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Abstract

We estimate the dynamics of recommendations by financial analysts, uncovering the
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1 Introduction

One of the most important services that financial analysts provide is to make recommenda-

tions to retail and institutional customers about which stocks to purchase, and which ones to

sell. Brokerage houses want to employ financial analysts who provide recommendations on

which investors can profit, thereby generating profitable trading activity for the brokerage

house. Many researchers (e.g., Womack, 1996; Francis and Soffer, 1997; Barber et al., 2001

and 2006; Jegadeesh et al., 2004; Ivković and Jegadeesh, 2004; Howe et al., 2009; and Bradley

et al., 2014) have documented the profitability and informativeness of various measures of

recommendations and recommendation changes.

In this line, one can contemplate an “idealized” financial analyst who first gathers and

evaluates information from public and private sources about a set of companies to form as-

sessments about their values, and then compares his value assessment with the stock’s price,

issuing recommendations to his investor audience on that basis. Thus, an idealized analyst

employing a five-tier rating system would issue “Strong Buy” recommendations for the most

under-valued stocks, whose value-price differentials, V−P
P

, exceeded a high critical cutoff, µ5.

The analyst would establish progressively lower cutoffs, µ4, µ3 and µ2, that determine “Buy”,

“Hold”, “Sell” and “Strong Sell” recommendations, so that, for example, the analyst would

issue Buy recommendations for value-price differentials between µ5 and µ4, and strongly

advise customers to sell stocks with the worst value-price differentials below µ2.

Analysts do not form recommendations in this way. To understand why, observe that

sometimes a stock’s value-price differential will be close to a cutoff, in which case slight fluc-

tuations in price relative to value lead to repeated recommendation revisions. In practice,

analysts infrequently revise recommendations—customers would question the ability of an

analyst who repeatedly revised recommendations on which they based investments.

We develop and estimate a model of a “reluctant” financial analyst. The analyst assesses

value just like an idealized analyst, and when initiating coverage, he makes an initial rec-

ommendation on the same basis. However, the analyst only downgrades a recommendation

if the value-price differential falls far enough below the critical cutoff, and only upgrades

a recommendation if the value-price differential rises far enough above the cutoff. Thus, a

reluctant analyst downgrades a recommendation from a Buy only if a stock’s value-price dif-

ferential falls below µ4−δ4↓ instead of µ4, and he upgrades from a hold only if the differential

rises above µ4 + δ4↑ instead of µ4, where δ4↓ and δ4↑ are stickiness parameters that measure
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an analyst’s strategic “reluctance” to revise recommendations.1

The contributions of our paper are first to identify the drivers and determinants of sticki-

ness in analyst recommendations. We distinguish the relative importance of recommendation

revision frictions, persistent analyst information and public information available to an econo-

metrician for explaining the dynamics of analyst recommendations. In turn, these drivers

provide insights into the strategic considerations and information of analysts. We uncover

how incorporating strategic behavior and analyst information alters our understanding of

how various public information characteristics of a firm (e.g., size, past performance) enter an

analyst’s assessment of firm value. We show how our model informs about the returns of firms

following recommendation revisions inside and out of earnings announcement and guidance

windows. Finally, we show that our model provides a measure of the “surprise” associated

with a recommendation revision or initiation that explains the magnitudes of returns.

There are many different sources of stickiness in recommendations, and the economet-

ric model must account for each of them to avoid biasing estimates that lead to mistaken

inferences about their relative importance. One source of stickiness is simply that much

of the public information that analysts receive arrives in lumps. Concretely, earnings an-

nouncements arrive quarterly, and earnings guidance is given sparingly. An unsurprising

consequence, for example, is that recommendation revisions are more likely inside announce-

ment and guidance windows, generating “stickiness” outside these windows.

A second source of stickiness is the information that analysts uncover to which an econo-

metrician is not privy. This information could reflect an analyst’s assessments based on

repeated private interactions with firm personnel.2 Alternatively, the information need not

be “private”, just unobserved by the econometrician, and hence not in his model of valuation

even when the information enters price.3 The valuation consequences of such information

persist—if an analyst has favorable information that the econometrician lacks, some of the

information likely remains months later, positively affecting future recommendations.

1See Section 2.1 for extensive motivation of these stickiness parameters.
2According to a survey conducted by Brown, Call, Clement, and Sharp (2015, JAR), analysts’ private

communication with management is the most useful input to their decision process when forming earnings
forecasts and stock recommendations; and “over half of the analysts we survey report that they have direct
contact with the CEO or CFO of the typical company they follow five or more times a year.”

3For example, the public information could be the quality of the CEO, which is obviously persistent; it
could be approval of a drug by the FDA, which will enter share price both now and into the future (but
possibly not near term earnings), and the value of this approval will persist; it could be the near term
entry or exit of rivals; the value of new patents (or future expiration of old ones), etc. Quite generally, any
information that enters distant future revenues will typically be both quite persistent, known to the analyst
and the market, but not fully captured by a set of control variables.
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A third source of stickiness is the strategic choices by analysts. Analysts can reduce

the likelihood of revising recommendation i by increasing its bin size, µi+1 − µi, or by in-

creasing the recommendation frictions δi+1↑ and δi↓ into higher and lower recommendations.

Moreover, an analyst can reduce the frequency of recommendation revisions not only with

symmetric frictions, but also with asymmetric ones, where say the friction from buy to hold is

large, but that from hold to buy is small. Analysts have flexibility in how they tailor frictions

to limit recommendation revisions, and choices may hinge on the recommendation itself.

We test the model using analyst recommendations from the post Reg-FD,4 post Global

Analyst Research Settlement period, where analysts could issue negative sell recommenda-

tions without fear of losing access to company information sources (Chen and Matsumoto,

2006; Bradshaw, 2009). We estimate separate models for brokerage houses that employ

three-tier rating systems and those that use the traditional five-tier rating system,5 and for

various subsamples (e.g., of larger brokerages).

The publicly-available characteristics that we find enter an analyst’s assessment of value

positively tend to be consistent with the findings of others (e.g., Conrad et al., 2006). An im-

portant exception is that, contrary to existing findings, once one controls for the reluctant an-

alyst’s strategic behavior and private information, measures of past firm performance (lagged

returns) cease to positively affect assessments. That is, the idealized analyst model provides

a misleading indication of the impacts of past firm performance on recommendations.

What is fundamentally more important than these results is the fact that readily-available

public information sources matter far less for explaining the dynamics of analyst recommen-

dations than do recommendation frictions and persistent analyst information. Highlighting

this, the Bayes factor (the ratio of the marginal likelihoods of the alternative and null models)

is an astonishing exp(81660) for (a) the null model of an idealized analyst that includes all

standard public information sources of valuation, but no persistent analyst information and

(b) a barebones alternative model of a reluctant analyst that includes no public information

components of valuation, and only two recommendation revision frictions, one for upgrades

and one for downgrades, plus persistent analyst information.6

4Reg FD was designed to curb the practice of selective disclosure of material nonpublic information. Reg
FD eliminated incentives of analysts to issue favorable recommendations in order to curry favor with firms
and hence retain access to nonpublic information. Reg FD came into effect in August 2000.

5Kadan et al. (2009) find that following the Global Analyst Research Settlement and related regulations
on sell-side research in 2002, many brokerage houses, especially those affiliated with investment banks,
switched from a five-tier rating system to a three-tier system; and subsequently more have switched.

6The Bayes factor is employed to assess the goodness of model fit in Bayesian estimation. A Bayes
factor of 2 log (B) that exceeds 10 (≈ B > 150) represents decisive evidence in favor of the alternative
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The result that persistent analyst information matters more for recommendations than

does the information available to the econometrician is important. It suggests that most

of the econometrician’s information is already incorporated into prices, and hence has only

secondary impacts on recommendations. We find that about one-third of the valuation

consequences of an analyst’s information persists to the next month.

The recommendation revision frictions that analysts introduce are as important for model

fit as their information. Failing to account for these frictions biases up the estimate of the

persistence in analyst information, almost tripling the estimate. We find that analysts tailor

revision frictions asymmetrically, depending on the recommendation. Analysts introduce

much smaller frictions “out” of hold recommendations than “into” hold recommendations.

This suggests that analysts do not like to maintain hold recommendations, perhaps because

they generate less trading volume for a brokerage house. For analysts using a five-tier rating

system, we find that sell and buy recommendation bins are small relative to the frictions

from strong sell to sell and strong buy to buy, so that most revisions are to hold. This, too,

suggests strategic considerations: revisions from strong buy to buy that maintain a positive

assessment or from strong sell to sell that maintain a negative assessment may not be enough

to induce customers to unwind positions, but larger revisions to hold may do so.

We find that analysts who use the same (e.g., three-tier) recommendation rating system

are well-described by a common model of recommendation bins and frictions, where sources

of heterogeneity (firm and analyst attributes) only enter an analyst’s valuation assessment.

To show this, we estimate our model on subsamples where one might posit that analyst

recommendations might vary—over time, by brokerage size or analyst experience or number

of analysts following a firm. Estimates across subsamples are remarkably robust. As a final

validation test, we investigate whether some of our stickiness findings might proxy for ana-

lysts’ imperfect and delayed reaction to new information (Raedy et al. 2006): we estimate

a model in which analysts may process some new information with a lag. Estimates sug-

gest slightly delayed incorporation of information, but over 90% is processed immediately.

Moreover, allowing for delayed reaction to information raises the estimate of information

persistence by one-third and has modest impacts on recommendation friction estimates.

Having validated the model structure, we investigate its implications. We predict and

verify that recommendation revisions made outside earnings announcement or guidance win-

model against the null (Kass and Raftery, 1995). A factor that exceeds 1, 000 provides conclusive support
for forensic evidence in a criminal trial (Evett, 1991). See Appendix A for details.
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dows should take longer to return to the original recommendation, reflecting that information

arrival is smoother outside these windows. In fact, the mean duration of a recommendation

revision is 6-8 days longer if issued in a three-day window (on and after) of an earnings

announcement or guidance date, than if issued outside these windows. We also predict and

verify that recommendation revisions made inside these windows should have greater im-

pacts on stock prices than revisions made at other times. Finally, we exploit the fact that

the discontinuity in valuation assessment only occurs for revisions and not new recommen-

dations. A difference-in-difference analysis of revisions vs. new recommendations inside and

out of announcement and guidance windows shows that our model can reconcile the different

market responses to new and revised recommendations made inside vs. out of these windows.

We conclude by exploiting the fact that our model provides a measure of the “surprise”

associated with a recommendation revision or initiation. For example, if the current esti-

mate of an analyst’s stock valuation given publicly-available information is below an upgrade

revision cutoff, the market should be more surprised by an upgrade than if the estimated val-

uation suggests that the revision should already have been made. That is, the market should

be more surprised by an upgrade to a buy if a stock’s public information value suggests a hold

than if it already suggests a buy. Thus, we predict a difference in the (appropriately signed)

CARs following revisions in these two scenarios. So, too, when an analyst initiates coverage,

the market response to a buy recommendation should be smaller if the current assessment

of value given public information suggests a buy recommendation than if it indicates a hold.

We find both of these CAR relationships in the data. They indicate that (a) investors be-

lieve analysts make recommendations along the lines of our model, and (b) the market values

the information that analysts acquire that the econometrician does not have. They also imply

that the impacts of any unmodeled behavior-distorting incentives on recommendation forma-

tion, which just add noise, are modest enough that we still uncover these CAR relationships.

The paper is organized as follows. We next review the related literature. Section 2 de-

velops our model of the analyst recommendation process and provides an overview of model

identification and estimation. Section 3 details our data. Section 4 presents our findings.

Section 5 concludes. Appendix A includes more details on our estimation procedure and the

assessment of goodness-of-fit. Appendix B defines variables used in our analysis.
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1.1 Related literature

There is a large literature in accounting and finance on analyst recommendations. Our paper

is the first to directly model revision stickiness and to explore its strategic design. It differs

sharply from the existing literature in its focus and methodology. Methodologically, most

existing analyses employ combinations of the following methods:

• Descriptive statistical relationships between analyst and firm characteristics and rec-

ommendations, such as sample means, correlations, or quintiles (e.g., Jegadeesh et al.

(2004), Ivković and Jegadeesh (2004) and Boni and Womack (2006)).

• Regressions of recommendations on returns or vice versa, and/or regressions based on

recommendation changes.7

• Investment strategies based on portfolio construction using recommendation informa-

tion, showing that they have positive value (Barber et al. (2001), Jegadeesh et al.

(2004), Jegadeesh and Kim (2010), Boni and Womack (2006)).

The impact of analysts’ conflicts of interest on recommendations have also been closely

examined. Ljungqvist et al. (2006) use a limited dependent variable model to examine secu-

rities underwriting mandates, showing that investment banking relationships lead to more

favorable recommendations. Michaely and Womack (1999) find that lead underwriters issue

more favorable recommendations. Lin and McNichols (1998) report that affiliated analysts

issue more favorable recommendations.

Conrad et al (2006) are the first to recognize the impact of outstanding recommenda-

tions on later revisions in an ordered probit framework. We next relate our paper to theirs

in detail and further motivate our study.

