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Well-posedness for the diffusive 3D Burgers

equations with initial data in H1/2

Benjamin C. Pooley ∗†‡ James C. Robinson ‡§

January 19, 2016

Abstract

In this note we discuss the diffusive, vector-valued Burgers equa-
tions in a three-dimensional domain with periodic boundary condi-
tions. We prove that given initial data in H1/2 these equations admit
a unique global solution that becomes classical immediately after the
initial time. To prove local existence, we follow as closely as possible
an argument giving local existence for the Navier–Stokes equations.
The existence of global classical solutions is then a consequence of the
maximum principle for the Burgers equations due to Kiselev & La-
dyzhenskaya (1957).

In several places we encounter difficulties that are not present in
the corresponding analysis of the Navier–Stokes equations. These are
essentially due to the absence of any of the cancellations afforded by in-
compressibility, and the lack of conservation of mass. Indeed, standard
means of obtaining estimates in L2 fail and we are forced to start with
more regular data. Furthermore, we must control the total momentum
and carefully check how it impacts on various standard estimates.

1 Introduction

We consider the three-dimensional, vector-valued diffusive Burgers equa-
tions. The equations, for a fixed viscosity ν > 0 and initial data u0, are

ut + (u · ∇)u− ν∆u = 0, (1)

u(0) = u0. (2)

Working on the torus T3 = R3/2πZ3, we will investigate the existence and
uniqueness of solutions u to (1). Using the rescaling ũ(x, t) := νu(x, νt), it
suffices to prove well-posedness in the case ν = 1.
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This system is well known and is often considered to be “well under-
stood”. However we have not found a self-contained account of its well–
posedness in the literature, although for very regular data (with two Hölder
continuous derivatives, for example) existence and uniqueness can be de-
duced from standard results about quasi–linear systems. We are particularly
interested in an analysis parallel to the familiar treatment of the Navier–
Stokes equations, which motivates our choice of function spaces here.

It is interesting to note that we find some essential difficulties in treating
this system which do not occur when incompressibility is enforced, i.e. for the
Navier–Stokes equations. These prevent us from making the usual estimates
that would give existence of (L2-valued) weak solutions. We also find that
taking initial data with zero average is not sufficient to ensure that the
solution has zero average for positive times. This necessitates estimating
the momentum and checking carefully that the methods applicable to the
Navier–Stokes equations have a suitable analogue.

We begin with some brief comments on several relevant methods from
the literature to motivate our discussion here.

A maximum principle for solutions of the Burgers equations was proved
by Kiselev & Ladyzhenskaya (1957). A simplified version of this result with
zero forcing plays a key role in our argument, so we reproduce the proof
here.

Lemma 1. If u is a classical solution of the Burgers equations (1) on a
time interval [a, b] then

sup
t∈[a,b]

‖u(t)‖L∞ ≤ ‖u(a)‖L∞ . (3)

Proof. Fix α > 0 and let v(t, x) := e−αtu(x, t) for all x ∈ T3. Then |v|2
satisfies the equation

∂

∂t
|v|2 + 2α|v|2 + u · ∇|v|2 − 2v ·∆v = 0. (4)

Since 2v ·∆v = ∆|v|2 − 2|∇v|2 we see that if |v|2 has a local maximum at
(x, t) ∈ (a, b]×T3 then the left-hand side of (4) is positive unless |v(x, t)| = 0.
Hence

‖u(t)‖L∞ ≤ eαt‖u(a)‖L∞ .

Now (3) follows because α > 0 was arbitrary.

In the discussion of well-posedness for (1) in Kiselev & Ladyzhenskaya
(1957) the maximum principle is used with approximations obtained by
considering discrete times and replacing the time derivatives by difference
quotients. Unfortunately one of the steps there is incorrect. In the Math-
SciNet review, R. Finn relates a comment by L. Nirenberg that there is a
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flaw in the compactness argument given on p. 675. This error appears to be
fatal.

