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Abstract

In a recent article [J. Chem. Phys., 143, 094106 (2015)], we have introduced a
novel graph-based sampling scheme which can be used to generate chemical reaction
paths in many-atom systems in an efficient and highly-automated manner. The main
goal of this work is to demonstrate how this approach, when combined with direct
kinetic modelling, can be used to determine the mechanism and phenomenological
rate law of a complex catalytic cycle, namely cobalt-catalyzed hydroformylation of
ethene. Our graph-based sampling scheme generates 31 unique chemical products and
32 unique chemical reaction pathways; these sampled structures and reaction paths en-
able automated construction of a kinetic network model of the catalytic system when
combined with density functional theory (DFT) calculations of free energies and resul-
tant transition-state theory rate constants. Direct simulations of this kinetic network
across a range of initial reactant concentrations enables determination of both the re-
action mechanism and the associated rate law in an automated fashion, without the
need for either pre-supposing a mechanism or making steady-state approximations in
kinetic analysis. Most importantly, we find that the reaction mechanism which emerges
from these simulations is exactly that originally proposed by Heck and Breslow; fur-
thermore, the simulated rate law is also consistent with previous experimental and
computational studies, exhibiting a complex dependence on carbon monoxide pres-
sure. While the inherent errors of using DFT simulations to model chemical reactivity
limit the quantitative accuracy of our calculated rates, this work confirms that our
automated simulation strategy enables direct analysis of catalytic mechanisms from
first principles.

∗To whom correspondence should be addressed
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Introduction

Homogeneous catalysis is one of the foundations of the worldwide chemical industry;1–3 as

a result, the development of molecular catalysts with improved turnover frequency, higher

selectivity and better resistance to degradation is a central goal of fundamental chemistry

research. Computational chemistry provides, at least in principle, a direct route to design-

ing and optimizing novel molecular catalysts with selected functionality;4 for example, new

proline-based derivatives for catalysis of aldol reactions have been reported following compu-

tational design,5,6 and recent work on designer electrocatalysts has also been reported using

a scheme based on minimizing free energy changes along catalytic pathways.7

However, it is important to note that the complete de novo design of molecular catalysts

using computational chemistry remains a largely unmet challenge; most catalysts designed

with the aid of computer simulations have used an existing catalyst as a starting-point,

in a similar manner to the “lead development” approach often taken in pharmaceutical

development.4 Furthermore, simulations aimed at designing new catalytic processes can be

limited in scope, for example focussing solely on the thermodynamic aspects of catalytic

paths7,8 or, particularly when investigating the influence of the catalyst properties on reaction

kinetics, focussing on a single reaction step corresponding to the rate-determining reaction

in the catalytic cycle. The rate-determining step is usually identified by applying chemical

“common sense”, for example seeking the step in the catalytic cycle which involves breaking

the strongest chemical bonds, or by comparison to similar reactions with known intermediate

steps. This emphasis on a single intermediate step in understanding catalytic propensity can

clearly be successful, but relies on the separation of time-scales arising when a single reaction

step with a high free-energy barrier exists.

In many catalytic reactions, the experimentally-observed rate law, the key observable of

interest in optimising catalytic activity, often exhibits a complex dependence on reactant

concentrations which mirrors a similarly complex kinetic network at play. For example,

the cobalt-catalyzed hydroformylation reaction (oxo process9–11) which will be the focus of
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this Article has been found to exhibit a rate law with non-trivial dependence on reactant

concentrations; experimental studies of cobalt-catalyzed hydroformylation of propene have

produced rate law expressions with the following forms,10–12

d [Aldehyde]

dt
= k

[CO] [Alkene] [H2]
0.6 [Catalyst]0.8

(1 + k1 [CO])2
,

d [Aldehyde]

dt
= k

[Alkene] [H2] [Catalyst]

([CO])
,

(1)

while a recent theoretical investigation resulted in a rate law of the form,13

d [Aldehyde]

dt
= k

[Alkene] [H2]
0.5 [Catalyst]0.5

[CO]
. (2)

These non-trivial rate laws generally arise because of the existence of several competing

reactions with comparable activation barriers, as well as a complex interplay of equilibria

amongst the various reactive species; in such cases, computational studies focussing on a

single reaction steps, or thermodynamic changes only, will be implicitly limited.

Unfortunately, the challenges posed to computational chemistry in modelling complex,

multi-step catalytic cycles are well-known; as a result, design of new tailored homogeneous

catalysts from first-principles consideration of the entire catalytic cycle is hindered.14 In

particular, the potential energy surface (PES) of the system should preferably be sufficient

to achieve “chemical accuracy” (errors of order 1 kcal mol−1), or at least such that the

relative errors in calculated energies and reaction barriers are consistent across the relevant

set of reaction paths; more often than not, this level of accuracy is extremely difficult to

achieve, even when high-level electronic structure methods are applicable.13 Furthermore,

one must have an approach for sampling multiple conformers at the reaction end-points, as

well as different isomers, in order to generate all of the chemically-relevant reactions which

can potentially occur for a given system. Finally, an approach to determining transition
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state (TS) structures, reaction energy barriers and reaction rates is also required to model

the chemical kinetics inherent in the network of possible reaction paths.15

The challenges of predictive catalysis are further highlighted by the fact that very few

computational approaches have, to date, been shown capable of determining complete cat-

alytic mechanisms in an automated and unbiased manner. For example, the Scaled Hyper-

sphere Searching (SHS16–18) methodology has proven extremely powerful in obtaining PES

minima and transition-states for chemically-reactive systems containing up to around 12

atoms,16 as well as locating isomers of molecular clusters,19 but has yet to be applied to ab

initio catalysis. The basin-hopping Monte Carlo (BHMC20) strategy has been applied to

study catalysis, notably the cobalt-catalyzed hydroformylation reaction studied here; how-

ever, it is unclear to what extent these BHMC simulations actually sampled a broad range

of chemical reactions for this system, or whether the choice of molecular fragments was

guided in order to aid discovery of the main catalytic reaction-steps. Similarly, the arti-

ficial force induced reaction (AFIR21) approach has also been applied to cobalt-catalysed

hydroformylation,22 but again with significant human input being used to provide guidance

on reaction-path searching. Perhaps closest in spirit to our recent work,23 and this article,

is the report of a chemical-connectivity-based approach24 combined with growing-string TS

searching,25,26 for automated reaction discovery; however our approach is not specifically re-

liant upon a TS search method such as growing-string, instead defining an implicit dynamic

reaction path associated with a Hamiltonian, thereby enabling straightforward conforma-

tional and chemical sampling, as described below. Finally, it is worth noting the recent

report of a computational “nanoreactor” aimed at sampling reactive chemistry by periodi-

cally driving bond rearrangements via application of high pressures;27 this methodology has

not yet been applied to study catalysis, but has already proven promising in discovering new

reaction paths leading to glycine formation in a computational analogue of the Urey-Miller

experiment.28

In this paper, following on from an initial methodological report,23 we demonstrate how
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a new atomistic reaction-path sampling method can be used to build a complete picture of

reaction kinetics from the bottom-up. Our approach combines (i) a novel classical Hamilto-

nian describing a dynamic reaction path connecting two well-defined chemical isomers, (ii)

molecular dynamics (MD) sampling of trajectories in reaction-path-space and of the reaction

end-points, and (iii) periodic updates of bond connectivity at the reaction-path end-points.

