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Marine organisms mediate the formation of volatile inorganic (e.g. HOBr) and organic halogens (e.g. CHBr3) and

contribute to the sea-to-air emission of bromine and iodine. This air-sea halogen exchange has implications for

atmospheric chemistry. It is important to establish the physiological function of halogen metabolism in key

groups of marine organisms to permit predictive model development. In this study a series of laboratory exper-

iments was performed to investigate the link between the availability of photosynthetically active radiation

(PAR) and brominating activity, as measured by the bromination of phenol red, in two cold-water marine dia-

toms (Thalassiosira antarctica, CCAP 1085/25; Porosira glacialis, CCMP 668). Brominating activity in T. antarctica

was found to change in response to short term changes in photon flux density and to have a strong positive linear

relationship with gross photosynthetic rate up to 260 μmol O2 (mg chla)−1 h−1. Experiments performed across

multiple diel cycles showed that light-phase brominating activities in T. antarctica were a factor of 2.8 (±1.0)

higher than those measured in the dark. Whilst P. glacialis showed no response to short term changes in PFD,

measurements across a number of diel cycles revealed that light-phase brominating activities in this diatom

were significantly higher than those in the dark by a factor of 1.3 (±0.3). The addition of 0.1 μMH2O2 to theme-

dium of T. antarctica cultures led to a significant increase in brominating activity by a factor of 2.4 (±0.3) relative

to no-addition controls but no such response was seen in P. glacialis. These results suggest that there is a link be-

tween PAR light availability and brominating activity in marine diatoms but that the nature of this relationship

differs between species. By establishing a potential link with common ecosystem model state variables (light

and photosynthesis) this work provides the first step towards developing a predictive capability for brominating

activity in the marine environment. More work is needed to assess the potential for developing generalised

parameterisations between PAR light availability and brominating activity in diatom species representative of

a wider range of ocean regions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A wide range of marine organisms are known to be involved in the

production of halogenated organic (e.g. CHBr3, CH2I2) and inorganic

species (I2, HOI) including bacteria (e.g. Fuse et al., 2003), cyanobacteria

(e.g. Smythe-Wright et al., 2006; Hughes et al., 2011), microalgae

(e.g. Moore et al., 1996; Hill and Manley, 2009; Hughes et al.,

2013), seaweeds (e.g. Goodwin et al., 1997; Manley and Barbero,

2001) and invertebrates (Fielman et al., 1999). Despite this, many

questions remain regarding the physiological and ecological functions

of these halometabolites (Manley, 2002; Johnson et al., 2011). There is

also still considerable uncertainty regarding the biogeochemical impor-

tance of biogenic volatile halogens; most specifically those that have a

relatively low molecular weight (e.g. CHBr3, I2) and contribute to the

transfer of halogens from the ocean reservoir to the atmosphere

(McFiggans et al., 2004; Hughes et al., 2012; Ziska et al., 2013). This is

of interest as once in the atmosphere the halogens are involved in

ozone cycling (Platt and Honninger, 2003), new particle formation

and can control the formation of cloud condensation nuclei (CCN) by

precursors such as dimethyl sulphide (DMS, von Glasow and Crutzen,

2004). Whilst their biological and biogeochemical roles are often con-

sidered separately, predicting spatial and temporal variability in sea-

air volatile halogen fluxes and hence the importance of this for atmo-

spheric processes now and into the future requires an understanding

of how environmental conditions control halogen metabolism in key

groups of organisms.

Diatoms are an important microalgal group which contribute about

one fifth of global photosynthesis (Ambrust, 2009) and are known to be

involved in the production of volatile organic and inorganic halogenated

species (e.g. Hill and Manley, 2009; Hughes et al., 2013). Given their

widespread distribution and large contribution to marine primary pro-

ductivity it is important from both an ecological and biogeochemical

perspective to establish the physiological and ecological functions of

halogen metabolism in diatoms. Some work has been done to under-

stand how environmental factors control the rate of halocarbon
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formation by marine diatoms. Halocarbon production in diatom cul-

tures has been found to be higher during the logarithmic growth

phase (Moore et al., 1996; Hughes et al., 2013), at higher growth irradi-

ance (Moore et al., 1996) and following antibiotic treatment to reduce

bacterial activity (Hughes et al., 2013). Hughes et al. (2006) also show

that halocarbon production is not induced when diatoms are exposed

to levels of light which cause high levels of oxidative stress leading to

strong and irreparable photo-inhibition (i.e. Fv/Fm b0.2). These studies

provide important process information but they do not necessarily

allowus to establish the reasonswhydiatoms putmetabolic investment

into driving reactive halogen formation. This is not least because halo-

carbon formation in seawater is believed to be controlled by both the

production of reactive halogens and the availability of organic precur-

sors (Lin andManley, 2012) whichmay have external sources. Thus re-

solving the physiological and ecological functions of halogenating

activity requires studies which probe the biochemical processes that

drive this halogen metabolism.

