
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/77722

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/77692

Modelling, Real-Time Simulation and Control of

Automotive Windscreen Wiper Systems for Electronic

Control Unit Development

by

Mark Dooner

A thesis submitted in partial fulfilment of the requirements

for the degree of

Doctor of Philosophy in Engineering

The University of Warwick

School of Engineering

January 2016

i

Table of Contents

List of Figures ... vii

List of Tables ... xiii

Acknowledgements ...xiv

Declarations ... xv

Abstract ...xvi

List of Abbreviations ... xvii

Chapter 1 - Introduction .. 1

1.1 Background .. 1

1.2 Objectives .. 5

1.3 Structure .. 6

1.4 Publications ... 8

Chapter 2 - Literature Review... 9

2.1 Introduction ... 9

2.2 Automotive Product Development: HIL and Model Based Design 9

2.3 Current Wiper System Models and Research ... 12

2.3.1 Vibration Analysis and Mitigation Research ... 12

2.3.2 Control of Wiper Systems ... 15

2.3.3 Dynamic Models of Wiper Systems .. 16

2.4 Parameter Identification ... 18

2.4.1 Off-line Parameter Identification using Genetic Algorithms 18

2.4.2 On-line Parameter Identification .. 18

ii

2.5 Friction in a Wiper System ... 19

2.6 Vehicle and Wiper Aerodynamics ... 23

2.7 Adaptive Control Using Single Neuron PID Controllers ... 25

Chapter 3 - Wiper Motor Modelling ... 27

3.1 Introduction ... 27

3.2 Wiper Motor Structure .. 28

3.3 Model Derivation of the Wiper Driving DC Motor .. 31

3.3.1 Torque Production .. 32

3.3.2 Back EMF .. 37

3.3.3 Resistance and Inductance ... 41

3.4 Dynamic Equations .. 42

3.5 Simulation Models ... 43

3.5.1 State Space Model .. 43

3.5.2 Physical Model .. 45

3.5.3 Stateflow Model ... 47

3.6 Wiper Motor Park Switch Strategies ... 48

3.6.1 Mechanical Park Switch .. 49

3.6.2 Depressed Mechanical Park Switch .. 52

3.7 Discussion .. 56

Chapter 4 - Multibody Dynamics Mechanical Modelling ... 57

4.1 Introduction ... 57

4.1.1 Generic Modelling Strategy .. 58

iii

4.2 Planar Kinematics Model based on Computational Dynamics 59

4.2.1 Slave Driven Linkage System .. 59

4.2.2 Wiper Arms ... 71

4.2.3 Wiper Blade .. 74

4.2.4 Planar Kinematic Simulation... 75

4.3 Physical Model Based on SimMechanics ... 77

4.3.1 Slave Driven Linkage System .. 77

4.3.2 Wiper Arms ... 81

4.3.3 Wiper Blade .. 82

4.3.4 Gravity Vector ... 83

4.4 Wiper Blade Friction Force .. 84

4.4.1 Dry Friction ... 85

4.4.2 Wet Friction .. 88

4.5 Aerodynamic Lift and Drag Forces .. 91

4.6 Whole System Simulation.. 94

4.7 Discussion .. 96

Chapter 5 - Parameter Identification and Model Validation .. 98

5.1 Introduction ... 98

5.2 Identification Methodology ... 99

5.3 Wiper Motor Transfer Function Identification .. 103

5.4 Wiper Motor Parameter Measurement .. 111

5.4.1 Armature Resistance .. 111

iv

5.4.2 EMF and Torque Constants .. 111

5.4.3 Armature Inductance.. 112

5.4.4 Motor Inertia .. 113

5.4.5 Refining Measurements and Damping Coefficient Estimation 113

5.5 Genetic Algorithm Identification of System Parameters 116

5.5.1 Genetic Algorithm Theory .. 116

5.5.2 Cost Function .. 118

5.5.3 Defining GA Parameters ... 119

5.5.4 Generating the Initial Population ... 120

5.5.5 Selecting Mates using Tournament Selection .. 120

5.5.6 Carry out Mates Using Random Blending .. 121

5.5.7 Mutations ... 122

5.5.8 Recalculate Costs .. 122

5.5.9 Results of Parameter Optimisation Using Genetic Algorithms 123

5.6 Local Optimiser Stage .. 126

5.7 Discussion .. 128

Chapter 6 - Model Simplification for HIL Implementation ... 130

6.1 Introduction ... 130

6.2 Kinematic Approximation Using Look-up Tables ... 132

6.3 No-Load Torque Polynomial Model... 132

6.4 Neural Network Modelling .. 136

6.4.1 Neural Network Theory .. 136

v

6.4.2 Mechanical Load Modelling.. 139

6.4.3 Whole Wiper System Modelling ... 145

6.4.4 Neural Network Limitations ... 153

6.5 Discussion .. 154

Chapter 7 - Adaptive Control of the Wiper System .. 156

7.1 Introduction ... 156

7.1.1 Classic Wiper Control Example ... 157

7.2 PID Velocity Control ... 158

7.3 Single Neuron Adaptive PID Control ... 161

7.3.1 Hebb Learning Rule .. 164

7.3.2 Error Only Hebb Learning Rule ... 164

7.3.3 Quadratic Learning Rule ... 165

7.3.4 Single Neuron Adaptive PID Control Results and Discussion 165

7.4 Single Neuron Fuzzy Adaptive PID Control .. 168

7.4.1 SNPID with Fuzzy Controller Results and Discussion 172

7.5 Sensorless Control Neural Network .. 174

7.6 Stateflow Control Implementation ... 177

7.7 Discussion .. 177

Chapter 8 - Generic Modelling and Real-Time Implementation 180

8.1 Introduction ... 180

8.2 Simulink Library ... 180

8.3 Wiper System Generic Modelling Tool .. 181

vi

8.3.1 Wiper Motor Panel ... 182

8.3.2 Wiper Linkages Panel ... 182

8.3.3 Wiper Arms Panel ... 184

8.3.4 Wiper Blade Panel .. 184

8.3.5 Environment Panel ... 184

8.3.6 Parameter Identification Panel .. 184

8.3.7 Generate Simulation Model Panel ... 184

8.4 dSPACE Real-Time Simulator Implementation .. 185

8.5 Discussion .. 192

Chapter 9 - Conclusions and Further Work .. 194

9.1 Conclusions .. 194

9.2 Suggested Further Work .. 197

References ... 200

Appendix A - Wiper Motor State Space Simulation Code ... 214

Appendix B - Slave Driven Linkage Parameters Code ... 216

Appendix C - Linkage System Kinematic Equations ... 217

Appendix D - Grashof’s Law for Slave Driven Linkages Matlab Code 223

Appendix E - Genetic Algorithm Matlab Code .. 224

Appendix F - Neural Network Training Data, Extended Results and Matlab Code 230

Appendix G - Automatic Generation of Wiper System Physical Model Matlab Code . 240

vii

List of Figures

Figure 1-1: Global Passenger Car Sales.. 1

Figure 1-2: V Model for Product Development ... 3

Figure 1-3: Body Electronics ECU HIL Simulation .. 4

Figure 1-4: Wiper System Block Diagram .. 5

Figure 3-1: Wiper Motor Construction .. 28

Figure 3-2: Wiper Motor Electrical Input Placement .. 29

Figure 3-3: Wiper Motor Commutator Connection .. 30

Figure 3-4: Wiper Motor Wiring Diagram ... 31

Figure 3-5: Wiper Motor Current Paths (Slow) ... 33

Figure 3-6: Wiper Motor Current Paths (Fast) .. 33

Figure 3-7: Cylindrical Coordinate System .. 34

Figure 3-8: Single Coil Flux Surface and Flux Surface Element .. 38

Figure 3-9: Wiper Motor Electrical Equivalent Circuit ... 42

Figure 3-10: Motor State Space Model Simulation Results... 45

Figure 3-11: Wiper Motor Physical Model .. 46

Figure 3-12: Motor Physical Model Simulation Results .. 46

Figure 3-13: Wiper Motor Stateflow Implementation .. 47

Figure 3-14: Wipers in Park Position ... 49

Figure 3-15: Mechanical Park Switch Strategy .. 50

Figure 3-16: Mechanical Park Switch Strategy Simulation Model 51

Figure 3-17: Mechanical Park Switch Strategy Simulation Results 51

Figure 3-18: Mechanical Park Switch Switching Configuration 52

Figure 3-19: Depressed Mechanical Park Switch Strategy .. 53

Figure 3-20: Depressed Mechanical Park Switch Strategy Simulation Model 54

Figure 3-21: Depressed Mechanical Park Switch motor Internal Logic 54

viii

Figure 3-22: Depressed Mechanical Park Switch Strategy Simulation Results 55

Figure 3-23: Depressed Mechanical Park Switch Switching Configuration 55

Figure 4-1: Solidworks Model of the Wiper System .. 57

Figure 4-2: Slave Driven Linkage System Diagram .. 59

Figure 4-3: Double Rocker Linkage Inequality Derivation (1) .. 69

Figure 4-4: Double Rocker Linkage Inequality Derivation (2) .. 70

Figure 4-5: Straight Wiper Arm ... 71

Figure 4-6: Bent Wiper Arm... 72

Figure 4-7: Wiper Blade ... 74

Figure 4-8: Planar Kinematics Simulation Flow Diagram ... 76

Figure 4-9: Planar Kinematics Simulation Plots ... 77

Figure 4-10: Linkage System Physical Model I/O .. 77

Figure 4-11: Linkage System Physical Model ... 78

Figure 4-12: Linkage System Physical Model Body Level Parameterisation 79

Figure 4-13: Linkage System Physical Model Body Orientation Parameterisation 80

Figure 4-14: Linkage System Physical Model Top Level Parameterisation 81

Figure 4-15: Straight Wiper Arm Physical Model I/O .. 81

Figure 4-16: Straight Wiper Arm Physical Model .. 82

Figure 4-17: Straight Wiper Physical Model Body Level Parameterisation 82

Figure 4-18: Wiper Blade Physical Model I/O ... 83

Figure 4-19: Wiper Blade Physical Model.. 83

Figure 4-20: Friction Coefficient in Different Windscreen Conditions 85

Figure 4-21: Dry Friction Coefficient against Velocity (Literature) 86

Figure 4-22: Dry Coefficient of Friction Simulation ... 87

Figure 4-23: Dry Friction Coefficient Simulink Model ... 87

Figure 4-24: Wet Friction Coefficient vs Velocity for Different Forces (Literature) 88

ix

Figure 4-25: Wet Friction Coefficient vs Force for Different Velocities (Literature) 89

Figure 4-26: Wet Coefficient of Friction Simulation .. 90

Figure 4-27: Wet Friction Coefficient Simulink Model .. 91

Figure 4-28: Drag and Lift Coefficients against Wiper Angle ... 92

Figure 4-29: Drag and Lift Force Simulation Model... 93

Figure 4-30: Aerodynamic Forces Simulation Results ... 93

Figure 4-31: Whole SimMechanics Model Example .. 94

Figure 4-32: SimMechanics Model Simulation Results ... 95

Figure 4-33: SimMechanics Model Simulation Plots ... 95

Figure 5-1: Simulation Model used for Identification ... 100

Figure 5-2: Park Switch Comparison Issue Example .. 101

Figure 5-3: Park Step Demonstration .. 101

Figure 5-4: Stateflow Sub Chart for Parameters Identification Data Generation 102

Figure 5-5: Parameter Identification and Model Validation Data Example 102

Figure 5-6: Parameter Identification Procedure ... 103

Figure 5-7: Motor Transfer Function Simulation Results .. 105

Figure 5-8: Transfer Function Parameters Identification Input Data (Slow Motor) 108

Figure 5-9: Transfer Function Parameters Identification Input Data (Fast Motor) 108

Figure 5-10: Transfer Function Parameters Identification Results (Slow)..................... 110

Figure 5-11: Transfer Function Parameters Identification Results (Fast) 110

Figure 5-12: Wiper Motor Parameter Identification Comparison Results 114

Figure 5-13: Wiper Motor Parameter Identification Residuals 115

Figure 5-14: Genetic Algorithm Flow Diagram and Schematic 117

Figure 5-15: Genetic Algorithm Cost Function Plot ... 124

Figure 5-16: Genetic Algorithm Results Comparison .. 125

Figure 5-17: Genetic Algorithm Results Residuals ... 125

x

Figure 5-18: Local Optimiser Results Comparison ... 127

Figure 5-19: Local Optimiser Residuals ... 127

Figure 6-1: Simulink Fixed Step Solver Comparison .. 131

Figure 6-2: No-Load Torque Approximation Performance .. 135

Figure 6-3: No-Load Torque Approximation GA Performance 135

Figure 6-4: General Feed Forward Neural Network Structure 136

Figure 6-5: Neural Network Supervised Training Block Diagram 138

Figure 6-6: NARX Model Diagram .. 139

Figure 6-7: Neural Network Performance against Number of Hidden Layers 141

Figure 6-8: Mechanical System Feed Forward NN Approximation Schematic 142

Figure 6-9: Mechanical System NN Dry Torque Performance (Training) 142

Figure 6-10: Mechanical System NN Wet Torque Performance (Training) 143

Figure 6-11: Mechanical System NN Dry Torque Performance (Validation) 143

Figure 6-12: Mechanical System NN Wet Torque Performance (Validation) 144

Figure 6-13: Hybrid Physical and Neural Network Model ... 145

Figure 6-14: Motor Neural Network NARX Approximation Schematic 146

Figure 6-15: Motor NARX Model Slow Mode Performance (Current) 147

Figure 6-16: Motor NARX Model Slow Mode Performance (Velocity) 148

Figure 6-17: Motor NARX Model Fast Mode Performance (Current) 148

Figure 6-18: Motor NARX Model Fast Mode Performance (Velocity) 149

Figure 6-19: Full Wiper System NN Implementation (Top Level) 150

Figure 6-20: Full Wiper System NN Implementation (Bottom Level) 151

Figure 6-21: Full Wiper System NN Simulink Results (Current and Position) 152

Figure 6-22: Full Wiper System NN Simulink Results (Torque and Velocity) 152

Figure 6-23: Neural Network Limitation Example ... 153

Figure 7-1: Classic Wiper System Control .. 158

xi

Figure 7-2: PID Controller Block Diagram .. 159

Figure 7-3: PID Control Graphical Results ... 160

Figure 7-4: Single Neuron Model... 162

Figure 7-5: Single Neuron PID Control System Block Diagram 163

Figure 7-6: Single Neuron Hebb Learning Rule Results ... 166

Figure 7-7: Single Neuron Error-Hebb Learning Rule Results.. 166

Figure 7-8: Single Neuron Quadratic Learning Rule Results .. 167

Figure 7-9: Fuzzy Membership Functions – Input ... 169

Figure 7-10: Fuzzy Membership Functions – Output .. 171

Figure 7-11: Single Neuron Fuzzy PID Control System Block Diagram 171

Figure 7-12: Single Neuron Hebb Learning Rule with Fuzzy Controller Results 172

Figure 7-13: Single Neuron Error-Hebb Learning Rule with Fuzzy Controller Results .. 173

Figure 7-14: Single Neuron Quadratic Learning Rule with Fuzzy Controller Results..... 173

Figure 7-15: Motor Velocity Estimator NN Schematic .. 175

Figure 7-16: Sensorless NN Slow Mode Training Data .. 176

Figure 7-17: Sensorless NN Fast Mode Training Data ... 176

Figure 7-18: Stateflow Continuous Speed Motor Controller Implementation 177

Figure 8-1: Wiper System Simulink Library ... 180

Figure 8-2: Wiper System Library Structure .. 181

Figure 8-3: Wiper System Generic Modelling Tool.. 183

Figure 8-4: Simulink Wiper Model Generate Automatically ... 185

Figure 8-5: Real Time Simulator Schematic ... 186

Figure 8-6: Real-Time Simulator Simulink Model .. 188

Figure 8-7: Wiper Controller Stateflow Chart ... 189

Figure 8-8: Wiper Intermittent Stateflow Sub-Chart... 190

Figure 8-9: Real-Time Simulator ControlDesk System ... 191

xii

Figure 8-10: dSPACE Simulator and Wiper Test Rig .. 192

Figure C-1: Master Driven Linkage System Diagram ... 217

Figure C-2: Centre Driven Linkage System Diagram .. 220

Figure F-1: Torque NN Input Training Data ... 230

Figure F-2: Torque NN Output Training Data .. 230

Figure F-3: Torque NN Input Validation Data .. 231

Figure F-4: Torque NN Output Validation Data ... 231

Figure F-5: NN Performance against Number of Hidden Layers (Full) 234

Figure F-6: Motor NN Input Training Data (Slow Motor State) 234

Figure F-7: Motor NN Input Training Data (Fast Motor State) 235

Figure F-8: Velocity NN Input Training Data (Fast) .. 237

Figure F-9: Velocity NN Input Training Data (Slow) ... 237

xiii

List of Tables

Table 3-1: Example Motor Parameters ... 45

Table 4-1: Parameters for Dry Friction Simulation .. 86

Table 4-2: Parameters for Wet Friction Simulation... 90

Table 5-1: Motor Transfer Function Coefficients Definition ... 105

Table 5-2: Motor Transfer Function Coefficient Identification (Simulated) 107

Table 5-3: Motor Transfer Function Coefficient Identification (Real Data) 110

Table 5-4: Motor Back EMF Constant Measurements .. 112

Table 5-5: Motor Armature Inductance Measurements ... 113

Table 5-6: Measured and Estimated Motor Parameters Comparison 116

Table 5-7: Genetic Algorithm Parameters ... 119

Table 5-8: Genetic Algorithm Best Parameters ... 124

Table 5-9: Local Optimiser Best Parameters ... 128

Table 6-1: Neural Network Performance against Number of Hidden Layers 140

Table 6-2: Mechanical System NN Approximation Performance 144

Table 6-3: Motor NARX Approximation Performance (Open and Closed Loop) 150

Table 7-1: Tuned PID Controller Gains .. 160

Table 7-2: PID Control Numerical Performance .. 161

Table 7-3: Control System Test States ... 161

Table 7-4: Single Neuron PID Control Test Parameters .. 165

Table 7-5: Single Neuron Control System Results ... 167

Table 7-6: Single Neuron with Fuzzy Control System Results 174

Table F-1: NN Performance against Number of Hidden Layers (Full) 232

xiv

Acknowledgements

I would like to take this opportunity to thank my supervisor Professor Jihong Wang for

her continued support thorough this project and for ensuring that I could financially

support myself in my final year.

I would also like to thank my initial second supervisor Dr Jianlin Wei for his assistance

with the dSPACE system, and my replacement second supervisor, Dr Xianping Liu. From

Jaguar LandRover I would like to thank Dr Alexandros Mouzakitis, Mr Thomas Tsimos and

Dr Georgios Tsampardoukas for their assistance. From the Power and Control Systems

Research Lab I would like to thank my colleagues for their support, suggestions and

friendship throughout my time here.

I must also thank my friends at the University of Warwick who kept me sane and made

sure that I had some fun in my time off.

Finally I would like to thank my parents for supporting me in my decisions and not

complaining too much when I was too busy to call home.

Mark Dooner

September 2015

xv

Declarations

I hereby declare that the material in this thesis has not been submitted for a higher

degree at any other university. This thesis entirely contains research work carried out by

Mr Mark Dooner under the supervision of Professor Jihong Wang, unless references are

given.

Some parts of this thesis were included in the following published papers:

M. Dooner, J. Wei, J. Wang, A. Mouzakitis, “Physical Modelling of a Windshield Wiper

Linkage System for Hardware-in-the-Loop Simulation” in The 13th Mechatronics Forum

International Conference, Linz, 2012

M. Dooner, J. Wang, A. Mouzakitis, “Development of a simulation model of a

windshield wiper system for Hardware in the Loop simulation” in Automation and

Computing (ICAC), 2013 19th International Conference on, London, 2013

M. Dooner, J. Wang, A. Mouzakitis, “Dynamic modelling and experimental validation of

an automotive windshield wiper system for hardware in the loop simulation”, Systems

Science & Control Engineering, vol.3, no.1 pp. 230-239, 2015

Mark Dooner

September 2015

xvi

Abstract

In recent years there has been a growth in the automotive industry, coupled with a
growth in the amount of electronic components and systems in a modern vehicle. The
higher amount of electronics has led to an increased amount of Electronic Control Units
(ECU) in a vehicle which require advanced simulation based testing procedures throughout
their development process. One such method is Hardware in the Loop (HIL) simulation in
which a real ECU is connected to simulation models of its environment via a real-time
simulator. This project is concerned with developing a plant model of a windscreen wiper
system for use in the development of Jaguar Land Rover’s (JLR) body electronics ECU.

The system is divided into four parts which are modelled separately: Wiper motor,
linkages, arm and blades, and the windscreen environment. The wiper motor and
mechanical elements models are derived and implemented using the physical modelling
tools SimScape and SimMechanics. A dynamic friction model describing the interaction
between the wiper blades and the windscreen is developed, based on results presented in
the literature. A simple aerodynamic model describing the forces on the wiper blades is
also established.

The parameters of the models are derived using three sequential optimisation
methods: Transfer function parameter identification, Genetic Algorithms (GA) and a
nonlinear least squares local optimiser. A transfer function relating the motor current to
the voltage was derived for step one, and a bespoke GA has been developed for step two.
The parameters were successfully identified. Following this, Artificial Neural Networks
(ANN) were used to convert the physical models into real-time capable models suitable for
HIL simulation. Finally, adaptive control systems are designed in order to maintain the
motor at a constant velocity.

The models are presented in a Simulink library and graphical user interface modelling
tool for ease of use.

xvii

List of Abbreviations

ADC Analogue to Digital Converter

ANN Artificial Neural Network

CAN Control Area Network

CFD Computational Fluid Dynamics

CM Centre of Mass

CS Coordinate System

DAC Digital to Analogue Converter

DDM Driver Door Module

DOF Degree of Freedom

ECU Electronic Control Unit

EIL Engine in the Loop

EMF Electromotive Force

FEA Finite Element Analysis

FPGA Field Programmable Gate Array

GA Genetic Algorithm

GUI Graphical User Interface

HIL Hardware in the Loop

HVAC Heating, Ventilating and Air-Conditioning

I/O Input/output

IS Input Shaping

JLR Jaguar Land Rover

LSE Least Squares Estimation

MAAB MathWorks Automotive Advisory Board

xviii

MIL Model in the Loop

MSE Mean Squared Error

NARX Nonlinear Autoregressive Network with Exogenous Inputs

NB Negative Big

NM Negative Medium

NN Neural Network

NS Negative Small

OEM Original Equipment Manufacturer

PB Positive Big

PID Proportional-Integral-Derivative

PIL Processor in the Loop

PM Positive Medium

PMDC Permanent Magnet Direct Current

PMSM Permanent Magnet Synchronous Motor

PS Positive Small

RLS Recursive Least-Squares

SAE Society of Automotive Engineers

SIL Software in the Loop

SNPID Single Neuron Proportional-Integral-Derivative

ZO Zero

1

Chapter 1 - Introduction

1.1 Background

The value of the automotive industry has been estimated by Clearwater Corporate

Finance LLP in the Global Automotive Report 2013 at $800bn [1] and worldwide passenger

car sales exceeded 60 million units in 2012 [2], as shown in Figure 1-1. This is matched by

an increased production of passenger cars to greater than 60 million in 2012, increasing

5.3% from 2011 – a trend that has been sustained for the past decade [3]. Clearly, an

automotive company who can produce high quality products in an efficient time scale can

make large profits in such a market. Automotive products are safety critical by their nature,

are subject to pressure/regulation for the reduction of greenhouse gas emissions and

customer demand for quality and performance at low costs is high. As a result of this,

automotive product development is a complicated process and industry standards such as

ISO26262 are widely observed to help manage it [4].

Figure 1-1: Global Passenger Car Sales

2

A modern luxury passenger vehicle is a highly complex product which includes

numerous state of the art technologies. An ongoing trend in passenger vehicles is the

increased use of electronic and mechatronic systems to carry out functions traditionally

achieved with mechanical/hydraulic systems (such as steering and braking) in addition to

adding new functionality to a vehicle, as demonstrated by a survey carried out in 2010 by

Frede et al [5]. The annual market growth rate for electronics in vehicles is 7% per annum

[6] as the market tends towards comfort, safety and reduced carbon emissions. It was

estimated by Bosch [7] that the value of automotive electronics in the European market

grew from €36 billion to €52 billion with 80% of that growth being new electronic

components and the remaining 20% being replaced mechanical/hydraulic systems. The

outcome of this migration to electronics is the need for highly integrated, safety critical

electronic control systems.

Modern passenger vehicles can have in excess of 100 Electronic Control Units (ECUs)

[8] running 100 million lines of software code controlling the various functions of the

vehicle [9] [10]. This presents a significant challenge to automotive companies who need to

develop these systems quickly enough to remain competitive whilst meeting stringent

safety and quality standards. The development process for a product in the automotive

industry, in this case an ECU or system of ECUs, follows the classic V model which is shown

in Figure 1-2. The figure has been adapted from Bosch [7] to highlight the use of models in

the development process of a modern product. Models used range from a model

containing the system requirements, derived requirements and test requirements to plant

models of vehicle components such as the engine or electronic components.

Figure 1-2 shows that when testing a product from component level to vehicle level,

the preferred simulation method is Hardware in the Loop (HIL) simulation, which is an

advanced simulation method in which a simulated system is interfaced with a real ECU (or

3

multiple ECUs) [11]. Multiple sources demonstrate that HIL is used extensively in the

development of automotive ECUs [8] [12] [13]. To carry out HIL testing, simulation models

of the ECU’s sensors, actuators and loads need to be developed. A derived requirement of

such a model is that it must be able to be simulated in real time because it is interfacing

with a real component. In this project a simulation model of a windscreen wiper system will

be developed for use in the HIL simulation of the body electronics ECU.

Component
Manufacture

Requirement
Analysis

System
Design

Component
Design and

Development
Component

Testing

System
Testing

Acceptance
Testing

Customer Product

C
o

m
p

o
n

en
t

Sy
st

em

Fu
n

ct
io

n

Requirements
Model

Prototype
System
Model

Prototype
Model

Component
Level HIL

Model

System Level
HIL Model

Vehicle Level
HIL Model

Automated Test Scripts

Figure 1-2: V Model for Product Development

A block diagram demonstrating the HIL testing of a body electronics ECU at component

or system level is shown in Figure 1-3. The ECU is a real component being developed/tested

and is connected to a HIL simulator, inside which are simulation models of the actuators,

sensors and plant dynamics of the component(s) (such as the wiper system) connected to

the ECU1. The HIL simulator contains power and communication I/O which imitate the real

connections to the ECU and the simulation models contained within the simulator simulate

1
 Note that the actuators and/or the sensors could also be hardware components interfacing

with the HIL simulator.

4

the dynamics of the components, outputting electronic loads and/or communication

signals to be applied to the ECU under test. Numerous test cases can be carried out and

repeated in using this configuration.

Body Electronics
ECU (Hardware)

Hardware in the Loop Simulator

Actuator
Simulation

Models

Mechatronic
System Plant

Model

Sensor
Simulation

Models

Control
Signals

DataData

Sensor
Outputs

(Simulated/Real) Control
Signals from Network of

ECUs

Figure 1-3: Body Electronics ECU HIL Simulation

A block diagram of a wiper system is shown in Figure 1-4. The system’s overall purpose

is to expel water and debris from the windscreen and can be broken down into four parts:

The wiper motor, the linkages, the arms/blades and the windscreen. The wiper motor is a

unique design of a Permanent Magnet Direct Current (PMDC) motor with two electrical

inputs for speed control. The motor is connected directly to the battery meaning that

speed control via changing the input voltage is not possible. The linkages convert the

constant rotational motion of the motor to the two output oscillatory motions of the wiper

blades. The arms and blades combine to achieve the forward and reverse wipe of the

windscreen. Finally, the windscreen protects the driver from rain, debris and wind and

must be kept clear at all times.

5

Wiper Motor Linkages

Left Arm/Blade

Right Arm/Blade

Vin

Park Switch

Position

Torque Load

Position

Torque Load

Torque Load

Environment

Figure 1-4: Wiper System Block Diagram

Currently, the body electronics ECU at Jaguar Land Rover (JLR) is connected directly to a

real wiper system consisting of the wiper motor and linkages, which is known as a “no-

load” wiper system. The disadvantages of this are that new prototypes of the wiper system

are expensive and design updates take time to implement, the no-load system does not

capture the full behaviour of the wiper system but a full wiper system is difficult to

implement in a lab due to space restrictions and water management, and the real

component cannot be used in early, simulation based control design and testing. The real-

time capable model developed in this project alleviates these issues by allowing updates to

be implemented immediately by changing model parameters, capturing the behaviour of

the full wiper system without occupying lab space or needing water management, and

allowing the same plant model to be used throughout the entire control design process.

1.2 Objectives

The main objective of this project is to design a tool to be used by JLR to develop

windscreen wiper models suitable for HIL testing of ECUs to replace the real components.

The tool must allow for modular design, meaning that the different elements of the wiper

system defined above must be modelled separately and they must be able to be connected

to each other. The models must be parametized in a way that is easy to update in order to

incorporate design changes in the system. The models must accurately represent the real

6

system whilst being capable of being simulated in real-time. The modelling tool is to be

presented in the form a Graphical User Interface (GUI).

A secondary objective is to develop a controller for the wiper system that maintains the

wiper velocity at a reference speed whilst rejecting the disturbances caused by the torque

load. This will allow the wiper system to be operated at a lower speed, thus reducing the

power consumption and reducing the wear on the PMDC motor brushes.

Concerning the area of HIL simulation as a whole, this project seeks to contribute a

strong and repeatable methodology for developing simulation models of mechatronic

system and investigate ways in which complicated multibody dynamic system can be

simulated in real time. This should improve the effectiveness of automotive HIL testing and

as a result improve the product development process and performance of new vehicles.

1.3 Structure

The remainder of this thesis is structured as described below:

Chapter 2 reviews the background literature pertaining to the work of the project. The

review initially focuses on the strategies for automotive product development and how HIL

is used to assist in this endeavour. Subsequently, existing research on wiper systems is

presented and evaluated – highlighting the need for a flexible and real-time capable

simulation model. Specific technical papers are then reviewed on subjects such as friction

in wiper systems, parameter identification and adaptive motor control.

Chapter 3 analyses the structure of a wiper motor and determines how to model the

system. Multiple models of the motor are designed and compared and the relationships

between the motor’s parameters are determined. The switching control strategies and

implementations are also analysed and modelled.

7

Chapter 4 analyses and models the mechanical elements of the wiper system, i.e. the

linkages, arms, blades and windscreen interface. Physical and mathematical models of the

systems are synthesised and demonstrated. A model of the friction between the wiper

blades and the windscreen is developed along with a simple model to simulate the effects

of aerodynamic forces on the system.

Chapter 5 shows the work done to identify the unknown parameters of the wiper

model. A three stage identification system is developed, starting with a motor transfer

function parameter identification method, followed by a Genetic Algorithm (GA) designed

to identify all of the system parameters and finishing with a local optimizer to refine the

parameters and improve the accuracy of the model.

Chapter 6 shows how the models developed in the earlier chapters are simplified in

order to make them appropriate for real-time implementation, and thus suitable for HIL

simulation. The chapter focuses on the use of Artificial Neural Networks (ANN) to

approximate the models. A hybrid physical-ANN model of the wiper system is developed,

along with a full ANN model.

Chapter 7 describes the development of adaptive control strategies for the wiper

system to track an input reference speed. The control system is based on a Single Neuron

PID (SNPID) controller with adaptive weights and system gain. The results of the adaptive

controller are compared to a classic PID controller.

Chapter 8 shows the development and implementation of the generic wiper system

modelling tool which incorporates the work shown in previous chapters. The tool can be

used by industry to quickly develop and update wiper models for the HIL testing of ECUs.

The dSPACE real-time simulator used to generate validation data for the models is also

shown.

8

Chapter 9 concludes the work done in this project and presents suggested further

work.

1.4 Publications

Currently, the publications generated by this project are as follows:

M. Dooner, J. Wei, J. Wang, A. Mouzakitis, “Physical Modelling of a Windshield Wiper

Linkage System for Hardware-in-the-Loop Simulation” in The 13th Mechatronics Forum

International Conference, Linz, 2012

M. Dooner, J. Wang, A. Mouzakitis, “Development of a simulation model of a

windshield wiper system for Hardware in the Loop simulation” in Automation and

Computing (ICAC), 2013 19th International Conference on, London, 2013

M. Dooner, J. Wang, A. Mouzakitis, “Dynamic modelling and experimental validation of

an automotive windshield wiper system for hardware in the loop simulation”, Systems

Science & Control Engineering, vol.3, no.1 pp. 230-239, 2015

9

Chapter 2 - Literature Review

2.1 Introduction

This chapter presents a literature review of the previous work done in this project’s

research area. The chapter begins by investigating the use of HIL simulation and model

based design in the automotive industry, and how it has evolved from a concept to an

essential part of product development. Examples of how HIL improves the process of ECU

development in the automotive industry are given. The purpose of this section is to give

justification and scope to the work carried out in this project.

Following the investigation of HIL and model based design, a review of the current

windscreen wiper models and control schemes available in the literature is given. This

section also includes a review of papers published regarding previous work in this project.

The purpose of this section is to demonstrate the need for a flexible, real-time wiper

model.

The subsequent sections are concerned with reviewing previous work pertaining to the

technical aspects of this project. Papers concerning online and offline parameter

identification are reviewed in order to identify the best methods to apply to this project.

Papers concerning the identification of the friction between the wiper blades and the

windscreen are presented and methods of modelling the friction are explored. Also the

aerodynamic elements of wipers are researched and discussed. Finally, the adaptive

control of DC motors is reviewed and its application to a wiper motor discussed.

2.2 Automotive Product Development: HIL and Model Based

Design

In 1999 a paper entitled “An investigation into the use of hardware-in-the-loop

simulation testing for automotive electronic control systems” [14] was published, which

10

explored the feasibility of using HIL to develop ECUs. Previous methods of ECU and vehicle

development relied on physical prototypes of vehicle components; however this method

was becoming less fit for purpose as the amount of electrical components and controller

complexity in vehicles increased. HIL simulation was recognised as a possible solution for

modernising the development of ECUs, with the authors of [14] citing a 1993 SAE paper

called “Hardware-in-the Loop Simulation as a Standard Approach for Development,

Customization, and Production Test of ECU's” [15] as evidence of this. The authors of [14]

developed three separate plant models of the three subsystems of the Driver Door Module

(DDM), namely the mirror, window and lock subsystems (building on work by the same

authors previously published in [16]). The models were developed using Matlab/Simulink

and it is stated that it is the introduction of Stateflow to the Simulink tool suite that

facilitated the modelling of automotive subsystems in this way. State charts were already

used in developing vehicle body electronics software, such as in [17] where a state model

of a wash/wipe system was demonstrated, and the inclusion of a state chart simulator in

Simulink greatly improved its suitability for vehicle body electronics modelling. The work

demonstrated that, with relative ease, simple off-line plant models could be converted to

online models and uploaded onto a real-time simulator and simulated in real time. The

paper concludes that HIL can make a positive difference in ECU development and has the

potential to be implemented in the future.

A review carried out in 2006 called “Review of hardware-in-the-loop simulation and its

prospects in the automotive area” [18] confirmed the conclusion of the authors of [14]. The

review found that, in the automotive industry, HIL is the preferred method of ECU testing,

development and calibration. The paper also discussed other applications of HIL, with the

focus being on an Engine in the Loop (EIL) system in which a real engine is interfaced with a

simulated vehicle for testing and development. The review also highlighted that systems of

HIL simulators connected online could allow separate elements of the vehicle to be

11

modelled independently and then tested in a connected system. A survey of 80 technical

papers in 2007 [12] confirms that HIL is now widely employed in ECU development in the

automotive industry. The paper also states that there is a trend towards model based

design, which is a recurrent theme amongst recent publications in the area of ECU

development.

The advantages of using HIL over traditional prototype based production development

methods are explicitly stated in references [19], [8] and [14], amongst others. The main

advantages listed are 1) The ability to carry out testing in pre-production stages, 2) The

ability to develop and test systems concurrently without having to wait for prototypes, 3)

Dangerous and/or extreme condition tests can be carried out safely and easily repeated

and 4) Tests can be standardized and automated.

Model based design of automotive ECUs generally refers to developing the control

software in three stages: Model in the Loop (MIL), Software in the Loop (SIL) and HIL

(sometimes Processor in the Loop (PIL) is used). References [20] and [21] give details as to

how this process works. MIL refers to designing a control system and its associated plant

model(s) in a simulation package such as Simulink and running test cases purely in

simulation. Once a suitable control system has been developed, the controller model is

compiled into production code (usually via automated methods) and simulated with the

plant models used in the MIL testing stage. This is the SIL stage. Exactly the same test cases

can be applied in both stages. Finally, the code tested and developed in the SIL stage can be

implemented in an ECU (HIL) or another processor (PIL) and once again tested with the

same test cases and plant models as before. This back to back testing procedure allows

thorough testing of the controller before it is implemented, potentially saving time and

money by identifying faults early. Model based design is also encouraged for meeting

12

standards such as ISO26262 [4] [22] due to its iterative nature and traceability of results

[23] [24].

It can be seen that HIL and model based design have become popular tools in ECU

development and, as has been previously stated, this is largely down to the increase in

electronics in modern vehicles [6]. In 2006, top of the range vehicles could have up to 70

interconnected ECUs controlling the various functions of the vehicle [8]; the number is now

around 100 ECUs operating on an estimated 100 million lines of code [9]. It is also found

that the majority of issues with vehicles that require OEM recall are electronics based,

leading to increased pressure to improve the quality of testing in the design stage [13].

In summary, HIL and model based design have become important tools in automotive

ECU testing, and numerous examples of their application are available in the literature,

many of which are available from dSPACE: [25], [26], [27] and [28] are given as examples.

2.3 Current Wiper System Models and Research

This section explores current research into the wiper system and the models currently

in the literature. The purpose is to justify the need for a real-time capable wiper model that

models the system from the perspective of the wiper motor I/O. Note that research

relating specifically to the friction between the blades and windscreen is discussed in

Section 2.5 .

2.3.1 Vibration Analysis and Mitigation Research

The majority of the research in the area of windscreen wipers concerns the vibrations

in the system. This research can further be split into modelling, measurement and

reduction through control techniques or mechanical design. In 2000, a paper called

“Dynamic Analysis of Blade Reversal Behavior in a Windshield Wiper System” [29] was

published which developed a highly accurate three dimensional model of the wiper

13

system’s linkages, arms and blades. The purpose was to analytically investigate the causes

of reversal noise (the noise caused by vibrations when the blade reverses its direction) and

investigate ways to reduce it. The paper found that the angles and clearances between the

wiper rubber and the blade had a large effect on the reversal noise, but also on other

sources of noise in the system. The model is a complex multibody dynamic model which is

not suitable for real time simulation and models behaviour that is not significant for the

model to be developed in this project. Two later papers with shared authors to [29] used a

similar model to investigate and mitigate squeal noise2 in the wiper system [30] [31]. Both

papers used measurements, FEA and mathematical models to investigate the noise. They

concluded that it could be reduced by changing the configuration of the wiper (as in [29]),

material choice and surface treatment. The three papers clearly show that multibody

dynamic modelling is capable of modelling the wiper system to a higher fidelity than is

needed in this project.

In 2002, chatter vibrations3 were investigated in the paper “Simulation of Chatter

Vibrations for Wiper Systems” [32] using a similar technique to the previous papers

discussed. A mathematical model was developed and validated with real data to determine

the factors affecting chatter vibrations. It was found, as in [31] [30] and [29], that the

geometry of the blade and the rubber material had the biggest impact. Chatter vibrations

were also investigated in [33] which used a validated finite element model to accurately

simulate the system. Instabilities in the system that caused the chatter vibrations were

then found using a complex eigenvalue method. The paper then proposes structural

modifications to mitigate such vibrations.

A common method used to reduce friction induced vibrations is input shaping control.

Input shaping is a control technique used to remove vibrations by combining impulse

2
 Defined as the high frequency vibration of the wiper system (around 1000 Hz)

3
 Defined as low frequency vibration in the wiper system (around 100Hz)

14

signals, designed to cancel vibrations, with the normal input command. In a 2008 paper

called “Application of Input Shaping Control Strategy for Reducing Chatter Noise in the

Automotive Wiper System” [34], the model developed in [29] was used to design an input

shaping control system to reduce chatter noise. The vibrations that caused chatter were

reduced by 30%. A paper released in 2010 with some shared authors with [34] follows a

similar approach to [34] in order to use input shaping to reduce reversal vibrations with the

same results (i.e. 30% decrease in vibrations) [35]. Similarly, in [36], input shaping is used to

reduce unwanted vibrations. In this case, a particle swarm optimisation algorithm was used

to time and shape the impulses in order to optimise the controller. Reduced vibrations

were observed. Finally, in a paper entitled “Practical multi-objective controller for

preventing noise and vibration in an automobile wiper system” [37], unwanted vibrations

were reduced using input shaping, whose impulses were optimised using a Genetic

Algorithm (GA). The model proposed in [29] was used to generate I/O data to train a

recursive Artificial Neural Network (ANN) which was then implemented in the control

system. A similar technique is used in this thesis to produce a real-time capable model. A

collective weakness of these papers is that none of them implement the input shaping

control in a real system, which will be driven by a wiper motor with its own dynamics. In

reality, achieving an accurate target velocity is difficult to accomplish (see Chapter 7).

Other papers investigating vibration in wiper systems include [38] and [39], which

specifically concentrate on how friction induces vibration using models and experimental

measurements. Paper [38] concluded that squeal noise could be explained and modelled

using the Stribeck friction effect. Paper [39] concurs with this, demonstrating that it is the

negative friction-velocity curve at low velocities that causes the instabilities. Paper [40]

takes experimental measurements of friction induced vibrations using microphones. The

paper concluded that the wetness of the windscreen directly affected the amplitude and

position (with respect to the wipe angle) of the vibrations. Note that [40] used the “Wet”,

15

“Dry” and “Half-Dry/Tacky” windscreen conditions that are used in this project. The chaotic

modelling and control of the wiper system have been studied by Chang and Lin in [41] and

Chang in [42]. These papers serve to demonstrate how complex the behaviour of a wiper

system can get, but are out of the scope if this project.

In general, the papers researching the vibrational behaviour and control of a wiper

system present models that are too complicated to be used in this project, but do serve as

a useful tool for understanding the behaviour of a wiper system and as starting points for

simpler models. A general weakness in most vibration based papers is that they do not take

into account the wiper motor, and thus are ignoring an integral part of the system which

has an effect on the dynamics and the potential control solutions.