Another well known approach comes by analogy with the Burgers equa-
tions in one dimension, namely the Cole–Hopf transformation, which gives
analytic solutions by reducing the problem to solving a heat equation. Un-
fortunately this can only give gradient solutions, and since we wish to draw
comparisons with the classical equations of fluid mechanics this is a signifi-
cant drawback.

There is a theorem in the book of Ladyzhenskaya, Solonnikov & Ural’ceva
(1968) (Chapter VII, Theorem 7.1) giving local well–posedness for a certain
class of quasi-linear parabolic problems that includes (1). In that theorem
the data and solutions are taken to have spatial Hölder regularity1 at least
C2,α for some α ∈ (0, 1). It is likely that a consequence is global well–
posedness in these spaces, but this is not stated. A brief sketch of the
proof is given, but it is quite different from any familiar method used for
the Navier–Stokes equations. Moreover and there is also no discussion of
solutions gaining regularity that we will demonstrate (see Lemma 4).

To simplify several of the estimates proved later, we define for s ≥ 0 the
operator Λs acting on Hs(T3) as follows. Let f ∈ Hs(T3) have the Fourier
series

f(x) =
∑
k∈Z3

f̂ke
ik·x ∈ Hs(T3),

then we define
Λsf(x) :=

∑
k∈Z3

|k|sf̂keik·x ∈ L2(T3).

Moreover we denote by ‖ · ‖s the seminorm ‖Λs · ‖L2 . This is of course
compatible with the definition of the Sobolev norm; ‖ · ‖Hs is equivalent to
‖ · ‖L2 + ‖ · ‖s. Note that in the Fourier setting it is more usual to define an
equivalent norm on Hs by

‖f‖ =

∑
k∈Z3

(1 + |k|2s)|f̂k|2
1/2

,

but here we will usually consider ‖f‖L2 and ‖f‖s separately, when estimating
‖f‖Hs . We will also make use of the fact that ‖f‖s ≤ ‖f‖t if 0 < s ≤ t and
that Λ2 = (−∆),

We call u ∈ C0([0, T ];H1/2) ∩ L2(0, T ;H3/2) with ut ∈ L2(0, T ;H−1/2)
a strong solution of (1) if, for any φ ∈ C∞(T3)

〈ut, φ〉+ ((u · ∇)u, φ)L2 + (∇u,∇φ)L2 = 0 (5)

1The spaces in which solutions are found are actually defined by the existence and
Hölder continuity (with certain exponent) of the mixed derivatives Dr

tD
s
x for 2r+s < 2+α,

where Ds
x is any spatial derivative of order s.
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for almost all t ∈ [0, T ]. Here 〈·, ·〉 denotes the duality pairing of H−1/2(T3)
with H1/2(T3). We consider the attainment of the initial data u0 ∈ H1/2 in
the sense of continuity into H1/2.

We have chosen to use the term strong solution here, even though (in
the classical treatment of the Navier–Stokes equations) this usually refers
to solutions in L∞(0, T ;H1) ∩ L2(0, T ;H2). Indeed, we shall see that the
solutions we find become classical, in a similar way to local strong solutions
of the Navier–Stokes equations (see Robinson et al. (2015)).

The reason for considering well-posedness in H1/2 is that, as for the
Navier–Stokes equations, if u is a solution to the Burgers equations on R3

then, for λ > 0, so is
uλ := λu(λ2t, λx)

and in three dimensions the seminorm ‖ ·‖1/2 is invariant under this scaling.
Therefore we would ideally consider solutions in the homogeneous space
Ḣ1/2; however, as we will see, the zero-average property is not necessarily
preserved in the solution. Fortunately we will also see that it is natural to
control the “creation of momentum” by

∫ t
0 ‖u(s)‖1/2 ds and we will check

carefully that the relevant techniques from the analysis of the Navier–Stokes
equations in Ḣ1/2 can be adapted.

