

http://wrap.warwick.ac.uk/

Original citation:
Voss, Alex, Ings-Lamb, Alex and Procter, Robert N. (2012) Developing sustainability
pathways for social simulation tools and services. University of Warwick. (Unpublished)
Permanent WRAP url:
http://wrap.warwick.ac.uk/77624

Copyright and reuse:
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the
University of Warwick available open access under the following conditions. Copyright ©
and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable the
material made available in WRAP has been checked for eligibility before being made
available.

Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge. Provided that the authors, title and
full bibliographic details are credited, a hyperlink and/or URL is given for the original
metadata page and the content is not changed in any way.

A note on versions:
The version presented here is a working paper or pre-print that may be later published
elsewhere. If a published version is known of, the above WRAP url will contain details
on finding it.

For more information, please contact the WRAP Team at: publicatons@warwick.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Warwick Research Archives Portal Repository

https://core.ac.uk/display/42619728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://go.warwick.ac.uk/
http://wrap.warwick.ac.uk/77624
mailto:publicatons@warwick.ac.uk
http://www2.warwick.ac.uk/

	 1	

Developing	Sustainability	Pathways	for	Social	Simulation	Tools	and	Services	

The	Role	of	Cloud	Computing	
	
Ash	Ings-Lamb	and	Alex	Voss		
University	of	St	Andrews	
Procter,	Rob	
University	of	Manchester	

Table	of	Contents	

1	 Executive	Summary	..	4	

2	 Introduction	...	5	

3	 Recommendations	...	8	

4	 Social	Simulation	..	9	
4.1	 The	Methodology	of	Social	Simulation	..	9	
4.2	 Types	of	Social	Simulation	..	10	
4.3	 Agent-based	Modelling	and	Simulation	...	10	
4.4	 The	Workflow	and	Logic	of	Social	Simulation	..	11	

5	 Teaching	Agent-Based	Modelling	and	Simulation	...	12	
5.1	 Macal	and	North’s	ABMS	Teaching	Syllabus	..	12	
5.2	 Experiences	and	Problems	Teaching	ABMS	...	15	
5.3	 Educational	Opportunies	associated	with	ABMS	Error!	Bookmark	not	defined.	

6	 Implementing	Agent-Based	Models	...	16	
6.1	 Development	and	Execution	Platforms	..	16	

6.1.1	 Spreadsheets	..	17	
6.1.2	 Computational	Mathematics	Systems	...	17	
6.1.3	 General	Purpose	Programming	Languages	..	17	
6.1.4	 Small-Scale	Prototyping	Environments	..	18	
6.1.5	 Large-Scale	Dedicated	Modelling	Environments	..	19	

6.2	 Implementation	Challenges	..	19	
6.2.1	 Model	Complexity	...	19	
6.2.2	 Data	Sets	..	20	
6.2.3	 Scalability	...	20	
6.2.4	 Parameter	Space	...	20	
6.2.5	 Distributed	Systems	...	Error!	Bookmark	not	defined.	
6.2.6	 Time	...	20	

6.3	 Technical	Architectures	...	20	
6.3.1	 Commodity	Resources	...	21	
6.3.2	 Compute	Clusters	and	Grid	Technologies	...	21	
6.3.3	 Service-Oriented	Simulation	Architectures	..	22	
6.3.4	 Cloud	Computing	...	23	

7	 Cloud	Computing	...	23	
7.1	 Desiderata	for	Running	Scientific	Experiments	in	the	Cloud	Error!	Bookmark	not	
defined.	
7.2	 Service	Models	..	24	

7.2.1	 Software-as-a-Service	..	25	

	 2	

7.2.2	 Platform-as-a-Service	...	25	
7.2.3	 Infrastructure-as-a-Service	..	26	
7.2.4	 Other	Cloud	Services	(Storage-as-a-Service,	Database-as-a-Service,	etc.)	26	

7.3	 Deployment	Models	...	26	
7.3.1	 Public	Clouds	...	27	
7.3.2	 Private	Clouds	...	27	
7.3.3	 Hybrid	Clouds	...	28	

7.4	 Virtualization	and	Middleware	Platforms	..	28	
7.5	 Cloud	Economics	and	Financial	Considerations	...	31	

7.5.1	 Cloud	Costs	Incurred	during	a	typical	ABMS	Study	Programme	31	
7.5.2	 Payment	Models	..	32	
7.5.3	 Software	Licensing	..	32	
7.5.4	 Recovering	Costs	...	33	
7.5.5	 Comparing	Cloud	Providers	on	Cost	...	33	

7.6	 Comparing	IaaS	Clouds	–	AWS	and	Google	Compute	Engine	33	
7.6.1	 Amazon	Web	Services	...	33	
7.6.2	 Google	Compute	Platform	...	35	
7.6.3	 Comparing	AWS	and	GCE	on	Cost	Error!	Bookmark	not	defined.	

8	 Using	the	Cloud	to	Teach	ABMS	..	36	
8.1	 Arguments	for	the	Cloud	...	36	

8.1.1	 Configuration	Management	..	36	
8.1.2	 Flexibility	..	37	
8.1.3	 High	Performance	Compute	Jobs	..	38	
8.1.4	 High	Throughput	Compute	Jobs	...	38	

8.2	 Choosing	which	Cloud	Technologies	to	Use	...	38	
8.2.1	 Service	and	Deployment	Models	...	40	

8.3	 Evaluating	Cloud	Services	...	Error!	Bookmark	not	defined.	

9	 How	Teachers	can	make	best	use	of	the	Cloud	..	41	
9.1	 Use	Case	1:	Booting	a	hosted	template	image	in	the	cloud	with	manual	
configuration	...	41	
9.2	 Use	Case	2:	Booting	a	hosted	template	image	in	the	cloud	and	running	a	
contextualization	script	...	42	
9.3	 Use	Case	3:	Manually	configuring	a	local	image	and	importing	it	to	the	cloud	42	
9.4	 Use	Case	4:	Exporting	virtual	machine	images	from	the	cloud	43	
9.5	 Use	Case	5:	Cloud	Bursting	..	43	
9.6	 Virtual	Machine	Image	Contextualization	Repositories	..	43	

10	 Practical	Demonstrations	...	44	
10.1	 Manual	Configuration	..	44	
10.2	 Configuration	through	a	Contextualization	Script	..	44	
10.3	 Exporting	Local	Machine	Images	to	the	Cloud	..	44	
10.4	 The	Model	Exploration	Service	(Simulation-as-a-Service)	45	

11	 Considerations	on	Future	Work	Error!	Bookmark	not	defined.	
11.1	 CloudSocSim	...	Error!	Bookmark	not	defined.	
11.2	 ABMS	E-Learning	Ecosystem/Cloud	Architecture	...	46	
11.3	 Other	Recommendations	and	Future	Work	...	46	

12	 Conclusion	..	46	

13	 Appendices	...	46	
13.1	 EC2	Tutorial	..	Error!	Bookmark	not	defined.	

	 3	

13.2	 Sample	Contextualization	Scripts	..	46	
13.2.1	 Script	1:	Ubuntu,	Repast	Simphony	and	User	Data	..	46	

13.3	 Comparison	Tables	for	different	Cloud	Service	Providers	Error!	Bookmark	not	
defined.	

14	 References	..	47	
	
	 	

	 4	

1 Executive	Summary	
The	 use	 of	 cloud	 technologies	 to	 teach	 agent-based	 modelling	 and	 simulation	
(ABMS)	 is	 an	 interesting	 application	 of	 a	 nascent	 technological	 paradigm	 that	 has	
received	very	 little	attention	 in	the	 literature.	This	report	 fills	 that	gap	and	aims	to	
help	 instructors,	 teachers	 and	 demonstrators	 to	 understand	 why	 and	 how	 cloud	
services	 are	 appropriate	 solutions	 to	 common	 problems	 they	 face	 delivering	 their	
study	programmes,	as	well	as	outlining	the	many	cloud	options	available.	The	report	
first	 introduces	 social	 simulation	 and	 considers	 how	 social	 simulation	 is	 taught.	
Following	 this	 factors	 affecting	 the	 implementation	 of	 agent-based	 models	 are	
explored,	with	attention	focused	primarily	on	the	modelling	and	execution	platforms	
currently	 available,	 the	 challenges	 associated	 with	 implementing	 agent-based	
models,	and	the	technical	architectures	that	can	be	used	to	support	the	modelling,	
simulation	and	teaching	process.	This	sets	the	context	for	an	extended	discussion	on	
cloud	 computing	 including	 service	 and	 deployment	 models,	 accessing	 cloud	
resources,	 the	 financial	 implications	 of	 adopting	 the	 cloud,	 and	 an	 introduction	 to	
the	 evaluation	 of	 cloud	 services	 within	 the	 context	 of	 developing,	 executing	 and	
teaching	agent-based	models.		
	
The	 core	 discussion	 on	 cloud	 computing,	 which	 aims	 to	 act	 as	 an	 introduction	 to	
those	 aspects	 of	 the	 cloud	most	 directly	 relevant	 to	 teaching	 social	 simulation,	 is	
followed	 by	 an	 extended	 comparison	 of	 the	 Amazon	Web	 Services’	 infrastructure	
Elastic	 Compute	 Cloud	 (EC2)	 and	 the	 Google	 Cloud	 Platform’s	 Google	 Compute	
Engine	 (GCE),	 another	 infrastructure	 cloud	 offering,	 as	 well	 as	 brief	 discussion	 of	
other	 infrastructure	 clouds.	 The	 comparison	 here	 is	 unavoidably	 one-sided	 simply	
because	AWS	is	by	far	the	most	dominant	cloud	market	player	and	information	on	its	
services	and	products	is	abundant,	readily	available	and	easy	to	access,	in	the	same	
way	that	its	cloud	services	are	abundant,	readily	available	and	easy	to	access.	Over	
time	 this	 situation	 is	 likely	 to	 change	 as	 other	 cloud	 service	 providers	mature	 and	
erode	Amazon’s	market	dominance,	but	at	the	time	of	writing	it	is	likely	that	ABMSs	
that	make	 use	 of	 public	 clouds	will	 do	 so	 using	 EC2	 in	 preference	 to	 other	 public	
infrastructure	clouds.		
	
Following	the	comparison	of	cloud	providers	the	paper	introduces	the	core	use	cases	
identified	as	of	highest	utility	to	those	running	agent-based	simulations	in	the	cloud,	
consisting	of	six	different	ways	that	the	cloud	could	be	used	to	execute	agent-based	
models	 and	 simulations.	 How	 these	 use	 cases	 relate	 to	 teaching	 social	 simulation	
using	cloud	resources	succeeds	this	section,	where	we	identify	five	core	arguments	
that	 motivate	 the	 use	 of	 cloud	 to	 teach	 social	 simulation,	 before	 exploring	 how	
teachers	might	go	about	choosing	which	cloud	resources	to	use	and	how	to	do	so.	
Having	 given	 readers	 a	 reasonably	 complete	 overview	 of	 the	 potentialities	
associated	with	adopting	the	cloud	we	then	describe	our	experiences	of	using	EC2	to	
realize	several	of	the	use	cases	previously	identified,	including	an	outline	of	the	steps	
required,	 problems	 and	 difficulties	 encountered,	 and	 the	 results	 of	 our	 simulation	
runs.	Finally	we	conclude	by	considering	options	for	future	work,	including	possible	
future	 research	 directions	 and	 projects	 that	 could	 significantly	 reduce	 the	 effort	
required	 to	 leverage	 the	 cloud	 for	 teaching	 ABMS,	 and	 increase	 awareness	 of	 the	
options	open	to	both	students	and	instructors.	There	are	also	appendices,	which	give	

	 5	

extra	 technical	 information	 on	 aspects	 of	 the	 cloud	 and	 practical	 step-by-step	
walkthroughs	 of	 running	 agent-based	 simulations	 in	 the	 cloud.	 The	 report	 also	
contains	 a	 number	 of	 recommendations	 that	 are	 closely	 related	 to	 our	
considerations	 on	 future	 work,	 and	 which	 aim	 to	 guide	 students,	 instructors	 and	
other	 interested	 parties	 in	 their	 investigation,	 adoption	 and	 use	 of	 cloud	
technologies	 for	 studying,	 teaching	 and	 executing	 agent-based	 models	 and	
simulations.	

2 Introduction	
This	 report	 is	 an	 introduction	 to	 the	 use	 of	 cloud	 computing	 for	 teaching	 agent-
based	modelling	and	simulation	(ABMS).	 It	 is	designed	to	act	as	a	decision	support	
document	 for	 instructors	 planning	 an	 ABMS	 study	 programme	 and	 aims	 to	 equip	
them	with	the	information	required	to	make	informed	decisions	about	the	types	of	
cloud	 technologies	 available	 to	 support	 ABMS	 teaching,	 along	with	 the	 challenges	
and	 benefits	 associated	 with	 different	 aspects	 of	 the	 cloud.	 	 We	 hope	 that	 the	
information	contained	in	the	report	will	be	of	use	across	a	wide	variety	of	teaching	
contexts	including	self-paced	courses	(typically	online),	distance	learning,	conference	
tutorials	and	workshops,	university	 lectures,	seminars	and	tutorials	 (including	 face-
to-face	 and	 Web-based	 workshops,	 mixed-mode	 courses	 incorporating	 distance	
learning,	webinars	and	webcasts,	face-to-face	tutorials,	etc.)	and	professional	short	
courses.	
	
Cloud	 computing	 provides	 numerous	 opportunities	 for	 those	 teaching	ABMS.	How	
cloud	technologies	are	adopted	turns	on	a	number	of	factors	because	‘the	cloud’	is	
an	 amorphous,	 ill-defined	 concept	 spanning	 numerous	 technologies	 designed	 to	
deliver	 computing	 resources	and	services	 in	different	ways	 in	different	 contexts	 to	
meet	 different	 user	 requirements.	 Infrastructure	 clouds,	 referred	 to	 as	
Infrastructure-as-a-Service	or	 IaaS	clouds,	 such	as	Amazon’s	Elastic	Compute	Cloud	
(EC2),	provide	on-demand	access	to	low-level	computational	resources	such	as	CPU	
core	 (processing	 power),	 storage	 and	 networking,	 across	 the	 public	 Internet.	
Platform	 clouds	 –Platform-as-a-Service	 or	 PaaS	 –	 such	 as	 Google	 App	 Engine	 and	
Microsoft	 Windows	 Azure	 provide	 users	 with	 an	 online	 application	 development	
environment	 and	 associated	 tools	 support.	 Finally	 Software-as-a-Service	 (SaaS)	
allows	 users	 to	 provision	 software	 applications	 across	 the	 network.	 A	 simple	
example	is	the	use	of	Gmail	to	deliver	university	email	services	such	as	the	University	
of	 St	 Andrews’	 student	 email	 service.	 Other	 common	 SaaS	 platforms	 implement	
office,	collaboration	and	end-user	productivity	applications	such	as	Google	Docs	and	
Microsoft	Office	365.			
	
Considering	 scope	 this	 report	 focuses	 on	 IaaS	 clouds	 because	 the	 services	 they	
provide	are	directly	applicable	to	the	delivery	of	ABMS	study	programmes.	A	number	
of	 powerful	 though	 simple	 arguments	 motivate	 the	 integration	 of	 infrastructure	
cloud	technologies	with	ABMS	teaching	and	delivery	strategies.	One	clear	benefit	for	
instructors	is	the	ability	to	dynamically	provision	and	scale	cloud	resources	according	
to	short-run	computational	requirements.	This	gives	 instructors	and	demonstrators	
the	 flexibility	 to	 deploy	 high-end,	 powerful,	 and	 fully	 configurable	 compute	
resources	on-demand	and	at	short	notice,	detaching	the	successful	delivery	of	their	

	 6	

programmes	 from	 local	 technology	 constraints,	 and	 giving	 them	 the	 agility	
associated	with	a	self-service	on-demand	computing	model.	
	
Running	 an	 agent-based	model	 in	 the	 cloud	 using	 free/open	 source	 software	 will	
require	 payment	 for	 an	 appropriate	machine	 instance	 type,	 data	 storage,	 and	 the	
costs	of	transferring	data	into	and	out	of	the	cloud.		

2.1 Scope	
We	restrict	our	focus	to	simulations	that	only	require	the	computational	resources	of	
a	single	desktop	or	laptop	computer.	We	do	not	consider	in	detail	issues	relating	to	
running	 simulations	 that	 require	 high	 performance	 compute	 resources.	Modelling	
and	execution	platforms	such	as	Repast	for	High	Performance	Computing	are	briefly	
considered,	and	for	completeness	we	touch	on	ways	the	cloud	could	be	used	in	high	
performance	scenarios,	but	in	the	main	our	attention	is	directed	to	issues	relevant	to	
the	 type	 of	 small-scale	 models	 and	 simulations	 typically	 developed	 and	 run	 in	 a	
beginners	 to	 intermediate	 course.	 We	 do	 though	 look	 at	 how	 high	 throughput	
simulation	 jobs	 can	 be	 executed	 in	 the	 cloud.	 In	 particular	 we	 compare	 running	
batch	mode	 simulations	using	 the	 Jenkins	 continuous	 integration	build	 server	 as	 a	
task	management	front-end	controlling	worker	compute	nodes	in	the	cloud,	with	the	
Model	 Exploration	 Service,	 a	 web	 service	 designed	 to	 allow	 users	 to	 run	 batch	
simulations	 on	 EC2.	 This	 complements	 our	 discussion	 of	 two	 more	 practical	
demonstrations	 introduced	 in	 section	 [x].	 The	 first	 details	 the	 relatively	
straightforward	 task	 of	 manually	 configuring	 a	 virtual	 machine	 running	 on	 EC2,	
whilst	the	second	shows	how	the	same	simulation	environment	can	be	installed	and	
configured	 using	 a	 contextualization	 script.	 Contextualization	 scripts	 are	 scripts	
designed	to	run	after	booting	a	virtual	machine	in	the	cloud	and	replace	the	need	for	
manual	user	configuration.	One	recommendation	we	make	is	for	the	development	of	
a	 version-controlled	 repository	 of	 simulation-specific	 contextualization	 scripts	 that	
instructors	 can	 access	 to	 easily	 setup	different	 types	of	 simulation	environment	 in	
the	 cloud.	 This	 avoids	 the	 need	 to	 maintain	 a	 repository	 of	 preconfigured	 virtual	
machine	images,	instead	giving	instructors	the	option	of	modifying	existing	scripts	to	
meet	their	requirements	if	a	suitable	script	is	not	in	the	repository	(or	writing	a	new	
script	if	necessary).	
	
After	giving	a	high-level	outline	of	the	services	constituting	the	cloud	ecosystem	we	
also	 confine	 our	 attention	 to	 Infrastructure-as-a-Service	 (IaaS)	 clouds,	 as	 they	 are	
most	 likely	 to	be	of	use	and	 interest	 to	present	and	 future	academic	research	 into	
social	 simulation,	 agent-based	 modelling	 and	 teaching.	 De	 Oliveira,	 Baiao,	 and	
Mattoso	 (2010)	expound	 the	main	advantages	associated	with	cloud	computing	as	
following	 from	 the	 relative	 ease	 with	 which	 users	 can	 access	 a	 wide	 variety	 of	
computational	resources	with	a	minimum	of	configuration,	and	without	high	capital	
acquisition	costs.	Similarly	the	ease	with	which	instructors	can	access	infrastructure	
cloud	 services	 such	 as	 EC2	 before,	 during	 and	 after	 lessons	 gives	 them	 great	
flexibility	and	opportunities	to	experiment	with	different	computing	technologies.1		

																																																								
1	De	Oliveira	et	 al.	 also	 discuss	 a	 number	 of	 desiderata	 for	 using	 the	 cloud	 to	 run	
scientific	 experiments,	 covering	 areas	 such	 as	 reproducibility,	 validation,	 the	

	 7	

	
Users	of	IaaS	clouds	can	typically	formulate	solutions	to	their	problems	at	a	machine	
level	by	specifying	numbers	of	processor	cores,	available	memory,	CPU	architectures	
and	 speeds,	 and	 storage	 requirements.	 Therefore	 Iaas	 cloud	 services	 allow	
instructors	flexible	and	convenient	access	to	compute	and	storage	resources	during	
the	preparation	and	delivery	of	ABMS	study	programmes	 such	 that	 is	not	possible	
when	relying	on	in-house,	 local	resources	or	distributed,	remote	grids	and	clusters.	
In	 part	 this	 is	 a	 function	 of	 often-limited	 local	 hardware	 and	 the	 complexity	 of	
running	jobs	on	the	grid,	and	in	part	a	function	of	the	unique	opportunities	proffered	
by	the	development	of	high-end,	dynamically	and	rapidly	scalable,	self-service	access	
to	 massive	 computational	 power	 and	 storage	 capacity	 that	 has	 been	 enabled	 by	
developments	in	the	cloud.	Furthermore,	the	costs	of	accessing	public	clouds	such	as	
EC2	 are	 falling.	 This	means	 that	 instructors	 (and	 students)	 have	 the	 ability	 to	 run	
computationally	expensive	jobs	and	store	the	generated	artefacts	with	only	minimal	
financial	 outlay,	 a	 good	 Internet	 connection,	 and	 local	 commodity	 hardware	
(desktop,	laptop,	mobile,	etc.)	in	a	way	not	previously	possible.	The	development	of	
private	 clouds	 by	 universities	 and	 other	 institutions,	 as	 well	 as	 increased	 use	 of	
hybrid	and	community	clouds,	offers	similar	opportunities.	
	