Overall, our strategy enables simultaneous sampling of multiple reaction paths connecting

multiple chemical isomers and molecular conformations in an automated fashion; the purpose

of this paper is to demonstrate that this strategy enables us to systematically proceed from

atomistic simulations to complex kinetic networks, ultimately leading to interpretation and

rationalization of reaction mechanism and experimental rate law. The significant advantage

of our simulation strategy is that the experimental rate law and mechanism directly emerge

without any prior mechanistic assumptions being made, and without reducing the mech-

anism to a few simple steps; this unbiased strategy clearly contrasts against the majority

of previous approaches to catalytic simulations, and potentially opens a new door to direct

optimization of catalytic reaction kinetics.

The remainder of this manuscript is organized as follows. We first outline our graph-based

approach to reaction-path sampling, before describing how the ensemble of reaction paths

sampled in this methodology can be subsequently analyzed using geometry optimization and

TS searching. We then describe how the combination of automated reaction-path sampling

and structural optimization can be used to build a kinetic network model, allowing one to

make connection to experimental kinetics. This overall strategy is then applied to study

the cobalt-catalysed hydroformylation of ethene;9–11,13,22,29–32 we find that our bottom-up

strategy enables direct identification of the important reactive steps in the catalytic cycle,

and also yields a simulated rate law which is comparable to previous experimental and

theoretical results without pre-guessing the mechanism or adopting steady-state assumptions.

Finally, we highlight the fact that, although the predicted rates of chemical reaction of our

kinetic model are somewhat low (yet easily corrected), the emergent kinetic mechanism is
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robust to these errors. Overall, our simulations allow us to move from atomistic sampling to

experimental kinetics in a systematic manner.

Method

The computational scheme adopted in this Article is hierarchical in nature; starting from

atomistic simulations for sampling reaction paths, moving to refinement of reaction paths

and identification of TSs, and finally using the sampled reaction-path data as input to a

kinetic model describing the entire network of reactions, our approach represents a “bottom-

up” route to catalytic kinetics. The three stages of our simulation approach are outlined

below.

Graph-based reaction-path sampling

Our computational approach (Fig. 1) to automated reaction-path sampling has been outlined

in a recent article;23 here, we briefly review the most important features of this methodology.

In contrast to previous methods aimed at automated reaction-path sampling, which most

commonly rely on random generation of initial reactant and product configurations, our

approach transforms the challenge of chemical reaction sampling into a simple classical MD-

like sampling strategy, albeit operating in the space of accessible reaction paths. As well as

subsequently being able to exploit the many tools developed to improve the efficiency of MD

sampling, such as temperature-accelerated approaches,33,34 our strategy also ensures that a

physically-sensible reaction path is always maintained throughout the simulation, avoiding

unrealistic pathways which are unlikely to contribute to the overall kinetics of the system of

interest.

First, we define a classical Hamiltonian which describes a reaction-path connecting two
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end-points, r0 and rP ,

H(r0, rP ,p0,pP , a,G
0,GP ) =

Na∑

i=1

|p(i)
0 |2

2mi

+
Na∑

j=1

|p(j)
P |2

2mj

+
P∑

k=1

|b(k)|2

2µ
+ Vs(r0, rP , a,G

0,GP ).

(3)

The Hamiltonian of Eq. 3 describes a reaction path, defined as a set of images transitioning

from reactants r0 to products rP . In what follows, we assume that the reactive system is

described by a set of Cartesian coordinates, although there is no reason that our approach

could not employ alternative coordinate systems; as a result, each of the reactant end-

points, r0 and rP , is a point in the (3Na − 6)-dimensional configurational space for the

Na-atom system. The reaction string has M intermediate configurations; again, each of

these intermediates is a configuration in the full (3Na − 6)-dimensional space. The reaction

string is parameterized by a set of P Fourier coefficients for each of the (3Na−6) degrees-of-

freedom, such that the positions of the intermediate images are related to the set of Fourier

coefficients, a, according to35,36

ri = r0 + λi(rP − r0) +
P∑

k=1

aksin (kπλi) . (4)

Here, λi ∈ [0, 1] is a linear variable that describes the position of image i along the reaction

pathway from reactants (λ = 0) to products (λ = 1), such that

λi =
i

(M + 1)
. (5)

The reaction path end-points, r0 and rP , are associated with conjugate momenta, p0 and pP ,

respectively; similarly, the Fourier coefficients describing the reaction-path are also associated

with a set of conjugate momenta, b. The first three terms of the classical Hamiltonian of Eq.

3 are thus the usual kinetic energy contributions associated with the momenta of the reaction

start- and end-points, as well as the artificial conjugate momenta associated with the Fourier

coefficients describing the reaction path. The final term in Eq. 3, Vs(r0, rP , a,G
0,GP ), is
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the potential energy function for the reaction-path system, and is given by

Vs(r0, rP , a,G
0,GP ) =V (r0) + V (rP ) +

1

M

M∑

k=1

[
V (rk) + γ1|rk − rk−1|2

]

+W (r0,G
0) +W (rP ,G

P ).

(6)

Here, V (r) is the PES describing the interatomic interactions in the system (described below)

and γ1 is a user-defined harmonic constant; thus, the first three terms in Eq. 6 describe the

potential energy of the set of images representing the reaction string, with the intermediate

coordinates given by Eq. 4. Note that third term in Eq. 6 is comparable to the PES found

in the nudged elastic band (NEB37,38) method for reaction-path refinement; however, in the

present case, we do not employ minimization using projected forces, as in the NEB approach.

The harmonic interaction term acting between adjacent images in Eq. 6 helps ensure that a

stable and continuous reaction-path is sampled, avoiding spurious ”leaps” or ”kinks” along

the reaction-path which might cause instabilities in time-evolution, as noted in our original

report.23 In practice, we have found that the sampled reaction paths are generally insensitive

to the value of γ1 as long as it sufficiently avoids generating reaction-paths with these spurious

features.