We will prove the following theorem.

Theorem 1. Given u0 ∈ H1/2, there exists a unique global strong solution
u ∈ C0([0,∞);H1/2)∩L2(0,∞;H3/2). Moreover, except at the initial time,
u ∈ C1((0,∞);C0) ∩ C0((0,∞);C2) and is a classical solution.

We will prove this using Galerkin approximations to find unique local
strong solutions and then, by bootstrapping, prove that the solution has
enough regularity to rule out a blowup and deduce global existence using
Lemma 1.

The well known arguments giving global existence of weak solutions to
the Navier–Stokes equations (i.e. solutions with initial data in L2 and regu-
larity L∞(0, T ;L2) ∩ L2(0, T ;H1)) rely on the anti-symmetry

((u · ∇)v, w)L2 = −((u · ∇)w, v)L2

that is a consequence of incompressibility of u. This is not something we
can make use of with the Burgers equations. We might instead try to find
weak solutions using the maximum principle and the following estimate that
holds for smooth solutions

d

dt
‖u‖2L2 + ‖∇u‖2L2 ≤ ‖u‖2L2‖u‖2L∞ . (6)

Making rigorous use of this would require a maximum principle to hold for
the Galerkin approximations, but the proof of Lemma 1 does not work with
a projection applied to the nonlinear term.
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To avoid these difficulties we will start with more regular initial data (in
H1/2) and find classical solutions before making use of Lemma 1.

We separate the difficulties encountered in the proof of Theorem 1 into
two sections. In Section 2 we prove global well-posedness for data u0 ∈ H1.
Here we use some standard a priori estimates to find local strong solutions.
We then bootstrap to show that the solution is classical after the initial
time. This allows us to apply Lemma 1, from which we derive better H1

estimates that imply global existence.
In Section 3 we prove Theorem 1 using techniques from Maŕın-Rubio,

Robinson & Sadowski (2013) to find a unique local solution for initial data
u0 ∈ H1/2. This solution instantly becomes classical, and hence global, by
the results in Section 2.

2 Solutions in H1

We will use the method of Galerkin approximations. First we introduce
some notation. For n ∈ N let Pn denote the projection onto the Fourier
modes of order up to n, that is

Pn

∑
k∈Z3

ûke
ix·k

 =
∑
|k|≤n

ûke
ix·k.

Let un = Pnun be the solution to

∂un
∂t

+ Pn[(un · ∇)un]−∆un = 0, (7)

with
un(0) = Pnu0. (8)

For some maximal Tn > 0 there exists a solution un ∈ C∞([0, Tn) × T3) to
this finite-dimensional locally-Lipschitz system of ODEs.

As noted in the introduction, one of the interesting issues we encounter
in this analysis of the Burgers equations is that we cannot guarantee that
the solution has the zero-average property even if the initial data does.
However we do have the following estimate to control the potential “creation
of momentum”.

Lemma 2. Let u, v be solutions of (7), with initial data u0 and v0 respec-
tively. If w = u− v and w0 = u0 − v0 then∣∣∣∣∫

T3

w(x, t)− w0(x) dx

∣∣∣∣ ≤ 8π3
∫ t

0
‖w(s)‖1/2(‖u(s)‖1/2 + ‖v(s)‖1/2) ds. (9)

In particular, taking v ≡ 0 yields∣∣∣∣∫
T3

u(x, t) dx

∣∣∣∣ ≤ 8π3
∫ t

0
‖u(s)‖21/2 ds+

∣∣∣∣∫
T3

u0(x) dx

∣∣∣∣ . (10)
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Proof. For k ∈ Z3 denote the kth Fourier coefficients of u, v and w by ûk,
v̂k and ŵk respectively. Considering the form of the equations satisfied by
u and v, we have

d

dt

∫
T3

w(x, t) dx = −
∫
T3

(u · ∇)w + (w · ∇)v dx

= −8π3i
∑
k∈Z3

(
ûk(t) · k

)
ŵk(t) +

(
ŵk(t) · k

)
v̂k(t),

Hence ∣∣∣∣ d

dt

∫
T3

w(x, t) dx

∣∣∣∣ ≤ 8π3
∑
k∈Z3

|ŵk||k|(|ûk|+ |v̂k|)

≤ 8π3‖w(t)‖1/2(‖u(t)‖1/2 + ‖v(t)‖1/2),

then (9) follows after integrating with respect to t.