The	 ease	 with	 which	 IaaS	 cloud	 services	 can	 be	 rapidly	 scaled,	 vertically	 and	
horizontally,	to	meet	expensive	computational	demands	also	makes	the	cloud	useful	
for	 running	simulations	that	require	high	performance	compute	resources	that	use	
dedicated	 software	 packages	 such	 as	 Repast	 for	 High	 Performance	 Computing	
(introduced	below).	Using	the	cloud	for	high	performance	simulation	jobs	is	though	
outwith	the	scope	of	this	report	as	we	focus	on	those	aspects	of	the	cloud	that	are	
most	 useful	 to	 teachers	 in	 typical	 ABMS	 teaching	 contexts	 focused	 on	 introducing	
the	principles	and	techniques	of	agent-based	modelling	to	beginners	through	small	
scale	simulations	executable	on	commodity	compute	resources.	
	
One	 key	 advantage	 of	 the	 cloud	 is	 the	 ability	 to	 customize	 the	 type	 of	 services	
provisioned,	and	to	rapidly	change	these	services	in	line	with	changing	requirements.	
This	 is	 potentially	 very	 useful	 in	 the	 context	 of	 running	 simulations	 and	 teaching	
social	 simulation.	 To	 effectively	 leverage	 this	 potential,	 instructors	 should	
understand	the	variety	of	cloud	services	available,	their	interrelations	and	how	these	
resources	 are	 sourced	 and	 deployed.	 Hence	 we	 also	 look	 at	 different	 cloud	
deployment	models.	Deployment	models	categorise	how	cloud	services	are	sourced,	
and	 consist	 of	 public,	 private	 and	 hybrid	 clouds.	 There	 are	 advantages	 and	
disadvantages	associated	with	each	deployment	type,	depending	on	the	specific	use	
case,	and	we	look	at	those	relevant	to	teaching	ABMS.	
	
We	also	 introduce	 the	 technologies	 that	enable	 the	 cloud	 so	 that	 instructors	have	
some	 idea	 of	 how	 the	 cloud	 works	 and	 the	 constraints	 these	 technologies	 can	
impose.	 Virtualization	 is	 the	 key	 technology	 enabling	 multi-tenant	 architectures,	

																																																																																																																																																															
provenance	 of	 final	 and	 intermediate	 results,	 and	 the	 parameter	 values	 used	 to	
generate	results,	all	of	which	is	useful	reading	for	teachers	and	students	of	ABMS.	
	

	 8	

giving	 cloud	 users	 the	 ability	 to	 rapidly	 provision	 on-demand	 servers,	 and	 provide	
the	 illusion	 of	 infinite	 available	 compute	 capacity.	 Web	 service	 calls	 are	 used	 to	
access	cloud	resources	across	the	network,	which	can	be	programmatic,	through	the	
command	 line,	 or	 via	 GUI	 management	 tools.	 Clouds	 also	 rely	 on	 middleware	
platforms	to	coordinate	resource	and	access	management	and	we	briefly	introduce	
these	too.	Our	goal	in	discussing	these	technologies	is	to	help	potential	cloud	users	
understand	how	the	cloud	works	without	going	into	great	detail,	which	is	unlikely	to	
be	of	great	interest	to	readers	of	this	report.	
	
There	 is	very	 little	 literature	specifically	addressing	teaching	agent-based	modelling	
and	 simulation.	 Friesen,	 Laskowski,	 Demianyk	 and	 McLeod	 (2010)	 for	 example	
discuss	 the	 educational	 opportunities	 associated	 with	 agent-based	 modelling	 and	
simulation,	with	particular	emphasis	on	engineering	students.	They	believe	that	the	
development	 of	 agent-based	modelling	 as	 a	 paradigm	within	 the	 broader	 field	 of	
social	simulation	has	the	possibility	to	provide	unique	educational	opportunities	for	
undergraduate	and	postgraduate	students,	but	this	is	only	a	brief	conference	paper	
and	in	general	this	type	of	work	is	rare	in	the	literature.	Macal	and	North	(2010)	is	an	
exception	and	below	we	outline	their	work	in	this	area	as	a	point	of	comparison	with	
the	experiences	of	other	teachers	that	we	discuss	 later	 in	the	report.	They	refer	to	
the	 “agent-based	 modelling	 conundrum”,	 whereby	 high	 numbers	 of	 people	 are	
drawn	 into	 agent-based	 modelling,	 attending	 courses	 designed	 to	 acquaint	 them	
with	 the	 core	 knowledge	 and	 skills	 necessary	 to	 pursue	 their	 own	 modelling	
interests,	without	any	of	 the	prior	knowledge	or	experience	necessary	 for	 success.	
This	 gives	 instructors	many	difficulties	 as	 they	attempt	 to	widen	as	 far	 as	possible	
access	 to	 courses	on	agent-based	modelling	and	 simulation,	while	 accommodating	
classes	 composed	 of	 students	 with	 varying	 skill	 sets,	 technical	 aptitudes	 and	
background	 experiences.	 The	 approach	 taken	 to	 teaching	 ABMS	 is	 dependent	 on	
these	 factors,	meaning	 instructors	 should	 vary	 course	 content	 relative	 to	 the	 skills	
and	aptitudes	of	their	students.	Here	the	cloud	offers	great	flexibility	in	the	supply	of	
computational	 resources	 not	 open	 to	 those	 relying	 on	 local	 commodity	 hardware,	
whether	supplied	by	 local	 institutions	or	brought	 to	class	by	students.	Flexibility	 in	
resource	provisioning	allows	for	the	detailed	production	of	course	and	lesson	plans	
that	 are	 specifically	 tailored	 to	 their	 audiences,	 taking	 account	 of	 skill	 levels,	 the	
course	syllabus	and	teaching	objectives.	

3 Recommendations	
The	 report	makes	 a	 number	 of	 headline	 recommendations	 to	 instructors	who	 are	
considering	the	use	of	cloud	technologies	with	their	courses	on	ABMS.	These	are:	
	
I. Recommendation:	 Version-controlled	 ABMS	 contextualisation	 script	

repository	
II. Recommendation:	E-Learning	System	
III. Recommendation:	Another	
IV. Recommendation:	Number	4	
V. Recommendation:	Five	should	be	enough…	

	
[Come	back	to	this]	

	 9	

	
Considering	 deployment	 models,	 instructors	 have	 a	 basic	 choice	 between	 either	
public	or	private	clouds.	The	quality	of	service	users	receive	from	private	clouds	will	
vary	 with	 the	 institution	 running	 them	 but	 the	major	 public	 clouds	 such	 as	 AWS,	
Microsoft	 Azure	 or	 Google	 Compute	 Cloud	 are	 easy	 to	 access,	 dependable,	 and	
relatively	 cheap,	 and	 can	 easily	 meet	 the	 computational	 demands	 of	 the	 most	
complex	and	large	scale	simulation	runs,	but	clearly	the	final	decision	will	vary	from	
case	to	case.	The	configuration	effort	needed	to	properly	use	either	public	or	private	
clouds	 will	 always	 be	 non-trivial	 but,	 on	 a	 case-by-case	 basis,	 should	 not	 present	
great	difficulties.	
	
[Expand	here]	

4 Social	Simulation	
In	 this	 section	 we	 introduce	 social	 simulation	 and	 the	 logic	 that	 underpins	 the	
modelling	 of	 social	 systems.	 We	 then	 introduce	 a	 particular	 approach	 to	 social	
simulation	 –	 agent-based	 modelling	 –	 that	 is	 currently	 receiving	 intense	 research	
interest.	For	expository	purposes	the	remainder	of	the	paper	focuses	directly	on	the	
use	 of	 cloud	 technologies	 to	 develop,	 execute	 and	 teach	 agent-based	 modelling,	
although	 readers	 should	 easily	 see	 that	 our	 remarks	 are	 applicable,	 	 to	 teaching	
other	types	of	social	simulation.		
	

4.1 Methodology	
Social	 simulation	 studies	 socio-economic	 phenomena	 by	 investigating	 the	 social	
macrostructures	 and	 observable	 regularities	 generated	 by	 the	 behaviour	 and	
relationships	between	 individual	 social	 agents,	 and	 the	environment	 in	which	 they	
act.	 Typical	 macro-structures	 studied	 via	 simulation	 include	 tangibles	 such	 as	
organisations	–	governments,	companies,	educational	 institutions	–	and	 intangibles	
such	 as	markets,	 as	 well	 as	more	 abstract	 phenomena	 –	 the	 prevalence	 of	 social	
norms,	 population	 distributions,	 epidemic	 dynamics,	 and	 the	 emergence	 and	
establishment	of	socio-economic	class	systems	within	society.		
	
From	 a	 methodological	 perspective	 social	 simulation	 occupies	 a	 space	 between	
theoretical	 social	 science	 and	 experimental	 empirical	 investigation.	 It	 is	 an	
interdisciplinary	 field	 sitting	 at	 the	 intersection	 of	 social	 science,	 agent-based	
computing,	 and	 computer	 simulation	 (Davidsson	 2002).2	By	 developing	 models	 of	
complex	 social	 systems	 and	 using	 computers	 to	 study	 their	 evolution	 through	
simulated	 time,	 researchers	 have	 a	 laboratory	 where	 they	 can	 observe	 the	
interactions	between	social	agents	and	processes,	and	have	the	opportunity	to	test	
hypotheses	 in	 a	 way	 not	 possible	 before	 the	 advent	 of	 modern	 modelling	 and	
simulation	techniques	(Li	et	al.	2008).		
	

																																																								
2	It	is	possible	to	conduct	social	simulations	without	computers	but	we	do	not	pursue	
such	techniques	in	this	report.	

	 10	

This	 approach	 yields	 opportunities	 to	 investigate	 complex,	 nonlinear	 dynamical	
systems	 that	 are	 resistant	 to	 analytic	 statistical	 explanation	 based	 on	 linear	
relationships	 that	 hold	 between	 the	 dependent	 and	 independent	 variables	 of	 a	
system	 (Gilbert	 and	 Troitzsch	 (2005)).	 Social	 simulation	 mitigates	 the	 trade-off	
between	mathematical	 tractability	 and	 the	 requirement	 to	 incorporate	 simplifying	
assumptions	into	models	of	social	processes	that	are	necessary	when	developing	the	
static	models	traditionally	used	for	prediction	and	explanation.	Autopoietic	systems,	
studied	 in	 self-organization	 theory,	 and	 characterized	 by	 the	 ability	 of	 the	 units	
comprising	the	system	to	self-produce	and	self-maintain,	also	become	viable	targets	
for	 exploration	 using	 simulation	 tools	 and	 techniques.	 The	 concept	 of	 emergence	
also	 plays	 an	 important	 role	 in	 the	 systems	 studied	 using	 simulation	 techniques,	
feeding	 causal	 explanations	 of	 how	 complex	 behaviour,	 structures	 and	 social	
processes	 result	 –	 emerge	 –	 from	 less	 complex	 (relatively	 simpler)	 actions,	
behaviours	and	local	interactions	of	individual,	heterogeneous	agents.3		
	

4.2 Types	of	Social	Simulation	
There	 are	 many	 types	 of	 social	 simulation	 (see	 Gilbert	 and	 Troitzsch	 2005	 for	 a	
convenient	 introduction).	 System	 dynamics	 is	 one	 approach	 that	 encodes	 the	
properties	 and	 behaviour	 of	 a	 target	 system	 as	 a	 set	 of	 logico-mathematical	
equations	from	which	future	states	of	the	system	are	analytically	derived.	Agents	are	
considered	 indistinguishable	 and	 homogenised,	 and	 their	 inter-relationships	 static,	
unable	 to	 change	 over	 simulated	 time.	 Static	 and	 dynamic	 micro-analytical	
simulation	 techniques	 in	 part	 answer	 this	 limitation.	 Static	 micro-simulation	
introduces	 agent	 heterogeneity	 by	 populating	 models	 with	 distinct,	 individual	
agents,	 and	 splits	 the	 target	 system	 into	 different	 levels	 in	 the	 model	 system.	
Dynamic	 micro-simulation	 permits	 changes	 to	 target	 system	 populations	 to	 be	
represented	 in	 the	 system	 model	 and	 thus	 allows	 the	 model	 to	 exhibit	 dynamic	
behaviour	over	 simulated	 time.	Other	 types	of	 simulation	 include	queuing	models,	
cellular	automata,	and	evolutionary	simulation	models,	as	well	agent-based	models,	
which	we	concentrate	on	for	the	remainder	of	the	paper.4	

4.3 		Agent-based	Modelling	
Agent-based	 modelling	 and	 simulation	 (ABMS)	 forms	 the	 core	 of	 Epstein’s	
“generative	 social	 science”.	 The	 goal	 of	 generative	 social	 science	 is	 to	 “grow”	
artificial	social	structures	in	order	to	study	the	links	and	relationships	between	local,	
heterogeneous,	 individual	 agents	 and	 the	 macro	 social	 structures	 they	 generate.	
Individual	 people	 in	 the	 domain	 or	 society	 under	 study	 are	 represented	 as	 agents	
that	 interact	 locally	 through	processes	 that	 are	 social	 relevant,	 including	birth	 and	
death	 rates,	 violence,	 disease,	 crime,	 and	 warfare,	 as	 well	 as	 the	 externalities	
produced	by	other	social	actors	such	as	 industrial	pollution	(a	negative	externality)	
or	positive	health	externalities	(Li	et	al.	2008).	
	

																																																								
3	See	Epstein	(2006)	for	an	interesting	discussion	of	emergence	in	social	simulation.	
4	Gilbert	and	Troitzsch	(2005)	is	a	convenient	introduction	to	the	many	types	of	
social	simulation.		
	

	 11	

One	hallmark	of	ABMS,	responsible	in	part	for	the	high	computational	cost	necessary	
to	 simulate	 the	models,	 is	 the	direct	map	between	agents	 in	 the	model	and	social	
actors	in	the	real-world	domain,	with	each	constituent	represented	one-to-one	by	an	
agent	 in	 the	model.	 Each	agent	has	 its	own	attributes	 and	behavioural	 properties,	
and	 interacts	 with	 other	 actors	 and	 the	 environment	 according	 to	 a	 collection	 of	
rules	 that	 codify	 the	 state	 transitions	 of	 agents	 and	 the	 environment	 over	 time,	
which	 is	 controlled	 by	 an	 event	 scheduler.	 ABMS	 schedulers	 typically	 implement	
either	 time-step	 or	 discrete	 event	 scheduling,	 with	 the	 latter	 approach	 more	
appropriate	 as	 models	 grow	 in	 size	 and	 complexity	 (North	 and	 Macal	 2007).	 To	
model	the	interactions	between	agents,	ABMS	makes	use	of	topologies	to	define	the	
notion	 of	 a	 'local	 space'	 or	 'neighbourhood'	 (Macal	 and	 North	 2009).	 This	
neighbourhood	 delimits	 a	 local	 area	 within	 which	 agents	 can	 interact	 and	 thus	
controls	 the	 extent	 to	 which	 agents	 exchange	 information	 through	 limiting	 inter-
agent	activity	to	between	only	those	agents	within	a	given	neighbourhood	at	a	given	
time.	 In	this	way	the	dynamics	responsible	for	the	social	phenomenon	under	study	
are	partly	generated	through	specification	of	the	topological	structure	of	the	model.	
	
In	constructing	a	simplified	model	of	a	target	social	phenomenon,	individual	agents,	
their	attributes,	and	environment	are	specified.	Like	the	target	system,	the	model	is	
dynamic,	having	both	structure	and	behaviour,	because	it	aims	to	capture	real	world	
dynamic	social	systems	that	evolve	over	time.	To	realise	dynamic	behaviour	agents	
in	the	model	are	specified	in	detail	with	attributes	and	first-order	behavioural	rules	
governing	 their	 interactions	with	other	agents,	 the	ability	 to	conduct	 sophisticated	
decision	making	over	simulated	time,	and	are	given	second-order	behavioural	rules	
governing	changes	to	first-order	behavioural	rules,	memory	and	available	resources,	
(Macal	 and	 North	 2009).	 The	model	 structure	 is	 specified	 by	 a	 set	 of	 parameters	
specifying	the	initial	conditions	of	the	model.	The	detail	required	in	the	specification	
of	 agents	 and	 their	 environment	 is	 necessary	 to	 generate	 complex,	 dynamic	 and	
adaptive	 behaviour	 precludes	 the	 use	 of	 statistical	 techniques	 used	 to	 construct	
static	models	of	 linear	systems.	Linear	systems	analysis	permits	analytic	techniques	
that	 derive	 the	 future	 structure	 of	 the	 system	model	 because	 linear	 systems	 are	
represented	as	sets	of	equations	admitting	tractable	mathematical	resolution	using	
statistical	 and	 algebraic	 methods.	 The	 nonlinear	 social	 systems	 studied	 using	
simulation	 techniques	 are	 too	 complex	 to	 accommodate	 analytic	 approaches.	
Instead,	 computer	 simulations	 representing	 the	evolution	of	 the	model’s	 structure	
are	 used	 to	 study	 how	 the	 target	 system	 reacts	 under	 permutations	 to	 its	
parameters	and	initial	conditions.		
	

4.4 The	Workflow	and	Logic	of	Social	Simulation	
There	is	no	standardized	way	of	approaching	social	simulation	or	the	construction	of	
complex	 agent	 models.	 Gilbert	 and	 Troitzsch	 (2005)	 explicate	 the	 development	
process	 as	broken	 into	distinct	 stages	 including	model	design,	model	 construction,	
verification	 and	 validation,	 and	 publication.	 Grimm	 and	 Railsback	 (2012)	 give	 a	
number	 of	 heuristics	 to	 aid	 the	 modelling	 process	 such	 rephrasing	 the	 problem	
statement,	 using	 simple	 diagrams	 to	 understand	 the	model’s	 structure,	 imagining	
you	 are	 inside	 the	 system,	 and	 identifying	 essential	 variables	 and	 simplifying	

	 12	

assumptions.	 They	 go	 on	 to	 formulate	 a	 six	 stage	modelling	 lifecycle	 consisting	 of	
formulating	 the	question	under	 study,	 assembling	hypotheses	 to	 test,	 determining	
the	 model	 structure,	 implementing	 the	 model,	 performing	 analysis,	 and	 finally	
communicating	 the	 results.	 In	 general,	 after	 identifying	 an	 explanatory	 target	 –	 a	
given	 social	 process,	 outcome,	 macro	 structure	 or	 configuration	 –	 an	 abstract	
representation	 is	 constructed	 to	model	 the	 target.	 The	model	 is	 then	 run	 through	
simulated	time	to	produce	simulated	data,	paralleling	the	act	of	gathering	empirical	
data	on	 the	 target.	This	 forms	 the	basis	of	an	analysis	and	a	process	of	 identifying	
connections	 between	 the	 simulated	 and	 collected	 data	 in	 order	 to	 verify	 that	 the	
model	produces	results	similar	to	those	of	the	real	world.		

5 Teaching	Agent-Based	Modelling	and	Simulation	
There	 is	very	 little	 literature	specifically	devoted	to	teaching	agent-based	modeling	
and	simulation.		Macal	and	North	(2010)	though	do	discuss	the	elements	of	a	typical	
course	 on	 ABMS.	 We	 outline	 this	 syllabus	 below	 as	 a	 point	 of	 reference	 and	
comparison	with	the	experiences	and	problems	encountered	by	ABMS	teachers	and	
demonstrators.		

5.1 Macal	and	North’s	ABMS	Teaching	Syllabus	
Macal	 and	 North	 give	 three	 high	 level	 objectives	 when	 teaching	 agent-based	
modelling	and	simulation.	These	cover	how	to	think	about	ABMS,	how	to	do	ABMS,	
and	the	aim	of	furnishing	students	with	a	language	for	engaging	with	and	discussing	
ABMS.	 To	meet	 these	objectives	 they	 describe	 a	 collection	of	 teaching	 techniques	
and	strategies,	and	discuss	 the	structure	of	an	ABMS	teaching	syllabus	that	can	be	
calibrated	 in	 line	with	the	skills	of	the	audience	and	the	 length	of	the	course.	They	
stress	the	diversity	often	found	within	cohorts	enrolled	on	ABMS	programmes	(the	
ABMS	 conundrum),	 the	 variety	 of	 skills	 and	 knowledge	 required	 to	 successfully	
pursue	 serious	work	 in	 ABMS,	 and	 links	 between	 this	 diversity	 and	 the	 challenges	
inherent	in	teaching	ABMS.	
	