7Stickel (1995) and Womack (1996) show that upgrades are associated with positive announcement re-
turns; Barber et al. (2001, 2006) find that absent transactions costs, investors could profit from information
in recommendations; Jegadeesh et al. (2004) and Jegadeesh and Kim (2006) find that recommendations
predict future returns, and that analysts tend to issue more favorable recommendations for stocks, finding
that analysts tend to issue more favorable recommendations for stocks with positive momentum and higher
trading volume, and that analysts fail to respond quickly to negative signals by downgrading stocks; Ivkovic
and Jegadeesh (2004) find a sharp increase in the information content of recommendation upgrades (but
not downgrades) before earnings announcements; Boni and Womack (2006) find that recommendation
information is valuable for identifying short-term, within-industry mispricing; and Loh and Stulz (2011)
look at abnormal returns around recommendation changes, and study when such changes are influential.
Bagnoli et al. (2009) find market sentiment helps to explain bias in analyst recommendations.
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Further motivation and the relationship with Conrad et al. (2006). The ordered

probit model, in which recommendations are regressed on variables capturing stock value via

a probit link function estimates a model of an idealized analyst in which the econometrician

sees the analyst’s valuation information. However, due to the reluctance of analysts to revise

recommendations, if stickiness is not directly modeled, cutoff estimates have to absorb the

friction parameters and will vary with the outstanding recommendation—the cutoff between

a Buy and a Hold would be higher if estimated on the basis of an outstanding Hold than if

based on an outstanding Buy; and the cutoff would be “inbetween” if estimated using initial

recommendations.

Recognizing this and assuming away persistence in analyst information, Conrad et al.

divide the data according to the outstanding recommendation and separately estimate a

probit model via MLE on each sub-sample. They then weight parameter estimates β by the

number of observations in each recommendation level, and calculate transition probabilities

based on these estimates. They find that analysts are more likely to revise recommendations

after negative price shocks than positive ones.

There are econometric issues with this approach. First, averaging over sub-sample es-

timates in a non-linear model does not deliver correct inferences on cutoffs, reflecting that

the partial effect of changes in a regressor is a function of both β and µ.8 In turn, estimates

of transition probabilities are biased as they depend on the correct estimation of cutoffs.

Second, because their cutoff estimates reflect a mixture of the true cutoff and stickiness

parameters, one cannot discern the economic and statistical significance of their estimates

of β. Third, serial correlation in analyst information (ρ 6= 0) introduces additional issues.

Due to the correlation of some regressors with the residual term, estimates are further dis-

torted. Finally and more generally, regardless of whether an ordered probit model is based

on the full sample or is conditioned on the outstanding rating, it does not incorporate the

intertemporal stickiness in recommendations and high information persistence found in the

data, and we document the large biases that result.

Most importantly, their research focus is very different. Conrad et al. focus on the

asymmetric impact of lumpy informational events for recommendation revisions, and not

the sources and consequences of recommendation stickiness.9 We show that lumpy public

8For instance, the marginal impact of a continuous regressor x1 on the probability of issuing a Buy rating
is ∂ Pr (R = 2|X) /∂x1 = β1 × [φ (µ1 −Xβ)− φ (µ2 −Xβ)], where φ(·) is the pdf of a standard normal.

9Conrad et al. do not even report the recommendation cutoff parameter estimates, much less how they
vary with the outstanding recommendation.
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information is a minor source of stickiness in recommendations. The inability of public in-

formation alone to explain recommendations manifests itself in the low pseudo-R2’s (well

below 5%) that Conrad et al. (2006) and Ljungqvist et al. (2007) find.10

Quite differently, our paper seeks to characterize the dynamics of analyst decision-making

and recommendation formation, jointly accounting not only for the public information avail-

able to the econometrician, but also the persistent information of analysts and the recom-

mendation revision frictions that they strategically introduce. Our joint estimation yields a

valid statistical inference that facilitates formal hypothesis testing. We show that revision

frictions and persistent analyst information are the primary drivers for explaining analyst

recommendations and the stickiness in recommendations. We find that heterogeneity be-

tween analysts is well-captured by heterogeneity in their models of valuation assessment,

together with a homogeneous model of recommendation formation. We identify how ana-

lysts design recommendation frictions asymmetrically to generate trade from investors, and

we show that analysts quickly incorporate new information into their recommendations. Fi-

nally, our model provides a theoretical lens through which to understand the different impacts

of recommendation revisions made inside versus outside earnings announcement windows,

to incorporate analyst underreaction, and to explain recommendation “surprise”.

2 The model and its estimation

This section develops our model of the analyst recommendation process in the context of

an analyst who employs a five-tier rating system. The model of an analyst who employs a

three-tier rating system is similar.

2.1 The dynamic setup

If recommendations reflect buying opportunities, then they should reflect the difference be-

tween an analyst’s assessment of a stock’s valuation and its share price. This valuation

assessment may reflect expected discounted earnings, or technical considerations that reflect

market mispricing; and it may be prospective (e.g., an analyst’s forecast of firm value in

a year’s time). Moreover, the notion of value is from an analyst’s perspective: in addition

to standard valuation fundamentals, attributes that appeal to an analyst’s retail investor

10The analogous regression in which, as in Loh and Stulz (2011), changes in recommendation are regressed
on the controls variables using an ordered probit, fits the data even less well with an adjusted-R2 of 0.33%.
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audience (e.g., small, growth, glamor stocks), or attributes such as underwriting business

that only the analyst cares about, may enter an analyst’s assessment of value.

Let V ∗ijt be analyst i’s per share valuation of stock j at time t, which equals the per-share

difference between the analyst’s assessment of “value Vijt” and price (Pjt):

V ∗ijt =
Vijt − Pjt

Pjt
.

We assume that V ∗ijt is determined by a large set of explanatory variables (see Appendix

B for variable descriptions) and analyst i’s own information. Letting Xijt be the per-share

analogue of these variables, we write analyst i’s per-share valuation model as:

V ∗ijt = X ′ijtβ + uijt. (1)

The unobserved residual terms uijt capture information that the analyst has, to which the

econometrician is not privy. As the introduction highlights, both omitted public information

and an analyst’s repeated interaction with management tend to cause serial correlation: we

must allow for persistence in uijt to capture the fact that the valuation consequences of this

information will last for some time. Accordingly, we assume that uijt evolves according to

an AR(1) process:

uijt = ρuij,t−1 + εijt, (2)

where εijt are i.i.d. N(0, σ2) and ρ measures the persistence in the valuation consequences of

the analyst’s information. For identification purposes, we normalize σ2 = 1.11

As our introduction highlights, analyst i’s recommendation for stock j at date t, Rijt, is

a function of both his valuation V ∗ijt and his outstanding recommendation. Thus, the model

that determines an analyst’s recommendation when he initiates coverage is not the same as

the one that he uses to determine subsequent recommendations. When analyst i initiates

coverage for stock j at time tij0, his initial recommendation of Rij,tij0 is determined by the

level of his valuation V ∗ijtij0 relative to the recommendation cutoffs µ2 < µ3 < µ4 < µ5 that he

sets. Analyst i initiates coverage with a strong buy if V ∗ij,tij0 ≥ µ5, and with an appropriate

lower recommendation if V ∗ij,tij0 falls into the corresponding valuation bin. Thus,

Rij,tij0 =



5, if µ5 ≤ V ∗ijtij0
4, if µ4 ≤ V ∗ijtij0 < µ5

3, if µ3 ≤ V ∗ijtij0 < µ4

2, if µ2 ≤ V ∗ijtij0 < µ3

1, if V ∗ijtij0 < µ2.

(3)

11The variance just multiplicatively scales the cutoffs for recommendations and revisions.
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A recommendation of a 5 represents a strong buy, 4 is a buy, 3 is a hold, 2 is a sell, and 1 is a

strong sell. Without loss of generality, for identification purposes, we normalize µ2 to zero.12

Subsequent recommendations Rijt are determined by both the analyst’s updated valua-

tion V ∗ijt and his outstanding recommendation Rij,t−1. Our model captures an analyst’s re-

luctance to change recommendations via the recommendation-specific revision frictions that

the analyst introduces. Specifically, if analyst i’s outstanding recommendation for stock j at

time t is Rij,t−1 = k, then analyst i would not lower his recommendation Rijt to k− 1 unless

his valuation V ∗ijt falls below the threshold value µk by an amount δk↓ that the analyst chooses.

Similarly, analyst i will not raise his recommendation Rijt to k+1 unless V ∗ijt > µk+1+δk+1,↑.

In effect, the analyst expands the bin corresponding to his previous recommendation k from

[µk, µk+1) to [µk−δk↓, µk+1+δk+1,↑), and does not revise his recommendation unless his valua-

tion assessment V ∗ijt evolves outside of this expanded bin. See Figure 3. Such revision frictions

are “localized” in that (a) the extents to which a recommendation bin is expanded can depend

on the recommendation itself (i.e., δk+1,↑ and δk↓ can vary with k), and (b) revision frictions

only affect decisions to upgrade or downgrade to “adjacent” recommendations. For example,

if an analyst has an outstanding strong sell (R = 1) rating, the friction δ2↑ only affects up-

grades to a sell: as long as µ3 > µ2+δ2↑, this friction has no effect on upgrades to hold. There-

fore, the probability distribution over analyst i’s recommendations for stock j at time t is

Pr [Rijt = k|Xijt, Rij,t−1] =


Pr
[
µk ≤ V ∗ijt < µk+1

]
, if Rij,t−1 > k + 1,

Pr
[
µk ≤ V ∗ijt < µk+1 − δk+1,↓

]
, if Rij,t−1 = k + 1,

Pr
[
µk − δk↓ ≤ V ∗ijt < µk+1 + δk+1,↑

]
, if Rij,t−1 = k,

Pr
[
µk + δk↑ ≤ V ∗ijt < µk+1

]
, if Rij,t−1 = k − 1,

Pr
[
µk ≤ V ∗ijt < µk+1

]
, if Rij,t−1 < k − 1,

(4)

where we adopt the convention that µ1 = −∞ and µ6 = +∞. This formulation allows for

distinct recommendation-specific frictions for both upgrades and downgrades, i.e., δk↑ 6= δk↓.

The model nests the ordinary probit model and δk↑ = δk′↓ = 0,∀ k, k′, captures the “ideal-

ized” financial analyst.

Analysts are reluctant to adjust recommendations too often for several reasons, and re-

vision frictions are a tractable, parsimonious way to capture this strategic reluctance. First,

repeatedly revised recommendations make it harder for investors to draw inferences about an

analyst’s ability. Since less frequent changes make it easier to draw inferences about ability,

12In the estimation of an ordered probit model, it is standard practice to set the lowest cutoff (µ2) to 0
because recommendations reflect differences between cutoffs and valuation, precluding joint identification
of the cutoff and the constant term β0 of an analyst’s valuation model.
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able analysts tend to revise infrequently, forcing less able ones to mimic, else they reveal

themselves.13 Trueman (1990) shows that analysts may be reluctant to revise forecasts upon

the receipt of new information due to the negative signals such revisions provide concerning

the accuracy of their prior information. In effect, such reputation concerns induce analysts

to introduce recommendation revision frictions.

Second, retail investors who base trading decisions on recommendations would be upset

were recommendations repeatedly revised. One can only imagine the fury of retail customers

who purchased on the basis of a fresh Buy that was revised down to a Hold one day later,

causing them to sell, only to be revised back to a Buy three days later.

In our framework, these two forces translate into an analyst only revising a recommen-

dation when an assessment moves far enough away from its associated recommendation

bin—there is an opportunity cost to revising a recommendation from a hold to a ‘near buy’

when a subsequent fall in assessment may be likely, in which case the analyst would want to

revise back to a hold. In effect, these forces induce analysts to introduce recommendation

revision frictions.

Third, revision frictions also capture analysts’ limited attention, which Hirshleifer and

Teoh (2003) argue is a consequence of the vast amount of available information and analysts’

limited information processing capacities.14 Gathering and analyzing information to deter-

mine whether a revision is warranted is costly. Having intensively analyzed one stock, an

analyst mostly will turn to another, as the cost of reanalysis is high relative to the benefit;

an analyst will defer to an outstanding rating in between, barring major changes in public

or private valuation components.15 Revision frictions are a computationally tractable way

to capture whatever temporal frictions remain with monthly observations.

By construction, the stickiness parameters measure “reluctance to change”. They only

affect recommendations once an analyst has initiated coverage, which leads to different deci-

sion rules for new recommendations vs. revisions (equations 3 vs 4). Reflecting an analyst’s

13Chen, Francis, and Jiang (2005) argue that analysts can signal their ability by adopting a threshold
strategy where they issue forecasts only when their private signals exceed a threshold level; see also
(Ottaviani and Sørensen, 2006).

14Choi and Gupta-Mukherjee (2015) show that the limited attention of security analysts, as reflected
in their propensity to rely on category-level as opposed to firm-level information, has a significant relation
with their forecast accuracy. Dong and Heo (2014) show that analysts’ forecast behavior is affected by the
limited attention or effort allocated to their work during influenza epidemics.

15This explanation is consistent with the observation that revisions often piggyback on earnings an-
nouncements and major corporate news releases (Ivković and Jegadeesh, 2004,; Altınkılıç and Hansen,
2009), which draw analysts’ attention back to the firm.
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reluctance to revise, the two cutoffs defining the outstanding recommendation bin are shifted

further away (by δk↑ and δk↓, respectively), from the cutoffs for new recommendations.

To summarize, Equations (1) – (4) lay out the model’s econometric structure. Equations

(1) and (2) capture the dynamics of analyst stock valuations, while equations (3) and (4) gov-

ern analyst decisions on initial recommendations, and subsequent revisions and reiterations.