2.3.2 Control of Wiper Systems

A paper entitled “Research on Passenger Car Windscreen Wiper Controller and Control

Method Based on CAN” [43] designed a control system which operates using the Control

Area Network (CAN) bus, which is used in electric vehicles. The idea is to replace older

control systems, which tend to route power via switches, with a network based control

method. Most modern vehicles employ wiper control based on CAN, the specifics of which

depend on the vehicle model.

Most wiper systems work using one motor to drive both wiper arms; however some

research is carried out into controlling systems with separate motors driving each arm4. The

control challenge in this case is to synchronise the wipers to avoid collision. A recent paper

released in 2015 [44] reviews current proposed control methods and suggests its own

method using a Peripheral Interface Controller and an FPGA, although no details or results

are provided. The most relevant paper cited by [44] is “On the Synchronization of a Pair of

4
 An advantage of this style of wiper system is the reduction in weight, noise and mechanical

failure. However the system is more difficult to control.

16

Independent Windshield Wipers” [45] which models a two motor wiper system and

controls the motors using reference trajectory planning and PID controllers. Current

research on these types of wiper systems is limited to simulation.

A project is reported in [46], published in 2014, which developed an automatic system

which controls the wipers using a rain and dust sensor and the sun visor via a light sensor.

The purpose of the project is to fully automate the driver’s visual comfort. It is likely that

such systems will be implemented in future vehicles, for example many modern vehicles

already implement a rain sensor.

2.3.3 Dynamic Models of Wiper Systems

The literature contains some dynamic models of wiper systems that share similarities

with the model developed in this project. The paper “Dynamic Modeling and Control of the

Windshield Wiper Mechanisms” [47] details the design process and control of a complete

wiper system. The design and synthesis of the mechanical elements is implemented in the

3D modelling suite CATIA, with the geometry then transferred to the multibody dynamics

modelling tool ADAMS for simulation. The ADAMS model is then co-simulated with a

standard PMDC motor model and control system designed for controlling the motor

velocity which are simulated in Matlab. The number of CAD packages used in this design

process could be reduced by using the physical modelling tools in Simulink, streamlining

the process. The controller is based on PID control and achieves good results in the test

case shown, however only one ideal test case is presented, whereas a real wiper system

undergoes dynamic torque loads and is required to be operated at multiple speeds.

A paper published in 2011 [48] develops a model of the wiper system’s mechanical

elements using the mechanical physical modelling tool in Simulink, called SimMechanics.

The model does not include the motor, nor is it validated against real data, but the paper

does show that SimMechanics is a powerful tool for modelling multibody dynamic systems.

17

SimMechanics will be utilised heavily in this project. The SAE paper [49] also reports a

modelling system whose purpose is to aid the design of the mechanical element of the

wiper system, although details of the system are not given. The paper presents results that

indicate the dynamics of the wiper system and can be used as an early validation of the

models developed in this project.

Finally, two papers have been published that report work previously carried on this

project. These are: “Vehicle windscreen wiper mathematical model development and

optimisation for model based hardware-in-the-loop simulation and control” [50] and

“Accurate Model Based Hardware-in-the-Loop Test for a Windscreen Wiper System” [51].

Both report a “no-load” model5 of the wiper system, whose unknown parameters are

identified with a GA. The models successfully simulate the positional elements of the

linkages; however the torque load is identified as constant, which is untrue. Also the motor

equations do not model the two speed functionality essential for wiper motor operation,

and the parameters for the transient conditions are incorrect, i.e. the motor takes many

seconds to settle into steady state, whereas in reality it takes less than a second. This

project will take the models presented here and add flexibility, fidelity and functionality to

them.

The analysis of the literature concerning automotive product development and current

wiper models has shown there is a gap in the literature for model of a windscreen wiper

system that accurately represents the behaviour of the system which can be simulated in

real-time, making it suitable for HIL simulation, to be developed.

5
 A model of the wiper system that only includes the wiper motor and the linkages, i.e. the arms,

blades, windscreen and environment are not included.

18

2.4 Parameter Identification

2.4.1 Off-line Parameter Identification using Genetic Algorithms

Genetic Algorithms were introduced by Holland in 1975 [52] and have since been

developed by numerous authors such as Goldberg [53]. They have become a popular tool

for solving optimisation problems (such as parameter identification) and are applied in this

project to identify the motor and friction parameters of the wiper system. The advantages

of GAs are that they are well suited to solving non-linear and non-differentiable problems

and are less susceptible to convergence on local minima than local optimisers [54].

GAs have been used in previous work on this project in papers [51] and [50] and there

are many examples of them being used for parameter identification across the literature.

Some examples are [55] – which showed that GAs can outperform a Least Squares

Estimation (LSE) algorithm in PMDC motor parameter identification, [56] – which

successfully identified the parameters of an induction motor using a GA and [57] – which

used a GA to identify the parameters of a coal fired supercritical power plant. It can be seen

from the examples that GAs can identify the parameters of complex models.

2.4.2 On-line Parameter Identification

The parameters of the wiper system are subject to change during operation due to

factors such as wear and temperature changes. This is not an issue for a model to be used

in HIL; however control systems based on state estimators rely on model parameters to

estimate unknown states, such as the velocity of a DC motor. The paper “Sensorless speed

control of DC servo motor using Kalman filter” [58] gives an example of using a Kalman

filter to estimate the speed on a DC motor using measured voltage and current data along

with a mathematical model of DC motor. The system performs well in ideal conditions but

any changes in motor parameters will cause an error in the estimated speed.

19

Similarly, a paper published in 2010 [59] uses an observer to estimate the velocity of a

DC motor, however in this case the resistance and inductance were estimated online using

a Recursive Least-Squares (RLS) algorithm. This technique is relatively common in

sensorless motor control [60] [61]. However, it is difficult to implement in this project due

to the dynamic and unmeasured torque load and models based on physical modelling and

ANNs.

Implementing sensorless speed control is suggested as further work in this project.

2.5 Friction in a Wiper System

One of the defining features of a windscreen wiper system is the friction between the

rubber wiper blade and the glass windscreen. Friction is the dominant force contributing to

the torque load acting on the wiper motor. For these reasons, and for the facts that friction

has an effect on the lifetime of wiper blades, vibration and wiping performance, a lot of

research into the friction in wiper systems is carried out. In addition, research into friction

in general is active and has been for decades through numerous research streams such as

physics, tribology, modelling and control. This review, and subsequent modelling work, will

focus on the issues of defining and modelling friction, and friction specifically relating to

wiper systems.

In 1968, Dahl released a much cited paper considering the physical phenomena causing

friction and presented a simulation model for mechanical systems undergoing sliding (or

rolling) motion [62]. The solution models three elements of friction: Static friction,

Coulomb friction and Sliding/Rolling friction. Static friction is the force that must be

overcome before a body subject to an external force will begin to move. Coulomb friction is

the constant resistive force experienced by a moving body; its magnitude is less than that

of static friction. Sliding or rolling friction (depending on the nature of the mechanical

structure) is the frictional force experienced by a body which is dependent on the velocity

20

of the body. This model has been widely used (and developed further) when simulating and

controlling mechanisms or machines, as demonstrated in the survey paper entitled “A

survey of models, analysis tools and compensation methods for the control of machines

with friction” [63].

In 1994, the first survey on friction compensation that brought together research from

numerous fields of study was published [63]. The study cites 280 research articles and

examines many aspects of friction, from its cause to suitable compensation methods. In

this project, certain conclusions of the survey should be taken into account: 1) There should

be a theoretical as well as experimental justification for the friction model used in order to

validate any assumptions and simplifications made. To satisfy this, research articles

specifically in the area of windscreen wiper friction are studied. 2) Lubrication must be

considered. This conclusion specifically refers to engineering lubricants and their effect on

a system; however in the case of a wiper system the water on the windshield will have a

large effect on the frictional force. 3) Analyses must be verified across the full range of

application. The inevitable simplifications made due to the complexity of friction as a

phenomenon mean that any model developed in this project must satisfy experimental

data across all speeds and wetness levels to ensure that the simplifications are valid.

The paper “Friction Models and Friction Compensation” published in 1998 [64] briefly

covers existing friction models, generally splitting them between static models6 and

dynamic models. Dynamic models take into account the hysteresis effects of friction, such

as a lower friction force for decreasing velocities than for increasing. Most of the dynamic

models given in the paper are extensions of the Dahl model.

6
 Most static models of friction are in fact dynamic since they are functions of velocity due to

viscous friction.

21

A widely used friction model based on approximating the surface contact between two

materials using the action of bristles was introduced in [65], and is also described in [66].

The purpose of the model was to capture the hysteresis effect of friction observed as the

velocity oscillates around zero. If this effect is not taken into account the performances of

friction models are poor at low velocities and are thus unsuitable for precise feedback

control. The proposed brush model is an example of a dynamic friction model, which

perform well at low velocities. Due to the nature of the model developed in this project, it

is unlikely that a dynamic model such as this is needed. Also, dynamic models tend to be

computationally expensive, which is unsuitable for HIL.

Identification of friction model parameters is an important aspect of friction modelling.

A 2007 paper by Borsotto et al [67] considers the static and coulomb forces to be the most

important and identifies them using a limit cycle method. A paper by Fujii [68] shows a

method to dynamically measure the coefficient of friction between two bodies (using a

wiper blade as an example) by measuring the inertial forces acting on the masses. In a

paper by Nakajima et al [69], a GA was successfully used to identify friction coefficients.

This method will be employed in this project. Similarly Kim et al [70] used an accelerated

genetic algorithm to identify the parameters of a seven parameter friction model.

Papers studying friction specifically in wiper systems are now considered.

A paper by Bodai et al [71] investigates the friction force measured at the windscreen

and wiper blade contact area using a rotating cylinder of glass in contact with a wiper

blade. The paper largely focuses on explaining erroneous results by using an analytical

model to demonstrate eccentricities in the cylinder of glass. However, the paper also gives

results of a measured friction coefficient for different slip speeds and normal force

components. The coefficient decreases with decreasing normal force and also with

increasing speed. This disagrees with many friction models presented in papers above,

22

which suggest that that the friction force increases with speed. These results correspond

with a later paper by the same authors [72] which uses finite element modelling and

experimental measurements to investigate sliding friction of a wiper blade.

Work done by Buta [73] measured the friction force of a wiper blade at three different

speeds in wet and dry conditions. The results suggested that the friction increases with

speed, which disagrees with [71] and [72], and is higher in dry conditions.

A 2009 paper by Deleau et al [74] attempts to measure sliding friction between a wiper

blade and glass in wet, dry and tacky conditions. The results show a largely linear

relationship between the normal force applied to the blade and the frictional force. In

agreement with [71] and [72], the results also show an initial increase in frictional force

with velocity up to around 100mm/s, followed by a constant or decreasing force as speed

increases. The paper also shows that for a constant force and speed, the friction

force/coefficient is at its lowest in the windscreen’s wet condition, the highest in its tacky

condition and second highest in the dry condition. This is agreement with [73].

A 2007 paper by Koenen et al [75] agrees with [74] and [73] by showing that the

coefficient of friction is highest when the windscreen is tacky, lowest when wet and

medium when dry. The paper shows results giving a higher wet coefficient of friction at low

speeds which level out at higher speeds. This agrees partially with [71] in that at 100mm/s

the coefficient of friction levels out, however in this case it seems to rise slightly as the

velocity increases. Also, an increased load causes a decrease in the coefficient of friction in

wet conditions.

In Chapter 4 data from the papers [72], [68] and [75] is plotted and used to develop a

dynamic friction model to apply to the wiper model. A six parameter continuously

differentiable friction model is presented in [76] which is used as a basis for the model

23

developed in this project. A dynamic friction model is developed instead of, for example, an

average friction or worst case friction model for a number of reasons. Firstly, it allows the

model to be used to analyse the dynamic current load on the vehicle’s battery. Secondly,

the load dynamics of the system can be modelled to a higher accuracy, allowing the

development of control systems (such as that shown in Chapter 7) that can adapt to

changing load conditions. Finally, the addition of the dynamic friction model does not add a

large burden on simulation time when compared with other elements of the model,

particularly the multibody dynamic element calculating the position and inertial forces of

the mechanical system.

2.6 Vehicle and Wiper Aerodynamics

 There is a large amount of work and research conducted into the aerodynamics of

vehicles due to the fact that the aerodynamic design has such a great effect on the

performance of the vehicle. In general, the study of vehicle aerodynamics is out of the

scope of this project; however the forces experienced by the wiper system when the

vehicle is moving will have an effect on its performance. This section begins by giving some

example studies on vehicle aerodynamics to demonstrate the general process of

developing and validating models, and then gives details on papers specifically related to

the aerodynamic forces experienced by the wipers.

A paper published in 1993 called “Aerodynamics of road vehicles” [77] gives a good

overview of the implications of aerodynamic forces on vehicles, such as drag and trailing

vortices, and how they affect the design of vehicles. Importantly, the use of Computational

Fluid Dynamics (CFD) as a method of design and testing are discussed. The reference

models used in the CFD simulation of vehicles are studied in [78], which shows how the

complexity and fidelity of the models have increased as the technology has developed and

that simple reference models are often suitable for CFD purposes. There are numerous

24

cases of CFD being used to simulate the fluid flow over an entire vehicle, such as [79] which

investigates the effect of the rear slant angle of a simplified reference vehicle model on the

air flow over it and [80] which uses a wind tunnel to validate and fine tune a CFD model of

a vehicle to simulate the flow field around it. Also, more specific analyses can be carried

out, such as [81] which investigates the heat distribution across the windscreen due to heat

jet nozzles placed at the bottom of the windscreen. One such specific analysis is the study

of aerodynamic forces on wiper systems.

A 2009 paper called “The Appropriate Use of CFD in the Automotive Design Process”

[82] investigates ways of reducing development costs of a vehicle in the design phase by

using CFD to its fullest potential7. One element discussed by the paper is the effect of the

wipers on vortices which induce drag. Results are not given, however it is clear that the

effects are complex and could not be captured in a real-time model. A study in 2013 [83]

investigated, using CFD validated with wind tunnel experiments, the optimal placement of

the wipers in the park position in order to reduce audible noise due to the vortices that

they cause. As in [82], the paper serves as an example of the complexity of the fluid flow

around wipers. Two studies by Valeo Wiper Systems in 2001 [84] [85] specifically

investigate the drag and lift forces on wiper systems due to the velocity of the car. Paper

[84] compared forces calculated with CFD with experimental data and found that the error

was generally less than 10%. The paper demonstrates that different wiper blades can

experience significantly different drag and lift forces under the same test conditions and

that the addition of a spoiler to the blades can develop a negative lift force (i.e. a lift force

towards the windscreen). Typical measured results were around 12N for the drag force and

4.5N (-4.5N with a spoiler) for lift. Paper [85] has a similar work flow to [84] but compares

the forces experienced by a classical wiper blade and a new design of blade formed by one

7
 An analogy can be drawn between the costs saved using by using HIL (and other “X-in-the-

loop” style simulations) and CFD simulation, although the methodology and fidelity of the models
are very different.

25

piece of rubber8. Again, the paper highlights the differences in aerodynamic forces

experienced by different wiper designs under the same test conditions. Finally, a Korean

paper published in 2001 [86] determines the drag and lift coefficients of the driver and

passenger side wiper blades at high speeds. Results of the CFD analysis show that the drag

and lift coefficients are dependent on the wiper angles and speed of the vehicles. Results

from papers [84] [85] and [86] are used in Chapter 4 in a simple aerodynamic model

implemented in Simulink.

2.7 Adaptive Control Using Single Neuron PID Controllers

A common method of PMDC motor control is to use closed loop PID (Proportional-

Integral-Derivative) control. The angular velocity of the DC motor is fed back and compared

to a target velocity to form an error signal. The error signal is the input to the PID controller

which uses constant gains to generate a control signal based on the error, its derivative and

its integral to apply a control signal to the motor. The method generally has good

performance but it is unable to adapt to changes in conditions and usually requires a trade-

off between transient performance, reference tracking and disturbance rejection. Single

Neuron PID (SNPID) controllers are a method of emulating PID controllers with the added

feature of adaptive gains. The three PID gains are replaced with three weighted inputs to a

single output Neuron. The weights can be adjusted in real time depending on the

performance of the system.

A paper released in 2010 [87] successfully implements a SNPID controller for the speed

control of a PMDC motor. The system was designed in Matlab/Simulink and implemented

in a dSPACE simulator, demonstrating that the method is feasible for this project. The

system in paper [87] was able to update the SNPID gains, however the output of the

Neuron is multiplied by a linear gain, K , which has a large effect on the system

8
 A design now commonly used in road vehicles.

26

performance. Many studies extend the SNPID controller to include an adaptive value of K .

One such paper [88] achieves this using an adaptive controller based on the biological T

cellular immunity adaption mechanism. It was shown that by adapting K the disturbance

rejection of the controller was improved along with the rise time.

A more conventional method of tuning K is to incorporate a fuzzy logic controller into

the system. This technique is used in the papers [89] and [90]. The input to the fuzzy

controller is the error signal and the increment of the error (to capture the error change

rate) and the output is the value of K . Paper [90] compared a fuzzy controller with only

the error signal as an input to one with the addition incremental error input and found that

the performance was not improved with the addition of the incremental input. Both

studies reported a very good performance from the controller in terms of start-up

performance, reference tracking and disturbance rejection.

There are also many examples of SNPID controllers being used for purposes other than

PMDC motor control such as Permanent Magnet Synchronous Motor (PMSM) control [91],

a Heating, Ventilating and Air-Conditioning (HVAC) system [92], a switched reluctance

generator system [93] and a mechanical prestressing system [94]. A SNPID system with a

fuzzy controller adapting K is implemented in Chapter 7 of this thesis. SNPID control was

chosen for this project due to its ability to quickly update the PID gains to adapt to changes

in load and velocity demand and its previously successful applications in PMDC motor

control. It also builds on the use of the neurons in Artificial Neural Networks (ANN) used in

the real-time modelling of the wiper system, shown in Chapter 6.

27

Chapter 3 - Wiper Motor Modelling

3.1 Introduction

The electrical motor used for driving the wiper system has a different structure from

ordinary PMDC motors. The literature study presented in Chapter 2 revealed that there is

currently no available model representing the behaviour of a wiper motor which is suitable

for this project. The only model found was presented in two papers by Wei et al [51] [50];

however the model does not take account of the two input speed control and, due to its

parameters, is only suitable for steady state simulation, which is not representative of

wiper motor behaviour. Models of standard PMDC motors are common and well known;

however the two input speed control of the wiper motor has not been adequately

modelled, although the underlying physics and operation is known.

This chapter begins by presenting the basic structure of a wiper motor in order to

understand how the position of the two input brushes, the winding pattern of the armature

conductors and the gearing on the shaft affect the behaviour of the motor. This

information is then used to develop a mathematical representation that describes the

wiper motor and how the parameters differ from a standard PMDC motor model. Following

this, simulation models of the wiper motor are developed. Firstly, a simple state space

model is developed to verify the validity of the equations in terms of describing the

behaviour of the motor. Secondly, a physical model9 of the motor is presented which can

interface with other elements of the simulated wiper system (i.e. the control system and

the linkages). Once the basic wiper motor model is designed, the wiring and switching

strategies are presented and modelled. When a wiper system is switched off, the motor

9
 In this document, physical models refer to the computer modelling technique of representing

each physical element of the system to be modelled with a corresponding simulation block
connected with lines representing physical connections in the system.

28

carries on until the wipers are in their park position – which is achieved by the use of a park

switch. The simulation models of these methods are demonstrated.

The models developed here are validated against real data in Chapter 5.

3.2 Wiper Motor Structure

A wiper motor consists of a brushed PMDC motor, with two electrical inputs and one

electrical output, driving a worm and wheel gear configuration to decrease the speed and

increase the torque of the driven load, i.e. the linkages, arms and blades. Each wiper motor

also includes a park switch, the nature of which varies and is determined by the design of

the specific motor. This is discussed in more detail in Section 3.6. An example of a wiper

motor can be seen in Figure 3-1. The left picture (a) shows the motor casing and the worm

and wheel gear configuration. The driving shaft, connected to the crank of the linkages, is

attached to the centre of the wheel gear. The left picture also shows the park switch

connection on the wheel gear. The right picture (b) has the casing removed and the

windings and armature of the PMDC motor can be seen.

(a) (b)

Figure 3-1: Wiper Motor Construction

To comprehend the nature of the two input speed control, the position of the two

electrical inputs in relation to the permanent magnets and the commutator must be

examined. This configuration can be seen in Figure 3-2. Diagram (a) shows the input

29

brushes on the left and the output on the right of the base. The slow speed input brush is in

line with the common output brush and the fast speed input brush is offset. This can clearly

be seen in the top of diagram (b). The bottom of diagram (b) shows the position of the

brushes with respect to the magnets, highlighted in blue. The magnetic neutral line dissects

the slow and common brushes, thus the fast input brush is offset, and is known to cause an

increase in rotational speed [95].

(a) (b)

Figure 3-2: Wiper Motor Electrical Input Placement

The wiring strategy of a wiper motor is now examined. First, the connection of each

winding to the commutator is analysed, this is shown in Figure 3-3. The figure imagines that

the commutator has been laid flat and each segment is labelled from A to L. Segments A

and L are also adjacent to each other. It can be seen that the return path of each coil of

wire (denoted by n where n identifies the coil) connects to the commutator segment

adjacent to its origin. This is known as lap winding and is important for determining the

lengths and position of the current paths.

30

A B C D E F G H I J K L

1 1' 6 6' 9 9' 1212' 3' 3 7' 7

10'10 4 4' 8 8' 11 11' 2' 2 5' 5

Figure 3-3: Wiper Motor Commutator Connection

The final element to consider when analysing the structure of a wiper motor is the

physical configuration of the coils around the armature. This is shown diagrammatically in

Figure 3-4. The coils, in this case 12, can be considered as being in pairs. For example, coils

10 and 11 are both wound on the bottom layer of the coils. On top of these are coils 7 and

9, followed by 5 and 8, 3 and 6, 2 and 4, and finally 1 and 12 which are on top. This method

of winding has disadvantages. For example, coils 10 and 11 are noticeably shorter than coils

1 and 12 because they are on the bottom of the windings. This causes a difference in the

resistance and inductance of the coils and they are subject to a different magnetic field.

This can cause imbalances in the motor performance. However, it is an easy way to wind

the motor for a mass produced product such as a wiper motor and is thus fairly common. In

this analysis the slight changes in the parameters of each coil caused by this winding

strategy are assumed to be negligible.

31

Figure 3-4: Wiper Motor Wiring Diagram

3.3 Model Derivation of the Wiper Driving DC Motor

With knowledge of the structure and winding strategy of the wiper motor, the

parameters and dynamic equations governing its behaviour can be derived. The derivation

shown here is based on the process shown in reference [96]. The assumptions made when

modelling the motor are as follows:

 None of the coils are electrically shorted during commutation

 Torque ripple is negligible

 The slow and fast input brushes have equal resistance

 The parameters are not affected by changes in temperature

 The magnetic flux generated by the PMs is directed radially out of, or into, the

armature.

32

3.3.1 Torque Production

To understand how the PMDC motor produces torque when a current is supplied, how

it can be mathematically modelled and how the wiper motor behaves differently in its slow

and fast modes of operation, it is useful to examine the armature current paths in each

mode. For the 12 coil wiper motor examined, and when ignoring commutation effects, the

current paths can be displayed as shown in Figure 3-5 for the slow operation and Figure 3-6

for the fast operation.

The 12 armature slots are labelled a to l and the coils are labelled 1 to 12 with a tick

denoting its return path. The instantaneous direction of the current is represented

classically by a dot meaning current out of the page and a cross meaning current into the

page. The colours signify the two current paths from the input brush to the common

ground brush. The blue current path is current path one and the red is current path two.

The arrows show the direction of the magnetic field generated by the permanent magnets,

with the dotted line denoting the magnetic neutral line. The magnetic field is described

either by the flux density vector, B , or by the magnitude of the magnetic flux density, B ,

and the unit vector, r̂ , which always points radially away from the centre of the armature.

It can be seen in Figure 3-5 that for the slow speed operation the current paths around

the armature are symmetrical about the magnetic neutral line. This is the case in a normal

PMDC motor. In the fast speed operation shown in Figure 3-6 however, two observations

can be made. The first is that the current paths are now unbalanced, which will affect the

behaviour of the motor. The second observation is that current path one is physically

longer than current path two, meaning that the two current paths will have a different

resistance and inductance. This needs to be taken into account when modelling the motor.

33

Figure 3-5: Wiper Motor Current Paths (Slow)

Figure 3-6: Wiper Motor Current Paths (Fast)

34

To analyse the torque produced by the motor, the torque developed in each armature

slot is determined. There are three cases to consider:

1) The currents in the slot are equal and flow in the same direction.

2) The currents in the slot are equal and flow in opposite directions.

3) The currents in the slot are unequal and flow in the same direction.

Starting with case 1, such as that shown in slot a of Figure 3-5 with coils 1 and 2

residing in it, the torque can be derived as follows. First the force produced by coils 1 and 2

are derived:

1

1

1

ˆˆ

ˆ

coilF i

il B

il B

 

 



l B

z r

θ

 (3.1)

2

1

1

ˆˆ

ˆ

coilF i

il B

il B

 

 



l B

z r

θ

 . (3.2)

where l is the length of the conducting coil in the direction of the current, 1l is the height

of the armature, i is the current in the coil and vectors ẑ , r̂ and θ̂ conform to the

cylindrical coordinate system shown in Figure 3-7.

ẑ

x̂

ŷ

r

 r̂

θ̂

Figure 3-7: Cylindrical Coordinate System

35

Next, the torques produced by these forces are determined:

 

 

 

1 2 1

2 1

2 1

ˆ/ 2

ˆˆ/ 2

ˆ/ 2

coil coill F

l il B

l il B

 

 



T r

r θ

z

 , (3.3)

 

 

 

2 2 2

2 1

2 1

ˆ/ 2

ˆˆ/ 2

ˆ/ 2

coil coill F

l il B

l il B

 

 



T r

r θ

z

 , (3.4)

where 2l is the diameter of the armature.

The total torque produced in the armature slot is simply:

 

1 2

2 1

1 2

ˆ2 / 2

ˆ

ˆ

a coil coil

T

l il B

l l Bi

K i

 

   





T T T

z

z

z

 , (3.5)

where the torque constant for a single armature slot, tK , is defined as

 1 2tK l l B . (3.6)

For case 2, such as that shown in slot f of Figure 3-5, it can be seen that since the

current in the two coils is travelling in the opposite direction but under the same direction

of magnetic flux, the torque produced will be of equal value but in opposite directions and

they will cancel each other out. Mathematically, in the case of slot f :

1

1

1

ˆˆ

ˆ

coilF i

il B

il B

  

  

 

l B

z r

θ

and

11

1

1

ˆˆ

ˆ

coilF i

il B

il B

 

 



l B

z r

θ

,

36

and thus

 1 11 0f coil coil  T T T . (3.7)

For case 3 such as that shown in slot c of Figure 3-6 where the currents in the

windings are in the same direction but with different magnitudes the torque produced in

armature slot can be described by the following:

  5 1 2 1
ˆ2coil l l BiT z , (3.8)

  6 1 2 2
ˆ2coil l l BiT z , (3.9)

where 1i and 2i are the currents in current paths 1 and 2 respectively. Thus, the final

torque produced in the armature slot is:

  5 6 1 2 1 2
ˆ

c coil coil l l B i i   T T T z . (3.10)

An Expression for the torque produced by the motor in its slow and fast modes is now

determined by summing the torque produced by each individual slot and using Figure 3-5

and Figure 3-6 to determine which of the three cases to use for each slot – depending on

the current path pattern:

 10slow a b l t slowT T T T K i    , (3.11)

 8fast a b l t fastT T T T K i    , (3.12)

where slowT and slowi , and fastT and fasti are the torques and currents produced in the fast

and slow operation, respectively, with fasti equalling  1 2i i and
slowi equalling i because

the currents in the two paths to ground are equal in the slow operation.

37

3.3.2 Back EMF

A similar analysis is now carried out for the back EMF produced by the motor in its slow

and fast modes of operation. In this case, rather than analyse the system based on the

separate armature slots, the armature winding loops are analysed.

Figure 3-8a shows a single coil of wire in the armature with the transparent section

representing the air gap of the motor between the armature windings and the permanent

magnets. This can also be seen as the flux surface of the magnetic field, given the symbol

S . The flux surface is approximately a half cylinder with a length/height of 1l and diameter

of 2l . The positive direction of travel around the coil is defined as being anticlockwise in

accordance with vector r̂ pointing radially outwards from the armature centre and the

right hand grip rule. The magnetic field in the air gap between the magnets and the

winding is known to be approximately constant and radially directed with a magnitude of

B . Thus an expression for the vector B is given as:

ˆ 0

ˆ 2

B for

B for

 

  

  
 

  

r
B

r
 , (3.13)

where  is the position of the rotor and is zero or  when in line with the magnetic

neutral line.

38

(a) (b)
Figure 3-8: Single Coil Flux Surface and Flux Surface Element

From Figure 3-8b an expression for the differential flux surface element dS can be

derived as:

  2
ˆ2d l d dzS r (3.14)

Using the fact that the flux is defined as the rate of change of flux density, and

equations (3.13) and (3.14), an expression for the flux in the air gap for 0 R   (i.e.

when the flux density is positive), where R is the position of the rotor, can be derived as

follows. Beginning with the fact that

  R

S

d   B S , (3.15)

and then substituting in (3.14) to get

     
1

2

0

ˆ2
R

R

l

R l d dz

 



  



   B r . (3.16)

Now using (3.13) the integral can be split into

            
1 1

2 2

0 0

ˆ ˆ ˆ ˆ2 2
R

R

l l

R B l d dz B l d dz

 

 

   



       r r r r , (3.17)

39

which when evaluated leads to

    1 2 2R Rl l B      . (3.18)

Likewise for 2R    the flux can be shown to be

    1 2 3 2R Rl l B     . (3.19)

The definition of Electromotive Force (EMF) states that the EMF produced in a loop is

the rate of change of flux and seeks to resist current flow caused by the flux [95], the EMF,

 , in a loop can now be defined as:

  1 2
R

e R

dd
l l B K

dt dt


     , (3.20)

where R is the angular velocity of the rotor and eK is the EMF constant in a single loop

and is equal to 1 2l l B .

If all of the coils conformed to the derivation above, the total EMF could be expressed

by multiplying equation (3.20) by the number of coils, in this case 12. However this is not

the case in a wiper motor. It can be seen from both Figure 3-5 and Figure 3-6 that the

forward and return paths of two coils (1 and 12 in the diagram) lie under the same magnet,

and thus the value of (3.13) is either always positive or always negative. The effect of this

can be shown mathematically as follows. For coil 1:

 

    
1

1

2

0

ˆ ˆ2
R

R

coil R

S

l

d

B l d dz

 



 





 

 



 

B S

r r

40

  
1

2

0

2
R

R

l

B l d dz

 







   , (3.21)

which evaluates to

    1 1 2 2coil R RBl l      . (3.22)

Likewise for coil 12 it can be shown that

 

    
1

12

2

2

0

ˆ ˆ2
R

R

coil R

S

l

d

B l d dz

 

 

 







 

  



 

B S

r r

  
1 2

2

0

2
R

R

l

B l d dz

 

 







   . (3.23)

which evaluates to

    1 1 2 2coil R RBl l     . (3.24)

When summed, the fluxes described by equations (3.22) and (3.24) and their

subsequent EMFs will cancel out.

Finally, it can be seen that coil 4 in Figure 3-6 has a current flow opposite to the

positive direction of current flow. Mathematically, this will cause the definition of dS to

become:

  2
ˆ2d l d dz S r . (3.25)

When the flux due to coil 4 is derived, it evaluates as

41

    4 1 2 2coil R RBl l     , (3.26)

i.e. the opposite sign of a ‘standard’ coil. This means that when the EMFs per coil are

summed, coil 4 in the fast operation will be subtracted from the total, not added.

The total EMFs for the fast and slow operations of the wiper motor are given

respectively as:

 1 2 12 10slow e RK         , (3.27)

1 2 12 8fast e RK         (3.28)

3.3.3 Resistance and Inductance

Figure 3-9 is used to understand how the resistance and inductance are affected by the

slow and fast operation modes of the wiper motor. Resistors BinR and BoutR are the

resistors of the input and output brushes respectively and are assumed to remain constant.

It can be seen that the current supplied by the battery has two possible paths to ground,

i.e. current path one and current path two. In the motor’s slow operation, current paths

one and two are approximately the same length and thus have the same resistance and

inductance, meaning that 1 2i i . However, in the motor’s fast operation, current path two

is physically shorter than current path one, meaning that its resistance and inductance is

lower and 1 2i i . It is known that when two resistances or inductances are connected in

parallel, the overall resistance/inductance will be lower than the lowest total

resistance/inductance in a path. Thus in slow operation, the resistance and inductance will

be higher than in fast operation.

42

La1

RBin

Ra1

RBout

VBat

La2

Ra2

i in

i2

i1

Figure 3-9: Wiper Motor Electrical Equivalent Circuit

3.4 Dynamic Equations

The dynamic equations of a PMDC motor are well known and can be stated as:

2

2

0

0

a
a a E

T a L

di d
V R i L K

dt dt

d d
K i J b T

dt dt



 

   

   

 , (3.29)

where V is input voltage, aR is armature resistance, ai is armature current, L is armature

inductance, EK is the EMF constant,  is the rotor position, TK is the torque constant,

J is the motor’s inertia, b is the damping coefficient and LT is the torque load.

Using equations (3.11), (3.12), (3.27) and (3.28) and the previous observations made in

this chapter, the dynamic equations of a wiper motor can be determined. It is assumed that

E TK K , which is valid assuming the same units are used for both. The equations are:

2

2

0

 for slow operation

0

a
slow a slow slow

slow a L

di d
V R i L K

dt dt

d d
K i J b T

dt dt



 


    


   


 , (3.30)

43

2

2

0

 for fast operation

0

a
fast a fast fast

fast a L

di d
V R i L K

dt dt

d d
K i J b T

dt dt



 


    


   


 , (3.31)

where

slow fast

slow fast

slow fast

R R

L L

K K







 . (3.32)

Hence the model is increased from a 5 parameter model to an 8 parameter model.

3.5 Simulation Models

Three simulation models implementing the equations derived above are now

presented. The first is a state space model which is solved in the MATLAB workspace using

the “lsim” function, the second is a physical model to be implemented in

Simulink/Simscape and the third is a model developed in the Simulink tool Stateflow.

3.5.1 State Space Model

The state space implementation of equations (3.30) and (3.31) are respectively:

1
0

1
0

*

1 1 0 0 0

/2 0 1 0 0

slow slow

slow slow slow

Lslow

L

R K

Vi iL L Ld

Tdx K b

J ratioJ J

Vy i

T ratioy ratio

 



   
         
         
        

   
  

        
          

         

 (3.33)

44

1
0

1
0

*

1 1 0 0 0

/2 0 1 0 0

fast fast

fast fast fast

Lfast

L

R K

Vi iL L Ld

Tdx K b

J ratioJ J

Vy i

T ratioy ratio

 



   
                          

   
  

        
          

         

 (3.34)

where the constant term ratio is the gear ratio of the worm and wheel connected to the

motor shaft and the linkage crank. The torque load, LT , is defined as the load applied by

the mechanical element of the wiper system to the gears, thus the actual torque load seen

by the motor will be reduced by a factor of ratio . Likewise, the speed of rotor is  but

the output speed of the entire motor system is reduced by a factor of ratio .

Using equations (3.33) and (3.34), the state space model can be defined in 6 matrices:

1
0

,
1

0
*

1
0

,
1

0
*

1 0

0 1

slow slow

slow slow slow
slow slow

slow

fast fast

fast fast fast

fast fast

fast

R K

L L L
A B

K b

J ratioJ J

R K

L L L
A B

K b

J ratioJ J

C
ratio

   
    
    
   

   
  

   
    
    
   

   
  


 


0 0
,

0 0
D

  
  

  

 (3.35)

 The state space model is now simulated to demonstrate its functionality. The m-file

used to carry out this simulation can be found in Appendix A. The simulation switches the

motor on in its slow operation at 1t s , then switches to its fast operation at 2t s and

45

finally switches off at 3t s . Note that the park switch functionality is not implemented

here. The simulation assumes that the motor parameters are:

Table 3-1: Example Motor Parameters

8slowR   3.9fastR  

59 10slowL H 
51.2 10fastL H 

 49.55 10slowK V rad s   46.88 10fastK V rad s 

9 22 10J kgm   0.002b Nm rad s

1ratio  0LT 

The parameters are arbitrary but adhere to the inequalities in equation (3.32). The

results of the simulation can be seen in Figure 3-10. It can be seen that in the motor’s slow

operation its angular velocity and current are lower than in the fast mode.

Figure 3-10: Motor State Space Model Simulation Results

3.5.2 Physical Model

To implement the model directly in Simulink a physical model has been used based on

the DC motor model in SimElectronics. The DC motor model implements the equations

46

shown in (3.29). In order to model the two input speed control of the wiper motor, two DC

motor models were connected as shown in Figure 3-11. The figure demonstrates that the

mechanical characteristics of the motor are shared, and thus connected together, and the

electrical characteristics are separate. A gear box is connected to the mechanical output to

simulate the worm and wheel gears. As is the strategy of physical modelling, the I/O of the

model is the same as for a real wiper motor. The model is simulated under the same

conditions as the state space model and the results are shown in Figure 3-12. As expected

the results are the same as those shown in Figure 3-10

Figure 3-11: Wiper Motor Physical Model

Figure 3-12: Motor Physical Model Simulation Results

47

3.5.3 Stateflow Model

The fact that the wiper motor could be seen as having two states, i.e. fast and slow,

means that it lends itself comfortably to being modelled in the Simulink expansion tool

Stateflow. This implementation is shown in Figure 3-13. The default state of the system

(called powerOff) sets, on entry, the current and position of the motor to 0 radians. The

functions “idotslow” and “omegadotslow” are then called to calculate the change in

current and the speed of the motor, respectively. When the motor is switched on, the

system enters its second main state (called powerOn) which has two sub states called

speedSlow and speedFast. Which of these substates is entered is determined by the state

of the FAST_SLOW control signal. In both states, the change in the current and the speed of

the motor are calculated by calling functions. In the “speedSlow” state the functions

“idotslow” and “omegadotslow” are used and in the “speedFast” state the “idotfast” and

“omegadotfast” functions are used. The equations are the same in both the fast and slow

cases but the parameters are different, capturing the behaviour of the wiper motor.

Figure 3-13: Wiper Motor Stateflow Implementation

48

This implementation produces the same results as the state space and physical models,

however the simulation speed is significantly slower and thus this method of modelling

dynamic systems will not be given further consideration.

3.6 Wiper Motor Park Switch Strategies

In normal operation, even if the wipers are turned off by the driver they will continue

to wipe until they reach their park position, which is when the blades reach the end of their

wipe cycle at the bottom of the windscreen as shown in Figure 3-14.

The method of stopping the wiper motor in the park position varies depending on the

particular system being used; however they all involve the use of the park switch. The park

switch can perform two functions. The first is to provide position feedback of the wipers in

the form of a pulse when the wipers reach their park position. The second, in some wiper

systems, is to route current from the battery to the motor when the wipers have been

switched off until the park position is reached. Three main methods of achieving this are

explained and modelled subsequently.

1) Mechanical Park Switch: A switch that provides a current path to the motor when

the main switching relays controlled by the ECU have been switched off

2) Depressed Mechanical Park Switch: Plays a similar role to the mechanical park

switch described above but is used in wiper systems in which, when the park

position is reached, reverses the motor for a period of time to recess the wiper

blades.

3) Digitally Controlled Park Switch: The park switch only provides positional feedback

to the controller, and it is the controller that dictates when the wipers stop.

49

The switching strategies and subsequent simulation models for the three wiper motor

systems described above will now be given in more detail.

Figure 3-14: Wipers in Park Position

3.6.1 Mechanical Park Switch

The switching strategy for the mechanical park switch is shown in Figure 3-15. In high

speed or low speed mode, current from the battery is routed through switch 1 to the high

or low speed motor input respectively and reaches ground through the common motor

connection (Figure 3-15 (a) and (b)). If the wiper is switched off, the mutually controlled

switches 1 and 2 immediately switch to their off positions (Figure 3-15 (c)). This causes

current from the battery to be routed through the park switch in the motor, through switch

2 and thus through the slow speed motor input and to ground through the common motor

connection. When the wipers reach their park position the park switch changes state

(Figure 3-15 (d)). This disconnects the battery from the motor and connects both the slow

and common motor connections to ground; thus providing regenerative breaking.

50

MH

L

C

V H L P

off

low

high high

low

off

1 2

park on

Bat

MH

L

C

V H L P

off

low

high high

low

off

1 2

park on

Bat

(a) Fast Speed Connection

(b) Slow Speed Connection

MH

L

C

V H L P

off

low

high high

low

off

1 2

park on

Bat

MH

L

C

V H L P

off

low

high high

low

off

1 2

park on

Bat

(c) Off, Not Parked Connection

(d) Off, Parked Connection

Figure 3-15: Mechanical Park Switch Strategy

A physical modelling implementation of the system in Simulink and Simscape is shown

in Figure 3-16, along with the control signals and switching relays.

51

Figure 3-16: Mechanical Park Switch Strategy Simulation Model

The simulation results of the model shown in Figure 3-16 are shown in Figure 3-17. It

can be seen that at time 0 to 2s, the control signals dictate that the motor runs in its slow

speed. Then the speed switches to fast at 2s up to 4s. The angular velocity of the motor

seen in Figure 3-17 demonstrates this functionality. At time 4s, the motor is switch off. It

can be seen that the motor enters its slow speed until the park switch fires at around 5.3s.

At this point the park switch changes state and the motor immediately stops.

Figure 3-17: Mechanical Park Switch Strategy Simulation Results

The switching configuration for the control system is shown in Figure 3-18.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

Time (s)

A
n

g
u

la
r

V
e

lo
c
it
y
 (

R
a

d
/s

)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

P
a

rk
 S

w
it
c
h

 L
e

v
e

l

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Time (s)

S
w

it
c
h

in
g

 S
ig

n
a

ls

Off

Fast

Slow

Angular Velocity

Park Switch

52

Figure 3-18: Mechanical Park Switch Switching Configuration

3.6.2 Depressed Mechanical Park Switch

The switching of the depressed mechanical park switch system is shown in Figure 3-19.

Control switches 1, 2 and 3 are mutually controlled, as are both park switches: A and B.