Macal	and	North’s	paper	is	split	into	four	sections.	The	introduction	draws	attention	
to	the	wide	range	of	applications	to	which	agent-based	modelling	is	applied,	where	
they	mention	ecology,	biology,	market	analysis,	supply	chains,	military	planning	and	
economics	and	more.	They	also	explicitly	distinguish	between	what	they	term	agent-
based	simulation	(ABS),	system	dynamics	(SD)	and	Discrete	Event	Simulation	(DES),	
and	they	stress	that	although	these	approaches	to	simulation	share	many	similarities	
there	are	also	significant	differences	which	makes	the	incorporation	of	agent-based	
simulation	into	other,	non-agent-based	courses	problematic.	Factors	that	make	this	
difficult	 include	 the	 varying	 computational	 platforms	 used	 to	 model	 systems	 and	
execute	 simulations,	 the	 backgrounds	 and	 skill	 sets	 of	 students	 studying	 different	
types	of	simulation–	 including	differences	 in	programming,	quantitative,	modelling,	
natural	 and	 learned	 skills	 and	 aptitudes	 –	 and	 the	 different	 problem	 domains	 in	
which	different	types	of	simulation	are	used.	
	
Section	2	reflects	on	developing	ABS	teaching	strategies.	They	begin	by	highlighting	
the	 wide	 degree	 of	 interest	 in	 agent-based	 approaches,	 from	 both	 students	 and	
instructors,	 which	 they	 contend	 derives	 from	 the	 fact	 that	 we	 are	 all	 ourselves	

	 13	

agents,	and	because	agent-based	modelling	deals	with	identifiable	agents	in	place	of	
idealized	abstractions	or	 representative	values,	 it	 is	possible	 to	generate	a	 level	of	
student	engagement	and	enthusiasm	for	agent-based	modelling	that	does	not	exist	
with	other	simulation	approaches.	
	
They	next	allude	to	the	history	of	ABS,	citing	in	particular	work	in	complex	systems,	
complex	adaptive	systems,	artificial	intelligence	and	the	evolution	of	cooperation.	It	
is	 these	 deep,	 wide	 ranging	 intellectual	 antecedents,	 combined	 with	 multifarious	
problem	 domains	 that	 results	 in	 such	 a	 broad	 range	 of	 students	 studying	 agent-
based	modelling	and	simulation.	Variation	in	student	backgrounds,	from	areas	such	
as	computer	science,	sociology,	psychology,	philosophy,	environmental	and	political	
sciences,	 and	 engineering,	 mean	 that	 instructors	 must	 strike	 a	 balance	 between	
ensuring	that	a	course	on	ABMS	includes	at	least	a	rudimentary	introduction	to	each	
of	the	key	topics	central	to	agent-based	simulation,	and	at	the	same	time	hold	the	
engagement	 of	 students	 with	 more	 advanced	 skills	 and	 deeper	 background	
knowledge.	Students,	in	the	experience	of	Macal	and	North,	tend	to	have	some	but	
not	all	of	the	skills	necessary	to	pursue	agent-based	modelling,	although	these	skills	
are	typically	developed	in	other	areas.	
	
Macal	 and	 North	 distinguish	 next	 between	 introductory	 courses	 on	 ABMS,	 which	
focus	 on	 modelling	 complex	 systems,	 and	 more	 advanced	 courses	 focused	 on	
building	 complex	 system	 models.	 Introductory	 courses	 on	 modelling	 complex	
systems	are	focused	on	teaching	users	the	basic	principles	of	modelling	in	general,	as	
well	as	agent-based	modelling	 in	particular.	Advanced	courses,	which	 focus	on	 the	
use	 of	 a	 single	 modelling	 and	 execution	 platform,	 are	 further	 broken	 down	 into	
courses	aiming	at	basic	proficiency	with	a	particular	platform	and	tool	set,	and	large-
scale	agent-based	 simulations,	which,	 as	 its	 name	 suggests,	 focuses	on	developing	
larger	models	that	utilize	the	full	range	of	functionality	provided	by	a	given	software	
package.	They	note	however	that	it	is	possible	to	include	practical	modelling	work	in	
introductory	 courses,	 and	 they	 expect	 students	 having	 attended	 introductory	
courses	 containing	 practical	modelling	work	 to	 have	 the	 skills	 necessary	 to	 create	
their	own	models	independently.	At	the	other	end	of	the	spectrum	courses	focusing	
on	large-scale	ABMS	are	designed,	on	this	view,	to	develop	the	skills	and	capabilities	
of	more	 advanced	 students	 by,	 for	 example,	 constructing	models	 that	 scale	 agent	
numbers,	 deepen	 agent	 behavioural	 complexity	 and	 memory,	 and	 extend	 the	
complexity	and	detail	of	the	simulation	environment	in	which	model	agents	operate.	
		
Macal	 and	 North	 list	 a	 number	 of	 tools	 available	 to	 instructors	 to	 achieve	 their	
objectives	beyond	the	software	packages	we	discuss	below,	designed	specifically	to	
facilitate	agent-based	modelling.	These	include:	
	

• Distributed	computer	technology	
• Artificial	intelligence	and	machine	earning	(neural	networks	e.g.)	
• Geographical	information	systems	(GIS)	
• Database	systems	
• Version	control	systems	(VCS)	
• Integrated	development	environments	(IDE)	

	 14	

	
In	section	3	Macal	and	North	give	a	general	ABMS	course	outline,	discuss	practical	
demonstration	work,	 student	 skills,	measuring	 student	 progress	 and	 achievement,	
and	give	two	course	syllabi,	intended	for	week	and	semester	long	courses.		
	
Their	outline	of	a	general	course	on	ABMS	includes	a	set	of	core	topics	designed	to	
give	students	a	comprehensive	introduction	to	modelling,	which,	they	say,	goes	into	
far	more	detail	 than	would	a	course	 restricted	 to	 learning	 to	use	a	 specific	 tool	or	
software	platform.	They	include	a	twelve-point	list	of	topic	areas,	noting	that	topics	
1-7	relate	specifically	to	agent-based	modelling	and	simulation	whilst	topics	8-12	are	
applicable	to	a	more	generalist	course	on	modelling	and	simulation.	We	reproduce	
the	list	here	for	convenience	and	reference:	
	

1. Introduction	and	basic	ABMS	concepts	
2. ABMS	use	cases	and	why	ABMS	is	appropriate	for	a	given	problem	domain	
3. ABMS	model	design	process	
4. Comparisons	of	differing	ABMS	modelling	methodologies	
5. Tools	for	ABMS	
6. Detailed	examination	of	one	(two)	ABMS	tools	in	particular	
7. ABMS	model	architectures	
8. Verification	and	validation	procedures	
9. Data	collection	and	cleaning	
10. Output	analysis	
11. Results	presentation	
12. Project	management	

	
Macal	and	North	also	discuss	the	power	and	relevance	of	including	practical	in-class	
demonstrations	that	motivate	students,	provide	introductions	to	core	concepts	and	
techniques,	 and	 give	 students	 ideas	 on	 the	 types	 of	models	 and	 simulations	 they	
might	 like	 to	 construct	 themselves.	 The	 time	 spent	 before	 and	 after	 practical	
demonstrations	 is	 also	 important.	 Prior	 to	 a	 demonstration	 students	 must	 be	
introduced	to	the	system	under	study	and	be	familiar	with	the	rules	governing	agent	
behaviour	and	the	simulated	environment.	This	allows	students	to	make	predictions	
about	 expected	 results	 and	 system	 behaviour	 before	 a	 simulation	 is	 run.	
Expectations	 can	 then	 be	 compared	 with	 actual	 results	 and	 the	 behaviour	 of	 the	
system	can	be	analysed	with	respect	to	the	modelling	and	systems	concepts	taught	
during	 the	 study	 programme.	 The	 six	 example	 simulations,	 cited	 because	 they	
expose	students	to	a	wide	range	of	modelling	applications,	which	are	suitable	for	in-
class	demonstration,	are,	amongst	many	others:	
	

1. Conway’s	Way	of	Life	
2. Boid’s	Flocking	Simulation	
3. Schelling	Housing	Segregation	Model	
4. Mass	Opinion	Spreading	Simulation	
5. Matching	Triangles	Participatory	Simulation	
6. Beer	Game	Simulation	

	

	 15	

As	 regards	 skills,	 Macal	 and	 North	 draw	 upon	 work	 by	 the	 Project	 Management	
Institute,	listing	seven	separate	skill	sets,	in	varying	degree	taught	and	presupposed	
by	instructors.	They	make	the	basic	though	important	points	that	the	level	to	which	
a	particular	skill	set	is	taught	is	dependent	on	(I)	the	skills	background	of	the	course	
participants,	 and	 (II)	 the	 course	 time	 available.	 Furthermore,	 course	 prerequisites	
are	determined	by	the	skills	on	the	list	that	are	not	taught	during	a	particular	study	
programme	 –	 if	 a	 skill	 is	 on	 the	 list,	 and	 isn’t	 taught	 during	 class,	 it	 should	 be	
consider	 a	 prerequisite.	 We	 again	 reproduce	 Macal	 and	 North’s	 key	 skills	 list	 for	
convenience:	
	

1. Modelling	
2. Programming	
3. Model	verification	and	validation	
4. Data	collection	and	cleaning	
5. Model	analysis	
6. Results	communication	
7. Project	management	

	
Considering	 the	 measurement	 of	 student	 progress	 and	 achievement	 Macal	 and	
North	give	an	eleven-point	list	that	maps	almost	directly	onto	the	twelve-point	list	of	
core	topic	areas	discussed	above.	Unsurprisingly	this	includes	the	ability	to	describe	
the	 modelling	 process,	 compare	 different	 approaches	 to	 modelling,	 describe	
different	use	cases,	have	knowledge	of	the	model	design	and	development	process,	
develop	modelling-specific	project	management	 skills,	demonstrate	 the	use	of	one	
or	two	model	development	and	execution	software	platforms,	perform	basic	model	
verification	 and	 validation,	 understand	 the	 techniques	 and	 problems	 of	 data	
collection	and	cleaning,	discuss	model	output	analysis,	and	at	 least	describe,	 if	not	
display,	the	ability	to	present	output	results	to	an	audience	of	decision	makers.	
	
The	 final	 part	 of	 Macal	 and	 North’s	 paper	 outlines	 two	 teaching	 programmes,	
designed	 for	 courses	 lasting	 one	 week	 and	 one	 semester.	 The	 former	 is	 quite	
detailed,	 containing	 a	 9am-5pm	 breakdown	 of	 topics	 covered	 on	 each	 of	 the	 five	
days,	and	gives	start	and	end	times	 for	 the	different	 topics.	They	also	suggest	 that	
this	course	could	be	broken	down	into	courses	lasting	only	three	or	just	one	day.	The	
latter,	 longer	 course	 is	 correspondingly	 more	 detailed,	 covering	 the	 range	 of	
objectives	detailed	above.	

5.2 Experiences	and	Problems	Teaching	ABMS	
In	 this	 section	we	 compare	Macal	 and	North’s	work	 on	 teaching	 ABMS	with	 first-
hand	 reports	 of	 experience	 teaching	 ABMS	 within	 the	 contemporary	 UK	 higher	
education	 system,	 although	 this	 is	 not	 confined	 to	 formal	 undergraduate	 and	
postgraduate	teaching.	
	
[Reports/experiences/conversations/other	info	we	can	gather	to	go	here]	

	 16	

6 Implementing	Agent-Based	Models	
In	this	section	we	discuss	the	implementation	of	agent-based	models.	We	focus	on	
the	 software	 platforms	 and	 technical	 architectures	 available	 to	 support	 ABMS.	
Agent-based	models	 sit	 on	 a	 continuum	 from	 small-scale	 exploratory	models	with	
idealized	 assumptions	 that	 focus	 on	 the	most	 important	 or	 specifically	 interesting	
elements	 of	 the	 target	 system,	 to	 large-scale	 decision	 support	 applications	
incorporating	 substantial	 empirical	 data	 aimed	 at	 supporting	 policy	 formation	 and	
high-level	 decision	 making	 (Macal	 and	 North	 2009).	 This	 determines	 the	 most	
suitable	 software	 to	use.	A	wide	 range	of	development	and	execution	platforms	 is	
available,	 including	 general-purpose	 software	 packages	 supported	 by	 mainstream	
programming	 languages,	 and	 special	 purpose	 toolkits	 specifically	 designed	 for	
implementing	 agent-based	 models.	 Scale	 also	 determines	 appropriate	 hardware,	
with	 small-scale	 simulations	 requiring	 only	 the	 resources	 of	 a	 typical	 desktop	
computer,	 while	 very	 large	 simulations	 necessitate	 the	 use	 of	 high	 performance	
compute	clusters,	grid	technologies	or	cloud	resources.		
	
Literature	on	modeling	platforms	is	plentiful.	For	example	Nikolai	and	Madey	(2009)	
provide	an	 in-depth	comparison	of	ABMS	modelling	and	execution	packages,	while	
North	 and	 Macal	 (2012)	 contains	 extended	 discussion	 of	 the	 technical	 aspects	
involved	with	 agent-based	modelling.	 Grimm	 and	 Railsback	 (2012)	 also	 contains	 a	
profitable	discussion	on	modelling	environments,	and	although	their	primary	focus	is	
on	 ecology	 the	 first	 three	 chapters	 on	 agent-based	 modeling	 are	 an	 excellent	
introduction	to	the	field.	Macal	and	North	(2007)	provide	a	useful,	 loose	taxonomy	
of	 the	 types	 of	 tools	 necessary	 to	 run	 simulations	 at	 different	 scales	 and	
complexities.	Of	most	interest	to	ABMS	teachers	are	platforms	used	to	run	relatively	
simple	 simulations	 at	 the	 less	 complex	 end	 of	 the	 modelling	 spectrum.	 Basic	
commodity	hardware	–	desktop	or	laptop	computers	–	is	generally	sufficient	at	this	
scale.	 This	 type	 of	 modeling	 platform	 includes	 spreadsheet	 applications	 such	 as	
Microsoft	Excel	(with	VBA	programming),	prototyping	environments	such	as	Repast	
Simphony,	 NetLogo	 and	 StarLogo,	 and	 mathematical	 modeling	 platforms	 such	 as	
MATLAB	 and	Mathematica.	 Each	 is	 an	 appropriate	 candidate	 for	 teaching	 ABMS,	
although	the	integrated	development	and	simulation	tools	incorporated	into	Repast-
like	 prototyping	 environments	 make	 them	 by	 far	 the	 most	 suitable	 option	 for	
introductory	to	intermediate	courses.		

6.1 Development	and	Execution	Platforms	
An	ABMS	development	and	execution	platform	is	a	software	package	allowing	users	
to	 develop	 (code)	 and	 run	 (execute)	 agent-based	models.	 The	 choice	 of	 platform	
used	for	a	typical	course	on	ABMS	is	likely	to	be	relatively	straightforward	because	in	
most	cases	a	graphical	development	interface	supported	by	an	appropriate	runtime	
environment	is	sufficient.		
	
Although	 each	 platform	 has	 unique	 features,	 and	 is	 designed	 with	 more	 or	 less	
specific	 uses	 in	 mind,	 readily	 available,	 open	 source	 platforms	 such	 as	 Repast,	
MASON,	Swarm	and	NetLogo	are	all	 suitable	options.	A	 range	of	 factors	affect	 the	
choice	of	platform	including	the	size	and	complexity	of	the	target	system	and	model,	
the	 real	world	 domain	 under	 study,	 goals	 of	 the	 course	 –	 introductory	 overviews,	

	 17	

detailed	 case	 studies,	 technical	 skills	 development	 –	 target	 audience,	 including	
undergraduates,	 postgraduates,	 social	 scientists,	 software	 developers,	 academic	
staff,	 researchers,	 and	 professionals,	 length	 of	 course,	 scheduled	 contact	 time,	
available	 computational	 resources	 such	 as	 desktops,	 laptops,	 grids,	 clusters	 and	
clouds,	 skills	 available	 and	 required	 of	 both	 instructors	 and	 students,	 and	 the	
academic,	educational	and	professional	backgrounds	and	interests	of	the	instructors	
and	students	involved.		

6.1.1 Spreadsheets	
Spreadsheets	 are	 the	 easiest	 though	 most	 restrictive	 software	 tool	 available.	
Developing	 simple	 models	 of	 agent	 behaviour	 is	 relatively	 straightforward	 using	
spreadsheets,	 considered	against	 the	 complexity	of	dedicated	packages,	but	 suffer	
from	 concomitant	 problems	 relating	 to	 complexity	 –	 limited	 diversity	 and	
interactivity	 of	 and	 between	 agents	 –	 and	 the	 scalability,	 of	 models	 they	 permit.	
Despite	 this	 Macal	 and	 North	 (2007)	 cite	 Bower	 and	 Bunn	 (2000)	 as	 developing	
useful	agent-based	models	using	spreadsheets.	Example	packages	include	Microsoft	
Excel	 with	 VBA	 programming	 and	 other	 spreadsheet	 applications	 such	 as	
OpenOffice,	which	also	has	(limited)	support	for	VBA,	and	LibreOffice,	which	allows	
users	 to	 implement	 macros	 using	 the	 Basic	 programming	 language.	 We	 include	
spreadsheets	 for	 completeness	 though	 it	 is	unlikely	 that	 readers	of	 this	 report	will	
intend	to	use	them	to	teach	ABMS.		

6.1.2 Computational	Mathematics	Systems	
Macal	 and	 North	 (2007)	 highlight	 the	 usefulness	 of	 computational	 mathematics	
systems	 (CMS)	 in	 developing	 agent-based	 models,	 especially	 if	 users	 have	 a	
background	 using	 such	 tools	 (cf.	 Thorngate	 2000).	 They	 state	 that	 the	 CMS	must	
implement	a	fully-fledged	scripting	language	and	support	array	(list)	processing.	The	
former	 is	 necessary	 to	 sidestep	 the	 compilation	 and	 linking	 entailed	 by	 compiled	
languages	such	as	C++,	while	array	processing	 is	necessary	 for	efficiently	executing	
simulations.	 The	 benefits	 conferred	 by	 a	 CMS	 stem	 from	 the	 interactive	 user	
interface,	allowing	 the	modeller	 to	 closely	explore	 the	model	during	development,	
and	 the	 extensive	 range	 of	mathematical	 functionality	 available.	 Examples	 include	
MATLAB,	 Mathematica,	 Gauss	 and	 Forio	 Simulate.	 As	 with	 spreadsheets	 it	 is	 less	
likely	 that	 a	 CMS	 will	 be	 used	 to	 teach	 ABMS	 than	 a	 dedicated	 modelling	
environment	such	as	Repast	Simphony.	
	
Mismatch	between	these	platforms	and	agent	models.	Natural	expression	of	agent	
based	models	using	object	oriented	langauges.		

6.1.3 Object-Oriented	and	Procedural	Programming	Languages	
Macal	and	North	highlight	the	usefulness	programming	languages	such	as	Java,	C++,	
Objective	 C	 and	 Python	 in	 constructing	 simulation	 models.	 	 It	 is	 possible	 to	 use	
procedural	 languages	such	C	to	implement	agent-based	models	but	languages	such	
as	 Java,	 supporting	 object-orientation,	 are	 far	 more	 helpful	 because	 they	 allow	

	 18	

agents	 in	 the	 domain	 to	 be	modelled	 by	 objects	 in	 the	 language.5	Other	 features	
particular	 to	 object-oriented	 programming	 useful	 for	 implementing	 agent-based	
models	 include	 inheritance,	 polymorphism	 and	 encapsulation.	 Students	 learning	
ABMS	will	most	 likely	 have	 to	 gain	 at	 least	 passingly	 familiarity	with	 one	 or	more	
major	 object-oriented	 language,	 or	 dedicated	 modelling	 language	 based	 on	 a	
mainstream	 language,	 although	 the	 proliferation	 of	 dedicated	 modelling	
environments	means	this	will	probably	be	one	component	of	a	 larger	development	
package.	

6.1.4 Dedicated	Prototyping	Environments	
Dedicated	prototyping	environments	such	as	Repast	Simphony	are	available	 to	run	
small-scale	 simulations.	 Geared	 towards	 enabling	 beginners	 or	 those	 with	 only	
limited	experience	and	 skills	 to	 learn	 the	basic	principles	of	ABMS	over	 short	 time	
frames,	they	are	also	useful	for	users	with	greater	technical	proficiency	(Macal	and	
North	2007).	The	models	they	permit	are	more	complex	than	those	developed	using	
spreadsheets	or	CMSs,	but	can	be	easily	and	quickly	designed,	implemented	and	run,	
making	 them	 suitable	 to	 use	 over	 a	 three-day	 or	 other	 short	 course	 on	 ABMS.	
Examples	 include	 the	Repast	 suite,	StarLogo	and	NetLogo.	 Instructors	 interested	 in	
using	the	cloud	will	most	likely	do	so	using	a	prototyping	environment	such	as	these	
because	they	bundle	all	of	the	tools	students	need	to	implement	their	own	models.	
We	 use	 Repast	 Simphony	 running	 in	 the	 cloud	 in	 the	 technical	 demonstrations	
described	in	section	[x].	