It is well-established that some marine diatom species (and

other marine organisms) produce a group of enzymes known as

the haloperoxidases (chloro-, bromo-, iodoperoxidases) that are

involved in the formation of hypohalous acids (HOI, HOBr) by the

two electron oxidation of halide ions through the breakdown of hydro-

gen peroxide (Butler and Walker, 1993; Wever and van der Horst,

2013). Haloperoxidases are either vanadium or haem dependent and

their nomenclature refers to the least electronegative halide they are

able to oxidise. For example, bromoperoxidases oxidise I− and Br− and

iodoperoxidases oxidise I− only. The hypohalous acids produced by

haloperoxidase activity are known to have a number of possible fates in-

cluding reactions with organic compounds to form di- and tri-

halomethanes (e.g. CHBr3, CH2I2, Moore et al., 1996), the formation of

BrCN (Vanelslander et al., 2012), self-reactions to form other inorganic

halogen species (e.g. Br2, I2) and possibly direct sea-to-air emission

(Hill and Manley, 2009). It is worth noting here that methyl halides

such as CH3Br and CH3I that also drive significant air-sea halogen ex-

change are not thought to be produced via haloperoxidase-mediated

pathways (Wuosmaa and Hager, 1990). Whilst the mode of action of

the haloperoxidases is well-established, their physiological and ecologi-

cal functions are yet to be resolved. It has been suggested that the

haloperoxidases are involved in oxidative stress defence in marine

algae (Moore et al., 1996) and that their products act as deterrents

against grazers, competing organisms, pathogens or epiphytes (e.g.

BrCN, Vanelslander et al., 2012) but it is yet to be confirmed which, if

any, of these functions explains themetabolic investment into the forma-

tion of these enzymes.

Here we report results from a series of experiments designed to es-

tablish if brominating activity in marine diatoms is controlled by the

availability of photosynthetically active radiation (PAR). Brominating

activity was measured by the bromination of an organic substrate

using a standard phenol red incubation assay designed to determine

haloperoxidase activity (Hill andManley, 2009). Individual experiments

involved determining how brominating activity changes in two polar

marine diatoms in response to short-term and diel transitions in photon

flux density. The two diatom strains included in this study (Porosira

glacialis, CCMP 668; Thalassiosira antarctica, CCAP 1085/25) have both

been found to produce some organobromines (e.g. CHBr3, CH2Br2,

Moore et al., 1996; Hughes et al., 2013) in previous laboratory studies

and one (P. glacialis) has tested positive for haloperoxidase activity

(Moore et al., 1996).

2. Methods

2.1. Cultures

Cultures of P. glacialis (CCMP 668, axenic) and T. antarctica (CCAP

1085/25, non-axenic) were grown in batch cultures using autoclaved

ESAW artificial seawater (Berges et al., 2001) enriched with f/2-levels

of nitrate, phosphate, silicate and vitamins (Guillard and Ryther,

1962), and L1 trace metals (Guillard and Hargraves, 1993). The choice

of tracemetal supplementwasmade as the L1 formulation contains vana-

dium, which is important for some haloperoxidases (Butler and Walker,

1993), but the f/2 trace metal mix does not. Cultures were grown at low

light intensities at around 10 μmol photons m−2 s−1 under a 12:12

light:dark cycle at 4 °C in an incubation cabinet. The low growth irradi-

ances used in this study are consistentwith those found in sea-ice habitats

in the polar spring/summer (Smith et al., 1989). Diatom biomass was

measured as in vivo fluorescence using a Turner Trilogy fluorometer

and extracted chlorophyll a using the acidification method of Holm-

Hansen et al. (1965). Cultures were handled in a biosafety cabinet at all

times to prevent contamination. Bacterial activity and cell density were

not measured in this study but a previous study (Hill and Manley,

2009) has concluded that the bacterial contribution to brominating

activity in cultures is very low compared to that from the diatoms.

2.2. Brominating activity assays

Following themethods of Hill andManley (2009), we used an in situ

phenol red incubation assay to determine rates of brominating

(haloperoxidase) activity in the diatom cultures. The assay is based on

the bromination of phenol red to bromophenol blue by hypobromous

acid (HOBr) produced by the action of haloperoxidase enzymes. For

the assay, diatom cells were harvested by pipetting from the cultures.

Using this method it was possible to collect dense biomass (1–4 mg

chla L−1) as T. antarctica cells collected at the bottom of the culture

flask and P. glacialis formed mucilaginous accumulations during all

stages of growth. The harvested cells (alongside a small volume of me-

dium) were added to 0.1 M phosphate buffer (KH2PO4, K2HPO4) con-

taining 827 μM Br− (as KBr) and 35 g L−1 NaCl (all Fisher, reagent

grade). Tests involving the additions of 0.45 μm (Millex) filtered culture

to the assay solution revealed very little activity confirming suggestions

from previous studies (Hill andManley, 2009) that brominating activity

is cell-associated. Following addition of the culture to the buffer solu-

tion, the assaywas initiated by the addition of 25 μMphenol red (Fisher)