When the motor is in its slow or fast mode, the current from the battery is conducted

through switch 3, through the common input of the motor and out the slow or fast motor

connection, depending on the state of switch 2, through to ground (Figure 3-19 (a) and (b)).

If the windscreen wipers are turned off, switches 1, 2 and 3 enter their off positions and

the park switches A and B remain in their “on” position. This conducts the current from the

battery through park switch A and then control switch 3 to the common connection of the

motor through to the low speed connection and then to ground through switch 2. When

the wipers reach their park position, switches A and B change to their parking state (Figure

3-19 (c)). This causes current from the battery to be conducted via park switch B and

control switch 1, to the slow connection of the motor. Current is then conducted to ground

through the common connection of the motor, through switches 3 and A. In this

configuration, the motor runs in reverse with respect to its normal operation. Once the

53

motor has rotated a certain distance in reverse, park switches A and B switch to their

“parked” position (Figure 3-19 (d)). This disconnects the motor from the battery.

M
off

low

high

1

off

low

high

2

off

low

high

3

H

L C

Bat

AB

on

parking

parked
on

parking

parked

M

off

low

high

1

off

low

high

2

off

low

high

3

H

L C

Bat

AB

on

parking

parked
on

parking

parked

(a) Fast Speed Connection

(b) Slow Speed Connection

M

off

low

high

1

off

low

high

2

off

low

high

3

H

L C

Bat

AB

on

parking

parked
on

parking

parked

M

off

low

high

1

off

low

high

2

off

low

high

3

H

L C

Bat

AB

on

parking

parked
on

parking

parked

(c) Reversal Connection

(d) Off, Parked Connection

Figure 3-19: Depressed Mechanical Park Switch Strategy

A physical modelling implementation of the system in Simulink and Simscape is shown

in Figure 3-20, along with the control signals and switching relays.

54

Figure 3-20: Depressed Mechanical Park Switch Strategy Simulation Model

The internal logic of the wiper motor controlling the park switches is modelled using

Stateflow and is shown in Figure 3-21.

Figure 3-21: Depressed Mechanical Park Switch motor Internal Logic

Simulation results of the model shown in Figure 3-20 are shown in Figure 3-22. The

upper plot shows that at times 0s to 2s, the motor is in its slow operation and at time 2s to

4s, the motor is in its fast operation. This can be seen by the angular velocity of the motor

in the lower plot. At time 4s the wiper system is switched off and the motor changes to its

slow operation. At around 5.25s, the park switch triggers and the motor begins to operate

in reverse, as can be seen in the angular velocity in the lower plot. After the rotor has

rotated a certain distance (i.e. the variable “rev”) at around 5.5s, the motor switches off.

55

Figure 3-22: Depressed Mechanical Park Switch Strategy Simulation Results

The switching configuration for the control system is shown in Figure 3-23.

Figure 3-23: Depressed Mechanical Park Switch Switching Configuration

0 1 2 3 4 5 6 7 8 9 10
-4

-2

0

2

4

6

Time (s)

A
n

g
u

la
r

V
e

lo
c
it
y
 (

R
a

d
/s

)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

P
a

rk
 S

w
it
c
h

 L
e

v
e

l

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Times (s)

S
w

it
c
h

in
g

 S
ig

n
a

ls

Off

Fast

Slow

Angular Velocity

Park Switch

56

3.7 Discussion

The unique structure of a wiper motor allows it to operate in two speeds, slow and fast,

without changing the input voltage. The two speed operation is achieved by using two

input brushes, one being in line with the magnetic neutral line and used for the slow

operation, and one offset from the magnetic neutral line used to speed up the angular

velocity of the motor. The increase in speed is due to a decrease in armature resistance and

magnetic flux. The two speed behaviour can be modelled using the dynamic equations of a

PMDC motor with three added parameters to account for the lowered armature resistance,

inductance and EMF/torque constant of the motor when operating in its fast mode.

Three modelling techniques were used to model the wiper motor: A state space

approach implemented in MATLAB, a physical modelling approach implemented in

Simscape (Simulink) and a state-flow model implemented in Stateflow (Simulink). All

approaches can simulate the motor successfully with the state space model being the

fastest to solve but most difficult to integrate with other models, the stateflow model being

the slowest to simulate but easily handling the speed switching operation and the physical

model being the easiest to integrate with other models, i.e. the linkages and control

systems, whilst maintaining fast simulation speeds. The switching strategies to control the

motor and stop it when the wipers are in their park position have been implemented in

Simulink and Simscape and integrated with the physical model of the wiper motor

successfully.

The model designed here is validated against real data in Chapter 5 and can be

integrated with the mechanical models developed in Chapter 4 and the control systems

developed in Chapter 7.

57

Chapter 4 - Multibody Dynamics Mechanical

Modelling

4.1 Introduction

It can be seen in Figure 1-4 that the wiper motor whose model was developed in the

previous chapter drives a mechanical system consisting of a set of linkages, two wiper arms

and two wiper blades. The design of the linkages can vary depending on the vehicle model

but is generally a 6 bar linkage system which can be approximated as acting in a 2-

dimensional plane. The arms connect the oscillating rockers of the linkages to the wiper

blades and provide a downwards force on the blades with respect to the windscreen. The

blades remove water and debris from the windscreen using a rubber contact. The

combination of the inertia and external forces acting on these mechanical elements

provide the torque load to the wiper motor. The forces acting on the system are dominated

by the friction between the blade rubber and the windscreen, and the aerodynamic drag

and lift forces on the blades caused by the motion of the vehicle. A Solidworks

representation of the wiper system’s mechanical elements is given in Figure 4-1.

Figure 4-1: Solidworks Model of the Wiper System

In this chapter, the aforementioned mechanical elements are modelled and simulated.

Firstly, a planar kinematic model of the linkages, arms and blades are developed using

computational dynamics methods. The model only considers the dimensions of the

58

systems, i.e. it ignores inertial and external forces, and is used to ensure that the

dimensional parameters of the model are feasible and to give an initial indication of the

model dynamics. Secondly, a full physical model of the mechanical system is developed in

SimMechanics, taking into account inertial forces. Finally, the friction and aerodynamic

forces acting on the blades are modelled.

To ensure that the model is flexible, a modular design method is chosen. This means

that each element of the system, i.e. the linkages, arms, blades, friction and aerodynamic

forces, must be modelled independently and must be able to connect to each design of its

interfacing elements. Also, the fact that the model is to be used in real time simulation

presents a challenge when modelling the friction and aerodynamic forces. It was shown in

Chapter 2 that, in general, complex analytical or FEA models are used to model friction and

aerodynamic forces acting on wiper blades. Advanced experimental rigs are also needed to

validate such models, which were not available in this project. For these reasons,

simplifications to these forces must be made based on their dominant elements derived

from the literature.

The validation against real data of the models developed in this chapter is shown in

Chapter 5.

4.1.1 Generic Modelling Strategy

For both the planar kinematic and full physical model, the same modelling

methodology, in terms of user input, is used. The user defines a set of design points, from

which the entire geometry of the system is calculated. The nature of the design points are

given in more detail in their respective sections, however in general they are the 3-

dimensional Cartesian coordinates of the position of the joints in the system. The algorithm

to calculate the body lengths, initial angles and centre of gravity (CG) position (i.e. the

parameters needed to solve to system) can be found in Appendix B.

59

4.2 Planar Kinematics Model based on Computational Dynamics

In this section, planar kinematic models of the linkages, blades and arms are developed

separately and then combined to generate the full mechanical system. Three types of

linkage system have been modelled in this project, however only one is shown in this

chapter. The equations and diagrams of the other two linkage systems are given in

Appendix C. The analyses given here are based on the theory shown in [97] and [98].

4.2.1 Slave Driven Linkage System

Figure 4-2 shows the slave driven 6-bar planar linkage system to be modelled. The

design points of the system are the positions of the revolute joints and are called O_link,

A_link, … , F_link (hence forth referred to as O, A, …, F). The rigid bodies in the system are

labelled 1 to 6, with body 1 being the base and having a stationary coordinate system (CS)

with +X being horizontally right, +Y being vertically upwards and +Z (rotational axis of the

joints) being out of the page. Design point O is attached to the rotor of the wiper motor,

whose angle is defined as
2 , i.e. the angle between body 2 and the +X axis of the

stationary CS, rotated anticlockwise.

1

2

3 4

5

6

θ2

O

A

B

D

C

E

F

y2
x2

Figure 4-2: Slave Driven Linkage System Diagram

Each body has three coordinates associated with it. For an arbitrary body i the three

coordinates are i

xR , i

yR and
i , respectively denoting the position of the body’s centre of

mass (CM) on the X and Y plane, and the angle by which the body’s CS is rotated

60

anticlockwise from the global +X axis as shown in Figure 4-2. The coordinate vector for the

entire 6-body linkage system is given as

 1 2 3 4 5 6
T

   q q q q q q q , (4.1)

where

 1,2, ,6
T

i i i i   q R , (4.2)

and

T

i i i

x yR R   R . (4.3)

The absolute position of an arbitrary point on an arbitrary body, i.e. its position with

respect to a global CS, is given as

 i i i i

p p r R A u , (4.4)

where i
A is the 2-dimenstional transformation matrix relating body CS i to the global CS

and is given as

cos sin

sin cos

i i

i

i i

 

 

 
  
 

A , (4.5)

and i

pu is the local position vector, i.e. defined in the bodies CS, of an arbitrary point on the

body (in this case always one of the design points) with respect to the body CM and is given

as

T

i i i

p p px y   u . (4.6)

61

In this case, the constraints on the motion of the system are caused by the joints

between the linkages. The joints are all approximated as revolute joints. In reality many of

the joints are spherical to add flexibility to the linkages, however functionally they operate

as revolute joints and thus the approximation is considered valid. When considered in two

dimensions, a revolute joint will remove two degrees of freedom from the attached bodies,

i.e. the x and y position of the bodies in space relative to each other, and leave one degree

of freedom, i.e. the rotational coordinate in the z-axis direction. Applying this definition,

the constraint equations of the system in Figure 4-2 are given as

1 1 1 2 2 2

2 2 2 3 3 3 3 3 3 4 4 4

4 4 4 1 1 1 5 5 5 4 4 4

5 5 5 6 6 6 6 6 6 1 1 1

O O

A A B B

C C D D

E E F F

   

       

       

       

R A u R A u 0

R A u R A u 0 R A u R A u 0

R A u R A u 0 R A u R A u 0

R A u R A u 0 R A u R A u 0

 . (4.7)

In addition, the coordinates of body 1 can be seen as being stationary, and are thus

 1 1 1 0x yR R    . (4.8)

Finally, for kinematic analysis, a driving constraint is applied representing the motion of

the crankshaft angle, i.e.
2 , due to the motor shaft. The driving constraint is

 2 2 2

0 0t     , (4.9)

where
2 is the angular velocity of the crank shaft and 2

0 is its initial angular position.

The values of the local position vectors are given as

62

 

 

T1 2 2 2 2

3 3 3 3 4 4

4 4 5 5 4 7 4

5 5 6 6 6 6

0 0 2 0 2 0

2 0 2 0 2 0

2 0 2 0 2 0

2 0 2 0 2 0

T T

O O A

T T T

A B B

TT T

C D D

T T T

E E F

l l

l l l

l l l l

l l l

         

              

              

             

u u u

u u u

u u u

u u u

 , (4.10)

where il for 1 6i   are the lengths of the respective bodies and 7l is the distance

between joints C and D.

The first step in solving the kinematic constraint equations given in equations (4.7) to

(4.10) is to use them to form a vector of constraint equations, this vector is shown in

equation (4.11). Note that the number of bodies in the system is equal to 6, i.e. 6bn  and

the number of system coordinates is 18, i.e. 3 18bn n   . In this case the number of

constraint equations cn is also 18, i.e. cn n . This is the definition of a kinematically

driven system in which the positions, velocities and accelerations of the system’s bodies

can be determined without consideration of forces.

63

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

1

1

2
2 2

2
2 2

1
2

2
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

cos
2

sin
2,

,
2,

,

,

,

,

,

,
,

,

,

,

,

,

,

,

,

,

x

y

x

y

x

R

R

l
R

l
R

C t

lC t R

C t

C t

C t

C t

C t

C t

C t
t

C t

C t

C t

C t

C t

C t

C t

C t

C t










 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

q

q

q

q

q

q

q

q

q
C q

q

q

q

q

q

q

q

q

q

  

  

3
2 3 3

2 3
2 2 3 3

3 4
3 3 4 4

3 4
3 3 4 4

4
4 4 1

4
4 4 1

5
5 5 4 7 4 4

5
5 5 4 7 4 4

5 6
5 5 6

cos cos
2

sin sin
2 2

cos cos
2 2

sin sin
2 2

cos
2

sin
2

cos 2 cos
2

sin 2 sin
2

cos c
2 2

x

y y

x x

y y

x

y

x x

y y

x x

l
R

l l
R R

l l
R R

l l
R R

l
R X

l
R Y

l
R R l l

l
R R l l

l l
R R

 

 

 

 





 

 



 

  

  

  

 

 

   

   

   6

5 6
5 5 6 6

6
6 6 2

6
6 6 2

2 2 2

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0os

0

sin sin
2 2

cos
2

sin
2

y y

x

y

l l
R R

l
R X

l
R Y

t



 





  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
  
 

   
 
 

  
 
 

 
 
 

  



















 
 
 
 
 
 
 
 
 
 


 . (4.11)

The next step in solving the equations is to form the constraint Jacobian matrix,

denoted as iqC and defined as shown in (4.12). Note that for a kinematically driven system

the constraint Jacobian matrix will be a square matrix because the number of coordinates

equals the number of constraints.

64

1 1 1 1

1 2 3

2 2 2 2

1 2 3

1 2 3

c c c c

n

ni

n n n n

n

C C C C

q q q q

C C C C

q q q q

C C C C

q q q q

    
    
 
    

      
 
 
    
     

q
C . (4.12)

The constraint Jacobian matrix for the system shown in Figure 4-2 is shown in equation

(4.13).

2
2

2
2

2 3
2 3

2 3
2 3

3 4
3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 sin 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 1 cos 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 1 0 sin 1 0 sin 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 1 cos 0 1 cos 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 0 1 0 sin 1 0
2 2

l

l

l l

l l

l l





 

 





  



  

qC

4

3 4
3 4

4
4

4
4

4 5
7 4 5

4 5
7 4 5

5

sin 0 0 0 0 0 0

0 0 0 0 0 0 0 1 cos 0 1 cos 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 1 0 sin 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 1 cos 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 1 0 sin 1 0 sin 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 1 cos 0 1 cos 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 s
2

l l

l

l

l l
l

l l
l

l



 





 

 





 
   

 

 
   

 


6

5 6

5 6
5 6

6
6

6
6

in 1 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 1 cos 0 1 cos
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 cos
2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

l

l l

l

l

 

 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


  


 


 





 
















 (4.13)

The equations of motion are solved using a Newton-Raphson based algorithm. First,

the vector of Newton differences must be found, which shows the deviation of the solution

to the constraint equations from zeros and is denoted as

  1 2

T

nq q q   Δq , (4.14)

65

and is calculated, for a particular iteration number j , using the constraint Jacobian matrix

and constraint matrix as shown

  ,
j j j t 

q
C Δq C q . (4.15)

This is then used to update the vector of system coordinates as shown

1j j j  q q Δq . (4.16)

Vector 1jq is then used to reconstruct (4.15) to generate the vector 1jq . The

process continues for a number of specified iterations, or until a predefined accuracy is

reached.

The velocity vector of the coordinates, q , is determined by differentiating the vector of

constraint equations (4.11) which yields

 t qC q C 0 , (4.17)

where tC is the partial differentiation of (4.11) with respect to time and is defined as

 1 2

T

n

t

CC C

t t t

  
     

C . (4.18)

Equation (4.17) can then be used to solve for q . The acceleration vector of

coordinates, q , can be obtained by differentiating (4.17), after some manipulation of this

 d
q

C q Q , (4.19)

where vector dQ is

66

   2d t ttq
   

q q
Q C q q C q C . (4.20)

If the angular velocities in the system are assumed to be constant, the vectors
tq

C and

ttC are equal to zero because they are not explicit functions of time or the system

coordinates. Vector dQ can now be easily determined and thus (4.19) can be used to solve

for q . The matrix
q

C q is defined as

1

1

1

2 2
2 2

2 2
2 2

2 2 3 3
2 2 3 3

2 2 3 3
2 2 3 3

3 3 4 4
3 3 4 4

3 3 4 4
3 3 4 4

4 4
4 4

4

sin
2

cos
2

sin sin
2 2

cos cos
2 2

sin sin
2 2

cos cos
2 2

sin
2

x

y

x

y

x x

y y

x x

y y

x

y

R

R

l
R

l
R

l l
R R

l l
R R

l l
R R

l l
R R

l
R

R









 
 

 
 

 
 

 
 








  

  

  

  

 qC q

  

  

4 4
4

5 5
5 5 4 4 7 4 4

5 5
5 5 4 4 7 4 4

5 5 6 6
5 5 6 6

5 5 6 6
5 5 6 6

6 6
6 6

6 6
6 6

2

cos
2

sin 2 sin
2

cos 2 cos
2

sin sin
2 2

cos cos
2 2

sin
2

cos
2

x x

y y

x x

y y

x

y

l

l
R R l l

l
R R l l

l l
R R

l l
R R

l
R

l
R





  


  

 
 

 
 


























   

   

  

  






















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . (4.21)

67

Matrix  
qq

C q is

 

2 2
2

2 2
2

2 2 3 3
2 3

2 2 3 3
2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 cos 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 sin 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 cos 0 0 cos 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 sin 0 0 sin 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0

q

l

l

l l

l l







 
 

 
 

 

 

qC q

3 3 4 4
3 4

3 3 4 4
3 4

4 4
4

4 4
4

4 5 5
4 7 4 5

4 7

0 0 0 0 cos 0 0 cos 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 sin 0 0 sin 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 cos 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 sin 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 cos 0 0 cos 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0

l l

l l

l

l

l l
l

l

 
 

 
 








  



 

 





 
  

 

 
4 5 5

4 5

5 5 6 6
5 6

5 5 6 6
5 6

6 6
6

6 6
6

sin 0 0 sin 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos 0 0 cos
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin 0 0 sin
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l l

l l

l l

l

l


 

 
 

 
 





















 
 
 

 

 





















 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ,(4.22)

and therefore the matrix dQ can be found and is shown in (4.23).

 

 

 

   

   

   

   

1 2

2
2 2

2

2
2 2

2

2 2
2 2 3 3

2 3

1

2 2
2 2 3 3

2 3

2 2
3 3 4 4

3 4

2 2
3 3 4 4

3 4

0

0

0

cos
2

sin
2

cos cos
2 2

sin sin
2 2

cos cos
2 2

sin sin
2 2

T

d d dq

d

l

l

l l

l l

l l

l l







 
 

 
 

 
 

 
 

     











 
  
 
 

 
  
 
 

 
  
 
 

 
  
 
 

qQ C q q Q Q

Q

 

 

 
 

 
 

   

 

2
4 4

4

2
4 4

4

2
5 5

4
2

4 7 4 5

2
5 5

4
2

4 7 4 5

2 2
5 5 6 62

5 6

2
5

cos
2

sin
2

cos cos
2 2

sin sin
2 2

, and
cos cos

2 2

d

l

l

ll
l

ll
l

l l








  


  

 
 



 







  
    
  

 
   

     
  

 
 

       
   
 
 
  
 
 
 
 
 
 
 
 
 

Q

 

 

 

2
5 6 6

5 6

2
6 6

6

2
6 6

6

sin sin
2 2

cos
2

sin
2

0

l l

l

l


 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
    
  
 
 

 
 
 
 
 
 
 

 (4.23)

68

Grashof’s Law

The linkage systems modelled in this project can be seen as two mutually coupled 4-bar

linkage systems. For example, the slave driven system in Figure 4-2 can be split into two 4-

bar systems described by design points O-A-B-C (crank-rocker linkage) and C-D-E-F (double-

rocker linkage) respectively. Because these are examples of closed systems, there are

restrictions on the relative lengths of the linkages in order to allow the system to move as

desired. For a planar 4-bar linkage system, Grashof’s law can be applied, which states that:

the sum of the shortest and longest links must be less than or equal to the sum of the other

two links. If this inequality is satisfied, one of the links can make a full revolution. An

algorithm has been developed to apply Grashof’s law directly to linkage O-A-B-C using the

design points; the code to implement the algorithm is found in Appendix D.

Step 1: Measure the lengths of the linkages using (4.24) and assign the parameters

names shown in (4.25).

      
22 2

x x y y z zAB B A B A B A      (4.24)

1 2 3 4

5 6 7 8

, , L AB, L BC

L , L , L , L

L OC L OA

CD DE EF FC

   

   
 (4.25)

Step 2: Sort lengths 1L to 4L from smallest to largest.

Step 3: Apply the inequality

 s l p q   (4.26)

where s and l are the shortest and longest lengths respectively and p and q are the

two remaining lengths. If (4.26) is satisfied the configuration is feasible.

69

Since linkage C-D-E-F is a double-rocker linkage, inequality (4.26) does not need to be

satisfied because no linkage needs to make a complete revolution. However, intuitively it

can be deduced that there are still constraints on the lengths of the linkages in order for

body 4 (and thus the crank, body 2) to have its range of motion. The first step is to

determine the angle through which BC, and thus CD, oscillates. Figure 4-3 shows the O-A-B-

C linkage in two configurations. Taking 1 as the angle AOC and defining it as zero when

the vector in the direction OA is the same as OC it can be seen that Figure 4-3 (a) and

(b) show the linkages for 10    and 1 2    respectively.

(a) (b)

Figure 4-3: Double Rocker Linkage Inequality Derivation (1)

The length AC is calculated using

2 2

1 2 1 2 12 cosAC L L L L    . (4.27)

Using AC, the angles ACO and ACB can be found as shown, respectively

 

 

 

 

22 2

1 21

1

22 2

4 31

4

cos
2

cos
2

L AC L
ACO

L AC

L AC L
ACB

L AC





  
   

 
 

  
   

 
 

 . (4.28)

70

The position x can be found using the definition of O and C, and thus the angle

xCO can easily be found. It can be seen by inspection of Figure 4-3 that the angle

xCB is equal to 2 . In the case of Figure 4-3a, 2 can be expressed as

 2 xCO ACB ACO    , (4.29)

and in the case of Figure 4-3b, 2 can be expressed as

 2 xCO ACB ACO    . (4.30)

Sweeping 1 from 0 to 2 radians gives the range of motion for 2 .

Figure 4-4 shows linkage C-D-E-F. Aim is to find the maximum length of FD in terms of

2 in order to determine the allowable lengths of 6L and 7L .

Figure 4-4: Double Rocker Linkage Inequality Derivation (2)

In a similar way to the previous linkage O-A-B-C, angle 3 can be expressed as

 3 2 xFC   (4.31)

and thus FD can be calculated using

71

2 2

5 8 5 8 32 cosFD L L L L    . (4.32)

The maximum value of FD can be found using the range of values of 2 and thus the

inequality shown in (4.33) can be applied.

 6 7 maxL L FD  . (4.33)

4.2.2 Wiper Arms

Two styles of wiper arm are modelled in this project: the straight wiper arm shown in

Figure 4-5 and the bent wiper arm shown in Figure 4-6. In this case, the design points

represent rigid joints, meaning that the arms are modelled as multiple rigidly connected

bodies. The input to the wiper arm is the angle of the linkage rocker that it is attached to.

This means that the driving constraint is not explicitly a function of time making the vector

tC (see equation (4.18)), and thus the velocity and acceleration vectors q and q , equal to

zero. For this reason, for each time-step, the velocity (acceleration) of the bodies is

calculated by subtracting the current position (velocity) by the previous position (velocity)

and dividing by the time-step length.

Figure 4-5: Straight Wiper Arm

72

Figure 4-6: Bent Wiper Arm

4.2.1 Straight Wiper Arm

The coordinate vector for the straight wiper arm shown in Figure 4-5 is given as

1 1 1 2 2 2 3 3 3

T

x y x y x yR R R R R R     q , (4.34)

and the vector of constraints is given as

1
1 1

1
1 1

1

1 1
2

1 2
3 1 1 2 2

4

1 2
5 1 1 2 2

6
2 1 1

7

2
28

9

cos
2

sin(,) 2
(,)

(,)
cos cos

(,) 2 2

(,) (,)
sin sin

(,) 2 2

(,)

(,)

(,)

x

y

link

o

x x

y y

x

l
R

l
RC t

C t

C t l l
R R

C t

t C t l l
R R

C t

kC t

lC t
R

C t







  

 

 

 



 
 

  
 
    
 
  

   
 
   
 
  
 
 

q

q

q

q

C q q

q

q

q

q

3
2 3 3

2 3
2 2 3 3

3 2 2

0

0

0

0

0

0

0

0
cos cos

2 2 0

sin sin
2 2

x

y y

l
R

l l
R R

k

 

 

 

 
 
 
 
   
   
   
   
   
   
   
   
   
   
   
    
   

  
   
 
 

  

 , (4.35)

where
link is the angle of the connecting linkage rocker, 1

o is the initial angle between

body 1 and the +X direction minus the initial angle of the connecting linkage rocker.

73

Constant 1k is the angle between body 1 and body 2, and 2k is the angle between bodies 2

and 3. The Jacobian matrix is

1
1

1
1

1 2
1 2

1 2
1 2

2 3
2 3

2 3
2 3

1 0 sin 0 0 0 0 0 0
2

0 1 cos 0 0 0 0 0 0
2

0 0 1 0 0 0 0 0 0

1 0 sin 1 0 sin 0 0 0
2 2

0 1 cos 0 1 cos 0 0 0
2 2

0 0 1 0 0 1 0 0 0

0 0 0 1 0 sin 1 0 sin
2 2

0 0 0 0 1 cos 0 1 cos
2 2

0 0 0 0 0 1 0 0 1

q

l

l

l l

l l

l l

l l





 

 

 

 

 
 
 
 

 
 
 
 
   
 
 
 

 



  


 



 

C











 . (4.36)

4.2.2 Bent Wiper Arm

The coordinate vector for the straight wiper arm shown in Figure 4-6 is given as

1 1 1 2 2 2

T

x y x yR R R R    q . (4.37)

and the vector of constraints is given as

  

 

 

 

 

 

 

1
1 1

1
1 1 1

2

1 1

3

1 2
4 1 1 2 2

5

1 2
1 1 2 26

2 1 1

cos
2

, 0
sin

, 02

, 0
,

, 0
cos cos

, 02 2

, 0
sin sin

2 2

x

y

link

o

x x

y y

l
R

C t l
R

C t

C t
t

C t l l
R R

C t

l lC t
R R

k





  

 

 

 

 
 

 
    

    
   
    

     
     
   
   
        

 
   

q

q

q
C q

q

q

q








 (4.38)

74

where link , 1

o and 1k are defined in the same way as for the straight wiper arm. The

Jacobian matrix is

1
1

1
1

1 2
1 2

1 2
1 2

1 0 sin 0 0 0
2

0 1 cos 0 0 0
2

0 0 1 0 0 0

1 0 sin 1 0 sin
2 2

0 1 cos 0 1 cos
2 2

0 0 1 0 0 1

q

l

l

l l

l l





 

 

 
 
 
 

 
 
 

  
   
 
 
 
 
  

C . (4.39)

4.2.3 Wiper Blade

The wiper blade is defined as shown in Figure 4-7 with the origin (O) connecting to

design point C of the straight wiper blade or B of the curved. The input to the wiper blade is

the angle of the wiper arm that it is attached to, and thus is not an explicit function of time.

Figure 4-7: Wiper Blade

The coordinate vector is given as

1 1 1 2 2 2

T

x y x yR R R R    q , (4.40)

and the vector of constraints is

75

  

 

 

 

 

 

 

1
1 1

1
1 1 1

2

1 1

3

1 2
4 1 1 2 2

5

1 2
1 1 2 26

2 2

cos
2

, 0
sin

, 02

, 0
,

, 0
cos cos

, 02 2

, 0
sin sin

2 2

x

y

arm

o

x x

y y

arm

o

l
R

C t l
R

C t

C t
t

C t l l
R R

C t

l lC t
R R





  

 

 

  

 
 

 
    

   
   
    

     
     
   
   
        

 
   

q

q

q
C q

q

q

q









 , (4.41)

where
arm is the angle of the connecting arm, 1

o and 2

o are the initial angles between

body 1 and body the +X direction respectively, minus the initial angle of the connecting

arm. The Jacobian matrix is

1
1

1
1

2
2

2
2

1 0 sin 0 0 0
2

0 1 cos 0 0 0
2

0 0 1 0 0 0

0 0 0 1 0 sin
2

0 0 0 0 1 cos
2

0 0 0 0 0 1

q

l

l

l

l









 
 
 
 

 
 
 

  
 
 
 
 
 
  

C

 . (4.42)

4.2.4 Planar Kinematic Simulation

In this section, an example of the entire mechanical wiper system is simulated. A flow

diagram of the simulation algorithm is shown in Figure 4-8.

Figure 4-9 shows plots of the wiper system in four different wipe positions (or crank

angles) from the simulation results, with the scales in cm.

76

Figure 4-8: Planar Kinematics Simulation Flow Diagram

a

b

77

c

d

Figure 4-9: Planar Kinematics Simulation Plots

4.3 Physical Model Based on SimMechanics

In this section, physical models of the mechanical elements of the wiper system are

developed using the physical modelling tool SimMechanics, from the Mathworks.

4.3.1 Slave Driven Linkage System

Figure 4-10 shows the top level block representing the right hand drive (RHD) slave

linkage system (all linkage systems modelled have the same I/O). As is the standard with

physical modelling, the I/O of the model is the same as that of the real system and

represents two way physical ports. The Input_Follower and Input_Body connect to the

shaft and case of the motor respectively and allow a two way torque and rotational motion

interface. The Left_Rocker and Right_Rocker connections interface with the wiper arms.

The Left_Dynamics and Right_Dynamics are Simulink signals with position, angular velocity

and angular acceleration data of the rockers to be measured.

Figure 4-10: Linkage System Physical Model I/O

78

Figure 4-11 shows the model underneath the mask shown in Figure 4-10 of the system

in Figure 4-2. Each joint is represented by a revolute joint block, labelled with its

corresponding design point. Each linkage is represented by a body block and labelled with

its corresponding body number. The connections on the model imitate the physical

connection on the real system. The Revolute-Rotational Interface block connects the

revolute joint at design point O with the motor.

Figure 4-11: Linkage System Physical Model

Figure 4-12 gives a typical example of the generic modelling strategy in terms of setting

the parameters for a body, in this case body 3. The mass of the body is defined directly as a

parameter by the user; the inertia tensor is then derived from this. Each linkage is

approximated as a slender rod and as such has an inertia tensor defined as

2

2

0 0 0

1
0 0

12

1
0 0

12

I ml

ml

 
 
 
 
 
 
 
 

 , (4.43)

where m is the mass of the body and l is the length.

79

Figure 4-12: Linkage System Physical Model Body Level Parameterisation

Typically, a body will have three CS’s associated with it: CS1, CS2 and CG defining the

position of the two joints and the centre of gravity of the body respectively. Referring to

Body 3 in Figure 4-11, it can be seen that CS2_Body_3 is connected to CS1_Body_2, which

is defined as being design point A. Thus, the origin of CS2_Body_3 is defined as being [0 0 0]

with respect to its adjoining CS, meaning that CS1_Body_2 and CS2_Body_3 are in the same

position in space. CS1_Body_3 defines the position of design point/joint B in terms of the

World CS (WCS) which is stationary at the design point O. The centre of gravity is calculated

automatically in CG_Body_3 based on the position of the joints at either end of the body.

All of the bodies are parameterised in a similar way and thus the model is systematically

built up.

In order for the inertia tensor shown in (4.43) to be valid, the CG CS must be orientated

in such a way that its x-axis is pointing in the direction of the linkage, i.e. for the case of

Body_3, the direction of the vector AB . This rotation is specified in terms of quaternions

using the following method (for the case of Body_3 by way of an example).

First, the dot product between the vector AB and the positive X axis of the WCS is

taken to calculate the angle through which the CG CS must rotate:

80

      1 3cos 1 0 0 L  B A . (4.44)

Second, take the cross product between vector AB and the positive X axis of the WCS

to calculate the unit vector, n̂ , about which the rotation takes place:

       3ˆ 1 0 0 / sinL   n A B . (4.45)

Finally, the elements of the quaternion vector are defined as:

 

 

 

 
 

cos
2

ˆsin (1)
2

ˆsin (2)
2

ˆsin (3)
2

quaternion_vector

w

w



















x n

y n

z n

x y z

 (4.46)

The orientation of the body CG CS is then parameterised as shown in Figure 4-14, with

the “rot(9:12)” vector being the four quaternion elements defined in (4.46) for Body_3.

Figure 4-13: Linkage System Physical Model Body Orientation Parameterisation

The inner workings of the model are hidden from the user and the model is

parameterised on the top level mask as shown in Figure 4-14.

81

Figure 4-14: Linkage System Physical Model Top Level Parameterisation

4.3.2 Wiper Arms

The straight and curved wiper arms are modelled in a similar way to the linkage system.

The straight wiper arm is shown here by way of an example. The curved arm is modelled in

the same way but with less bodies and joints.

Figure 4-15 shows the top level I/O of the wiper arm. The Right_Arm_Con port is a weld

style joint that connects to the right rocker of the linkage system interfacing with the arm.

The Right_Blade port is a body connection that connects to the interfacing wiper arm.

Figure 4-15: Straight Wiper Arm Physical Model I/O

Figure 4-16 shows the actual SimMechanics model of the arm shown in Figure 4-5. The

joints are all weld joints since there is no relative motion between the bodies. Joint O1 and

Body_1 allow the arm to be defined in a different X-Y plane to the linkages, as is the case

with wiper systems.

82

Figure 4-16: Straight Wiper Arm Physical Model

Design points A, B and C are defined in terms of the origin of the blade, i.e. point O

which is [0 0 0]. This means that, unlike the linkage system, the position of the joints cannot

be defined in terms of the WCS and must be defined completely in terms of adjoining CSs.

The ramifications of this are demonstrated in Figure 4-17, showing the parameters of

Body_3. CS2_Body_3 is defined by the vector B A translated from CS1_Body_3, as

opposed to simply design point B translated with respect to the WCS as was the case in the

linkage system. This pattern continues through the bodies through to Body_O1 which is

connected directly to the rocker of the linkage system, which is defined in terms of the

WCS.

Figure 4-17: Straight Wiper Physical Model Body Level Parameterisation

4.3.3 Wiper Blade

The wiper blades are modelled in a similar way to the wiper arms in that all of the

joints are weld joints because there is no relative motion between the bodies. Figure 4-18

shows the I/O of the wiper blade model. Right_Blade_Con connects the blade to the

interfacing arm, Vel_rblade outputs the velocity of the wiper blade in the blade CSs positive

83

y direction and Right_Blade_Force is the input accepting the forces acting on the blade due

to the arm, friction and aerodynamic forces.

Figure 4-18: Wiper Blade Physical Model I/O

Figure 4-19 shows the actual SimMechanics model of the wiper blade. Body_2_CS3

(from which the velocity is measured) is connected to the origin of the blade and

orientated such that its Y axis always points in the direction that the blade is moving.

Body_1_CS4 (to which the arm, friction and aerodynamic forces are applied) is positioned

and orientated in the same way as Body_2_CS3.

Figure 4-19: Wiper Blade Physical Model

4.3.4 Gravity Vector

Currently, the entire wiper system has been defined in one, or a series, of x-y planes.

This is acceptable for kinematic analysis but in reality the system is rotated about the global

x-axis by approximately the angle of the windscreen. This angle will be referred to as 

84

and in general is a negative rotation about the positive x-axis. Such a rotation is defined by

the rotation matrix

1 0 0

0 cos sin

0 sin cos

  

 

 
 

 
 
  

A . (4.47)

To allow continuity between the physical and kinematic model design points, the

external forces applied to the model will be rotated using (4.47), rather than changing the

3-dimensional position of the design points. For example, suppose the acute angle of the

windscreen is 30°, meaning that gravity can no longer be considered as acting in the

negative y-axis direction. The gravity vector applied to the bodies will be calculated by

30

1 0 0 0

0 cos30 sin 30 9.81

0 sin 30 cos30 0

0 0

9.81cos30 8.496

9.81sin 30 4.905

Gravity  

   
   

  
   
      

   
   

   
   
       

 . (4.48)

Note that it is possible to completely define the 3-dimensional orientation of the wiper

system using the design points, taking the angle of the windscreen into account. In this case

 is set to zero.

4.4 Wiper Blade Friction Force

The nature of friction in a wiper system has been discussed in Chapter 2. In this section,

data from the papers previously discussed is used to formulate models of friction that can

be applied to the wiper blade model. Figure 4-20 is adapted from [74] and shows how the

coefficient of friction, and thus friction force, is determined by the wetness of the

windscreen wiper. Three conditions, wet, tacky and dry, are considered, where the tacky

85

state describes the observed condition of a significantly higher friction coefficient when

only a small amount of water remains on the screen. Because it is rare and difficult to

define exactly when the tacky condition is active, it will not be modelled here.

Figure 4-20: Friction Coefficient in Different Windscreen Conditions

4.4.1 Dry Friction

Figure 4-21 displays data from the literature (Bodai et al [72], Fuji [68] and Deleau et al

[74]) showing the change in the dry friction coefficient of wiper blades against the velocity.

This data serves two purposes. The first is to establish a realistic range for the dry friction

coefficient and the second is to establish the general shape of the friction curve. It can be

seen that, in general, the curves show no Stribeck effect, a relatively gentle gradient and

knee once static friction is overcome and then a levelling off after around 20mm/s. No

significant viscous friction effect is observed.

To model the friction, the model presented in [76] is adapted to conform to the curve

shape suggested in Figure 4-21. The expression for the dry coefficient of friction is

    _1 _ 2 _3 _ 4tanh tanhdry dry dry dry dryv v        
   

 , (4.49)

86

where
_idry , 1,2,3,4i  , are the sub-coefficients of dry friction and v is the velocity of

the blade. The sum of
_1dry and

_3dry determine the steady state value of
dry . The

slope of the transient and settling velocity is determined by
_ 2dry and the initial steep rise

approximating static friction is determined by
_ 4dry , which is given the value

_310 dry for

simplicity. Results of the simulation of equation (4.49) are shown in Figure 4-22, the

parameters used in the simulations are shown in Table 4-1.

Figure 4-21: Dry Friction Coefficient against Velocity (Literature)

Table 4-1: Parameters for Dry Friction Simulation

Parameter Friction1 Friction2 Friction3 Friction4

_1dry 0.25 0.5 0.4 0.15

_ 2dry 0.1 0.1 0.3 0.05

_3dry 0.75 0.75 0.75 0.75

_ 4dry 7.5 7.5 7.5 7.5

87

Figure 4-22: Dry Coefficient of Friction Simulation

The Simulink model used to simulate the expression in (4.49) and implement friction in

the final model is shown in Figure 4-23.

Figure 4-23: Dry Friction Coefficient Simulink Model

0 20 40 60 80 100 120 140 150
0

0.2

0.4

0.6

0.8

1

1.2

Velocity (mm/s)

D
ry

 C
o
e
ff
ic

ie
n
t
o
f
F

ri
c
ti
o
n

Friction
1

Friction
2

Friction
3

Friction
4

88

4.4.2 Wet Friction

Figure 4-24 shows plots of the wet friction coefficient against velocity for different

input forces, generated using data from the literature (dash-dot plots from Bodai et al [71],

solid lines from Bodai et al [72], and the dotted lines from Le Rouzic et al [99]). The plots

can be used to determine realistic values of the wet friction coefficient and to determine

the general shape of the friction curve. Unlike the dry friction, it can be seen that the wet

friction is subject to the Stribeck effect which tends to end before the velocity reaches

100mm/s. The curve also shows a decrease in the friction coefficient as the velocity

increases at higher velocities, implying a negative coefficient of viscous friction, unlike most

materials. Finally, it can be seen that the wet friction coefficient decreases with applied

force. This is important because the applied force is not necessarily constant and is a

function of the wiper position and the aerodynamic lift. Figure 4-25 plots the friction

coefficient against force at different velocities, along with linear approximations of the

curves. The friction coefficient is modelled based on the method shown in [76].

Figure 4-24: Wet Friction Coefficient vs Velocity for Different Forces (Literature)

89

The expression for the wet coefficient of friction is

 

   
 



_ 7 _ 4

_1 _ 2 _ 3

_ 4 _ 5

_ 6

tanh tanh

tanh

wet wet wet

wet wet wet

wet wet

wet

F

v v

v

v

  

  

 



   
 

    
 

  
 

 

 (4.50)

where _1wet determines the overshoot due to the Stribeck effect,
_ 2wet and

_3wet

determine the rise and fall rates of the Stribeck effect respectively, _ 4wet determines the

steady state Coulomb friction,
_5wet determines the rise rate approximating static friction,

_ 6wet determines the viscous friction and
_ 7wet determines the effect of applied force

on wet . The velocity is v and the applied force is F . For simplicity,
_3wet and

_5wet are

defined as _110 wet and _ 410 wet respectively. Results of the simulation of equation (4.50)

are shown in Figure 4-26 and the parameters used in the simulations are shown in Table

4-2.

Figure 4-25: Wet Friction Coefficient vs Force for Different Velocities (Literature)

90

Figure 4-26: Wet Coefficient of Friction Simulation

Table 4-2: Parameters for Wet Friction Simulation

 _1wet _ 2wet _3wet _ 4wet _5wet _ 6wet _ 7wet ()F N

Friction1 0.6 6 0.01 1 10 0.0002 0.025 10

Friction2 1 10 0.01 1.2 12 0.0002 0.025 10

Friction3 0.6 6 0.01 0.8 8 0.0005 0.025 10

Friction4 0.6 6 0.05 1 10 0.0002 0.025 10

Friction5 0.6 6 0.05 1 10 0.0002 0.05 10

Friction6 0.6 6 0.01 1 10 0.0002 0.025 15

The Simulink model used to simulate the expression in (4.50) and implement friction in

the final model is shown in Figure 4-27.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

Velocity (mm/s)

W
e
t
F

ri
c
ti
o
n
 C

o
e
ff
ic

ie
n
t

Friction
1

Friction
2

Friction
3

Friction
4

Friction
5

Friction
6

91

Figure 4-27: Wet Friction Coefficient Simulink Model

4.5 Aerodynamic Lift and Drag Forces

It was demonstrated in Chapter 2 that the aerodynamic forces acting on the wiper

blades and arms are very complex and there exists only a small amount of data in the

literature reporting their effect. To simulate using CFD software or measure in a wind

tunnel the forces acting on the wiper system is impractical for this project. Therefore, a

simple model based on basic fluid dynamics and using the limited data available in the

literature has been developed.