2.2 Overview of model estimation and parameter identification

This section outlines the parameter estimation procedure, and the sources of parameter iden-

tification. The appendix provides more details on the estimation method and the metrics

used to evaluate the goodness of fit of alternative model specifications. It is noteworthy that

we are the first to develop and estimate a dynamic latent variable model that allows for

temporal adjustment of cutoffs and serial correlation in the error terms. Our analysis also

highlights the usefulness of Bayesian MCMC methods in accounting research.

In practice, we observe Xijt, but not V ∗ijt. That is, V ∗ijt is a latent variable. Under the twin

assumptions of conditional independence of Rijt (i.e. δk↑ = δk↓ = 0) and uijt (i.e., ρ = 0),

MLE can be used to estimate the ordered probit model for an idealized analyst. This is be-

cause, in this case, the joint likelihood of all observed recommendations becomes the product

of individual likelihood functions defined through a standard normal distribution, and the

latent variable V ∗ijt does not explicitly enter the expression.

However, for a reluctant analyst, the probability distribution of a recommendation (see

equation (4)) is highly nonlinear involving the outstanding recommendations and many un-

known parameters. The presence of the outstanding recommendation in the probability

distribution renders the model path-dependent: to derive the conditional probability of Rijt

(Pr (Rijt|It−1) where It−1 is the information set at time t − 1), one first needs to do so for

Rij,t−1, which traces back to Rij,t−2, and then to Rij,t−3,.... The likelihood function explodes

as one tries to model the entire evolution of recommendations issued by all analysts for

all firms over the sample period. This makes frequentist approaches (e.g., MLE or GMM)

computationally impractical—common optimization algorithms (e.g., Newton–Raphson or

BHHH methods) cannot solve the associated maximization problems.16

In contrast, Bayesian approaches estimate parameters via repeated sequential updating.

16MLE is difficult to implement even for an ordered probit model with serial correlation in the error term
and no revision frictions. See Greenberg (2007).
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We only need to formulate the conditional (posterior) distribution of observing Rijt given

the observation of Rij,t−1. Then, moving to the next period, the parameter is updated in

light of the newly introduced evidence (Rij,t+1, Xij,t+1, etc.) conditional on the informa-

tion realized at time t (e.g., Rijt). For instance, conditioning on all other parameters and

the value of V ∗ drawn from its posterior distribution, β and ρ are estimated in a linear

regression fashion. In particular, ρ is estimated by regressing uijt (= V ∗ij,t−X ′ij,tβ) on uij,t−1

(= V ∗ij,t−1 − X ′ij,t−1β), essentially an OLS estimator of equation (2). Due to its conceptual

simplicity and tractability, Bayesian MCMC methods are generally used to estimate dis-

crete choice models that relax conditional independence (see Geweke, Keane and Runkle,

1994, 1997; Keane and Sauer, 2010; or Norets, 2009). Appendix A provides details of our

estimation procedure including the conditional distributions for each sets of parameters.

Bayesian MCMC methods do have drawbacks. One must specify prior distributions for

the unknown parameters. Inappropriate choices of priors can affect estimates, especially in

small samples. We address this by conservatively using uninformative prior distributions that

contain minimal prior information about the true parameters.17 Moreover, due to our large

sample, the impact of initial distributional assumptions is tiny. Also, estimation of our com-

plex model is computational demanding and time consuming (albeit computationally feasi-

ble, unlike GMM or MLE), as one must repeatedly update the conditional posterior distribu-

tion and keep drawing from it many thousands of times to obtain inferences on parameters.18

Parameter identification. The major sources of identification for cutoffs µ are initial

recommendations and multi-level revisions (e.g., from Sell to Buy). This is because revision

frictions do not enter the probability of initial recommendations (see equation (3)) or multi-

level revisions. Thus, as with a standard ordered probit approach, the µj parameters are es-

timated by mapping V ∗ to the initial ratings. As mentioned above, the persistence of private

information, ρ is estimated by regressing uijt (= V ∗ij,t−X ′ij,tβ) on uij,t−1 (= V ∗ij,t−1−X ′ij,t−1β).

Identification of revision frictions (δk↑ and δk↓) largely comes from situations in which an

17For instance, we assume that the prior of ρ is drawn from a truncated normal distribution, ρ ∈ (−1, 1),
with mean 0.5 and a large standard deviation of 1 [i.e., N(0.5, 1) × I(|ρ| < 1)]. As we keep updating the
distribution of ρ given the estimates of other parameters, the posterior distribution, which incorporates
this uninformative prior belief of ρ, eventually converges to the true sampling distribution. Alternatively
specifying the prior of ρ as a uniform distribution on (−1, 1) has no observable impact on parameter estimates.

18Computation time for each model is about 7 days. The computational burden is mainly due to the
slow convergence of the Monte Carlo Markov chains for cutoff estimates. The slow convergence in the cutoff
estimates µk is due to the narrow interval of its conditional uniform distribution, which limits how far a cutoff
estimate can move toward its true value in one iteration. Similar findings obtain for estimation of the indepen-
dent multinomial model (Cowles, 1996) and autoregressive ordered probit model (Muller and Czado, 2005).
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outstanding rating is maintained even though an estimated V ∗ has crossed a cutoff for the

recommendation. A revision friction is invoked when the valuation crosses a cutoff for the

outstanding recommendation and thus would trigger an one-level upgrade or downgrade in its

absence. Concretely, as V ∗t rises above µ4, given an outstanding Hold rating and the observa-

tion of a reiteration (Rt−1 = Rt = 3), one can infer that δ4↑ exceeds V ∗t −µ4 (so that V ∗t < µ4+

δ4↑), else an upgrade would have been triggered. Conversely, when an upgrade is issued, δ4↑

must be less than V ∗t −µ4 (so that V ∗t > µ4+δ4↑) to warrant the revision. Thus, the sampling

distribution of δ4↑, including the corresponding point estimate and inference, can be derived

from all one-level upgrades from Hold and reiterations of Hold,19 while the sampling distribu-

tion of the opposing friction δ4↓ can be derived from all one-level downgrades from Buy and re-

iterations of Buy. Of course, and quite crucially, the four sets of parameters are jointly deter-

mined and must be simultaneously estimated via sequential updating in a Bayesian manner.

While both persistent private information and revision frictions reduce revision frequency

(see Figures 3 and 4), they work in very different ways. A large value of ρ slows down and

smoothes variations in the stock valuation over time, regardless of where that valuation is

(i.e., regardless of which recommendation bin it is in, and its location within a bin). Unlike ρ,

which has a uniform impact on V ∗, revision frictions become relevant only when V ∗ is close

to the relevant cutoff for an outstanding recommendation, and friction values vary across

different recommendation levels. For example, as V ∗t−1 approaches a cutoff for a revision

from a Hold to a Buy, no matter how large ρ is, the latest (small) realization of information

shock, εt can easily push V ∗t above the cutoff, causing an upgrade to a Buy in the absence

of revision frictions; while in the next period, a small negative shock of εt+1 can send V ∗t−1

back below the cutoff, triggering an immediate downgrade back to a Hold. The δk↑ and δk↓

frictions prevent revisions triggered by small fluctuations in newly acquired information, and

their magnitudes directly gauge the degree and nature of an analyst’s reluctance to revise,

including, for example, whether an analyst applies asymmetric frictions to upgrades from

Hold vs. downgrades from Buy.20

19We show in the appendix that δk↑ has a uniform posterior distributed on [δk↑low, δk↑up] , where

δk↑low = max
i,j, and t6=tij0(s)

{
V ∗ijt − µk : Rijt = Rij,t−1 = k − 1

}
,

δk↑up = min
i,j, and t6=tij0(s)

{
V ∗ijt − µk : Rijt = k, Rij,t−1 = k − 1

}
.

20Notice that Pr [Rijt = k|Xijt, Rij,t−1] varies throughout its range with ρ, but changing δ only affects
Pr [Rijt = k|Xijt, Rij,t−1] locally around the relevant recommendation. As a result, if (δ′, ρ′) 6= (δ, ρ),

then P(δ,ρ)

(
·| {Rijt, Xijt}i.j.t

)
6= P(δ′,ρ′)

(
·| {Rijt, Xijt}i.j.t

)
, i.e., the stickiness parameters and persistence
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3 Data

Our sample of analyst recommendations is from the Institutional Brokers Estimate System

(I/B/E/S) U.S. Detail file. Following most studies in the literature, we reverse the I/B/E/S

recommendation coding so that more favorable recommendations correspond to larger num-

bers (i.e., 1=Strong Sell, 2=Sell, 3=Hold, 4=Buy and 5=Strong Buy). Each analyst is iden-

tified by I/B/E/S/ with a unique numerical code (analyst masked code). We use this numer-

ical identifier to match an analyst’s stock recommendations to his earnings forecasts in the

I/B/E/S Detail History file. We exclude recommendations issued by unidentified/anonymous

analysts. Stock return and trading volume related data are collected from CRSP. Firms’ ac-

counting and balance-sheet information is extracted quarterly from Compustat.

We use monthly data from January 2003 to December 2010 from the post Regulation Fair

Disclosure, post Global Analyst Research Settlement period. If an analyst issues multiple rec-

ommendations for a firm within a calendar month, we only use the last recommendation. Our

choice of monthly frequencies reflects practical considerations. First, analysts rarely change

recommendations more than once in a month (only 1.2% of recommendations in our sample

are revised more than once in a month) and analysts may introduce slight temporal revision

frictions, to avoid repeated revisions over a short period of time. It is not feasible to allow for

temporal frictions in estimation; and monthly observations minimize the impact of temporal

frictions on estimates. One might also worry about uneven information arrival due to en-

dogenous information acquisition—an analyst who gathers information about a firm today is

less likely to do so tomorrow, leading to lumpiness in information arrival at high frequencies.

However, an analyst will monitor a firm more than once a month, so endogenous information

acquisition will not lead to lumpy information arrival at monthly frequencies. Second, much

of our data is observed at lower frequencies (e.g., sales growth or earnings). Third, monthly

frequencies facilitate estimation, as the median time to recommendation revision is 190 days.

Brokerage houses that use three-tier rating systems appear in the I/B/E/S database as

issuing either Buy, Hold and Sell (4, 3, 2) recommendations only; or as issuing only Strong

Buy, Hold and Strong Sell (5, 3, 1) recommendations. We pool these two populations into a

single three-tier rating system.21 We identify the date at which brokerage houses switch to the

three-tier system by the date at which they exclusively issue from that subset (they typically

switch on the same day). Our sample of five-tier brokerage houses only includes those that

parameter are separately identified.
21Estimates if we do not pool are qualitatively identical.

15



never switch; and we only use observations on three-tier brokerage houses once they switch.

Analysts who maintain a recommendation from one month to the next do not typically

reiterate their recommendations. Analysts also sometimes cease following a stock without

indicating a stopped coverage on I/B/E/S. To avoid building in spurious persistence in esti-

mates of an analyst’s information and larger recommendation revision frictions by including

non-varying recommendations from analysts who ceased following a stock, we conservatively

assume that an analyst who does not reiterate or revise a recommendation within 12 months

has dropped coverage.22 Thus, in the absence of a revision, reiteration or stopped coverage

indication by analyst i for stock j (an analyst-firm pair) in month t, we set the recommenda-

tion, Rijt, to be the most recent recommendation/reiteration issued in the past 12 months by

the analyst for that firm. For a given analyst-firm pair, an observed recommendation with no

preceding outstanding recommendation in the past year is classified as an initiation, and a

recommendation revision/reiteration refers to a recommendation for which there was an out-

standing recommendation23 in the previous month. We exclude analyst-firm pairs with fewer

than 20 recommendations (including filled-in reiterations) over the entire sample period.

This policy largely eliminates only analysts who never revise or reiterate a recommendation,

dropping analysts who may have quickly lost interest and ceased following a firm. Our final

sample of analysts using a three-tier rating system consists of an unbalanced panel data with

241076 recommendations by 1927 analysts (from 188 brokerage houses) for 2805 firms (8224

analyst-firm pairs); and for analysts using a five-tier rating system, we have 89726 recommen-

dations by 740 analysts (from 128 brokerage houses) for 1894 firms (3059 analyst-firm pairs).

Table 1 presents the distributions of recommendation levels and the transition matrix

of recommendation revisions and reiterations for brokerage houses using a three-tier rating

system; and Table 2 does so for those using a five-tier rating system. Almost half of the rec-

ommendations by brokerages that use three ratings are holds, 41% are buys and 10% are sells.

Table 2 shows that brokerage houses that use five ratings are more optimistic—about 53% of

their recommendations are strong buys or buys, and only 7% are sells or strong sells—likely

reflecting that five-tier brokerage houses, which tend to be smaller, without an investment

bank side, have different audiences. This means that one cannot collapse five-tier brokerage

houses into three-tier ones by grouping strong buys with buys, and strong sells with sells.

22We show that our qualitative empirical findings are robust if we use different cutoffs (e.g., 9 or 15
months) to identify analysts who drop coverage.

23This outstanding recommendation may be an actual issuance by the analyst or a carryover from a
recent issuance within the past twelve months.
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Table 1: Distribution of Analyst Recommendations (three-tier ratings)

Panel A. Stock Recommendation Levels
Buy, 4 Hold,3 Sell, 2 Total

Initiations
29910

41.00%
35862

49.16%
7172

9.83%
72944
100%

Full Sample
99159

41.13%
118626
49.21%

23291
9.66%

241076
100%

Panel B. Transition Matrix of Recommendation Revisions and Reiterations
To: Buy, 4 Hold, 3 Sell, 2 Total

From:

Buy, 4
65859

95.07%
3314

4.78%
100

0.14%
69273
100%

Hold, 3
3265

3.95%
78319

94.81%
1026

1.24%
82610
100%

Sell, 2
121

0.74%
1127

6.94%
14993

92.31%
16241
100%

Total 69245 82760 16119

For brokerage houses using a three-tier system, transitions out of buy are about as likely

as those out of hold, while upward transitions out of sell are about 50% more likely. Broker-

age houses using a five-tier system do not hold negative ratings for as long as those using a

three-tier system—they are more likely to revise holds or sells upward, and less likely to re-

vise buy/strong buy ratings down—additional indications that they tailor recommendations

more optimistically. Of note, brokerage houses using a five-tier system are more likely to

revise recommendations to hold than to other revisions, even from strong buy and strong sell.