and 0.4 mM H2O2 (Fisher, analytical reagent grade). The assay mixture

was then incubated in the dark at room temperature (22 °C). Absor-

bances at 433 nm (phenol red) and 592 nm (BPB) were monitored in

0.45 μm (Millex) hand filtered aliquots of the assay mixture at regular

intervals for up to 30min using a Perkin Elmer UV/VIS Lambda 25 spec-

trophotometer. Regular checks on the pHof the assay solutionwere also

performed at a range of cell densities and treatments. The pH of the

assay solution was found to be consistent throughout all of our experi-

ments with an average (± standard deviation) of 6.38 ± 0.02 (n =

33). Absorbances at 750 nm were also measured in all samples to

allowus to correct for any scattering and absorbance by any particulates

remaining after filtration. Brominating activity is reported here as the

chlorophyll a-normalised increase in BPB over time (μmol BPB [mg

chla]−1 h−1) which is calculated from the initial linear rate of change

in absorbance at 592 nm and the molar absorption coefficient for BPB

(67.4 [mM]−1 cm−1; Hill and Manley, 2009).

As colorimetric assays such as the phenol red technique used here

can be subject to interference, the technique was scrutinised using a

number of approaches. Firstly, a range of tests were performed to en-

sure that the observed change in absorbance over time was due to

haloperoxidase activity andwas not due to dissolved organic matter re-

lease or other processes which could cause spectral interference. These

include the incorporation of controlswith noH2O2 added, no phenol red

added and no cells added. In all controls the change in absorbance at the

relevant wavelengths (433 and 592 nm) was negligible compared to

that in the full assay (see Fig. 1). These findings confirm that there

was no spectral interference from microalgal exudates and confirm

that the observed phenol red bromination was due to haloperoxidase

activity. The sensitivity of the method was also checked using solutions

with BPB to PR ratios that could be obtained during an assay (i.e. PR

2 C. Hughes, S. Sun / Marine Chemistry 181 (2016) 1–9



decreasing from 25 μM and BPB proportionally increasing to 25 μM).

The PR solutions used in this test were made up as described above

and BPB was produced from PR by the action of commercially available

bromoperoxidase (Corallina officinalis, Sigma). Using this approach it

was possible to detect BPB absorbance at b0.05 μM (against a back-

ground of 24.95 μM PR) which is well below the levels of BPB encoun-

tered in this study (data not shown).

2.3. Experimental

All of the experiments performed within this study involved expos-

ing the diatoms to a range of treatments, allowing appropriate periods

of time for the cells to respond to the applied treatment and subse-

quently measuring brominating activity using the techniques described

in Section 2.2.

2.3.1. Photon flux density (PFD) and brominating activity

A set of experiments was performed to test the hypothesis that bro-

minating activity increases with PFD in T. antarctica and P. glacialis. At

least duplicate (logarithmic-phase) cultures of diatoms were exposed

to a range of PFD levels ranging from 0 to 500 μmol photons m−2 s−1

using a Hansatech LED light source. The specific light source used

(LED1/R) is one that is commonly employed for studying photosynthe-

sis and has a peak wavelength centred on 627 nm. The degree of repli-

cation in these experimentswas limited by the timeneeded to cover the

PFD range. Cultures were gently mixed during light exposure using a

small magnetic stirrer to ensure that light levels were consistent

throughout the cultures. Brominating activity was measured (as de-

scribed in Section 2.2) in all cultures after 30 min exposure at each

PFD. This timescale was appropriate as it is known that physiological

changes at the cellular level occur in diatoms immediately after the

transition to a different PFD (Post et al., 1985).

If a change in brominating activity with PFD was observed, the link

between brominating activity and photosynthesis was investigated.

Photosynthetic rates were determined at each PFD used in the bromi-

nating activity experiment described above by measuring oxygen evo-

lution with a Hansatech Chlorolab II instrument fitted with a Clarke-

type oxygen electrode. Gross photosynthetic rates (Pg) were calculated

by correcting the oxygen evolution rates measured in the light for oxy-

gen consumption by respiration and the oxygen electrode. The relation-

ship between photosynthetic rate, and brominating activity was

assessed using least squares regression analysis.

2.3.2. Diel variability

Two different experiments were performed to test the hypothesis

that brominating activity is higher in T. antarctica and P. glacialis in the

light phase of a diel cycle. The first involved measuring brominating ac-

tivity (as in Section 2.2) at various times just before and after the start of

the light period during one diel cycle in at least duplicate cultures of

both diatoms. The degree of replication in these experiments was dic-

tated by the biomass levels available. Independent T-tests were used to

determine if there were significant differences in the brominating activi-

ties measured in each culture in the light and dark phases in this experi-

ment. The second set of experiments involved measuring brominating

activity 1 h before and 3 h after the start of the light period for 4 days in

triplicate T. antarctica and P. glacialis cultures, respectively. Paired T-tests

were used to determine if there was a significant difference between

dark and light brominating activity rates in individual cultures.