The final ingredient in our reaction-path sampling scheme is encapsulated in the final

two terms of Eq. 6, W (r0,G
0) and W (rP ,G

P ). As well as a set of (3Na − 6) coordinates,

each end-point is associated with a connectivity graph (or adjacency matrix), G0 and GP ,

which describes the desired atomic connectivity. The elements of these graphs are defined

as,

Gij =





1 if rij < rcutij ,

0 otherwise,

(7)

where rij is the distance between atoms i and j and rcutij is a cut-off distance which depends

only on the atomic types of i and j (here, these cut-off distances were chosen based on

preliminary ab initio calculations for the species involved, although we note that these values
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can be selected based on other criteria such as covalent radii20). Thus, the end-point graphs

describe the chemistry inherent in the system; by generating reaction-paths connecting end-

points with different connectivity graphs, we implicitly have a method for sampling chemical

reaction pathways. However, there is no guarantee that an atomic configuration at a given

end-point will match the desired connectivity graph; for example, simulations using reactive

PESs might allow bonding rearrangements to occur. This is where the potential energy

contributions W (r0,G
0) and W (rP ,G

P ) come in to play; in particular, the terms W (r0,G
0)

andW (rP ,G
P ) are graph-enforcing potentials which ensure that each end-point r0 and rP can

only adopt configurations which are consistent with the target connectivity graphs. There

is some flexibility in choosing the exact form of W (r,G), and the current implementation of

our reaction-path sampling approach uses the following constraint potential:

W (r,G) =
∑

j>i

[
δ(Gij − 1)[H(rminij − rij)σ1(rminij − rij)2

+H(rij − rmaxij )σ1(r
max
ij − rij)2] + δ(Gij)σ2e

−r2ij/(2σ2
3)

]

+ Vmol(r,G).

(8)

Here, δ(x) is the Dirac delta function, H(x) is the Heaviside step function, and σ1, σ2 and

σ3 are user-defined constants. The summation in Eq. 8 runs over all pairs of atoms. The

potential W (r,G) constrains bonded atoms to lie at bond lengths which are approximately

in the range
[
rmin, rmax

]
, while non-bonded atoms are subject to a repulsive potential term

which ensures that they remain non-bonded. Furthermore, the molecular constraint term

Vmol(r,G) ensures that graphs describing several independent molecular species (easily deter-

mined from the connectivity matrix), cannot sample configurations which are incompatible

with the expected number of molecules. In this work, we use

Vmol(r,G) =
∑

j>i
mi(G)6=mj(G)

[H(Rmin− rij)σ4(Rmin− rij)2,+H(rij −Rmax)σ4(R
max− rij)2] (9)
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where Rmin and Rmax are, respectively, minimum and maximum allowed distances between a

pair of atoms, each in a different molecule, and the label mi identifies the molecule to which

each atom i is assigned to, according to the connectivity matrix G. Finally, we note that the

sampled reaction paths are again insensitive to the choice of parameters σ1−4, provided that

the chosen parameters are sufficient to impose the appropriate graph constraints; here, these

parameters were chosen based on our preliminary studies for systems such as formaldehyde.23

Together, Eqs. 3 to 9 define a Hamiltonian system describing a reaction path. The reac-

tion path is defined by the end-point positions, r0 and rP , and a set of Fourier coefficients a, as

well as conjugate momenta for each of these variables; furthermore, the connectivity graphs

G0 and GP define the chemical bonding at the reaction end-points. Applying Hamilton’s

equations-of-motion, it is straightforward to determine time-evolution equations for r0, rP

and a (as well as their conjugate momenta); these can be integrated using standard method-

ologies, such as the velocity Verlet algorithm, in order to sample the conformational space

associated with the reaction path. Furthermore, we note that standard MD approaches,39–41

including efficient thermostatting and temperature-accelerated sampling,33,34 can also be

readily introduced.

However, while the Hamiltonian dynamics of Eqs. 3 to 9 enables conformational sam-

pling of the reaction paths between fixed end-point chemical connectivities, to drive the

search for reaction paths between different chemical isomers we introduce graph moves into

our sampling scheme. Here, during the time-evolution of the reaction path, we introduce

changes to the end-point graphs, G0 and GP , with a small probability Pu; specifically,

at each time-step during evolution, we modify the end-point graphs if a random number

η ∈ [0, 1] ≤ Pu. The graph-moves allowed in the current work are described in more detail

below, but can generally be viewed as simple “bit flips” in a small number of graph elements.

Following graph update, the end-point configurations will no longer be consistent with the

new connectivity graph; relaxation of the reaction-path under the action of the constraint

potential W (r,G) then yields a configuration which is consistent. Following graph updates,

10



Hamiltonian sampling of the reaction-path resumes, although the reaction path will now be

sampling reaction paths between updated chemical species at the end-points. In this way,

combining Hamiltonian sampling and stochastic graph updates, our simulation system can

automatically sample multiple reaction paths connecting multiple chemical species, thereby

building up a picture of the allowed chemistry in a given system.

The enormous advantage of employing graph-based constraints is that it is straightfor-

ward to focus the search for reaction paths on the “chemically-relevant” region of graph

space. For an N atom system, the total number of possible graphs which can be generated

is 2N(N−1)/2; however, the large majority of these connectivity graphs will be chemically-

irrelevant in the sense that they disobey basic atomic valence rules. For example, six-

coordinate carbon atoms and four-coordinate hydrogen atoms simply do not contribute to

observed reactive chemistry, so the graphs corresponding to such structures do not need to

be sampled in assessing allowed reaction paths in a given system. To implement this valence

screening in the current work, we simply reject graph moves if they violate valence sum rules.

In particular, we implement the following valence constraints:

0 ≤ val(H) ≤ 1,

1 ≤ val(C) ≤ 4,

4 ≤ val(Co) ≤ 6,

1 ≤ val(O) ≤ 2,

(10)

where val(X) indicates the atomic valence of X as determined from the connectivity graph.

We note that these valence constraints play a similar role as energetic constraints implicit

in previous reaction-path searching studies;20,22,42 furthermore, these constraints can, in

principle, be relaxed to allow more exotic chemical species to be generated. However, in the

current case, where we are interested in assessing the extent to which a catalytic mechanism

can be seen to emerge by combining atomistic and kinetic simulations, the constraints of Eq.

10 are employed.
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As a final implementation issue, we note that all of the path-sampling simulations per-

formed here employed self-consistent charge density-functional tight-binding (SCC-DFTB)

to describe the PES of the reaction path (V (r) in Eq. 6).43–45 Our previous exploratory in-

vestigations,23 as well as previous BHMC simulations,20 have shown that this level of theory

is sufficiently accurate to generate approximate molecular and TS structures for the catalytic

system studied herein. However, we emphasize that SCC-DFTB is only used to generate

initial reaction paths; these are subsequently refined at a higher-level of theory before further

kinetic analysis, as described below.

In summary, Eqs. 3 to 9 define a system which enables conformational sampling of

the reaction-path end-points as well as the reaction-path itself. Unlike other approaches,

where connectivity graphs have been used to either analyze reaction products20,27 or impose

restrictions on sampled reaction-path end-points,24 our methodology provides a route to

driving the exploration of chemical (bonding) space in which an implicit reaction-path is

always present between end-points. By combining graph-driven exploration of chemical space

with Hamiltonian-based sampling of conformational space, our overall strategy provides a

route to generating multiple reaction pathways connecting multiple chemical products; this

is illustrated in Fig. 1. Once a set of initial reaction paths has been sampled, a range of

further simulation approaches can then be used to refine these paths and model the resulting

kinetic network; the approaches taken in this work towards these tasks are now described.