Figure 4-28 shows data taken from a Korean paper [86] which gives results regarding

the drag and lift coefficients of wipers at different high vehicle speeds against wiper angle.

It gives an indication of realistic values of the coefficient and shows that the two wipers

92

(driver and passenger sides) can have different coefficients (due to different sizes and being

subject to different aerodynamic conditions). Also, it shows that the coefficients can

change with respect to the wiper angle. In this project the coefficients are assumed to be

constant, which will introduce an error.

Figure 4-28: Drag and Lift Coefficients against Wiper Angle

The equations to determine drag and lift are respectively given as

21

2
D DF V AC , (4.51)

21

2
L LF V AC , (4.52)

where  is the mass density of air (
31.225 /kg m , V is the velocity of air (or the vehicle),

A is the surface area of the wiper blade and DC and LC are the drag and lift coefficients

respectively. Representative parameters derived from [86] and [84] have been used to

simulate the model given in Figure 4-29. The parameters used are:
20.07A m , V sweeps

93

from 10ms to 140ms , 0.175DC  and 0.0517LC  for blades without a spoiler and

0.219DC  and 0.0694LC   for blades with a spoiler. The results of the simulation are

shown in Figure 4-30. Positive lift forces will act away from the windscreen, positive drag

forces will act in the direction of a forward wipe, and against a reverse wipe.

Figure 4-29: Drag and Lift Force Simulation Model

Figure 4-30: Aerodynamic Forces Simulation Results

0 5 10 15 20 25 30 35 40
-5

0

5

10

15

20

Velocity (m/s)

D
ra

g
 a

n
d
 L

if
t
F

o
rc

e
s
 (

N
)

F
D
 Without Spoiler

F
L
 Without Spoiler

F
D
 With Spoiler

F
L
 With Spoiler

94

4.6 Whole System Simulation

To demonstrate the operation of the system, a simulation has been performed with

representative arbitrary parameters. The system is driven by a constant crank velocity of

2 rad/s, i.e. one full wipe per second. Figure 4-31 shows the model that has been

simulated. The ‘Environment’ blocks incorporate the friction and aerodynamic forces

shown above.

Figure 4-31: Whole SimMechanics Model Example

Figure 4-32 show the results of the simulation. The results show the linkage crank

torque load that will be applied to the motor against time, with the system’s conditions

changing after every wipe/second. Initially, the windscreen is assumed to be wet and so the

wet friction coefficient is calculated. In the first wipe, the vehicle speed is 0m/s, and after

1s the speed steps up to 20m/s. It can be seen that the overall torque drops; this is due to

the lift force increasing and thus decreasing the friction force. After 2s the speed increases

to 40m/s and the torque drops further. It can also be seen that the reverse wipe now

develops a greater torque than the forward wipe. This is because the drag force is

increasing with vehicle speed and the drag force acts against the wipers in the reverse

sweep. At 3s the speed drops down to 0m/s and the conditions are the same as for the first

wipe. After 4s the windscreen is assumed to be dry and thus the dry friction coefficient is

calculated. It can be seen that the overall torque increases and the fundamental shape

changes slightly, due to the different shape of the friction curve.

95

Figure 4-32: SimMechanics Model Simulation Results

Figure 4-33 shows examples of the SimMechanics visualisation tool and demonstrates

the simulation solving the motion of the system.

(a) (b)

(c) (d)

Figure 4-33: SimMechanics Model Simulation Plots

96

4.7 Discussion

In this chapter, two modelling strategies have been used to model the mechanical

elements of the windscreen wiper system. Firstly, a planar kinematic model of the linkages,

wiper arms and wiper blades using multibody dynamic methods was developed. The model

is solved using a Newton-Raphson method and successfully calculates the position, velocity

and acceleration analysis of the system. Different designs of linkages, arms and blades can

be connected together to model different wiper system configurations. Grashof’s law has

been applied to the linkage systems to ensure that the dimensions input by the user are

feasible. The model can be used to visually and mathematically check that the dimensions

used to define the system are realistic and feasible before they are applied to the physical

model, which will fail to simulate if the dimensions are incorrect. It will also be used in

Chapter 6 in order to generate the look-up tables used in the HIL implementation of the

model.

Secondly, a full physical model of the wiper system has been developed in

SimMechanics. The physical model simulates both the kinematic elements of the system

and the forces, i.e. the inertial forces, arm force on the blade, friction between the blade

and windscreen and the aerodynamic forces applied to blade. Each element of the system

is modelled in a modular fashion and can be connected to each other element, allowing for

the synthesis of different wiper system designs. The friction model is based on data from

the literature. Two models are generated, one for the dry windscreen case and one for the

wet case. The friction is then applied to the blades as a resistive force. The aerodynamic

model is simple and is based on the drag and lift coefficients of the wiper blades. The lift

force acts upwards with respect to the windscreen and the drag force acts in the direction

of a forward wipe, and against a reverse wipe.

97

The models developed in this chapter are validated and their unknown parameters

identified in Chapter 5. Then, both models are then used to develop a real time capable HIL

model in Chapter 6 and their deployment in the generic modelling tool is shown in Chapter

8.

98

Chapter 5 - Parameter Identification and Model

Validation

5.1 Introduction

Models of the wiper motor and mechanical wiping system have been developed in the

previous two chapters. The parameters of these models now need to be identified so the

models can be used for ECU testing. It is not always possible or feasible to directly measure

certain parameters, and in some cases no hardware is available and thus data driven

methods of identification must be explored. Therefore, a variety of optimisation methods

based on limited I/O data are used to estimate the parameters.

A three stage optimisation method is proposed here, using three techniques to

converge on a suitable solution:

1. The wiper motor dynamics are modelled in a transfer function relating the

input voltage to the output current. The transfer function coefficients are then

identified, using a System Identification Tool, and are then used to obtain the

motor’s equivalent parameters. These parameters are then used to narrow

down the search space of a Genetic Algorithm (GA).

2. A GA is designed to identify all of the parameters of the wiper motor system,

i.e. the motor parameters, blade/windshield friction parameters and the force

applied by the wiper arms to the wiper blades. A GA uses the principles of

genetics and natural evolution to identify an optimal solution.

3. Once the GA has identified the global optimal solution, a nonlinear least

squares algorithm is used to refine the solution and further improve its

accuracy.

99

The parameters are identified, and the model validated, using data measured from the

wiper test rig which is described in greater detail in Chapter 8. The data that can be

measured from the test rig is the voltage applied to the wiper motor, the wiper motor

armature current and the wiper motor park switch. Note that no continuous position or

speed data was available. The torque applied to the motor could also not be measured. The

limited amount of data available was the main motivation for using large scale stochastic

identification methods such as GAs. The measured data also replicates data that can easily

be measured in a real vehicle, i.e. no additional sensors are needed to implement the

algorithms presented here.

Once the parameters have been estimated the simulated data from the model is

graphically compared to the measured validation data to demonstrate the model’s

performance in replicating the real system.

The models identified in this chapter will be simplified to improve their robustness and

increase their simulation speed in order for them to be suitable for real-time simulation.

This is presented in Chapter 6.

5.2 Identification Methodology

The simulation model used in the parameter identification and model verification

process is shown in Figure 5-1. From left to right it consists of: A control signal which

controls when the motor switches on, a Control System with a relay drive circuit to control

the input voltage level and speed mode of the motor, a Digital Park Switch style motor, a

mechanical system made up of a right hand drive (RHD) slave driven linkage system, two

straight style wiper arms and two wiper blades, and two Environment blocks implementing

the friction forces. The system in Figure 5-1 models the real system used to generate the

identification and validation data.

100

There are in total 17 parameters that must be identified. These are the eight motor

parameters, three dry friction parameters, five wet friction parameters and the force

applied to the blades by the arms, shown in equation (5.1).

Figure 5-1: Simulation Model used for Identification

 

_1 _ 2 _3

_1 _ 2 _ 4 _ 6 _ 7

_

_

_

slow fast slow fast slow fast

dry dry dry

wet wet wet wet wet

Motor param R R L L K K b J

dry param

wet param

Force F

  

    

   

   

   



. (5.1)

 Due to the large number of parameters and the highly nonlinear nature of the

mechanical load, this is a difficult identification task and requires advanced optimisation

techniques. Further compounding the difficulty is the lack of any continuous

position/speed data for the system. The available measurable data for identification is the

voltage applied to the motor, the motor current and the motor’s park switch, which pulses

after each revolution.

In general, simulated data is compared to the measured data on a point by point basis.

This method is suitable for comparing voltage and current, however a problem is

encountered when comparing the park switches. This issue is illustrated using Figure 5-2,

where the solid pulses represent measured data and the dashed pulses represent

simulated data. Consider case ‘a’; the measured and simulated results are almost equal,

however since there is no actual crossover between the respective park switches the error

produced by case ‘a’ will be the same as that produced by case ‘b’, despite ‘b’ being

101

significantly less accurate. In fact, case ‘c’ which has no simulated park switches (implying

that the simulated motor is moving very slowly or not at all) will have the smallest error.

Time Time Time

V
o

lt
ag

e

V
o

lt
ag

e

V
o

lt
ag

e

a b c

Figure 5-2: Park Switch Comparison Issue Example

To overcome this, an algorithm has been developed that detects a rising edge of the

park switch and increments an output called “Park Step” by 1 on every pulse. This creates a

staircase style output. The effect of the algorithm on the cases shown in Figure 5-2 is

shown in Figure 5-3. It can now be seen that a point by point comparison of the data will

accumulate a small error in case ‘a’, medium sized error in ‘b’ and a large error in ‘c’.

Time Time Time

P
ar

k
St

ep

P
ar

k
St

ep

P
ar

k
St

ep

a b c

Figure 5-3: Park Step Demonstration

The model must represent the wiper system over its entire operational range and thus

the data used to identify the parameters must also cover the system’s operating range.

Figure 5-4 shows an example of a state space algorithm, built in Stateflow, that progresses

through a range of input voltages. On entry, the state “Slow_10V” turns the motor on and

102

sets its speed mode to slow. The voltage is set to 10V. When the park switch pulses the

state “Slow_12V” is entered which sets the voltage to 12V. This continues until all of the

states have been entered, at which point the motor switches off.

Figure 5-4: Stateflow Sub Chart for Parameters Identification Data Generation

An example of the data generated by the model shown in Figure 5-4, along with a set of

validation data, is shown in Figure 5-5.

Figure 5-5: Parameter Identification and Model Validation Data Example

The parameter estimation will be performed in three stages. The first stage is to

perform an initial estimation of the motor parameters by deriving a transfer function from

the dynamic equations of the motor and using the System Identification Tool in Matlab to

103

identify the transfer function parameters. These parameters are then used as a first

estimate for the GA to refine. This is beneficial because it reduces the search space that the

GA must explore, meaning that the population size, convergence and thus algorithm

running time can be reduced. The GA is used to estimate all of the model parameters

shown in equation (5.1). Once the GA has identified the parameters, a final local optimiser

stage is employed to further increase the accuracy of the results. A diagram demonstrating

the process is shown in Figure 5-6.

Figure 5-6: Parameter Identification Procedure

5.3 Wiper Motor Transfer Function Identification

Before identifying the entire system’s parameters using a GA, it is beneficial to estimate

the motor parameters using a transfer function identification method. Under certain

assumptions, the dynamic equations of a DC motor shown in Chapter 3 can be considered

to be linear. Most of these assumptions have already been made when developing the

motor model, i.e. ignoring non-linear magnetisation effects and the temperature

dependence of parameters such as resistance and the motor constants. The additional

assumption made here is that the torque load applied to the motor by the mechanical

system is directly proportional to the angular velocity of the motor’s output shaft. It is clear

from the work shown in Chapter 4 that this is not true and this assumption will introduce

an error into the results; however it allows a transfer function to be developed and its

coefficients can then be identified.

104

The starting point for developing the transfer function is the equations shown in (5.2)

di
L V Ri K

dt

d
J Ki b

dt




 

  

  

 , (5.2)

where the torque and back EMF constants are assumed to be equal and are denoted as K .

The symbol  is the constant of proportionality relating the torque load applied to the

motor by the mechanical system and the angular velocity. The constant  has the units

 Nm rad s . This is considered reasonable because the load applied to the motor is

effectively zero when the velocity is zero and increases with velocity due to the inertial

forces, friction and losses in the system. Taking the Laplace transform of (5.2) and assuming

zero initial conditions yields

        sLI s V s RI s K s    , (5.3)

        sJ s KI s b s s      . (5.4)

By rearranging equation (5.4) an expression for  s can be found to be

  
 KI s

s
sJ b 

 
 

 , (5.5)

and by substituting (5.5) into (5.3) the angular velocity term can be removed

      
 2K I s

sLI s V s RI s
sJ b 

  
 

 . (5.6)

Equation (5.6) can now be rearranged into the form of a standard second order

transfer function relating the motor current to the input voltage:

105

 

  2
2

1

V

b
s

I s J

s L b R R b K
s s

J L L J RJ



 

 
  
 

   
      

   

 . (5.7)

The transfer function equation (5.7) has been simulated under the same conditions as

the motor models in Chapter 3 and by comparing Figure 5-7 with Figure 3-10 and Figure

3-11 it can be seen that the results are the same, showing that equation (5.7) is valid.

Figure 5-7: Motor Transfer Function Simulation Results

Equation (5.7) is then expressed as

  
2 1 1 1

r
sys

r r

elec elec mech

s t
G s K

s s t t
t t t




   
      

   

 , (5.8)

where the transfer function coefficients are defined in Table 5-1.

Table 5-1: Motor Transfer Function Coefficients Definition

Coefficient
Equivalent

Parameters
Unit (Laplace

Domain)
Description

sysK 1 L A V System gain

elect L R s Electrical time constant

mecht 2RJ K s Mechanical time constant

rt  b J 1 s Load Constant

106

It was shown in Chapter 3 that a wiper motor can be expressed using eight parameters

and that the dynamics of the motor are different in its fast and slow modes. This means

that the parameters for two dynamic equations need to be found, i.e:

   _

_

2

_ _

_ _ _

1 1 1

r slow

slow sys slow

r slow r slow

elec slow elec slow mech slow

s t
G s K

s s t t
t t t




   
         

   

 , (5.9)

   _

_fast

2

_ _

_ _ _

1 1 1

r fast

fast sys

r fast r fast

elec fast elec fast mech fast

s t
G s K

s s t t
t t t




   
         

   

 . (5.10)

Since parameters b and J are mechanical they remain the same in both fast and slow

modes. Combined with the assumption that  is constant it can be seen that

_ _r slow r fastt t and identifying the coefficients of (5.9) and (5.10) will yield 7 equations to

identify 8 motor parameters. To make the number of unknowns equal to the number of

equations, the fact that the dominant mechanical force in the system is the torque load

applied by the mechanical system is used and it is therefore assumed that b    . Thus

b is eliminated.

By way of an example to demonstrate the ability of this method to identify motor

parameters, a simulated motor with parameters shown in Table 5-2 has been used to

generate data to input into the Matlab System Identification tool. The results are also

shown in Table 5-2. The constant  was assumed to be  0.002 Nm rad s . The

identified transfer functions were

   2 4

666.6 6667

1343 1.667 10
slow

s
G s

s s




  
 , (5.11)

107

  
4

2 4

1000 1 10

1010 1.125 10
fast

s
G s

s s

 


  
 . (5.12)

The Error column in Table 5-2 shows the absolute difference between the target

system and estimated system results. It can be seen that, under ideal simulation

conditions, the motor parameters can be correctly identified using this method.

Table 5-2: Motor Transfer Function Coefficient Identification (Simulated)

Simulated Motor
Parameters

Identified Transfer
Function Coefficients

Estimated Motor
Parameters

Error

2slowR   _slowelect 47.502 10 s  2slowR   0

1fastR  
3

_ 1 10elec fastt s  1fastR   0

31.5 10slowL H  _ 0.399mech slowt s 31.5 10slowL H  0
31.0 10fastL H  _ 0.8mech fastt s 31.0 10fastL H  0

 
0.01slow

V
K

rad s


1

_ 10.0015r slowt s
 

0.01slow

V
K

rad s
 0

 
0.005fast

V
K

rad s


1

_ 10r fastt s
 

0.005fast

V
K

rad s
 0

5 22 10J kgm  _ 666.6sys slowK A V 5 22 10J kgm  0

 
0

Nm
b

rad s


_ 1000sys fastK A V
 

0
Nm

b
rad s

 0

Now that the method has been shown to work, real data is input into the System

Identification Tool. The data for the slow transfer function (equation (5.9)) is shown in

Figure 5-8 and the data for the fast transfer function (equation (5.10)) is shown in Figure

5-9. In both figures, the blue line shows the raw data and the red line shows the data once

a filter has been applied.

The identified transfer functions are given below,

   2

89.47 958.8

96.33 4733
slow

s
G s

s s




 
 , (5.13)

108

   2

62.97 1326

74.7 6245
fast

s
G s

s s




 
 . (5.14)

Figure 5-8: Transfer Function Parameters Identification Input Data (Slow Motor)

Figure 5-9: Transfer Function Parameters Identification Input Data (Fast Motor)

0 2 4 6 8 10 12

-5

0

5

S
lo

w
 C

u
rr

e
n
t
(A

)

0 2 4 6 8 10 12
-5

0

5

10

15

20

Time

S
lo

w
 V

o
lt
a
g
e
 (

V
)

0 1 2 3 4 5 6 7 8 9 10
-15

-10

-5

0

5

10

F
a
s
t
C

u
rr

e
n
t
(A

)

0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

Time (s)

F
a
s
t
V

o
lt
a
g
e
 (

V
)

109

The results of the identification are shown in Figure 5-10 and Figure 5-11 for the fast

and slow modes respectively. The dotted lines represent the real validation current data

and the solid lines are the outputs of the transfer functions shown in equations (5.13) and

(5.14). It can be seen that the slow mode transfer function successfully identifies the

average currents and the transients. The fast mode transfer function is less successful,

likely due to the increased noise on the identification data.

The motor transfer function coefficients and the associated equivalent parameters are

shown in Table 5-3. As in the simulated example, it is assumed that 0b  . Based on the

work done in Chapter 4 and results given in the literature [49], the load torque applied to

the motor’s gear is assumed to be 3Nm at a velocity of 2 radians and taking into

account the gear ratio of the motor (63), the value of  can be calculated as

  

  

_

4

3
63 2

63

3
1.2 10

63 126

L shaft shaftT

Nm rad s



 








 

  


 , (5.15)

where _L shaftT is the torque applied to the motor shaft and shaft is the angular velocity of

the shaft.

110

Figure 5-10: Transfer Function Parameters Identification Results (Slow)

Figure 5-11: Transfer Function Parameters Identification Results (Fast)

Table 5-3: Motor Transfer Function Coefficient Identification (Real Data)

Identified Transfer Function Coefficients Estimated Motor Parameters

_slow 0.0117elect s 0.9569slowR  

_ 0.0186elec fastt s 0.8519fastR  

_ 0.0224mech slowt s 0.0112slowL H

_ 0.0105mech fastt s 0.0159fastL H

1

_ 10.7164r slowt s  0.0219slowK V rad s

1

_ 21.0543r fastt s  0.0215fastK V rad s

_ 89.4688sys slowK A V 5 21.12 10slowJ kgm 

_ 62.9685sys fastK A V
6 25.70 10fastJ kgm 

Due to the different values of rt for the fast and slow modes (caused by the

assumption that  is the same in the fast and slow modes when in reality it will be higher

when the motor is running faster), two values of J are calculated. Also, the value of fastL

111

is higher than slowL , which violates the inequality shown in equation (3.32). However, it

can be observed in Figure 5-11 that the switching transient in the motor’s fast mode are

significantly underestimated, implying that the estimated value of fastL is actually too high.

The validity of these estimated parameters are now examined by comparing them to

more accurately measured parameters.

5.4 Wiper Motor Parameter Measurement

In order to determine the validity of the parameters identified above, the equivalent

motor parameters have been directly measured/derived. This was achieved by removing

the linkage system from a wiper motor so zero torque load tests could be performed.

5.4.1 Armature Resistance

The values of the armature resistances were obtained using a Multimeter to measure

the resistance between the slow input and common output for slowR and the fast input and

common output fastR . The values measure were

1

0.8

slow

fast

R

R

 

 
 . (5.16)

5.4.2 EMF and Torque Constants

To calculate the back EMF and torque constants, the following equation is used

 a
a a a e

dI
V R I L K

dt
   . (5.17)

By assuming a constant value of armature current, as is the case for a constant load

and input voltage, equation (5.17) can be simplified and rearranged to give an expression

for eK :

112

 a a
e

V R I
K




 . (5.18)

A range of constant voltages, V , are input into the system and the corresponding

currents, aI , are measured. The average angular velocity of the motor’s gear can be

measured using the park switch. This is multiplied by the gear ratio of 63 to obtain the

angular velocity, , of the motor shaft. The results are shown in Table 5-4. The average of

three measurements for both constants is taken as the final value.

Table 5-4: Motor Back EMF Constant Measurements

Motor
State

Voltage (V) Current (A)
Velocity
(rad/s)

Ke (V/(rad/s))
Average Ke
(V/(rad/s))

Slow

12 1.450 230.38 0.045794

0.047163 14 1.605 245.21 0.050548

16 1.708 316.56 0.045147

Fast

12 2.537 322.96 0.030872

0.029981 14 2.785 394.40 0.029847

16 2.949 466.78 0.029223

5.4.3 Armature Inductance

To measure the inductance, a step input voltage 5 to 0V is applied to the motor whilst

the mechanical output is locked. Locking the output will cause the term eK  in equation

(5.17) to equal zero, and thus (5.17) can be written in the standard form of a 1st order

system

 a a
a

a a

L dIV
I

R R dt
  , (5.19)

and an expression for the rise/fall in current due to an step voltage is

 1 a a

t

L R

a

a

V
I e

R

 
  

 
 

 , (5.20)

113

where a aL R is the time constant of the circuit and is defined as the time taken for the

current to fall to 36.8% of its original value. The time constant can be measured and since

aR is known, aL can be calculated. Table 5-5 shows the results of the inductance

measurement.

Table 5-5: Motor Armature Inductance Measurements

 Step Time (s) 36.7% Time (s) Time Constant (s) Inductance (H)

Slow 3.720 3.278 0.008 0.0080

Fast 6.651 6.659 0.008 0.0064

5.4.4 Motor Inertia

Methods for measuring the inertia generally involve measuring the mechanical

acceleration of motor shaft. However, due to the construction of the motor, it was

impractical to attach an encoder to the shaft. Therefore, an estimation of the inertia was

performed by taking a motor apart and weighing the armature, shaft and windings which

had a combined weight of 0.275kg. The radius of the armature is 2cm. Approximating the

structure as cylinder rotating about its central axis allows the inertia to be determined

using

2 5 21

5.5 10
2

J mr kgm   , (5.21)

where m is the mass of the cylinder and r is its radius.

5.4.5 Refining Measurements and Damping Coefficient Estimation

The damping parameter, b , could not be measured and is thus identified using a

Nonlinear least squares method available in Simulink. The values of the motor’s other

parameters are also refined in the same estimation procedure. The parameters were

identified against the measured data that switched between the slow and fast motor

modes at a constant voltage, and were validated against a dataset at different constant

114

voltages. The results showing a comparison of the real data and simulated data is shown in

Figure 5-12. It can be seen that the simulation results closely match the measure data.

 The differences between the measured data and simulated data are shown in Figure

5-13. It can be seen that the biggest errors occur during switch on and switch off. However

it should be noted that the size and shape of the transients are closely matched, however

due to a small error in the speed of the motor they occur at slightly different times.

Figure 5-12: Wiper Motor Parameter Identification Comparison Results

0 2 4 6 8 10
0

2

4

6

8

Time (s)

P
a
rk

 C
o
u
n
t

Identification Results

0 2 4 6 8 10
0

2

4

6

8

Time (s)

P
a
rk

 C
o
u
n
t

Validation Results

0 2 4 6 8 10
-15

-10

-5

0

5

10

Time (s)

C
u
rr

e
n
t
(A

)

0 2 4 6 8 10
-20

-10

0

10

20

Time (s)

C
u
rr

e
n
t
(A

)

Measured Data

Simulated Data

115

Figure 5-13: Wiper Motor Parameter Identification Residuals

The final parameters are given in column 1 of Table 5-6. They are also compared to the

parameters identified using the transfer function method. It can be seen that most of the

parameters are relatively close, showing that if it isn’t feasible to measure the parameters

of the motor directly (i.e. if only data is available) the transfer function method is suitable

for finding close parameters to reduce the GA search space. There is a significant error of

an order of magnitude in the inductance estimation, with the transfer function method

greatly overestimating the inductance. This should be taken into account if using these

values to set the search space of a GA. It should be noted Figure 5-7 shows that the transfer

function parameters tend to underestimate the switching transients, implying an

overestimation of the inductances.

116

Table 5-6: Measured and Estimated Motor Parameters Comparison

Measured and Refined
Parameters

Transfer Function
Estimated Parameters

Difference (Measured
– Estimated)

1.1704slowR   0.9569slowR   0.2135

0.7005fastR   0.8519fastR   0.1514 

0.0019slowL H 0.0112slowL H 0.0093H

0.004fastL H 0.0159fastL H 0.0119H

 0.0442slowK V rad s  0.0219slowK V rad s  0.0223V rad s

 0.0321fastK V rad s  0.0215fastK V rad s  0.0223V rad s

5 21.9967 10J kgm 
5 21.12 10slowJ kgm  6 28.767 10 kgm

 41.084 10bm Nm rad s  bm NA NA

Based on the results shown in Table 5-6, the search area of the GA is reduced using the

following rules: if the parameter identified by the Transfer Function Estimation method is

defined as U and the parameter identified by the GA is Û , then search space of the GA is

defined as

 ˆ0.5 2U U U  (5.22)

apart from the inductances, which is ˆ0.25 4U U U  to account for the larger error

between the estimated and measure parameters.

5.5 Genetic Algorithm Identification of System Parameters

5.5.1 Genetic Algorithm Theory

Genetic algorithms are a form of optimization algorithm that imitate the process of

natural evolution in order to reduce or maximise a cost function (also known as a fitness

function; the terms are henceforth used interchangeably). A GA causes individuals in a

population to evolve towards an optimal solution across a number of generations by

selecting and combining individuals with high fitness scores to form a new generation. A

flow diagram of a classic genetic algorithm [100] is shown in Figure 5-14 along with a

117

schematic [50] of the solution method, showing how the GA, simulation model, cost

function and measured data interact. Detailed descriptions of each element of the flow

diagram are given in this section.

The Matlab code to implement the GA is given in Appendix E and is based on the

continuous GA given in [100].

Begin
Algorithm

Define GA Parameters

Generate Initial
Population

Select Individuals to
Mate

Mate Selected
Individuals

Random Mutations

Stopping
Criteria Met?

End
Algorithm

Determine Cost of
Each Chromosome

No

Wiper System
Simulink Model

Genetic Algorithm
(Selection, Mating, Mutation)

Cost Function

Measured
Data

End?

Estimated
Model

Parameters

Model Input
(Voltage, Speed Selection)

Measured Outputs
(Current, Park Switch)

Simulated
Outputs
(Current,

Park Switch)

No

Yes

Save Performance
(Cost Evolution, Best Solution)

Yes

GA Solution Schematic

Figure 5-14: Genetic Algorithm Flow Diagram and Schematic

The GA acts upon a population of individuals called chromosomes. A chromosome is a

vector made up of a number of genes, which in this case are the unknown parameters of

the wiper system model. The chromosome is shown in equation (5.23), whose elements

are defined in equation (5.1)

  _ _ _Chromosome Motor param dry param wet param F . (5.23)

Each chromosome in a generation is input into the simulation model, which is

simulated based on voltage and control inputs from measured data. The simulated motor

118

current and park switch are compared to measured data using the cost function. The value

of a chromosome’s cost function, along with the GA parameters, determines how likely it is

that it will be retained and its genes passed on to the next generation. If a chromosome’s

cost is less than a pre-determined minimum, or if a maximum number of generations are

reached, the algorithm will terminate and output the best solution.

5.5.2 Cost Function

The fitness of a chromosome is determined by comparing the simulated motor currents

and park switches that it produces to measured data under the same conditions. The two

conditions are 1) perform one wipe each at 12V, 14V and 16V in the motor’s slow mode

and in dry conditions and 2) perform one wipe each at 12V, 14V and 16V in the motor’s fast

mode and in wet conditions. The cost function has two objectives: Minimise the summed

squared errors in the currents (slow/dry and fast/wet modes) and minimise the summed

squared errors in the park switches (slow/dry and fast/wet modes). The final cost is

calculated by summing the two individual costs and dividing it by the number of measured

data points. The functions that perform this are shown in equations (5.24) and (5.25) for

the current and park switch objectives respectively and equation (5.26) for the total cost:

           22

1

n

current slow slow fast fast

i

fitness I i I i I i I i


     , (5.24)

           22

1

n

park slow slow fast fast

i

fitness i i i i   


     , (5.25)

     
1

n

total current park

i

fitness fitness i fitness i n


 
  
 
 . (5.26)

where slowI and fastI are the measured motor currents respectively and likewise slowI  and

fastI  are the simulated currents. Similarly, slow and fast are the measured park switches

119

(converted into step form) and slow and
fast  are simulated. The number of data-points

compared is n . It can be seen in equations (5.24) and (5.25) are not weighted. This is for

two reasons. Firstly, neither the current nor the velocity of the motor is considered as more

important than the other and secondly, the magnitude of the errors is similar in both cases,

so neither will dominate result of equation (5.26).

The Matlab code that implements the cost function is shown in Appendix E. The code

includes a method that allows the simulation model to be carried out using a variable step

solver, which is significantly faster and more robust than a fixed step solver.

5.5.3 Defining GA Parameters

The values of the GA parameters used in this algorithm along with a description of their

effect and a justification for their choice is given in Table 5-7.

Table 5-7: Genetic Algorithm Parameters

GA
Parameter

Value Description

Chromosome
Size

17 Determines the number of genes in each chromosome/individual.
In a continuous GA this is determined by the number of
parameters to be identified.

Population
Size

40 Determines the number of chromosomes in a population. A larger
population size means that the algorithm can search in a larger
space and that there is more variation in a population. However, a
large population can cause convergence problems and requires
more calls to the cost function which increases the running time of
the algorithm. A medium population size is chosen here to keep
computation time low whilst maintaining an acceptable variability
in the population.

Selection
Rate

0.5 Determines the percentage of the population that is retained in
each generation. The algorithm then repopulates the population
using the retained members and their offspring.

Elite
Members

5 Elite members of a population are always kept for the next
generation and are protected from mutations. The chromosomes
chosen to be elite are the best members of the population in a
particular generation. It is generally beneficial to use elite
members; however too many elites can cause a lack of variation in
the population, and the algorithm has a higher chance of
converging on a local optimal solution rather than the global
optimum.

120

Mutation
Rate

0.1 Defines the number of mutations per generation as a percentage
of the number of genes. A relatively high mutation rate was
chosen to ensure that variability in the population was kept high in
spite of a relatively small population and the use of elitism.

Maximum
Iterations

200 Determines the stopping criteria of the algorithm. Unless a
minimum cost function is reached, the algorithm will stop after
200 iterations.

5.5.4 Generating the Initial Population

An initial population of 40 chromosomes is randomly generated within the algorithm’s

search space. The search space it determined by the maximum and minimum values that

the 17 genes (or parameters) can take. The size of the maximum and minimum values

depends on the user’s knowledge of the parameters and how accurately they have already

been identified using previous measurements and optimization methods. Tighter

boundaries means that the algorithm is more likely to converge, but also reduces the

number of potential good solutions that algorithm can find. The motor parameter

inequalities given in equation (3.32) are implemented by restricting certain gene values to

be greater than others within their chromosome.

Once the initial population has been generated, the cost of each chromosome in the

population is calculated using the cost function. The costs are then sorted and the

chromosomes with the best 20 costs (i.e. half of the population) are retained and the

remaining chromosomes are discarded. The retained chromosomes are now selected for

mating.

5.5.5 Selecting Mates using Tournament Selection

Members of the remaining population are selected for mating using a tournament

selection method. Three chromosomes are selected at random and the member with the

lowest cost is selected as the first parent. The process is repeated with three new

121

chromosomes and the second parent is found. These two parents will go on to produce two

offspring. The whole process is repeated until 10 mating pairs are chosen.

A tournament selection algorithm was chosen because it allows stronger chromosomes

to have a higher chance of being chosen to mate whilst preventing a particularly strong

individual (or individuals) from dominating the mating pool. This is because the initial three

contenders are chosen at random, not based on their cost, which allows weaker but

potentially useful chromosomes the chance to mate.

The chosen parents are now mated to form the offspring for the new generation.

5.5.6 Carry out Mates Using Random Blending

In the mating process, information from the genes of each of the mating pair is shared

to form two new offspring. This is repeated 10 times in order to produce 20 offspring, who

are added to the existing twenty chromosomes to make up the next generation’s

population. The algorithm for a single mate is now described.

First, a random number,  , between 1 and 17 is generated, the value of which

determines the number of genes that are to be combined. Following this,  unique

random numbers between 1 and 17 are generated, called β , which determines which

genes are modified. Finally, a random number, , between 0 and 1 is generated, which is

the blending factor and determines the amount by which the genes are blended [100]. The

new genes for the two offspring are calculated using

             1 i ma i ma i da i   β β β β , (5.27)

             2 i da i ma i da i   β β β β , (5.28)

122

where 1 and 2 are the two offspring chromosomes, ma and da are the mating

chromosomes and i is the iteration number which incrementally increases from 1 and  .

The new chromosome 1 is formed from the original genes of ma , along with the

blended genes determined by  ,  ,  and equation (5.27). Likewise 2 is formed by da

and the blended genes determined by  ,  ,  and equation (5.28).

The population now undergoes random mutation to a select number of genes.

5.5.7 Mutations

To introduce a further level of randomness to the algorithm and to reduce the chance

of the GA prematurely converging on a local optimal solution, a selection of genes are

randomly mutated. The number of mutations depends on the Mutation Rate parameter of

the GA and in this case is 0.1 (based on trial and error and in order to keep high variation in

the population), i.e. a maximum of 10% of the genes in the population will mutate. Genes

to mutate are selected randomly from the population and any mutations acting upon elite

chromosomes are dismissed. The genes selected for mutation are assigned a new random

value within their maximum and minimum values and subject to any inequalities.

The mutation rate is relatively high in this algorithm. This is to ensure that enough

randomness remains in the population to explore the entire search space – this is

important because the population size is relatively small. The high mutation rate is also the

reason that elitism is being used.

5.5.8 Recalculate Costs

Once the new generation has been produced and mutations have taken place, the cost

of each chromosome in the population is evaluated using the cost function. The costs of

elite chromosomes and chromosomes from the previous generation that were not mutated

123

are not calculated because they have not changed from the previous generation. This adds

complexity to the algorithm but means that fewer calls to the cost function are made,

saving on simulation time.

Once the costs of the new generation are calculated, the GA determines whether it

should stop. If a chromosome in the population has a cost below a certain threshold, or if

the maximum number of iterations is reached, the algorithm will terminate and output the

results. If neither of the termination conditions is met, the algorithm continues to the next

generation and repeats the selection, mating and mutation processes.

5.5.9 Results of Parameter Optimisation Using Genetic Algorithms

The evolution of the cost functions for each iteration is shown in Figure 5-15 which

shows the best solution and the population mean. It can be seen that after around 40

generations the GA converges on a good solution. It then continues to explore the search

space to refine the solution up to around generation 135, at which point the GA settles on

a solution.

The chromosome with the best solution was made up of the parameters shown in

Table 5-8. It can be seen that the parameters that are identified are realistic when

compared to measured data and data from the literature. The values of the parameters

estimated here will be used as the first estimate for the local optimiser stage shown in

section 5.6 .

124

Figure 5-15: Genetic Algorithm Cost Function Plot

Table 5-8: Genetic Algorithm Best Parameters

Motor_Param Dry_Param Wet_Param Force

1.2236slowR   _1 0.3531dry  _1 0.5543wet  7.615F N

1.0737fastR   _ 2 0.1364dry 

-3

_ 2 6.348 10wet  

-33.0465 10slowL H  _3 2.01dry  _ 4 0.7085wet 

-33.0156 10fastL H 
-4

_6 2.376 10wet  

 
24.2707 10slow

V
K

rad s

 
-3

_7 2.900 10wet  

 
23.0119 10fast

V
K

rad s

 

 
41.5899 10

Nm
b

rad s

 

-5 22.2489 10J kgm 

125

A comparison of simulated data using the parameters in Table 5-8 and measured data,

along with their corresponding residuals, are shown in Figure 5-16 and Figure 5-17

respectively.

Figure 5-16: Genetic Algorithm Results Comparison

Figure 5-17: Genetic Algorithm Results Residuals

0 1 2 3 4 5 6 7 8
-10

-5

0

5

10

Time (s)

C
u
rr

e
n
t
(A

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Time (s)

P
a
rk

 S
te

p

0 1 2 3 4 5 6 7 8

-10

-5

0

5

10

Time (s)

C
u
rr

e
n
t
(A

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Time (s)

P
a
rk

 S
te

p

Measured

Simulated

126

It can be seen that the simulated data follows the measured data reasonably well, with

the simulated current results generally being slightly too high and the largest error

occurring during the switching transients. However it should be noted that the error in

shape and magnitude of the transients is very small and the large error seen is due the

transients occurring at slightly different times due to the slight error in the estimated

velocity of the motor.

5.6 Local Optimiser Stage

It is beneficial to employ a local optimiser at the end of a GA. This is because GAs are

best suited to finding a global optimum but are less adept at refining the solution. Using

the measured data taken at different input voltages to that used in the GA identification

stage, the local optimiser method used in section 5.4.5 is employed to further improve the

solution. The best set of parameters found using the local optimiser is given in Table 5-9. It

can be seen that they are marginally different from the parameters identified by the GA

given in Table 5-8. The search range of all of the parameters in the local optimiser conform

to equation (5.22), with in this case U being the parameters estimated by the GA and Û

being the parameters estimated using the local optimizer.

A comparison of the simulated data using the parameters given in Table 5-9 and the

measured data is given in Figure 5-18 along with their residuals in Figure 5-19. It can be

seen that the local optimiser has marginally improved the performance of the model,

particularly the error in the slow motor mode’s current.

127

Figure 5-18: Local Optimiser Results Comparison

Figure 5-19: Local Optimiser Residuals

0 1 2 3 4 5 6 7 8
-10

-5

0

5

10

Time (s)

C
u
rr

e
n
t
(A

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Time (s)

P
a
rk

 S
te

p

0 1 2 3 4 5 6 7 8

-10

-5

0

5

10

Time (s)

C
u
rr

e
n
t
(A

)

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Time (s)

P
a
rk

 S
te

p

Measured Data

Simulated Data

128

Table 5-9: Local Optimiser Best Parameters

Motor_Param Dry_Param Wet_Param Force

1.237slowR   _1 0.3186dry 
_1 0.4454wet  7.615F N

1.026fastR  
_ 2 0.1238dry  -3

_ 2 7.578 10wet  

-33.148 10slowL H  _3 1.996dry 
_ 4 0.6756wet 

-32.571 10fastL H 
-4

_6 2.795 10wet  

 
24.579 10slow

V
K

rad s

 
-3

_7 3.456 10wet  

 
23.412 10fast

V
K

rad s

 

 
41.582 10

Nm
b

rad s

 

-5 21.983 10J kgm 

5.7 Discussion

In this chapter, the unknown parameters of the wiper motor and mechanical forces

have been identified using a three stage optimisation method. Seventeen parameters were

identified, i.e. the eight motor parameters, three dry friction parameters, five wet friction

parameter and the force applied by the arms to the blades. The data used to identify the

parameters was measured from a real wiper system and consisted of the voltage applied to

the motor, the motor current and the motor park switch. The identification was achieved

with no continuous position/speed or load torque data.

 The first step in identifying the parameters was to perform an initial prediction of the

motor parameters by deriving a transfer function from the motor’s dynamic equations

which related the output current to the input voltage. The coefficients of the transfer

function could then be identified used the System Identification Tool in Matlab, and from

these coefficients the motor parameters could be derived. The identified parameters were

compared against measured parameters and were shown to be correct to with an order of

magnitude, apart from the inductances which were significantly overestimated. The

129

parameters identified in this stage were used to determine the search space of the Genetic

Algorithm, which is the next stage of parameter identification.

A Genetic Algorithm has been designed that attempts to minimise the calls to the cost

function and the simulation time of the model, whilst maintaining a suitable variability in

the population. The algorithm attempted to minimise a two objective cost function, i.e. the

difference in the measured and simulated currents and the difference between the

measured and simulated park switches. The algorithm successfully identified all seventeen

parameters after 135 generations. The final simulated data matched the measured data

reasonably well, with a tendency to overestimate the current and speed of the motor. The

parameters identified by the Genetic Algorithm were used as an initial guess for a non-

linear least squares local optimisation algorithm, which is the final stage of the

identification process.

A non-linear least squares local optimisation algorithm built into the Simulink

environment was used to hone the solution identified by the GA. Different data was used

to identify the parameters from that used in the Genetic Algorithm. The optimiser

marginally improved the overall accuracy of the model by improving the steady state error

in the current.

Considering the highly dynamic and nonlinear nature of the mechanical load applied to

the motor, and the limited identification data available, the final estimated parameters

caused the model to perform well against measured data across its entire range of

operation. The models can now be simplified in order to make them suitable for real-time

simulation and thus HIL simulation; this work in shown in Chapter 6.

130

Chapter 6 - Model Simplification for HIL

Implementation

6.1 Introduction

 In the previous three chapters a physical model capable of accurately simulating the

behaviour of the windshield wiper system has been developed and its equivalent

parameters identified. However, in order to solve the model in real-time, a variable step

solver is required. This is unsuitable for HIL simulation because HIL simulation requires a

fixed step solver. In order to solve the physical model using a fixed step solver, a time-step

in the order of 0.0001s is required to ensure that the simulation does not violate

constraints and cause simulation errors. However, the system cannot be solved fast enough

with a time-step of 0.0001s to be used in real-time; and in this case the smallest time-step

available when using the HIL simulator is 0.001s. Therefore the model must be adapted to

make it more robust and reduce its simulation time.