Public information components of value. We consider a wide range of public available

firm- and analyst-specific characteristics (22 explanatory variables) that plausibly enter an

analyst’s assessment of value, most of which have been suggested by prior studies to be re-

lated to recommendations. We further control for industry fixed effects captured by one-digit

SIC codes. Appendix B details the sources and definitions of these variables.

17



Table 2: Distribution of Analyst Recommendations (five-tier ratings)

Panel A. Stock Recommendation Levels
Strong Buy, 5 Buy, 4 Hold,3 Sell, 2 Strong Sell, 1 Total

Initiations
5476

21.51%
8137

31.96%
9960

39.13%
1519

5.97%
364

1.43%
25456
100%

Full Sample
19371

21.59%
28816

32.12%
35228

39.26%
5068

5.65%
1243

1.39%
89726
100%

Panel B. Transition Matrix of Recommendation Revisions and Reiterations

To:
Strong
Buy, 5

Buy, 4 Hold,3 Sell, 2
Strong
Sell, 1

Total

From:
Strong
Buy, 5

12911
93.45%

395
2.86%

499
3.61%

9
0.07%

2
0.01%

13816
100%

Buy, 4
498

2.39%
19355

92.95%
900

4.32%
58

0.28%
12

0.06%
20823
100%

Hold,3
474

1.88%
869

3.45%
23512

93.43%
251

1.00%
60

0.24%
25166
100%

Sell, 2
6

0.17%
51

1.42%
299

8.31%
3220

89.47%
23

0.64%
3599
100%

Strong
Sell, 1

6
0.69%

9
1.04%

58
6.70%

11
1.27%

782
90.30%

866
100%

Total 13895 20679 25268 3549 879

4 Empirical Analysis

We next present estimates of our model of analyst recommendations. We compare results

from the full model (detailed in equations (1)–(4)) with those from more restricted models

to emphasize the importance of both information persistence and revision frictions in the

analyst decision-making process. We then investigate the indirect implications of the model

for the duration of recommendations and market reactions to recommendations.

Table 4 reports the parameter estimates. Columns 1 to 5 present restricted models for the

three-tier rating system and Column 6 presents the full model. Column 7 presents the full

model for the five-tier rating system. The bottom two rows show the Brier score and the loga-
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rithm of the marginal likelihood of a particular model used to assess the goodness of model fit.

The ordered probit model captures an idealized analyst who employs no recommenda-

tion frictions and has no persistent valuation information that the econometrician does not

see. This model is nested in our framework when δ and ρ are set to zero. Columns 1 and

1′ present parameter estimates of an ordered probit model obtained using our MCMC ap-

proach and conventional maximum likelihood, respectively. The two methods yield nearly

identical parameter estimates. We defer discussion of the publicly-available determinants of

stock valuation to the full model.

The ordered probit model fits the data poorly. The poor fit is reflected in the large Brier

score, which reveals a large discrepancy between predicted probabilities of recommendations

and actual outcomes. The ordered probit model fit by maximum likelihood has a pseudo-R2

of only 2.09%. The key to the bad fit is that no matter how the model of valuation is formu-

lated, it predicts far too many recommendation revisions. Figure 1 presents a sample valu-

ation path: the model predicts 20 recommendation revisions over the 36 month period, and

there would be far more if we used weekly observations. In essence, while there is some persis-

tence in recommendations due to persistence in public information data and quarterly arrival

of earnings information (i.e., there is persistence in firm and analyst fundamentals in X),

there is far too little to generate the infrequent recommendation revisions found in the data.

Column 2 considers an idealized analyst who does not set recommendation revision fric-

tions, but does gather information that the econometrician does not have, information that

has persistent valuation implications. The autoregressive coefficient estimate is very high,

ρ̂ = 0.90, and hugely credible/significant. Incorporating this persistent information source

cuts the Brier score almost in half, from 0.34 to 0.18, and it is accompanied by an enor-

mous Bayes factor of exp(49740): accounting for the temporal correlation in an analyst’s

information yields a vast improvement in model fit.

The high persistence in analyst information reduces the frequency of recommendation

revisions. To see why, consider a stock with a valuation in month t− 1 of V ∗t−1 = 4.2, which

is well above the Buy rating cutoff of 3.5. If an analyst receives a one standard deviation

positive information shock (εt = +1), raising V ∗t to 5.2,24 the slow decay means that it is

likely to take a long time for the valuation to drop out of the buy bin. Conversely, a one-

standard deviation negative shock (εt = −1) leads to a downgrade to Hold as V ∗t drops to 3.2.

However, the valuation would slowly revert, rising due to the decay of εt. Absent arrival of

24For the purpose of this illustration, assume that ut−1 is 0.
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Figure 1: Idealized analyst

Recommendation cutoffs, and sample valuation and recommendation paths over a 36-month period

for an idealized analyst employing a three-tier rating system whose private information is transient.

other information, the analyst would switch back to a buy recommendation after 4 months.

Figure 2 depicts equilibrium bins for an idealized analyst with persistent information,

and it illustrates sample valuation paths for the same common public information valuation

path and information shocks as Figure 1. Persistent information reduces the number of rec-

ommendation revisions from 20 to 12. Still, the data remain badly described by an idealized

analyst: Regardless of the persistence in analyst information, an idealized analyst cannot

deliver low likelihoods of recommendation revisions when the valuation is close to a ratings

cutoff because small price fluctuations would lead to repeated crossings of the cutoff.

To generate the high stickiness in recommendations implicit in the small off-diagonal

transition probabilities in Table 1, one needs recommendation revision frictions strategically

introduced by analysts who value intertemporal consistency in recommendations. Columns 3

to 6 present estimates of such models. Column 3 presents estimates for a model with (a) only

two friction parameters, δ↑ and δ↓, one for upward revisions and one for downward revisions,

when (b) analysts have no persistent information. Both revision friction estimates are large

and highly significant. Model 3 has a far better goodness of fit than model 2 (Bayes factor of

exp(75014)), indicating that the reluctance of analysts to revise recommendations is an even
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Figure 2: Idealized analyst with persistent information

Recommendation cutoffs, and sample valuation and recommendation paths over a 36-month period

for an idealized analyst who has persistent information. The sample valuation path uses the same

common public information valuation path and information shocks as Figure 1.

more important driver of recommendations than persistent information. Importantly, there

would be little impact on estimates were higher frequency (e.g., bi-weekly) recommenda-

tion observations used, because valuations rarely change sharply over short windows: small

changes in valuations cannot lead to successive changes in recommendations. In this way,

recommendation revision frictions also capture temporal stickiness in recommendations.

Column 4 presents estimates of a model with the same two recommendation frictions,

δ↓ and δ↑, and persistent analyst information, where we now discard all publicly-available

information except the constant. There is a further improvement in model fit (Bayes factor

exp(6646)), revealing that the information available to the econometrician matters far less

for explaining the dynamics of recommendations than do recommendation revision frictions

and persistent analyst information.

Column 5 presents estimates of model 5, which augments model 4 with all public informa-

tion variables. The Bayes factor for models 3 and 5 of exp(13324) is again very large: persis-

tent analyst information and recommendation revision frictions are complementary sources
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of improved model fit. These complementarities are also indicated by the huge ratios of

the mean to standard deviation of parameter estimates: 85.5 for the information persistence

parameter ρ, 266.9 for δ↑ and 403.4 for δ↓. This means that persistent analyst information

and recommendation revision frictions capture distinct economic phenomena—persistent an-

alyst information is not a proxy for an unwillingness of analysts to revise recommendations.

Failing to account for both sources of stickiness biases estimates significantly.

Column 6 presents estimates for our full model, in which analysts have persistent private

information and recommendation revision frictions can vary with the recommendation itself

and δk↑ can differ from both δk↓ and δk′↑. That is, analysts do not need to use symmetric

recommendation revision frictions to reduce the frequency of recommendation revisions; they

can tailor them to reflect other considerations (see Figure 3).

The full model fits the recommendation data the best. It has the smallest Brier score of

0.141 and the large Bayes factor of exp(7134) versus model 5 provides conclusive evidence

against the other models. Figure 4 depicts the equilibrium bins for the full model, and it

illustrates sample valuation paths for the same common public information valuation path

and analyst information shocks as Figures 1 and 2. The figure hints at why the model fit

is so much better: only 4 revised recommendations are issued over the 36 month period.

Inspection of the estimates of the cutoff-specific revision frictions provides more insights:

their magnitudes vary sharply, indicating that the more restricted models are significantly

mis-specified. For example, frictions out of hold are much smaller than those into hold, and

a single one-directional friction cannot account for this. The more flexible formulation of

the recommendation-specific revision frictions reduces the analyst’s information as a source

of persistence in recommendations by almost 25%.
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Figure 3: Cutoff and recommendation revision friction estimates

Cutoff and recommendation revision friction estimates of the full model, in which revision frictions

are cutoff-specific, and analysts have persistent information. Cutoff-specific revision frictions, δk,↓
and δk↑, bear the same index k as cutoff µk: δk,↓ is the friction for downgrades from k to k − 1,

while δk↑ is the friction for upgrades from k − 1 to k.

Column 7 presents estimates for brokerages using five-tier rating systems. Most estimates

are qualitatively similar to those for the three-tier system. For example, the recommendation

revision friction from sell to hold is far higher than that from hold to sell. Also, the frictions

from strong sell to sell and strong buy to buy are large relative to the sizes of the sell and buy

bins (98% and 92% respectively). As a result, most revisions from strong buy and strong sell

are to hold. Thus, the nature of the recommendation revision frictions that five-tier broker-

ages introduce qualitatively lead them in the direction of behaving like three-tier brokerages.

Still five-tier brokerages do not behave like three-tier brokerages: one cannot pool strong

buys with buys, strong sells with sells to estimate a homogeneous brokerage using a three-tier

rating system. The estimates show that brokerage houses using a five-tier rating system tend

to have more optimistic assessments: the average new recommendation initiation for those

using five ratings is roughly at the buy/hold cutoff (the constant is 2.9), while that for those

using only three ratings is at the 62nd percentile of the hold recommendation bin above the

sell cutoff (the constant is 1.3). These differences may reflect that five-tier brokerages, which

tend to be smaller, with no investment bank side, are oriented more toward retail investors.
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Figure 4: Reluctant analyst

Recommendation cutoffs, and sample valuation and recommendation paths over a 36-month period

for a reluctant analyst who has persistent information. The sample valuation path uses the same

common public information valuation path and analyst information shocks as Figures 1 and 2.

Also, the estimate of information persistence is far higher for five-tier brokerage houses.25

Our estimates highlight how analysts design recommendation bins and recommendation

revision frictions to carefully balance reputation concerns and the desire to generate trading

volume:26

• The large frictions out of strong buy and strong sell suggest that revisions to hold

generate trading activity by inducing investors to unwind positions, but revisions from

strong buy to buy that maintain a positive assessment, or from strong sell to sell that

maintain a negative assessment do not.

• Revision frictions out of hold are small. Analysts design frictions in and out of hold

25One might wonder whether this high estimate could indicate that some analysts at five-tier brokerages
act as if they were at three-tier brokerages. Such mis-classification would bias upward estimates of
information persistence. However, the many transitions from buy to strong buy and strong buy to buy
indicate that any misclassification is minimal.

26This is consistent with analysts’ economic incentive to boost trading activities (e.g., Eames et al., 2002;
Firth et al., 2013).
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asymmetrically, with smaller frictions out of hold, so that recommendations spend “less

time” in hold, perhaps because maintained hold ratings (as opposed to revisions to

hold) discourage retail investors from trading.

• Analysts are least reluctant to downgrade a stock from Hold—δ3↓ is the smallest among

all δ·↓ (see Table 3, Columns 6 and 7 for three- and five-tier systems, respectively). This

finding is consistent with the survey evidence in Brown et al. (2015): issuing unfavor-

able (Sell) recommendations may increase an analyst’s credibility with investing clients.

Even though hold revision frictions are small, the model delivers the prevalence of hold

recommendations (39% for five-tier brokerages, 49% for three-tier brokerages) in three ways:

• The hold recommendation bin for five-tier brokerages is large, about 25% larger than

the buy bin, and 50% larger than the sell bin.

• The estimated average firm for five-tier brokerages is roughly at the buy-hold recom-

mendation cutoff, making an initial hold recommendation likely; and the estimated

average firm for three-tier brokerages is slightly above the hold bin midpoint.

• Analysts at five-tier brokerages are less likely to face revision frictions from buy or sell

into hold due to the high frictions from strong sell to sell and strong buy to buy, which

results in most transitions going from strong buy and strong sell straight to hold.27

Our findings make economic sense. The fact that public information available to an

econometrician poorly describes recommendations makes sense—if recommendations largely

reflected readily-available information, they would have modest value, and one would be

hard-pressed to justify why analysts should be well-paid. That the average firm for which

coverage is initiated is a hold, but closer to a buy than a sell, supports the notion that analysts

tend to follow stocks that they deem to have better prospects. This is consistent with their

retail clients being less likely to short-sell, so covering firms with poorer prospects generates

fewer client orders. Analysts also want clients to profit from trades—a happy client is likely

to trade—so analysts want there to be meaning to buy and sell recommendations, and hence

are reluctant to issue such recommendations unless profits are somewhat likely to result.