Structure optimization and transition-state searching

The graph-based sampling scheme described above results in a large number of reaction

paths, connecting a range of different conformers and isomers; the second stage in our ap-

proach to computational kinetics is to determine optimised structures for all of the reaction-

path end-points, as well as the relevant TSs.

With this aim in mind, the initial set of reaction-paths is first filtered to select a single

representative reaction-path for each unique sampled pathway. For each remaining reaction
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path, the end-point structures then undergo geometry optimization, again using SCC-DFTB.

The reaction path itself, defined by the M intermediate structures, is also refined using the

climbing-image nudged elastic band (CI-NEB46) approach. Overall, the CI-NEB refinement

and energy minimization allow identification of locally-optimised structures for the reaction-

path end-points, as well as determination of an (approximate) TS on the DFTB PES.

To generate a higher-quality description of the reaction-path stationary points, these

SCC-DFTB-optimized geometries are further refined using a higher level of electronic struc-

ture theory. In the present case, we employ density functional theory (DFT) with a B3LYP

exchange-correlation functional and a 6-31G(d,p) basis set. This choice was primarily mo-

tivated by the fact that DFT/B3LYP has already been shown to provide sensible relative

energies and reaction barriers for the cobalt-catalyzed hydroformylation system to be stud-

ied here.20,22 All calculations were performed using standard geometry optimization and

TS location methods in Gaussian03,47 starting from the molecular geometries identified by

SCC-DFTB CI-NEB calculations. For each TS, normal-mode frequency calculations con-

firmed that a saddle-point had been located. These TS determination calculations generally

proceeded smoothly with no user intervention, demonstrating that the SCC-DFTB CI-NEB

calculations were sufficiently close to the DFT TS to be useful as starting points for op-

timization. Once stationary points for each reaction-path had been located, the relative

free energies were calculated via the standard (harmonic) vibrational and (rigid) rotational

methodology.

Kinetic network simulations

The graph-sampling strategy described above, combined with CI-NEB reaction-path refine-

ment, geometry optimization and TS location, allows one to automatically generate a kinetic

network model describing the reactive system. Here, the rates of all sampled reactions were

determined using standard transition-state theory (TST15,40,41). Barrierless reactions were

assumed to proceed at a diffusion-limited rate of kdiff = 4.49× 1010 s−1; this value is appro-
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priate for the solvent (toluene) and temperature (423 K) assumed in the simulations below.13

Furthermore, for barrierless reactions, the rate of the reverse reaction was chosen such that

the correct equilibrium constant was obtained.

Once reaction rates had been determined, the kinetics of the network were simulated us-

ing the direct stochastic simulation algorithm (or Gillespie method48–50). Such kinetic Monte

Carlo (KMC) methods51,52 are well studied and have found extensive use in modelling, for

example, large biochemical reaction networks53,54 or interfacial processes such as adsorption,

desorption and surface-mediated reactivity.55–57 Here, following selection of the initial reac-

tant concentrations, the time-evolution of chemical species concentrations is simulated such

that reactive events occur with frequency correctly determined by the reaction rate and re-

actant concentration. As a result, these direct kinetic simulations can be used to interrogate

both the mechanism and the rate law which emerges from our graph-sampled kinetic model.

To the best of our knowledge this Article marks the first time that this methodology has

been combined with an automated scheme for reaction path sampling with the specific aim

of investigating a catalytic mechanism.

Results and discussion

The methodology described above represents a hierarchical approach to catalytic kinetics;

starting from an atomic description of reaction paths, we identify and refine relevant sta-

tionary points (minima and TSs) and use these to build a kinetic model. In other words,

automated graph sampling enables us to move from a microscopic sampling of reaction paths

to macroscopic rate laws in a clear, well-defined manner.

The main result of this paper is the first direct application of our hierarchical approach

to catalytic kinetics. Specifically, we consider the hydroformylation of ethene catalysed by

HCo(CO)4 as a challenging test case. Alkene hydroformylation9–11,13,22,29–31 is one of the

world’s most important industrial chemical processes, with the annual global production
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of resulting aldehydes and alcohols measured in millions of tons. In the case of cobalt-

catalyzed hydroformylation, the active catalyst is HCo(CO)4, formed in situ by dissociation

of Co2(CO)8; the generally-accepted mechanism of Heck and Breslow9 then proceeds as

shown in Fig. 2. Following dissociation of CO, generating HCo(CO)3, the alkene coordinates

and subsequently inserts into the Co-H bond, forming a cobalt-alkane species. Coordination

of CO and insertion into the Co-C bond is then followed by oxidative addition of hydrogen,

and reductive elimination finally leads to aldehyde product formation and regeneration of

the catalyst. The reaction is typically run at temperatures of 150◦C and pressures of ca. 50

bar, usually in a solvent of toluene.10,13 Furthermore, as in all previous mechanistic studies of

this system, we assume that the reaction proceeds via singlet ground-states, an assumption

which is further reinforced by work suggesting that the lowest-lying triplet state for the

cobalt catalyst lies around 100 kJ mol−1 higher than the singlet ground-state.58

As noted in the Introduction, the experimental rate-law for cobalt-catalyzed hydroformy-

lation is generally found to be of the forms shown in Eq. 1. Recently, Harvey and coworkers13

were successful in deriving a rate law (Eq. 2) which went some way to reproducing exper-

imental observations, but this rate law was derived by (i) making assumptions about the

mechanism and the relative importance of side-reactions, and (ii) adopting steady-state as-

sumptions for selected reactant species. However, this paper marks an attempt to derive

a catalytic rate law in an automated fashion; in other words, we are seeking to determine

whether the experimental rate law can be derived in a unguided, hands-off simulation ap-

proach which starts from first principles, with only weak chemical constraints. If successful,

this approach could mark a shift away from assuming a mechanism (and then testing whether

it is correct) towards enabling the reaction rate law and associated mechanism to naturally

emerge from simulations of reaction kinetics.

Our reaction-path sampling simulations began with four molecular fragments, H2, CO,

C2H4 and HCo(CO)3, arbitrarily arranged in space (a total of Na = 18 atoms). The initial

start- and end-points of our reaction path were simply chosen to be the same configurations;
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the natural dynamics implicit in the Hamiltonian of Eq. 3, as well as graph-sampling moves,

mean that these end-points rapidly diverge as the simulation proceeds. The reaction-path

was discretized using P = 18 images. The Hamiltonian equations-of-motion were integrated

using the standard velocity Verlet algorithm with a time-step of 0.25 fs; we note that this

time-step is comparable to that typically used in ab initio simulations of reactive chemistry. A

simple Anderson thermostat was used to maintain the temperatures of the reaction-path end-

points and Fourier coefficients at T = 300 K. Each reaction-path sampling trajectory was run

for up to 104 time-steps. The reaction-path was stored every 250 time-steps for subsequent

CI-NEB analysis; CI-NEB calculations were performed with the standard approach using

steepest descent optimization. The remaining parameters for the reaction-path sampling

simulations were the same as employed in our previous methodological work.23

The graph moves employed in these simulations included the following transformations:

1. Single bit-flip. Select a random off-diagonal element Gij; if Gij = 1, replace it with 0,

and if Gij = 0, replace it with 1;

2. 1,2-insertion: M-X + Y-Z → M-Y-Z-X. Note that the Y-Z bond remains intact;

3. Metathesis: M-X + Y-Z → M-Y + X-Z;

4. 1,1-insertion: Z-X + Y → Z-Y-X. Here, Y represents an arbitrary species, not just a

single atom; the important point to note is that both Z and X are bonded to the same

atom in Z-Y-X.