2.3.3. H2O2 additions

Experiments were performed to investigate if the physiological re-

sponses to increased extracellular H2O2 concentrations in T. antarctica

and P. glacialis include a change in brominating activity. Depending on

their composition, some cell membranes are permeable to H2O2

(Bienert et al., 2006) so additions to the external medium could also

lead to increased levels of intracellular reactive oxygen species. H2O2

(0.35%, Fisher reagent grade)was added to triplicate cultures of each di-

atom in microliter volumes to achieve final concentrations of 0, 0.1, 0.2,

0.5 and 1.0 μM. These H2O2 concentrations are orders of magnitude

lower than those used in the in situ incubation assay and so did not in-

terfere with the brominating activity measurements. It is worth noting

here that this experiment differs to that performed by Hill and Manley

(2009) in which H2O2-dependent changes in brominating activity

were investigated. Whereas Hill and Manley (2009) investigate the op-

timum H2O2 concentration for the assay, the present study investigates

how H2O2-induced changes in cell physiology impacts brominating ac-

tivity. In order to achieve this, the cells were incubated at the treatment

H2O2 concentrations for a set period of timebefore any of the phenol red

assay reagents (including H2O2) were added and the standard assay

(detailed in Section 2.2)was performed. The treatmentH2O2 concentra-

tions (0–1.0 μM) used in the present study were chosen as they are

lower than the H2O2 level (2 μM) previously found to be lethal to dia-

toms but are known to induce a physiological response (Hunken et al.,

2009). Following the H2O2 additions, all cultures were incubated at

4 °C in the dark for 2 h and the in situ brominating activity assay (as

in Section 2.2) performed at the endof this incubation period. This time-

scale is appropriate as, following exposure to 0.5 and 1.0 μM H2O2,

Hunken et al. (2009) observed an immediate reduction in photosyn-

thetic efficiency in the marine diatom Amphiprora kufferathii. Differ-

ences in brominating activity at the different H2O2 concentrations

were assessed using a one-way ANOVA with a Tukey HSD post-hoc

test.

3. Results

3.1. Brominating activity

Fig. 2 shows that logarithmic phase cultures of both P. glacialis and

T. antarctica were found to drive the disappearance of phenol red (PR)

and mediate the formation of bromophenol blue (BPB) in the in situ

Fig. 1. Phenol red in situ activity assay tests. Concentrations of a) phenol red and

b) bromophenol blue at T = 0 (grey bars) and T = 60 min (white bars) in a series of

assays containing 0.1 M phosphate buffer with 35 g L−1 NaCl, 827 μM Br− and 1.

Thalassiosira antarctica (CCAP 1085/25) cells, 0.4 mM H2O2 and 14 μM phenol red, 2.

T. antarctica cells and 14 μM phenol red, 3. T. antarctica cells, 4. 14 μM phenol red and 5.

purified bromoperoxidase (Corallina officinalis, Sigma), 0.4 mM H2O2 and 14 μM phenol

red. Error bars show the standard deviations of three replicate treatments.

3C. Hughes, S. Sun / Marine Chemistry 181 (2016) 1–9



incubation assays performed within this study. It is not appropriate to

quantitatively compare the brominating activity rates observed here

to previous studies (Hill and Manley, 2009) due to some differences in

assay approaches and culture conditions. The most significant differ-

ences are that: i) Hill and Manley (2009) use a centrifugation step to

concentrate the cells but, due to the aggregation in the diatoms cultures

used in the present study, this was not required here; and, b) the use of

L1 tracemetals in the growthmedium in the present study (Section 2.1)

compared to f/2 tracemetals in Hill andManley (2009).We can howev-

er compare results obtained within controlled experiments performed

as part of this study to assess how changes in PAR light conditions

alter brominating activity (see Sections 3.2–3.4).

3.2. Link between brominating activity and photon flux density (PFD)

Fig. 3a shows how brominating activity changed in cultures of

T. antarctica in response to varying PFD in two experiments (TA1 and

TA2). The results from the TA1 experiment reveal an increase in bromi-

nating activity with PFD from 3.8 ± 0.1 μmol BPB (mg chla)−1 h−1 in

the dark to 8.0 ± 0.3 μmol BPB (mg chla)−1 h−1 at 50 μmol photons

m−2 s−1 and 4.5 ± 0.2 μmol BPB (mg chla)−1 h−1 at 200 μmol photons

m−2 s−1. Despite achievinghigher chlorophyll-normalised brominating

activities for a given PFD, this same pattern of an initial increase in bro-

minating activity at lower PFD followed by a reduced response at higher

PFD was repeated in a second experiment performed on T. antarctica

cultures (TA2, Fig. 3a). The discrepancy in the levels of brominating ac-

tivity observed at the different PFD in TA1 and TA2 (Fig. 3a) can be ex-

plained when the results are compared against the photosynthetic

rates measured in the two experiments. Fig. 4 presents the net oxygen

evolution rates measured at a range of PFD in TA1 and TA2. The hy-

perbolic tangent curves (Falkowski and Raven, 2007) fitted to the

data (R2
N 0.74) reveal a clear difference in the maximum photosyn-

thetic rate Pmax for TA1 (129 μmol O2 [mg chla]−1 h−1) and TA2 cul-

tures (210 μmol O2 [mg chla]−1 h−1; Fig. 4). The curves shown in Fig.