27These estimates also give insight into where improvement in model fit occurs versus more restricted
models of five-tier brokerages. Strong sells only comprise 1.4% of the sample, so the two frictions, δ↑ and
δ↓ do not weigh transitions from strong sells heavily in the estimation. As a result, δ↑ is far larger than δ2↑.
In turn, the large size of δ↑ necessitates a large value for µ2 (so that transitions from strong sell to sell can
occur with positive probability); but then the model cannot deliver few initial sell recommendations.
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We now turn to publicly-available determinants of value. Of note, in contrast to existing

findings, once we control for a reluctant analyst’s information and revision frictions, bet-

ter past firm performances cease to systematically raise the analyst’s assessment: the one

month lagged return enters negatively, while more distant returns enter slightly positively.

Qualitatively, Column 6 reveals that a reluctant analyst has higher assessments of firms:

• for which the analyst has relatively higher estimated forecasts of earnings (vis à vis

the consensus), consistent with Womack (1996) or Jegadeesh et al. (2004).

• that have positive earnings surprise, especially in the earnings announcement window

in which they are reported, as in Chan, Jegadeesh and Lakonishok (1996), Jegadeesh,

Kim, Krische and Lee (2004), or Ivković and Jegadeesh (2004).

• that draw more attention from other analysts, consistent with more analysts following

stocks they believe are undervalued, or possibly analysts valuing a stock’s “glamor”

(e.g., Barth et al., 2001).

• that are smaller, as measured by higher sales growth (see Lakonishok, Shleifer, and

Vishny (1994)) or lower book-to-price ratios (see Jegadeesh et al. 2004)).

• with less turnover, consistent with Lee and Swaminathan (2000), who argue that

turnover is a contrarian sign, associated with lower returns.

• about which there is less uncertainty, as captured by forecast dispersion in earnings

(see Diether et al. (2002), Zhang (2006)), lesser dispersion in recommendations, or

more analyst following or higher institutional holdings.

• for which an analyst’s brokerage house has investment banking relationships, consistent

with Lin and McNichols (1998), Ljungqvist et al. (2007), Malmendier and Shanthiku-

mar, 2007; O’Brien, McNichols and Lin (2005), Jackson (2005), Cowen, Groysberg,

and Healy (2006) and Lim (2001).

• if an analyst is at a smaller brokerage house. Analysts at smaller brokerages also issue

more optimistic earnings forecasts (Bernhardt et al. (2006)), and follow smaller firms.

• if an analyst is new at his or her brokerage firm. This is consistent with analysts ini-

tially issuing optimistic recommendations in order to generate trading activity, while

senior analysts issue more conservative recommendations to preserve reputations.
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Quite generally, accounting for revision frictions and persistent analyst information sharply

reduces the statistical significance/credibility of parameter estimates (relative to the ordered

probit model of an idealized analyst), typically by factors of two to five, and the magnitudes of

parameter estimates tend to be fall, too. Moreover, recommendation bins are large relative to

the valuation consequences of variation in public information available to the econometrician,

further indicating that this public information is not the primary driver of recommendations.

Robustness checks. Our econometric model of how analysts form recommendations pre-

sumes that sources of heterogeneity between analysts or between the firms for which analysts

issue recommendations only enter via the valuation model underlying V , and not the rec-

ommendation formation model itself.28 To assess the validity of this premise, we estimate

separate models for subsamples of analysts and firms where one suspects that analysts’

recommendations might vary—over time, or by brokerage house size, analyst following or

analyst experience. These robustness tests reveal remarkable consistency in our estimates.29

Column 1 of Table 4 reproduces estimates from the full sample. Subsequent columns present

estimates for the subsamples of (S1) the second half of the sample period (2006-2010); (S2)

large brokerages that on average employed at least 52 analysts over the sample period; (S3)

heavily-followed stocks that were covered on average by at least 15 analysts over the sample

period; and (S4) senior analysts who have been employed by the same brokerage firm for at

least five years. The sample criteria were chosen so that each subsample has roughly half of

the original observations.

We see true intertemporal consistency—comparing columns (Full) and (S1) reveals al-

most no variation in estimates—there is no evidence that analysts have altered how they

issue recommendations over this period. So, too, the subsample of larger brokerage houses

(S2), and senior analysts (S4) have similar estimates. Analyst information is slightly more

persistent for heavily-followed stocks, but even this difference is less than 25%, and the other

structural recommendation parameters differ by far less. In sum, differences in how vari-

28An alternative interpretation of our findings is not that, for example, less experienced analysts (or ana-
lysts at smaller brokerages) have higher valuations of firms than more experienced ones (or analysts at larger
brokerages), but rather that less experienced analysts (or analysts at smaller brokerages) set systematically
lower recommendation cutoffs, reducing all cutoffs by a constant, resulting in higher recommendations.
The lack of identification between these two interpretations just reflects that recommendations reflect
differences between per share valuations and cutoffs. That is, one can alternatively interpret our framework
as accommodating limited heterogeneity in analyst recommendation bins, but not their recommendation
revision frictions.

29The large ratios of the posterior mean to standard deviation for the structural parameters indicate that
they are very precisely estimated. To check this precision, in unreported results, we estimate the model for the
subsample of stocks with odd CUSIP numbers. All structural parameter estimates differed by less than 0.01.

30



ous analysts issue recommendations are well captured by heterogeneity in their models of

valuation together with a homogeneous model of recommendation formation and revisions.

Delayed Incorporation of Information by Analysts? Raedy et al. (2006) uncover in-

direct evidence suggesting that it takes time for analysts to process new information, causing

them to under-react to it. This leads us to modify our model to estimate the extent to which

analysts fully process new information, deriving direct estimates of the amount by which an-

alysts under-react to new information. We estimate a model in which, of the new information

εijt that analyst i receives about stock j at time t, he only incorporates a fraction ζ. As a

result, the valuation consequences of the analyst’s persistent information evolve according to

uijt = ρ(uij,t−1 + (1− ζ)εij,t−1) + ζεijt.

The last column of Table 5 presents estimation results for the model in which analysts can

under-react to new information. Estimates indicate that analysts incorporate the vast bulk of

new information immediately, incorporating all but 9 percent when it arrives. This analysis

also shows that delayed incorporation of information does not drive our high estimates of per-

sistence in analyst information and recommendation revision frictions. In fact, allowing for

delayed incorporation of information raises the estimate of information persistence by about

one third. Moreover, changes in estimates of revision frictions are small. The estimates indi-

cate that analysts are “close to rational” in their assessments of new information, and that

our qualitative findings are reinforced by integrating this source of modest “irrationality”.

Lost Interest? Columns (6m), (9m) and (15m) present estimates when we use alternative

cutoffs of 6, 9 or 15 months for the time after which we assume that an analyst has ceased

following a stock absent a recommendation revision or reiteration. Longer windows include

more analysts who have ceased following a stock, and hence spuriously suggest stickiness,

while shorter windows exclude more analysts who are following a stock, but have not reit-

erated, spuriously suggesting too little stickiness. We see that any reasonable cutoff level

has only modest effects on estimates of structural parameters—as one would expect, longer

windows for continued coverage slightly raise estimates of persistence and revision frictions.
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Indirect Evidence. The goodness of fit measures provide conclusive evidence that our

model of a reluctant analyst does a vastly superior job of explaining the dynamics of ana-

lyst recommendations than do conventional discrete choice models. We now derive indirect

implications of our model, and document additional confirming empirical evidence.

We first show how the reluctant analyst model provides a theoretical framework that can

reconcile the differential impacts of recommendation revisions made around significant pub-

lic information events, such as quarterly earnings announcements. As the most important

source of firm-specific information, earnings announcements convey material and “lumpy”

information content about earnings, and other key firm characteristics (e.g., sales, margins

and investment (Brandt et al. 2008)) that discontinuously shift analyst assessments of firm

value. The earnings guidance that firms provide is another channel for lumpy information

release. In contrast, information arrival about firm value at other times tends to be smooth.

As a result, recommendation revisions made outside EA or EG windows typically occur

when valuation assessments smoothly cross friction-adjusted recommendation cutoffs. In

contrast, revisions issued inside these windows are more likely to reflect “jumps” in valua-

tions due to “lumpy” information release. Therefore, following a recommendation revision

inside an EA or EG window, the valuation is likely further from the recommendation cutoff,

so it will take longer for an analyst’s assessment to retrace toward the cutoff for a revision

back to the original recommendation than for revisions issued outside these windows.

Moreover, a recommendation revision inside an EA or EG window should, on average,

convey more valuation information than a revision made outside of those windows. That

is, the CAR (cumulative abnormal return) impact of a recommendation revision should be

greater inside a window. Importantly, this effect should not exist for new recommendations

as no information is conveyed by an earnings announcement about the location of an ana-

lyst’s assessment of value relative to cutoffs. Via this difference in differences, we control for

CAR impacts of information arrival in earnings announcements or guidance that are not due

to recommendation revisions (see Ivković and Jegadeesh (2004) or Kecské et al. (2010)).

We focus on recommendation revisions of one-level, as revisions of multiple levels (e.g.,

from a buy to a sell) necessarily reflect discontinuities in valuation assessments, so one cannot

conclude that valuations tend to be closer to cutoffs for recommendations outside EA and

EG windows. For revisions of multiple levels, we only predict that they are more likely within

these windows than outside, which we find in the data. The EA window is defined as the

three-day period on and after the date of a firm’s quarterly earnings announcement, where
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announcements made after close or on a non-trading day are treated as if they occurred on

the next trading day. We obtain earnings guidance dates from the First Call Guidelines

database and define three-day earnings guidance windows in the analogous way.

Table 5: Retracement durations of revisions inside vs. outside EA windows

Panel A. Retracement durations of one-level revisions
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 6154 158.268 96.924 (155.845, 160.689)
Out 19402 152.064 98.064 (150.683, 153.443)

diff.
6.204∗∗∗

(4.34)

Panel B. Retracement durations of one-level upgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 3021 163.396 96.563 (159.951, 166.841)
Out 9296 159.705 98.659 (157.699, 161.711)

diff.
3.691∗∗

(1.80)

Panel C. Retracement durations of one-level downgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 3133 153.322 97.028 (149.924, 156.721)
Out 10106 145.034 96.987 (143.143, 146.926)

diff.
8.288∗∗∗

(4.18)

The row “diff.” refers to the difference in average retracement durations of revisions made
inside vs. outside EA windows. t-statistics of tests on the equality of means are reported in
parentheses. *** and ** denote statistical significance at the 1% and 5% levels.

Panel A in Tables 5 and 6 reports summary statistics of durations (in days) for recommen-

dation revisions to retrace to their original levels. Consistent with predictions, on average it

takes 6 days longer for revisions issued inside EA windows to return to their original levels

than for revisions made outside both windows; and it takes 8 days longer for revisions issued

inside EG windows to return. These differences are roughly 5% of the average duration

of a revision before retracement. Panels B and C30 show that it takes 12 days longer for

downgrades issued inside EG windows to return than for downgrades issued at other times,

whereas the difference is only 2 days for upgrades.31 This may reflect that negative earnings

30No systematic differences in retracement durations emerge for three-tier vs. five-tier brokerages.
31One can also use retracement durations as a ball park test for whether analysts set the same cutoffs µj for
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Table 6: Retracement durations of revisions inside vs. outside EG windows

Panel A. Retracement durations of one-level revisions
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 3245 159.859 95.671 (156.566, 163.152)
Out 19402 152.064 98.064 (150.684, 153.443)

diff.
7.795∗∗∗

(4.21)

Panel B. Retracement durations of one-level upgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 1522 162.179 96.358 (157.335, 167.024)
Out 9296 159.705 98.659 (157.699, 161.711)

diff.
2.474
(0.91)

Panel C. Retracement durations of one-level downgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 1723 157.809 95.040 (153.318, 162.300)
Out 10106 145.034 96.987 (143.143, 146.926)

diff.
12.775∗∗∗

(5.07)

The row “diff.” refers to the difference in average retracement durations of revisions made
inside vs. outside earnings guidance (EG) windows. t-statistics of tests on the equality of
means are reported in parentheses. *** denotes statistical significance at the 1% level.

guidance tends to be larger in magnitude than positive guidance, which may take the form

of a firm confirming that earnings should be in line with past guidance.

We next explore the implications for market responses to recommendation revisions inside

vs. outside earnings announcement and guidance windows. The market reaction is measured

by the three-day CAR following a revision issued by analyst i for stock j at day d,

CARijd =
2∏
d=0

Rjd −
2∏
d=0

RM , (5)

where Rjd and RM are the raw stock and market daily return, respectively. Day 0 (d = 0) is

the I/B/E/S reported recommendation date or the following trading day if the recommen-

dation date is not a trading date. We exclude recommendation revisions made on the same

day as an announcement or guidance (or the next day if the EA or EG is after close) to

new and revised recommendations. Retracement durations are only slightly longer for new recommendations.
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avoid having the CAR reflect both the announcement and the revision.