In the above, M represents the cobalt atom, and Y and Z are arbitrary ligands. The inverse

of each of the above transformations was also incorporated as possible graph moves, and

each of the total set of graph moves was performed with equal probability during each

simulation. As in our previous work,23 we note that the set of graph moves considered here

are comprised of common organometallic transformations, and are in no way tailored to the

HCo(CO)4-catalyzed system; these graph moves, as well as the existence of an arbitrary
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“bit-flip” move, do not exclude the discovery of “exotic” chemical species, as shown in the

set of sampled structures below. However, we note that the choice of graph-moves has an

important influence over the overall efficiency of our graph-sampling scheme. For example,

employing only random bit-flips would most commonly produce structures in which the

valence constraints noted above are violated; as a result, such graph moves would be rejected,

resulting in poor overall sampling of the chemical space associated with the connectivity

graphs. Instead, the graph-moves noted above generally have a much greater chance of

avoiding violations of valences and thus being accepted.

To further ensure that a full-range of reaction-paths were sampled for the system, we

adopt a “cascade” strategy. Here, when a new molecular structure has been generated as

a result of a graph-move, this new structure was then used to initialize further reaction-

path sampling calculations. This process was repeated until no further reaction-paths were

sampled, at least within the typical time-frame of the simulations. We note that this strat-

egy cannot guarantee that we have sampled all possible reaction-paths consistent with the

chemical constraints described above; however, visualization of the sampled configurations

suggests that no obvious chemically-important reactions are missing from our collection of

reaction-paths. The challenge of knowing when to stop sampling is akin to that encountered

in global optimization; technically, one does not know whether the global minimum of an

optimization function has been located without sampling every local minimum. In higher-

dimensional problems, this is usually impossible, so the best one can achieve is to perform

repeated optimizations and be satisfied with the best result available. Furthermore, we note

that this cascade process for sampling reaction paths starting at different molecular structure

could be trivially parallelized, a strategy which we are currently exploring. In total, we per-

formed 45 independent graph-sampling simulations, with each sampling between 2×103 and

104 time-steps. In practice, many of these simulations were redundant in that they resulted

in reaction-paths which had been previously discovered; in fact, only around 20 sampling

simulations resulted in truly unique reaction-paths. The efficiency of SCC-DFTB ensured
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that these graph-sampling simulations could be performed in a short time. For example,

each individual sampling simulation took around 12 hours; employing up to ten independent

computational nodes, the sampling simulations could be performed in a few days. Of course,

while our reaction-path sampling approach is not particularly tied to SCC-DFTB, we note

that using a more expensive ab initio method during sampling, such as DFT, would clearly

increase simulation times (hence our choice of SCC-DFTB in this case).

Minima and Transition-States

Ultimately, our graph-based sampling scheme produced a total of 31 unique reaction products

and 32 reaction paths; of these reaction paths, five were found to be barrierless. TS structures

were located for the 27 remaining activated reactions. All reaction products (minima) and TS

structures were optimised using DFT (B3LYP, 6-31G(d,p)) calculations, and the associated

free energies were determined using the standard translational, rotational and (harmonic)

vibrational thermal corrections. The thermal corrections were calculated assuming that

the temperature was T = 423 K (150◦C), which is typical of the operating temperature

of cobalt-based hydroformylation setups, and is the same temperature as considered in our

kinetic simulations below. The 31 reaction products are shown in Fig. 3, and the relative

free energies of these molecules are given in Table 1. Furthermore, Fig. 4 shows the relative

free energy profiles for each of the sampled reactions; as would be expected in any complex

reactive system such as that studied here, we find a range of exothermic and endothermic

reactions, as well as TS free energies which span a wide range from ca. 1 to ca. 420 kJ

mol−1. The information in Table 1 and Fig. 4 is the raw input data used to directly generate

our kinetic network model for this catalytic system.

The structures shown in Fig. 3 span the range of chemically-relevant products which

would be expected for this system. For example, we locate structure S10, the starting point

for the catalytic cycle, and find that the reaction S1 + S3 → S10 is barrierless as generally

expected. We also determine structures corresponding to coordination of the ethene (S4) to
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the active cobalt catalyst (S1), giving rise to two different products, S13 and S18, with the

coordinated alkene lying either parallel to or perpendicular to the cobalt-hydrogen bond.

Further structures corresponding to the products of alkene insertion (e.g. S6) and CO

insertion (e.g. S12) are also located. Finally, we note that the final aldehyde product is

located (S26), as is an alternative alkane product formed by hydrogenation of ethene (S27).

The set of reaction products (Fig. 1) and sampled reaction paths can be combined to

create a direct visualisation of the entire kinetic network associated with the HCo(CO)3 +

CO + H2 + C2H4 system; this is shown in Fig. 5. Such kinetic networks can be useful in

developing a broad overview of possible chemical reactions available. For example, Fig. 5

directly illustrates that the aldehyde product S26 can be reached via four pathways, cor-

responding to reductive elimination from S23, S23, S30 or S31, respectively. We note that

these four different reactions were automatically generated, in contrast to the more common

approach of using human chemical intuition to guide the search for the relevant reactive

pathways. Most importantly, this picture of the chemical kinetic network is key to further

analysis, notably determination of the dominant catalytic mechanism and the associated

phenomenological rate law, as will now be discussed.

Extracting the Catalytic Mechanism

Given that we have now constructed a kinetic model describing the HCo(CO)3 catalytic

hydroformylation system, we can ask the following question: what is the predicted mecha-

nism of ethene hydroformylation? We emphasise that our approach is somewhat different

in philosophy from the usual route to interrogating reaction mechanisms, whereby one sug-

gests a mechanism and then uses simulations of reaction energy barriers and energy changes

to justify whether the suggested mechanism is plausible. In contrast, our reaction network

model (Fig. 5) describes a range of possible reaction pathways; for example, the following

pathways, in which the cobalt-containing species are indicated, all lead to formation of the
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aldehyde product,

S10→ S1→ S18→ S6→ S11→ S12→ S30→ Product S26

S10→ S1→ S13→ S6→ S11→ S12→ S31→ Product S26

S10→ S9→ S20→ S8→ S28→ Product S26.