4 have photosynthetic efficiencies (α) of 0.03 to 0.06 mg C (mg

chla)−1 h−1 (μmol photonsm−2 s−1)−1 (assuming a photosynthetic

quotient of 1.3, Falkowski and Raven, 2007) in TA1 and TA2, respec-

tively. These values are within the range of those (0.023 ± 0.009 to

0.039 ± 0.041 mg C [mg chla]−1 h−1 [μmol photons m−2 s−1]−1)

reported previously for shade-adapted Arctic and Antarctic ice

algae (Cota, 1985).

It is clear that TA1 and TA2 cultures had different photosynthetic

characteristics. Previous research has shown that this can occur in phy-

toplankton grown at different irradiances (e.g. Stuart et al., 2000), so

this discrepancy is most likely due to variability in the growth irradi-

ances in TA1 and TA2 cultures, possibly resulting from differing place-

ment in the incubator. When the results from TA1 and TA2 are

combined a significant linear relationship between brominating activity

and gross (i.e. dark-corrected) photosynthetic rate (Pg) up to around

260 μmol O2 (mg chla)−1 h−1 is apparent (Fig. 3b; R2 = 0.67,

p b 0.05, n = 11; μmol BPB [mg chla]−1 h−1 = [0.056 × Pg] + 1.858,

where Pg is in units of μmol O2 [mg chla]−1 h−1).

Fig. 2.Change in absorbances at 433 nm(A433nm, open circles) and 592nm(A592nm, closed circles) in phenol red in situ incubation assays containing a) Thalassiosira antarctica (CCAP 1085/

25) and b) Porosira glacialis (CCMP 668) cells. A433nm is the peak absorbance for phenol red and A592nm is that for its brominated product bromophenol blue. Trend lines are least squares

regression relationshipswith R2 values consistently ≥0.89 and p-valuesb 0.05. Errors show the standarddeviation of three replicate cultures. As in Fig. 1 no significant change inA433nm and

A592nm was observed in controls where no H2O2 and/or phenol red was added and those where no cells were added to the assay mixture.

Fig. 3. Change in brominating activity with a) photon flux density (PFD) in two

independent experiments (TA1, grey bars and TA2, white bars) and b) gross

photosynthetic rate in cultures of Thalassiosira antarctica (CCAP 1085/25). The data

shown in b) include results from TA1 and TA2. The solid line in b) is a least squares

regression line (R2 = 0.67, p b 0.05, n = 11; μmol BPB [mg chla]−1 h−1 =

[0.056 × Pg] + 1.858, where Pg is in units of μmol O2 [mg chla]−1 h−1). Vertical error

bars show the range of values from replicate cultures and the horizontal errors show the

standard deviation of the O2 evolution rates measured by the Hansatech Chlorolab II

instrument during the measurement period (n = 500).
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Fig. 5 shows there was no or very little change in brominating activ-

ity in cultures of P. glacialis in response to transitions in PFD ranging

from 0 to 500 μmol photons m−2 s−1 in 3 individual experiments. A

key observation here is that there is little or no difference in brominat-

ing activity in cultures incubated in the dark compared to those that are

light-exposed.Whilst, as per our experimental plan (Section 2.3) photo-

synthetic rates were not measured in this experiment, the absence of a

difference between light and dark activities confirms that the link be-

tween photosynthesis and bromination in P. glacialis is not as clear as

it is for T. antarctica. Also, our previous work has revealed that photo-

synthetic rates in P. glacialis vary significantly within the light range

studied (data not shown). It is, however, worth noting that higher bro-

minating activities were observed at 25 and 50 μmol photons m−2 s−1

compared to 0 and 5 μmol photons m−2 s−1 in one experiment (PG2).

In this case the ratio of light (25–50 μmol photonsm−2 s−1) to dark bro-

minating activity was 1.4–1.5.

3.3. Diel variability in brominating activity

A set of experimentswas performed to investigate if brominating ac-

tivity in T. antarctica and P. glacialis changes on a diel cycle. A highly sig-

nificant difference in brominating activity was observed between light

and dark phases in T. antarctica (T-test, P = 0.001, df = 19, t = 3.9;

Fig. 6a). Mean (± standard deviation) light and dark bromination

rates in this culture were 8.0 ± 2.8 and 3.4 ± 0.7 μmol BPB (mg

chla)−1 h−1, respectively. In contrast, the difference in brominating

activity in the dark and light phases in P. glacialis is only just significant

(T-test, P = 0.046, df = 12, t = 2.2; Fig. 6b). P. glacialis bromination

rates are 4.3 ± 0.5 in the dark phase and 5.4 ± 1.5 μmol BPB (mg

chla)−1 h−1 in the light. There is clearly overlap in the bromination

rates measured at the end of the dark phase and start of the light

phase in P. glacialis (Fig. 6b). However, rates measured later in the

light phase (T = 12:00, 14:00, 16:00) are significantly higher (6.5 ±

0.7 μmol BPB [mg chla]−1 h−1) than the maximum dark phase rate

(4.7 ± 0.2 μmol BPB [mg chla]−1 h−1). These results suggest that

there is a difference in brominating activity in P. glacialis between light

and dark phases but this is less pronounced than in T. antarctica. On av-

erage brominating activities approximately 3 h after the beginning of

the light phase were found to be a factor of 3.6 and 1.3 higher than

those measured around one hour before the lights came on in the incu-

bator in T. antarctica and P. glacialis, respectively.