 There are four strategies for adjusting a desktop simulation model for real-time

simulation [101], these are:

1. Choose a solver more suited to real-time simulation.

2. Reduce the number of solver iterations.

3. Reduce the step size of the solver.

4. Decrease the size and fidelity of the model.

Regarding point 1, generally explicit solvers are preferred to implicit solvers for real-

time simulation. However physical systems tend to be stiff, meaning that they possess

dynamics with significantly different time constants, and implicit solvers are better suited

to solving such systems. In its current form the model developed in this project does

131

require an implicit solver10. It can be seen in Figure 6-1 (adapted from [101]) that the best

solvers for a physical system developed in Simscape are the Backward Euler and

Trapezoidal Rule implicit solvers. These work by locally solving the physical network whilst

another solver solves the non-physical elements of the model. However, the local Simscape

solvers cannot be used if a SimMechanics model is connected to the physical network.

Hence it is beneficial to remove the SimMechanics element so that the local solvers can be

used.

Figure 6-1: Simulink Fixed Step Solver Comparison

Regarding point 2, the number of iterations of an implicit solver has a relatively small

effect on the simulation time and in this case is set at three to trade-off between accuracy

and time. Regarding point 3, the step size is fixed at 0.001s due to the type of HIL system

being used, so this cannot be modified.

10

 Currently the fixed step solver with the best performance in Simulink is ODE14x.

132

Addressing point 4 is the main focus of the rest of this chapter. It has been stated that

significant gains in terms of simulation time and robustness can be achieved by using the

Simscape local solvers, which requires the removal of the SimMechanics element of the

model. This is achieved using look-up tables, polynomials and Artificial Neural Networks

(ANN) in order to model the kinematic and force/torque elements of the system. ANNs

have also been used to model the wiper motor to further increase the speed of simulation.

6.2 Kinematic Approximation Using Look-up Tables

It was shown in Chapter 4 that the mechanical element of the wiper system is

approximated as a fully kinematically defined system of rigid bodies with one DOF. This

means that there is a direct relationship between the position, velocity and acceleration of

any arbitrary point on the system and the system’s DOF (i.e. the motor output shaft). An

algorithm has been developed that extracts the positional data of the linkage rockers and

the wiper blades with respect to the position of the motor’s output shaft (any desired

points could be chosen). This information is then implemented in look-up tables.

The position of the motor shaft generated from the motor model developed in Chapter

3 is processed so that it rises from 0 to 2 radians during a single wipe and then resets to

0 , as is required by the look-up tables. The outputs of the look-up tables can then be

differentiated with respect to time to determine the velocity and acceleration of the

desired points. Using this method the SimMechanics model is not needed to generate

kinematic information.

6.3 No-Load Torque Polynomial Model

The so called no-load model is commonly used when implementing a HIL scheme that

incorporates a wiper system. The no-load model refers to a wiper system consisting of just

the motor and linkages and is clearly much simpler to implement than the full system in

133

both simulation and hardware. Despite its relative simplicity, it is still beneficial to replace

the SimMechanics element of the models with a simpler system.

Because the wiper blades are not included and the damping in the linkages is

approximated as being lumped in with the motor11, only the inertia of the linkages

contributes to the external torque load applied to the motor. The fundamental shape of

the torque is periodic and can be modelled using two polynomials, one for a forward wipe

and one for a reverse wipe. An algorithm has been written to extract the fundamental

torque shape from the SimMechanics model and uses the Mathworks line fitting tool to

identify the polynomials. An example of the polynomials identified for the slave driven

system described in Chapter 4 are given as

   4 3 20.19224 0.021769 0.15435 0.077812 0.68626f x x x x x      , (6.1)

  7 6 5 4 3

2

0.4184 0.30315 0.42441 0.12634 0.21484

0.10093 0.29859 0.63276

g x x x x x x

x x

    

  
 , (6.2)

where x is the sine of the position of the motor shaft,  f x describes the fundamental

shape of the forward wipe and  g x describes the reverse wipe’s shape. The torque is

dependent on the position and speed of the motor output shaft with the speed

determining the offset of the torque and its peak to peak value. The equation used to

model the torque is

      
      

2 1

2 1

if sin is ve

if sin is ve

vC f x vC

vC g x vC






   
 

  

 , (6.3)

11

 A small amount of damping was included in the linkage’s joints to stabilise the simulation.

134

where v is the velocity of the motor output shaft,  is the position of the shaft and 1C

and 2C are constants to be identified.

The constants 1C and 2C are identified using the GA described in Chapter 5, which has

been modified to identify 2 parameters rather than 17. Five datasets at five different

speeds were used to construct the cost function. The cost function for each individual

dataset,
j , where j is an integer between 1 and 5 identifying the dataset, is

    
1

N

j

i

i i  


  , (6.4)

where  is the target torque,   is the simulated torque and i determines data point

between 1 and N , with 1001N  . The final cost function is the sum of the five cost

functions given in (6.4) and is given as

5

1

1
cost i

jN




  . (6.5)

The final values of 1C and 2C are identified as 0.0035 and 0.2738 respectively. A

comparison of results from the SimMechanics model and the polynomial model is given in

Figure 6-2. The no load model with a SimMechanics element was measured as taking 86s

(real-time) to simulate 60s (simulation time) whereas the polynomial model took 4s to

simulate 60s, demonstrating a significant increase in simulation speed for a negligible loss

of accuracy. The evolution of the fitness function is given in Figure 6-3.

135

Figure 6-2: No-Load Torque Approximation Performance

Figure 6-3: No-Load Torque Approximation GA Performance

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

T
o
rq

u
e
 (

N
m

)

10V Slow Speed

Original

Approximated

0 2 4 6 8 10
-0.2

0

0.2

0.4

0.6

0.8

T
o
rq

u
e
 (

N
m

)

12V Slow Speed

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

T
o
rq

u
e
 (

N
m

)

12V Fast Speed

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

T
o
rq

u
e
 (

N
m

)

14V Fast Speed

0 2 4 6 8 10
-0.5

0

0.5

1

1.5

2

Time (s)

T
o
rq

u
e
 (

N
m

)

16V Fast Speed

0 2 4 6 8 10
-0.5

0

0.5

1

Time (s)

T
o
rq

u
e
 (

N
m

)

13.5V Fast Speed (Validation)

0 100 200 300 400 500
0

5

10

15

20

25

Generation

C
o
s
t

Population Best

Population Mean

Best Solution Found

136

6.4 Neural Network Modelling

It has been shown in the previous section that polynomials are an effective way of

modelling the torque load on the wiper motor caused by the so called no-load model.

However, when the torque load is produced by full wiper system, i.e. the linkages, arms,

blades and windscreen, more advanced modelling tools are required. Artificial Neural

Networks (ANN)12 can be trained to represent complex systems and will now be used to

simplify the wiper model.

6.4.1 Neural Network Theory

The information given here is developed from [102] and [103] unless otherwise stated.

Neural Networks map an input space to an output space via a series of interconnected

layers of neurons that act as transfer functions. The interconnections between layers are

generally weighted and biased, and it is the numerical values of theses weights and biases

that are adjusted using a learning algorithm to optimise the performance of the network.

The general form of a three layer feed forward NN is shown in Figure 6-4. The network is

arbitrarily chosen to have two inputs, one output and three neurons in the hidden layer.

x1

x2

w1
1,1

w1
1,2

w1
1,3

w1
2,1

w1
2,2

w1
2,3

Hidden Layer

∑ F(∙)

∑ F(∙)

∑ F(∙)

∑ F(∙)

w2
1,1

w2
2,1

w2
3,1

y1

Output Layer

Figure 6-4: General Feed Forward Neural Network Structure

12

 Henceforth referred to as Neural Networks (NN)

137

The input layer generally consists of a pre-processing rule, usually to normalize the

inputs, which improves the efficiency of the algorithm. Transfer functions can also be

applied in the input layer. Each input in the input layer is connected to each of the neurons

in the hidden layer via weighted connectors. The weighted inputs of a single neuron,

sometimes along with a bias (not shown in Figure 6-4), are summed as shown

  , j 0

1

n
L

i i

i

c w x w


  , (6.6)

where i , j , and L are the layer input number, layer neuron number and layer number,

respectively, w is the weight, x is the input and 0w is the bias and n is the number of

inputs to the layer. The output of (6.6) is fed into a transfer function which can take

numerous forms. Generally, hidden layer transfer functions are sigmoidal because they are

differentiable, which is essential for many optimization algorithms used to train neural

networks13. The transfer function used in the hidden layers in this project is the Tan-

Sigmoid transfer function, implemented as [104]

2

2
1

1 c
a

e
 


 , (6.7)

where c is the output of (6.6). The transfer functions in the output layer neurons tend to

be purely linear and act on the outputs before the reverse normalisation process is applied

to them.

Once the network has been designed it must be trained using input and target data.

This project uses supervised training methods, a block diagram of which is shown in Figure

6-5. Generally, the performance of a network is evaluated by calculating the Mean Squared

13

 Note that it is not always necessary for the transfer function to be differentiable. For example
a NN optimized using a GA would not require differentiable transfer functions.

138

Error (MSE) between the output of the network and the target outputs provided by the

supervisor. The MSE is calculated as

  
2

1

1
ˆ

N

k k

k

MSE y y
N 

  (6.8)

where N is the number of data points, ky is a target data point and ˆky is a network

output data point at interval k . The input and output data is generally split into three

datasets: Train, Validate and Test. The Train dataset is used to directly train the network to

fit the outputs and is the data used in (6.8), the Validation dataset is used to measure the

generalization of the network (i.e. how well it extrapolates) and the Test dataset gives a

measure of performance using data that has had no effect on the training of the network.

The training algorithm used in this project is the Levenberg-Marquardt

backpropagation algorithm, which is generally considered the fastest backpropagation

algorithm for networks of the size used here (in the order of a few hundred weight

elements).

Figure 6-5: Neural Network Supervised Training Block Diagram

Another type of NN is a Nonlinear Autoregressive Network with Exogenous Inputs

(NARX), which is commonly used in time series modelling. The defining equation of a NARX

model is

139

             (t) 1 , 2 , , , 1 , 2 , ,Dy Dxf t t t n t t t n      y y y y x x x , (6.9)

where (t)y is the output vector,  tx is the input vector and
Dyn and Dxn are the

number of output and input time delays respectively. It can be seen from (6.9) that the

output of a NARX network depend on previous values of the output and input. A simple

diagram of a NARX network is given in Figure 6-6 when nD indicates a delay of n time-

steps.

Feed
Forward
Network

Dn

Dn
x(t)

y(t)

Figure 6-6: NARX Model Diagram

6.4.2 Mechanical Load Modelling

The torque applied to the wiper motor is now modelled using a feed forward NN such

as that shown in Figure 6-4. Use is made of the fact that there is a direct relationship

between the torque applied to the motor and the position and velocity of the motor output

shaft which can be mapped by the NN. The input and output data used to train the network

is shown in Appendix F and consists of four wipes at different constant velocities. The data

is randomly split into 70% training data, 15% validation data and 15% test data. A second

set of data, also shown in Appendix F, shows data used purely for validation and was not

used to train the NN.

A study to indicate the best number of hidden layers in the network has been carried

out, the results of which are presented in Table 6-1 and graphically Figure 6-7. The network

was trained three times for each layer number and the average of the three results are

140

presented here (full results are presented in Appendix F). For each layer number, the MSE

of the train, validate and test data, along with the total MSE, training time and simulation

time (Simulating 5 seconds of data) and the total MSE of the separate validation data are

recorded and compared.

Table 6-1: Neural Network Performance against Number of Hidden Layers

Hidden
Layers

Training MSE
Validation

MSE
Training
Time (s)

Simulation
Time (s)

Train Validate Test Total Total

1 21.523 21.845 22.704 21.749 20.098 0.933 0.129

2 13.979 13.900 13.724 13.775 10.885 0.933 0.081

3 4.520 4.010 4.391 4.424 2.498 4.667 0.091

4 2.781 2.716 3.052 2.812 1.731 14.000 0.081

5 4.958 5.150 5.110 5.010 6.322 18.333 0.089

6 0.663 0.672 0.738 0.675 0.492 34.333 0.092

7 1.487 1.414 1.616 1.496 2.751 9.000 0.093

8 1.104 1.001 1.102 1.088 1.948 15.667 0.087

9 0.218 0.259 0.216 0.224 0.847 26.333 0.088

10 0.217 0.188 0.192 0.209 0.407 11.667 0.110

11 0.208 0.190 0.235 0.209 25.430 28.000 0.104

12 0.329 0.364 0.386 0.343 131.727 15.000 0.102

13 0.368 0.342 0.380 0.360 359.821 21.333 0.095

14 0.125 0.130 0.122 0.125 8.147 35.333 0.107

15 0.125 0.103 0.114 0.120 662.871 47.667 0.097

16 0.056 0.054 9.321 1.445 7345.731 42.333 0.098

17 0.126 0.161 0.144 0.134 269.474 31.000 0.111

18 0.059 0.057 2.136 0.370 589.505 40.333 0.103

19 0.029 0.030 0.034 0.030 357.209 40.333 0.120

20 0.037 0.046 0.091 0.047 176.187 34.667 0.122

It can be seen in Figure 6-7 that an increase in the number of layers tends to decrease

the total MSE of the output of network when analysing the training data. Table 6-1 shows

that the MSE in the validate and test datasets of the training data also tend decrease with

the number of layers. However, Figure 6-7 also shows that the total MSE of the separate

validation data only decreases with an increase in the number of layers of up to around 10,

141

after this point the error increases significantly14. This is because the NN is being over-

trained and simply memorizes the training data, i.e. the network does not generalize well.

Based on the results shown in Table 6-1 and Figure 6-7, 10 hidden layers were chosen for

the network design. A schematic of the network is shown in Figure 6-8. Note that the

connections from the input layer to the weight blocks in the first hidden layer have two

components. The network simultaneously outputs the torque for the wet and dry

windscreen conditions.

Figure 6-7: Neural Network Performance against Number of Hidden Layers

Plots comparing the trained NN output with target data, along with their errors, are

shown in Figure 6-9 and Figure 6-10 for the dry and wet condition torques for the training

data and Figure 6-11 and Figure 6-12 for the dry and wet torques for the separate

validation data respectively. It can be seen that the NN accurately models the torque load

for both training and validation data.

14

 Note that the result for the total MSE of the separate validation data for 16 hidden layers has
been omitted from the plot for clarity because it was significantly larger than the other results.

0.100

1.000

10.000

100.000

1000.000

0.010

0.100

1.000

10.000

100.000

0 5 10 15 20 25

V
al

id
at

io
n

 D
at

a
M

SE

Tr
ai

n
in

g
D

at
a

M
SE

Number of Hidden Layers

Training Data MSE Validation Data MSE

142

The MSEs, training time and simulation time of the network shown in Figure 6-8 are

shown in Table 6-2. It can be seen that the MSE for the training and validation data is very

small and the training time is low. The simulation time result refers to the amount of time

taken to simulate 5 seconds of operation in a Simulink implementation of the NN. It can be

seen that the simulation is significantly faster than real-time.

Figure 6-8: Mechanical System Feed Forward NN Approximation Schematic

Figure 6-9: Mechanical System NN Dry Torque Performance (Training)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

-5

0

5

10

15

20

25

T
o
rq

u
e
 (

N
m

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-4

-3

-2

-1

0

1

2

TimeStep (ms)

E
rr

o
r

(N
m

)

Target Data

NN data

143

Figure 6-10: Mechanical System NN Wet Torque Performance (Training)

Figure 6-11: Mechanical System NN Dry Torque Performance (Validation)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-15

-10

-5

0

5

10

15

20

T
o
rq

u
e
 (

N
m

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-2

-1.5
-1

-0.5
0

0.5
1

1.5
2

TimeStep (ms)

E
rr

o
r

(N
m

)

Target Data

NN Data

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-10

-5

0

5

10

15

20

25

T
o
rq

u
e
 (

N
m

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-3

-2

-1

0

1

2

TimeStep (ms)

E
rr

o
r

(N
m

)

Target Data

NN Data

144

Figure 6-12: Mechanical System NN Wet Torque Performance (Validation)

Table 6-2: Mechanical System NN Approximation Performance

Training MSE Validation MSE Training
Time (s)

Simulation
Time (s) Train Validate Test Total Total

0.0967 0.085 0.0977 0.0951 0.1102 45 0.103612

6.2.1 Simulink Implementation

An implementation of the full wiper model with the NN shown in Figure 6-8 replacing

the SimMechanics element of the model is shown in Figure 6-13. The system is controlled

by a Simscape control system switching between different input voltages and driving a

relay driver circuit connected to the motor. The motor position is conditioned to reset to

zero when it reaches 2 radians, as is required by the NN. The output of the NN is routed

through a switch which selects either the wet or dry condition and is multiplied by 1

before being connected to the motor. The model has been measured to simulate 60s

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-15

-10

-5

0

5

10

15

T
o
rq

u
e
 (

N
m

)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
-1

-0.5

0

0.5

1

1.5

TimeStep (ms)

E
rr

o
r

(N
m

)

Target Data

NN data

145

(simulation time) of data in 5.92s (real time), i.e. the model is suitable for real-time

simulation.

Figure 6-13: Hybrid Physical and Neural Network Model

6.4.3 Whole Wiper System Modelling

It is now investigated whether the whole wiper system can be modelled using NNs. To

do this, a NN must be designed that can model the dynamics of the wiper motor and

interface with the torque load NN. To do this, a custom NN is designed which is based on

the principle of a NARX network. The input to the motor NN is formed of the voltage from

the battery and the torque from the mechanical element of the model. The outputs are the

motor current and the velocity of the motor output shaft. Both of the outputs are fed back

to the NN via a delay block. The structure of the motor NN is shown in Figure 6-14. The

Matlab code used to build this NN is shown in Appendix F.

Figure 6-14 shows that the network is essentially formed of two networks with a

common input15 operating in parallel with each other, both outputting the motor current

and velocity. One network models the motor dynamics in its slow mode and the other

models it in its fast mode. Each parallel network has 8 hidden layers with 8 neurons each.

The inputs are routed through a delay of two time-steps, as are the feedback signals. Hence

15

 For training purposes the inputs for the Slow and Fast networks are different. This is to allow
the networks to be trained at the same time. In normal operation the inputs are the same and user
selects which dynamics are required at the output, depending on the state of the motor.

146

for the first two time-steps of the simulation the inputs will always be zero. The input data

used to train the motor network is shown in Appendix F.

Figure 6-14: Motor Neural Network NARX Approximation Schematic

As with the feed forward network, the training data is separated into three different

datasets: Train, Validate and Test in percentages of 70%, 15% and 15% respectively.

However, in this case the data is not split up randomly; rather the first 70% of the data is

used for training, the next 15% for validation and the final 15% for testing. This is to ensure

that the time dependent relationships are maintained when training the network. When

splitting the data like this it must also be ensured that all of the system dynamics are

present in the first 70% (equivalent to 11.2s) of data so that the network is trained across

147

the system’s entire range of dynamics. The validation and test data should be different but

remain within the trained dynamic range.

The network is initially trained in an open loop configuration. This is where the

feedback loops are disconnected and the known output target data is fed into the first

hidden layer instead. This improves training performance and decreases training time. The

feedback loops are then reconnected and the performance of the network is evaluated.

The closed loop performance is always inferior to the open loop performance. If the closed

loop system performance is unsatisfactory, the network can be retrained (initialised with

the weights and biases found during open loop training) in its closed loop configuration.

This generally improves performance but takes much longer to train. A comparison of

target and output data of the trained motor network for the slow mode are shown in

Figure 6-15 and Figure 6-16 and for the fast mode, Figure 6-17 and Figure 6-18 respectively.

Figure 6-15: Motor NARX Model Slow Mode Performance (Current)

0 2000 4000 6000 8000 10000 12000 14000 16000
-10

-5

0

5

10

15

C
u
rr

e
n
t
(A

)

0 2000 4000 6000 8000 10000 12000 14000 16000
-5

-4

-3

-2

-1

0

1

2

Time (ms)

E
rr

o
r

(A
)

Target Data

NN Data

148

Figure 6-16: Motor NARX Model Slow Mode Performance (Velocity)

Figure 6-17: Motor NARX Model Fast Mode Performance (Current)

0 2000 4000 6000 8000 10000 12000 14000 16000
-1

0

1

2

3

4

5

6

7

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

0 2000 4000 6000 8000 10000 12000 14000 16000
-0.4

-0.2

0

0.2

0.4

0.6

Time (ms)

E
rr

o
r

(r
a
d
/s

)

Target Data

NN Data

0 2000 4000 6000 8000 10000 12000 14000 16000
-10

-5

0

5

10

15

20

C
u
rr

e
n
t
(A

)

0 2000 4000 6000 8000 10000 12000 14000 16000
-5
-4
-3
-2
-1
0
1
2
3
4
5

Time (ms)

E
rr

o
r

(A
)

Target Data

NN data

149

Figure 6-18: Motor NARX Model Fast Mode Performance (Velocity)

The figures show that the network is very successful in modelling the dynamics of the

motor across its full range of operation. The network has no problem in modelling both the

transient and the steady-state behaviour of the motor across a range of different voltages

and torque loads. Table 6-3 shows the MSE of the network when trained in open loop and

closed loop configurations. The results demonstrate that the best performance is seen in

open loop mode; however this clearly cannot be implemented in a simulation model

because the target data is unknown and therefore it must be implemented in its closed

loop configuration. It can be seen that by retraining the network in its closed loop

configuration the closed loop system performance improves by an order of magnitude,

however, training time is significantly longer than for open loop training (for less epochs).

0 2000 4000 6000 8000 10000 12000 14000 16000
-4

-2

0

2

4

6

8

10

A
n
g
u
la

r
V

e
lo

c
it
y
 (

ra
d
/s

)

0 2000 4000 6000 8000 10000 12000 14000 16000
-2

-1.5

-1

-0.5

0

0.5

1

Time (ms)

E
rr

o
r

(r
a
d
/s

)

Target Data

NN Data

150

Table 6-3: Motor NARX Approximation Performance (Open and Closed Loop)

 Training MSE
Epochs Time

Training Train Validate Test Total

Open Loop
Open Results 0.0040 2.5e-4 0.0049 0.0036

81 1m37s
Closed Results 0.0784 0.0237 0.0591 0.0673

Closed Loop 0.0068 0.0038 0.0094 0.0068 56 7h19m

6.3.1 Simulink Implementation

The torque load and the motor NN models are now combined and implemented in

Simulink for deployment in a HIL system. Figure 6-19 shows the top level Simulink diagram

of the system. The motor is controlled via a Stateflow controller which turns the motor on

and off and selects the motor’s operating state (i.e. fast, slow or intermittent). The

controller uses the park switch feedback of the motor to determine when to switch

between states. The input battery voltage is set at 16V and the torque load can be switched

between wet a dry conditions.

Figure 6-19: Full Wiper System NN Implementation (Top Level)

Figure 6-20 shows the “Wiper System NN Implementation” subsystem from Figure

6-19. The battery voltage (which is turned on and off via switch 5) and the output from the

torque load NN form the inputs to the motor NN. The fast and slow output velocities from

the motor NN are integrated to obtain the position of the motor output shaft. The position

151

and velocity is then routed to the input of the torque load NN, via switch 3 which connects

either the fast or slow motor dynamics. Once the position of the chosen motor output shaft

reaches 2 radians, the park switch is switched to high (using switches 1 and 2) and fed

back into the controller. The park switch also resets the position of the motor output shafts

to zero, generating the saw style input that the torque load NN requires. The dry or wet

condition is selected using switch 4 before it is fed back into the motor NN.

Figure 6-20: Full Wiper System NN Implementation (Bottom Level)

The system shown in Figure 6-19 was measured to simulate 60s (simulation time) in

2.17s (real time) making it faster than the hybrid physical-NN model shown in section 6.2.1

and therefore suitable for HIL simulation. Figure 6-21 and Figure 6-22 show simulation

results of the model shown in Figure 6-19. Figure 6-21 shows the wiper motor current and

the position of the motor’s output shaft, rising from zero to 2 radians before resetting

back to zero. Figure 6-22 shows the torque load applied to the motor and the velocity of

the motor output shaft. For the first three wipes the slow motor state and wet windscreen

conditions are chosen, and then the motor is switched to its fast mode for four wipes. The

motor is switched off until 12s where it is switched back on in its slow mode but with dry

windscreen conditions. After three wipes the motor is switched to its fast mode for four

wipes, after which it is switched off. It can be seen from Figure 6-21 and Figure 6-22 that

the NN implementation of the full wiper system can successfully capture the dynamics of

152

the wiper system across its full operating range, at a much faster simulation speed than the

physical model developed previously.

Figure 6-21: Full Wiper System NN Simulink Results (Current and Position)

Figure 6-22: Full Wiper System NN Simulink Results (Torque and Velocity)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

Time (s)

C
u
rr

e
n
t
(A

)

0 5 10 15 20 25
0

5

10 P
o
s
it
io

n
 (

ra
d
)

Position

Current

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
-6

-4

-2

0

2

4

6

8

10

12

14

16

18

20

Time (s)

T
o
rq

u
e
 (

N
m

)

0 5 10 15 20 25

0

5

10

V
e
lo

c
it
y
 (

ra
d
/s

)

Velocity

Torque Load

153

6.4.4 Neural Network Limitations

A weakness of NNs is that they are unable to extrapolate the behaviour of the

modelled system beyond the training data. For example, if the input voltage to the wiper

motor physical model was increased to, say, 25V, the model would be able to simulate the

behaviour. However, the NN model would fail because it was only trained up to 18V. For

this reason care must be taken when selecting training data and when running the NN

models.

An example of the NN models developed in this chapter failing is shown in Figure 6-23.

In this case the NN motor model is subject to a constant torque when the motor is

switched off16 at around 5.2s. This causes a large error in both the motor velocity and

current. It should also be noted that the NN model fails to recover once the motor inputs

return to their normal, trained values at around 5.8s. Thus, the NN models developed here

would not be suitable for implementations such as fault insertion testing.

Figure 6-23: Neural Network Limitation Example

16

 The implemented simulation models prevent this from happening to emulate the worm and
wheel gear system in the motor.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
-60

-50

-40

-30

-20

-10

0

10

20

Time (s)

C
u
rr

e
n
t
(A

)

0 2 4 6 8 10 12 14 16
-1

0

1

2

3

4

5

6

7

V
e
lo

c
it
y
 (

ra
d
/s

)

Velocity

Current

154

6.5 Discussion

The goal of the work presented in this chapter was to modify the wiper system model

developed, parametized and validated in the previous three chapters in order to make it

suitable for real-time simulation, and thus HIL implementation. It was decided that the best

way to achieve this was to replace the SimMechanics element of the physical model with a

model which could be simulated outside of the physical domain. Doing this allowed the

simulation speed of the model to be increased for two reasons. Firstly, local Simscape

solvers could be used to solve the physical network which are faster than the global solvers

(and could not be used if a SimMechanics model was attached to the physical network).

Secondly, models could be developed that only simulated elements of the system that

were needed, making them inherently faster to simulate.

The first step was to make use of the fact that the mechanical system is a fully

kinematically defined system of rigid bodies with one DOF. This meant that the positional

behaviour of any point on the system could be represented using look-up tables driven by

the position of the motor output shaft. The velocity and acceleration behaviour could then

be obtained by differentiating the position.

The second step was to model the torque load applied to the motor by the wiper

system’s mechanical element. Initially, this was done for the system’s so called no-load

condition, which only takes into account the load applied by the linkages. The torque was

modelled using polynomials to define the fundamental shape of the torque load, with

respect to the motor shaft position, across its forward and reverse wipe. An equation was

then developed to model the effect of the motor velocity on the torque, whose unknown

constants were identified using a GA. By replacing the SimMechanics implementation of

the linkages with the polynomial implementation, the model went from taking 86s (real-

155

time) to simulate 60s (simulation time) to taking 4s to simulate 60s – making it suitable for

real-time and HIL simulation.

The third step was to model the whole mechanical system using feed forward NN. An

investigation revealed that, in this case, a NN with 10 hidden layers with 10 neurons each

are the optimal dimensions. The network was trained to simultaneously output the torque

developed in the wet and dry windscreen conditions from input data consisting of the

motor output shaft’s position and velocity. The network was trained with data from the

physical model. The trained network successfully models the torque with an average MSE

of 0.0951 for the training data and 0.1102 for the validation data. A simulation model of

the wiper system with the torque NN replacing the SimMechanics system was measured as

simulating 60s (simulation time) of data in 5.92s (real time).

The final step was to attempt to model the entire wiper system using NNs. For this, a

NN modelling the wiper motor that could be interfaced with the torque NN was developed,

based on the principles of a NARX network. The motor NN accepts voltage and torque

(from the torque NN) inputs and outputs the motor current and output shaft velocity for

both fast and slow modes of operation. The trained motor NN is able to model the

dynamics of the wiper motor with an average MSE of 0.0068, however to achieve this low

MSE the NN had a closed loop training time of 7h19m. Both the motor NN and torque NN

are implemented together in a Simulink model and successfully simulated the entire wiper

system. The full NN system can simulate 60s (simulation time) in 2.17s (real time) making it

the fastest model developed here.

156

Chapter 7 - Adaptive Control of the Wiper System

7.1 Introduction

This chapter demonstrates a number of control techniques designed to implement

constant velocity control of the windscreen wiper system. Currently, wiper systems have

little in the way of direct velocity control and rely on decisions from the driver and

sometimes a rain sensor to determine a number of wipes per minute, measured using the

park switch. A more detailed example of this type of control is given in section 7.1.1. It

should be noted that this type of control is justified because the wiper system does not

need accurate speed control to perform its task and the system can receive immediate

intelligent feedback and control from the driver should its performance be insufficient.

However, there are benefits to implementing more accurate speed control in terms of

reducing power consumption and wear on the brushes. Because of the nature of the wiper

motor system, the only variable that can be controlled is the input voltage. Therefore, to

reduce power consumption, the input voltage must be reduced. Thus, the control strategy

is to specify a constant velocity which is the slowest velocity, and thus lowest voltage,

needed to adequately clear the windscreen. This is not achieved with the current control

system because only discrete speeds can be chosen, and thus it is likely that the wiper

motor will be rotating faster than in needs to. By driving the motor at its slowest possible

speed, the voltage can be reduced and thus the power consumption is reduced. Also,

operating the motor at a lower speed will reduce the wear on the brushes, thus increasing

their lifetime [105].

It was shown in Chapter 4 that the torque load on the motor is highly dynamic, which

has an effect on the velocity of the motor. Thus a control system must be able to maintain

a constant velocity when subject to the dynamic load torque. Because the load applied to

the motor is variable, adaptive control techniques are used to address the disturbances to

157

the system and maintain a constant velocity, whilst not compromising on the overshoot of

the system. The control systems developed in this chapter are based on PID control with

the error signal being formed from the set point velocity minus the measured velocity of

the motor. The control variable is the input voltage to the motor (and the speed state, i.e.

fast or slow). Initially, a classic non-adaptive PID control system is developed to

demonstrate its drawbacks and provide a benchmark for the adaptive controllers

developed subsequently.

The adaptive controllers are based on Single Neuron PID (SNPID) control, where the

gains of the PID controller are replaced by the weights of the inputs to a neuron, which can

be adjusted in real-time based on a learning rule. The SNPID controllers are then

augmented using a fuzzy inference system to vary the overall gain of the system. This adds

another layer of adaptability to the controller and can be used to achieve constant optimal

performance in real-time.

There are clear advantages in applying accurate speed control in the wiper system,

however implementing the system in a real vehicle will require a speed sensor and a DC-DC

converter to control the input voltage. Current systems do not incorporate these features.

The vehicle manufacturer must trade off the advantages of such a control system against

the cost and complexity of its implementation.

7.1.1 Classic Wiper Control Example

An example of an existing wiper control system is shown in Figure 7-1. The specifics and

complexity of the system are dependent on the model of the vehicle. A discrete wiper

speed is selected by the driver (and/or the rain sensor if one is available) which determines

whether the motor is operated in intermittent mode (if available), slow continuous mode

or fast continuous mode. The implementation of the ON/OFF and FAST/SLOW states of the

motor is realised using two relays with form-C contacts whose states are switched using the

158

ECU. The ON/OFF relay can connect to electrical ground (for OFF) or the vehicle’s battery

(for ON). This is then routed to the FAST/SLOW relay which connects to both inputs of the

wiper motor. If the ON/OFF relay is connected to the battery, current is supplied to the

motor and it drives the wipers. Depending on the state of the FAST/SLOW relay, the wiper

operates in its fast or slow operation. The motor brush not in use is left open. The park

switch from the motor is fed back to the ECU for average speed measurement and control

purposes.

Battery

M

Wiper
Motor

Body Electronics
ECU

Park Switch

Control Signal
Driver/Rain

Sensor ON/OFF
Control

FAST/SLOW
Control

ON/OFF
Relay

FAST/SLOW
relay

Park Switch

Figure 7-1: Classic Wiper System Control

7.2 PID Velocity Control

PID (Proportional-Integral-Derivative) control is a widely used method of control which

is often used as a benchmark for assessing the performance of more advanced control

techniques. Stated in the Laplace domain, the transfer function relating the output control

signal  U s to the input error  E s for a PID controller is

  
 

 
i

PID p d

U s K
G s K sK

E s s
    , (7.1)

159

where
pK is the proportional gain which determines the rise time and overshoot, iK is

the integral gain which determines the steady state accuracy and dK is the derivative gain

which overcomes oscillations. In classic PID control all of the gains are constants and can be

equal to zero. There are many techniques for tuning the gains of a PID controller and their

optimal values depend on the performance requirements of the system. Often there must

be a trade-off between performance measures, for example a PID controller tuned to

minimise overshoot will likely have a slow rise time and poor reference tracking in the

presence of disturbances.

A PID controller is used to achieve constant velocity control of the wiper system using

the tuning algorithms built into Matlab. A block diagram showing the system is given in

Figure 7-2. The reference velocity begins at  rad/s, then at 10s it switches to 1.2 rad/s

and at 15s it switches to 0.8 rad/s. The torque load operates in its wet condition up until

5s, then it switches to dry. At 12s the load state switches back to wet. The control system is

tested over a range of input velocities and torque loads using these test signals. The control

voltage is limited to  0 20U s V  .

Figure 7-2: PID Controller Block Diagram

The tuned PID parameters (tuned in Simulink) are shown in Table 7-1.

160

Table 7-1: Tuned PID Controller Gains

Controller Gain Value

pK 0.00177

iK 35.452

dK 0

The results of the simulation are shown in Figure 7-3. It can be seen that the control

system successfully tracks the input reference velocity across all velocities and loads.

However the system has relatively poor disturbance rejection17, particularly at higher

speeds and torque loads. Numerical results are shown in Table 7-2. The overshoot and rise

time are measured from when the motor is first switched on. The rise time is defined here

as the time taken to rise from zero rad/s to  rad/s. The errors in disturbance rejection are

divided into the five system states used for testing, which are shown in Table 7-3. The

errors with the highest positive and negative errors were recorded for each state.

Figure 7-3: PID Control Graphical Results

17

 In this case the torque load on the motor is considered as a disturbance to the system.

161

Table 7-2: PID Control Numerical Performance

Over-
shoot

 (rad/s)

Rise
Time

(s)

State 1
Error (rad/s)

State 2
Error (rad/s)

State 3
Error (rad/s)

State 4
Error (rad/s)

State 5
Error (rad/s)

Low(-) High Low(-) High Low(-) High Low(-) High Low(-) High

PID 0 0.765 0.35 0.2 0.818 0.416 1.179 0.453 0.410 0.263 0.311 0.186

Table 7-3: Control System Test States

State Number Target Velocity Load Condition

State 1  radians Wet
State 2  radians Dry

State 3 1.2 radians Dry

State 4 1.2 radians Wet

State 5 0.8 radians Wet

It has been stated that the PID control system shown in this section has relatively poor

disturbance rejection, and thus the velocity of the motor varies quite considerably. This

could be improved by changing the PID controller parameters; however doing so would

negatively impact the overshoot of the velocity. In the next two sections, adaptive control

techniques are used to overcome this and improve the overall performance of the system.

7.3 Single Neuron Adaptive PID Control

In Single Neuron PID (SNPID) control the PID controller portrayed in equation (7.1) is

replaced by a single neuron with three inputs and one output. As in the case of a full ANN,

the inputs to the neuron are subject to weight elements which can be adjusted to produce

a desired output of the neuron based on some learning rule. The weights of the SNPID

effectively replace the gain parameters of a classic PID controller and can be adjusted in

real-time, thus making SNPID a form of adaptive control. SNPID controllers combine the

advantages of neural networks, i.e. the ability to learn and adapt their behaviour, with the

advantages of PID control. The basic element of the single neuron PID controller is shown

in Figure 7-4.

162

∑

w1(k)

w2(k)

w3(k)

u(k)

x1(k)

x2(k)

x3(k)

Figure 7-4: Single Neuron Model

The three inputs to the neuron are defined as follows

 

 

 

1

2

3

()

() (1)

() 2 (1) (2)

x k e k

x k e k e k

x k e k e k e k



  

    

 , (7.2)

where ()e k is the error in the system at time k . Therefore,  1x k corresponds to current

error in the system,  2x k to the first differential of the error and  3x k to the second

differential. The three states are analogous to the incremental form of the PID controller

equation shown in equation (7.3)

      () (1) () () 2 (1) (2)p i du k k e k e k k e k k e k e k e k          , (7.3)

where  u k is the incremental output of the controller which is added to the previous

control value (see equation (7.5))

It can be seen from Figure 7-4 and equation (7.3) that the weights of the single neuron

act as the PID gains. Hence, the output of the single neuron at time k can be written as

      1 2 3() () (1) () 2 (1) (2)u k w e k w e k e k w e k e k e k          . (7.4)

Figure 7-5 shows the entire SNPID control system. The incremental output of the single

neuron,  u k , is multiplied by a factor K which is the proportionality coefficient of the

163

neuron and has a large effect on the output. The error signal is defined as

      e k r k y k  where  r k is the reference signal and  y k is the measured

output from the plant that the system seeks to control. The weights are varied at each time

step by some learning rule, the inputs to which depend on the procedure used in the rule,

but it is always dependent on the error.

Figure 7-5: Single Neuron PID Control System Block Diagram

From Figure 7-5 it can be deduced that the output of the system, i.e. the control input

to the plant is

      1U k U k u k   , (7.5)

where

      
3

1

ˆ
i i

i

u k K w k x k


   , (7.6)

and  ˆ
iw k is the normalised18 value of weight i and is defined as

  
 

 
3

1

ˆ i

i

j

j

w k
w k

w k





 . (7.7)

18

 The weights are normalised to improve robustness and convergence of the algorithm.

164

Three learning rules to update the weights of the neuron are implemented and

compared. These are the Hebb learning rule as used in references [90] [94] [91] [92] and

[93], the Error-Hebb learning rule proposed in reference [94] and the quadratic learning

rule used in [89] and [88]. Three learning rules are being investigated because it is not clear

from theory which will provide the best performance in this case.

7.3.1 Hebb Learning Rule

The equations describing the weights at time  1k  for the Hebb learning rule are

given as

         

         

         

1 1 1

2 2 2

3 3 3

1

1

1

I

P

D

w k w k e k u k x k

w k w k e k u k x k

w k w k e k u k x k







  

  

  

 , (7.8)

where I , P and D are the learning rates of the integral, proportional and derivative

elements of the algorithm, respectively.

7.3.2 Error Only Hebb Learning Rule

The equations describing the Error-Hebb learning rule are similar to the standard Hebb

learning rule but replace the state terms of the equation with a term derived from the error

signal:

            

            

            

1 1

2 2

3 3

1

1

1

I

P

D

w k w k e k u k e k e k

w k w k e k u k e k e k

w k w k e k u k e k e k







    

    

    

 , (7.9)

165

where      1e k e k e k    .

7.3.3 Quadratic Learning Rule

The equations describing the Quadratic learning rule are given as

              

              

              

3

1 1 0 1 1

1

3

2 2 0 2 2

1

3

3 3 0 3 3

1

1

1

1

I i i

i

P i i

i

D i i

i

w k w k K Pb e k x k QK w k x k x k

w k w k K Pb e k x k QK w k x k x k

w k w k K Pb e k x k QK w k x k x k













 
    

 

 
    

 

 
    

 







 , (7.10)

where P and Q are weight values of output error and control increments respectively

and 0b is the initial value of the control output (set to 1 in this case for simplicity).

7.3.4 Single Neuron Adaptive PID Control Results and Discussion

The SNPID control system using the three learning rules discussed are now tested and

compared to the PID control system described in section 7.2. The same control and load

inputs to the system are applied and the SNPID control systems are assessed based on the

same criteria. The parameters used for each of the learning rules are shown in Table 7-4.

The exact values of K used are given on their respective graphs and results table.

Table 7-4: Single Neuron PID Control Test Parameters

Learning Rule I P D K P Q 0b

Hebb 1 1.5 1 0.08 to 0.5 N/A N/A N/A

Error Hebb 1 1.5 1 0.2 to 1 N/A N/A N/A

Quadratic 1 1.5 1 0.05 to 0.5 2 1 1

Figure 7-6 shows the results of the SNPID Hebb learning rule simulations, Figure 7-7

shows the results of the SNPID Error-Hebb learning rule and Figure 7-8 shows the results of

166

the SNPID quadratic learning rule. Results of all the learning rules are shown in Table 7-5

showing the overshoot, rise time and maximum positive and negative errors in the five

states (see Table 7-3 for state details).

Figure 7-6: Single Neuron Hebb Learning Rule Results

Figure 7-7: Single Neuron Error-Hebb Learning Rule Results

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

V
e
lo

c
it
y
 (

ra
d
/s

)

0 2 4 6 8 10 12 14 16 18 20

-2

0

2

Time (s)

E
rr

o
r

(r
a
d
/s

)

K = 0.08

K = 0.1

K = 0.5

Reference Velocity

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

V
e
lo

ci
ty

 (
ra

d
/s

)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

Time (s)

E
rr

o
r

(r
a
d
/s

)

K = 0.2

K = 0.6

K = 1

Reference Velocity

167

Figure 7-8: Single Neuron Quadratic Learning Rule Results

Table 7-5: Single Neuron Control System Results

Over-
shoot

 (rad/s)

Rise
Time

(s)

State 1
Error (rad/s)

State 2
Error (rad/s)

State 3
Error (rad/s)

State 4
Error (rad/s)

State 5
Error (rad/s)

Low(-) High Low(-) High Low(-) High Low(-) High Low(-) High

Hebb
(K=0.08)

0 0.127 0.189 0.151 0.435 0.277 0.626 0.421 0.223 0.184 0.153 0.118

Hebb
(K=0.1)

0.137 0.082 0.156 0.127 0.355 0.2315 0.507 0.342 0.183 0.158 0.124 0.097

Hebb
(K=0.5)

1.826 0.028 0.031 0.026 0.067 0.049 0.281 0.309 0.037 0.045 0.025 0.020

E-Hebb
(K=0.2)

0 0.126 0.184 0.148 0.427 0.272 0.615 0.411 0.220 0.180 0.153 0.117

E-Hebb
(K=0.6)

0.739 0.036 0.063 0.054 0.141 0.099 0.268 0.327 0.076 0.069 0.052 0.042

E-Hebb
(K=1)

1.387 0.025 0.038 0.032 0.082 0.060 0.264 0.301 0.045 0.041 0.031 0.025

Quadratic
(K=0.05)

0 0.716 0.282 0.195 0.656 0.375 0.947 0.584 0.330 0.229 0.242 0.164

Quadratic
(K=0.1)

0.052 0.098 0.171 0.138 0.394 0.255 0.569 0.384 0.204 0.172 0.140 0.109

Quadratic
(K=0.5)

0.055 0.118 0.155 0.126 0.361 0.232 0.495 0.326 0.176 0.150 0.099 0.079

It can be seen that all three adaptive learning rules out-perform classic PID control.