(11)

Thus, kinetic modelling of this system will enable us to directly analyze the relevant reaction

pathways to deduce the mechanism; in other words, the predicted mechanism will automat-

ically emerge from the set of graph-sampled reaction paths without presupposing a catalytic

cycle.

Using the direct SSA methodology described previously,48–50 we simulated the kinetics

of the network illustrated in Fig. 5. Here, the simulation volume was chosen to be v =

5 × 10−19 m3, and the total simulation time was T = 10−2 s; in passing, we note that our

reaction-path sampling scheme, which employs picosecond time-scale simulations, has been

used to generate a kinetic model which enables simulations on experimentally-relevant time-

scales beyond the millisecond regime. The initial concentrations (or pressures, for gaseous

reactants) of the reactant species S2 (H2), S3 (CO), S4 (C2H4) and S10 (HCo(CO)4) were

46.7 bar, 46.7 bar, 1.33 mol dm−3 and 0.013 mol dm−3, respectively. Again, these initial

concentrations and pressures were chosen to be representative of typical conditions employed

in HCo(CO)4-catalyzed hydroformylation.10,13

Figure 6 shows the net reactive flux through the various sampled reactions (Fig. 5). The

net flux for reaction k was determined as the difference between the number of forwards and

backwards reactive events,

Fk =
nfk − nbk
Nr

, (12)

where Nr is the total number of observed reactive events and n
f/b
k are the number of for-

ward/backwards reactions which occur during the time-scale of the SSA modelling.

The most important conclusion from Fig. 6 is that the generally-accepted Heck-Breslow
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mechanism9 (Fig. 2) automatically emerges from direct kinetic simulations of our sampled

reaction network. First, significant flux is observed from S10 to S1+S3; this reaction cor-

responds to dissociation of CO from the starting catalyst HCo(CO)4, leading to the active

species HCo(CO)3. This species then undergoes alkene coordination and insertion, CO in-

sertion and H2 insertion, ultimately leading to elimination of the product aldehyde S26. We

do not observe formation of product S26 by any other series of reactions; the Heck-Breslow

mechanism is automatically implied in our simulations. Thus, our kinetic network model

of Fig. 5 can be reduced to a simpler version, as shown in Fig. 7; this minimal kinetic

model can be seen to map exactly onto the Heck-Breslow mechanism of Fig. 2. It should

be emphasized, however, that this reduced mechanistic model was determined automatically

from the set of all possible reactions illustrated in Fig. 2.

The results of Fig. 6 also imply several further interesting observations. We find an

indication that S9 and S10 exist in equilibrium (zero net flux), although analysis indicates

that the forward flux through this reaction is around six orders of magnitude smaller than

the reaction leading to S1+S3; in other words, direct insertion of a CO moiety into the Co-H

bond is irrelevant to further reaction. Furthermore, we find that alkene coordination can

lead to two different products differing in the orientation of the alkene; S13 has the alkene

C-C bond lying parallel to the Co-H bond, whereas S18 has this bond lying perpendicular to

the Co-H bond. The calculated flux indicates that the route leading to S18 is very slightly

favoured, although both routes are ultimately followed in product formation. Finally, we

note that the coordination of the alkene S4 to the Co-COH species S9 is also observed,

although the reversibility of this reaction is again implied by the zero net flux, and this

pathway does not lead to further reaction.

As a final point, we highlight the fact that the aldehyde product S26 is formed exclusively

by reductive elimination from S30 in our kinetic simulations; no elimination is observed from

S31. Closer analysis of the free energies of S12 and S29 demonstrates that S29 is around

25.2 kJ mol−1 lower in energy; however, the free energy barrier to hydrogen addition to S29
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(leading to S31) is 92.2 kJ mol−1, whereas the barrier to addition to S12 (leading to S30)

is 67.0 kJ mol−1, indicating a kinetic preference for the reaction pathway which ultimately

leads to S30 and then elimination of S26. Again, we note that our automated graph-sampling

methodology enables one to address these mechanistic questions in a relatively straightfor-

ward manner; the only provisos are (i) whether all relevant reaction paths have been sampled,

and (ii) whether the calculated free energy values for minima and TSs are sufficiently accu-

rate to distinguish between plausible mechanisms. The first of these challenges has already

been noted above; the second challenge plays a role in the calculated rate law, as we now

discuss.

Phenomenological Rate Law

As well as elucidating the reaction mechanism, direct SSA kinetics simulations can also be

used to discern the rate law for the reaction. To do this, we calculate the reaction rate as

a function of concentration of each reactant species (S2, S3, S4 and S10); here, the reaction

rate is defined as the rate of change of the concentration of the product aldehyde, S26.

These simulations were performed in the same manner as those used to analyze the catalytic

mechanism; unless otherwise stated, the concentrations of those reactant species which are

not varying were the same as given in the previous section. Furthermore, note that the full

kinetic network of Fig. 5 was used in all kinetic simulations performed here.

Figure 8(a) illustrates the time-dependence of the concentration of the aldehyde product

during three independent SSA simulations; the average result is also shown. By taking the

slope of the average line between t = 8× 10−3 s and t = 10−2 s, we find that the calculated

reaction rate is 3.9×10−5 mol dm−3 s−1. While modern experimental kinetic data for ethene

is somewhat difficult to establish, data is available for hydroformylation of propene under

similar experimental conditions to those considered here.10 In the case of propene, reaction

rates are typically of the order of 10−3 mol dm−3 s−1; in other words, the rate of ethene

hydroformylation predicted from our reaction network is around a factor of 25 slower than
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the typical experimental rate of propene hydroformylation. Although the rate of ethene

hydroformylation would clearly be expected to differ from that of propene, not least because

the propene system offers the possibility of linear and branched product formation, one might

expect that the calculated ethene hydroformylation rate would at least be of a similar order

of magnitude to these experimental results.

As a result of this comparison, it is interesting to investigate why our predicted rates are

lower than the corresponding experimental propene hydroformylation system. Given that the

correct (i.e. generally-accepted Heck-Breslow) reaction mechanism has been identified in our

graph-sampling/kinetics simulation scheme, the only conclusion can be that the calculated

relative free energies and barriers are in error. To investigate this point, we consider the data

shown in Fig. 8(b), which shows calculated free energies for several molecular structures and

reaction barriers as determined in this work and in the work of Morokuma and coworkers.22

In both cases, DFT (with standard thermal corrections) was used to calculate the minima

and TS free energy values; however, different exchange-correlation functionals were employed

in the two sets of calculations (M06 and B3LYP). As a result, one would not expect perfect

agreement between the two sets of calculated results, and the diagonal line in Fig. 8(b) is

instead intended as a guide to the eye. As expected, we find broad correlation between the

two sets of DFT results, with the differences in calculated free energies typically being 5-20 kJ

mol−1 (not uncommon for DFT comparisons). However, we also find two significant outliers

compared to the previous AFIR simulation study (indicated by black arrows in Fig. 8(b)):

(i) S30 has G = +25.1 kJ mol−1 in this work, but G = −21.8 kJ mol−1 in the AFIR study,

and (ii) S26 (product aldehyde) has G = −36.7 kJ mol−1 here, but G = −88.9 kJ mol−1 in

the AFIR study.