We will use this lemma to control the failure of equivalence of the norm
‖ · ‖Hs and the seminorm ‖ · ‖s for solutions of (7) as follows:

‖un(t)‖s ≤ ‖un(t)‖Hs ≤ c‖un(t)‖s + c

∫ t

0
‖un‖21/2 ds+ c‖u0‖L1 , (11)

for some c > 0 depending only on s. Here we have used the fact that∫
T3 Pnu0 =

∫
T3 u0. Note that we will occasionally use the equivalence of the

seminorms ‖ · ‖s and ‖ · ‖Ḣs when applicable. In particular for estimating
the derivatives of sufficiently regular functions e.g. ‖∇un‖L6 ≤ c‖un‖2.

We will prove the following special case of Theorem 1. The proofs of
some estimates will only be sketched, if they are standard or when similar
arguments are made in detail in Section 3.

Theorem 2. Given u0 ∈ H1, there exists a unique global strong solution
u ∈ C0([0,∞);H1) ∩ L2(0,∞;H2). Moreover, except at the initial time,
u ∈ C1((0,∞);C0) ∩ C0((0,∞);C2) is a classical solution.

We first need a lower bound on the existence times for the Galerkin
systems (7) that is uniform, i.e. independent of n. For this we integrate
the L2 inner product of (7) with Λ2un. Using the inequalities of Hölder
and Young to control the nonlinear term, as we would for the Navier–Stokes
equations, we obtain

‖un(t)‖21 +

∫ t

0
‖un(s)‖22 ds ≤ ‖un(0)‖21 + c

∫ t

0
‖un(s)‖4L6‖un(s)‖21 ds

6



for some c > 0. Now by the embedding H1 ↪→ L6 and Lemma 2

‖un(t)‖21 +

∫ t

0
‖un(s)‖22 ds ≤ ‖un(0)‖21 + c

∫ t

0
‖un(s)‖61 ds

+ c

(∫ t

0
‖un(s)‖21/2 ds+ ‖u0‖L1

)4 ∫ t

0
‖un(s)‖21 ds

≤ ‖un(0)‖21 + c

∫ t

0
‖un(s)‖61 + c

∫ t

0
t4‖un(s)‖101 + ‖u0‖4L1‖un(s)‖21 ds,

(12)
for some c > 0. The last step made use of the fact that ‖un‖1/2 ≤ ‖un‖1
and the Hölder inequality(∫ t

0
f(s) ds

)5

≤ t4
∫ t

0
|f(s)|5 ds.

Let us now impose the upper bound t ≤ 1. Applying Young’s inequality
to the ‖un‖61 and ‖un‖21 terms of the last line of (12) gives

‖un(t)‖21 ≤ ‖un(0)‖21 + c

∫ t

0
α5‖un(s)‖101 + β5 ds,

where α := (4+‖u0‖4L1)1/5 and β := (2+4‖u0‖4L1)1/5. This gives an integral
inequality of the form

f(t) ≤ f(0) +

∫ t

0
(af(s) + b)5 ds.

By solving this inequality we obtain

‖un(t)‖21 ≤
α‖u0‖21 + β

α
(
1− 4αt(α‖u0‖21 + β)4

)1/4 − β

α
. (13)

Using Lemma 2 this estimate rules out a blowup of un in H1 before the time

T ∗ :=
1

4α(α‖u0‖21 + β)4
. (14)

It follows that there exists T > 0, we can for example take T = T ∗/2, such
that Tn ≥ T for all N . At this point one might optimize the existence time
T by choosing a different upper bound where we assumed t ≤ 1, but this is
not necessary in what follows.