Table 7: Market reaction to revisions made inside vs. outside EA windows

Panel A. Market reaction to one-level upgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 8221 2.917 7.417 (2.756, 3.077)
Out 24488 2.345 7.915 (2.245, 2.443)

diff.
0.573∗∗∗

(5.95)

Panel B. Market reaction to one-level downgrades
EA Window Obs. Mean Std. Dev. 95% Conf. Interval

In 8518 −3.347 8.841 (−3.534,−3.158)
Out 24793 −1.821 8.517 (−1.926,−1.714)

diff.
−1.526∗∗∗

(13.87)

Three-day cumulative abnormal returns (CAR) associated with recommendation revisions issued

inside and outside earnings announcement (EA) windows. The row “diff.” refers to the difference in

average CAR of revisions made inside vs. outside EA windows. t-statistics of tests on the equality

of means are reported in parentheses. *** denotes statistical significance at 1% level.

Table 8: Market reaction to revisions made inside vs. outside EG windows

Panel A. Market reaction to one-level upgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 4163 3.401 7.629 (3.169, 3.633)
Out 24488 2.345 7.915 (2.245, 2.443)

diff.
1.056∗∗∗

(7.66)

Panel B. Market reaction to one-level downgrades
EG Window Obs. Mean Std. Dev. 95% Conf. Interval

In 4756 −4.802 9.009 (−5.057,−4.546)
Out 24793 −1.821 8.517 (−1.926,−1.714)

diff.
−2.980∗∗∗

(20.71)

Three-day cumulative abnormal returns (CAR) associated with recommendation revisions issued

inside and outside earnings guidance (EG) windows. The row “diff.” refers to the difference in

average CAR of revisions made inside vs. outside EG windows. t-statistics of tests on the equality

of means are reported in parentheses. *** denotes statistical significance at 1% level.
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Tables 7 and 8 reveal that consistent with predictions, upgrades issued inside EA and

EG windows have far larger market impacts than those issued outside both windows, and

these CAR differences are highly significant. We also see that for downgrades, differences

in CARs inside vs. outside announcement and guidance windows are much larger—bad an-

nouncements or guidance conveys “more” news than good announcements or guidance.

To address the possibility that this approach fails to isolate the effect of a recommendation

revision from that of the announcement or guidance, we exploit the fact that discontinuities

in valuation assessment in EA and EG windows only occur for revisions and not for new rec-

ommendations. That is, a new recommendation made within an EA or EG window conveys

no information about value relative to cutoffs that is distinct from a new recommendation

made outside the window. Thus, differences in CARs for new recommendations inside vs.

outside these windows control for the direct information arrival associated with earnings an-

nouncements or guidance. Tables 9 and 10 present the “difference-in-difference” analysis for

revisions vs. new recommendations made inside and outside EA and EG windows, providing

further confirmatory evidence. In particular, save for downgrades to sell, all difference-in-

differences in CARs are highly statistically significant with the “correct” signs, and their

large magnitudes range from over 0.4 percentage points to more than two percentage points.

Table 9: Difference-in-Difference Analysis of CARS for Earnings Announcements

Upgrade to Buy/Strong Buy Upgrade to Hold
In EA Out EA & diff In EA Out EA & diff
Win EG Win Win EG Win

Up
3.051∗∗∗

(7.82)
2.385∗∗∗

(25.79)
0.666∗∗∗

(4.77)
Up

2.182∗∗∗

(11.93)
1.662∗∗∗

(25.50)
0.520∗∗∗

(8.74)

Init
1.487∗∗∗

(4.00)
1.247∗∗∗

(37.08)
0.240∗∗

(2.57)
Init

−1.768∗∗∗

(14.80)
−0.577∗∗∗

(15.76)
−1.190∗∗∗

(13.03)

diff
1.564∗∗∗

(4.70)
1.137∗∗∗

(19.86)
0.426∗∗∗

(3.22)
diff

3.950∗∗∗

(12.24)
2.240∗∗∗

(23.99)
1.710∗∗∗

(8.77)

Downgrade to Hold Downgrade to Sell/Strong Sell

Down
−3.267∗∗∗

(8.29)
−1.568∗∗∗

(18.71)
−1.699∗∗∗

(5.95)
Down

−3.755∗∗∗

(4.34)
−2.430∗∗∗

(8.31)
−1.325∗∗

(1.83)

Init
−1.768∗∗∗

(13.77)
−0.577∗∗∗

(14.62)
−1.190∗∗∗

(12.09)
Init

−2.912∗∗∗

(6.66)
−1.737∗∗∗

(17.18)
−1.175∗∗∗

(4.54)

diff
−1.499∗∗∗

(4.94)
−0.991∗∗∗

(14.69)
−0.509∗∗∗

(3.50)
diff

−0.843∗∗∗

(3.17)
−0.693∗∗∗

(4.74)
−0.150
(0.43)

Difference-in-difference results of CARs for revisions made inside vs. outside earnings announce-

ment windows. The CAR associated with initiations of the corresponding rating is used as the

control group. ***, ** and * denote statistical significance at 1%, 5% and 10% levels.
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Table 10: Difference-in-Difference Analysis of CARs after Earnings Guidance

Upgrade to Buy/Strong Buy Upgrade to Hold
In EG Out EA & diff In EG Out EA & diff
Win EG Win Win EG Win

Up
3.574∗∗∗

(9.00)
2.385∗∗∗

(26.06)
1.189∗∗∗

(6.18)
Up

2.230∗∗∗

(11.82)
1.670∗∗∗

(25.77)
0.560∗∗∗

(9.31)

Init
1.730∗∗∗

(5.21)
1.247∗∗∗

(37.47)
0.483∗∗∗

(3.83)
Init

−2.718∗∗∗

(19.32)
−0.579∗∗∗

(15.91)
−2.139∗∗∗

(17.86)

diff
1.844∗∗∗

(5.35)
1.138∗∗∗

(20.08)
0.706∗∗∗

(3.99)
diff

4.948∗∗∗

(13.15)
2.248∗∗∗

(24.24)
2.700∗∗∗

(10.21)

Downgrade to Hold Downgrade to Sell/Strong Sell

Down
−4.806∗∗∗

(12.56)
−1.564∗∗∗

(18.77)
−3.242∗∗∗

(10.26)
Down

−4.944∗∗∗

(3.89)
−2.425∗∗∗

(8.29)
−2.519∗∗∗

(2.55)

Init
−2.718∗∗∗

(17.99)
−0.579∗∗∗

(14.78)
−2.139∗∗∗

(16.59)
Init

−4.682∗∗∗

(10.03)
−1.746∗∗∗

(17.56)
−2.936∗∗∗

(7.97)

diff
−2.088∗∗∗

(7.29)
−0.985∗∗∗

(14.74)
−1.103∗∗∗

(5.89)
diff

−0.262
(0.24)

−0.679∗∗∗

(4.72)
0.417
(0.88)

Difference-in-difference results for CARs of revisions made inside vs. outside earnings guidance

(EG) windows. The CAR associated with initiations of the corresponding rating is used as the

control group. *** and * denote statistical significance at 1% and 10% levels.

Recommendation Surprise and Market Reaction. Loh and Stulz (2011) document

that some recommendation revisions are more influential than others. They focus on an-

alyst characteristics and show that some attributes (e.g., experience and reputation) lead

to stronger market reactions to revisions. Jegadeesh and Kim (2006) find that stock price

responses are stronger following recommendation revisions that are further from the consen-

sus. Bradley et al (2014) show that analysts’ recommendations are more likely to surprise

the market than either earnings announcements or management guidance.

Our framework provides a distinct explanation for why some recommendation revisions

should have different market impacts than others. In particular, our model predicts that some

recommendations—those where the public-information assessment of the stock valuation is

further from a recommendation cutoff—are more surprising than others, as this indicates

the analyst’s private information must be greater, in order to lead to a recommendation

revision. To see this, consider outstanding Hold recommendations for two combinations of

observables with different publicly-perceivable valuations. Then a downward revision to Sell

conveys more negative information in the scenario with the higher public valuation assess-

ment of the hold, while an upgrade to Buy conveys more positive information for the scenario

with the lower public valuation assessment. Consequently, the market CAR responses should
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be greater following recommendation revisions in these two scenarios. Indeed, to the extent

that the findings of Jegadeesh and Kim (2006) are due to larger private information assess-

ments, i.e., greater surprise, our model provides a theoretical rationale for their findings.

We conservatively measure the size of recommendation surprise, ∆Xβ, using the dif-

ference between the estimate of valuation based on public information Xβ from the pre-

vious month, and the recommendation friction-adjusted cutoffs corresponding to the revi-

sions/initiations from our full model:

∆Xβ ≡


Xβ − (µk + δk↑), upgrades from k − 1 to k;
Xβ − (µk+1 − δk+1,↓), downgrades from k + 1 to k;
Xβ − µk, new coverage at k;

(6)

where k indexes the recommendation level and we omit analyst, firm and time subscripts for

simplicity. For initial coverage, we focus on Buy and Strong Buy recommendations because

(a) the sample of analysts initiating coverage with a Sell or Strong Sell is too small; and (b)

the information content of an initial Hold recommendation is unclear.

∆Xβ reveals information about the private information content in an analyst’s stock rec-

ommendation initiation or revision. For instance, given a previous Hold recommendation,

the stock valuation V ∗, which is the sum of the public assessment Xβ and the analyst infor-

mation component u, must breach the friction-adjusted cutoff (µ3 + δ3↑) to be upgraded to

Buy. Some of u may be public information—just unobserved by the econometrician—which

will add noise to our test, while the rest is private. A large positive ∆Xβ suggests that an

upgrade is widely expected by the market as the public assessment already exceeds the min-

imum level for triggering such a revision. There should still be a positive market response,

reflecting that the market learns that an analyst’s private information now exceeds that

minimum level. However, the market response should be less than that when ∆Xβ is very

negative, as now an upgrade divulges a positive and potentially large private information

component. The market should react more strongly to such a “surprising” revision. A similar

argument holds for downgrades and for new coverage that, for example, is initiated at a buy.

We measure market reactions using three-day market-adjusted CARs. To ensure that the

observed return is attributable to a recommendation revision, we exclude recommendations

issued in a three-day window around (on and after) earnings announcement or guidance

dates.32 Our model predicts that the market should react more strongly to those analysts’

32If we do not discard recommendations issued within an earnings announcement window, CAR impacts
become slightly stronger for downgrades and initiations, and slightly weaker for upgrades.
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judgments that imply material private information. To test this, we first categorize rec-

ommendation changes as upgrades, downgrades and initial coverage. Then, within each

category, we sort recommendations into four equal-sized groups based on the sizes of their

surprises, ∆Xβ. Table 11 reports the average size of recommendation surprise, the average

3-day CAR following the recommendation and its standard deviation for each quartile group

for the three-tier system.33 The vast majority of upgrades have ∆Xβ < 0, and almost all

downgrades have ∆Xβ > 0, reflecting that our public information measure is conservatively

based on the previous month’s public information, and, for example, upgrades typically fol-

low improvement in the public information measures in the current month. The quartile

groups are ordered from smallest ∆Xβ (g1) to largest (g4). The row labeled “g4 − g1”

shows the difference in average CARs between these two groups.

Table 11: Recommendation Surprise vs. Three-day CAR

Upgrade Downgrade Initiation (Buy)
Ave Ave Std Ave Ave Std Ave Ave Std

∆Xβ CAR CAR ∆Xβ CAR CAR ∆Xβ CAR CAR

g1 −1.870 3.751 7.778 1.008 −2.429 8.424 −0.578 2.632 9.606
g2 −1.674 3.403 5.542 1.202 −2.861 6.079 −0.398 2.136 4.821
g3 −1.478 3.587 6.351 1.379 −2.996 6.929 −0.290 2.175 5.159
g4 −0.224 2.638 7.104 2.323 −3.763 7.370 −0.133 2.111 5.681

g4− g1 −1.113∗∗∗ −1.334∗∗∗ −0.521∗∗

(3.07) (3.46) (2.13)

Equally-weighted quartile portfolios formed by sorting stocks based on the size of recommendation

surprise, ∆Xβ. For upgrades and initiations, portfolio g1 (g4) contains the most (least) surprising

ratings. For downgrades, Portfolio g4 (g1) contains the most (least) surprising ratings. Row g4-g1

presents the difference in average CAR between portfolios g4 and g1. t-statistics of tests on the

equality of means are reported in parentheses. *** denotes statistical significance at the 1% level.

The least surprising upgrades and initiations are in quartile g4, and the least surprising

downgrades are in quartile g1, where ∆Xβ is the smallest. The findings in Table 12 re-

veal that the least surprising recommendations have the smallest market impacts, and the

most surprising recommendations have the largest impacts, both strongly consistent with the

nuanced predictions of our model. The CAR differences between these portfolio quartiles

are always substantial and statistically significant. The CAR difference between the most

and least surprising quartiles is 1.1 percentage points for upgrades (more surprising is good

news), −1.33 for downgrades (more surprising is bad news), and 0.52 for Buy initiations

(more surprising is good news), and each is statistically significant at the 5% level.

33Results for the five-tier system are qualitatively similar, albeit less significant.
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In sum, our framework sheds light on the market perception of recommendation revi-

sions and coverage initiation. The evidence reveals that the market reacts more strongly to

decisions by analysts that are more surprising in the context of our model. This indicates

that our model describes how investors believe analysts make recommendations, and that

investors value the private information revealed by recommendation changes and initiations.

5 Conclusion

We develop a model of how financial analysts formulate recommendations, and show how it

captures the rich dynamics in analyst recommendations. Our model incorporates two key

features of the recommendation process: (i) analysts acquire information with persistent val-

uation consequences that the econometrician does not observe, and (ii) analysts revise recom-

mendations reluctantly, introducing frictions to avoid repeatedly revising revisions following

small changes in valuation assessments. Our model allows analysts to tailor recommendation

revision frictions according to the level of the outstanding recommendation and the direction

of a possible revision. Our model nests important existing models as special cases.