6.1.4.1 Repast	Simphony	
Repast	is	an	acronym	for	the	REcursive	Porous	Agent	Simulation	Toolkit,	a	collection	
of	 modelling	 and	 execution	 platforms	 featuring	 support	 for	 Java,	 Python	 and	 the	
.NET	 framework	 –	 Repast	 J,	 Repast	 Py,	 Repast.NET.	 Repast	 Simphony6	is	 a	 fourth	
member	 of	 the	 Repast	 suite,	 a	 cross-platform	 Java-based	 modelling	 package	
designed	for	use	on	small-scale	local	resources	including	desktops	and	local	clusters.	
It	has	received	extensive	treatment	in	the	literature.	One	advantage	of	this	package	
is	 that	 it	 does	 not	 dictate	 how	models	 are	 implemented.	 Models	 can	 be	 directly	
coded	 in	 Java	 or	 Groovy7 	(a	 modern	 scripting	 language,	 fully	 integratable	 and	
interoperable	with	existing	Java	code,	designed	to	run	in	the	Java	virtual	machine.	It	
adds	the	benefits	of	modern	dynamic	languages	(e.g.	dynamic	typing)	while	retaining	
access	 to	 the	 Java	 class	 library).	 ReLogo	 is	 another	 option	 available	 with	 Repast	
Simphony.	 ReLogo	 is	 a	 dedicated	modelling	 environment	 and	 language	 integrated	
with	 the	 Eclipse	 IDE	 that	 is	 bundled	with	 the	 Repast	 Simphony	 download.	 Repast	
Simphony	 also	 has	 point-and-click	 tools	 to	 generate	 detailed	 flow	 charts	mapping	
processes	and	agents	in	the	domain	onto	agents	and	processes	in	the	model.	

																																																								
5	Python	supports	both	procedural	and	object-oriented	programming	paradigms,	
and	is	an	excellent	language	to	learn	the	principles	of	modelling	and	computer	
programming.	
6	http://repast.sourceforge.net/repast_simphony.html	
7	http://groovy.codehaus.org/	

	 19	

6.1.5 Large-Scale	Dedicated	Modelling	Environments	
In	 general	 agent-based	 models	 built	 using	 spreadsheets,	 small-scale	 prototyping	
environments	 and	 CMSs	 can	 be	 developed	 and	 run	 using	 local	 desktop	machines	
typically	available	through	university	departments.	As	simulations	scale	and	gain	 in	
complexity,	 other	modelling	 environments	 are	 apposite,	 including	 Repast	 for	 High	
Performance	Computing,	MASON,	Swarm	and	AnyLogic.	

6.1.5.1 Repast	for	High	Performance	Computing	
[Paragraph	on	RHPC	here?]	

6.1.5.2 Swarm	
Swarm8	is	a	platform-neutral	collection	of	software	libraries	for	the	development	of	
modelling	 and	 simulation	 software,	 consisting	 of	 a	 development	 framework,	
libraries,	and	a	community	user	base	 (Grimm	and	Railsback	 (2012,	chapter	8)	 is	an	
easy	 to	 read	 and	 helpful	 introduction	 to	 issues	 surrounding	 the	 development	 of	
software	 for	 agent-based	 models	 and	 contains	 a	 good	 discussion	 of	 the	 Swarm	
framework).	
[Expand?]	

6.1.5.3 MASON	
MASON 9 	is	 a	 Java-based	 simulation	 platform	 providing	 the	 core	 components	
necessary	 to	 build	 and	 run	 large-scale	 multi-agent	 simulations,	 and	 includes	 a	
modelling	library	and	visualization	tools.	
[Expand?]	

6.1.5.4 AnyLogic	
[Paragraph	on	AnyLogic	here?]	

6.2 Implementation	Challenges	
[Not	sure	if	this	section	is	relevant	or	not]		
Many	 general	 and	 technical	 issues	 arise	 implementing	 computer-based	 agent-
models	 in	 a	 classroom	 context.	 Broadly	 these	 relate	 to	 software,	 including	
installation	and	configuration	challenges,	runtime	dependencies,	and	understanding	
and	 correctly	 utilizing	 the	 tools	 available,	 hardware,	 including	 limitations	with	 and	
access	to	available	compute	resources	such	as	memory,	CPU	power	and	storage,	and	
other,	human-centric	factors,	such	as	the	technical	skills	of	those	implementing	the	
model.	 Additionally,	 issues	 spring	 from	 the	 complexity	 inherent	 in	 agent-based	
models.	 This	 section	 introduces	 these	 problems	 to	 understand	 how	 cloud	 services	
might	help	alleviate	them.	

6.2.1 Model	Complexity	
One	challenge	follows	from	the	complexity	of	agent-based	models.	This	 is	 inherent	
with	the	nature	of	agent-based	modelling	because	they	are	designed	to	capture	the	
system	 complexity	 glossed	 over	 by	 statistical	 techniques	 based	 on	 representative	
agents	 or	 values.	 Model	 complexity	 has	 implications	 for	 the	 development	 and	

																																																								
8	http://www.swarm.org/index.php/Main_Page		
9	http://cs.gmu.edu/~eclab/projects/mason/		

	 20	

execution	environment	used	and	 the	 technical	 infrastructure	deployed	 to	 simulate	
the	model.	
	

6.2.2 Scalability	
Closely	related	to	model	complexity	is	the	problem	of	scalability.		Model	complexity	
and	 the	 size	 of	 the	 data	 sets	 involved	 can	 result	 in	 computationally	 expensive	
simulations	 requiring	 the	 ability	 to	 vertically	 and	 horizontally	 the	 computational	
resources.	The	key	scalability	 factors	are	computational	power	and	memory	usage.	
The	former	relates	to	CPU	speeds	and	cores	available.	The	most	important	aspect	of	
memory	usage,	which	has	most	bearing	on	the	runtime	behaviour	of	the	simulation	
and	relates	to	the	size	and	growth	of	the	simulation	memory	usage,	is	the	size	of	the	
heap	used	by	the	simulation	(Voss	et	al.	2010).	Likely	CPU	and	memory	consumption	
must	 be	 factored	 in	 when	 deciding	 to	 use	 the	 cloud.	 Typically,	 this	 will	 involve	
determining	 the	most	 suitable	 virtual	machine	 instance	 type	 and	 size	 to	meet	 the	
needs	of	the	simulation.	

6.2.3 Data	Sets	
There	 is	 an	 issue	 with	 the	 use	 of	 large	 amounts	 of	 empirical	 data.	 Often	 models	
require	large	data	sets,	which	cannot	be	handled	by	local	commodity	resources	such	
as	PCs.	This	creates	problems	because	of	limits	on	the	resources	typically	available	to	
instructors	in	the	classroom.	

6.2.4 Parameter	Space	
Another	 problem	 stemming	 from	 the	 sheer	 size	 of	 some	 agent-based	 models	 –	
simulating	a	social	process	often	incorporates	millions	of	 individual	simulations	–	 is	
the	size	of	the	resulting	parameter	space,	which	can	lead	to	technical	challenges.	The	
parameter	 space,	 proportional	 to	 the	 number	 of	 agents	 in	 the	 model	 and	 the	
complexity	 of	 their	 socially	 salient	 interactions,	 is	 often	 huge	 and	 very	 detailed,	
consisting	 of	 multiple	 input	 parameters	 assuming	 multiple	 distinct	 values.	
Computationally,	 the	 exploration	 of	 this	 space	 can	 be	 very	 expensive	 and	 is	 often	
only	 feasible	 at	 scale	 because	 of	 the	 need	 to	 perform	 comprehensive	 parameter	
sweeps	or	run	multiple	simulations	with	varying	or	specific	parameter	initializations.		
	

6.2.5 Time	
The	 time	 taken	 to	 run	 simulations	 can	 be	 problematic,	 with	 some	 models	 taking	
[several	sessions?]	to	fully	run.	This	potentially	presents	problems	if	local	resources	
used	to	teach	a	course	are	released	after	scheduled	contact	time	for	use	by	others.	
This	problem	does	not	arise	 in	the	cloud,	as	 it	 is	possible	to	 leave	virtual	machines	
running	 indefinitely,	 although	 the	 cost	 implications	 of	 doing	 so	 must	 be	 carefully	
calculated	beforehand.	
	

6.3 Technical	Architectures	
Running	 social	 simulations,	 in	 particular	 agent-based	 models,	 can	 be	 very	
computationally	 expensive.	 The	 resources	 necessary	 can	 quickly	 outstrip	 the	
capabilities	of	even	modern,	powerful,	desktop	and	 laptop	machines.	On	the	other	
hand	it	is	perfectly	possible	to	run	relatively	advanced	and	complex	models	on	cheap	

	 21	

commodity	hardware.	We	believe	the	chief	difficulty	instructors	face	will	likely	stem	
from	 configuration	 and	 installation	 problems	 with	 the	 hardware	 at	 their	 disposal	
rather	 than	 insufficient	 access	 to	 hardware	 with	 the	 required	 technical	
specifications,	although	either	is	possible.	Instructors	can	either	use	non-distributed	
local	 commodity	 resources	 or	 a	 (local	 or	 remote)	 distributed	 system.	 Distributed	
systems	 could	 be	 useful	 as	 agent	 models	 become	 more	 complex	 and	 generate	
computationally	expensive	simulations.	Technical	architectures	capable	of	executing	
distributed	simulations	fall	 into	three	categories	–	grids,	dedicated	high	throughput	
and	 high	 performance	 compute	 clusters,	 and	 clouds,	 although	 problems	 faced	
running	simulation	jobs	on	grids	and	distributed	clusters	provide	a	strongly	motivate	
the	latter.	

6.3.1 Commodity	Resources	
The	 easiest	 way	 to	 run	 agent-based	models	 is	 to	 use	 local	 commodity	 hardware,	
normally	 consisting	 of	 school	 desktops	 or	 user-supplied	 laptops.	 Technological	
advances	in	commodity	hardware	have	made	it	possible	to	run	relatively	large-scale	
simulations	on	cheap,	readily	available	compute	resources	(Voss	et	la.	2010).	There	
are	 limitations	 in	 relying	on	 institutional	 resources	and	 student’s	 laptops	however.	
These	 include	 lack	 of	 root	 permissions	 to	 install	 required	 software	 packages,	
incompatible	 operating	 systems,	 and	 variability	 in	 the	 hardware	 specifications	
available	 at	 different	 institutions	 and	 with	 users	 laptops.	 This	 makes	 it	 hard	 to	
properly	plan	the	technical	aspects	of	a	course	on	ABMS,	as	instructors	have	to	deal	
with	 heterogeneous	 technologies	 and	 uncertainty	 over	 the	 ability	 of	 students	 to	
access	 the	 course	 content	 (particularly	 if	 the	 course	 only	 lasts	 a	 short	 period	 of	
time).	

6.3.2 Distributed	Systems:	Compute	Clusters	and	Grid	Technologies	
Deficient	local	resources	could	motivate	the	use	of	some	type	of	distributed	system.	
The	number	of	agents,	amount	of	data	and	size	of	the	parameter	space	involved	can	
mean	 that	 efficient	 processing	 requires	 the	 simulation	 to	 execute	on	 a	distributed	
system,	 which	 always	 introduces	 non-trivial	 configuration,	 deployment	 and	
administration.	 Particular	 difficulties	 turn	 on	 distributing	 the	 elements	 of	 a	
simulation	over	the	computational	resources	available	(Gulyas	et	al.	no	date	given).	
Distributed	systems	 include	grids,	dedicated	clusters	and	clouds.	Each	 introduces	a	
high	degree	of	error-prone	work	so	their	utility	balances	against	the	increased	cost	in	
complexity,	configuration	time	and	the	added	opportunity	to	introduce	mistakes	into	
the	modelling	and	simulation	process.		
	

6.3.2.1 High	Performance,	High	Throughput	and	High	Availability	Computing	
Cluster	 computing	 refers	 to	 the	 use	 of	 a	 local	 collection	 of	 networked	 computers,	
where	a	 front-end	node	 typically	 acts	 as	 a	 load	balancer	 and	distributes	work	and	
data	 to	 back-end	 worker	 nodes.	 Clusters	 are	 used	 to	 provide	 high	 performance	
(HPC),	 high	 throughput	 (HTC)	 and	 high	 availability	 compute	 platforms.	 HPC	 is	
achieved	by	 allocating	 compute	 tasks	 across	worker	 nodes,	 to	 run	 task	 quicker	 by	
boosting	processing	power.	HTC	refers	to	performing	more	computations	in	a	given	
time	 period	 and	 is	 achieved	 by	 increasing	 the	 number	 of	 worker	 nodes	 available.	
High	availability	computing	refers	to	deploying	redundant	cluster	nodes	responsible	

	 22	

for	 serving	 applications	 and	 resources	 in	 failover	 scenarios	 resulting	 from	 systems	
failure,	outages	and	other	service	disruptions.		
	

6.3.2.2 Grid	Computing	
Grid	 computing	 extends	 the	 basic	 notion	 of	 a	 cluster	 to	 meet	 intensive	 –	 high	
performance	 –	 computational	 and	 storage	 requirements,	 with	 a	 distributed	 and	
decentralized	 heterogeneous	 compute	 network	 (in	 effect	 grids	 are	 collections	 of	
computer	clusters).	Grids	pool	distributed	multivariate	compute	resources	operated	
by	 different	 institutions	 working	 together,	 with	 decentralized	 access	management	
mediated	and	controlled	through	middleware	platforms	designed	to	orchestrate	the	
work	 of	 nodes	 located	 in	 different	 geographic	 regions	 with	 different	 operating	
systems,	 software	 stacks	 and	 hardware	 specifications	 (Feldhaus,	 Freitag	 and	 El	
Amrani	2012).		
	
The	need	to	arbitrate	access	to	compute	grids	through	complicated	middleware	is	a	
big	problem,	whether	for	ABMS,	teaching	or	other	purposes,	and	is	a	strong	reason	
to	favour	cloud	services	over	grids,	primarily	because	of	restrictions	on	when,	where	
and	 how	 the	 grid	 may	 be	 accessed	 (Feldhaus,	 Freitag	 and	 El	 Amrani	 2012).	
Comparing	clouds	and	grids	highlights	the	ease	of	use	and	relative	simplicity	of	the	
former	 for	 ABMS	 (see	 for	 example	 Chen	 et	 al.	 (2008),	 which	 presents	 a	 grid	
middleware	platform	designed	 to	 run	Repast	 agent-based	 simulations	 on	 the	 grid.	
The	 complexity	 of	 this	 work	 shows	 how	 easy	 it	 is	 to	 provision	 cloud	 resources	
compared	to	grid	resources).	

6.3.2.3 GridABM	
Often	 the	 size	 and	 complexity	 of	 agent-based	models	means	 they	 should	 execute	
across	 multiple	 processors.	 This	 requires	 code	 parallelization	 and	 can	 lead	 to	
problems	if	users	are	not	proficient	with	advanced	software	engineering	techniques.	
This	is	the	motivation	behind	gridABM,	a	platform	allowing	users	to	easily	run	non-
parallelized	 code	 on	 grids,	 clusters	 and	multicore	 hardware.10	GridABM	 is	 built	 on	
top	 of	 the	 Java	 programming	 language,	 the	 Repast	 modelling	 and	 execution	
environment	 and	 the	 ProActive	 Parallel	 Suite.	 ProActive11	is	 a	 suite	 of	middleware	
tools	 for	 the	management	of	private	and	public	high	performance	compute	clouds	
and	 clusters,	 allowing	 the	 execution	 of	 HPC	 workflows	 and	 orchestrating	
heterogeneous	 resource	 management,	 application	 parallelization	 and	 task	
scheduling,	and	 is	 the	 foundation	enabling	 technology	 for	gridABM.	Users	 follow	a	
relatively	 straightforward	 five-step	 recipe	 to	 run	 their	 code	 with	 gridABM.	 The	
process	 is	 designed	 around	 a	 set	 of	 dry	 schemas,	 which	 act	 as	 parallelization	
templates	 for	 the	 specific	 communication	 topology	 realized	 by	 a	 particular	 agent-
based	model.	See	Gulyas	et	al.	(????)	for	further	details.	

6.3.3 Service-Oriented	Simulation	Architectures	
Zhang,	 Coleman,	 Pellon	 and	 Leezer	 (2008)	 provide	 a	 service-oriented	 architecture	
designed	to	run	multi-agent	simulations	across	a	distributed	system,	with	a	master	

																																																								
10	http://gridabm.sourceforge.net/	
11	http://proactive.inria.fr/	

	 23	

GUI	 interface	 running	 on	 a	 single	 machine	 controlling	 the	 whole	 system.	 Their	
system	 aims	 to	 provide	 researchers	 with	 a	 distributed	 architecture	 that	 permits	
realistic-scale	social	simulations	with	an	intuitive	user	interface.		
	

6.3.4 Cloud	Computing	
Each	 of	 the	 options	 outlined	 above	 –	 commodity	 hardware,	 clusters,	 grids	 and	
service-oriented	simulation	architectures	–	have	limitations	that	restrict	their	ability	
to	 provide	 instructors	 with	 reliable,	 easy	 to	 access,	 configurable,	 customizable,	
scalable	and	flexible	compute	resources.	These	problems	strongly	motivate	(at	least	
experimental)	 adoption	 of	 the	 cloud	 to	 teach	 ABMS.	 There	 are	 also	 positive	
arguments	for	the	cloud,	which	we	turn	to	after	our	detailed	discussion	of	the	cloud	
in	the	following	section.		

7 Cloud	Computing	
The	National	Institute	of	Standards	and	Technology	define	cloud	computing	as:	
	

…..a	model	for	enabling	convenient,	on-demand	network	access	to	
a	shared	pool	of	configurable	computing	resources	(e.g.,	networks,	
servers,	 storage,	 applications,	 and	 services)	 that	 can	 be	 rapidly	
provisioned	 and	 released	 with	 minimal	 management	 effort	 or	
service	provider	interaction.	

	
Another	definition	from	Foster	et	al.	(2008)	explicates	cloud	computing	as:	
	

A	 large-scale	 distributed	 computing	 paradigm	 that	 is	 driven	 by	
economies	 of	 scale,	 in	 which	 a	 pool	 of	 abstracted,	 virtualized,	
dynamically-scalable,	 managed	 computing	 power,	 storage,	
platforms,	 and	 services	 are	 delivered	 on	 demand	 to	 external	
customers	over	the	Internet.	

	
Drawing	 on	 these	 and	 similar	 definitions	 it	 is	 possible	 to	 define	 the	 core	
characteristics	of	the	cloud.	Mell	and	Grance	(2011)	sum	the	cloud	thus:	
	

• On-demand	 self-service:	 Users	 are	 able	 to	 provision	 cloud	 resources,	
including	compute	power,	storage,	and	network	capacity,	without	personally	
interacting	with	the	provider	of	the	cloud	resources.	

• Network	Access:	Cloud	resources	are	provisioned	across	the	public	network	
to	 run	 on	 both	 thick	 and	 thin	 clients	 (personal	 computers,	mobile	 phones,	
etc.)	

• Resource	 Pooling:	 the	 resources	 of	 cloud	 providers	 are	pooled	 to	 create	 a	
multi-tenant	 access	 model	 that	 enables	 users	 to	 utilize	 both	 physical	 and	
virtual	 resources,	 which	 are	 dynamically	 assigned	 and	 released	 as	 demand	
dictates.	

• Elasticity:	Cloud	resources	are	elastic	because	they	can	be	dynamically	scaled	
on	 the	 fly,	 allowing	 users	 to	 rapidly	 scale	 (in	 and	 out,	 vertically	 and	
horizontally)	 their	 computational	 infrastructure	 to	 meet	 changing	

	 24	

requirements.	This	provides	the	illusion	of	infinite	potential	compute	capacity	
that	can	be	instantly	provisioned	and	released	as	desired.	

• Metered	 Service:	 resource	 usage	 is	 controlled	 through	 a	metered	 pricing	
model	 that	 charges	 users	 for	 the	 resources	 they	 consume,	 allowing	 both	
consumers	 and	 providers	 to	 monitor	 and	 control	 the	 consumption	 of	
resources.	