Because the PID controller produced results with no overshoot, one of the K values

chosen for each learning rule was also chosen to produce no overshoot, so a direct

comparison can be made. All of the SNPID controllers with zero overshoot had faster rise

0 2 4 6 8 10 12 14 16 18 20
-1

0

1

2

3

4

5

V
e
lo

c
it
y
 (

ra
d
/s

)

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

Time (s)

E
rr

o
r

(r
a
d
/s

)

K = 0.05

K = 0.1

K = 0.5

Reference Velocity

168

times and lower positive and negative errors in all of the five states than the PID controller.

This is due to the weights of the SNPID controller updating in response to the error.

The two best systems were the Hebb learning rule and the Error-Hebb learning rule,

although a direct comparison between the two is difficult to make because of the different

values of K required. At all chosen values of K the tracking errors were lower than that of

the PID controller and at the highest K value the average tracking error was 0.089 rad/s

for the Hebb Learning rule and 0.0919 rad/s for the Error-Hebb learning rule.

The weakest of the three adaptive control system tested was the Quadratic Learning

rule system. The system generally produced good overshoot and rise time results but the

disturbance rejection performance was inferior to the other two adaptive systems. This

was because, at higher values of K which would improve the disturbance rejection, the

control output began to oscillate and caused an error in the simulation.

The results in Figure 7-6 and Figure 7-7 clearly demonstrate the effect that the value of

K has on the performance of the system. A low value of K can achieve zero overshoot

whilst maintaining reasonable rise times. However this is at the expense of disturbance

rejection, resulting in the system having difficulty tracking the reference input, particularly

during high load disturbance, i.e. when the windscreen condition is dry. Conversely, a lower

value of K successfully tracks the reference velocity with very small errors, but tends to

cause overshoot and oscillations before system settles. Attempting to alleviate this

problem by using an adaptive value of K is the subject of the next section.

7.4 Single Neuron Fuzzy Adaptive PID Control

It was demonstrated in the previous section that the K value of a SNPID controller has

a large effect on the performance of the controller. If the value of K could adapt to the

error in the system the performance of the controller could be further improved. To do

169

this, a Mamdani fuzzy inference system is used whose input is the error signal  e k and

whose output is a variable value of K . Versions of this technique have been implemented

in references [90] and [89].

A fuzzy logic system is a type of multivalued logic system which does not use sharp

boundaries between its states, and membership of a state exists on a spectrum. Fuzzy logic

systems utilise a linguistic approach that impersonates the way human’s use and process

language. Fuzzy inference systems use fuzzy logic to map an input variable to an output

variable and are capable of dealing with uncertain and complicated systems. The design of

the fuzzy inference system used here is now shown.

The input error to the system is divided into 7 fuzzy sets: Negative Big (NB), Negative

Medium (NM), Negative Small (NS), Zero (ZO), Positive Small (PS), Positive Medium (PM)

and Positive Big (PB). Likewise, the output value of K is divided into four fuzzy sets: Very

Small (VS), Small (S), Medium (M) and Big (B). These fuzzy sets must be assigned to

corresponding membership functions. The input membership functions are shown in Figure

7-9.

Figure 7-9: Fuzzy Membership Functions – Input

170

The input error is a real number between 3 rad/s. Any error larger than this is

treated as 3 . The value of  e k will determine which membership function(s) that the

input belongs to and by what degree. For example, suppose at time k that   2e k   .

From Figure 7-9 it can be deduced that the input belongs to the NB set by a degree of

around 0.125 and the NM set by a degree of around 0.3. The membership functions are

grouped tightly around the zero error mark to allow for tighter control during steady state.

Larger errors will belong mostly to either the NB or PB sets which allow for a steeper

increase in K during transients.

To determine the relationship between the input and output sets, 7 fuzzy rules in the

form of “IF A THEN B” are used. A large error value implies that the system is in transient

mode and thus a small value of K is needed. A small or zero error implies that the system

is in steady state mode and large value of K is needed to maintain the small error. Hence,

the 7 rules are:

1) IF (Input Error is NB) THEN (K Value is VS)
2) IF (Input Error is PB) THEN (K Value is VS)
3) IF (Input Error is NM) THEN (K Value is S)
4) IF (Input Error is PM) THEN (K Value is S)
5) IF (Input Error is NS) THEN (K Value is M)
6) IF (Input Error is PS) THEN (K Value is M)
7) IF (Input Error is ZO) THEN (K Value is B)

Thus the membership set(s) that the input belongs to, and the degree to which the

input belongs to the set(s) is used to map the input sets to the output sets. The output set’s

membership functions are shown in Figure 7-10.

The VS membership function is a Z-shaped function (rather than a triangle) and mostly

does not cross the other membership functions to allow the K value to reach smaller

values in response to large transient errors. The centroid de-fuzzification strategy is used to

171

determine the value of K from the membership function(s) that it belongs to, and the

degree to which it belongs to it/them.

Figure 7-10: Fuzzy Membership Functions – Output

The block diagram of the SNPID controller with the added Fuzzy controller to tune the

value of K is shown in Figure 7-11. It can be seen that the controller accepts the error

signal and outputs a value of K which is 0 1K  . This value is then multiplied by a

constant gain to bring it into the range that the controller needs. Note that this could have

been achieved by the fuzzy controller without a gain block, however in this way the same

fuzzy controller can be used for all SNPID controllers and only the value of the gain needs

to be changed.

Figure 7-11: Single Neuron Fuzzy PID Control System Block Diagram

172

7.4.1 SNPID with Fuzzy Controller Results and Discussion

The performance of the SNPID controller with adaptive K value controlled by the fuzzy

controller described in section 7.4 will now be given and discussed. The same input

conditions, controller parameters and performance criteria used in section 7.3.4 to test the

SNPID controllers are applied here.

Figure 7-12 shows the results of the SNPID controller with the Hebb learning rule and

fuzzy regulator, Figure 7-13 shows the results of the SNPID controller with the Error-Hebb

learning rule and fuzzy regulator and Figure 7-14 shows the results of the SNPID controller

with the quadratic learning rule and fuzzy regulator. The value of K is included in the plots

to demonstrate how it changes with respect to the error. The gains applied to the outputs

of the three fuzzy controllers are 0.5, 1.5 and 0.5 respectively.

Figure 7-12: Single Neuron Hebb Learning Rule with Fuzzy Controller Results

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

6

V
e
lo

c
it
y
 (

ra
d
/s

)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

K
 V

a
lu

e

0 2 4 6 8 10 12 14 16 18 20
-3.5

-2.5

-1.5

-0.5

0.5

1.5

2.5

3.5

Time (s)

E
rr

o
r

(r
a
d
/s

)

Measured Velocity

Reference Velocity

K Value

173

Figure 7-13: Single Neuron Error-Hebb Learning Rule with Fuzzy Controller Results

Figure 7-14: Single Neuron Quadratic Learning Rule with Fuzzy Controller Results

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

6

V
e
lo

c
it
y
 (

ra
d
/s

)

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

K
 V

a
lu

e

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

Time (s)

E
rr

o
r

(r
a
d
/s

)

Measured Velocity

Reference Velocity

K Value

0 2 4 6 8 10 12 14 16 18 20
-2

-1

0

1

2

3

4

5

6

V
e
lo

c
it
y
 (

ra
d
/s

)

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

K
 V

a
lu

e

0 2 4 6 8 10 12 14 16 18 20
-4

-2

0

2

4

Time (s)

E
rr

o
r

(r
a
d
/s

)

Measured Velocity

Reference Velocity

K Value

174

Table 7-6 shows the numerical results of the simulations.

Table 7-6: Single Neuron with Fuzzy Control System Results

Over-
shoot

 (rad/s)

Rise
Time

(s)

State 1
Error (rad/s)

State 2
Error (rad/s)

State 3
Error (rad/s)

State 4
Error (rad/s)

State 5
Error (rad/s)

Low(-) High Low(-) High Low(-) High Low(-) High Low(-) High

Hebb
(gain=0.5)

0.559 0.092 0.043 0.037 0.097 0.069 0.133 0.096 0.052 0.047 0.035 0.028

E-Hebb
(gain=1.5)

0.529 0.08 0.035 0.030 0.079 0.057 0.109 0.078 0.042 0.039 0.029 0.023

Quadratic
(gain=0.5)

0.553 0.094 0.044 0.037 0.099 0.070 0.135 0.097 0.052 0.048 0.038 0.030

It can immediately be seen from the results that the fuzzy controller tuning the value of

K has a positive effect on the performance. For all three of the SNPID control systems

tested, the controller found a good compromise between reducing the overshoot and rise

times whilst rejecting the disturbance caused by the torque load. The largest improvement

in performance was found in the SNPID controller with the quadratic learning rule. Without

the fuzzy controller, the quadratic learning rule performed significantly worse than the

Hebb and Error-Hebb learning rules in terms of disturbance rejection due to instabilities in

the system at high K values. However, the addition of the fuzzy controller meant that the

performance of the quadratic learning rule system was comparable to the other two,

making it a viable option.

7.5 Sensorless Control Neural Network

The goal of the control systems described and simulated in this chapter has been to

operate the wiper motor at a reference speed whilst rejecting the disturbances in velocity

caused by the dynamic torque load. In order to achieve this, the velocity of the wiper

motor is needed. This can be achieved in simulation, however the actual wiper system has

no method of continuous speed measurement. In general, vehicle manufacturers are

reluctant to add sensors to the vehicle due to cost and complexity. Therefore methods of

estimating the volcity must be considered.

175

One method demonstrated here is to use a feed forward neural network whose inputs

are the voltage applied to the motor and the motor current, and whose outputs are the

velocity of the motor in its fast and slow mode. A diagram of such a NN is shown in Figure

7-15.

Figure 7-15: Motor Velocity Estimator NN Schematic

The NN shown in Figure 7-15 effectively acts as two networks in parallel with one path

mapping the input voltage and motor current to the motor’s velocity in its slow state and

the other path mapping the inputs to the velocity in its fast state. The inputs to both of the

paths are the same in normal operation, although different inputs were used for training.

The network is trained across its full range of input voltages in both wet and dry

windscreen conditions. The input training data is given in Appendix F, along with the

Matlab code to build the network.

The performance of the trained network is given in Figure 7-16 and Figure 7-17. Figure

7-16 shows the performance of the slow path in the network and Figure 7-17 shows the

176

performance of the fast path. It can be seen that the NN very accurately maps the input

voltage and wiper current to the output velocity in both slow and fast states.

Figure 7-16: Sensorless NN Slow Mode Training Data

Figure 7-17: Sensorless NN Fast Mode Training Data

Clearly the NN described in this chapter is capable of estimating the velocity of the

motor; however it is vulnerable to changes in system parameters and torque load

conditions. It is well known that PMDC motor parameters can change during operation,

0 5 10 15 20 25 30 35 40
-1

0

1

2

3

4

5

6

V
e
lo

ci
ty

 (
ra

d
/s

)

0 5 10 15 20 25 30 35 40
-3

-2

-1

0

1

Time (s)

E
rr

o
r

(r
a
d
/s

)

NN Data

Target Data

0 5 10 15 20 25 30 35 40
-1

0

1

2

3

4

5

6

7

V
e
lo

c
it
y
 (

ra
d
/s

)

0 5 10 15 20 25 30 35 40
-4

-2

0

2

Time(s)

E
rr

o
r

(r
a
d
/s

)

NN Data

Traget Data

177

largely due to temperature. A NN trained in this way is not able to adapt to changes in

parameters and will output the velocity with an associated error. This problem could

potentially be overcome using on-line parameter estimation techniques (such as those

discussed in Chapter 2). This is left as further work, dependent on whether the vehicle

manufacturer wishes to use the control system developed in this chapter.

7.6 Stateflow Control Implementation

Because the control systems developed in this chapter use continuous feedback to

control the velocity of the wiper motor at a reference speed, the fast, slow and increment

speed modes of the classic wiper modes are not used. Instead, the motor always operates

in its slow mode unless the voltage reaches a certain threshold (18V in this case), at which

point the motor switches to its fast mode to achieve a greater speed at the same voltage.

The simple Stateflow control system to achieve this is shown in Figure 7-18.

Figure 7-18: Stateflow Continuous Speed Motor Controller Implementation

7.7 Discussion

In this chapter, methods of directly controlling the angular velocity of the wiper motor

have been investigated. The benefits of directly controlling the velocity of the motor are

reduced wear on the brushes and commutator of the motor, and reduced energy

consumption because the motor can run at the lowest speed needed to clear the

178

windscreen. The control problem is challenging because the torque load applied to the

motor is highly dynamic. A PID controller has been used to implement the direct velocity

control in order to set a benchmark to assess the performance of adaptive controllers

based on single neurons and fuzzy logic.

The parameters of the PID controller were tuned using Matlab. The controller

successfully tracked the input reference voltage with zero overshoot. However the rise

time was relatively high at 0.765 seconds and the disturbance rejection was poor. At the

highest reference velocity (1.2 rad/s) and highest torque (dry windscreen condition) the

largest deviation was 1.179 rad/s. The average steady state error across the entire test

procedure was 0.459rad/s.

In order to overcome the drawbacks of PID control, adaptive controllers based on

Single Neuron PID (SNPID) control have been implemented. The method replaces the

classic PID controller with a single neuron with three weighted inputs and one output. The

weights of the inputs can be tuned in real-time in response to the error in the system and

are analogous to the PID gain parameters. Three learning rules were used to adapt the

weights: Hebb, Error-Hebb and Quadratic. All methods showed a significant improvement

over PID control, with lower steady state error (i.e. higher disturbance rejection) and lower

rise times being observed. The Hebb and Error-Hebb learning rules showed the best

performance, with the quadratic learning rule having good transient performance but weak

disturbance rejection and stability. It was clear that the gain applied to the system, K , has

a large effect on the performance. Therefore a system designed to tune K in real time was

implemented.

To adapt the value of K in real-time a fuzzy logic controller has been designed. The

input to the controller is the error between the reference and measured motor velocity

and the output is the normalised value of K . The output is then fed through a gain block,

179

the value of which depends on the learning rule used to adjust the neuron’s weights. The

results showed that the addition of the fuzzy controller improved the performance of the

SNPID controllers by identifying an optimal compromise between transient and steady

state performance. All three learning rules had an overshoot of around 0.55 rad/s and a

rise time of less than 0.1s. The maximum steady state errors were: Hebb = 0.133 rad/s

(0.064 rad/s average), Error-Hebb = 0.109 rad/s (0.052 rad/s average) and quadratic =

0.135 rad/s (0.065 rad/s average). This demonstrates greatly improved performance over

the original PID control system. The SNPID incorporating the quadratic learning rule

showed the greatest improvement with the addition of the fuzzy controller, with its results

being comparable to the Hebb and Error-Hebb systems where previously it was inferior.

 To implement the control system developed in this chapter, continuous measurement

of the wiper motor velocity is needed. Currently, wiper systems do not do this and it is up

to the vehicle manufacturer to determine whether the benefits of implementing these

control methods outweigh the costs of adding a speed sensor. This issue could be

overcome by using sensorless speed control techniques. A Feed Forward Neural Network

has been designed and trained to map the motor voltage and current to the output

velocity. The network produced very accurate results; however it is vulnerable to variable

parameters in the wiper system which will cause an error in the output velocity. Online

parameter identification could potentially overcome this issue; however this is left as

further work should the vehicle manufacturer wish to implement the controllers.

180

Chapter 8 - Generic Modelling and Real-Time

Implementation

8.1 Introduction

This chapter briefly demonstrates the modelling tools designed to be used by Jaguar

Land Rover (JLR) in order to develop plant models of the windscreen wiper system to

replace the real system in HIL simulation. The tools presented here implement the models,

optimisation algorithms and model simplification strategies reported in previous chapters.

 The chapter begins by showing the Simulink physical library of the separate wiper

system elements. Then, the Graphical User Interface (GUI) used to easily design and update

models is shown and described. Finally, details of the real-time simulation system used to

generate experimental data for this project is given.

8.2 Simulink Library

The wiper system modelling library is shown in Figure 8-1. The physical models of the

elements of the wiper system and the equations describing the friction and aerodynamic

effects are contained in six separate sub libraries.

Figure 8-1: Wiper System Simulink Library

181

Figure 8-2 shows the structure of the library. The engineer is able to select the model

elements needed for each sub system and connect them together in the Simulink

modelling environment.

Wiper
System
Library

Wiper Motors

Digital Park
Switch Motor

Depressed
Mechanical Park

Switch Motor
Mechanical Park

Switch Motor

Wiper
Linkages

Left Hand Drive
Slave Linkage

Left Hand Drive
Master Linkage

Left Hand Drive
Centre Linkage

Right Hand Drive
Slave Linkage

Right Hand Drive
Master Linkage

Right Hand Drive
Centre Linkage

Wiper Arms

Right Straight
Arm

Right Curved
Arm

Left Straight
Arm

Left Curved
Arm

Wiper Blades Left Wiper
 Blade

Right Wiper
 Blade

Environment Left
Environment

Right
Environment

Motor
Switching

Digital Park
Switch Switching

Depressed
Mechanical Park
Switch Switching

Mechanical Park
Switch Switching

Figure 8-2: Wiper System Library Structure

8.3 Wiper System Generic Modelling Tool

The generic modelling tool for the wiper system is shown in Figure 8-3. Its purpose is to

allow the engineer to easily select and parametize the elements of the wiper system

182

needed to build the model. The GUI is split into seven panels, each of which is now

described.

8.3.1 Wiper Motor Panel

The operator can select between the three types of motor model: Digital Park Switch,

Mechanical Park Switch and Depressed Mechanical Park Switch. There is a check box to

allow the inclusion of the switching system if it is needed. The user can then input the

motor parameters into the table and display a model of the motor using the “Display Motor

Diagram” button. The motor can also be simulated under selected input voltages and

torque loads to ensure that motor parameters are realistic. It is the state space motor

model presented in Section 3.5.1 that is simulated and the system outputs graphs showing

the output current and velocity of the motor in its fast and slow states.

8.3.2 Wiper Linkages Panel

The operator chooses between six linkage configurations: Master, Slave and Centre

Driven, with the option of right hand or left hand drive for each. A diagram of the chosen

linkage system is displayed, detailing the position of the design points. The user enters the

design points and masses of the linkages in the tables, along with the system angle,  , with

respect to the vertical axis. A 3D plot of the linkages based on the parameters entered by

the user can be plotted to visually check the validity of the parameters. Also, a button that

checks the configuration of the linkages based on the equations shown in Section 4.1.1 can

be pressed which outputs a message informing the user that the configuration is possible,

or that it violates a constraint. The violated constraint is specified so changes to the

parameters can be made. The system can be simulated in isolation based on the multibody

dynamics model shown in Section 4.2.

183

Figure 8-3: Wiper System Generic Modelling Tool

184

8.3.3 Wiper Arms Panel

In this panel the user can choose between the straight or curved arms for the left and

right wiper arms. Diagrams of the arms can be viewed by pressing the “Left Arm Diagram”

or “Right Arm Diagram” buttons. The design point parameters can be entered into the

tables and the masses into the static text boxes.

8.3.4 Wiper Blade Panel

The parameters of the left and right wiper blade are input into the tables and the

masses into the static text boxes. Diagrams of the blades can also be generated.

8.3.5 Environment Panel

The operator can input the dry and wet friction parameters into their respective tables.

The drag and lift coefficients, left and right blade areas, the velocity of the vehicle and the

force on the windscreen applied by the blade are entered into the static text boxes.

8.3.6 Parameter Identification Panel

Using this panel, the operator can access the parameter identification procedures

reported in Chapter 5. The validation data needs to be in the Matlab workspace. The

operator instigates the three algorithms by pressing the respective buttons. The system

runs the algorithms and updates the parameters of the model accordingly. The

performance of the optimised model is plotted and displayed.

8.3.7 Generate Simulation Model Panel

This panel allows the user to automatically generate the various simulation models

described in the previous chapters. Firstly, the “Export Parameters to Workspace” button

takes the parameters from the five modelling panels and exports them to the Matlab

workspace. These can then be accessed by the Simulink/Matlab models. The “Generate

185

Kinematic Model” automatically builds the multibody dynamic model shown in Section 4.2

based on the model selections and parameters selected in the five modelling panels.

The “Generate Physical Model” button automatically generates a Simulink model of the

wiper system configuration selected in the GUI. An example of a model generated like this

is shown in Figure 8-4 and the Matlab code to achieve this is shown in Appendix G. The

process utilises the library presented in section 8.2.

Figure 8-4: Simulink Wiper Model Generate Automatically

The “Train Torque ANN” button trains the feed forward NN model shown in Section

6.4.2 using training data in the Matlab workspace. Likewise the “Train Motor ANN” trains

the recursive NN shown in Section 6.4.3 using training data from the Matlab workspace.

The “Generate Hybrid Model” button uses the Torque ANN and information from the

Wiper Motor Panel to generate the hybrid physical-ANN model shown in 6.2.1. Similarly,

the “Generate ANN Model” button uses the Torque and Motor ANNs to generate the ANN

model of the wiper system shown in Section 6.3.1.

8.4 dSPACE Real-Time Simulator Implementation

A dSPACE Ecoline HIL simulator was used to generate data used to verify the models

developed in this project and to implement the real-time plant models to prove their

suitability for HIL simulation. Figure 8-5 shows the structure of the real time simulator

used, configured to test an ECU using the wiper system plant model.

186

ECU

dSPACE Ecoline HIL Simulator

DS2211 HIL I/O Board

DS5376 Wiring Board (Signal Conditioning)

DS1006 Processor Unit

Wiper System Simulink Model

Real Time
Interface

Real Time
Interface

Plant Model

Host PC and User
Interface

Realtime
Data

Realtime
Data

Sorenson DS20-50 Power
Supply

Battery Voltage

ON/OFF

SLOW/FAST

Motor
Current

Load

Position
data

Real Time Data Transfer

Figure 8-5: Real Time Simulator Schematic

The real-time simulator interfaces with the hardware using the DS2211 I/O board. The

board has a range of ADC inputs and DAC outputs for signal measurement and control

outputs. The I/O board also incorporates digital inputs and outputs which were used to

measure the park switch and control the motor drive relays, respectively. The simulator

also includes an EV1025 module for high current measurement. This was used to measure

the motor current directly. The simulator incorporates a Sorensen DS20-50E switched

mode power supply which can be controlled using the Host PC. The power supply acts as

the vehicle battery during simulation.

When generating data and validating wiper models, the system is configured as in

Figure 8-5 but with the wiper system as the hardware and elements of the ECU simulated

in the dSPACE simulator19. The controller used in this configuration is designed in Simulink

19

 This configuration is sometimes known as Rapid Control Prototyping

187

and then converted to executable C code using the Real-Time Workshop tool in Matlab and

uploaded to the dSPACE simulator. The Simulink model is shown in Figure 8-6.

The inputs from the hardware are represented using dSPACE input blocks shown on the

left of the diagram. These inputs are processed using standard Simulink blocks and then

outputted to the hardware using dSPACE output blocks, or displayed in ControlDesk using

Simulink scopes. The inputs from the wiper are conditioned using gains, filters and switches

to convert raw measured data to useable data. The voltage of the battery (i.e. the Sorensen

power supply) is controlled with the configuration in the top right of Figure 8-6. The voltage

can be switched on and off and its value can be set in real time via ControlDesk. The

voltage can also be varied using predesigned signals such as sine waves or a repeating test

sequence. The wiper motor is controlled using the Stateflow chart in the bottom right

corner of Figure 8-6. The chart itself is shown in Figure 8-7.

188

Figure 8-6: Real-Time Simulator Simulink Model

S
ig

n
a

l lim
ite

d
 to

1
0

V
S

ig
n

a
l lim

ite
d

 to

1
V

0
 to

 5
V

 C
le

a
n

P
a

rk S
w

itch

M
aster_Input

Interm
ittent_S

w
itch

O
n_O

ff

F
ast_S

low

W
ip

e
r C

o
n

tro
l

D
ig

_
P

a
rk_

S
w

itch

T
o

_
M

e
a

su
re

d
P

a
rkS

w
itch

P
u

lse
 >

=
 1

S
w

itch

S
u

m
_

A
D

C
_

C
a

li

S
u

b
_

P
a

rkS
w

itch
_

P
ro

ce
ssin

g

S
in

e
 W

a
ve

S
ig

n
a

l

G
e

n
e

ra
to

r

S
co

p
e

_
slo

w
V

S
co

p
e

_
fa

stV

S
co

p
e

_
W

ip
e

rC
u

rre
n

t_
A

ccu
ra

te
_

u
n

filte
re

d

S
co

p
e

_
W

ip
e

rC
u

rre
n

t_
A

ccu
ra

te

S
co

p
e

_
W

ip
e

rC
u

rre
n

t

S
co

p
e

_
R

a
w

_
P

a
rk_

S
w

itch

S
co

p
e

_
R

P
M

S
co

p
e

_
P

o
w

e
rS

u
p

p
ly C

u
rre

n
t_

u
n

filte
re

d

S
co

p
e

_
P

o
w

e
rS

u
p

p
ly C

u
rre

n
t

S
co

p
e

_
P

o
w

e
rS

u
p

ly V
o

lta
g

e

S
co

p
e

_
P

e
rio

d

S
co

p
e

_
M

a
ste

r_
S

ig
n

a
l

S
co

p
e

_
F

ilte
re

d
_

P
a

rk_
S

w
itch

S
co

p
e

_
D

IG
_

IN
1

_
B

S
co

p
e

_
A

D
C

2

S
a

t_
D

A
C

_
1

_
V

S
a

t_
D

A
C

_
1

_
R

A
W

S
A

T
_

A
D

C

R
e

p
e

a
tin

g

S
e

q
u

e
n

ce

<
=

R
e

la
tio

n
a

l

O
p

e
ra

to
r1

R
T

I D
a

ta

P
ulse_P

eriod
P

ulse_R
P

M

P
e

rio
d

_
R

P
M

_
C

o
n

ve
rt

P
ark_S

w
itch

P
K

_
S

w
itch

C
o

n
d

itio
n

in
g

12*
, 3

M
u

ltip
o

rt

S
w

itch

-C
-

M
o

to
r_

S
w

itch

M
a

ste
r_

S
w

itch

M
a

ste
r_

W
ip

e
r_

S
w

itch

In
te

rm
itte

n
t_

S
w

itch

In
te

rm
itte

n
t_

S
e

le
ct

D
IG

_
IN

_
B

G
o

to
_

A
D

C
_

B
u

s1

A
D

C
_

V
a

lu
e

G
o

to
_

A
D

C
_

B
u

s

T
im

e
C

lo
ck

G
o

to

2

G
a

in
_

V
o

lt_
C

u
rr_

C
o

n
vt1

2
5

/1
0

G
a

in
_

V
o

lt_
C

u
rr_

C
o

n
vt

-K
-

G
a

in
_

V
B

a
t

-K
-

G
a

in
_

P
o

w
e

rS
p

_
V

o
lt_

C
a

li

-K
-

G
a

in
_

P
o

w
e

rS
p

_
V

o
lt

1
0

G
a

in
_

P
o

w
e

rS
p

_
C

u
rn

t

-K
-

G
a

in
_

D
A

C
_

sca
llin

g

1
/1

0

G
a

in
_

D
A

C
_

1
_

V

-K
-

G
a

in
_

A
D

C
_

S
ca

llin
g

D
IG

_
IN

_
B

F
ro

m
_

D
IG

_
IN

_
B

_
B

u
s

D
A

C
_

O
u

t_
1

F
ro

m
_

D
A

C
_

O
u

t

A
D

C
_

V
a

lu
e

F
ro

m
_

A
D

C
_

B
u

s

-C
-

F
lick_

W
ip

e

C
o

n
ve

rt

D
a

ta
 T

yp
e

 C
o

n
ve

rsio
n

1

M
U

X
A

D
C

D
S

2
2

1
1

M
U

X
_

A
D

C
_

B
1

D
ig

ita
l I/O

 S
E

T
U

P

D
S

2
2

1
1

D
IO

_
S

E
T

U
P

_
B

1

D
A

C

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

D
A

C
_

B
1

_
C

1
2

D
A

C

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

D
A

C
_

B
1

_
C

1

B
IT

 O
U

T

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
O

U
T

_
B

1
_

C
5

B
IT

 O
U

T

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
O

U
T

_
B

1
_

C
4

B
IT

 O
U

T

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
O

U
T

_
B

1
_

C
1

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
9

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
8

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
7

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
6

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
5

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
4

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
3

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
2

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

6

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

5

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

4

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

3

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

2

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

1

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

0

B
IT

 IN

 C
h

a
n

n
e

lw
ise

D
S

2
2

1
1

B
IT

_
IN

_
B

1
_

C
1

0

C
o

n
sta

n
t6

1
0

C
o

n
sta

n
t

0

C
o

n
_

ze
ro

-C
-

C
o

n
_

V
B

a
t_

P
ro

file
_

S
e

le
cto

r

-C
-

C
o

n
_

V
B

a
t_

P
ro

file
1

0

C
o

n
_

V
B

a
t_

O
N

_
O

F
F

-C
-

C
o

n
_

V
B

a
t_

C
o

m
m

a
n

d
_

O
ffse

t

-C
-

C
o

n
_

A
D

C
_

C
a

li_
O

ffse
t

C
lo

ck

b
u

tte
rA
n

a
lo

g

F
ilte

r D
e

sig
n

3

b
u

tte
rA
n

a
lo

g

F
ilte

r D
e

sig
n

2

b
u

tte
rA
n

a
lo

g

F
ilte

r D
e

sig
n

1

b
u

tte
rA
n

a
lo

g

F
ilte

r D
e

sig
n

A
d

d

<
A

D
C

1
5

>

<
A

D
C

1
6

>

<
A

D
C

1
>

<
D

IG
IN

0
1

_
1

_
B

>

<
A

D
C

2
>

<
A

D
C

3
>

<
A

D
C

3
>

<
A

D
C

4
>

<
A

D
C

4
>

<
A

D
C

5
>

<
A

D
C

6
>

D
IG

IN
0

1
_

1
_

B

D
IG

IN
0

2
_

1
_

B

D
IG

IN
0

3
_

1
_

B

D
IG

IN
0

4
_

1
_

B

D
IG

IN
0

5
_

1
_

B

D
IG

IN
0

6
_

1
_

B

D
IG

IN
0

7
_

1
_

B

D
IG

IN
0

8
_

1
_

B

D
IG

IN
0

9
_

1
_

B

D
IG

IN
1

0
_

1
_

B

D
IG

IN
1

1
_

1
_

B

D
IG

IN
1

2
_

1
_

B

D
IG

IN
1

3
_

1
_

B

D
IG

IN
1

4
_

1
_

B

D
IG

IN
1

5
_

1
_

B

D
IG

IN
1

6
_

1
_

B

D
IG

IN
_

1
_

B

A
D

C
2

A
D

C
3

A
D

C
4

A
D

C
5

A
D

C
6

A
D

C
7

A
D

C
8

A
D

C
9

A
D

C
1

0

A
D

C
1

1

A
D

C
1

2

A
D

C
1

3

A
D

C
1

4

A
D

C
1

5

A
D

C
1

6

A
D

C
1

189

Figure 8-7: Wiper Controller Stateflow Chart

The system always begins in the Wiper_Off state, in which the motor input is

connected to ground. The system will leave the Wiper_Off state under four conditions. The

first is if the Flick_Wipe signal is received. In this case the system enters the Flick state in

which the motor operates in its fast mode unitl the Park_Switch signal is received, upon

which it returns to the Wiper_Off state. If the Master_Input equals 1, 2 or 3 the sytem

enters the Wiper_Intermittent, Wiper_Slow or Wiper_Fast states, respectively. The system

remains in one of these states until the value of Master_Input changes. If Master_Input

equals zero, the system enters the Wait state until the Park_Switch is received, after which

the Wiper_Off state is entered and the motor switches off. The three “motor-on” states

can be switched between by changing the value of Master_Input. If the value changes, the

system enters either the Int_Wait, Slow_Wait or Fast_Wait state until the Park_Switch is

received. At which point it enters its new state and the motor changes its speed. The

Wiper_Intermittent state sub-chart is shown in Figure 8-8.

190

Figure 8-8: Wiper Intermittent Stateflow Sub-Chart

Upon entry to the Wiper_Intermittent state, the Single_Wipe state is entered which

operates the wiper motor in its slow mode until the Park_Switch is received. At this point

the Pause state is entered which switches the motor off. Immediatley, one of six states is

entered, depending on the value of the Intermittent_Switch input. The system remains in

this state for a specific amount of time to achieve a pause between each wipe. After the

allotted time has expired, the system enters the Single_Wipe state again.

The Stateflow models shown in Figure 8-7 and Figure 8-8 are designed to imitate the

operation of an ECU controlling the wiper motor for experimental purposes only and are

not necessarily the same as the actual ECU design.

The ControlDesk system used to monitor and control the wiper system in real-time is

shown in Figure 8-9. Measured outputs such as the wiper current and park switch can be

seen in the plots on the right of the diagram. The main power can be switched on and off

and its values set using the controls on the bottom left of the diagram. The motor itself is

controlled using the buttons in the “Manual Control” panel, which also shows numerical

outputs of the motor. The data logger on the top left of the diagram collects data which

can be imported into Matlab for model optimization and verification.

191

Figure 8-9: Real-Time Simulator ControlDesk System

192

A photograph of the dSPACE simulator and the wiper test rig used in this project is

shown in Figure 8-10. The dSPACE simulator supplies power to the motor using the relay

circuit shown in Figure 7-1 with digital outputs controlling the relays. The wiper current and

the park switch are directly measured by the simulator. The test rig is waterproof, allowing

the wipers to be operated in both dry and wet modes. To wet the windscreen, water is

pumped from a bucket to a sprinkler which continuously wets the windscreen. The system

can operate in wet mode for around three minutes before the water must be replaced.

Figure 8-10: dSPACE Simulator and Wiper Test Rig

8.5 Discussion

This chapter has briefly detailed the generic modelling and real-time simulation aspects

of the project. The generic modelling elements are designed to make the modelling of the

wiper system as easy and as flexible as possible. The physical models of the separate

elements of the wiper system are organised into a Simulink library. The wiper system can

easily be built up by dragging the relevant elements of the system into the Simulink

workspace and connecting them together. All of the modules are connected together as

193

they are in the real system and the complexities of the models are hidden from the

operator.

A modelling tool, presented in a Graphical User Interface (GUI), has been developed to

design and parameterize the wiper models. The elements of the wiper models presented in

Chapter 3 and Chapter 4 are selected and their parameters manually entered into the GUI.

The parameter identification methods shown in Chapter 5 can be accessed from the GUI.

By pressing the relevant buttons the operator can run the algorithms using data from the

Matlab workspace and the parameters of the model are updated accordingly. Finally, the

multibody kinematics model, full physical Simulink model, hybrid physical-ANN model and

the full ANN model can be automatically generated from the GUI. The system uses model

and parameter information from the GUI to train the ANNs (if needed) and build the

models in Simulink or the Matlab Workspace.

The real-time simulation system implemented using a dSPACE simulator has been

presented. The control and measurement system is designed in Simulink using dSPACE

interface blocks and standard Simulink blocks and Stateflow charts. The wiper system can

be controlled and monitored in real time using the ControlDesk software from dSPACE.

194

Chapter 9 - Conclusions and Further Work

9.1 Conclusions

The automotive industry has seen steady growth in recent years and passenger car

sales have exceeded 60 million units per year worldwide. In parallel with this growth, the

amount of electronics in a modern vehicle has also increased significantly. Electronic

components are gradually replacing mechanical components and adding additional utilities

to vehicles. Inevitably the increase in electronic components and systems has led to an

increase in the need for Electronic Control Units (ECU); a modern luxury vehicle can include

in the order of 100 ECUs running 100 million lines of code. The sheer number and

complexity of ECUs means that thorough testing must be carried out throughout the

development process in order for the vehicle manufacturer to produce a quality product in

a relatively short time frame. Advanced simulation techniques are used to achieve this,

including Hardware in the Loop (HIL) simulation. In HIL simulation, a real ECU is connected

to real-time simulation models of its environment, such as plant models of its loads and

artificially generated control signals. In this project a plant model of the vehicle’s

windscreen wiper system has been designed and made suitable for real-time simulation.

The windscreen wiper model is separated into four parts: The wiper motor which drives

the system, the linkages, the arms and blades, and the windscreen interface. The model is

designed using a modular strategy so that versions of each of the four separate elements

can be connected together and simulated as one model. The elements of the model are

incorporated into a Simulink library and a modelling tool presented as a Graphical User

Interface (GUI) so that modelling new wiper systems or updating old systems can be done

quickly and easily.

A wiper motor is a unique design of PMDC motor which has two electrical inputs and

one electrical output (electrical ground). The two inputs are used for speed control of the

195

motor because in the vehicle the motor is connected directly to the battery so varying the

voltage is not possible. The input brush in line the magnetic neutral line is the motor’s slow

input and the input brush offset from the magnetic neutral line is its fast input. Operating

the motor in its fast mode causes an imbalance in the current paths and this is captured by

specifying different electrical parameters for the fast and slow modes. In the fast mode the

inductance and resistance of the armature winding, and the motor constants, are lower

than in the slow mode. This causes the motor to rotate faster and draw a higher current.

Using this knowledge, eight parameter state space and physical models of the wiper motor

have been designed that successfully simulate the behaviour of the system in real-time.

The mechanical elements of the system, i.e. the linkages, arms and blades and the

windscreen interface have been modelled using the physical modelling tool SimMechanics.

Each component is modelled using Body blocks interconnected with Joint or Weld blocks.

The separate elements are modelled individually and can be connected to one another

using physical ports. The friction between the wiper blades and the windscreen has been

mathematically modelled using a four parameter equation for friction for when the

windscreen is dry and a seven parameter equation for when it is wet. The equations

derived are based on data presented in the literature. The aerodynamic forces acting on

the wiper blades due to the motion of the vehicle has also been modelled based on the

drag and lift coefficients of the wiper blades. The whole system (mechanical structure,

friction, aerodynamics) successfully models the mechanical element of the wiper system.

The unknown motor, friction and force parameters of the wiper model need to be

identified using experimental data and optimisation techniques. A three stage parameter

identification process is proposed starting with a transfer function method, followed by a

Genetic Algorithm (GA) and ending with a local optimiser. A transfer function of the wiper

motor has been derived relating the motor current to the input voltage. The model

196

assumed a constant torque load and that the damping coefficient was negligible. Using

experimental data, the system identification tool in Matlab was used to identify the motor

parameters. The system successfully identified the parameters, which are then used to

reduce the search space of the GA. A bespoke GA was designed and used to refine the

motor parameters and identify the remaining friction and force parameters. The GA

successfully identified all seventeen model parameters in 135 generations to a reasonable

accuracy. These parameters were then used as the initial guess of a nonlinear least squares

local optimiser in order to further improve the accuracy of the model.

The model described above is not suitable for HIL simulation due to the complexity of

the SimMechanics element. The model has been simplified using Artificial Neural Network

(ANN) and look-up table methods. The look-up tables are simply populated with positional

data from the model and driven by the position of the motor output. Two ANNs were

designed. The first is a feed forward ANN whose inputs are the position and speed of the

motor output and whose outputs are the torque loads applied to the motor in the

windscreen’s dry and wet condition. The Mean Squared Error (MSE) of the torque ANN is

0.0951, demonstrating a very high accuracy. The second ANN is a recursive network that

models the wiper motor. Its inputs are the torque from the torque ANN and the battery

voltage and its outputs are the current and velocity of the motor in its fast and slow mode.

In its closed loop configuration, the motor ANN has a MSE of 0.0068. The torque ANN is

used to replace the mechanical element of the model to generate a hybrid physical-ANN

model of the wiper system which as was measured to simulate 60s (simulation time) of

data in 5.92s (real time). Both ANNs are used to replace the motor and mechanical

elements of the system to create a full ANN implementation which was measured to

simulate 60s (simulation time) of data in 2.17s (real time).

197

A control method based on Single Neuron PID (SNPID) control has been proposed in

order to operate the motor at a constant speed. This means that the motor can operate at

the lowest speed necessary to clear the windscreen, reducing power consumption and

wear on the brushes. The SNPID controller replaces a normal PID controller with a single

neuron with three weighted inputs and one output. The weights can be modified in real

time based on the error between the measured velocity and the reference velocity. The

output of the neuron is the control signal controlling the voltage of the wiper motor which

is multiplied by a gain. The value of the gain has a large effect on the performance of the

system and is adapted in real-time using a fuzzy controller. The complete control systems

had average steady state errors in the range of 0.052 rad/s to 0.065 rad/s, depending on

the learning rule used. Rise times of 0.1s and overshoots of 0.55 rad/s were observed. The

control system requires velocity measurement and voltage control methods to be added to

the wiper system in order to work.

The models, optimisation and simplification methods have been implemented in a GUI

to be used by Jaguar LandRover (JLR). The purpose of the GUI is to make the whole

modelling process simple for the vehicle manufacturer. This means that the time taken to

develop or update models for ECU development is reduced and more efficient and

thorough testing of the ECUs can take place.

9.2 Suggested Further Work

There are some elements to this project that would benefit from further research. The

first is the aerodynamic force analysis of the wiper system. The model presented in this

thesis is very simple and it was found in the literature review that the actual behaviour of

the aerodynamic forces is very complex. The fidelity of the wiper model could be improved

by using Computational Fluid Dynamics (CFD) simulations and wind tunnel experiments to

comprehensively study the behaviour of the wiper system over the full range of vehicle

198

speed, windscreen and bonnet design, and wiper design. This information could then be

modelled dynamically to replace the simple model presented in this project. This analysis is

very complicated and requires a strong knowledge of CFD and as such was not feasible for

this project. This analysis would be a strong addition to this project and to the wider

literature in this area.