Our analysis reveals that analysts behave quite differently from the “idealized” analyst

who has been the focus of existing research. We find that analysts introduce large rec-

ommendation revision frictions to avoid frequent revisions. Strikingly, publicly-available

data on firm and analyst characteristics matters far less for explaining recommendation

dynamics than does persistent analyst information and the strategic choice by analysts of

recommendation revision frictions. We find that analysts design recommendation frictions

asymmetrically—varying with the recommendation and direction of revision. Analysts seem

to structure recommendations strategically to generate profitable order flow for their broker-

ages from their retail clients. For example, analysts introduce smaller frictions “out” of hold

recommendations than “into” hold recommendations. We also find that recommendations

quickly reflect new analyst information—there is minimal delay in incorporating information.

We also document extensive indirect support for our model in (a) durations of recom-

mendation revisions made inside vs. outside earnings announcement and guidance windows,

(b) a difference-in-differences analysis of market (CAR) responses to new vs. revised recom-

mendations and inside vs. outside earnings announcement and guidance windows, and (c)

CAR responses as a function of the extent to which an analyst’s new recommendation or

revision is surprising given the public information available to the econometrician.
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Of course, our study has limitations. As the first attempt to model and quantify the

sources of stickiness in recommendations and the slow decay of private information, our

framework allows for analyst heterogeneity in their valuation models, but not in the recom-

mendation revision frictions that analysts set or persistence in private information, and it

only allows for limited heterogeneity in the recommendation cutoffs that they set.34

Ideally, one would allow for richer heterogeneity in recommendation formation. Indeed,

we know that it is important to account for heterogeneity in forecasts: more experienced

analysts and analysts employed at larger brokerage houses tend to issue more pessimistic

forecasts of earnings (Bernhardt et al. 2006, Jegadeesh and Kim 2010). We also find such

heterogeneity in recommendations: more experienced analysts and those at larger broker-

ages tend to issue more pessimistic recommendations. That is, more experienced analysts

have lower valuations than less experienced analysts (equivalently, more experienced analysts

set systematically higher recommendation cutoffs) and analysts from larger brokerages have

lower valuations than those from smaller brokerages, which, in turn, make lower recommen-

dations more likely for analysts with more experience or who come from larger brokerages.

Importantly, our subsample search for such heterogeneity indicates little variation in

structural estimates according to brokerage house size, analyst experience or time: more ex-

perienced analysts and those employed at larger brokerages do not introduce systematically

smaller recommendation revision frictions. Moreover, our indirect findings show that the

“size” of “recommendation surprise” (given lagged public information model components)

predicts market responses. This indicates that any mis-specifications due to mis-modeled het-

erogeneity or un-modeled behavior-distorting incentives (e.g., career concerns, Hong and Ku-

bik (2003); herding, Trueman 1994, Chen and Jiang 2006) on recommendation formation are

small enough that we still uncover these relationships. Still, integrating greater heterogeneity

into the structural model of recommendations is an important direction for future research.

We also assume away any temporal stickiness in recommendations—controlling for their

valuation assessment, analysts are not more reluctant to revise recently-issued recommenda-

tions. In essence, we encapsulate any temporal stickiness in recommendations that remains

at monthly frequencies into the recommendation revision frictions. Decomposing these two

potential sources of stickiness is another important direction to take this research.

34Like any ordered probit model, it allows for parallel shifts up or down of recommendation cutoffs because
recommendations reflect differences between per share valuations and cutoffs. Hence, the same recommen-
dations result if analysts have higher per share valuations or if they, instead, set uniformly lower cutoffs.
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Appendix A: Model estimation

This appendix details the estimation of the model laid out in Equations (1) – (4).

Consider first the simple case where analyst i begins giving recommendations for firm j

at time tij0, and continues until time T . We denote the random sequence of recommendation

choices by analyst i for firm j by:

Rij = (Rijtij0 , · · · · ··, RijT )′

and observations (realizations) of Rij by

rij = (rijtij0 , · · · · ··, rijT )′,

where rijt ∈ [1, 2, 3, 4, 5]. We denote the vector of unknown parameters by θ = (β′, µ′, δ′, ρ)′.

Then, denoting the information set up to time t by Ft−1 (i.e., Ft−1 contains information

about previous recommendations, updated public information, etc.), given the parameters θ

and conditional on the information at the starting date, we have35

P [Rij = rij] = P
[
Rijtij0 = rijtij0

] T∏
t=tij0+1

P [Rijt = rijt|Ft−1] .

Given the information at the starting date when coverage is initiated, the probability

distribution over initial recommendations is determined by (3), so that

P
[
Rijtij0 = rijtij0

]
= P

[
µrijtij0 ≤ V ∗ijtij0 < µrijtij0+1

]
.

Because the list of variables used when coverage is initiated differs from later dates (lagged

recommendations do not enter when coverage is initiated), we denote the vector of right-hand

side variables when coverage is initiated by X ij,tij0
. The analyst’s initial valuation model is

V ∗ij,tij0 = X ′ij,tij0β + uij,tij0 .

Therefore, from the AR structure of the analyst’s information process, equation (2), we have

P [Rijtij0 = rijtij0 ] = Φ
(√

1− ρ2[µktij0+1 −X ′ij,tij0β]
)
− Φ

(√
1− ρ2[µktij0 −X

′
ijtij0

β]
)
. (7)

Once coverage has been initiated, the conditional distributions, P [Rijt = rijt|Ft−1], are de-

termined by (2) and (4) together. Let the vector of right-hand side variables after coverage

has been initiated be Xijt. Then V ∗ijt = X ′ijtβ + uijt, and defining

gijt(θ) = ρV ∗ij,t−1 +
(
X ′ijt − ρX ′ij,t−1

)
β,

35Throughout, we consider distributions conditional on available information at the date coverage is
initiated. To ease presentation, we omit this conditioning in our notation. For example, Pr

[
Rijtij0 = rijtij0

]
denotes the distribution over the initial recommendation conditional on information available then.
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we have

P [Rijt = rijt|Ft−1] = 1(rijt = rij,t−1)
[

Φ
(
µrijt+1 − gijt(θ) + δrijt+1,↑

)
− Φ

(
µrijt − gijt(θ)− δrijt,↓

)]
+ 1(rijt = rij,t−1 − 1)

[
Φ
(
µrijt+1 − gijt(θ)− δrijt+1,↓

)
− Φ

(
µrijt − gijt(θ)

)]
+ 1(rijt < rij,t−1 − 1)

[
Φ
(
µrijt+1 − gijt(θ)

)
− Φ

(
µrijt − gijt(θ)

)]
+ 1(rijt = rij,t−1 + 1)

[
Φ
(
µrijt+1 − gijt(θ)

)
− Φ

(
µrijt − gijt(θ) + δrijt,↑

)]
+ 1(rijt > rij,t−1 + 1)

[
Φ
(
µrijt+1 − gijt(θ)

)
− Φ

(
µrijt − gijt(θ)

)]
. (8)

Thus, letting π(θ) be the prior, we can write the joint distribution of data and parameters as

π(θ, r) = π(θ)
J∏
j=1

∏
i∈Ij

{
P (rijtij0)

T∏
t=tij0+1

P (rijt|rij,t−1)

}
,

where r is the vector of all realizations of recommendations, P (rijtij0) = P (Rijtij0 = rijtij0)

and P (rijt|rij,t−1) = P [Rijt = rijt|Ft−1] are defined by (7) and (8).

Analyst recommendations and related firm- and analyst-level control variables repre-

sent an unbalanced panel dataset containing observations of many analyst-firm pairs (a

particular firm followed by a particular analyst) over multiple time periods, reflecting that

an analyst may cease following a stock for some time, but then re-initiate coverage. In

this case, analyst i may issue recommendations for firm j in nij different periods, say

{tij0(s), · · ·, tij∗(s), s = 1, · · ··, nij}, during t = 1, ..., T . If we let

Hijs (rij, θ) =

{
P (rijtij0(s))

tij∗(s)∏
t=tij0(s)+1

P (rijt|rij,t−1)

}
,

where the probability P (rijtij0(s)) is defined by (7) and conditional probability P (rijt|rij,t−1)
is given by (8), then the joint distribution of data and parameters is

π(θ, r) = π(θ)
J∏
j=1

∏
i∈Ij

nij∏
s=1

Hijs (rij, θ) . (9)

In our Bayesian estimation approach, we treat the unobserved (latent) valuations as

additional unknown parameters and analyze them jointly with the other parameters (θ)

using Markov Chain Monte Carlo (MCMC) methods. Let R denote the observed analyst

recommendations, and V denote the latent analyst valuations. We divide the vector of pa-

rameters θ into 4 groups: (1) valuation parameters β; (2) recommendation bin parameters
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µj, j = 3, 4, 5; (3) recommendation revision friction parameters δ (i.e., δk↑, δk↓, etc); and (4)

the information persistence parameter ρ.

The MCMC estimator using Gibb sampler starts with an initial value (θ(0), V (0)), and

then simulates in turn. Conditional on other parameters and the data, the posterior densities

of a subset of parameters can be derived based on the joint density (9) and given priors.

For convenience of conditioning, we divide the vector of parameters θ into 4 groups: (1) β;

(2) µj, j = 3, 4, 5; (3) δ; and (4) ρ. This partition brings a relatively simple form to the

conditional posterior densities and makes it more tractable to draw random variables from

the conditional distributions. In particular, the conditional distributions of each subset of

parameters are given below:

1. The conditional distribution of β is normal. We start with the prior β ∼ N(0, I). To

simplify the simulation, we follow the suggestion of Albert and Chib (1993) and condition

on the initial observation. Conditional on the data and other parameters, the conditional

distribution of β is

N(β̂, Σ̂β),

where

β̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
X ′ijt − ρX ′ij,t−1

)−1
J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
V ∗ijt − ρV ∗ij,t−1

)
,

and variance (inverse precision)

Σβ̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(Xijt − ρXij,t−1)
(
X ′ijt − ρX ′ij,t−1

)−1 ,
where Xij0 = 0.

2. The conditional distribution of ρ is a truncated normal. We start with the prior

N(0.5, 1)I(|ρ| < 1). Conditional on the data and other parameters, ρ is normally distributed
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with mean ρ̂, and variance σ̂2
ρ, truncated by |ρ| < 1, i.e., ρ ∼ N(ρ̂,Σρ) · I(|ρ| < 1), where

ρ̂ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(
V ∗ij,t−1 −X ′ij,t−1β

)2−1
J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(
V ∗ij,t−1 −X ′ij,t−1β

) (
V ∗ij,t −X ′ij,tβ

)
,

and

σ̂2
ρ =

 J∑
j=1

∑
i∈Ij

nij∏
s=1

tij∗(s)∏
t=tij0(s)+1

(
V ∗ij,t−1 −X ′ij,t−1β

)2−1 .
3. The conditional density of δk↑ is a uniform distribution. Given the data, other pa-

rameters ρ, β, µ, and other elements in δ, the conditional density of δk↑ is proportional to

π(θ, r). The bounds of the uniform distribution can be derived based on the following in-

formation: (1) at the starting period, the stickiness parameter does not enter, and (2) at

other periods, the above likelihood is non-zero when: (i) µk − δk↓ ≤ V ∗ijt < µk+1 + δk+1,↑ if

Rijt = k and Rij,t−1 = k; (ii) µk ≤ V ∗ijt < µk+1−δk+1,↓ if Rijt = k and Rij,t−1 = k+1; and (iii)

µk+δk↑ ≤ V ∗ijt < µk+1 ifRijt = k andRij,t−1 = k−1, (other cases do not depend on the friction

parameters.) Using the above information, we obtain that δk↑ is uniformly distributed on

[δk↑low, δk↑up] ,

where

δk↑low = max
i,j, and t6=tij0(s)

{
V ∗ijt − µk : Rijt = Rij,t−1 = k − 1

}
,

δk↑up = min
i,j, and t6=tij0(s)

{
V ∗ijt − µk : Rijt = k, Rij,t−1 = k − 1

}
.

Similarly, given the data and other parameters, δk↓ is uniformly distributed on

[δk↓low, δk↓up] ,

where

δk↓low = max
i,j, and t6=tij0(s)

{
µk − V ∗ijt : Rijt = Rij,t−1 = k

}
,

δk↓up = min
i,j, and t6=tij0(s)

{(
µk − V ∗ijt

)
∧ (µk − µk−1) : Rijt = k − 1, Rij,t−1 = k

}
.

4. The conditional density of µk given the data and other parameters ρ, β, δ, and µl 6= µk

is a uniform distribution on the interval [µk,low, µk,up]. The lower bound and upper bound

53



can be derived in a similar way as those for δk↑ and δk↓. In particular, the lower bound is

µk,low = max
{
µk−1,max

s

[
V ∗ijtij0(s) |Rijtij0(s)

= k − 1
]
, µk,l1, µk,l2, µk,l3, µk,l4

}
,

where

µk,l1 = max
t6=tij0(s)

[
V ∗ijt − δk+1,↑| Rijt = Rij,t−1 = k

]
,

µk,l2 = max
t6=tij0(s)

[
V ∗ijt + δk+1↓ |Rijt = k,Rij,t−1 = k + 1

]
,

µk,l3 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k − 1, Rij,t−1 > k

]
,

µk,l4 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k − 1, Rij,t−1 ≤ k − 2

]
,

and, similarly, for the upper bound:

µk,up = min
{
µk+1,min

s

[
V ∗ijtij0(s) |Rijtij0(s)

= k
]
, µk,u1, µk,u2, µk,u3, µk,u4

}
.

where

µk,u1 = min
t6=tij0(s)

[
V ∗ijt + δk↓ |Rijt = Rij,t−1 = k

]
,

µk,u2 = min
t6=tij0(s)

[
V ∗ijt −δk↑|Rijt = k,Rij,t−1 = k − 1

]
,

µk,u3 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k,Rij,t−1 ≥ k + 1

]
,

µk,u4 = max
t6=tij0(s)

[
V ∗ijt |Rijt = k,Rij,t−1 < k − 1 ,

]
.