	
Cloud	 services	 available	 across	 the	public	 network	 include	 compute	 infrastructure,	
storage,	 user	 applications,	 networking	 and	 databases.	 Typically,	 service	 and	
deployment	models	are	used	 to	 categorize	 cloud	 resources	by	the	 type	of	 services	
offered	and	 the	manner	 in	which	 they	are	 sourced.	Coarse-grained	 service	models	
split	the	provision	of	services	and	resources	into	a	three-component	stack	covering	
the	infrastructure,	development	platform	and	application	levels.	Deployment	models	
on	 the	other	hand	are	concerned	with	 the	nature	of	 the	cloud	provider.	Prevalent	
taxonomic	variants	include	the	public	clouds	of	providers	such	as	Amazon,	Microsoft,	
and	 Google,	 and	 private	 clouds	 such	 as	 the	 University	 of	 St	 Andrews’	 research-
oriented	StACC	Cloud.	Different	taxonomies	do	exist	however,	which	may	be	of	more	
use	to	those	teaching	ABMS.	For	example	the	cloud	taxonomy	given	by	de	Oliveira,	
Baiao,	and	Mattoso	 (2010)	 looks	at	 cloud	computing	 specifically	 from	an	e-science	
perspective.	 This	 taxonomy	 distinguishes	 clouds	 according	 to	 privacy,	 pricing,	
architectural	 characteristics,	 technology	 infrastructure	 profiles,	 access,	 standards,	
task	orientation	and	business	models.	Some	of	these	categories,	business	models	for	
example,	 map	 directly	 onto	 standard	 taxonomic	 categories,	 in	 this	 case	 service	
models,	while	others	such	as	standards	do	not.	One	common	and	easily	understood	
use	 of	 cloud	 services	 in	 the	UK	 is	 the	 higher	 education	 sector’s	 adoption	 of	 cloud	
email	systems	such	as	Gmail	(e.g.	the	University	of	St	Andrews’	St	Mail	system).	This	
is	 an	 example	 of	 a	 public	 cloud	 provider	 offering	 hosted	 private	 cloud	 services	
accessible	only	to	prescribed	institutional	users.		

7.1 Service	Models	
Service	models	are	categorized	by	their	granularity,	ranging	from	the	coarse-grained	
provision	of	low-level	computational	infrastructure	–	Infrastructure-as-a-Service	–	to	
fine	 grained-solutions	 to	 specific	 problems,	 such	 as	 storage-as-a-service.	
Infrastructure-as-a-Service	 denotes	 the	 wholesale	 provision	 of	 computing	
infrastructure	such	as	servers	and	network	capacity,	for	public	consumption	over	the	
Internet.	 Storage-as-a-services	 relates	 to	 the	 online	 storage,	 management,	 and	
distribution	 of	 data	 in	 the	 cloud.	 In	 addition	 to	 IaaS	 clouds	 there	 are	 also	 clouds	
specifically	 geared	 towards	 providing	 development,	 runtime	 and	 hosting	
environments	 for	 application	 development,	 referred	 to	 as	 Platform-as-a-Service	
(PaaS),	 and	 cloud	 services	 offering	 local	 users	 access	 to	 remotely	 hosted	 software	
applications	and	services	known	as	Software-as-a-Service	(SaaS).	
	
It	is	important	to	see	each	layer	in	the	stack	as	building	upon	the	level	directly	below	
it.	 Thus	 it	 is	 possible	 to	 build	 application	 development	 platforms	 on	 top	 of	
infrastructure	 offerings	 from	 Amazon	 EC2	 for	 example.	 Likewise,	 SaaS	 can	 be	
developed	 and	 delivered	 on	 top	 of	 PaaS.	 For	 example,	 .NET	 applications	 can	 be	
developed	on	the	Windows	Azure	platform	and	then	delivered	to	end-users	as	SaaS.	

	 25	

These	 service	 models	 are	 a	 convenient	 way	 to	 view	 the	 consumption	 of	 cloud	
resources	but	it	is	widely	noted	in	industry	white	papers,	academic	papers	and	blogs	
that	the	distinction	between	IaaS	and	PaaS	is	increasingly	blurred	(references	here).	
For	example	the	AWS	Elastic	Beanstalk	allows	developers	to	develop	and	deploy	Java	
applications	 to	 EC2,	 and	 choose	 the	 degree	 to	 which	 they	 engage	 in	 low-level	
infrastructure	 management.	 IaaS	 management	 can	 be	 entirely	 automated	 by	 the	
Beanstalk	service,	which	controls	the	provision	of	compute	and	storage	facilities,	or	
done	 manually	 as	 required.	 This	 is	 distinct	 from	 ‘traditional‘	 PaaS	 such	 as	 Azure,	
which	 provides	 a	 simplified	 development	 environment	 but	 does	 not	 allow	 the	
configuration	 and	 management	 of	 the	 underlying	 infrastructure	 services,	 and	
‘traditional’	 IaaS	 clouds	 such	 as	 EC2,	 which	 provides	 low-level	 infrastructure	
configuration	 but	 does	 not	 supply	 any	 kind	 of	 higher-level	 development	
environment.	
	

7.1.1 Software-as-a-Service	
Software-as-a-Service	 refers	 to	 the	 provision	 of	 software	 applications	 in	 a	 one-to-
many	relationship	between	providers	and	end-users.	APIs	exposed	by	SaaS	vendors	
allow	users	to	amalgamate	multiple	distinct	software	artefacts	to	meet	their	specific	
functional	requirements.	For	example	organizations	can	combine	email	services	with	
software	 for	 managing	 the	 distribution	 and	 tracking	 of	 promotional	 email	
campaigns.	Often	SaaS	aims	 to	 streamline	business	processes	 such	as	 supply	chain	
management,	or	increase	collaboration	amongst	geographically	distributed	workers.	
Office	 36512 	is	 an	 example	 of	 SaaS,	 as	 are	 IBM	 LotusLive 13 	and	 the	 customer	
relationship	 management	 solutions	 available	 from	 Saleforce.com. 14 	To	 our	
knowledge	there	are	no	SaaS	offerings	specifically	designed	to	support	ABMS,	so	we	
do	not	consider	them	any	further	in	this	report.	
	

7.1.2 Platform-as-a-Service	
Platform-as-a-Service	 is	 specifically	 concerned	 with	 the	 development	 and	
deployment	 of	 applications	 utilizing	 software	 and	 infrastructure	 distributed	 across	
the	 public	 network.	 	PaaS	 is	 an	 abstraction	 that	 hides	 low-level	 enabling	
infrastructure	 and	 provides	 software	 engineers	 with	 an	 environment	 and	 tools	
support	for	application	development.	Examples	of	well-known	PaaS	offerings	include	
Microsoft	Azure15,	Google	App	Engine16	(built	on	 top	of	 the	Google	Cloud	Platform	
which	we	consider	below),	and	the	ActiveState	Stackato17	cloud,	centred	on	dynamic	
language	development	 (Perl,	Python,	Ruby,	etc.).	As	with	SaaS	there	are	no	ABMS-
specific	PaaS	clouds	and	as	their	services	are	not	aligned	with	the	objectives	of	ABMS	
we	do	not	consider	them	further	in	this	report.	
	

																																																								
12	http://www.microsoft.com/en-us/office365/online-software.aspx		
13	http://www.ibm.com/developerworks/lotus/library/lotuslive-intro/		
14	http://www.salesforce.com/uk/		
15	http://www.windowsazure.com/en-us/		
16	https://developers.google.com/appengine/			
17	http://www.activestate.com/stackato		

	 26	

7.1.3 Infrastructure-as-a-Service	
Infrastructure-as-a-Service	 refers	 to	 the	 provision	 of	 servers,	 networking	 facilities,	
storage	capacity,	and	operating	systems	made	available	over	the	network.	The	public	
Amazon	Web	Services	 Elastic	 Compute	Cloud	 (EC2)	 is	 the	preeminent	 exemplar	 of	
Infrastructure-as-a-Service.	 EC2	 resources	 are	 provided	 in	 the	 form	 of	 virtual	
machines	based	on	Amazon	Machine	Images	(AMIs).	AMIs	are	disk	images	that	can	
be	customized	with	an	operating	system	and	system	configuration,	allowing	users	to	
specify	 options	 such	 as	 CPUs,	 processor	 cores,	 and	RAM.	Bespoke	 software	 stacks	
are	 then	 installed	 to	meet	particular	user	 requirements.	The	AMI	 is	 instantiated	 in	
the	cloud	at	runtime,	giving	users	access	to	a	remote	computational	 infrastructure.	
Each	 virtual	 machine	 is	 controlled	 through	 web	 service	 calls.	 The	 University	 of	 St	
Andrews’	 StACC	 Cloud	 is	 an	 example	 of	 a	 private	 IaaS	 cloud.	 This	 experimental	
research	 cloud	 allows	 users	 in	 the	 School	 of	 Computer	 Science	 to	 instantiate	 a	
variety	 of	 machine	 images	 with	 different	 operating	 systems	 and	 custom	
configurations.	A	fuller	and	more	detailed	description	of	the	 infrastructure	services	
provided	by	EC2,	and	a	comparison	with	the	Google	Compute	Engine,	is	given	below.	
	

7.1.4 Eduserve	
Eduserve	is	a	public	IT	and	cloud	services	provider	serving	organizations	in	the	UK.	
[Introduce/discuss	Eduserve	here?]	

7.1.5 Other	Cloud	Services	(Storage-as-a-Service,	Database-as-a-Service,	etc.)	
In	addition	to	the	ubiquitous	service	models	above	other	cloud	services	exist	that	are	
given	 varying	 classifications	 by	 different	 authors.	 For	 example	 de	 Oliveira	 et	 al.	
consider	Storage-as-a-Service	and	Database-as-a-Service	as	particularly	important	to	
distinguish	within	 the	 context	of	 running	 scientific	 experiments	 in	 the	 cloud,	 given	
the	 central	 importance	 and	 value	 of	 the	 novel	 data	 generated	 by	 scientific	
experiments.	 As	 with	 other	more	 specialised	 and	 narrowly	 focused	 cloud	 services	
catering	for	specific	user	needs,	this	report	does	not	investigate	the	gamut	of	service	
permutations	 available	 in	 the	 nascent	 though	 fast	 developing	 cloud	 marketplace,	
because	they	are	likely	to	hold	little	current	interest	for	those	teaching	ABMS.	
	

7.2 Deployment	Models	
EC2	and	StACC	illustrate	different	cloud	deployment	models.	The	chief	distinction	is	
between	 public	 and	 private	 cloud	 deployments.	 AWS	 public	 cloud	 resources	 are	
available	over	the	public	Internet	and	can	be	provisioned	by	users	on	the	basis	of	a	
self-service,	 utility-style	 pricing	model	 (users	 pay	 for	 the	 computational	 resources	
they	 consume).	 By	 contrast	 StACC	 is	 a	private	 cloud	 that	 provides	 services	only	 to	
internal	users	at	St	Andrews.	The	chief	alternative	to	these	deployment	models	is	the	
hybrid	 cloud,	 which	 utilizes	 both	 public	 and	 private	 clouds.	 With	 hybrid	 clouds,	
researchers	 can,	 for	 example,	 work	 with	 private	 cloud	 resources	 and	 then	 ‘spill’	
heavy	workloads	onto	EC2	as	required,	in	a	process	known	as	cloud	bursting.	Finally,	
there	are	community	clouds.	Community	clouds	provide	access	to	cloud	resources	to	
the	 specific	 communities	 of	 interest	 responsible	 for	 their	 implementation	 and	
management,	so	are	clouds	used	and	shared	by	communities	of	 interested	parties.	
The	Open	Cirrus	Cloud	Testbed	is	an	example	of	collaboration	between	cloud	users	

	 27	

(Campbell	et	al.	2009).	Open	Cirrus	is	operated	by	companies	such	as	HP,	Intel	and	
Yahoo,	and	aims	to	enable	research	into	large-scale	IT	services,	as	well	as	providing	a	
platform	 for	 the	 exchange	 of	 best	 practice	 and	 the	 dissemination	 of	 knowledge	
generated	 through	 collaborative	 research.	 Potential	 issues	 faced	 when	 operating	
community	clouds	 include	access	security,	 service	 levels,	 resource	availability,	data	
storage	 and	 compliance	 (Ibid.).	 Whilst	 there	 is	 potential	 for	 the	 development	 of	
community	clouds	dedicated	to	or	connected	with	teaching	and	research	into	ABMS,	
community	 clouds	 are	 not	 relevant	 to	 our	 present	 concern	 of	 establishing	 the	
potential	 benefits	 and	 challenges	 posed	 by	 integration	 cloud	 services	 into	 ABMS	
teaching	strategies.	Public,	private	and	hybrid	clouds	are	however	relevant	and	are	
considered	next.		

7.2.1 Public	Clouds	
Both	 private	 and	 public	 sector	 organisations	 operate	 public	 clouds.	 AWS,	 which	
supplies	 cloud	 resources	 through	 EC2	 and	 related	 services,	 is	 the	 most	 dominant	
public	 infrastructure	 services	 cloud	 in	 the	 marketplace	 today.	 EduRoam18	is	 an	
example	 of	 a	 public	 cloud	 operated	 by	 a	 federation	 of	 research	 and	 educational	
establishments	 that	 span	 54	 countries	 across	 Europe,	 North	 and	 South	 America,	
Africa	and	Asia,	with	the	goal	of	facilitating	some	of	the	research	and	communication	
computing	 requirements	 of	 member	 organisations.	 One	 key	 objective	 driving	 the	
development	 and	 gradual	 adoption	of	 public	 cloud	 computational	 infrastructure	 is	
the	 ability	 to	 hide	 the	 complexity	 associated	 with	 managing	 and	 administrating	
complicated	 compute	 resources	 whilst	 simultaneously	 exposing	 self-service	
functionality	 to	 end-users.	 Resource	 multiplexing	 and	 multi-tenant	 architectures	
enable	 higher	 resource	 utilization	 than	 traditional	 data	 centres	 built	 on	 top	 of	 a	
single-tenant	server	 infrastructure.	Public	clouds	are	typically	accessed	via	metered	
self-service	 without	 interaction	 between	 the	 cloud	 provider	 and	 those	 accessing	
their	services.	With	respect	to	the	service	models	outlined	above	public	clouds	can	
provide	IaaS,	PaaS	and	SaaS	resources.	
	

7.2.2 Private	Clouds	
Private	 clouds	 provide	 their	 organisations	 with	 internal	 access	 to	 their	 own	
dedicated	cloud	resources.	In	this	way	they	imitate	the	functionality	of	public	clouds	
but	 restrict	 access	 to	 defined	 corporate	 or	 institutional	 users.	 Two	 usage	 models	
support	 private	 clouds	 (reference	 here).	 With	 in-house	 or	 internal	 private	 clouds	
operators	own	 the	physical	data	 centre	 resources	 that	 supports	 the	 cloud	and	are	
fully	 responsible	 for	 configuration,	 monitoring,	 maintenance,	 upgrades,	
administration,	etc.	Alternatively,	hosted	or	external	private	clouds	are	operated	and	
maintained	 by	 third-party	 vendors	 for	 the	 sole	 use	 of	 a	 particular	 organisation	 or	
client.	Typically	organisations	operate	private	clouds	when	they	have	either	specific	
resource	 demands	 that	 necessitate	 close	 control	 of	 physical	 resources,	 such	 as	 a	
software	 testing	 house,	 or	 they	 have	 particular	 and	 stringent	 legal	 data	 storage	
requirements	(under	the	Data	Protection	Act	for	example).	
	

																																																								
18	http://www.eduroam.org/		

	 28	

7.2.2.1 The	StACC	Cloud	and	similar	University	Private	Clouds	
The	School	of	Computer	Science	at	the	University	of	St	Andrews	operates	a	private	
cloud	 called	 StACC 19 	(St	 Andrews	 Academic	 Compute	 Cloud),	 which	 runs	 the	
Eucalyptus	management	framework	and	gives	researchers	access	to	up	to	64	virtual	
machines	 running	 Linux.	Other	UK	universities	 host	 similar	 private	 research	 clouds	
including	Leeds	and	Oxford	[check	this!]	
[Expand	StACC	discussion?]	

7.2.3 Hybrid	Clouds	
Hybrid	 clouds	 make	 use	 of	 both	 public	 and	 private	 cloud	 resources.	 They	 are	
particularly	 suited	 to	 running	 jobs	 with	 dynamic	 workloads	 where	 resource	
consumption	 can	 spike,	 requiring	 access	 to	 extra	 resources,	 which	 may	 not	 be	
available	 locally.	 The	process	of	offloading	 the	execution	of	 a	 software	application	
operating	under	excessive	load	spikes	onto	a	cloud	is	known	as	cloud	bursting.	Cloud	
bursting	is	not	the	only	or	even	primary	use	of	hybrid	clouds.	They	are	also	used	as	
failover	platforms.	For	example,	 if	 a	 simulation	 run	 is	executing	on	a	private	cloud	
and	those	resources	fail	the	simulation	can	be	setup	to	automatically	provision	and	
configure	public	 cloud	 resources	 to	 facilitate	 the	 simulation	 in	place	of	 the	private	
resources.	Of	course	many	factors	impact	the	effectiveness	of	this	strategy,	such	as	
the	latency	between	the	initialisation	of	the	public	resources	and	the	establishment	
of	a	fully	operational	system.	

7.2.3.1 Cloud	Bursting	
Cloud	bursting	is	the	process	of	spilling	spikes	in	computational	load	onto	the	cloud	
when	local	resources	are	insufficient	to	meet	demand.	Zhang,	Jiang,	Yoshihira,	Chen	
and	 Saxena	 (2009)	 develop	 a	 “two	 zone	 architecture”	 to	 conceptualize	 cloud	
bursting.	This	consists	of	a	base	load	and	a	trespassing	load,	and	this	way	of	thinking	
is	 helpful	 in	 explicating	 the	 notion	 of	 a	 hybrid	 cloud	 and	 the	 concept	 of	 cloud	
bursting.	Standard	or	normal	work	done	by	an	application	is	termed	the	base	load.	
The	trespassing	load	represents	non-standard	(occurring	less	than	5%	of	application	
runtime	 e.g.),	 transient	 spikes	 in	 activity	 that	 increases	 short-term	 load	 on	 the	
system	 and	 requires	 extra	 resources.	 This	 is	 one	 way	 to	 use	 hybrid	 clouds	 –	
leveraging	on-demand	elastic	cloud	resources	to	meet	trespassing	 load	by	bursting	
the	 computation	onto	 the	 cloud	–	 in	addition	 to	 the	 failover	 strategies	 introduced	
above.	

7.3 Virtualization	and	Middleware	Platforms	
This	 section	 introduces	 two	core	 technologies	 that	enable	 the	 cloud	–	middleware	
platforms	and	virtualization.		 	Access	to	cloud	resources	is	mediated	and	controlled	
by	cloud	middleware	platforms	–	referred	to	as	management	frameworks	–	although	
how	 this	 is	 done	 is	 not	 specified	 in	 the	 NIST	 definition	 [API	 comment	 here].	 In	
practice	management	frameworks	typically	leverage	virtualization	and	web	services	
to	 realize	 an	 API	 providing	 on-demand,	 multi-tenant,	 elastic	 computational	
environments,	 providing	 a	 programmatic,	 command	 line	 or	 GUI	 interface	 to	 the	
cloud.	 AWS	 for	 example	 exposes	 SOAP	 and	 RESTful	 APIs,	 a	 command	 line	 tools	
package	 and	 a	 GUI	 management	 tool.	 Although	 standardized	 APIs	 have	 not	 been	

																																																								
19	http://www.cs.st-andrews.ac.uk/stacc	

	 29	

universally	adopted	by	industry,	the	EC2	API	acts	as	a	de	facto	industry	standard	for	
cloud	 vendors	 and	 software	 houses,	 and	 is	 the	 closest	 approximation	 to	 codified	
cloud	technology	standards	currently	in	production	(Feldhaus,	Freitag	and	El	Amrani	
2012).20	
	
Virtualization	allows	the	deployment	of	multiple	logical	servers	onto	a	single	physical	
host	 server,	 and	 allows	 cloud	 users	 to	 instantiate	 virtual	 server	 instances	 on-
demand.	 To	 control	 this	 process	 virtual	 server	 instances	 are	 installed	 onto	 a	
hypervisor	 that	 can	manage	 suites	of	 guest	 virtual	machines	 running	on	 their	host	
machine.	Hypervisors	are	categorized	as	either	bare	metal	 (type	1)	or	hosted	 (type	
2).	 Bare	 metal	 hypervisors	 are	 installed	 directly	 onto	 the	 host	 server.	 Guest	
operating	systems	(Linux,	Windows,	Solaris	e.g.)	are	then	installed	and	run	on	top	of	
the	hypervisor.	Hosted	hypervisors	are	installed	and	run	on	top	of	a	base	operating	
system.	 In	 either	 case	 physical	 resources	 are	 abstracted	 from	 end-users	 and	
application	 functionality,	 permitting	 hardware	 resources	 to	 be	 pooled	 and	
distributed	on-demand.	A	cloud	management	framework	orchestrates	the	provision	
and	configuration	of	the	virtual	machines	exposed	by	the	hypervisor.	The	interaction	
between	end-users	and	the	management	framework	forms	the	cloud	front-end.	The	
framework	exposes	an	interface	permitting	users	to	configure	and	manipulate	virtual	
machines	 using	 web	 service	 calls,	 and	 to	 create	 and	 assign	 security	 groups	 that	
mediate	 and	 control	 access	 to	 the	 virtual	 machine	 instances.	 Typically	 machine	
images	 are	 held	 in	 a	 repository	 and	 instantiated	 at	 runtime	 by	 individual	 virtual	
machine	instances,	and	act	as	configurable	templates	that	are	customized	according	
to	the	needs	of	users	and	the	particular	demands	of	the	hypervisor.	
	