It would be useful to derive the full dynamic equations of the mechanical wiper system,

rather than relying on physical modelling tools. This would mean that a greater number of

model simplification methods would be available to convert the model to a HIL suitable

one. Although ANNs have been shown to be a powerful tool in converting the physical

model to a real-time capable one, they have some weaknesses such as failing when subject

to inputs outside of their training data and not being suitable for fault insertion testing.

They are also black box systems, meaning that they offer no insight into the operation of

the system beyond the I/O relationships.

The control system developed in Chapter 7 relies on continuous speed measurements

from the motor. Ideally, this will be achieved without the addition of a speed sensor,

meaning that only the voltage, current and park switch can be used. There are methods of

estimating the velocity of the motor using estimators such as Kalman filters and other

model based control schemes. For model based methods of estimating the velocity to be

effective, the parameters of the model will have to be estimated in real-time because they

are subject to change. The difficulty in using standard methods of state and parameter

estimation in this project is the fact that the load torque is dynamic, not measured and is

subject to changing parameters. An investigation into whether the information contained

in the motor current and average speed derived from the park switch could achieve

sensorless control would be very useful for this project and motor control in general.

199

Finally, the if the models and control systems developed in this project are to be used

in the automotive industry, they must be modified to conform to guidelines such as The

MathWorks Automotive Advisory Board (MAAB) which gives rules on subjects such as

signal and subsystem labelling.

200

References

[1] Clearwater Global Finance, “The Global Automotive Report,” 2013.

[2] OICA, [Online]. Available: http://www.oica.net/category/sales-statistics/. [Accessed

February 2014].

[3] OICA, [Online]. Available: http://www.oica.net/category/production-statistics/.

[Accessed February 2014].

[4] S. Jeon, J. Cho, Y. Jung, S. Park and T. Han, “Automotive hardware development

according to ISO 26262,” in 13th International Conference on Advanced

Communication Technology (ICACT), Seoul, 2011.

[5] D. Frede, M. Khodabakhshian and D. Malmquist, “A state-of-the-art survey on

vehicular mechatronics focusing on by-wire systems,” KTH Royal Institute of

Technology, Stockholm , 2010.

[6] V. Von Tils, “Trends and Challenges in Automotive Electronics,” in IEEE International

Symposium on Power Semiconductor Devices and IC's, Naples, 2006.

[7] Robert Bosch GmbH, Automotive Electrics Automotive Electronics, Sussex: John Wily

and Sons Ltd, 2007.

[8] P. Waltermann, “Hardware-in-the-Loop: The technology for testing electronic

controls in automotive engineering,” in Translation of 6th Paderborn Workshop

"Designing Mechatronic Systems", Paderborn, 2009.

201

[9] R. N. Charette, “This Car Runs on Code,” February 2009. [Online]. Available:

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code.

[10] J. Mossinger, “Software in Automotive Systems,” Software, IEEE , vol. 27, no. 2, pp.

92-94, 2010.

[11] J. Scharf, R. Hopler and J. Hillyard, “Automotive Real-Time Automotive Real-Time:

Modeling and Applications,” in Real Time Simulation Technologies, Florida, Taylor &

Francis Group, 2013.

[12] H. Schuette and M. Ploeger, “Hardware-in-the-Loop Testing of Engine Control Units -

A Technical Survey,” SAE Technical Paper, 2007.

[13] B. Ganesh, “Hardware in the Loop Simulation (HIL) for Vehicle Electronics Systems

Testing and Validation,” SAE Technical Paper 2005-26-304, 2005.

[14] I. R. Kendall and R. P. Jones, “An investigation into the use of hardware-in-the-loop

simulation testing for automotive electronic control systems,” Control Engineering

Practice, pp. 1343 - 1356, 1999.

[15] H. Hanselmann, “Hardware-in-the Loop Simulation as a Standard Approach for

Development, Customization, and Production Test of ECU's,” SAE Technical Paper

931953, 1993.

[16] I. R. Kendall, R. P. Jones and S. M. Thomas, “Simulation as a means of achieving “the

impossible”: an investigation into the use of simulation in the development of

electronic control systems at Jaguar cars,” in Simulation '98. International Conference

on, York, 1998.

202

[17] P. D. Edwards, “The use of statecharts in developing body electronics software [for

automobiles],” in Integrity of Automotive Electronic Systems, IEE Colloquium on,

London, 1993.

[18] H. K. Fathy, Z. S. Filipi, J. Hagena and J. L. Stein, “Review of hardware-in-the-loop

simulation and its prospects in the automotive area,” in Proceedings of SPIE, 2006.

[19] H. Krisp, K. Lamberg and R. Leinfellner, “Automated Real-Time Testing of Electronic

Control Units,” in SAE Paper, In-Vehicle Software & Hardware Systems, Detroit, 2007.

[20] V. Jaikamal, “Model-based ECU development – An Integrated MiL-SiL-HiL Approach,”

SAE Technical Paper 2009-01-0153, 2015.

[21] D. Fleischer, M. Beine and U. Eisemann, “Applying Model-Based Design and

Automatic Production Code Generation to Safety-Critical System Development,” SAE

Int. J. Passeng. Cars – Electron. Electr. Syst., vol. 2, no. 1, pp. 240-248, 2009.

[22] C. Mu, X. Ma, H. Ma, X. Huang, L. Zhang and R. Fan, “Current Issues and Future

Trends in Analysis of Automotive Functional Safety,” in Communication Systems and

Information Technology, Springer Berlin Heidelberg, 2011, pp. 171-178.

[23] M. Beine, “Model-Based Software Development According to ISO 26262,” Elektronik

automotive, 2009.

[24] K. Lamberg, “Model-Based Testing of Automotive Electronics,” in Proceedings of the

Design Automation & Test in Europe Conference, Munich, 2006.

[25] A. Filgerdamm, D. M. Plöger and T. Schulte, “HIL Simulation for Mechatronic

203

Automotive Electronic Control Units: Current applications in vehicle dynamics and

electric power steering,” Elektronik automotive, 2009.

[26] A. Wagener, T. Schulte, P. Waeltermann and H. Schuette, “Hardware-in-the-Loop Test

Systems for Electric Motors in Advanced Powertrain Applications,” SAE Technical

Paper 2007-01-0498, 2007.

[27] A. Dhaliwal, S. C. Nagaraj and S. Ali, “Hardware-in-the-loop simulation for hybrid

electric vehicles-an overview, lessons learnt and solutions implemented,” SAE

Technical Paper 2009-01-0735, 2009.

[28] T. Schulte and M. Plöger, “Electric Motors : Hardware-in-the- Loop Testing at Full

Power,” Automobil Elektronik, 2010.

[29] S. Okura, T. Sekiguchi and T. Oya, “Dynamic Analysis of Blade Reversal Behavior in a

Windshield Wiper System,” SAE Technical Paper 2000-01-0127, 2000.

[30] S. Goto, H. Takahashi and T. Oya, “Investigation of Wiper Blade Squeal Noise

Reduction Measures,” SAE Technical Paper 2001-01-1410, 2001.

[31] S. Goto, H. Takahashi and T. Oya, “Clarification of the mechanism of wiper blade

rubber squeal noise generation,” JSAE review, vol. 22, pp. 57-62, 2001.

[32] R. Grenouillat and C. Leblanc, “Simulation of Chatter Vibrations for Wiper Systems,”

SAE Technical Paper 2002-01-1239, 2002.

[33] I. M. Awanga, A. R. AbuBakar, B. A. Ghani, R. A. Rahman and M. Z. Zain, “Complex

eigenvalue analysis of windscreen wiper chatter noise and its suppression through

structural modifications,” International Journal of Vehicle Structures & Systems, vol.

204

1, 2009.

[34] A. Ahmad, M. Z. Zain, A. R. Abu-Baker, B. Abd-Ghani, R. Abd-Rahman and A. As'arry,

“Application of Input Shaping Control Strategy for Reducing Chatter Noise in the

Automotive Wiper System,” in Information Technology, 2008. ITSim 2008.

International Symposium on, Kuala Lumpur, 2008.

[35] M. A. Salim, A. Noordin, M. Z. Zain and A. R. A. Bakar, “The Analysis of Friction Effect

in Automotive Wiper System Using Input Shaping Technique,” in Proceedings of the

World Congress on Engineering 2010, London, 2010.

[36] A. Zolfagharian, M. Z. Zain, A. R. Abubakar and M. Hussein, “Particle Swarm

Optimization Approach on Flexible Structure at Wiper Blade System,” Proceedings of

World Academy of Science Engineering and Technology , vol. 18, pp. 97-102, 2011.

[37] A. Zolfagharian, A. Noshadi, M. Z. Zain and A. R. Bakar, “Practical multi-objective

controller for preventing noise and vibration in an automobile wiper system,” Swarm

and Evolutionary Computation, vol. 8, pp. 54-68, 2013.

[38] J. Rouzic, A. Bot, J. Perret-Liaudet, M. Guibert, A. Rusanov, L. Douminge and F.

Bretagnol, “Friction-Induced Vibration by Stribeck’s Law: Application to Wiper Blade

Squeal Noise,” Tribology Letters, vol. 49, no. 3, pp. 563-572, 2103.

[39] M. Huang, “Analysis of Friction Induced Stability, Bifurcation, Chaos, Stick-slip

Vibration and their Impacts on Wiping Effect of Automotive Wiper System,” SAE

Technical Paper 2014-01-0021, 2014.

[40] L. Zhang, “Experimental Investigation into Friction Induced Noise of Automotive

205

Wiper System,” SAE Technical Paper 2001-01-0749, 2010.

[41] S. Change and H. Lin, “Chaos attitude motion and chaos control in an automotive

wiper system,” International Journal of Solids and Structures, vol. 41, no. 13, pp.

3491-3504, 2004.

[42] S. Chang, “Application of Synchronization and Continuous Control to a Chaotic

Automotive Wiper System,” Proceedings of the Institution of Mechanical Engineers,

Part D: Journal of Automobile Engineering, vol. 220, no. 8, pp. 1119-1130, 2006.

[43] H. Jian, G. Li, D. Chu and J. Xu, “Research on Passenger Car Windscreen Wiper

Controller and Control Method Based on CAN,” in Mechatronics and Automation,

2009. ICMA 2009. International Conference on, Changchun, 2009.

[44] R. D. Pawar and S. K. Shah, “A Review : Front Windshield Wiper Controller System for

Synchronisation of Two Wiper Motors,” in 2015 International Conference on

Pervasive Computing (ICPC), Pune, 2015.

[45] L. Jean, “On the Synchronization of a Pair of Independent Windshield Wipers,”

Control Systems Technology, IEEE Transactions on, vol. 12, no. 5, pp. 787 - 795, 2003.

[46] F. Elahi and M. S. Rahman, “Intelligent Windshield for Automotive Vehicles,” in 17th

International Conference on Computer and Information Technology, Dhaka, 2014.

[47] C. Alexandru and C. Pozna, “Dynamic modeling and control of the windshield wiper

mechanisms,” WSEAS Transactions on Systems, vol. 8, no. 7, pp. 825-834, 2009.

[48] Z. Xiaoyu, X. Yanfeng and L. Yengjie, “Based on Matllab Electrically Operated

Windshield Wiper Systems Design Method Research,” in Third International

206

Conference on Measuring Technology and Mechatronics Automation, Shanghai, 2011.

[49] H. Y. Chang, “Windshield Wiper System Design Integration,” SAE Technical Paper

2011-01-0239, 2011.

[50] J. Wei, A. Mouzakitis, J. Wang and S. Hao, “Vehicle windscreen wiper mathematical

model development and optimisation for model based hardware-in-the-loop

simulation and control,” in Automation and Computing (ICAC), 2011 17th

International Conference on, Huddersfield, 2011.

[51] A. Mouzakitis, J. Wei and J. Wang, “Accurate Model Based Hardware-in-the-Loop Test

for a Windscreen Wiper System,” SAE Technical Paper 2012-01-1164, 2012.

[52] H. H. John, Adaptation in natural and artificial Systems, The University of Michigan

Press, 1975.

[53] G. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning,

Addison-Wesley Publishing Company, 1989.

[54] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms, Berlin:

Springer, 2008.

[55] M. Lankarany and A. Rezazade, “Parameter Estimation Optimization Based on

Genetic Algorithm Applied to DC Motor,” in 2007 International Conference on

Electrical Engineering, Lahore, 2007.

[56] A. C. Megherbi, H. Megherbi, K. Benmahamed., A. G. Aissaoui and A. Tahour,

“Parameter Identification of Induction Motors using Variable-weighted Cost Function

of Genetic Algorithms,” Journal of Electrical Engineering and Technology, vol. 5, no. 4,

207

pp. 597-605, 2010.

[57] O. Mohamed, J. Wang, S. Guo, J. Wei, B. Al-Duri, J. Lv and Q. Gao, “Mathematical

Modelling for Coal Fired Supercritical Power Plants and Model Parameter

Identification Using Genetic Algorithms,” Electrical Engineering and Applied

Computing, vol. 90, pp. pp 1-13, 2011.

[58] S. Praesomboon, S. Athaphaisal, S. Yimman, R. Boontawan and K. Dejhan, “Sensorless

speed control of DC servo motor using Kalman filter,” in Information,

Communications and Signal Processing, 2009. ICICS 2009. 7th International

Conference on , Macau, 2009.

[59] M. F. Moussa, M. Saad and Y. G. Dessouky, “Adaptive control and one-line

identification of sensorless Permanent Magnet DC motor,” in Computational

Technologies in Electrical and Electronics Engineering (SIBIRCON), 2010 IEEE Region 8

International Conference on, Listvyanka, 2010.

[60] S. Ichikawa, M. Tomita and S. Doki, “Sensorless Control of Permanent-Magnet

Synchronous Motors Using Online Parameter,” Industrial Electronics, IEEE

Transactions on, vol. 53, no. 2, pp. 363-372, 2006.

[61] S. Morimoto, S. Sanada and Y. Takeda, “Mechanical Sensorless Drives of IPMSM With

Online Parameter Identification,” IEEE Transactions on Industry Applications, vol. 42,

no. 5, pp. 1241-1248, 2006.

[62] P. R. Dahl, “A Solid Friction Model,” EROSPACE CORP EL SEGUNDO CA, 1968.

[63] B. Armstrong-Hélouvry, P. Dupont and C. C. De Wit, “A survey of models, analysis

208

tools and compensation methods for the control of machines with friction,”

Automatica, vol. 30, no. 7, pp. 1083-1138, 1994.

[64] H. Olsson, K. J. Åström, C. Canudas de Wit, M. Gäfvert and P. Lischinsky, “Friction

Models and Friction Compensation,” European Journal of Control, vol. 4, no. 3, p.

176–195, 1998.

[65] C. Canudas De Wit, H. Olsson and P. Lischinsky, “A New Model for Control of Systems

with Friction,” IEEE Transaction of Automatic Control, vol. 40, no. 3, pp. 419-425,

1995.

[66] D. A. Haessig and B. Friedland, “On the Modeling and Simulation of Friction,” Journal

of Dynamic Systems, Measurement, and Control, vol. 113, no. 3, p. 354, 1991.

[67] B. Borsotto, E. Godoy, D. Beauvois and E. Devaud, “An identification method for static

and dynamic friction coefficients,” in International Conference on Control,

Automation and Systems, Seoul, 2007.

[68] Y. Fujii, “Method for measuring transient friction coefficients for rubber wiper blades

on glass surface,” Tribology International, vol. 41, no. 1, pp. 17-23, 2008.

[69] K. Nakajima and J. Nakajima, “Identification method of nonlinear systems with

friction based on Genetic Algorithm,” in 3rd International Symposium on Knowledge

Acquisition and Modeling, Wuhan, 2010.

[70] J. Kim, H. Chae, J. Jeon and S. Lee, “Identification and Control of Systems with Friction

Using Accelerated Evolutionary Programming,” IEEE Control Systems, vol. 16, no. 4,

pp. 38-47, 1996.

209

[71] G. Bódai and T. Goda, “Friction Force Measurement at Windscreen Wiper/Glass

Contact,” Tribology Letters, vol. 45, no. 3, pp. 515-523, 2012.

[72] G. Bódai and T. Goda, “Sliding friction of wiper blade: Measurement, FE modeling and

mixed friction simulation,” Tribology International, vol. 70, no. 0, pp. 63-74, 2014.

[73] A. Buta, “Study on the friction between the wiper blade and the windshield,” Bulletin

of the Transilvania University of Braşov Series I: Engineering Sciences, vol. 7, no. 1,

2014.

[74] F. Deleau, D. Mazuyer and A. Koenen, “Sliding friction at elastomer/glass contact:

Influence of the wetting conditions and instability analysis,” Tribology International,

vol. 42, no. 1, pp. 149-159, 2009.

[75] A. Koenen and A. Sanon, “Tribological and vibroacoustic behavior of a contact

between rubber and glass (application to wiper blade),” Tribology International, vol.

40, no. 10-12 SPEC. ISS., pp. 1484-1491, 2007.

[76] C. Makkar, W. E. Dixon, W. G. Sawyer and G. Hu, “A new continuously differentiable

friction model for control systems design,” in Proceedings, 2005 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics., Monterey, 2005.

[77] W. Hucho and G. Sovran, “Aerodynamics of road vehicles,” Annual Review of Fluid

Mechanics, vol. 25, pp. 485-537, 1993.

[78] G. M. LeGood and K. P. Garry, “On the Use of Reference Models in Automotive

Aerodynamics,” SAE TECHNICAL PAPER SERIES 2004-01-1308, 2004.

210

[79] E. Guilmineau, “Computational study of flow around a simplified car body,” Journal of

Wind Engineering and Industrial Aerodynamics, vol. 96, pp. 1207-1217, 2008.

[80] V. K. Yakkundf and S. S. Mantha, “Numerical Simulation of Flowfield around a Car &

Aerodynamic Analysis by Fine Tuning Wind Tunnel Pressure Distribution with CFD

Results,” CURIE, vol. 3, no. 2, pp. 82-102, 2010.

[81] K. M. Ashok and K. Kanniah, “Computational Investigation for Flow and Heat Transfer

Characteristics of Automobile Windshield with Impinging Slot Jets,” SAE Technical

Paper 2012-01-1219, p. 2012.

[82] A. P. Gaylard, “The Appropriate Use of CFD in the Automotive Design Process,” SAE

Technical Paper 2009-01-1162, 2009.

[83] S. Senthooran, L. Mutnuri, J. Amodeo, R. Powell and C. Freeman, “A Computational

Approach to Evaluate the Automotive Windscreen Wiper Placement Options Early in

the Design Process,” SAE Int. J. Passeng. Cars - Mech. Syst., no. 1262-1268, 2013.

[84] S. Jallet, S. Devos, D. Maubray, J. Sortais, F. Marmonier and T. Dreher, “Numerical

Simulation of Wiper System Aerodynamic Behavior,” in SAE 2001 World Congress,

Detroit, 2001.

[85] P. Billot, S. Jallet and F. Marmonier, “Simulation of Aerodynamic Uplift Consequences

on Pressure Repartition – Application on an Innovative Wiper Blade Design,” SAE

Technical Paper 2001-01-1043, 2001.

[86] S. H. Lee, S. W. Lee, N. Hur, W. Choi and J. Sul, “Numerical Study on Aerodynamic Lift

on Windshield Wiper of High-Speed Passenger Vehicles,” Transactions of the Korean

211

Society of Mechanical Engineers, vol. 35, no. 4, pp. 345-352, 2011.

[87] T. He and L. Peng, “Application of neuron adaptive PID on DSPACE in double loop DC

motor control system,” in 2010 International Conference on Computing, Control and

Industrial Engineering, CCIE 2010, Wuhan , 2010.

[88] W. Wang and X. Z. Gao, “A single neuron PID controller based on immune tuning and

it's application,” in Natural Computation (ICNC), 2010 Sixth International Conference

on, Yantai, 2010.

[89] W. Chen, G. Zeng, H. Zou, H. Zhang and C. Tan, “Study of a Single Neuron Fuzzy PID

DC Motor Control Method,” in 2012 Second International Conference on Intelligent

System Design and Engineering Application, Sanya, 2012.

[90] L. Xia, H. Wei and J. Gu, “Comparative Analysis on Performances of Adjustable-gain

Single-neuron PID Controllers Based on General Fuzzy Logic and Normal Cloud

Model,” in Electrical and Computer Engineering (CCECE), 2014 IEEE 27th Canadian

Conference on, Toronto, 2014.

[91] S. Dan and M. Jun, “A single neuron PID controller based PMSM DTC drive system fed

by fault tolerant 4-switch 3-phase inverter,” in 2006 1st IEEE Conference on Industrial

Electronics and Applications, Singapore, 2006.

[92] J. Wang, Y. Jing and D. An, “Study of Neuron Adaptive PID Controller in a Single-zone

HVAC System,” in First International Conference on Innovative Computing,

Information and Control - Volume I (ICICIC'06), Beijing, 2006.

[93] X. Zan and F. Xie, “Switched reluctance generator system based on single neuron

212

adaptive PID controller,” in The 2011 International Conference on Advanced

Mechatronic Systems, Zhengzhou, 2011.

[94] J. Minzhi, G. Chao and S. Xiaomin, “Study on the application of the single neuron

adaptive PID controller in prestressed tension device,” in IEEE 2011 10th

International Conference on Electronic Measurement & Instruments, Chengdu, 2011.

[95] E. Hughes, Electrical and Electronic Technology, Essex: Pearson Education Limited,

2008.

[96] J. Chiasson, Modeling and High-Performance Control of Electric Machines, New

Jersey: John Wiley & Sons, 2005.

[97] A. Shabana, Computational Dynamics, New Jersey: John Wiley & Sons, 2001.

[98] F. Amirouche, Fundamentals of Multibody Dynamics: Theory and Applications, New

York: Birkhauser Boston, 2006.

[99] J. Le Rouzic, A. Le Bot, J. Perret-Liaudet, M. Guibert, A. Rusanov, L. Douminge, F.

Bretagnol and D. Mazuyer, “Friction-Induced Vibration by Stribeck’s Law: Application

to Wiper Blade Squeal Noise,” Tribology Letters, vol. 49, no. 3, pp. 563-572, 2013.

[100] R. Haupt and S. Haupt, Practical Genetic Algorithms, New Jersey: John Wiley & Sons,

2004.

[101] S. Miller and J. Wendlandt, “Real-Time Simulation of Physical Systems Using

Simscape,” in Real-Time Simulation Technologies: Principles, Methodologies and

Applications, Boca Raton, FL, Taylor Francis Group, 2013, p. 581 – 597.

213

[102] K. L. Priddy and P. E. Keller, Artificial Neural Networks: An Introduction, Washington:

The International Society for Optical Engineering, 2005.

[103] M. Brown and C. Harris, Neurofuzzy Adaptive Modelling and Control, Hemel

Hempstead: Prentice Hall International (UK) Limited, 1994.

[104] Mathworks, “Hyperbolic tangent sigmoid transfer function,” [Online]. Available:

http://uk.mathworks.com/help/nnet/ref/tansig.html?refresh=true. [Accessed 1

September 2015].

[105] R. Baines, “Sensorless Control for PMDC Motors,” Control Engineering Practice, pp.

34 - 38, 2005.

214

Appendix A - Wiper Motor State Space Simulation Code

%%%

%Solve StateSpace Wiper Motor Function

%%%

function [] = motor_solve (motor_param,torque,vin,ton,tsw,toff,tend)

%Function to solve motor off simulink
%% Extract Motor Parameters
R_Fast=motor_param(1);R_Slow=motor_param(2);L_Fast=motor_param(3);
L_Slow=motor_param(4);K_Fast=motor_param(5);K_Slow=motor_param(6);
J=motor_param(7);b=motor_param(8);ratio=motor_param(9);
%% Define both systems in state space
A1_ss = [-R_Slow/L_Slow -K_Slow/L_Slow;K_Slow/J -b/J];% Define A1

Matrix
B1_ss = [1/L_Slow 0;0 -1/(J*ratio)]; % Define B1 Matrix
C1_ss = [1 0;0 1/ratio]; D1_ss = zeros(2,2); % Define C1 and D1

Matrices
motor1_ss = ss(A1_ss,B1_ss,C1_ss,D1_ss); % Define State Space Model

of Motor 1

A2_ss = [-R_Fast/L_Fast -K_Fast/L_Fast;K_Fast/J -b/J];% Define A

Matrix
B2_ss = [1/L_Fast 0;0 -1/(J*ratio)]; % Define B Matrix
motor2_ss = ss(A2_ss,B2_ss,C1_ss,D1_ss); % Define State Space Model

of Motor 2
%% Simulate System 1
in = 2; %Number of Motor inputs (Voltage and load torque)
dt = 0.01; %Simulation timestep
t_1 = 0:dt:tsw; %Time vector for simulation
u_1=zeros((tsw/dt)+1,in); %Input Vector size definition
i=1;
while i<=(tsw/dt)+1 % Populate input vector
 if (i >= ton/dt) % After switch on time
 u_1(i,1)=vin;u_1(i,2)=-torque; %Set input voltage and torque

load
 else
 u_1(i,1)=0;u_1(i,2)=0; %Set input voltage and torque load to

0
 end
i=i+1;
end
[y_1,t_1] = lsim(motor1_ss, u_1, t_1);
%% Simulate System 2
i_0 = y_1(i-1,1);w_0 = y_1(i-1,2);
X0 = [i_0 ; w_0];
tsim = tend - tsw;
t_2 = tsw:dt:tend; %Time vector for simulation
u_2=zeros((tsim/dt)+1,in); %Input Vector size definition
i=1;
while i<=(tsim/dt)+1 % Populate input vector
 if (i >= (toff-tsw)/dt) % After switch on time
 u_2(i,1)=0;u_2(i,2)=0; %Set input voltage and torque load
 else
 u_2(i,1)=vin;u_2(i,2)=-torque; %Set input voltage and torque

load to 0
 end
i=i+1;
end
[y_2,t_2] = lsim(motor2_ss, u_2, t_2, X0);
%% Append Results and plot

215

y = vertcat (y_1,y_2);t = vertcat (t_1,t_2);
figure()
subplot(2,1,1)
plot (t(:,1),y(:,1),'LineWidth', 2);xlabel('Time (s)');

ylabel('Current (A)');title('Current Plot');grid on
subplot(2,1,2)
plot (t(:,1),y(:,2),'LineWidth', 2);xlabel('Time (s)');

ylabel('Velocity (rad/s)');title('Velocity Plot');grid on
end

216

Appendix B - Slave Driven Linkage Parameters Code

%%%

%Slave Driven Linkage System Parameters

%%
function [len, rot, inertia] = simmech_slave_parameters

(O,A,B,C,D,E,F,mass)
len = all_lengths (O,A,B,C,D,E,F); %Call all_lengths function
rot = quaternion_rotations (O,A,B,C,D,E,F,len); % call

quaternion_rotations function
I1=((1/12)*mass(1)*(len(1)^2)); I2=((1/12)*mass(2)*(len(2)^2));
I3=((1/12)*mass(3)*(len(3)^2)); I4=((1/12)*mass(4)*(len(4)^2));
I5=((1/12)*mass(5)*(len(5)^2)); I6=((1/12)*mass(6)*(len(6)^2));
inertia = [I1 I2 I3 I4 I5 I6]; %Set inertia values
function [lengths] = all_lengths (O,A,B,C,D,E,F)
L1 = 0; L2 = single_length (O,A);L3 = single_length (A,B);L4 =

single_length (B,C);
L5 = single_length (D,E);L6 = single_length (E,F);
lengths =[L1, L2, L3, L4, L5, L6];
end
function [L] = single_length(A,B)
temp = B - A;
L = sqrt(temp(1)^2+temp(2)^2+temp(3)^2);
end
function [quaternion_rotations] = quaternion_rotations

(O,A,B,C,D,E,F,len)
q1 = [0 0 0 0]; q2 = quat_vec (O,A,len(2));q3 = quat_vec

(A,B,len(3));
q4 = quat_vec (B,C,len(4));q5 = quat_vec (D,E,len(5));q6 = quat_vec

(E,F,len(6));
quaternion_rotations = [q1,q2,q3,q4,q5,q6];
end
function [q] = quat_vec (A,B,C)
theta = acosd((dot((B-A),[1 0 0])/C));%dot product to find theta
if theta == 180
 w_quat = 1; x_quat = 0; y_quat = 0; z_quat = 0;
elseif theta == 0
 w_quat = 1; x_quat = 0; y_quat = 0; z_quat = 0;
else
n = ((cross(A-B,[1 0 0]))/((C*sind(theta)))); %calculate unit vector
w_quat = cosd(theta/2);x_quat = sind(theta/2)*n(1);
y_quat = sind(theta/2)*n(2);z_quat = sind(theta/2)*n(3);
end
q = [x_quat, y_quat, z_quat, w_quat];
end
end

217

Appendix C - Linkage System Kinematic Equations

C.1 Master Driven Linkages

y
2

x
2

O

A

B

C

D

E

1

2

3

4

5

6

Figure C-1: Master Driven Linkage System Diagram

1 2 3 4 5 6

T

   q q q q q q q (9.1)

where

 and and 1,2, ,6
T T

i i i i i i

x yR R i        q R R (9.2)

       

 

1 2

1

1

1

2
2 2

2
2 2

1
2 3

2 2 3 3

2 3
2 2 3 3

3 4
3 3 4 4

3 4
3 3 4 4

, , ,

cos
2

sin
2

,
cos cos

2 2

sin sin
2 2

cos cos
2 2

sin sin
2 2

T

x

y

x

y

x x

y y

x x

y y

t t t

R

R

l
R

l
R

t l l
R R

l l
R R

l l
R R

l l
R R







 

 

 

 

  
 

 
 
 
 
 
 

 
 
 
 
 
   
 
 
   
 
 
   


   
 

C q C q C q 0

C q  

4
4 4 1

4
4 4 1

3 5
3 3 5 5

3 5
3 3 5 5

2
5 6

5 5 6 6

5 6
5 5 6 6

6
6 6 2

6
6 6 2

2 2 2

0

cos
2

sin
2

cos cos
2 2

cos cos
2 2

, and ,
cos cos

2 2

sin sin
2 2

cos
2

sin
2

x

y

x x

x x

x x

y y

x

y

l
R X

l
R Y

l l
R R

l l
R R

t l l
R R

l l
R R

l
R X

l
R Y

t





 

 

 

 





  


 




 



  


  


  

  

 



 

 

C q











 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 (9.3)

218

2
2

2
2

2 3
2 3

2 3
2 3

3 4
3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 sin 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 1 cos 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 1 0 sin 1 0 sin 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 1 cos 0 1 cos 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 0 1 0 sin 1 0
2 2

l

l

l l

l l

l l





 

 





  



  

qC

4

3 4
3 4

4
4

4
4

3 5
3 5

3 5
3 5

5 6
5 6

sin 0 0 0 0 0 0

0 0 0 0 0 0 0 1 cos 0 1 cos 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 1 0 sin 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 1 cos 0 0 0 0 0 0
2

0 0 0 0 0 0 1 0 sin 0 0 0 1 0 sin 0 0 0
2 2

0 0 0 0 0 0 0 1 cos 0 0 0 0 1 cos 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 sin 1 0 sin
2 2

0 0

l l

l

l

l l

l l

l l



 





 

 

 





  



  

5 6
5 6

6
6

6
6

0 0 0 0 0 0 0 0 0 0 0 1 cos 0 1 cos
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 cos
2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

l l

l

l

 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (9.4)

1 2

1

1

1

2 2
2 2

2 2
2 2

1
2 2 3 3

2 2 3 3

2 2 3 3
2 2 3 3

3 3 4 4
3 3 4 4

3 3 4 4
3 3 4 4

sin
2

cos
2

sin sin
2 2

cos cos
2 2

sin sin
2 2

cos cos
2 2

x

y

x

y

x x

y y

x x

y y

R

R

l
R

l
R

l l
R R

l l
R R

l l
R R

l l
R R









 
 

 
 

 
 

 
 

   






  

  

  

  

q q q

q

C q C q C q

C q

4 4
4 4

4 4
4 4

3 3 5 5
3 3 5 5

5 3 5 5
3 5 5 5

2 5 5 6 6
5 5 6 6

5

sin
2

cos
2

sin sin
2 2

cos cos
2 2

, and
sin sin

2 2

x

y

x x

y y

x x

y

l
R

l
R

l l
R R

l l
R R

l l
R R

R







 
 

 
 

 
 




 
 
  
 
 
    
 
 
    
 
  
    
 
 
  
 
 
 
 
 
 
  

qC q

5 5 6 6
5 6 6

6 6
6 6

6 6
6 6

2

cos cos
2 2

sin
2

cos
2

y

x

y

l l
R

l
R

l
R


 









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 (9.5)

219

 

2 2
2

2 2
2

2 2 3 3
2 3

2 2 3 3
2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 cos 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 sin 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 cos 0 0 cos 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 sin 0 0 sin 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0

q

l

l

l l

l l







 
 

 
 

 

 

qC q

3 3 4 4
3 4

3 3 4 4
3 4

4 4
4

4 4
4

3 3 5 5
3 5

3 3
3

0 0 0 0 cos 0 0 cos 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 sin 0 0 sin 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 cos 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 sin 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 cos 0 0 0 0 0 cos 0 0 0
2 2

0 0 0 0 0 0 0 0 sin 0 0 0 0 0
2

l l

l l

l

l

l l

l

 
 

 
 







 
 




 

 





 

 
5 5

5

5 5 6 6
5 6

5 5 6 6
5 6

6 6
6

6 6
6

sin 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos 0 0 cos
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin 0 0 sin
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l

l l

l l

l

l




 
 

 
 





































 

 





































 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (9.6)

 

 

 

   

   

   

   

1 2

2
2 2

2

2
2 2

2

2 2
2 2 3 3

2 3

1

2 2
2 2 3 3

2 3

2 2
3 3 4 4

3 4

2 2
3 3 4 4

3 4

0

0

0

cos
2

sin
2

cos cos
2 2

sin sin
2 2

cos cos
2 2

sin sin
2 2

d d dq

d

l

l

l l

l l

l l

l l







 
 

 
 

 
 

 
 

     












 
  
 
 

 
  
 
 

 
  
 
 

 
  
 
 

qQ C q q Q Q

Q

 

 

   

   

   

 

2
4 4

4

2
4 4

4

2 2
3 3 5 5

3 5

2 2
3 3 5 5

3 5

2 2 2
5 5 6 6

5 6

2
5 5

cos
2

sin
2

cos cos
2 2

sin sin
2 2

, and

cos cos
2 2

s
2

d

l

l

l l

l l

l l

l







 
 

 
 

 
 










  
   
  
  


  
   
  
  

   
    
   
   
 
 

 
 
 
 
 
 
 
 
 

Q

 

 

 

2
6 6

5 6

2
6 6

6

2
6 6

6

in sin
2

cos
2

sin
2

0

l

l

l


 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  

 
 
 
 
 

 
 
  

 (9.7)

220

C.2 Centre Driven Linkages

1

2

3

4

5

6

O

A

B

CE

y2
x2

Figure C-2: Centre Driven Linkage System Diagram

1 2 3 4 5 6

T

   q q q q q q q (9.8)

where

 and and 1,2, ,6
T T

i i i i i i

x yR R i        q R R (9.9)

     

 

1 2

1

1

1

2
2 2

2
2 2

1
2 3

2 2 3 3

2 3
2 2 3 3

3 4
3 3 4 4

3 4
3 3 4 4

, , ,

cos
2

sin
2

,
cos cos

2 2

sin sin
2 2

cos cos
2 2

sin sin
2 2

x

y

x

y

x x

y y

x x

y y

t t t

R

R

l
R

l
R

t l l
R R

l l
R R

l l
R R

l l
R R







 

 

 

 

 
 

 
 
 
 
 
 

 
 
 
 
 
   
 
 
   
 
 
   
 
 
   
 

C q C q C q

C q  

4
4 4 1

4
4 4 1

2 5
2 2 5 5

2 5
2 2 5 4

2
5 6

5 5 6 6

5 6
5 5 6 6

6
6 6 2

6
6 6 2

2 2 2

0

cos
2

sin
2

cos cos
2 2

sin sin
2 2

, and ,
cos cos

2 2

sin sin
2 2

cos
2

sin
2

x

y

x x

y y

x x

y y

x

y

l
R X

l
R Y

l l
R R

l l
R R

t l l
R R

l l
R R

l
R X

l
R Y

t





 

 

 

 





  


 




 



  

   




  

  

 

 

 

C q














 
 
 
 
 
 
 
 
 
 
 
 



 (9.10)

221

2
2

2
2

2 3
2 3

2 3
2 3

3 4
3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 sin 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 1 cos 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 1 0 sin 1 0 sin 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 1 cos 0 1 cos 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 0 1 0 sin 1 0
2 2

l

l

l l

l l

l l





 

 





  



  

qC

4

3 4
3 4

4
4

4
4

2 5
2 5

2 5
2 5

5 6
5 6

sin 0 0 0 0 0 0

0 0 0 0 0 0 0 1 cos 0 1 cos 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 1 0 sin 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 1 cos 0 0 0 0 0 0
2

0 0 0 1 0 sin 0 0 0 0 0 0 1 0 sin 0 0 0
2 2

0 0 0 0 1 cos 0 0 0 0 0 0 0 1 cos 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 sin 1 0 sin
2 2

0 0

l l

l

l

l l

l l

l l



 





 

 

 





  



  

5 6
5 6

6
6

6
6

0 0 0 0 0 0 0 0 0 0 0 1 cos 0 1 cos
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 cos
2

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

l l

l

l

 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 (9.11)

1 2

1

1

1

2 2
2 2

2 2
2 2

1
2 2 3 3

2 2 3 3

2 2 3 3
2 2 3 3

3 3 4 4
3 3 4 4

3 3 4 4
3 3 4 4

sin
2

cos
2

sin sin
2 2

cos cos
2 2

sin sin
2 2

cos cos
2 2

x

y

x

y

x x

y y

x x

y y

R

R

l
R

l
R

l l
R R

l l
R R

l l
R R

l l
R R









 
 

 
 

 
 

 
 

   






  

  

  

  

q q q

q

C q C q C q

C q

4 4
4 4

4 4
4 4

2 2 5 5
2 2 5 5

2 2 5 5
2 2 5 4

2 5 5 6 6
5 5 6 6

5

sin
2

cos
2

sin sin
2 2

cos cos
2 2

, and
sin sin

2 2

x

y

x x

y y

x x

y

l
R

l
R

l l
R R

l l
R R

l l
R R

R







 
 

 
 

 
 




 
 
  
 
 
    
 
 
    
 
  
    
 
 
  
 
 
 
 
 
 
  

qC q

5 5 6 6
5 6 6

6 6
6 6

6 6
6 6

2

cos cos
2 2

sin
2

cos
2

y

x

y

l l
R

l
R

l
R


 









 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 

 (9.12)

222

2 2
2

2 2
2

2 2 3 3
2 3

2 2 3 3
2 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 cos 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 sin 0 0 0 0 0 0 0 0 0 0 0 0
2

0 0 0 0 0 cos 0 0 cos 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 sin 0 0 sin 0 0 0 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0

l

l

l l

l l







 
 

 
 

 

 

qC

3 3 4 4
3 4

3 3 4 4
3 4

4 4
4

4 4
4

2 2 5 5
2 5

2 2 5
2

0 cos 0 0 cos 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 sin 0 0 sin 0 0 0 0 0 0
2 2

0 0 0 0 0 0 0 0 0 0 0 cos 0 0 0 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 sin 0 0 0 0 0 0
2

0 0 0 0 0 cos 0 0 0 0 0 0 0 0 cos 0 0 0
2 2

0 0 0 0 0 sin 0 0 0 0 0 0 0 0
2

l l

l l

l

l

l l

l

 
 

 
 







 
 

 


 

 





 

 
5

5

5 5 6 6
5 6

5 5 6 6
5 6

6 6
6

6 6
6

sin 0 0 0
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos 0 0 cos
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin 0 0 sin
2 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 cos
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 sin
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

l

l l

l l

l

l



 
 

 
 








































 

 








































 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (9.13)

 

 

 

   

   

   

   

1 2

2
2 2

2

2
2 2

2

2 2
2 2 3 3

2 3

1

2 2
2 2 3 3

2 3

2 2
3 3 4 4

3 4

2 2
3 3 4 4

3 4

0

0

0

cos
2

sin
2

cos cos
2 2

sin sin
2 2

cos cos
2 2

sin sin
2 2

T

d d dq

d

l

l

l l

l l

l l

l l







 
 

 
 

 
 

 
 

     











 
  
 
 

 
  
 
 

 
  
 
 

 
  
 
 

qQ C q q Q Q

Q

 

 

   

   

   

 

2
4 4

4

2
4 4

4

2 2
2 2 5 5

5 5

2 2
2 2 5 5

5 5

2 2 2
5 5 6 6

5 6

2
5 5

cos
2

sin
2

cos cos
2 2

sin sin
2 2

, and

cos cos
2 2

d

l

l

l l

l l

l l

l







 
 

 
 

 
 










  
   
  
  

 
  
   
  
  

   
    
   
   
 
 

 
 
 
 
 
 
 
 
 

Q

 

 

 

2
6 6

5 6

2
6 6

6

2
6 6

6

sin sin
2 2

cos
2

sin
2

0

l

l

l


 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
  
  

 
 
 
 
 

 
 
  

 (9.14)

223

Appendix D - Grashof’s Law for Slave Driven Linkages

Matlab Code

function [state] = grashof_slave (O,A,B,C,D,E,F) %Function to

determine whether the slave driven linkages satisfy Grashof's law
L1 = single_length (O,C);L2 = single_length (O,A);L3 = single_length

(A,B);L4 = single_length (B,C);
L5 = single_length (C,D);L6 = single_length (D,E);L7 = single_length

(E,F);L8 = single_length (F,C);%Calculate all linkage lengths
function [L] = single_length(A,B)%Calculates Sigle Lengths
temp = B - A;
L = sqrt(temp(1)^2+temp(2)^2+temp(3)^2);
end
config_1 = sort([L1, L2, L3, L4]);%Sorts by size the 4-bar linkage

1's linkages
constraint_1 = (config_1(1) + config_1(4)) - (config_1(2) +

config_1(3));%Grashof's law for configuration 1
if (constraint_1 <= 0)%Output state depending on whether the law is

satified, and if not, how is it violated
 state = 0;%Satisfied
else
 state = 1;%Violated by 4 bar linkage 1
end
if state ==0 %Execute if first 4 bar linkage satisfies Grashof's law
th2 = (0:(4*pi/1000):4*pi);ACO_m = zeros(1,1001);ACB_m =

zeros(1,1001);i = 1;th4_m = zeros(1,1001);gamma_m = zeros(1,1001);
e_m = zeros(1,1001);height = abs(C(2)-F(2)); width = abs(C(1)-