Fig. 7a confirms that differences in dark and light phase bromination

rates occur consistently over multiple light:dark cycles in cultures of

T. antarctica. Results from a paired T-test confirm that the brominating

activities observed in light and dark phases were significantly different

in individual cultures of T. antarctica (P = 0.0001, df = 11, t = 5.7).

Slightly higher light-phase brominating activities were observed in 3

of the 4 light:dark cycles in P. glacialis. A paired T-test confirms that

this difference was significant (Fig. 7b; P = 0.014, df = 11, t = 2.9)

but Fig. 7 shows the difference was clearly greater and more consistent

in T. antarctica than in P. glacialis. On average, light phase bromination

rates were found to be a factor of 2.8 (±1.0) higher than those mea-

sured in the dark phase in T. antarctica compared to 1.3 (±0.3) for

P. glacialis. These ratios are consistent with those observed in the more

detailed diel cycle experiments shown in Fig. 6.

3.4. Brominating activity and extracellular H2O2

To more directly explore the theory that brominating activity is

linked to oxidative stress mitigation a series of experiments were per-

formed in which extracellular H2O2 concentrations were adjusted in

cultures of T. antarctica and P. glacialis. It is apparent from Fig. 8 that bro-

minating activities in some of the H2O2 treatments are clearly different

to the no-addition controls in T. antarctica. The differences are less clear

for P. glacialis. The differing response in the two cultures is consistent

with results from the light experiments described in Section 3.2 (Figs.

3 and 5).

In T. antarctica, lower addition treatments (b 0.5 μM H2O2) induced

an increase in brominating activities relative to the controls but higher

H2O2 concentrations (≥ 0.5 μM) did not have any significant impact.

Analysis of data collected in the T. antarctica experiment (Fig. 8a) re-

veals that brominating activities at 0.1 μMH2O2 are significantly higher

than those measured in the no-addition control and treatments at H2O2

concentrations ≥0.5 μM(One-wayANOVA, P b 0.05, df=11; TukeyHSD

P b 0.05). This analysis does not include the 0.2 μMH2O2 treatment as it

is associated with large variability. Data from this treatment are still

shown in Fig. 8 as the large variability in brominating activities suggests

that 0.2 μM H2O2 may be close to a physiological ‘tipping point’ for

T. antarctica.

4. Discussion

This study involved a series of experiments designed to investigate

the relationship between the availability of photosynthetically active ra-

diation (PAR) and brominating activity in two cold-water marine dia-

toms, T. antarctica (CCAP 1085/25) and P. glacialis (CCMP 668). Cells of

both diatoms were found to mediate the conversion of phenol red to

bromphenol blue (BPB) in the presence of H2O2 suggesting for the

first time that T. antarctica produces haloperoxidases and confirming

Fig. 4. Net oxygen evolution rates observed at a range of photon flux densities (PFD) in

two experiments (a. TA1 and b. TA2) performed on Thalassiosira antarctica (CCAP 185/

25). The solid lines are hyperbolic tangent curves (Falkowski and Raven, 2007;

R2
N 0.74). Error bars show the standard deviation of the O2 evolution rates measured

by the Hansatech Chlorolab II instrument during the measurement period (n = 500).

Fig. 5. Change in brominating activity in cultures of Porosira glacialis (CCMP 668) with

photon flux density (PFD) in three independent experiments (PG1, white bars; PG2,

dark grey bars; PG3, light grey bars). Error bars show the range of values obtained from

duplicate cultures in PG1 and PG3, and triplicate cultures in PG2.
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previous findings for P. glacialis (Moore et al., 1996; Hill and Manley,

2009). Brominating activity in T. antarctica was found to change in re-

sponse to both variability in PFD and the transition between light and

dark phases. Brominating activity in P. glacialiswas only found to be sig-

nificantly different between light and dark phases of the diel light cycles

studied. These findings have implications for both the physiological role

of brominating activity in marine diatoms and the potential for

parameterising the production of the biogenic organobromines known

to be produced via haloperoxidase activity (i.e. CHBr3, CH2Br2; and

their sea-air emission rates) against ecosystem model state variables.

This study does not deal with the marine CH3Br source as this com-

pound is thought to be produced by methyl transferase and not

haloperoxidase activity (Wuosmaa andHager, 1990). Given their differ-

ing responses to the applied treatments the results for T. antarctica and

P. glacialis are discussed separately at first and these findings are then

brought together in Section 5 (Conclusions).