Virtualization	 software	 is	 aimed	 at	 individual,	 institutional	 or	 corporate	 use.	 The	
former	allows	users	to	configure	their	own	virtual	machine	images	and	launch	them	
on	their	own	local	resources.	They	are	also	useful	for	booting	disk	images	that	have	
already	been	run	in	the	cloud	and	have	generated	data	that	users	wish	to	take	away	
and	explore	 further.	 The	 latter	 include	 virtualization	products	 designed	 to	 support	
data	 centres	 running	multiple	 virtual	machines,	 and	enable	 the	operation	of	 cloud	
infrastructures.	Major	virtualization	platforms	currently	in	use	include	VirtualBox	and	
the	many	virtualization	products	owned	by	VMware.	VirtualBox21	is	an	open	source,	
free	 to	 use	 virtualization	 application	 developed	 and	 maintained	 by	 Oracle.	 It	 is	
installable	on	Linux,	Windows,	Solaris	and	Mac	hosts,	and	supports	the	virtualization	
of	a	wide	range	of	operating	systems	including	multiple	flavours	of	Linux,	Windows	
(XP,	 Vista,	 7,	 Server	 2003,	 etc.),	 (Open)	 Solaris,	 and	 OpenBSD.	 VMware22 	is	 a	
company	 specialising	 in	 virtualization	 products	 for	 personal,	 academic	 and	
enterprise	use.	For	example	VMware	Fusion	allows	Macs	to	run	Windows,	Linux	and	

																																																								
20	The	Open	Cloud	Computing	Interface	(OCCI)	is	currently	attempting	to	provide	
standardized	access	to	IaaS	resources,	whilst	the	development	of	software	libraries	
for	use	with	different	hypervisors,	and	libraries	used	to	replace	the	exposed	
heterogeneous	resources	of	different	clouds	with	an	homogeneous	interface,	are	
also	under	active	development	(Ibid.).	
21	https://www.virtualbox.org/	
22	http://www.vmware.com/uk/	

	 30	

other	 operating	 system.	 Other	 products	 include	 free	 to	 use	 desktop	 virtualization	
platforms	such	as	VMware	Player,	supporting	1-2	virtual	machines	per	host,	free	to	
use	multi-server	virtualization	platforms	such	as	VMware	vSphere	Hypervisor	(ESXi),	
which	supports	less	than	10	virtual	machines	per	host,	and	other	paid	for	platforms	
such	as	VMware	vSphere	that	support	greater	than	10	guest	machines	per	host,	as	
well	as	providing	centralized	management	services	and	other	features	not	available	
with	free	editions.		
	
It	 is	 important	 that	 instructors	 looking	 to	 use	 the	 cloud	 understand	 how	different	
virtualization	technologies	can	affect	and	restrict	their	activities.	This	is	because	each	
cloud	makes	use	of	different	virtualization	platforms	that	in	turn	dictate	the	type	of	
virtual	machine	 image	 that	 can	 run	on	 that	 cloud.	For	example	EC2	uses	 the	Citrix	
Xen	hypervisor,	a	 type	1	 (bare	metal)	hypervisor.	This	means	that	virtual	machines	
images	booted	on	EC2	must	run	a	Xen	kernel.	If	the	Xen	kernel	is	not	installed	users	
must	do	so	manually,	involving	a	complex	and	error	prone	configuration	process.	
	
This	means	the	technologies	used	by	mainstream	cloud	vendors	restrict	the	types	of	
virtual	machine	image	files	supported	by	their	infrastructure.	If	the	image	is	not	in	a	
format	 supported	 by	 the	 cloud	 vendor	 they	 must	 be	 converted	 to	 a	 compatible	
format.	 For	 example	 EC2	 only	 allows	 users	 to	 import	 virtual	 machine	 image	 files	
(VMDK	and	VHD	file	formats)	that	are	created	using	the	following	platforms:	
	

• VMware	ESX	(VMDK	files)	
• Citrix	Xen	(VHD	files)		
• Microsoft	 Hyper-V	 (VHD	 files	 -	 for	 use	 with	Windows	 Server	 2003	 R2	 and	

2008	R1	and	R2	only)	
	
In	a	similar	 fashion	custom	VMs	that	have	been	 imported	 into	EC2	(or	 instantiated	
from	a	pre-existing	AWS	template)	can	only	be	exported	into	these	same	file	formats	
(as	well	as	the	VMware	ESX	OVA	format).	Thus	if	a	VM	is	created	with	VirtualBox	and	
saved	as	a	VMDK	file,	 it	must	be	converted	to	the	appropriate	 file	 type	before	the	
EC2	VM	import/export	command	line	tools	will	work	properly,	and	the	same	is	true	
in	 the	other	direction	–	VMs	exported	 from	EC2	must	be	 converted	 to	 the	 format	
that	your	local	virtualization	infrastructure	supports.	This	problem	is	not	lethal	but	is	
unfortunate	 because	 it	 introduces	 a	 significant	 level	 of	 complexity	 into	 the	
configuration	process	–	a	misfortune	highlighted	by	 the	supposed	ease	with	which	
cloud	resources	can	be	provisioned	relative	to	clusters	and	grids,	which	is	a	central	
motivation	for	adopting	the	cloud.	The	solution	is	to	use	conversion	software	such	as	
VMware	 converter	 but	 this	 is	 non-trivial	 and	 represents	 the	 type	 of	 low-level	
configuration	work	that	many	users	are	not	comfortable	with	without	a	background	
in	computer	science	or	other	significant	experience.		
	
For	this	reason	we	do	not	recommend	that	instructors	wishing	to	use	the	cloud	do	so	
by	manually	 configuring	 their	 own	virtual	machine	 images	 locally	 before	exporting	
them	to	the	cloud.	Doing	so	potentially	involves	protracted	configuration,	with	all	of	
the	 errors,	 oversights	 and	 frustration	 this	 can	 entail,	 and	 can	 also	 restrict	 the	
portability	of	 the	 image	between	clouds.	 Instead	of	comparing	which	virtualization	

	 31	

platform	disk	image	file	types	are	compatible	with	which	cloud	–	i.e.	which	VM	disk	
image	 can	 be	 converted	 to	 run	 on	 a	 particular	 cloud	 –	 instructors	 considering	
bundling	 custom	 simulation	 disk	 images	 are	 advised	 instead	 to	 either	 manually	
configure	a	template	image	that	is	already	hosted	by	their	chosen	cloud	vendor,	or,	
preferably,	 to	 run	a	 script	 that	 automatically	 configures	 an	 image	 for	 their	 chosen	
purpose.	This	is	known	as	contextualization	and	is	considered	below.	
	

7.4 Cloud	Economics	
This	 section	 introduces	 financial	 considerations	 instructors	 should	 consider	 when	
evaluating	 the	 cloud.23	The	 basic	 cost	 argument	 for	 public	 clouds	 is	 simple	 –	 on-
demand	 self-service	 allows	 users	 to	 access	 only	 those	 compute	 resources	 they	
require,	 for	 the	 specific	 time	 period	 they	 are	 needed.	 Users	 only	 pay	 for	 the	
resources	consumed	and	cease	 to	pay	when	they	are	 released,	 thus	 lowering	 total	
technology	spend.	Access	to	powerful	resources	is	available	in	the	short-run	at	very	
low	prices	–	 ‘operational’	 costs	–	 relative	 to	 the	 ‘capital’	 costs	associated	with	 the	
procurement,	 installation,	 configuration	 and	maintenance	 of	 new	 physical	 servers	
and	related	hardware.		
	
Unfortunately	comparing	cloud	providers	on	cost	is	not	easy.	Users	need	to	estimate	
fine-grained	 usage	 patterns,	 estimating	 for	 example	 outbound	 data	 transfer	 in	
advance	 and	 use	 this	 to	 calculate	 likely	 spend	 given	 a	 vendor’s	 prices.24	Some	
vendors,	 AWS	 for	 example,	 include	 cost	 calculators	 tools	 on	 their	web	 pages,	 but	
these	are	not	easy	to	use.	The	AWS	tool	 is	complex,	detailed,	and	tailored	towards	
calculating	monthly	usage,	which	is	unhelpful	in	procuring	short-term	resources	for	a	
course	on	ABMS.		
	

7.4.1 Cloud	Costs	Incurred	during	a	typical	ABMS	Study	Programme	
Instructors	 can	 expect	 to	 directly	 incur	 costs	 for	 using	 cloud	 services	 across	 three	
separate	components	(JISC	Cloud	Costs	Report):	
	

1. Ingress	data	transfer	costs	
2. Infrastructure	Costs:	

a. CPU	instance	hours	
b. Data	transfer	
c. Data	storage	
d. [Other	costs]	

3. Egress	data	transfer	costs	
	
In	addition	other	costs	are	likely	to	be	incurred	such	as:	
	

1. Software	licensing	
2. [Other	costs	here]	

	

																																																								
23	See	[Jisc	Cloud	Report]	for	more	information	on	the	costs	of	cloud	computing.	
24	See	for	example	http://calculator.s3.amazonaws.com/calc5.html	

	 32	

Total	costs	are	directly	dependent	on	usage	over	the	lifetime	of	a	course.	If	students	
boot	virtual	machines	and	do	not	 terminate	them	costs	are	 incurred	until	 they	are	
shut	 down.	 On	 the	 other	 hand	 using	 a	 public	 cloud	 to	 demonstrate	 a	 modelling	
platform	 or	 execute	 a	 simulation	 only	 invites	 small	 usage	 costs	 even	 if	 the	
demonstration	 resources	 are	 instantiated	 over	 several	 days	 and	 not	 torn	 down	
outwith	contact	hours.	
	
Any	 price	 information	 contained	 in	 this	 report	 will	 be	 quickly	 superseded	 in	 the	
market	so	we	do	not	provide	detailed	cost	profiles	for	different	cloud	providers.	JISC	
notes	that	cost	per	CPU	core-hour	range	on	average	between	approximately	7p	and	
10p,	 with	 costs	 reaching	 as	 high	 as	 19p	 for	 larger	 machine	 instance	 types.	 It	 is	
possible	 however	 that	 data	 storage	 fees	 incurred	 over	 a	 typical	 ABMS	 course	 are	
likely	minimal,	if	any.	Similarly,	costs	for	data	transfer	should	be	low.	Many	vendors	
no	longer	charge	for	ingress	data	transfer,	while	egress	costs	are	low.	JISC	estimates	
that	outbound	transfer	costs	for	1TB	of	data	range	between	£0-£200,	but	it	is	highly	
unlikely	 that	 participants	 will	 generate	 1TB	 of	 data	 unless	 the	 focus	 is	 on	 HPC	
simulation	 or	 other	 data	 intensive	 simulations.	Models	 developed	 using	 platforms	
such	Repast	Simphony	are	likely	to	generate	only	small	amounts	of	data	and	so	costs	
per	head	are	likely	to	remain	negligible.	
	

7.4.2 Visible	Costs	
Total	 cost	will	 also	 be	 far	more	 visible	 to	 instructors,	 students	 and	 administrators		
(JISC	Cloud	Cost	Report).	Traditional	academic	in-house	technology	costs	are	hidden	
from	 end-users	 –	 academics	 and	 students	 just	 turn	 up	 and	 use	 the	 available	
resources.	 In	 contrast,	 cloud-metering	 services	 make	 the	 costs	 associated	 with	
specific	uses	of	 specific	 technologies	at	 specific	 times	 for	 specific	purposes	explicit	
for	both	users	and	administrators.	
	

7.4.3 Payment	Models	and	Charging	Models	
Payment	models	 vary	 between	 vendors,	 users	 typically	 incurring	monthly	 charges	
paid	using	a	debit	or	credit	card.	Usage	 is	generally	charged	by	clock	or	CPU	hours	
consumed,	hence	it	is	also	important	to	understand	which	charging	model	a	vendor	
employs	 and	 how	 their	 billing	 model	 operates	 (JISC	 Cloud	 Cost	 Report).	 To	
understand	the	full	cost	behaviour	of	their	study	programmes	instructors	should	also	
understand	how	to	cover	their	cloud	expenses	–	does	the	use	of	school	credit	cards	
require	prior	approval	and	for	what	amounts,	for	example,	and	who	must	authorise	
this	expenditure?		
	

7.4.4 Software	Licensing	
Software	running	in	the	cloud	is	subject	to	the	same	licensing	restrictions	that	apply	
to	 software	 not	 running	 in	 the	 cloud.	 For	 some	 applications	 these	 are	 minimal.	
Multiuser	 licences	 for	 remote	 access	 software	 such	 as	 Real	 VNC	 Server	 can	 be	
purchased	 for	 only	 [a	 price].	 Other	 types	 of	 software	 incur	 higher	 licensing	 costs	
(Microsoft	Windows	for	example).		
	

	 33	

7.4.5 Recovering	Costs	
One	way	to	obviate	cloud	costs	is	to	incorporate	at	least	some	of	the	additional	costs	
in	increased	course	fees,	with	fees	structured	to	explicitly	take	into	account	the	costs	
of	running	ABMS	jobs	in	the	cloud,	licensing	and	storage.	
	

7.4.6 Comparing	Cloud	Providers	on	Cost	
PlanForCloud.com25	is	 a	 web	 service	 that	 allows	 users	 to	 generate	 cost	 forecasts	
based	 on	 their	 requirements	 and	 then	 compare	 costs	 from	different	 cloud	 service	
providers.	 It	 provides	 cost	 breakdowns	 for	 servers,	 databases,	 storage	 and	 data	
transfer,	and	allows	users	to	exactly	specify	their	requirements	across	these	resource	
types.	Users	can	also	factor	usage	patterns	and	variations	into	their	cost	forecasts.	At	
present	 PlanForCloud.com	 only	 supports	 cost	 comparisons	 for	 Amazon	 Web	
Services,	 Microsoft	 Windows	 Azure,	 Google	 Compute	 Cloud	 and	 Rackspace.	 How	
useful	this	service	will	be	for	teachers	is	hard	to	tell,	as	the	emphasis	seems	to	be	on	
long-term	enterprise	 deployments,	 but	 the	 site	 does	provide	 convenient	 access	 to	
bespoke	cost	comparison	data	for	four	of	the	major	public	cloud	providers.	
	

7.5 Comparing	IaaS	Clouds	–	AWS	and	Google	Compute	Engine	
To	 give	 readers	 some	 idea	 of	 the	 different	 infrastructure	 services	 available	 this	
section	compares	the	market-dominant	EC2	with	the	beta	Google	Compute	Engine	
(GCE).	AWS	is	such	a	dominant	role	 in	the	current	public	cloud	ecosystem	that	 it	 is	
highly	 likely	 that	 if	 instructors	 have	made	 the	 decision	 to	 use	 the	 cloud	 they	 will	
initially	 consider	 AWS	 to	 the	 exclusion	 of	 other	 platforms.	 On	 the	 other	 hand	
Google’s	Compute	Engine	 is	still	 in	beta	but	 is	set	to	become	a	serious	 IaaS	player.	
We	described	the	services	available	from	EC2	and	GCE	that	are	most	relevant	and	for	
ABMS	in	general	and	teaching	ABMS	in	particular.		
	

7.5.1 Amazon	Web	Services	
AWS	offers	a	number	of	 infrastructure	services.	These	 include	the	Elastic	Compute	
Cloud	(EC2),	Simple	Storage	Service	(S3),	SimpleDB	(SDB),	and	Simple	Queue	Service	
(SQS).	There	are	many	more	services	available	and	the	reader	is	directed	to	the	AWS	
web	pages	for	further	information.26	In	brief:	
	

• Elastic	 Compute	 Cloud	 (EC2):	The	 core	AWS	 infrastructure	 service	 allowing	
users	to	provision	configurable	virtual	server	 instances	on-demand.	Amazon	
Machine	 Images	 (AMIs)	 act	 as	 templates	 that	 are	 instantiated	 by	 one	 of	
Amazon’s	standard	 instance	types,	which	specify	the	hardware	specification	
in	terms	of	CPU	speeds,	cores	and	RAM	

• Simple	 Storage	 Service	 (S3):	 S3	 is	 a	 non-relational	 storage	 service	 giving	
users	 quick,	 dependable,	 convenient	 storage	 and	 retrieval	 of	 data	 in	 the	

																																																								
25	http://www.planforcloud.com/		
26	See	Rittinghouse	and	Ransome	(2010)	for	an	easy	to	follow	introduction	to	cloud	
computing	and	comparison	of	AWS	and	Rackspace	IaaS	services.	

	 34	

Amazon.	 Template	 AMIs	 and	 user-configured	 virtual	 machine	 images	 are	
stored	on	S3	for	use	with	EC2.	

• SimpleDB	 (SDB):	 SDB	 facilitates	 the	 storage,	 analysis	 and	 querying	 of	
structured	data	held	in	the	S3.	

• Simple	Queue	Service	(SQS):	SQS	allows	messages	that	are	passed	between	
compute	nodes	to	be	queued	in	the	cloud.	

	
We	concentrate	on	EC2,	as	it	is	the	service	of	most	potential	use	to	instructors.	
	

7.5.1.1 EC2	Instance	Specifications	
[Specifications	here]	
	
Some	 of	 the	 major	 advantages	 of	 using	 EC2	 to	 deliver	 ABMS	 study	 programmes	
include:	
	

• Simple	access	to	and	configuration	of	compute	infrastructure	through	a	Web	
services	 interface.	 This	 allows	 instructors	 to	 easily	 provision	 their	 exact	
infrastructure	requirements	through	detailing	hardware	specification	such	as	
processor	cores	and	main	memory,	while	fine-grained/low	level	configuration	
and	 control	 allows	 simulation	and	 teaching	environments	 to	be	 customised	
to	meet	a	very	wide	range	of	ABMS	teaching	scenarios.	

• Lower	 infrastructure	 procurement	 times	 –	 virtual	 servers	 are	 bootable	 in	
minutes	where	physical	servers	are	procured	through	lengthy	processes	(e.g.	
getting	 your	 department	 to	 pay	 for	 new	 hardware,	 configure,	 install,	 and	
maintain	it).	

• Massive	 and	 rapid	 horizontal	 and	 vertical	 scalability.	 Horizontal	 scalability	
refers	 to	adding	more	of	 the	same	type	of	capacity	 i.e.	more	servers	of	 the	
same	 hardware	 specification.	 Vertical	 scalability	 refers	 to	 the	 addition	 of	
servers	 with	 higher	 specifications.	 This	 allows	 jobs	 requiring	 HPC	 or	 HTC	
resources	to	be	easily	run	at	short	notice	with	minimal	configuration.	

• Expenditure	 on	 infrastructure	 capacity	 for	 specific	 simulation	 or	 teaching	
projects	 can	 be	 planned	 because	 of	 the	 on-demand	 self-service	 pricing	
model.		

• Access	 to	 powerful	 resources	 without	 heavy,	 up-front,	 long-term	 capital	
expenditure.	Costs	are	only	 incurred	when	resources	are	used	for	a	specific	
purpose	and	can	be	planned	for	in	advance.			

• Public	 clouds,	 especially	 clouds	 as	 easily	 accessible	 as	 EC2,	 give	 instructors	
great	flexibility	to	experiment	with	new	simulation	types,	teaching	strategies	
and	 in	 general	 the	 ability	 to	 trial	 new	 ideas	 and	 approaches	 to	 (teaching)	
ABMS	that	are	not	necessarily	possible	with	in-house	infrastructure.	

• Geographical	 flexibility/mobility.	 EC2	 allows	 instructors	 to	 independently	
design	 and	 plan	 their	 ABMS	 teaching	 programmes	without	worrying	 about	
the	 specific	 resource	 stacks	 and	 configurations	 available	 to	 them	 through	
their	institutional	hosts.	Instructors	have	repeat	access	to	the	resource	stacks	
they	require	regardless	of	where	they	are	delivering	the	programme.	

	

	 35	

	

7.5.2 Running	a	Simulation	on	EC2	
So	that	readers	have	some	idea	of	the	steps	required	to	run	a	simulation	in	the	cloud	
we	 outline	 the	 major	 steps	 required.	 After	 signing-up	 to	 AWS	 using	 their	 normal	
Amazon	account	to	access	EC2:	
	
I. Users	must	choose	either	a	preconfigured	Amazon	Machine	Image	based	on	

a	template	or	design	their	own	machine	image	to	satisfy	their	requirements.	
The	 custom	 machine	 image	 contains	 their	 chosen	 operating	 system,	
applications,	data,	libraries,	compilers,	runtime	environments,	remote	access	
software,	 and	 in	 general	 anything	 else	 required	 by	 the	 user,	 including	 full	
user-supplied	configuration.	

