < 	 ⇒ Lα[A] ∈ L	 [A].
3. Lα[A] is transitive.
4. L[A] ∩ α = Lα[A] ∩ α = α.
5. For α ≥ �, |Lα[A]| = |α|.
6. L[A] |= ZF.
7. 
 �→ L
[A] is uniformly ΔL� [A]1 for limits � > �.
8. B = A ∩ L[A] ⇒ L[A] = L[B] ∧ (V = L[B])L[A].
9. There is a Σ1 formula wo(x, y, z) such that

KP � “{〈x, y〉 | wo(x, y, a)} is a wellordering of L[a]”
and if <L[A] denotes the wellordering of L[A] determined by wo, then for any
limit � > �,

<L[A] ∩ (L[A]× L[A]) is ΣL� [A]1 .

10. L[A] is model of AC.
11. � > � limit ∧ B = A ∩ L�[A] ⇒ L�[A] = L�[B].

§4. Computability over L[A]. In this section we develop the recursion theory of
partial ΣL[A]1 functions, that is functions (not necessarily everywhere defined) whose
graphs are ΣL[A]1 . Below we shall write Lα [A] |= ϕ rather than the more correct
〈Lα [A],∈, Lα [A] ∩ A〉 |= ϕ. Likewise, 〈L[A],∈, L[A] ∩ A〉 |= ϕ will be shortened
to L[A] |= ϕ.
Definition 4.1. 〈a, b〉 denotes the ordered pair of two sets a and b. If c is an
ordered pair 〈a, b〉 let (c)0 = a and (c)1 = b. If c is not an ordered pair let (c)0 =
(c)1 = 0. We also define ordered n-tuples via 〈a1〉 := a1 and 〈a1, . . . , an, an+1〉 :=
〈〈a1, . . . , an〉, an+1〉.
It is a standard procedure to assign to each formula � of L∈(P) a Gödel number
� such that � is a hereditarily definable set, for instance by using the pairing
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function a, b �→ 〈a, b〉. There is a formula Sat(v,w) of L∈(P) such that for all Δ0
formulae �(x1, . . . , xn) of L∈(P), not involving other free variables, the following
holds for any limit � > � and all �a = a1, . . . , an ∈ L�[A]:

L� |= �(�a ) iff L� |= Sat(� , 〈�a 〉). (2)

Moreover, Sat is uniformly ΔL� [A]1 for limits � > � (see [6, II]).
Now let � be a limit > �. For e, a1, . . . , an, b ∈ L�[A] define

[e]L� [A]n (a1, . . . , an) � b (3)

if e is an ordered pair 〈� , c〉 with � being a Δ0-formula of L∈(P), not involving
free variables other than x1, . . . , xn+2, such that

L�[A] |= Sat(� , 〈a1, . . . , an, c, d 〉) (4)

and (d )0 = b, where d is the <L[A]-least ordered pair satisfying (4).
Likewise, [e]L[A]n (a1, . . . , an) � b is defined by replacing L�[A] by L[A] in the
foregoing definition.

Lemma 4.2. Let � > � be a limit of limits, i.e.,

∀� < � ∃� < � [� < � ∧ � limit].
(i) For e ∈ L�[A], the partial function f on L�[A] given by

f(a1, . . . , an) = b iff [e]L� [A]n (a1, . . . , an) � b
is ΣL� [A]1 (uniformly for all such �).

(ii) For every n-ary partial ΣL� [A]1 function f there exists an index e ∈ L�[A] such
that, for all a1, . . . , an ∈ L�[A],

f(a1, . . . , an) = b iff [e]L� [A]n (a1, . . . , an) � b.
(iii) (i) and (ii) hold with L[A] in place of L�[A].
(iv) [e]L� [A]n (a1, . . . , an) � b implies [e]L[A]n (a1, . . . , an) � b and [e]L� [A]n (a1, . . . , an)

� b for all limits � > �.
(v) If [e]L[A]n (a1, . . . , an) � b then [e]L� [A]n (a1, . . . , an) � b for some limit �.
Proof. (i) First note that by Proposition 3.2 the relation<L[A] restricted toL�[A]
is ΣL� [A]1 for all limits � > �. Thus the<L[A]-leastness of d with respect to (4) can be
expressed by

∃� < � [� limit > � ∧ a1, . . . , an, c, d ∈ L�[A]
∧ L�[A] |= Sat(ϑ , 〈a1, . . . , an, c, d 〉)
∀u ∈ L�[A](u <L[A] d → L�[A] |= Sat(¬ϑ , 〈a1, . . . , an, c, u〉))],

which is clearly ΣL� [A]1 .
(ii) Since f is ΣL� [A]1 there is a Σ1-formula ∃xn+3ϑ0(x1, . . . , xn+3) of L∈(P) and a
parameter c ∈ L�[A] (several parameters can be coded as one) such that

f(a1, . . . , an) = b iff L�[A] |= ∃xn+3ϑ0(a1, . . . , an, c, b, xn+3).
Now let

ϑ(x1, . . . , xn+2) ≡ ϑ0(x1, . . . , xn+1, (xn+2)0, (xn+2)1).