4.1. Thalassiosira antarctica

A clear link between PAR light availability and brominating activity

was found for T. antarctica in all experiments performed within this

study. The responses observed to short term variability in PFD, signifi-

cant positive relationship with photosynthetic rate and significant dif-

ference between light and dark phases suggest that brominating/

haloperoxidase activity in T. antarctica is associated with a cellular pro-

tection mechanism aimed at moderating light-induced stress. The pho-

tosynthetic electron transport chain is a major source of the reactive

oxygen species superoxide (O2
•−) and singlet oxygen (1O2) which are

subsequently reduced to H2O2 and OH•. There is a clear link between

photon flux density and photosynthetic rate, and algal H2O2 production

(e.g. Milne et al., 2009). Hence, given their mode of action (Butler and

Walker, 1993), our results can be explained by changes in the produc-

tion of reactive HOBr as a by-product of the haloperoxidase-mediated

Fig. 6. Brominating activity in cultures of a) Thalassiosira antarctica (CCAP 1035) and b) Porosira glacialis (CCMP 668) before (grey bars) and after (white bars) the transition between dark

and light during one light:dark cycle. Error bars show the range of values obtained in triplicate and duplicate cultures of T. antarctica and P. glacialis, respectively.

Fig. 7. The ratio of light: dark brominating activity in cultures of a) Thalassiosira antarctica (CCAP 1085/25) and b) Porosira glacialis (CCMP 668) across 4 diel cycles. In (i) Error bars show

standard deviations for triplicate cultures. The dashed lines highlight the 1:1 light/dark brominating activity ratio.
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breakdown of photosynthetic H2O2. As very little brominating activity

was observed in the medium surrounding the cells (Section 2.2) the

haloperoxidases are likely to be cell-bound and most likely occur in

the periplast (Hill andManley, 2009). The significant increase in bromi-

nating activity observed in this study following the addition of 0.1 μM

H2O2 to the medium of T. antarctica cultures supports the link with

light stress, as do results fromprevious studies. For example, diel chang-

es in the expression of peroxidase genes associated with the mitigation

of light-induced oxidative stress have been shown in themarine diatom

Thalassiosira pseudonana (Ashworth et al., 2013). Additionally, a link be-

tween incident light levels and brominating activity has been previously

proposed for diatoms (Hill and Manley, 2009) and demonstrated in

macroalgae (Manley and Barbero, 2001). In particular, exposure to pho-

tosynthesis inhibitors (e.g. DCMU) has been found to reduce the rate of

CHBr3 formation in the green seaweed Ulva lactuca (Manley and

Barbero, 2001) and the kelp Macrocystis pyrifera (Goodwin et al.,

1997). Overall, there appears to be a clear link between the rates of

brominating activity and primary metabolic processes in marine algae.

Here we provide further evidence for the link between brominating

activity and photosynthesis in diatoms, but other studies (e.g. Manley

and Barbero, 2001) have shown that there is also a relationship be-

tween rates of respiration and organobromine formation in marine

macroalgae. This, alongside persistence of the haloperoxidases in the

medium, could explain the dark-phase brominating activity observed

in our experiments.

High levels of stress appear to cause a reduction in brominating

activity in marine algae. In this study, brominating activities in

T. antarctica were reduced at higher light intensities (×10 growth irra-

diance) compared to those at lower light levels (Fig. 3a). These findings

are consistent with those of Hughes et al. (2006) in which exposure to

levels of PAR which led to strong and irreparable photoinhibition did

not induce halocarbon formation in a range of microalgal species.

Given that higher levels of stress are known to be associated with in-

creased H2O2 (and other ROS) production (Milne et al., 2009), it might

have been expected that brominating activity would be enhanced

under high levels of light stress. Increasing levels of H2O2 have, howev-

er, been found to both activate and inhibit brominating activity depend-

ing on the concentration. In this study, brominating activity was not

found to be significantly different compared to no-addition controls in

T. antarctica cultures supplied with ≥0.5 μM H2O2 but was significantly

higher in those supplied with 0.1 μM H2O2 (Fig. 8a). Manley and

Barbero (2001) observed a similar pattern in CHBr3 production in

cultures of U. lactuca as H2O2 levels were increased. The large variability

in brominating activities in T. antarctica observed at 0.2 μM H2O2 (Fig.

8a) suggests that this may be close to a ‘physiological tipping point’

for this diatom. Understanding the levels of an applied stressor at

which reactive halogen production does not respond or declines will

be essential for parameterisation development.

There are several reasons why brominating activity may decline at

higher levels of oxidative stress. It is well-established that high levels

of H2O2 can lead to an apparent decline in haloperoxidase activity due

to competing reactions between excess H2O2 and HOBr (Wever,

2001). However, the levels of H2O2 at which brominating activity

showed no significant response compared to no-addition controls

(≥0.5 μM) in our experiments are orders of magnitude below those at

which BPB production has been found to decline under assay conditions

(0.3 mM; Hill and Manley, 2009). Given that micromolar levels of H2O2

are known to induce physiological responses in the diatoms, it is more

likely that our observations are due to a biological response rather

than being attributed to these other artefacts. As H2O2 is damaging to

cellular macromolecules, reduced brominating activity at ≥0.5 μM can

be explained by membrane peroxidation leading to the loss of

membrane-bound bromoperoxidases (Manley and Barbero, 2001) or

damage to the cellular macromolecules involved in mediating the pro-

duction of reactive bromine species (e.g. HOBr). Diatoms are also

known to have a range of anti-oxidative enzymes such as catalase,

ascorbate peroxidase and glutathione peroxidase andnonenzymatic ox-

idants such as α-tocopherol and beta-carotene which can also break-

down H2O2 (Hernando et al., 2015). Hence it is possible that these

other antioxidant defence strategies become more important at higher

H2O2 concentrations. We propose that the physiological responses

that occur above a certain H2O2 concentrations restrict haloperoxidase

antioxidant defence to lower levels of stress.