II. The	 Simple	 Storage	 Service	 is	 used	 to	 store	machine	 images	 after	 they	 are	
exported	to	the	cloud,	ready	for	deployment	at	runtime,	so	if	users	are	using	
their	own	custom	AMIs	they	must	upload	them	to	S3.	

III. Network	 access	 and	 security	 protocols	 must	 be	 configured	 by	 the	 user	 to	
control	 access	 to,	 and	 use	 of,	 their	 virtual	 resources,	 including	 configuring	
firewalls,	user	permissions	and	establishing	group	policies.	

IV. Users	 must	 choose	 the	 instance	 types	 they	 will	 use	 to	 instantiate	 their	
machine	 images.	 An	 AWS	 instance	 type	 refers	 to	 the	 specification	 of	 the	
virtual	machine	used	to	boot	the	machine	image.	It	is	here	that	users	specify	
the	 processing	 power,	 memory	 and	 configuration	 of	 their	 virtual	 machine	
instances.	

V. Virtual	resources	are	instantiated,	controlled,	monitored	and	terminated	via	
web	 service	 calls	 using	 either	 the	 AWS	 command	 line	 API	 or	 through	 GUI	
front-ends	exposed	by	AWS	or	other	third	party	cloud	monitoring	platforms.	

	
This	 list	 is	 not	 comprehensive	 or	 detailed,	 and	 does	 not	 aim	 at	 step-by-step	
instructions.	Rather	it	paints	a	rough	picture	of	how	to	run	an	agent-based	model	on	
EC2.		
	

7.5.3 Google	Compute	Platform	
Unlike	the	multifarious	AWS	product	suite	Google’s	nascent	Cloud	Platform	consists	
of	only	a	small	number	of	services.	These	are	the	established	App	Engine,	delivering	
Platform-as-a-Service,	 the	 beta	 Google	 Compute	 Engine,	 offering	 infrastructure	
services,	 Google	 Cloud	 Storage,	 providing	 large-scale	 data	 storage,	 and	 Google	
BigQuery,	offering	big	data	SQL-based	business	analytics	services.	In	addition	Google	
also	offers	machine	 learning	and	prediction	services	through	Google	Prediction	API	
and	translation	services	in	the	guise	of	the	Google	Translation	API.	
	

7.5.3.1 GCE	Instance	Specifications	
At	the	time	of	writing	Google	Compute	Engine	(GCE),	although	in	its	infancy,	appears	
set	 to	 become	 a	 major	 rival	 to	 Amazon	Web	 Services	 (tech	 blog/news	 reference	
here).	GCE	offers	4	virtual	machine	types	with	1,	2,	4	and	8	processors	cores,	with	

	 36	

main	memory	 ranging	 from	 3.75GB	 through	 7,	 15	 and	 30GB	 and	 local	 storage	 at	
420GB,	870,	1770	and	2	x	1770GB	per	virtual	machine.	
	
Both	 AWS	 and	 GCE	 offer	 infrastructure	 services	 that	 are	 broadly	 comparable.	 In	
terms	of	 cost	 it	 is	 necessary	 to	 compare	 the	 costs	of	 virtual	machine	deployment,	
ingress	and	egress	network	traffic,	persistent	disk	data	storage,	and	static	IP	address	
assignation	 (ephemeral/transient	 IP	 addressing	 is	 free	 from	 both	 providers).	
However	medium-	to	long-term	fluctuations	in	pricing	structures	means	there	is	little	
use	in	providing	detailed	comparisons	and	tables	of	price	data.		
	

8 Using	the	Cloud	to	Teach	ABMS	

8.1 Arguments	for	the	Cloud	
A	 number	 of	 arguments	 motivate	 the	 move	 to	 cloud,	 including	 limitations	 and	
problems	with	local	technology	stacks,	flexibility	and	configuration	management.			
	

8.1.1 Configuration	Management	
One	motivation	 for	 the	 cloud	 follows	 from	problems	with	hardware	and	 software.	
We	 term	 this	 configuration	 management.	 Hardware	 issues	 centre	 on	 access	 to	
resources	 and	 technical	 specifications.	 Issues	 with	 software	 tend	 to	 focus	 on	
installation	 problems,	 licensing,	 platform	 support,	 and	 runtime	 dependencies.	
Particular	problems	faced	depend	on	how	the	course	is	delivered	–	factors	affecting	
access	 to	 hard	 and	 soft	 computer	 resources	 include	whether	 or	 not	 the	 course	 is	
being	 delivered	 at	 a	 home	 or	 guest	 institution,	 if	 the	 course	 is	 being	 delivered	
remotely	 or	 locally,	 if	 students	 are	 using	 their	 own	 (laptop)	 computers	 or	
institutional	desktops,	and	the	cost	associated	with	acquiring	new	resources	such	as	
software	licenses.		
	

8.1.1.1 Hardware	Configuration	
Access	 to	 the	 necessary	 hardware	 is	 typically	 through	 the	 institution	 hosting	 the	
study	programme,	including	basic	access	to	desktops,	servers	and	networks.	There	is	
also	 scope	 and	 often	 expectation	 for	 participants	 to	 bring	 the	 their	 own	 laptops.	
Both	options	have	potential	difficulties	such	as	restrictions	on:	
	

• Memory,	processor	speeds	and	cores,	local	storage,	and	graphics	processing	
capabilities	

• Access	credentials,	user	accounts,	group	policies	and	security	protocols	
• Install	and	configuration	permissions	(root	access	e.g.)	
• Network	access	–	Ethernet	and	Wi-Fi	
• Network	quality	–	bandwidth,	download/upload,	import/export	speeds	
• Storage	requirements	–	especially	with	high-volume	results	data	generation	
• Display	requirements	–	GPU,	etc.	

	

	 37	

In	the	context	of	a	small-scale	short-course	on	ABMS	running	small-scale	simulations	
developed	on	the	smaller-scale	prototyping	environments	such	as	Repast	Simphony,	
local	desktop	and	laptops	should	be	sufficient.	Problems	arise	in	configuration,	as	it	
is	unlikely	that	user	or	school	machines	will	be	installed	with	the	required	packages	
and	dependencies,	making	it	necessary	to	run	install	scripts	under	root	permissions	
to	establish	a	suitable	runtime	environment.	

8.1.1.2 Software	Configuration	
Potential	difficulties	with	software	include:	

• Licensing	–	single	and	multi-user	
• Operating	system	support	
• Runtime	dependencies:	

o Libraries	
o Compilers	
o Version	support	
o Language	support	
o Drivers	
o Configuration	 problems	 resulting	 from	 the	 use	 of	 heterogeneous	

software	stacks	
	
These	 issues	also	 fall	under	 the	broad	aegis	of	configuration	management	and	can	
require	teachers	and	students	to	invest	significant	time	and	effort	in	preparation	for	
even	basic	simulation	runs	that	could	be	better	spent	pursuing	the	course	objectives	
or	other	work.	
	
The	 use	 of	 locally	 fabricated	 virtual	 machine	 images	 containing	 the	 software	
packages	 and	 dependencies	 required	 to	 launch	 and	 execute	 an	 agent-based	
modelling	 environment,	 the	 use	 of	 contextualisation	 scripts,	 or	 even	 manual	
configuration	of	 virtual	machines	 running	 in	 the	 cloud	can	avoid	problems	 such	as	
operating	 system	 support	 or	 the	 lack	 of	 root	 install	 permissions	 that	 arise	 when	
installing	 software	 on	 school	 resources	 or	 student	 laptops.	 We	 describe	 these	
approaches	to	using	the	cloud	below.	
	
Adopting	the	cloud	can	help	to	meet	these	configuration	challenges.	 Infrastructure	
services	provide	quick	access	 to	massively	 scalable	 compute	 resources.	This	allows	
instructors	 to	 provision	 exactly	 those	 resources	 they	 need	 for	 a	 specific	 purpose,	
with	deployment	times	measurable	in	minutes	and	users	having	the	necessary	install	
permissions.	For	example,	below	we	demonstrate	the	use	of	EC2	to	launch	a	virtual	
machine	 instance	 bundled	with	 the	 Repast	modelling	 environment	 and	 associated	
data.	 We	 specified	 processor	 speeds,	 cores,	 and	 main	 memory,	 mirroring	 the	
process	 instructors	 could	 follow	 to	 provision	 cloud	 services	 and	 avoid	 problems	
associated	with	configuration	management.		
	

8.1.2 Flexibility	
The	cloud	gives	teachers	access	to	a	powerful,	configurable	and	flexible	technology	
stack	that	is	independent	of	the	institution	hosting	their	course	and	does	not	rely	on	
students	 supplying	 their	 own	 laptop	 computers	 for	 use	 during	 class.	 Of	 course	 a	

	 38	

computer	of	some	type	is	required	to	access	the	cloud	but	any	machine	with	a	GUI	
and	Internet	connection	will	do	(including	mobile).	This	gives	instructors	a	degree	of	
flexibility	 when	 planning	 their	 study	 programmes.	 Accessing	 cloud	 resources	 only	
requires	access	to	a	good	network	connection	and	commodity	hardware.	So	as	long	
as	 a	 course	 is	 delivered	 at	 an	 institution	 with	 an	 Internet	 connection	 (a	 given)	
instructors	 are	 able	 to	 access	 a	 heterogeneous,	 powerful	 and	 hugely	 scalable	
technology	 stack,	 giving	 them	extensive	 options	 to	 tailor	 the	 exact	 resources	 they	
need	 for	 their	 specific	 purposes	 before	 releasing	 them	 after	 they	 are	 no	 longer	
needed.	

8.1.3 High	Performance	Computing	
The	 cloud	 gives	 users	 access	 to	 compute	 resources	 at	 a	 scale	 unparalleled	 in	
traditional	 higher	 education	 teaching	 and	 research.	 Instead	 of	 relying	 on	 complex	
grid	 resource	management	 frameworks,	access	 to	 supercomputers	or	 insufficiently	
powerful	local	clusters	and	desktops,	instructors	can	use	clouds	such	as	EC2	to	easily	
scale	their	compute	resources	to	run	high	performance	jobs	on-demand.	This	could	
involve	conducting	an	entire	simulation	run	as	an	HPC	job	in	the	cloud,	hybrid	cloud	
setups	using	school	and	public	cloud	services	or	bursting	HPC	jobs	onto	the	cloud.	

8.1.4 High	Throughput	Computing	
HTC	 workflows	 use	 batch	 processing	 to	 maximize	 the	 number	 of	 operations	
performed	 in	 a	 given	 period	 –	 floating-point	 operations	 per	 second	 e.g..	 Batch	
processing	in	the	cloud	requires	a	task	management	system	to	schedule,	setup,	run	
and	teardown	the	necessary	resources.	One	option	is	to	use	a	continuous	integration	
build	 server	 such	 as	 Jenkins.	 Jenkins	 is	 primarily	 intended	 to	provide	 a	 continuous	
integration	platform	to	automate	the	build,	 integration	and	testing	of	software.	As	
such	they	expose	reliable,	dependable	and	extremely	effective	scheduling	and	task	
management	functionality	that	can	manage	batch	simulations	in	the	cloud.	
	

8.1.5 Remote	Access	Software	
Running	batch	or	interactive	tasks	in	the	cloud	requires	remote	control	software	to	
support	 graphical	 and	 command	 line	 programs.	Depending	 on	 the	 platform	native	
options	include	SSH,	a	Unix	command	line	utility	allowing	remote	access	across	the	
network,	 and	 remote	desktop	applications	enabling	 local	 invocation	and	display	of	
remote	 applications	 such	 as	 the	 open	 source	 solutions	 based	 on	 Virtual	 Network	
Computing	(VNC)	and	proprietary	platforms	such	as	Netop,	and	(Netop	Report).		
		

8.2 Choosing	which	Cloud	Technologies	to	Use	
This	section	looks	at	factors	instructors	should	keep	in	mind	when	evaluating	cloud	
services	and	vendors.	The	initial	decision	is	to	determine	the	appropriate	service	and	
deployment	 models,	 before	 considering	 particular	 services.	 Resources	 already	
available	will	 shape	 these	decisions,	 but	 cloud	 services	 can	be	difficult	 to	properly	
evaluate	so	the	choice	is	not	necessarily	straightforward.		
	

	 39	

Instructors	 should	 have	 some	 idea	 of	 the	 variance	 in	 cloud	 performance,	 factors	
responsible	for	the	variation	and	the	metrics	used	to	test,	benchmark	and	evaluate	
different	service	types	from	different	vendors.		
	
Detailed	 performance	 metrics	 are	 not	 very	 useful	 for	 ABMS	 teachers	 because	
performance	variations	are	minimal	relative	to	typical	ABMS	use	cases.			
	
Lack	of	information	from	by	cloud	vendors	is	one	reason	for	this.	The	other	problem	
is	that	although	systematic	studies	exist	that	evaluate	different	cloud	services	across	
a	range	of	metrics,	and	some	compare	performance	variability	of	specific	clouds	over	
time,	these	studies	tend	to	drill	down.	Iosup,	Yigitbasi	and	Epema	(2011)	for	example	
investigate	 the	performance	 variability	 of	 some	 cloud	 services	provided	by	Google	
and	Amazon.		
	

8.3 Evaluating	Cloud	Services	
Typical	 evaluation	 metrics	 include	 availability,	 throughput,	 utilization,	 and	
performance,	although	how	they	are	defined	varies.	Hyperic,27	for	example,	is	a	tool	
designed	to	monitor	system	and	application	performance	of	software	running	in	the	
cloud	 and	 on	 other	 virtualization	 platform.	 The	 performance	 information	 Hyperic	
collects	 is	 helpful	 in	 introducing	 the	 types	 of	 performance	 evaluation	 necessary	
when	making	non-trivial	or	 long	run	use	of	the	cloud.	Availability	can	be	defined	in	
terms	 of	 whether	 or	 not	 a	 cloud	 service	 can	 be	 contacted	 and	 is	 able	 to	 serve	
requests.	 Throughput	 is	 measured	 in	 different	 ways	 depending	 on	 whether	 the	
service	measured	is	a	web	or	application	server,	or	a	database	application.	For	web	
and	 application	 servers’	 throughput	 is	 measured	 in	 terms	 of	 bytes	 or	 requests	
received	 and	 served	 across	 a	 designated	 time	 period.	 Database	 application	
throughput,	again	measured	over	a	designated	time	frame,	is	measured	in	terms	of	
open	connections	and	requests	processed.	The	approach	taken	to	measure	resource	
utilization	 also	 varies	 and	 is	 dependent	 on	 the	 individual	 platforms,	 resources,	
services,	 and	 servers	 comprising	 the	 application	 under	 evaluation.	 Hyperic	 gives	
users	 the	 possibility	 to	 generate	 an	 overview	 of	 the	 capacity	 available	 across	 an	
application	as	a	whole	and	to	drill	down	into	specific	elements	to	examine	resource	
underutilization	 and	 application	 performance	 bottlenecks.	 Finally,	 performance	
metrics	 are	 typically	 formulated	 in	 either	 temporal	 units	 (time	 taken	 to	 perform	
operation	x)	or	integer	values	(i.e.	message	queue	lengths).	
	
It	seems	reasonably	clear	that	these	types	of	metric	are	of	less	interest	and	use	to	a	
teacher	 planning	 an	 ABMS	 study	 programme	 than	 the	 analyst	 evaluating	 an	
enterprise	deployment,	but	it	may	transpire	that	teachers	wish	to	compare	different	
cloud	 options	 against	 each	 other	 and	 it	 is	 across	 these	 type	 of	 quality	 of	 service	
metrics	 that	 such	 a	 comparison	 can	 be	 made.	 We	 envision	 that	 the	 most	 useful	
comparisons	 for	 teachers	 though	 will	 be	 on	 the	 types	 of	 infrastructure	 services	
available,	 the	 type	 of	 virtualisation	 platform	 used	 –	 as	 this	 determines	 the	 way	
bespoke	virtual	machine	 images	can	be	deployed	to	the	cloud	–	how	access	to	the	
cloud	infrastructure	is	achieved,	and,	perhaps	most	importantly,	cost.	The	
																																																								
27	http://www.hyperic.com/	

	 40	

	

8.3.1 Service	and	Deployment	Models	
In	terms	of	service	models,	 infrastructure	cloud	services	are	of	primary	 interest	for	
teaching	 ABMS.	 The	Model	 Exploration	 Service	 outlined	 in	 [a	 section	 above]	 is	 an	
instance	of	 Simulation-software-as-a-Service,	 but	 at	 present	 such	projects	 are	 rare	
and	lack	universal	applicability	for	different	teachers	in	different	contexts,	aiming	at	
different	 objectives.	 There	 are	 no	 SaaS	 vendors	 who	 deliver	 simulation-centric	
software	as	a	commercial	service.	Similarly,	Platform-as-a-Service	vendors	are	yet	to	
host	 dedicated	 agent-based	modelling	 and	 execution	 environments	 on	 their	 cloud	
stacks.	Were	SaaS	vendors	to	start	delivering	simulation	software	this	could	greatly	
simplify	 the	 delivery	 of	 ABMS	 study	 programmes,	 provided	 there	 was	 sufficient	
configuration	 flexibility	 and	 maximum	 leeway	 for	 instructors	 to	 control	 input	
parameters	 and	 tailor	 the	 software	 for	 their	 purposes.	 Likewise,	 the	 provision	 of	
dedicated	 PaaS	 modelling	 and	 execution	 platforms	 could	 have	 beneficial	
ramifications	 for	 students	 and	 teachers	 of	 ABMS	 by	 allowing	 them	 easy	 access	 to	
third-party	hosted	development	resources.	Again	there	are	no	PaaS	offerings	in	the	
market.		
	
Looking	forward	it	is	possible	that	both	SaaS	and	PaaS	simulation	services	could	help	
provide	the	backbone	of	an	e-learning	agent-based	modelling	and	simulation	cloud	
ecosystem	but	this	is	speculative	(see	discuss	this	below).	Presently	it	 is	reasonable	
to	surmise	that	if	teachers	choose	to	deploy	cloud	resources	they	will	use	IaaS	cloud	
services	 as	 these	 provide	 low-level	 access	 to	 and	 configuration	 of	 core	 computing	
infrastructure	resources.	
	
Considering	deployment	models	 it	 seems	 that	public,	 private	and	hybrid	 clouds	all	
have	the	potential	to	help	AMBS	teachers.	Here	decisions	are	likely	to	turn	on	what	
access	a	 teacher	has	 to	what	 types	of	 resources.	For	example,	a	 simulation	course	
hosted	by	the	University	of	St	Andrews	could	use	the	StACC	cloud,	although	access	
to	 other	 private	 clouds	 hosted	 by	 other	 universities	 or	 other	 institutions	 is	 easy	
enough	 subject	 to	 network	 connectivity	 and	 agreements	 between	 institutions	 and	
instructors.	 If	 simulation	 runs	executing	on	StACC	were	 then	 farmed-out	 to	EC2	or	
the	Google	Compute	Engine	 the	course	would	 in	effect	be	 leveraging	hybrid	 cloud	
services	-	 the	private	StACC	cloud	and	the	public	AWS	EC2.	Alternatively	the	entire	
course	 could	be	 run	on	EC2,	or	 another	public	 infrastructure	 cloud,	making	use	of	
only	public	cloud	services.	Decisions	here	are	likely	to	be	framed	by	what	resources	
are	available	 locally,	where	 the	 course	 is	being	delivered,	 the	aims	and	 content	of	
the	 course,	 and	 other	 factors	 such	 as	 cost	 and	 a	 particular	 cloud’s	 virtualization	
environment.	 Other	 considerations,	 normally	 key	 when	 evaluating	 cloud	 services	
and	 deployment	 models,	 such	 as	 reliability,	 quality	 of	 service	 and	 service	 level	
agreements,	could	also	be	relevant,	but	they	have	less	influence	within	the	context	
of	teaching	agent-based	simulation	than	if	configuring	cloud	services	for	commercial	
deployment,	because	the	performance	characteristics	of	 IaaS	clouds	are	all	broadly	
similar	for	the	limited	set	of	short-run	tasks	required	during	a	course	on	ABMS.	It	is	
reasonable	 to	 conclude	 therefore	 that	 without	 the	 development	 of	 substantial	

	 41	

private	 cloud	 capacity	 it	 is	 likely	 the	 majority	 of	 ABMS	 teachers	 using	 cloud	
technologies	will	access	public	cloud	services	if	they	choose	to	use	them.	
	
The	arguments	for	the	cloud	outlined	above	are	based	on	limitations	and	problems	
that	teachers	are	likely	to	face	while	delivering	a	course	on	agent-based	modelling.	
The	next	 section	 looks	at	 six	ways	 teachers	 can	use	 the	cloud	 to	circumvent	 these	
problems.	