INDEFINITENESS IN SEMI-INTUITIONISTIC SET THEORIES 749

Then

f(a1, . . . , an) = b iff L�[A] |= ϑ0(a1, . . . , an, c, (d )0, (d )1] and (d )0 = b,
where d is the <L[A]-least u such that L�[A] |= ϑ0[a1, . . . , an, c, (u)0, (u)1]. Hence,
with e = 〈ϑ , c〉, we have f(a1, . . . , an) = b iff [e]L� [A]n (a1, . . . , an) � b.
(iii) is proved in the same way as (i) and (ii).
(iv) follows since Σ1 statements are upward persistent.
(v) follows since the statement is of Σ1 form. 

In several respects the recursion theory of partial ΣL[A]1 functions and partial ΣL� [A]1
functions (for � being a limit of limits) shares similarities with ordinary recursion
theory over �. In particular, the analogues of the S-m-n theorem and the recursion
theorem hold.

§5. Realizability over L[A]. L[A] will be employed as a realizability universe.
There is a germane notion of realizability where realizers are indices of partial ΣL[A]1
functions.

Definition 5.1. For d ∈ L[A] and set-theoretic sentences � with parameters
from L[A] we define the realizability relation d �A �.
Below we shall write [e]L[A](�a ) �A � rather than the more accurate

∃u ∈ L[A] ( [e]L[A]n (�a ) � u ∧ u �A � ),
where �a = a1, . . . , an. It will also be assumed that all quantifiers range over L[A].

e �A c ∈ d iff c ∈ d,
e �A c = d iff c = d,

e �A ϕ ∧ � iff (e)0 �A ϕ and (e)1 �A �,
e �A ϕ ∨ � iff [(e)0 = 0 ∧ (e)1 �A ϕ] or [(e)0 = 1 ∧ (e)1 �A �],
e �A ϕ → � iff ∀a [a �A ϕ ⇒ [e]L[A](a) �A �],
e �A ∃x�(x) iff (e)1 �A �((e)0),
e �A ∀x�(x) iff ∀a [e]L[A](a) �A �(a).

Occasionally we shall write �A � for ∃e ∈ L[A] e �A �.
Theorem 5.2 (Realizability Theorem). Let RL[A] be the set of real numbers in the
sense ofL[A]. If�(x1, . . . , xn) is a formula of set theory, with all free variables among
the exhibited, andD is a proof of�(x1, . . . , xn) inT, then one can effectively construct
a hereditarily finite set eD which only depends on D (and not on A) such that for all
a1, . . . , an ∈ L[A],

[eD]L[A](a1, . . . , an,RL[A]) �A �(a1, . . . , an). (5)

Proof. With little modification, the proof of Tharp’s realizability theorem [29]
carries over to show this realizability theorem. It can also be gleaned from the proofs
of the realizability theorems [27, Theorems 3.7–3.9], using considerable simplifica-
tions of the proofs brought about by the fact that there is uniform ΣL[A]1 selection
function, i.e., there exists a hereditarily finite set eac such that for allA andnonempty
sets a, [eac ]L[A](a) ∈ a. 
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§6. Designing L[C ]. In order to show that CH ∨ ¬CH is not deducible in T we
intend to employ Theorem 5.2. Aiming at a contradiction, we assume we have a
derivation D of CH ∨ ¬CH in T and thus a hereditarily finite set eD such that

[eD](RL[A]) �A CH ∨ ¬CH (6)

holds for all setsA. To refute this,we intend to carefully design a counterexampleC .4

We shall start from a set-theoretic universe V0 such that

V0 |= ZFC+ 2ℵ0 = ℵ2.
V0 can be obtained from any universe V ′ such that V ′ |= ZFC+GCH (e.g. L) by
forcing with Fn(κ×�, 2), where the latter denotes the set of all finite functions with
domain⊂ κ×� and range 2 and κ = (ℵ2)V ′