As noted above, S30 acts as the main gateway structure to the formation of the product

aldehyde S26 in our predicted catalytic mechanism; as a result, errors in the energies and

barriers associated with S30 may be expected to play a significant role in the observed rate

for product formation. However, the absolute energy value of S30 is not a particularly
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significant error with regards to the reaction mechanism and reaction rate (for example, the

barrier height for reductive elimination from S30 is 6.35 kJ mol−1, comparable to the value

of 7.3 kJ mol−1 from the AFIR study). The most notable possible error lies in the fact

that the free energy of S30 lies above the TS for S2 + S12 → S30; this in turn suggests

that the reverse reaction (S30→ S2 + S12) can effectively compete with product formation.

Furthermore, this competition is also suggested by the low flux related to product formation,

as shown in Fig. 6.

To correct this error, we chose to reduce the free energy of S30 by 37 kJ mol−1 while

keeping all other reaction barriers and relative energies the same as in the previous calcula-

tions. We emphasize here that this ad hoc correction by hand is in no way condoned as an

acceptable strategy. Instead, our goal is to demonstrate that the kinetic network sampled

by our graph-based strategy is representative of experimental rate results if one accounts for

inaccuracy in the ab initio reaction rate data; however, we note that this correction does

not change the emergent reaction mechanism, as highlighted below. A much more appeal-

ing long-term strategy will be to combine our hierarchical kinetics modelling strategy with

uncertainty quantification approaches for assessing predictive reliability; this is an approach

we will explore in the future.

The effect of reducing the energy of S30 is that the reverse (dehydrogenation) reaction

(S30→ S2 + S12) is slowed significantly, and thus the net flux towards product is increased;

this is illustrated in Fig. 9, which compares reactive flux in the original and modified

networks. Importantly, we also find that reducing the energy of S30 has no effect on the

mechanism of reaction, and the same set of reaction channels are sampled during our kinetics

simulations. Instead, the effect of reducing the energy of S30 is to increase the flux towards

product, as expected, leading to more rapid formation of product (Fig. 9).

With the most important error in the calculated relative energies identified and cor-

rected, we are now in a position to investigate the form of the rate law predicted by our

kinetic network. Figure 10 illustrates the rate of product formation as a function of the
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concentration of the initial reactants. Most importantly, we find that our kinetic simulations

yield a rate dependence for each initial reactant which is in broad agreement with previ-

ous experimental and computational studies.10,11,13 As shown in Fig. 10, we find that the

rate of aldehyde formation is first-order with respect to the partial pressure of H2 and the

concentration [HCo(CO)4]. In the case of the alkene, we observe a dependence of the form

[C2H4]
0.55; however, if we limit the fitting to the range of concentrations previously studied

in experiments10 on propene ([alkene] > 0.6 mol dm−3), we observe a dependence which is

much closer to first-order, and thus similar to that observed previously.

The most complex rate-dependent behaviour is observed for CO. A fit of the form

a [CO] /(1 + b [CO])2, the rate expression suggested in some previous studies, gives a rel-

atively poor reproduction of the simulation data, while a function of the form a [CO] /(1 +

b [CO] + c [CO]2) gives a much better agreement with the calculated rates. There are two

points to make here: (i) the experimental rate law of Bourne and coworkers10 was determined

based on measurements at just three independent alkene concentrations, and none of these

concentrations was sufficiently low to observe the rate at very low concentrations, and (ii)

we cannot rule out the fact that errors in the DFT barrier heights and relative energies are

playing a role in the calculated rate dependence, as in all simulation studies. However, and

perhaps most encouragingly with regards to the overall aim of this study, we find that the

calculated rate law is physically consistent with all previous experimental and computational

studies, exhibiting a complex dependence on CO concentration with reaction rate increasing

at low CO concentrations (up to a point) and decreasing at higher CO concentrations. Our

automatically-generated rate calculations have therefore proven capable of reproducing one

of the key experimental feature of this system, without pre-supposing anything about the

reaction mechanism itself or making any steady-state assumptions.13,22

Finally, it is interesting to investigate what the calculated flux tells us about the reaction

mechanism in the high and low CO pressure regimes. As shown in Fig. 11, we find that the

set of reactions with non-zero forwards or backwards flux does not change in the high and low
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CO pressure regimes. The most important difference between these two regimes can be found

in the sub-set of reactions which are associated with alkene insertion into the Co-H bond of

S18 and S13. In particular, we find that, in the low CO pressure regime, the reactive flux

associated with alkene insertion (S13 → S6) is negative, implying that the reverse reaction

dominates; in contrast, in the high pressure regime, the reactive flux S13 → S6 is positive.

These results serve to illustrate that, when CO pressure is low, the coordination of CO

to form S11 (S6+S3 → S11), and subsequently proceed to aldehyde product, is hindered,

thereby directly indicating a mechanism for the linear dependence on pCO at low pressures.

Conclusions

This Article has presented a “bottom-up” approach to determining the mechanism and

associated rate law of a complex catalytic cycle from first-principles; to the best of our

knowledge, this is the first time such an approach, integrating automated reaction-path

sampling and kinetic simulations, has been successfully demonstrated.

The advantages of our computational strategy are that it is highly automated, unbiased

and unguided. This is in strong contrast to more standard routes to investigating catalytic

mechanisms, which generally focus on (i) proposing a mechanism, and then (ii) using com-

puter simulations to assess whether the proposal is consistent with experiments. In contrast,

in our approach, we automatically generate a kinetic network describing possible reactions

in the system, and then use direct kinetic simulations which enable the mechanism and rate

law to naturally emerge from all the available possibilities. We have shown in this Article

that our approach is capable of elucidating the Heck-Breslow mechanism of catalytic hydro-

formylation, as well a phenomenological rate law which is comparable to those derived from

previous experimental and theoretical investigations.

Importantly, our simulation approach is computationally-efficient; relatively inexpensive

DFTB calculations are used to drive the search for reaction-paths, while a higher level of
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theory (DFT B3LYP in this case) can be used to optimize the PES stationary points in order

to generate reactions rates for subsequent kinetic modelling. Current work is focussed on

further streamlining our overall methodology by (i) code parallelization, and (ii) developing

strategies to focus the reaction-path search on unique reactions, avoiding redundancy in

sampled paths. These additions promise to offer significant reductions in total calculation

times.

However, while our sampling strategy has clearly proven successful in elucidating the

reaction mechanism in this case, it is clear that the underlying problem of PES accuracy

can be influential. In particular, we have found that the relative inaccuracy of DFT led to

predictions for the overall reaction rate which were too low; we found that an ad hoc change

of a single barrier and associated reaction rate brought the predicted reaction rate into better

agreement with experimental results, although this approach is, of course, not acceptable in

general. Instead, we are currently investigating the application of uncertainty quantification

methods aimed at assessing the overall reliability of the kinetic network models generated

by our graph-based sampling approach and ab initio calculations; combined with related

methods such as sensitivity analysis,52,59 these strategies have potential to at least highlight

when problems relating to accuracy of calculated rates might be expected to be important.