9 How	Teachers	can	make	best	use	of	the	Cloud	
This	 section	 discusses	 the	 different	 options	 available	 for	 running	 agent-based	
simulations	in	the	cloud.	It	runs	through	each	option,	including	a	description	of	the	
use	case	and	its	associated	problems.	Running	simple	simulation	models	in	the	cloud	
should	be	relatively	straightforward	given	access	to	the	appropriate	local	resources	–
namely	 a	 client	 machine	 (desktop,	 laptop),	 network	 connection	 and	 payment	
method	–but	 there	are	potential	difficulties.	Given	 the	 restrictions	 imposed	by	 the	
specific	 virtualization	platform	 in	 use	 by	 a	 particular	 cloud	 vendor	 that	we	discuss	
above,	 we	 identify	 two	 central	 use	 cases	 for	 the	 cloud	 that	 readers	 are	 likely	 to	
adopt,	 which	 involve	 either	manually	 or	 automatically	 configuring	 a	 template	 VM	
that	is	already	running	in	the	cloud.	We	also	discuss	exporting	virtual	machines	from	
the	 cloud,	 bursting	 simulations	onto	 the	 cloud,	 and	 a	 specialised	offering	 know	as	
the	Model	Exploration	Service,	which	allows	batch	simulation	jobs	to	be	run	on	EC2	
with	minimal	configuration	effort.																																																																																																																												

9.1 Booting	a	hosted	template	image	in	the	cloud	with	manual	configuration	
The	 most	 straightforward	 way	 to	 use	 cloud	 infrastructure	 services	 is	 to	 manually	
boot	 and	 configure	 a	 template	 virtual	machine	 image	 that	 is	 hosted	 by	 the	 cloud	
services	 provider.	 The	 process	 of	 installing	 software	 packages	 and	 configuring	 a	
template	 virtual	 machine	 for	 a	 specific	 purpose	 is	 known	 as	 contextualization.	
Contextualization	 can	be	done	manually	 or	 via	 an	 automated	 script,	 and	 the	main	
effort	necessary	with	using	template	images	is	the	manual	contextualization	process.		
	
A	 GUI	 such	 as	 the	 AWS	Management	 Console	 or	 a	 command	 line	 API	 is	 used	 to	
launch,	 control	 and	 configure	 each	 template.	 For	 example	 users	 could	 boot	 a	
template	Ubuntu	EC2	 instance	with	sufficient	memory	and	processor	power	to	run	
their	simulations	before	installing	and	configuring	the	necessary	software	packages.	
Using	a	Linux	package	manager	such	as	apt	(Ubuntu)	or	yum	(CentOS)	can	make	the	
installation	 of	 packages	 relatively	 straightforward	 although	 configuration	 can	 be	
more	difficult.	The	packages	and	dependencies	required	will	vary	between	uses	but	
would	 probably	 include	 a	 modelling	 and	 execution	 platform	 such	 as	 Repast	
Simphony	 with	 an	 associated	 development	 environment	 (Eclipse	 is	 bundled	 with	
Repast	Simphony).	The	modelling	platform	will	require	a	runtime	environment	such	
as	the	Java	runtime	OpenJDK	and	any	runtime	dependencies,	for	example	compilers,	
libraries,	 and	 pseudo-random	 number	 generators	 also	 need	 to	 be	 installed	 and	
configured.	 If	using	Linux	 it	can	be	reasonably	assumed	that	the	required	packages	
are	 either	 already	 installed	 or	 are	 easily	 installable	 using	 the	 native	 package	
manager.	 The	GNU	 Compiler	 Collection,	which	 includes	 the	GNU	 C,	 C++,	 and	 Java	
compilers,	 is	 easily	 installed	on	Ubuntu	 via	 the	Build	 Essentials	meta-package.	 The	

	 42	

picture	 is	 complicated	 if	 running	 proprietary	 software	 or	 if	 the	 operating	 system	
does	not	have	basic	packages	as	standard	(e.g.	Microsoft	Windows	does	not	have	a	
native	Python	installation).	 In	this	case	manual	search	and	installation	 is	necessary.	
Executing	a	simulation	and	viewing	the	results	requires	a	graphical	interface	(in	place	
of	SSH	from	the	command	line).	This	requires	remote	access	software	such	as	VNC	
Server	 to	 be	 installed	 and	 configured	 on	 the	 virtual	 machine.	 Finally	 any	 other	
packages,	a	database	server	such	as	MySQL	for	example,	must	be	manually	installed	
and	configured.	
	
The	 point	 here	 is	 that	 although	 manual	 contextualization	 can	 be	 relatively	
straightforward	 –	 although	 this	 is	 by	 no	 means	 the	 case	 as	 installation	 and	
configuration	can	be	highly	non-trivial	and	require	significant	effort	–	it	in	large	part	
obviates	the	ease	with	which	cloud	resources	can	be	accessed,	increasing	the	time,	
complexity	 and	 effort	 for	 students	 and	 teachers	 using	 the	 cloud.	 Furthermore	
persisting	 the	 VM	 incurs	 additional	 costs	 or	 manual	 re-contextualization	 between	
sessions,	 unless	 the	 VM	 is	 kept	 running,	 which	 is	 financially	 prohibitive	 and	 likely	
undesirable.	 There	 are	 two	 ways	 to	 avoid	 this	 effort	 –	 the	 first	 is	 to	 run	 a	
contextualization	script	that	performs	the	 installation	and	configuration	effort	on	a	
template	VM	running	in	the	cloud.	The	second	is	to	manually	bundle	and	configure	a	
custom	virtual	machine	using	a	 local	 virtualization	environment	 such	as	VirtualBox	
before	uploading	it	to	the	cloud.		

9.2 Booting	 a	 hosted	 template	 image	 in	 the	 cloud	 and	 running	 a	
contextualization	script	

Using	 a	 contextualisation	 script	 to	 configure	 a	VM	has	 a	 number	 of	 advantages	 in	
addition	to	the	reduced	effort	described	above.	Firstly	the	contextualised	images	will	
always	be	up	to	date,	provided	the	software	repositories	the	script	accesses	contain	
up	 to	 date	 binaries.	 Having	 to	 manually	 configure	 and	 compile	 the	 necessary	
software	to	obtain	up	to	date	binaries	would	of	course	obviate	the	benefits	of	 the	
contextualisation	 script.	 Fully	 up	 to	 date	 software	 packages	 are	 less	 likely	 if	 the	
virtual	machine	is	manually	configured,	updated	and	actively	managed.	There	is	also	
less	 effort	 involved	with	 switching	 cloud	 infrastructures	 because	 the	 script	 can	 be	
run	 on	 the	 template	 virtual	 machines	 native	 to	 a	 particular	 infrastructure.	 As	
different	clouds	use	different	virtualization	platforms,	different	clouds	run	different	
types	of	(possibly	incompatible)	virtual	machines.	This	reduces	the	portability	of	VMs	
bundled	 for	 a	 particular	 cloud	 and	 restricts	 the	 ease	with	which	 users	 can	 switch	
clouds.	Contextualization	scripts	alleviate	 this	difficulty.	Using	a	 repository	 to	store	
contextualization	 scripts	 also	 allows	 specific	 teaching	 materials	 to	 be	 version	
controlled.	 The	 development	 of	 version-controlled	 repositories	 containing	 scripts	
tailored	to	specific	simulation	jobs	has	the	potential	to	greatly	reduce	the	time	and	
effort	instructors	must	invest	before	leveraging	the	benefits	of	the	cloud.	

9.3 Manually	configuring	a	local	image	and	importing	it	to	the	cloud	
A	 third	 use	 case	 is	 to	 locally	 bundle	 virtual	machine	 images	 containing	 everything	
necessary	 to	develop	and	execute	agent-based	models	 and	 importing	 them	 to	 the	
cloud.	 After	 bundling	 an	 appropriate	machine	 image,	 users	 upload	 it	 to	 the	 cloud	
using	a	suitable	API.	Locally	bundled	images	are	similar	to	those	described	above	–	a	
base	 operating	 system,	 software	 toolkit	 and	 modelling	 environment,	 user-	 or	

	 43	

simulation-specific	 data	 and	 any	 other	 runtime	 dependencies.	 After	 the	 VM	 is	
imported	to	the	cloud	it	is	booted	on	an	appropriate	machine	instance.		
	
Unfortunately	 this	 use	 case	 is	 highly	 problematic	 because	 of	 the	 virtualization	
restrictions	outlined	above.	
	

9.4 Exporting	virtual	machine	images	from	the	cloud	
The	 third	way	users	 are	 likely	 to	 use	 the	 cloud	 is	 to	 export	 their	machine	 images,	
simulation	 results	 and	 data	 from	 the	 cloud	 to	 their	 local	 infrastructure.	 	 It	 is	
important	 that	 after	 students	 have	 run	 their	 models	 in	 the	 cloud	 during	 course	
contact	time	they	are	able	to	export	their	VMs	from	the	cloud	to	boot	on	their	local	
virtualization	 platforms.	 In	 general	 this	 process	 allows	 people	 to	 port	 their	 results	
between	 clouds	 and	 other	 infrastructure	 platforms,	 allows	 teachers	 to	 build	
persistent	educational	resources	based	on	simulation	results	generated	in	the	cloud.	
	

9.5 Cloud	Bursting	
Cloud	 bursting	 is	 another	 potentially	 useful	 application	 of	 cloud	 resources	 if	
executing	 the	 simulation	 realizes	 high	 performance	 load	 spikes	 that	 are	 easily	
transferrable	to	the	cloud.	This	will	depend	on	the	simulation	at	hand.	For	example	
simulation	 runs	 using	 the	 Repast	 for	 High	 Performance	 Computing	modelling	 and	
execution	 platform	 could	 require	 access	 to	 resources	 beyond	 those	 otherwise	
available.	It	is	perhaps	unlikely	however	that	readers	of	this	report	will	choose	to	run	
such	simulations	given	that	we	focus	on	small-scale	teaching	contexts	which	do	not	
require	 powerful	 compute	 resources.	 Bursting	 simulation	 runs	 onto	 the	 cloud	 is	
though	a	live	option	and	could	be	very	useful	in	particular	circumstances.	
	

9.6 Virtual	Machine	Image	Contextualization	Repositories		
As	demonstrated	below	running	simulations	in	the	cloud	is	relatively	straightforward	
once	 a	 suitable	 virtual	 machine	 image	 has	 either	 been	 created	 in	 the	 cloud	 or	
exported	 to	 the	 cloud.	 In	 the	 case	 of	 EC2	 this	 involves	 bundling	 a	machine	 image	
using	 local	 virtualization	 technologies,	 uploading	 the	 image	 to	 the	 AWS	 Simple	
Storage	Service	(S3)	using	command	line	tools,	before	instantiation	using	one	of	the	
available	AWS	instance	types	at	runtime.		
	
This	 suggests	 that	 one	way	 to	 further	 uptake	 and	 ease	 the	 use	 of	 the	 cloud	 is	 to	
develop	repositories	or	libraries	of	contextualization	scripts	which	can	be	rapidly	and	
easily	 deployed	 by	 teachers	 in	 line	 with	 their	 particular	 teaching	 requirements,	
potentially	 alleviating	 (at	 least	 part	 of)	 the	 bundling	 and	 configuration	 effort	
required	 to	 produce	 a	 machine	 image	 for	 upload	 and	 instantiation	 on	 to	 public,	
private	 or	 hybrid	 clouds,	 or	 the	 manual	 configuration	 necessary	 when	 booting	
hosted	template	images.	The	repository	could	be	hosted	by	an	online	service	such	as	
Bitbucket 28 	or	 privately	 by	 communities	 of	 interested	 parties.	 Students	 and	
instructors	could	reliably	select	and	launch	the	resources	required	without	having	to	

																																																								
28	https://bitbucket.org/		

	 44	

undergo	complex	and	error-prone	configuration	prior	to	or	during	class	time.	Users	
can	quickly	boot	customised,	configured	virtual	machine	instances,	greatly	reducing	
the	 time	 and	 effort	 needed	 to	 build	 a	 suitable	modelling	 platform	 and	 the	 effort,	
cost	and	complexity	of	provisioning	the	compute	resources	to	run	them.		

10 Practical	Demonstrations	
In	 this	section	we	describe	our	experience	of	using	EC2	to	execute	a	simple	agent-
based	model	 in	 the	 cloud.	We	 illustrate	 the	 first	 two	use	 cases	described	above	–	
manually	configuring	a	template	virtual	machine	that	has	been	instantiated	on	EC2,	
and	 running	 a	 contextualization	 script	 to	 setup	 and	 configure	 a	 modelling	 and	
simulation	environment,	also	running	on	EC2.	We	do	not	include	the	third	use	case	–	
using	VirtualBox	to	bundle	a	machine	image	before	exporting	it	to	EC2	–	because	this	
involves	a	substantial	degree	of	configuration	complexity	that	in	large	part	obviates	
the	 benefits	 of	 using	 the	 cloud	 and	 is	 not	 a	 process	 that	 most	 user	 are	 likely	 to	
engage	with.	We	also	compare	the	process	involved	with	running	a	batch	simulation	
job	using	 the	 Jenkins	build	 server	 (see	above)	and	 running	 the	 same	 job	using	 the	
Model	Exploration	Service.	
	
For	 each	 demonstration	 we	 ran	 the	 Bankers	 model,	 part	 of	 [insert	 name	 here]’s	
RepastCity	project,	used	on	the	[Manchester	Social	Simulation	course].29	This	model	
is	relatively	simple	but	contains	a	number	of	more	advanced	features	compared	to	
the	introductory	tutorials	bundled	with	Repast	Simphony.	The								
	

10.1 Manual	Configuration	
Manually	configuring	a	virtual	machine	with	an	appropriate	simulation	environment	
is	 similar	 to	 the	 configuration	 of	 virtual	machines	 used	 for	 other	 purposes,	 or	 the	
configuration	 of	 local	 non-cloud	 resources,	 and	 does	 not	 present	 any	 simulation-
specific	 problems.	 After	 launching	 a	 VM	 on	 EC2	 and	 SSHing	 into	 it	 from	 the	
command	 line	 the	 installation	 of	 the	 appropriate	 packages	 and	 modelling	
environment	 was	 straightforward.	 The	 commands	 we	 ran	 are	 the	 same	 as	 those	
contained	within	the	contextualization	script	contained	in	appendix	[x].	

10.2 Configuration	through	a	Contextualization	Script	
We	also	used	a	contextualization	script	to	automatically	install	and	configure	a	fully	
functioning	modelling	and	execution	environment.	This	process	parallels	the	manual	
case,	but	removes	potential	configuration	errors	and	reduces	the	time	and	effort	
users	must	invest	before	using	their	virtual	machine.	
	

10.3 Exporting	Local	Machine	Images	to	the	Cloud	
We	chose	not	to	bundle	our	own	a	disk	 image	using	VirtualBox	and	exporting	 it	 to	
EC2.		
	
The	image	used	by	the	[Manchester	Social	Simulation	course]	contains	Ubuntu	Linux	
and	Repast	Simphony,	the	data	necessary	to	run	the	simulations,	and	instructions	for	
																																																								
29	https://sites.google.com/site/socialsimulationcourse/home		

	 45	

students	 on	 how	 to	 use	 the	 software.	 We	 encountered	 significant	 configuration	
complexity	 because	 of	 the	 need	 to	 ensure	 interoperability	 between	 the	 virtual	
machine	 image	 file	 produced	 by	 VirtualBox	 and	 the	 virtualization	 environment	
supported	by	EC2.	
	

10.4 The	Model	Exploration	Service	(Simulation-as-a-Service)	
Gulyas	 et	 al.	 (2010)	 present	 an	 on-demand	 simulation	 service	 allowing	 users	 to	
access	 compute	 resources	 over	 the	 web	 –	 'Simulation-as-a-Service'	 –	 called	 the	
Model	Exploration	Service	(MES).30		Developed	by	AITIA	International	 Inc.,	MES	is	a	
cloud-based	simulation	resource	that	permits	users	to	provision	a	specified	number	
of	CPUs	to	explore	the	simulation	space	of	complex	agent-based	models.	Access	to	
MES	 is	 through	 the	 Model	 Exploration	 ModulE	 tool	 (MEME), 31 	which	 exposes	
services	 compatible	with	 simulation	 runs	 executing	 on	 common	 platforms	 such	 as	
NetLogo	 and	 Repast	 J.	MEME	 is	 part	 of	 a	 larger	 collection	 of	 tools	 known	 as	 the	
Multi-Agent	Simulation	Suite	(MASS),32	which	supports	the	development,	execution	
and	analysis	of	agent-based	models.	
	
MEME	is	designed	to	allow	users	to	execute	batch	mode	simulation	runs.	At	present	
it	has	native	support	for	Repast	J,	which	is	 installed	along	with	the	MEME	client	by	
default,	 although	 it	 is	 possible	 to	 support	 NetLogo	 and	 pure	 Java	 models	 using	
MEME’s	 plugin	 architecture.	 The	 data	 results	 generated	 by	 a	 particular	 run	 are	
stored	in	a	database	and	built-in	visualisation	tools	allow	users	to	visualise	their	data	
in	 a	 number	 of	 formats	 (bar	 chart,	 histogram,	 pie	 chart,	 etc.).	 MEME	 therefore	
supports	 the	 coordination	 simulation	 runs,	 output	 management	 and	 results	
analysis. 33 	To	 provide	 compute	 power	 MES	 uses	 Amazon	 EC2	 to	 host	 virtual	
machines	specifically	tailored	for	agent-based	simulations,	although	exactly	how	this	
is	done	is	not	specified.	
To	use	MES	users	need	to	create	an	account	on	the	MES	web	page,	and	download	
and	install	the	MEME	client.	

11 Future	Work	

Factors	to	consider:	

• Short-term	vs.	long-term	
• Technical	vs.	academic	research	directions	
• Teaching	specific	vs.	general	ABMS	cloud	use	
• Virtual	machine	disk	image	repository	

																																																								
30	http://modelexploration.aitia.ai/		
31	http://mass.aitia.ai/intro/meme	
32	http://mass.aitia.ai/	
33	See	the	MEME	manual	for	full	details.	The	manual	is	contained	in	/Users/{user	
name}/meme/MEME/Documents	following	a	standard	installation	on	OS	X	or	similar	
location	on	Linux/Windows.	

	 46	

• E-Learning	Simulation	Ecosystem	
• Specialised	cloud	simulation	services	
• Simulation-as-a-Service	
• Detailed	comparison	of	cloud	service	providers	
• Tutorials/walkthroughs	
• Simulation-specific	technical	documents	on	cloud	computing	

	

11.1 ABMS	E-Learning	Ecosystem	
There	are	a	number	of	e-learning	proposals	in	the	literature	advocate	cloud	services	
as	 the	 primary	 delivery	 channel	 for	 course	 content	 in	 different	 learning	 contexts.	
Bhattacharya,	 Tao,	 Wu,	 Qian	 and	 Palmer	 (2011)	 report	 a	 work-in-progress	 which	
leverages	Google	 cloud	 services	 including	Google	Apps,	 Sites,	Docs,	Accounts,	Mail	
and	 Custom	 Search	 to	 implement	 an	 e-learning	 suite	 delivering	 an	 interactive,	
collaborative	 learning	 experience	 for	 undergraduate	 introductory	 computer	
programming	 courses.	 Masud	 and	 Huang	 (2012)	 also	 develop	 an	 e-learning	
architecture	that	uses	the	cloud.	
	

11.2 Other	Recommendations	and	Future	Work	
[Any	other	recommendations	here]	

12 Conclusion	
To	model	social,	cultural	and	economic	processes	social	scientists	employ	a	battery	
of	 methods	 against	 a	 number	 of	 practical	 and	 theoretical	 targets.	 Simulation	
techniques	are	used	to	explain	and	understand	the	causal	mechanisms	that	yield	the	
empirical	 phenomena	 exhibited	 by	 complex	multi-agent	 social	 systems,	 predicting	
when	and	how	social	phenomena	occur,	and	to	discover	novel	relationships	between	
social	agents	and	the	emergent	properties	of	 the	structures	realised	by	their	 inter-
relationships	(Gilbert	and	Troitzsch	2005).		
There	 is	 no	 doubt	 that	 the	 development	 of	 computers	 in	 recent	 years	 has	 greatly	
helped	 these	 investigations	 and	 that	 cloud	 computing	 has	 great	 potential	 to	 help	
social	scientists	teach	social	simulation.	
	

13 Appendices	

13.1 Sample	Contextualization	Scripts	
This	section	presents	example	contextualization	scripts,	including	the	scripts	we	ran	
in	the	demonstrations	above.	These	are	reusable	and	easy	to	adapt.	An	easily	
discoverable,	deep	contextualization	script	repository	would	be	a	significant	boon	to	
instructors.	

13.1.1 Script	1:	Ubuntu,	Repast	Simphony	and	User	Data	
[Script	here]	
	

	 47	

14 References	
§ See	other	document	in	DSR	Dropbox	folder.	