F(1));sigma = atan(height/width);%Initialise size of matrices
height_1 = abs(O(2)-C(2)); width_1 = abs(O(1)-C(1));sigma_1 =

atan(height_1/width_1);
 while i <= 1001 %Sweep crank by 360 Deg
 th = th2(i);
 AC = sqrt((L1)^2+(L2)^2-(2*L1*L2*cos(th))); % Distance between A

and C
 ACO = real(acos(((L1)^2+(AC)^2-(L2)^2)/(2*L1*AC)));%Angle

between A, C and O
 ACB = real(acos(((L4)^2+(AC)^2-(L3)^2)/(2*L4*AC))); %Angle

between A, C and B
 ACO_m(i) = ACO; ACB_m(i) = ACB; %Convert to matrix
 if th >= 0 && th <= pi%Value of th4 depends on whether th2

is between 0 and pi or pi and 2*pi radians
 th4_m(i) = sigma_1 + ACB - ACO;
 else
 th4_m(i) = sigma_1 + ACB + ACO;
 end
 % gamma_m(i) = th4_m(i)-pi-sigma; %Find interim angle
 gamma_m(i) = th4_m(i)+sigma; %Find interim angle
 e_m(i) = sqrt((L5)^2+(L8)^2-(2*L5*L8*cos(gamma_m(i)))); %Find

all lengths of e
 i = i+1;
 end
 max_e = max(e_m);% Find max length of i
 if ((L6 + L7) >= max_e) %Apply inequality
 state = 0; %Satisfied
 else
 state = 2; %Violated by 4 bar linkage 2
 end
 end
end

224

Appendix E - Genetic Algorithm Matlab Code

E.1 Genetic Algorithm

%% Genetic algorithm (based on Haupt & Haupt, 2003)

%% Set the GA parameters
ff='cost_function';
npar=17; % number of optimization variables
varlo = min_param; varhi = max_param; % Sets the limits of the

variables
maxit=200; % max number of iterations
mincost=0.1; % minimum cost
popsize=40; % set population size
mutrate=.1; % set mutation rate
selection=0.5; % fraction of population kept
elite = 5; %number of chromosomes (best) to save from

mutation,
Nt=npar; % continuous parameter GA Nt=#variables
par = zeros (popsize,npar); %initialise size of par
keep=floor(selection*popsize);% #population members that survive
nmut=ceil((popsize-1)*Nt*mutrate); % total number of mutations
M=ceil((popsize-keep)/2); % number of matings
off = zeros(popsize-keep,npar); %Initialise offspring matrix size
%___
%% Create the initial population
iga=0; % generation counter initialized
j=1;
while j <= popsize % random paramerters generated between high

and low boundaries for each parameter
 i=1;
while i <= npar
 if (i == 2) || (i==4) || (i==6) %Handle Motor Inequalities
 par(j,i)=(par(j,i-1)-varlo(i))*rand+varlo(i); %Restrict

values of R_Fast, L_Fast and K_Fast
 else
 par(j,i)=(varhi(i)-varlo(i))*rand+varlo(i); %No inequalities
 end
 i=i+1;
end
 j=j+1;
end
cost=cost_function(Slow_Current,Fast_Current,Slow_Park,Fast_Park,

par,popsize);% calculates population cost
[cost,ind]=sort(cost); % sort for combined cost
par_1=par(ind(:,2),:); % sort for cost 1
par_2=par(ind(:,3),:); % sort for cost 2
par=par(ind(:,1),:); % Define population matrix
minc(1)=min(cost(:,1)); % minc contains min cost in

population
meanc(1)=mean(cost(:,1)); % meanc contains mean cost of

population
minc_1(1)=min(cost(:,2)); % minc_1 contains min current

cost cost in population
minc_2(1)=min(cost(:,3)); % minc contains min park switch

cost in population

par = par (1:1:keep,:); % Removes weakest chromosomes
%% Begin iterations

225

while iga<maxit
 iga=iga+1;
%% Tournament Selection

contender = zeros(3,1); %Initialize matrices
draw = zeros(3,1);
winner = zeros(keep,npar);
j=1;
while j <= keep %To generate #"Keep" parents
 i=1;
while i<=3 % 3 random parents are selected
 draw(i) = ceil(rand*keep); % A random integer between 1 and

#"keep" is selected
 contender(i)= cost(draw(i),1);% The cost of the random

chromosomes from the mating pool are accessed
 i=i+1;
end
[contender,ind_1]=sort(contender); % The cost of contenders are

sorted
winner(j,:)=par(draw(ind_1(1)),:); % The chromosome with the

lowest cost is chosen as the parent.
j=j+1;
end

%% Mating
xm=1:2:keep; % Index of members of mating pool denoted as mothers
xp=2:2:keep; % Index of members of mating pool denoted as fathers
beta = zeros(M,npar+1); %Initialise the size of beta (ensure an

extra 0 at the end)
i=1;
while i<=M
alpha = ceil(rand*npar); %Generate a random integer between 1 and

Npar, this determines the number of genes to be modified.
j=1;
while j <= alpha
beta(1,j) = ceil(rand*npar); % For each "mate" alpha random

numbers are generated which denote the genes to be combined.
j=j+1;
end
 beta=unique(beta(1,:)); %Select only unique genes to avoid

repetition
 alpha = (length ((beta(1,:)))-1); %Reset alpha to match the

number of genes to change
 gamma = rand; %Generate a random number between 0 and 1 as

the blending coefficient
 ma = winner(xm(i),:); %Select mother gene
 pa = winner(xp(i),:); %Select father gene
 j=1;
 while j <= alpha % Iterate for number of genes to be modified
 rho_new1 = ma(beta(1,j+1))-gamma*(ma(beta(1,j+1))-

pa(beta(1,j+1))); %Blending operation from Haupt & Haupt (pg 59)
 rho_new2 = pa(beta(1,j+1))+gamma*(ma(beta(1,j+1))-

pa(beta(1,j+1)));
 ma(1,beta(j+1))=rho_new1; % Replace gene in original

chromosome mother with new gene
 pa(1,beta(j+1))=rho_new1; % Replace gene in original

chromosome father with new gene
 j=j+1;
 end
 off(xm(i),:)=ma; % Add offspring to population
 off(xp(i),:)=pa;

226

 i=i+1;
end
par = vertcat (par,off); %Generates new population
%% Mutations
mrow=sort(ceil(rand(1,nmut)*(popsize-1))+1); %randomly select

genes to mutate
mcol=ceil(rand(1,nmut)*Nt);
for ii=1:nmut
 if (mrow(ii)>elite) % Allows first #'elite' rows to be passed

over for mutation
 if (mcol(ii) == 2) || (mcol(ii)==4) || (mcol(ii)==6)

%Handle Motor Inequalities
 par(mrow(ii),mcol(ii))=(par(mrow(ii),(mcol(ii)-

1))-varlo(mcol(ii)))*rand+varlo(mcol(ii)); %Ensures mutation does

not violate inequality
 elseif (mcol(ii) == 1) || (mcol(ii)==3) || (mcol(ii)==5)
 par(mrow(ii),mcol(ii))=(varhi(mcol(ii))-

par(mrow(ii),(mcol(ii)+1)))*rand+par(mrow(ii),(mcol(ii)+1));

%Ensures mutation does not violate inequality
 else
 par(mrow(ii),mcol(ii))=(varhi(mcol(ii))-

varlo(mcol(ii)))*rand+varlo(mcol(ii));% normal mutation (i.e. no

inequalities to handle)
 end
 else
 end
end % ii

%% Only solve new and mutated chromosomes

new_gen = par((popsize-keep)+1:1:popsize,:); %selects the new

generation

mut_gen = unique(mrow); % Extracts index of chromosomes that have

been muatated
mut_gen = mut_gen(mut_gen > elite & mut_gen < (keep+1)); %Filters

out elite chromosomes and new generation
i=1;
while i <= length (mut_gen)
 old_gen_mut(i,:) = par(mut_gen(i),:); %Generate matrix with

mutated old generation
 i=i+1;
end
new_gen = vertcat (new_gen,old_gen_mut); % Matrix containing new

generation chromosomes different to old generation
gen_size = size(new_gen);gen_size = gen_size(1,1); % Calculates

the size of the new generation

cost_ng=cost_function(Slow_Current,Fast_Current,Slow_Park,Fast_Pa

rk,new_gen,gen_size); %Calculates the cost of only the changed

chromosomes

%% Rebuld and sort matrix

i=elite+1;
j=1;k=1;
while i <= keep
 if mut_gen (j) == i
 i=i+1;
 if j < length(mut_gen)

227

 j=j+1;
 end
 else
 old_gen(k)=i; %old_gen lists the indices of the parent

non-elite chromosomes not mutated
 i=i+1;k=k+1;
 end
end

if elite ~= 0 % Add elites
elite_gen = 1:1:elite;
old_gen = horzcat (elite_gen,old_gen); %If elitism is used, the

elite chromosomes are added to the start of old_gen
end
i=1;
while i<= length(old_gen)
 old_par(i,:) = par(old_gen(i),:); %Extract chromosomes from

old generation
 old_cost(i,:) = cost(old_gen(i),:); %Extract costs from old

generation
i=i+1;
end

par = vertcat(old_par, new_gen); %Generate complete next

generation matrix
cost = vertcat(old_cost, cost_ng); %Generate complete costs

matrix

[cost,ind]=sort(cost); % sort costs based on total cost
par_1=par(ind(:,2),:); % sort for cost 1
par_2=par(ind(:,3),:); % sort for cost 2
par=par(ind(:,1),:); % sort for combined cost

minc(iga+1)=min(cost(:,1)); % minc contains min cost in

population
meanc(iga+1)=mean(cost(:,1)); % meanc contains mean cost of

population
minc_1(iga+1)=min(cost(:,2)); % minc_1 contains min current

cost in population
minc_2(iga+1)=min(cost(:,3)); % minc_2 contains min park switch

cost in population
%% Stopping Criteria
if iga>maxit || cost(1)<mincost %Assess stopping Criteria
 break
end

[iga cost(1,1)] %Output running cost and generation

end %end of iterations from iga reaching maximum iterations

228

E.2 Cost Function

function

[cost]=cost_function(Slow_Current,Fast_Current,Slow_Park,Fast_Park,p

ar,popsize)

global J K_Fast K_Slow L_Fast L_Slow R_Fast R_Slow bm u_dry1

u_dry2 u_dry3 u_wet1 u_wet2 u_wet4 u_wet6 u_wet7 F;

cost = zeros (popsize,3);% Initialise cost matrix as zeros
j=1;
while (j<=popsize) %J < popsize
R_Slow = par (j,1); R_Fast = par (j,2); L_Slow = par (j,3);

L_Fast = par (j,4);
K_Slow = par (j,5); K_Fast = par (j,6); J = par (j,7); bm = par

(j,8);
u_dry1 = par(j,9); u_dry2 = par(j,10); u_dry3 = par(j,11);
u_wet1 = par(j,12);u_wet2 = par(j,13); u_wet4 = par(j,14);u_wet6

= par(j,15);u_wet7= par(j,16);
F = par(j,17);% Set parameters

sim ('GA_Model'); %Simulate model for each chromosome

toutsim = round(tout*1000)/1000; %Rounds all members of Tout to

3dp (i.e. 1ms)
[toutsim,indexsim,ic] = unique(toutsim); %Finds the unique values

of toutsim and the index in which the occur
toutsim = horzcat(toutsim,indexsim); %Appends the unique values

of tout and their index

i=2;
while i <= length(toutsim) % Extract Data values for times in

toutsim so that they can be directly compared
 k=toutsim(i,2);
 k2 = toutsim(i,1);
 Sim_Slow_Current (1,i) = Sim_Motor_Current_slow(k,2);

%Samples the simulatd data
 Sim_Fast_Current (1,i) = Sim_Motor_Current_fast(k,2);

%Samples the simulatd data
 Sim_Slow_Park (1,i) = Sim_Park_Switch_slow (k,2); %Samples

the simulatd data
 Sim_Fast_Park (1,i) = Sim_Park_Switch_fast (k,2); %Samples

the simulatd data
 Data_Slow_Current (1,i) = Slow_Current (round(k2*1000));

%Samples the real data
 Data_Fast_Current (1,i) = Fast_Current (round(k2*1000));

%Samples the real data
 Data_Slow_Park (1,i) = Slow_Park (round(k2*1000)); %Samples

the real data
 Data_Fast_Park (1,i) = Fast_Park (round(k2*1000)); %Samples

the real data
 i=i+1;
end

temp = 0;
temp_1 = 0;
temp_2 = 0;%Initialise costs to 0
i = 1; %Initialise i
n=length(Data_Fast_Park); % Number of data samples

229

while (i <= n) % Sample each datapoint
fitness_1 = ((Data_Slow_Current(i) -

Sim_Slow_Current(i))^2+(Data_Fast_Current(i) -

Sim_Fast_Current(i))^2); % Cost Function for the current
fitness_2 = ((Data_Slow_Park(i) -

Sim_Slow_Park(i))^2+(Data_Fast_Park(i) - Sim_Fast_Park(i))^2);% Cost

Function for the park switch
temp_1 = temp_1 + fitness_1; %Summing function
temp_2 = temp_2 + fitness_2; %Summing function
temp = temp_1 + temp_2; %Total cost
i = i+1; %Increment i
end
temp = temp/n; %Divides the total cost by the number of data

points used
temp_1 = (temp_1)/n;
temp_2 = (temp_2)/n;
temp = [temp temp_1 temp_2]; %Stores total cost and cost of each

fitness function
i=1;
while i<= 3
 j=1;
cost (j,i) = temp(i); %Set the cost of each chromosome
i=i+1;
end
j=j+1; % Increment j
end

230

Appendix F - Neural Network Training Data, Extended

Results and Matlab Code

F.1 Torque NN training and Validation Data

Figure F-1: Torque NN Input Training Data

Figure F-2: Torque NN Output Training Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2.5

5

7.5

10

Time (s)

P
o
s
ti
o
n
 (

ra
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

V
e
lo

c
it
y
 (

ra
d
/s

)

Wiper motor Output Shaft Position

Wiper motor Output Shaft Velocity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-10

0

10

20

Time (s)

T
o
rq

u
e
 (

N
m

)

Dry Windscreen Condition Torque

Wet Windscreen Condition Torque

231

Figure F-3: Torque NN Input Validation Data

Figure F-4: Torque NN Output Validation Data

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2.5

5

7.5

10

Time (s)

P
o
s
it
io

n
 (

ra
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

V
e
lo

c
it
y
 (

ra
d
/s

)

Wiper Motor Output Shaft Position

Wiper Motor Output Shaft Velocity

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-10

0

10

20

Time (s)

T
o
rq

u
e
 (

N
m

)

Dry Windscreen Condition Torque

Wet Windscreen Condition Torque

232

F.2 NN Hidden Layer Performance

Table F-1: NN Performance against Number of Hidden Layers (Full)

Hidden
Layers

Training MSE Validation MSE Training
 Time (s)

Simulation
Time (s)

Train Validate Test Total Total

1 24.613 25.210 25.305 24.807 26.226 0.800 0.183

19.720 21.666 21.375 20.260 17.619 1.000 0.111

20.236 18.660 21.432 20.179 16.448 1.000 0.094

21.523 21.845 22.704 21.749 20.098 0.933 0.129

2 13.896 13.807 14.668 13.537 10.893 1.000 0.070

13.994 15.873 11.455 13.895 10.882 0.800 0.088

14.048 12.020 15.049 13.894 10.881 1.000 0.087

13.979 13.900 13.724 13.775 10.885 0.933 0.081

3 4.418 3.945 4.832 4.409 2.480 6.000 0.089

4.577 4.032 4.144 4.430 2.513 4.000 0.083

4.565 4.054 4.198 4.433 2.502 4.000 0.101

4.520 4.010 4.391 4.424 2.498 4.667 0.091

4 1.871 2.149 2.066 1.942 1.214 35.000 0.077

3.879 3.467 4.624 3.929 2.451 1.000 0.086

2.594 2.533 2.468 2.566 1.527 6.000 0.079

2.781 2.716 3.052 2.812 1.731 14.000 0.081

5 10.621 10.327 11.079 10.646 15.003 4.000 0.085

3.370 4.236 3.486 3.517 3.423 14.000 0.087

0.884 0.887 0.766 0.867 0.541 37.000 0.095

4.958 5.150 5.110 5.010 6.322 18.333 0.089

6 0.916 0.872 1.030 0.926 0.702 14.000 0.091

0.550 0.532 0.577 0.551 0.400 45.000 0.087

0.523 0.611 0.607 0.549 0.373 44.000 0.097

0.663 0.672 0.738 0.675 0.492 34.333 0.092

7 3.059 2.939 3.351 3.085 3.866 5.000 0.107

0.316 0.293 0.333 0.315 0.254 13.000 0.085

1.087 1.011 1.163 1.087 4.135 9.000 0.086

1.487 1.414 1.616 1.496 2.751 9.000 0.093

8 0.182 0.207 0.178 0.185 0.153 18.000 0.084

2.849 2.540 2.839 2.801 5.386 7.000 0.087

0.282 0.255 0.289 0.279 0.303 22.000 0.090

1.104 1.001 1.102 1.088 1.948 15.667 0.087

9 0.270 0.342 0.262 0.279 2.208 9.000 0.091

0.242 0.289 0.234 0.248 0.232 50.000 0.087

0.143 0.147 0.153 0.145 0.102 20.000 0.086

0.218 0.259 0.216 0.224 0.847 26.333 0.088

10 0.146 0.138 0.148 0.145 0.163 21.000 0.099

233

0.099 0.093 0.104 0.099 0.134 12.000 0.139

0.405 0.333 0.324 0.382 0.924 2.000 0.090

0.217 0.188 0.192 0.209 0.407 11.667 0.110

11 0.181 0.163 0.265 0.191 1.935 9.000 0.091

0.340 0.303 0.322 0.332 74.242 24.000 0.109

0.103 0.104 0.119 0.106 0.113 51.000 0.113

0.208 0.190 0.235 0.209 25.430 28.000 0.104

12 0.380 0.374 0.417 0.384 335.523 6.000 0.106

0.045 0.045 0.050 0.046 0.044 21.000 0.097

0.562 0.674 0.692 0.598 59.613 18.000 0.102

0.329 0.364 0.386 0.343 131.727 15.000 0.102

13 0.355 0.303 0.328 0.328 1058.300 43.000 0.093

0.413 0.448 0.418 0.419 3.053 4.000 0.099

0.335 0.276 0.393 0.335 18.110 17.000 0.094

0.368 0.342 0.380 0.360 359.821 21.333 0.095

14 0.093 0.082 0.079 0.089 3.547 28.000 0.110

0.125 0.116 0.121 0.123 1.303 23.000 0.130

0.158 0.193 0.165 0.164 19.592 55.000 0.083

0.125 0.130 0.122 0.125 8.147 35.333 0.107

15 0.260 0.193 0.238 0.247 829.636 14.000 0.099

0.012 0.014 0.014 0.012 294.867 66.000 0.096

0.103 0.101 0.091 0.101 864.111 63.000 0.095

0.125 0.103 0.114 0.120 662.871 47.667 0.097

16 0.041 0.040 27.826 4.208 21539.000 69.000 0.102

0.054 0.057 0.058 0.055 497.333 31.000 0.101

0.074 0.064 0.080 0.073 0.860 27.000 0.092

0.056 0.054 9.321 1.445 7345.731 42.333 0.098

17 0.035 0.039 0.032 0.035 0.742 42.000 0.119

0.082 0.105 0.072 0.084 805.695 48.000 0.112

0.261 0.338 0.329 0.283 1.986 3.000 0.103

0.126 0.161 0.144 0.134 269.474 31.000 0.111

18 0.079 0.076 0.075 0.078 187.142 28.000 0.108

0.061 0.060 6.291 0.995 1561.900 20.000 0.108

0.038 0.035 0.042 0.038 19.472 73.000 0.093

0.059 0.057 2.136 0.370 589.505 40.333 0.103

19 0.023 0.023 0.024 0.023 578.286 40.000 0.105

0.035 0.035 0.044 0.037 409.179 59.000 0.167

0.028 0.032 0.032 0.029 84.163 22.000 0.088

0.029 0.030 0.034 0.030 357.209 40.333 0.120

20 0.031 0.028 0.034 0.031 188.685 40.000 0.104

0.061 0.088 0.220 0.089 60.733 35.000 0.158

0.019 0.023 0.019 0.020 279.144 29.000 0.105

0.037 0.046 0.091 0.047 176.187 34.667 0.122

234

Figure F-5: NN Performance against Number of Hidden Layers (Full)

F.3 Motor NN Training Data

Figure F-6: Motor NN Input Training Data (Slow Motor State)

0.000

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

0.010

0.100

1.000

10.000

100.000

0 5 10 15 20 25

V
al

id
at

io
n

 D
at

a
M

SE

H
u

n
d

re
d

s

Tr
ai

n
in

g
D

at
a

M
SE

Number of Hidden Layers

Training Data MSE Validation Data MSE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

18

20

Time (s)

V
o
lt
a
g
e
 (

V
)

0 2 4 6 8 10 12 14 16
-20

-16

-12

-8

-4

0

4

8

12

16

20

T
o
rq

u
e
 (

N
m

)

Torque

Voltage

235

Figure F-7: Motor NN Input Training Data (Fast Motor State)

F.4 Matlab Code for Motor Neural Network

net = network;

net.numInputs = 2;
net.numLayers = 4;
net.sampleTime = 0.001;

%% Network Structure and connections
net.biasConnect = [1;1;1;1;];% Apply Biases to every layer
net.layerConnect = [0 0 0 0; 1 0 0 0; 0 0 0 0; 0 0 1 0]; % Connect

the layers: 1 - 2 and 3 - 4.
net.outputConnect = [0 1 0 1]; % Connect hidden layer 1 to output 1

and hidden layer 2 to output 2

net.outputs{2}.name = 'slow_out';
net.outputs{2}.feedbackInput = 2; %Index the feedback input
net.outputs{2}.feedbackDelay = 0; % No Feedback Delay (implemented

in the hidden layers)
net.outputs{2}.feedbackMode = 'open'; % Set the loop to open
net.outputs{2}.processFcns = {'removeconstantrows', 'mapminmax'};

%Process Signal

net.outputs{4}.name = 'fast_out';
net.outputs{4}.feedbackInput = 3; %Index the feedback input
net.outputs{4}.feedbackDelay = 0; % No Feedback Delay (implemented

in the hidden layers)
net.outputs{4}.feedbackMode = 'open'; % Set the loop to open
net.outputs{4}.processFcns = {'removeconstantrows',

'mapminmax'};%Process Signal

net.inputConnect= [1 0 1 0; 0 0 0 0;0 1 0 1;0 0 0 0]; %Connect the

inputs
%% Network Layers

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

18

20

Time (s)

V
o
lt
a
g
e
 (

V
)

0 2 4 6 8 10 12 14 16
-20

-16

-12

-8

-4

0

4

8

12

16

20

T
o
rq

u
e
 (

N
m

)

Torque

Voltage

236

net.layers{1}.name = 'Hidden Slow';
net.layers{1}.dimensions = 10; %Set number of Neurons in second

hidden layer
net.layers{1}.size = 10; %Set number of layers in second hidden

layer
net.layers{1}.initFcn ='initnw';
net.layers{1}.transferFcn ='tansig'; %Change function from linear

net.layers{2}.name = 'Output Slow';

net.layers{3}.name = 'Hidden Fast';
net.layers{3}.dimensions = 8; %Set number of Neurons in second

hidden layer
net.layers{3}.size = 8; %Set numer of layers in second hidden layer
net.layers{3}.initFcn ='initnw';
net.layers{3}.transferFcn ='tansig'; %Change function from linear

net.layers{4}.name = 'Output Fast';
%% Format Biases
net.biases{1}.learnFcn = 'learngdm';
net.biases{2}.learnFcn = 'learngdm';
net.biases{3}.learnFcn = 'learngdm';
net.biases{4}.learnFcn = 'learngdm';
%% Format input weights
net.inputWeights{1,1}.delays = [1 2]; % Set delays for data input
net.inputWeights{1,1}.learnFcn = 'learngdm'; % Set learning function

net.inputWeights{3,2}.delays = [1 2]; % Set delays for data input
net.inputWeights{3,2}.learnFcn = 'learngdm'; % Set learning function

net.inputWeights{1,3}.delays = [1 2]; % Set delays for data input

net.inputWeights{3,4}.delays = [1 2]; % Set delays for data input
%% Format Layer Weights
net.layerWeights{2,1}.learnFcn = 'learngdm'; % Set learning function
net.layerWeights{4,3}.learnFcn = 'learngdm'; % Set learning function

%% Assign Functions

net.adaptFcn = 'adaptwb';
net.derivFcn = 'defaultderiv';
net.divideFcn = 'divideblock'; % Divide data using the block

function
net.divideMode = 'time';
net.performFcn = 'mse' ; %Test performance using Mean Squared Error
net.plotFcns =

{'plotperform','plottrainstate','ploterrhist','plotregression','plot

response','ploterrcorr','plotinerrcorr'};
net.trainFcn = 'trainlm';

net.performParam.normalization = 'none';

237

F.5 Velocity Estimator NN training Data

Figure F-8: Velocity NN Input Training Data (Fast)

Figure F-9: Velocity NN Input Training Data (Slow)

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

20

Time (s)

V
o
lt
a
g
e
 (

V
)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

C
u
rr

e
n
t
(A

)

Current

Voltage

0 5 10 15 20 25 30 35 40
0

2

4

6

8

10

12

14

16

18

Time (s)

V
o
lt
a
g
e
 (

V
)

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

C
u
rr

e
n
t
(A

)

Current

Voltage

238

F.6 Matlab Code for Velocity Estimator Neural Network

clear net
net = network;

net.numInputs = 2; % 1 for each path
net.numLayers = 4; % 1 hidden and 1 output for each path
net.sampleTime = 0.001;

%% Network Structure and connections
net.biasConnect = [1;1;1;1;];% Apply Biases to every layer
net.layerConnect = [0 0 0 0; 1 0 0 0; 0 0 0 0; 0 0 1 0]; %

Connect the layers: 1 - 2 and 3 - 4.
net.outputConnect = [0 1 0 1]; % Connect hidden layer 1 to output

1 and hidden layer 2 to output 2
net.inputs{1}.name = 'slow_in'; %Rename I/O
net.inputs{2}.name = 'fast_in';
net.outputs{2}.name = 'slow_out';
net.outputs{4}.name = 'fast_out';
net.inputConnect= [1 0; 0 0;0 1;0 0]; %Connect the inputs
%% Network Layers
 net.layers{1}.name = 'Hidden Slow';
 net.layers{1}.dimensions = 10; %Set number of Neurons in second

hidden layer
 net.layers{1}.size = 10; %Set numer of layers in second hidden

layer
 net.layers{1}.initFcn ='initnw';
 net.layers{1}.transferFcn ='tansig'; %Change function from

linear

 net.layers{2}.name = 'Output Slow';

 net.layers{3}.name = 'Hidden Fast';
 net.layers{3}.dimensions = 10; %Set number of Neurons in second

hidden layer
 net.layers{3}.size = 10; %Set numer of layers in second hidden

layer
 net.layers{3}.initFcn ='initnw';
 net.layers{3}.transferFcn ='tansig'; %Change function from

linear

 net.layers{4}.name = 'Output Fast';
%% Format Biases
 net.biases{1}.learnFcn = 'learngdm';
 net.biases{2}.learnFcn = 'learngdm';
 net.biases{3}.learnFcn = 'learngdm';
 net.biases{4}.learnFcn = 'learngdm';
%% Format input weights
net.inputWeights{1,1}.learnFcn = 'learngdm'; % Set learning

function
net.inputWeights{3,2}.learnFcn = 'learngdm'; % Set learning

function
%% Format Layer Weights
net.layerWeights{2,1}.learnFcn = 'learngdm'; % Set learning

function
net.layerWeights{4,3}.learnFcn = 'learngdm'; % Set learning

function

%% Assign Functions

239

 net.inputs{1}.processFcns = {'removeconstantrows', 'mapminmax'};

%Normalise inputs/outputs
 net.inputs{2}.processFcns = {'removeconstantrows', 'mapminmax'};
 net.outputs{1}.processFcns = {'removeconstantrows',

'mapminmax'};
 net.outputs{2}.processFcns = {'removeconstantrows',

'mapminmax'};

 net.adaptFcn = 'adaptwb';
 net.derivFcn = 'defaultderiv'; %70%;15%;15%
 net.divideFcn = 'dividerand'; %Divide data randomly (no time

dependent data)
 net.divideMode = 'sample';
 net.performFcn = 'mse' ; %Select performance measure
 net.plotFcns =

{'plotperform','plottrainstate','ploterrhist','plotregression','plot

response','ploterrcorr','plotinerrcorr'};
 net.trainFcn = 'trainlm'; %Train with Levenberg-Marquardt

backpropagation algorithm

 net.performParam.normalization = 'none';

240

Appendix G - Automatic Generation of Wiper System

Physical Model Matlab Code

%% Generate New Simulink Model
sys = 'Wiper_system';
new_system(sys); open_system(sys);

%% Select Blocks
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Get Selected Blocks From GUI
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Set Block Size
x = 100;y = 100;w = 100;h = 100;offset = 300; %Sets the block

size of the model, used to position the new blocks
%% Add Motor Block
pos_motor = [x y x+2*w y+h];
switch Motor
 case 'Digital Park Switch Motor'
 switch Switching;
 case 'Yes'
 pos = [x-offset y (x-offset)+2*w y+h]; %Sets the position

variable 'position' used in placing the next block
 add_block('Wiper_System_Library/Switching/Digital PS

Switching',[sys '/Switching'],'Position',pos); %Adds a motor block
 end
 add_block('Wiper_System_Library/Wiper Motors/Digital Park

Switch Motor',[sys '/Motor'],'Position',pos_motor);
 case 'Mechanical Park Switch Motor'
 switch Switching;
 case 'Yes'
 pos = [x-offset y (x-offset)+2*w y+h];

add_block('Wiper_System_Library/Switching/Mechanical PS

Switching',[sys '/Switching'],'Position',pos);
 end
 add_block('Wiper_System_Library/Wiper Motors/Mechanical

Park Switch Motor',[sys '/Motor'],'Position',pos_motor);
 case 'Depressed Mechanical Park Switch Motor'
 switch Switching;
 case 'Yes'
 pos = [x-offset y (x-offset)+2*w y+h];

add_block('Wiper_System_Library/Switching/Depressed Mechanical PS

Switching',[sys '/Switching'],'Position',pos);
 end
 add_block('Wiper_System_Library/Wiper Motors/Depressed

Mechanical Park Switch Motor',[sys '/Motor'],'Position',pos_motor);
end
clear pos_motor
%% Add Linkage Block
pos = [x+offset y (x+offset)+2*w y+h]; %Sets the position

variable 'position' used in placing the next block
switch Linkage
 case 'LHD Centre Linkage'
 add_block('Wiper_System_Library/Wiper Linkages/LHD Centre

Linkage',[sys '/Linkage'],'Position',pos); %Adds a linkage block
 case 'RHD Centre Linkage'
 add_block('Wiper_System_Library/Wiper Linkages/RHD Centre

Linkage',[sys '/Linkage'],'Position',pos case 'LHD Master

Linkage'
 add_block('Wiper_System_Library/Wiper Linkages/LHD Master

Linkage',[sys '/Linkage'],'Position',pos);

241

 case 'RHD Master Linkage'
 add_block('Wiper_System_Library/Wiper Linkages/RHD Master

Linkage',[sys '/Linkage'],'Position',pos);
 case 'LHD Slave Linkage'
 add_block('Wiper_System_Library/Wiper Linkages/LHD Slave

Linkage',[sys '/Linkage'],'Position',pos);
 case 'RHD Slave Linkage'
 add_block('Wiper_System_Library/Wiper Linkages/RHD Slave

Linkage',[sys '/Linkage'],'Position',pos);
end
%% Add Arms
switch Left_Arm
 case 'Left_Straight_Arm'
 pos = [(x+(2*offset)) y (x+(2*offset))+2*w y+h/2]; %Sets

the position variable 'position' used in placing the next block
 add_block('Wiper_System_Library/Wiper

Arms/Left_Straight_Arm',[sys '/Left Arm'],'Position',pos); %Adds an

arm block
 case 'Left_Curved_Arm'
 pos = [(x+(2*offset)) y (x+(2*offset))+2*w y+h/2];

add_block('Wiper_System_Library/Wiper Arms/Left_Curved_Arm',[sys

'/Left Arm'],'Position',pos);
end
switch Right_Arm
 case 'Right_Straight_Arm'
 pos = [(x+(2*offset)) y+offset/4 (x+(2*offset))+2*w

(y+offset/4)+h/2 add_block('Wiper_System_Library/Wiper

Arms/Right_Straight_Arm',[sys '/Right Arm'],'Position',pos);
 case 'Right_Curved_Arm'
 pos = [(x+(2*offset)) y+offset/4 (x+(2*offset))+2*w

(y+offset/4)+h/2];
 add_block('Wiper_System_Library/Wiper

Arms/Right_Curved_Arm',[sys '/Right Arm'],'Position',pos);
end
%% Add Blades
pos = [(x+(3*offset)) y (x+(3*offset))+2*w y+h/2]; %Sets the

position variable 'position' used in placing the next block
add_block('Wiper_System_Library/Wiper

Blades/Left_Wiper_Blade',[sys '/Left Blade'],'Position',pos); %Adds

a blade block

pos = [(x+(3*offset)) y+offset/4 (x+(3*offset))+2*w

(y+offset/4)+h/2]; add_block('Wiper_System_Library/Wiper

Blades/Right_Wiper_Blade',[sys '/Right Blade'],'Position',pos);
%% Add Environment
pos = [(x+(4*offset)) y (x+(4*offset))+2*w y+h/2]; %Sets the

position variable 'position' used in placing the next block
add_block('Wiper_System_Library/Environment/Left_Environment',[sy

s '/Left Environment'],'Position',pos); %Adds an Environment block

pos = [(x+(4*offset)) y+offset/4 (x+(4*offset))+2*w

(y+offset/4)+h/2];

add_block('Wiper_System_Library/Environment/Right_Environment',[sys

'/Right Environment'],'Position',pos);

%% Add Scopes
pos = [(x+offset)+2.4*w y-h (x+offset)+2.7*w y-h/2]; %Sets the

position variable 'position' used in placing the next block
add_block('built-in/Scope',[sys

'/Left_Rocker_Dynamics'],'Position',pos); %Adds scope

242

pos = [(x+offset)+2.4*w y-2*h (x+offset)+2.7*w y-3*h/2]; %Sets

the position variable 'position' used in placing the next block
add_block('built-in/Scope',[sys

'/Right_Rocker_Dynamics'],'Position',pos); %Adds scope
%% Connect Linkages to Scopes
add_line(sys,'Linkage/1','Left_Rocker_Dynamics/1','autorouting','

on') %Connects the left rocker to a scope
add_line(sys,'Linkage/2','Right_Rocker_Dynamics/1','autorouting',

'on') %Connects the right rocker to a scope
%% Get port handles of block to add connection
MotorPortHandles = get_param('Wiper_system/Motor','PortHandles');

%Gets the port handles of the motor block
LinkagePortHandles =

get_param('Wiper_system/Linkage','PortHandles'); %Gets the port

handles of the linkage block
LeftArmPortHandles = get_param('Wiper_system/Left

Arm','PortHandles'); %Gets the port handles of the Left Arm block
RightArmPortHandles = get_param('Wiper_system/Right

Arm','PortHandles'); %Gets the port handles of the Right Arm block
LeftBladePortHandles = get_param('Wiper_system/Left

Blade','PortHandles'); %Gets the port handles of the Left Blade

block
RightBladePortHandles = get_param('Wiper_system/Right

Blade','PortHandles'); %Gets the port handles of the Right Blade

block
LeftEnvironmentPortHandles = get_param('Wiper_system/Left

Environment','PortHandles'); %Gets the port handles of the Left

Blade block
RightEnvironmentPortHandles = get_param('Wiper_system/Right

Environment','PortHandles'); %Gets the port handles of the Right

Blade block
%% Connect Motor and Linkages and arms and blades
add_line('Wiper_system',MotorPortHandles.RConn(1),LinkagePortHand

les.LConn(1),'autorouting','on'); %Connects the rotor to the

follower
add_line('Wiper_system',MotorPortHandles.RConn(2),LinkagePortHand

les.LConn(2),'autorouting','on'); %Connects the case to the base
add_line('Wiper_system',LinkagePortHandles.RConn(1),LeftArmPortHa

ndles.LConn(1),'autorouting','on'); %Connects the Left Rocker to the

Left Arm
add_line('Wiper_system',LinkagePortHandles.RConn(2),RightArmPortH

andles.LConn(1),'autorouting','on'); %Connects the Right Rocker to

the Right Arm
add_line('Wiper_system',LeftArmPortHandles.RConn(1),LeftBladePort

Handles.LConn(1),'autorouting','on'); %Connects the Left Arm to the

Left Blade
add_line('Wiper_system',RightArmPortHandles.RConn(1),RightBladePo

rtHandles.LConn(1),'autorouting','on'); %Connects the Right Arm to

the Right Blade
add_line('Wiper_system',LeftBladePortHandles.Outport,LeftEnvironm

entPortHandles.Inport,'autorouting','on'); %Connects the Left Blade

Vel to the Left Environment
add_line('Wiper_system',RightBladePortHandles.Outport,RightEnviro

nmentPortHandles.Inport,'autorouting','on'); %Connects the Right

Blade Vel to the Right Environment
add_line('Wiper_system',LeftEnvironmentPortHandles.Outport,LeftBl

adePortHandles.Inport,'autorouting','on'); %Connects the Left

Environment Force to the Left Blade
add_line('Wiper_system',RightEnvironmentPortHandles.Outport,Right

BladePortHandles.Inport,'autorouting','on'); %Connects the Right

Environment Force to the Right Blade

243

%% Connect Switching System and add external blocks if needed
SW = 'Yes';
temp = strcmp(Switching,SW);
if temp == 1 % Checks to see if Switching is required
 SwitchingPortHandles =

get_param('Wiper_system/Switching','PortHandles'); %Gets the port

handles of the Switching block
 pos = [(x-offset)-w y-1.5*h (x-offset)-0.5*w y-h];

%Position of Solver Configuration
 add_block('nesl_utility/Solver Configuration',[sys

'/Solver Configuration'],'Position',pos); %Adds Solver Configuration
 pos = [(x-offset) y-h (x-offset)+0.5*w y-0.5*h];

%Position of Electrical reference Block
 add_block('fl_lib/Electrical/Electrical

Elements/Electrical Reference',[sys '/Ground'],'Position',pos);

%Adds Electrical Reference (Find blocks by clicking on them in the

library and typing gcb into matlab)
 pos = [(x-offset+0.75*w) y-1.5*h (x-offset)+1.25*w y-h];
 add_block('fl_lib/Electrical/Electrical Sources/DC

Voltage Source',[sys '/VBat'],'Position',pos); %Adds Electrical

Reference
 set_param('Wiper_system/VBat','orientation','left')
 SolverPortHandles = get_param('Wiper_system/Solver

Configuration','PortHandles'); %Gets the port handles of the Solver

Configuration
 GroundPortHandles =

get_param('Wiper_system/Ground','PortHandles'); %Gets the port

handles of the Electrical Reference
 BatteryPortHandles =

get_param('Wiper_system/VBat','PortHandles'); %Gets the port handles

of the Voltage Source

add_line('Wiper_system',SolverPortHandles.RConn(1),GroundPortHandles

.LConn(1),'autorouting','on'); %Solver to Electrical Ref Connection

add_line('Wiper_system',GroundPortHandles.LConn(1),BatteryPortHandle

s.RConn(1),'autorouting','on'); %Battery to Electricl Ground

Connection
 switch Motor % Wiring strategy depends on the specific motor

chosen
 case 'Digital Park Switch Motor'

add_line('Wiper_system',SwitchingPortHandles.RConn(1),MotorPortHandl

es.LConn(1),'autorouting','on'); %Fast Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(2),MotorPortHandl

es.LConn(2),'autorouting','on'); %Slow Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(3),MotorPortHandl

es.RConn(3),'autorouting','on'); %Common Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(3),GroundPortHand

les.LConn(1),'autorouting','on'); %Common/Ground Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(1),BatteryPortHan

dles.LConn(1),'autorouting','on'); %VBat Connection
 case 'Mechanical Park Switch Motor'

add_line('Wiper_system',SwitchingPortHandles.RConn(1),MotorPortHandl

es.LConn(4),'autorouting','on'); %Park Switch Connection

244

add_line('Wiper_system',SwitchingPortHandles.RConn(2),MotorPortHandl

es.LConn(1),'autorouting','on'); %Fast Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(3),MotorPortHandl

es.LConn(2),'autorouting','on'); %Slow Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(4),MotorPortHandl

es.LConn(3),'autorouting','on'); %Vbat Connection

add_line('Wiper_system',MotorPortHandles.RConn(3),GroundPortHandles.

LConn(1),'autorouting','on'); %Common/Ground Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(4),BatteryPortHan

dles.LConn(1),'autorouting','on'); %VBat Connection
 case 'Depressed Mechanical Park Switch Motor'

add_line('Wiper_system',SwitchingPortHandles.RConn(2),MotorPortHandl

es.LConn(1),'autorouting','on'); %Fast Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(3),MotorPortHandl

es.LConn(2),'autorouting','on'); %Slow Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(3),SwitchingPortH

andles.RConn(1),'autorouting','on'); %Interconnection 1

add_line('Wiper_system',SwitchingPortHandles.RConn(4),SwitchingPortH

andles.RConn(5),'autorouting','on'); %Interconnection 2

add_line('Wiper_system',SwitchingPortHandles.RConn(4),MotorPortHandl

es.LConn(3),'autorouting','on'); %Vbat Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(6),MotorPortHandl

es.LConn(5),'autorouting','on'); %A Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(1),MotorPortHandl

es.LConn(6),'autorouting','on'); %B Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(2),MotorPortHandl

es.RConn(3),'autorouting','on'); %Common Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(3),MotorPortHandl

es.LConn(4),'autorouting','on'); %Motor Common Connection

add_line('Wiper_system',SwitchingPortHandles.RConn(4),BatteryPortHan

dles.LConn(1),'autorouting','on'); %VBat Connection

add_line('Wiper_system',SwitchingPortHandles.LConn(2),GroundPortHand

les.LConn(1),'autorouting','on'); %Common/Ground Connection
 end
end

	WRAP_THESIS_Donner_2016.pdf