5. The conditional distributions of the latent variables V ∗ijt are truncated normal. Giving

our valuation model in Section 2, conditional on data and other information, the conditional

distributions of V ∗ijt at the initial period tij0(s) are given by

V ∗ijtij0(s) ∼ N

(
X ′ijβ,

1

1− ρ2

)
, truncated by [µRijtij0(s)

, µRijtij0(s)
+1]. (10)

For subsequent periods, i.e., t ∈ {tij0(s) + 1, · · ·, tij∗(s), s = 1, · · ··, nij}, notice that V ∗ijt =

ρV ∗ij,t−1 +
(
X ′ijt − ρX ′ij,t−1

)
β+εijt, the conditional distributions of V ∗ijt are truncated normals

with means ρV ∗ij,t−1 +
(
X ′ijt − ρX ′ij,t−1

)
β and unit variance, truncated at [µt,low, µt,upp], where

µt,low = 1(Rijt = Rij,t−1 + 1)(µRijt
+ δ↑) + 1(Rijt = Rij,t−1)(µRijt

− δ↓)

+1(Rijt ≤ Rij,t−1 − 1 or Rijt > Rij,t−1 + 1)µRijt
,
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µt,upp = 1(Rijt = Rij,t−1)(µRijt+1 + δ↑) + 1(Rijt = Rij,t−1 − 1)(µRijt+1 − δ↓)

+1(Rijt < Rij,t−1 − 1 or Rijt ≥ Rij,t−1 + 1)µRijt+1 .

Fix a draw q, and denote the conditional distribution of, say, V conditional on θ as p(V |θ),
where the conditioning on X and R is suppressed. After each draw of a new value of a param-

eter, the corresponding subvector of previous values is replaced by the new subvector that

has the new value rather than the old one. We then continue to draw a new value of another

parameter. Denote the qth updated vector by (θ(q), V (q)), we repeat this P times, and as P →
∞, the distribution of (θ(P ), V (P )) converges to the distribution of (θ, V ). More specifically,

1. Draw V (q) from p(V |θ(q−1)), i.e., p(V |β(q−1);µ
(q−1)
j ; δ(q−1); ρ(q−1))

2. Draw β(q) from p(β|V (q);µ
(q−1)
j ; δ(q−1); ρ(q−1))

3. Draw µ
(q)
j j = 3, 4, 5, from p(µ|V (q); β(q); δ(q−1); ρ(q−1)). This is done by the following 3

steps:

(a) draw µ
(q)
3 from p(µ3|V (q); β(q);µ

(q−1)
4 , µ

(q−1)
5 ; δ(q−1); ρ(q−1)).

(b) draw µ
(q)
4 from p(µ4|V (q); β(q);µ

(q)
3 , µ

(q−1)
5 ; δ(q−1); ρ(q−1)).

(c) draw µ
(q)
5 from p(µ5|V (q); β(q);µ

(q)
3 , µ

(q)
4 ; δ(q−1); ρ(q−1)).

4. Draw δ(q) from p(δ|V (q); β(q);µ
(q)
j ; ρ(q−1)). For example, if δ = (δ↑, δ↓), this is done by

the following 2 steps:

(a) Draw δ
(q)
↑ from p(δ↑|V (q); β(q);µ

(q)
j ; δ

(q−1)
↓ ; ρ(q−1)).

(b) Draw δ
(q)
↓ from p(β|V (q); β(q);µ

(q)
j ; δ

(q)
↑ ; ρ(q−1)).

5. (5) Draw ρ(q) from p(ρ|V (q); β(q);µ
(q)
j ; δ(q))

6. Set q = q + 1, and repeat the above steps.

In practice, we discard the first M draws (in our empirical analysis, we set M = 50, 000),

and the simulated values of (θ(q), V (q)) from q = M + 1, · · ·,M + Q, can be regarded as an

approximate simulated sample. The posterior expectation of a function of the parameters,

h(θ), can then be estimated by the sample average

1

Q

M+Q∑
q=M+1

h(θ(q)).
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Once we have a set of reasonable initial values, to ensure that we sample from the station-

ary distribution for the parameter estimates, we discard the initial 50, 000 iterations,36 and

keep the next 150, 000 iterations as sample draws. To test the null hypothesis that the Markov

chain of each parameter estimate is from the stationary distribution, we use Geweke’s (1992)

convergence diagnostic, which tests that the means of the first 10% of the Markov chain (ob-

servations 50, 001−65, 000) and the last 50% of observations are equal. The data easily pass

this convergence check. We also visually check the trace plots of each Markov chain to con-

firm that it has a relatively constant mean and variance. Parameter estimates are then given

by their sample averages. The appendix provides more details on estimation procedures.

Goodness of Fit. We use the Brier Score (Brier, 1950) and Bayes factor to compare good-

ness of fit of different model specifications. The Brier score is the mean squared deviation be-

tween the observed outcome and the (in-sample) predicted probability of a recommendation:

S =
1

#obs

∑
ijt

[I(Rijt)− π̂(Rijt)]
2 ,

where I(Rijt) is an indicator function, equal to one if recommendation Rijt is observed, and

zero otherwise; π̂(Rijt) denotes the in-sample estimate of the probability of recommendation

Rijt; and #obs is the total number of recommendations issued in our sample. The Brier

score penalizes large deviations in a probability forecast: the smaller is S, the better is the

model fit. A perfect probability forecast would yield a Brier score of zero.

More formally, we employ the Bayes factor to assess the goodness of model fit. All spec-

ifications considered in our study are nested in the full model. We have no prior belief over

the null model and the alternative (i.e., Pr(M0) = Pr(MA) = 0.5). Given the observed data,

D, the Bayes factor, B, is defined as

B =
Pr (D|MA)

Pr (D|M0)
,

where Pr (D|M0) and Pr (D|MA) are the marginal likelihoods of the null and alternative

models, respectively. In terms of the logarithm of models’ marginal likelihoods (reported

in Table 4), the Bayes factor is exp (log (Pr (D|MA))− log (Pr (D|M0))). Kass and Raftery

(1995) argue that a Bayes factor of 2 log (B) that exceeds 10 (≈ B > 150) represents decisive

evidence in favor of the alternative model against the null. A Bayes factor that exceeds 1, 000

(B > 1000) provides conclusive support for forensic evidence in a criminal trial (Evett, 1991).

The Bayes factor also penalizes overfitting (over-parametrization) of an alternative model.

36Prior to identifying a set of reasonable starting values, we discarded as many as 200,000 observations.
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Appendix B: variable definitions

We construct several variables from CRSP. Omitting analyst and firm subscripts (i and

j), and the subscript t for the calendar month in which recommendation Rijt is issued, we use:

ret−1: stock excess return (on the market) in the past month (month t− 1).

ret−2:−6: median-term monthly excess return.

ret−7:−12: long-term monthly excess return.

To preclude the impact of recommendations on stock performance (reverse-causality), re-

turns are calculated as the holding period return based on monthly closing stock prices.Thus,

ret−2:−6 is the return received from holding a stock at the closing price in month t− 7 and

selling it at the closing price in month t− 2.

σ−1:−6: past six-month stock return volatility (daily return volatility times the square root

of the number of trading days over the past six months).

log(turnover−1:−6): log of (trading volume in past 6 months scaled by shares outstanding).

log(MktCap−1:−6): log of a firm’s market capitalization (monthly closing price times shares

outstanding).

Firm Age: years a firm has been in the CRSP database at the calendar year of month t.

Firm accounting variables come from Compustat. Here q denotes the most recent fiscal

quarter for which an earnings announcement was made prior to or within a calendar month t.

SUE: standardized unexpected earnings. SUE = (EPSq −EPSq−4)/std(EPSq:q−7), where

EPSq − EPSq−4 is a firm’s unexpected quarterly earnings per share and std(EPSq:q−7) is

the firm’s earnings volatility over the eight preceding quarters. We require a firm to report

EPS at least four times in the past eight quarters to calculate earnings volatility. The value

of SUE is carried over the following quarter after the release of EPSq.

DEA: Month dummy indicating an earnings announcement was made in that month, or in

the last five trading days of the previous month (to give the market time to assesse earnings).

BM : ratio of book equity to market equity in quarter q;

EP : earnings-to-price ratio. EP =
∑3

i=0(EPSq−i)/Prcq, where Prcq is the stock price at

the end of quarter q.

SG: annual sales growth rate. SG =
∑3

i=0 Salesq−i/
∑3

i=0 Salesq−4−i, where Sales is a

firm’s quarterly total sales.
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ROA: return on assets. ROA =
∑3

i=0 Incomeq−i/ATq, where Income and AT are quarterly

net income and the end-of-quarter total assets.

The I/B/E/S recommendation file yields the following analyst-related variables:

log(num anal): logarithm of the number of analysts with recommendations on a firm in

month t− 1.

HSize: logarithm of the number of analysts at a brokerage issuing stock recommendations

over the course of one calendar year, as in Agrawal and Chen (2008).

We use the I/B/E/S Detail History and Summary Statistics files to construct:

FRtoP : Earnings forecast revisions to price ratio is the rolling sum of the preceding six

months revisions to price ratios (Jegadeesh et al., 2004). FRtoP =
∑6

i=1(ft−i−ft−1−i)/Prct−1−i,
where ft is the mean consensus analyst quarterly forecast in month t.

CFtoP : Consensus quarterly earnings forecast to price ratio. CFtoP = ft−1/Prct−1.

FDisp: Forecast dispersion is the standard deviation of analysts’ quarterly earnings forecasts

at month t− 1 scaled by Prct−1.

FDev: Analyst earnings forecast deviation is the difference between an analyst’s forecast

and the consensus earnings forecast at month t− 1 scaled by Prct−1.

Finally, we consider:

IH: Institutional Holdings is the percentage of a firm’s equity held by institutional investors

in quarter q, obtained from 13f quarterly filings to the Securities and Exchange Commission

(Thomson Financial 13f institutional database).

DIB: Dummy variable indicating an investment banking relationship (lead- or joint-management

appointment) in the previous five years between the analyst’s brokerage house and the firm.

We obtain all US debt and equity offerings from the Security Data Company (SDC) Database.

log(year brkg): Logarithm of the years an analyst has been at his/her current brokerage firm.

log(year IBES): Logarithm of the years an analyst has been in the I/B/E/S database.

Table 12 provides summary statistics for these public information variables in the three-

tier sample. The right-most column reports results of univariate comparisons of means

between stocks with Sell and Buy recommendations. All differences in control variables

between sell and buy recommendations are significant at a 5% significance level.
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Table 12: Descriptive Statistics for Firm and Analyst-related Variables

Mean Std. Dev. Quar1 Quar2 Quar3 Buy−Sell
ret−1 0.750 11.078 −5.405 0.746 6.879 0.486∗∗∗

ret−2:−6 3.813 22.913 −9.584 3.268 15.882 2.602∗∗∗

ret−7:−12 4.492 26.689 −10.925 3.745 18.316 6.265∗∗∗

σ−1:−6 25.554 13.360 15.862 22.242 31.352 −2.212∗∗∗

log(turnover−1:−6) −0.164 0.735 −0.641 −0.137 0.344 −0.041∗∗∗

log(MktCap−1:−6) 14.413 1.552 13.271 14.306 15.459 −0.104∗∗∗

log(num anal) 2.644 0.689 2.197 2.708 3.135 0.058∗∗∗

HSize 3.742 1.113 3.178 3.951 4.673 −0.226∗∗∗

SUE 0.330 1.451 −0.692 0.359 1.553 0.426∗∗∗

BM 0.516 0.345 0.272 0.443 0.673 −0.098∗∗∗

EP 0.017 0.109 0.018 0.043 0.064 0.025∗∗∗

SG 1.115 0.212 0.999 1.089 1.199 0.057∗∗∗

ROA 0.062 0.112 0.015 0.062 0.123 0.026∗∗∗

FAge 22.364 18.774 9 16 32 −0.286∗∗

FRtoP (×10−3) −0.652 12.586 −2.951 0.605 3.435 2.489∗∗∗

CFtoP (×10−2) 1.005 1.548 0.649 1.209 1.738 0.362∗∗∗

FDisp (×10−2) 0.195 0.307 0.038 0.083 0.201 −0.096∗∗∗

FDev (×10−3) −0.103 4.898 −1.056 0 1.107 0.612∗∗∗

IH 0.747 0.241 0.609 0.790 0.919 0.032∗∗∗

log(year brkg) 1.487 0.677 1.099 1.609 1.946 −0.091∗∗∗

log(year IBES) 1.893 0.589 1.386 1.946 2.398 −0.029∗∗∗

Results of univariate comparisons of means between stocks with a Sell (Sell or Strong Sell) recom-

mendations and those of Buy (Buy and Strong Buy) are reported in the far right column. *** and

** denote statistical significance at 1% and 5% levels.
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