From (12) and (13) we now have uniform bounds on un ∈ L∞(0, T ;H1)
and on un ∈ L2(0, T ;H2). By (7) and a standard argument, we also obtain
a uniform bound on the time derivative ∂tun ∈ L2(0, T ;L2). Therefore, by
the Aubin-Lions theorem, we may assume (after passing to a subsequence)
that there exists u ∈ C0([0, T ];H1) such that un → u in Lp(0, T ;L2) for all
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p ∈ (1,∞). A standard method shows that the limit u is a strong solution.
For the details of this type of argument, see, for example, Constantin &
Foias (1988), Evans (2010), Galdi (2000) or Robinson (2001).

It can also be shown that this solution u is a unique. We omit the proof
of this here but we will see, in Section 3, that uniqueness requires even less
regularity. Subject to this omission we have so far proved the following.

Lemma 3. Given u0 ∈ H1 there exists T > 0 (given by (14)) such that
the Burgers equations admit a unique strong solution u on [0, T ] with initial
data u0. Moreover u ∈ C0([0, T ];H1) ∩ L2(0, T ;H2).

It follows that if u ∈ L∞(0, T ;H1/2)∩L2(0, T ;H3/2) is a strong solution
of the Burgers equations then u ∈ C0([ε, T ];H1) ∩ L2(ε, T ;H2) for any
ε ∈ (0, T ). Therefore the following corollary is an easy consequence of (14).

Corollary 1. If u ∈ L∞(0, T ;H1/2)∩L2(0, T ;H3/2) is a local strong solution
of (5) such that T ∈ (0,∞) is the maximum existence time (i.e. no strong
solution exists on [0, T + ε] for any ε > 0), then ess sup(0,T )‖u(t)‖H1 =∞.

In order to prove Theorem 2, it remains to show that u is, in fact, a
global classical solution after the initial time. We will use a bootstrapping
argument to obtain local classical solutions, followed by the maximum prin-
ciple that will allow us to apply Corollary 1 to show that the solution can
be extended for an arbitrary length of time.

The bootstrapping is carried out with the following lemma which is ac-
tually stronger than we will need. We will omit the proof as it is essentially
the same as standard results about strong solutions of the Navier–Stokes
equations that can be found in Constantin & Foias (1988) and Robinson
(2006), for example.

Lemma 4. If the Galerkin approximations un are uniformly bounded in
L2(ε, T ;Hs+1)∩L∞(ε, T ;Hs) for s > 1/2 and some ε ≥ 0, then they are also
bounded uniformly in L2(ε′, T ;Hs+2) ∩ L∞(ε′, T ;Hs+1) for any ε′ ∈ (ε, T ).

The uniform bounds on un we have proved are sufficient to apply this
lemma. In particular by applying it five times we have that for any ε ∈ (0, T ),
(un)∞n=1 is a uniformly bounded sequence in L∞(ε, T ;H6). In this case we
have the following estimates on the time derivatives of un:

sup
t∈(ε,T )

∥∥∥∥∂un∂t
∥∥∥∥
H4

≤ sup
t∈(ε,T )

(‖un(t)‖H4‖un(t)‖H5 + ‖un(t)‖H6) ,

and

sup
t∈(ε,T )

∥∥∥∥∂2un∂t2
(t)

∥∥∥∥
H2

≤ sup
t∈(ε,T )

(∥∥∥∥∂un∂t (t)

∥∥∥∥
H2

‖un(t)‖H3

)
+ sup
t∈(ε,T )

(
‖un(t)‖H2

∥∥∥∥∂un∂t (t)

∥∥∥∥
H3

+

∥∥∥∥∂un∂t (t)

∥∥∥∥
H4

)
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It follows that (un)∞n=1 is a bounded sequence in H1(ε, T ;H4)∩H2(ε, T ;H2).
This regularity passes to the limit i.e. u ∈ H1(ε, T ;H4) ∩H2(ε, T ;H2) and
hence u ∈ C0([ε, T ];C2) ∩ C1([ε, T ];C0). This is enough regularity to con-
clude that u is a local classical solution of the Burgers equations. Note that
time regularity on these closed intervals follows by considering larger open
intervals.