Furthermore, there are clearly remaining opportunities to improve our reaction-path sam-

pling strategy. For example, as well as computational refinements, such as the adoption of

parallel computing methods, methodological improvements such as the use of temperature-

accelerated sampling strategies33,34,41 would also be expected to improve the range of ap-

plication of our strategy. Such refinements, particularly accelerated sampling, will help in

accessing a wider range of possible reaction paths, including the “roaming” pathways which

have been identified as being key to the dynamics of a number of molecular species.60–62 As

a further challenge, we are also investigating methods for addressing reaction paths associ-

ated with changes in electronic state; however, we also note that such simulations will also

require more accurate (multi-reference) electronic structure methods, which will have clear
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consequences for computational expense which must be similarly addressed. As above, these

directions are work in progress.

Finally, we note the exciting possibility that our simulation strategy can be used to

optimize catalytic function; for example, once a kinetic network model has been generated for

a given catalytic system by graph-based reaction-path sampling, investigating the influence

of ligand substitution on the catalytic kinetics should be reasonably straightforward. This

is again an area of research which we are now exploring.
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Table 1: Calculated free energies (at DFT/B3LYP/6-31G(d,p) level) for structures sampled
in graph-based reaction-path sampling for H2 + CO + C2H4 + HCo(CO)3. In each case,
the free energy relative to the sum of free energies of the constituents is given; for example,
Grel(S10) = Gcalc(S10)−Gcalc(S1)−Gcalc(S3). For reference, these relative free energies were
determined using the following calculated values: Gcalc(S1) = −1723.260201 Eh, Gcalc(S2) =

−1.186302 Eh, Gcalc(S3) = −113.333215 Eh and Gcalc(S4) = −78.576220 Eh.

Structure G / kJ mol−1

S5 24.91

S6 -39.48

S7 40.55

S8 -9.94

S9 3.71

S10 -89.46

S11 -73.32

S12 -46.74

S13 -16.44

S14 44.18

S15 44.78

S16 93.54

S17 42.96

S18 -28.77

S19 97.30

S20 19.77

S21 78.55

S22 27.27

S23 98.72

S24 68.99

S25 18.83

S26 -36.71

S27 -95.59

S28 94.50

S29 -71.70

S30 25.13

S31 17.71
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Figure 1: Schematic overview of graph-based reaction-path sampling,23 demonstrated here
for the four-atom H2CO system. Our approach comprises (a) a dynamic reaction-path defined
as a set of images (yellow dots) lying along a path described by a set of Fourier coefficients,
and (b) connectivity graphs (G0 and GP ) describing the bond arrangement at the end-points
of the reaction-path. During the Hamiltonian-based dynamic trajectories of the reaction-path,
periodic graph moves, (c), drive the search for new paths connecting different chemical species;

in this way, one can straightforwardly sample reaction paths in a given chemical system.
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Figure 2: The Heck-Breslow mechanism for alkene hydroformylation.9 The initial species
HCo(CO)4 undergoes CO dissociation (a) to generate the active catalyst. Subsequently, (b)
the alkene coordinates and (c) inserts into the Co-H bond. Coordination and insertion (d) of
CO is followed by addition of H2 (e). Finally, reductive elimination leads to formation of the

product aldehyde and regeneration of the catalyst (f).
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Figure 3: Molecular structures sampled during graph-based reaction path search; free energy
values are given in Table 1. All structures were generated during DFTB-based path-sampling,

and subsequently optimised with DFT (B3LYP 6-31G(d,p)).
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Figure 4: Free energy reaction profiles for the set of sampled reaction paths in the H2 + CO
+ C2H4 + HCo(CO)3 system. In each case, the free energy of the products is given relative
to the reactants; all energies are given in kJ mol−1. In cases where the TS energy is given as

zero, the reaction was found to be barrierless.
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Figure 5: Kinetic network model generated for the H2 + CO + C2H4 + HCo(CO)3 system.63

Each blue node represents one of the sampled structures shown in Fig. 3. The arrows connect
structures which are accessible via either a TS (red squares) or a barrierless reaction (green
diamonds). The initially-populated chemical species used in the kinetics simulations reported
here are shown in orange (S2, S3, S4 and S10), while the aldehyde product S26 is shown at

the bottom of the network graph.
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Figure 6: Reactive flux calculated for the graph-sampled kinetic network shown in Fig. 5;
the flux is calculated using Eq. 12, and the initial concentrations of reactants is as described
in the main text. Note that all other reaction paths exhibited zero net flux; in other words, the
reactions shown here were the only reactions which took place during the kinetic modelling.
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Figure 7: Minimal kinetic network model describing catalytic hydroformylation of ethene.
This network was derived by removing all nodes and edges which represented molecular struc-
tures and reaction paths which were not sampled in direct stochastic simulations of the full
network of Fig. 5. The remaining structures and reactions shown here can be directly mapped

onto the Heck-Breslow mechanism of Fig. 2. The color scheme is the same as in Fig. 5.
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Figure 8: (a) Time-dependence of the concentration of S26, the product aldehyde. Three
independent stochastic kinetics simulations are shown (thin lines), as is the average behaviour
(thick black line). The slope between t = 8× 10−3 s and t = 10−2 s was used to determine the
reaction rate. (b) Correlation between free energies of minima (blue circles) and TSs (green
squares) determined in this work and in a previous AFIR study using different DFT functional
and basis set.22 The red dashed line is simply a guide for the eye; one would not expect perfect
correlation between these two sets of results, although there is clearly broad agreement. The
black arrows indicate minima S26 and S30, which exhibit the largest difference relative to the

previous work.
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has been lowered by 37 kJ mol−1. The reactions are shown in the same order as in Fig. 6, and
no additional reactions are sampled in the modified network. The most important differences

responsible for the increase in reaction rate in the new model are highlighted explicitly.
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Figure 10: Reaction rates as a function of partial pressures or concentrations of initial reac-
tants. Unless explicitly varied, the initial concentrations (or pressures, for gaseous reactants)
of the reactant species S2 (H2), S3 (CO), S4 (C2H4) and S10 (HCo(CO)4) were 46.7 bar, 46.7
bar, 1.33 mol dm−3 and 0.013 mol dm−3. In each panel, the dashed lines represent best-fit

lines of the functional forms discussed in the main text.
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Figure 11: Calculated flux in the modified kinetic network model in the high-pressure (red;
pCO = 46.7 bar) and low-pressure (blue; pCO = 0.01 bar) kinetic networks; in each case, we
illustrate the flux relative to that for the reaction S10 → S1+S3. In the low pCO regime, it is
found that flux through the set of reactions associated with alkene insertion is increased due

to low probability of CO coordination via S3 + S6 → S11.
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