, i.e., κ is ℵ2 in the sense of V ′ (see [17,
VII.5.14]). Now let RV0 be the reals in the sense of V0. We would like to pick a set
C ∈ V0 such that RV0 ∈ L[C ].5 Since V0 satisfies AC there is an injective function
F in V0 with domain RV0 whose range is a set of ordinals. Identifying RV0 with the
set {g ∈ V0 | g : N → N}, let

C = {�F (g)+2 + � · g(n) + n | g ∈ R
V0}. (7)

Then C is a set of ordinals inV0 and, owing to the uniqueness of the Cantor normal
form, RV0 is definable from C in L[C ]. The latter entails that RV0 ∈ L[C ] and thus

R
V0 = R

L[C ]. (8)

As a result, L[C ] �|= CH and therefore
for all d ∈ L[C ], d ��A CH. (9)

The assumption (6) implies that there exists b ∈ L[C ] such that L[C ] |=
[eD](RL[C ]) � b. Moreover, (6) and (9) entail that

(b)0 = 1. (10)

We can now pick a sufficiently large limit ordinal � such that C ∈ L�[C ], RV0 ∈
L�[C ] and b ∈ L�[C ]. By Lemma 4.2(v) we can also arrange that

L�[C ] |= [eD](RL[C ]) � b. (11)

Moreover, from Lemma 4.2(iv) and Proposition 3.2(11) it follows that for every set
of ordinals B with B ∩ � = ∅ we have

L[C ∪ B] |= [eD](RL[C ]) � b. (12)

The next step consists in taking a forcing extension V1 of V0 which does not pick
up new real numbers but satisfies V1 |= 2ℵ0 = ℵ1, i.e.,

R
V0 = R

V1 ∧ (ℵ1)V0 = (ℵ1)V1 ∧ V1 |= CH. (13)

4Note that there are sets A,A′ and hereditarily finite sets e, e′ such that [e]L[A](RL[A]) �A CH as well
as [e′]L[A

′ ](RL[A
′]) �A′ ¬CH, and a fortiori there exists a setA such that [e′′]L[A](RL[A]) �A CH∨¬CH

for some hereditarily finite e′′.
5We cannot chooseC to beRV0 since L[RV0 ] = L (cf. footnote 3) and therefore RV0 /∈ L[RV0 ] as the

size of the reals in V0 is assumed to be ℵ2 whereas it’s always ℵ1 in L.
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The latter can be arranged by forcing with

P := (Fn(ℵ1,ℵ2,ℵ1))V0 ,
i.e., the set of functionsf ∈ V0 which are countable inV0 with domain contained in
(ℵ1)V0 and range contained in (ℵ2)V0 . That (13) holds follows, e.g., from [17, Ch.VII
6.13, 6.14, 6.15, 6.2].
Next we would like to engineer a set E ∈ V1 of ordinals all of whose members
are greater than � such that L[C ∪ E] |= CH. Since V1 is a model of the axiom
of choice, there are functions G and H with domains {α | � ≤ α < (ℵ1)V1}
and {	 | (ℵ1)V1 ≤ 	 < (ℵ2)V1}, respectively, such that for each α ∈ dom(G),
Gα := G(α) is a bijection betweenα and�, and for each 	 ∈ dom(H ),H	 := H (	)
is a bijection between 	 and (ℵ1)V1 . Let κ and � be fixed points of the function
� �→ �� such that κ < � and �, (ℵ1)V1 , (ℵ2)V1 < κ. Now define

E1 := {κα · (1 + �) +Gα(�) | α ∈ dom(G) ∧ � < α},
E2 := {�	 · (1 + �) +H	 (�) | 	 ∈ dom(H ) ∧ � < 	},
E := E1 ∪ E2,

where of course κα and �	 refer to the operation of ordinal exponentiation. Then
E1 ∩E2 = ∅. Moreover, owing to the uniqueness of Cantor normal forms (e.g. [28,
Theorem8.4.4]), for eachα ∈ dom(G),Gα is definable fromC∪E inL[C∪E] (using
the parameter κ), and likewise, for each 	 ∈ dom(H ),H	 is definable fromC ∪E in
L[C ∪E] (using the parameter �). To elaborate on this, supposeα ∈ dom(G). Then
for � < α search for the least ordinal � such that κα · (1 + �) + � ∈ E. Necessarily,
� = Gα(�).
As a consequence of the above, we have

(ℵ1)V1 = (ℵ1)L[C ∪ E] ∧ (ℵ2)V1 = (ℵ2)L[C ∪ E] ∧ L[C ∪ E] |= CH. (14)