4.2. Porosira glacialis

Brominating activity in P. glacialis was found to be significantly

higher during the light phase of the diel cycles studied here but, in con-

trast to T. antarctica, very little or no change was observed following

short-term changes in photon flux density (PFD) and increases in extra-

cellular H2O2. Moore et al. (1996) previously observed an increase in

organobromine production (e.g. CHBr3, CH2Br2) in P. glacialis cells

grown for several weeks at a higher irradiance (40 μmol photons

m−2 s−1) compared to low light (12 μmol photons m−2 s−1)

Fig. 8. The ratio of brominating activity inH2O2 treatments and no-addition controls in cultures of a) Thalassiosira antarctica (CCAP 1085/25) andb) Porosira glacialis (CCMP668). Error bars

show the standard deviation from three replicate cultures. Where errors are not shown only single cultures were used in these treatments. The asterisk indicates treatments that had

significantly different brominating activities to the no addition controls and other treatments (ANOVA, Tukey HSD post hoc p b 0.05).The dashed box in a) highlights a treatment with

large variability which was not included in the statistical analysis.
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treatments. Taken together these results suggest that changes in bromi-

nating activity in P. glacialis occur relatively slowly following changes in

the environment and/ormay be linked to long-term adaptations to light

levels. The absence of a response to short-term variability in PFD and in-

creasing extracellular H2O2 in P. glacialismay suggests that this species

employs a different antioxidant network (Hernando et al., 2015) or

has other adaptations to mitigate the impact of transient changes in

the environment. Previous studies have shown that species-specific re-

sponses to increasing extracellular H2O2 in marine macroalgae can be

explained by differences in the antioxidant networks of organisms

adapted to a varying range of environmental conditions (e.g. light inten-

sity, Dummermuth et al., 2003) andmorphological variability (e.g. thal-

lus thickness, Manley and Barbero, 2001). Any of the other antioxidant

strategies that are known to occur in marine diatoms (Hernando et al.,

2015) could be upregulated in response to the treatments we applied,

thereby reducing the need for increased haloperoxidase-mediated

H2O2 breakdown. It will be important to establish the position that bro-

minating activity holds in the antioxidant networks of T. antarctica and

P. glacialis in future studies, and explore other potential explanations for

the observed disparity in response in these two diatom strains.

One observation that may be relevant is that under the culture con-

ditions employed here P. glacialis (CCMP 668) secretes large amounts of

extracellular mucilage which surrounds the cells and allows colonies to

form. Mucilage sheaths are known to restrict the exchange of some

chemical species between the microalgal phycosphere and bulk medi-

um (Freire-Nordi et al., 2006). Hence, this mucilage could have inter-

fered with the transport of H2O2 from the bulk medium to the cell

membranes and the movement of reactive bromine (e.g. HOBr) from

the cells to the external medium. A reduced rate of transport of H2O2

andHOBr between the P. glacialis phycosphere and the surroundingme-

dium could provide a logical explanation for some of our observations

including: the apparent lack of response to short term changes in light

and H2O2; the lower light to dark brominating activity ratio in

P. glacialis (1.3 ± 0.3) compared to T. antarctica (2.8± 1.0); the delayed

increase in brominating activity in P. glacialis cultures in the first light-

phase sample taken during the detailed diel cycle experiment (Fig. 6,

Section 3.3). Uncertainties like this could, in part, be addressed in future

studies by the incorporation of proteomic and genomic studies (e.g.

Johnson et al., 2011) which would allow us to directly establish the

upregulation of haloperoxidase activity in marine diatoms rather than

relying on the reactions mediated by enzyme products.

5. Summary and conclusions

This study has found evidence for a link between the availability of

photosynthetically active radiation (PAR) and brominating activity, as

measured by phenol red bromination, in two cold water marine dia-

toms (T. antarctica and P. glacialis). Given the mode of action of the

haloperoxidase enzymes we propose that brominating activity is linked

to the breakdown of H2O2 produced during photosynthesis, and has a

diel cycle consistent with the mitigation of light-induced stress. Estab-

lishing a potential link between brominating activity inmarine diatoms

and common ecosystem model state variables such as light availability

and photosynthetic rate is a first step towards developing the capability

to accurately predict spatial and temporal variability in the sea-air emis-

sion of organobromines produced by haloperoxidase activity (e.g.

CHBr3). The differing responses reported for the two diatom strains in-

dicates that it will be essential to explore how the link between light

and brominating activity differs in a wider range of marine diatoms,

and possibly other phytoplankton groups. These studies would benefit

from the incorporation of proteomic and genomic approaches. In addi-

tion to having biogeochemical importance our studies also suggest that

it may be important to consider the position that brominating activity

holds in the antioxidant defence network of marine diatoms in future

research. Effort should also be made to understand the physiological

function of the biogenic production of a wider range of marine

organohalogens such as CH3Br.
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