To show that u can be extended to a global solution we now use the
maximum principle from Lemma 1. Taking ε > 0 as the initial time of the
classical solution, as above, we have the following estimate for t ∈ [ε, T ]:

d

dt
‖u‖21 ≤ 2|((u · ∇)u,Λ2u)L2 | − 2‖u‖22 ≤ ‖u‖2L∞‖u‖21.

Therefore
sup
t∈[ε,T ]

‖u(t)‖1 ≤ ‖u(ε)‖1et‖u(ε)‖
2
L∞/2.

This rules out the blowup of u in the H1 norm as t→ T , hence by Corollary
1 the solution can be extended over [ε,∞), as required.

This completes the proof of Theorem 2, subject to a proof of uniqueness
which can be found in the next section.

3 Proof of Theorem 1

We now set about proving Theorem 1. The argument will follow the same
pattern as the previous section. That is, we will prove that for initial data in
H1/2 there exists T , independent of n, such that the Galerkin systems have
solutions on an interval [0, T ]. We then deduce the existence and uniqueness
of a local strong solution u ∈ L2(0, T ;H3/2)∩C0([0, T ];H1/2) of the Burgers
equations. This is regular enough that global solutions can be obtained by
appealing to the case of H1 data.

As in the previous section we denote by un ∈ C∞([0, Tn)×T3) the unique
solution to the Galerkin system (7) with maximal existence time Tn. We
allow the case Tn = ∞ but note that if Tn < ∞ then we necessarily have
‖un(t)‖L2 →∞ as t↗ Tn.

Following Maŕın-Rubio et al. (2013) (see also Chemin et al. (2006),
Calderón (1990) and Fabes, Jones & Rivière (1972)) we split (7) into a
heat part, and a nonlinear part with zero initial data. Let v be the periodic
solution of the heat equation with initial data u0, then vn := Pnv satisfies

∂

∂t
vn + ∆vn = 0, vn(0) = Pnu0.

Let wn := un − vn, then wn satisfies

∂

∂t
wn + Pn[(un · ∇)un]−∆wn = 0, wn(0) = 0. (15)
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For vn and t ∈ [0, Tn) we have the estimate

sup
s∈[0,t]

‖vn(s)‖2
H1/2 + 2

∫ t

0
‖vn(s)‖2

H3/2 ds ≤ ‖Pnu0‖2H1/2 . (16)

Integrating (15) against Λ1wn, gives

‖wn(t)‖21/2 + 2

∫ t

0
‖wn(s)‖23/2 ds

≤
∫ t

0
‖un(s)‖L6‖∇un(s)‖L2‖Λ1wn(s)‖L3 ds

≤ c1
∫ t

0
‖un(s)‖H1‖un(s)‖1‖wn(s)‖3/2 ds =: I0.