To see the latter, suppose that x ∈ L[C ∪ E] and x is an infinite set of reals. As
L[C ∪ E] is a model of AC, there is an ordinal � and a bijection � ∈ L[C ∪ E]
between x and �. Since L[C ∪ E] ⊆ V1, � < (ℵ2)V1 must obtain, and hence there
is a bijection in L[C ∪ E] either between � and x or between (ℵ1)V1 = (ℵ1)L[C ∪ E]

and x. From (8) and (13), we also conclude that

R
L[C ] = R

L[C ∪ E]. (15)

Utilizing the wellordering <L[C∪E] and (14), there exists a Σ
L[C ∪ E]
1 partial function

g that finds for each non-empty set of reals either a surjection of � onto x or a
surjection of x onto RL[C ] since being such a mapping f is a Δ0 property of f in
the parameters x,� and R

L[C ]. Thus there is a realizer d ∈ L[C ∪ E] such that
d �C ∪ E CH. From (12) and (6) it then follows that (b)0 = 0, contradicting (10).
In sum, a contradiction has been inferred from (6). On account of Theorem 5.2,
this implies that CH ∨ ¬CH is not provable in T.

§7. Extensions. There are several ways in which the theoryT can be strengthened
without forfeiting the unprovability of CH ∨ ¬CH.For statements � of second order
arithmetic, i.e., those expressible in the language of the structure

(R;∈;N;<,+, ·, 0, 1), (16)

T proves � ∨ ¬�. This for instance applies if � expresses Π1n-determinacy. If � is
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true then also T + � does not prove CH ∨ ¬CH. To see this note first that the
Realizability Theorem 5.2 also works for T + � if � holds in L[A]. Subsequently
one can employ the same proof as in the previous section, starting with a universe
V0 |= ZFC+ 2ℵ0 = ℵ2 + �. Note that since V0 and V1 share the same reals, � will
also be true in V1.
It is also possible to go a bit beyond this level. Let PD be the statement of
projective determinacy (see e.g. [16]). In T one can define a satisfaction relation for
the structure in (16) which is Δ1 in R and actually a set computable from R in the
sense of Section 4. As a result one obtains a variant of Theorem 5.2.

Proposition 7.1 (Realizability Theorem PD). Suppose L[A] |= PD. Let RL[A]
be the set of real numbers in the sense of L[A]. If �(x1, . . . , xn) is a formula of set
theory, with all free variables among the exhibited, and D is a proof of �(x1, . . . , xn)
in T + PD, then one can effectively construct a hereditarily finite set eD which only
depends on D (and not on A) such that for all a1, . . . , an ∈ L[A],

[eD]L[A](a1, . . . , an,RL[A]) �A �(a1, . . . , an). (17)

Proof. We only need to concern ourselves with PD. First note that the satisfac-
tion predicate for the structure of the reals is computable from the parameter RL[A].
Moreover, if a set is realizably a projective set it is indeed a projective set (and vice
versa) and thus a winning strategy (which is a real) exists and thus can be searched
for (and found) in the computable universe L[A]. Whence PD is realizable. 

Theorem 7.2.

(i) T � PD ∨ ¬PD.
(ii) Assuming ZFC+ PD in the background, T+ PD � CH ∨ ¬CH.
Proof. (i) PD is just the statement that Π1n-determinacy holds for all n. Since in
T one has excluded middle for the satisfaction predicate pertaining to the structure
(16) and ∀n is a bounded quantifier, (i) follows.
(ii) We just sketch a proof. To commence one starts with a universe V0 |= ZFC+
PD + 2ℵ0 = ℵ2. Then one carries out the same construction as in Section 6. As V0
and V1 have the same reals they share the same projective sets of reals, and hence
PD also holds in V1. 
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[12] , Why isn’t the Continuum Problem on the Millennium ($1,000,000) Prize list? Slides for

CSLI Workshop on Logic, Rationality and Intelligent Interaction, Stanford, June 1, 2013.
[13] G. Frege, Die Grundlagen der Arithmetik, Verlag Wilhelm Koebner, Breslau, 1884.
[14] H.Friedman,Some applications of Kleene’s method for intuitionistic systems,Cambridge Summer

School in Mathematical Logic (A. Mathias and H. Rogers, editors), Lectures Notes in Mathematics,
vol. 337, Springer, Berlin, 1973, pp. 113–170.
[15] A. Hajnal, On a Consistency Theorem Connected with the Generalised Continuum Problem.

Zeitschrift für Mathematische Logik, vol. 2 (1956), pp. 131–136.
[16] T. Jech, Set Theory, Springer, Berlin, 2003.
[17] K. Kunen, Set Theory, North-Holland, Amsterdam, New York, Oxford, 1980.
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