(17)

For some c1 > 0. Now by Lemma 2 and the definition of wn,

‖un(t)‖H1‖un(t)‖1 ≤ c2
(
‖un(t)‖1 +

∫ t

0
‖un(s)‖21/2 ds+ ‖u0‖L1

)
‖un(t)‖1

≤ 2c2(‖vn(t)‖21 + ‖wn(t)‖21)

+ c2(‖vn(t)‖1 + ‖wn(t)‖1)
(∫ t

0
‖un(s)‖21/2 ds+ ‖u0‖L1

)
=: I1 + I2

for some c2 > 0. To estimate I1 × ‖wn‖3/2 we apply Young’s inequality,

‖wn(t)‖3/2(‖vn(t)‖21 + ‖wn(t)‖21)

≤ 1

4c1c2
‖wn(t)‖23/2 + c‖vn(t)‖41 + ‖wn(t)‖3/2‖wn(t)‖21,

for some c > 0. Also by several applications of Young’s inequality, we
estimate I2 × ‖wn‖3/2 as follows:

‖wn(t)‖3/2(‖vn(t)‖1 + ‖wn(t)‖1)
(∫ t

0
‖un(s)‖21/2 ds+ ‖u0‖L1

)
≤ 1

2
‖wn(t)‖3/2

(
‖vn(t)‖21 + ‖wn(t)‖21

)
+ ‖wn(t)‖3/2

(∫ t

0
‖un(s)‖21/2 ds+ ‖u0‖L1

)2

≤ 1

2c1c2
‖wn(t)‖23/2 + c‖vn(t)‖41 +

1

2
‖wn(t)‖3/2‖wn(t)‖21

+ c

(∫ t

0
‖un(s)‖21/2 ds+ ‖u0‖L1

)4

for some c > 0. To control the ‖wn‖3/2‖wn‖21 terms in the last two estimates
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we use the interpolation∫ t

0
‖wn(s)‖3/2‖wn(s)‖21 ds ≤

∫ t

0
‖wn(s)‖23/2‖wn(s)‖1/2 ds

≤ 1

5c1c2
sup
s∈[0,t]

‖wn(s)‖21/2 + c

(∫ t

0
‖wn(s)‖23/2 ds

)2

for some c > 0. Recombining these estimates of I0 and multiplying by 2,
(17) becomes

sup
s∈[0,t]

‖wn(s)‖21/2 + 2

∫ t

0
‖wn(s)‖23/2 ds

≤ a1
∫ t

0
‖vn(s)‖41 ds+ a2

(∫ t

0
‖wn(s)‖23/2 ds

)2

+ a3

∫ t

0

(∫ s

0
‖un(r)‖21/2 dr + ‖u0‖L1

)4

ds,

(18)

where a1, a2, a3 > 0 are independent of n and t. To simplify the last term
we fix c′ > 0 such that∫ t

0

(∫ s

0
‖un(r)‖21/2 dr

)4

ds ≤ c′t
(∫ t

0
‖vn(s)‖21/2 ds

)4

+ c′t5 sup
s∈[0,t]

‖wn‖81/2.

Thus (18) becomes

sup
s∈[0,t]

‖wn(s)‖21/2 + 2

∫ t

0
‖wn(s)‖23/2 ds

≤ a1
∫ t

0
‖v(s)‖41 ds+ a2

(∫ t

0
‖wn(s)‖23/2 ds

)2

+ a3c
′t‖u0‖4L1

+ a3c
′t

(∫ t

0
‖v(s)‖21/2 ds

)4

+ a3c
′t5 sup

s∈[0,t]
‖wn(s)‖81/2.

(19)

This used the fact that ‖vn(t)‖σ is an increasing function of n for all σ ≥ 0
and t ∈ [0, Tn].

We next use (19) to find a uniform lower bound on the maximal existence
time Tn, of un. It suffices to consider the case Tn <∞. Comparing the wn
terms on the left-hand and right-hand sides of (19), we define

E(t) := a2

(∫ t

0
‖wn(s)‖23/2 ds

)
+ a3c

′t5 sup
s∈[0,t]

‖wn(s)‖61/2

and set
τn := sup {t ∈ [0, Tn) : E(t) ≤ 1} .
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Observe that τn < Tn since E is continuous and E(t) → ∞ as t → Tn,
because ‖wn(t)‖L2 must blow up as t→ Tn. This also means that E(τn) = 1.

As notation for the terms in the right-hand side of (19) that do not
depend on wn, we define

F (t) := a1

∫ t

0
‖v(s)‖41 ds+ a3c

′t

(∫ t

0
‖v(s)‖21/2 ds

)4

+ a3c
′t‖u0‖4L1 .

Note that F (t) is a continuous increasing function that is positive except at
t = 0 (assuming that u0 is non-zero). We now define

T := sup

{
t ∈ [0,∞) : F (t) < min

(
1

(16a3c′t5)1/3
,

1

2a2

)}
.

It is easy to see that T > 0 and is independent of n. We will show that
Tn ≥ T for all n. Suppose, for contradiction, that τn < T , then by (19),

1

2
sup

s∈[0,τn]
‖wn(s)‖21/2 +

∫ τn

0
‖wn(s)‖23/2 ds ≤ F (τn).

Hence

E(τn) = a2

(∫ τn

0
‖wn(s)‖23/2 ds

)
+ a3c

′τn
5 sup
s∈[0,τn]

‖wn(s)‖61/2 < 1.

This is a contradiction since we showed that E(τn) = 1.
We have shown that Tn ≥ T for all n. Furthermore, arguing as above

we have
1

2
sup
s∈[0,T ]

‖wn(s)‖21/2 +

∫ T

0
‖wn(s)‖23/2 ds ≤ F (T ).

Thus (un)∞n=1 is uniformly bounded in L2(0, T ;H3/2) and L∞(0, T ;H1/2);
moreover this regularity implies that ∂tun ∈ L2(0, T ;H−1/2), by a routine
calculation. Proceeding as before with a standard compactness argument
one can show that u is a local strong solution in the sense of (5).

Next we prove that this local solution is unique (this argument also
applies to give the uniqueness we claimed in Section 2). Suppose that u
and v are strong solutions to (5) with the same initial data. Set w = u− v
then taking the product of the equation satisfied by w with 2Λ1w yields the
estimate

‖w(t)‖21/2 + 2

∫ t

0
‖w(s)‖21/2 ds ≤ c

∫ t

0
‖u(s)‖L6‖w(s)‖1‖w(s)‖3/2 ds

+ c

∫ t

0
‖w(s)‖H1/2‖v(s)‖3/2‖w(s)‖3/2 ds.

(20)
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For the first term we use interpolate ‖w‖21 ≤ ‖w‖1/2‖w‖3/2 and Young’s
inequality to obtain:

c‖u(s)‖L6‖w(s)‖1‖w(s)‖3/2 ≤ c‖u(s)‖4H1‖w(s)‖21/2 + ‖w(s)‖23/2. (21)

For the second we make use of Lemma 2 and the fact that w(0) = 0:

c‖w(s)‖H1/2‖v(s)‖3/2‖w(s)‖3/2 ≤ c‖v(s)‖23/2‖w(s)‖21/2 + ‖w(s)‖23/2

+ c‖v(s)‖23/2
(∫ s

0
‖w(r)‖1/2

(
‖u(r)‖1/2 + ‖v(r)‖1/2

)
dr

)2

.
(22)

The integral over [0, t] of the last term in (22) is at most

c

(∫ t

0
‖v(s)‖23/2ds

)(∫ t

0
‖w(s)‖21/2ds

)(
2

∫ t

0
‖u(s)‖21/2 + ‖v(s)‖21/2ds

)
.

As u ∈ L4(0, T ;H1/2) and v ∈ L2(0, T ;H1/2) ∩L2(0, T ;H3/2), this together
with (20), (21) and (22) imply that

‖w(t)‖21/2 ≤
∫ t

0
G(s)‖w(s)‖21/2 ds

for some G ∈ L1(0, T ). A Gronwall inequality now implies that, since
‖w(0)‖1/2 = 0, ‖w(t)‖1/2 = 0 for all t ∈ [0, T ]. Uniqueness now follows
using Lemma 2.

We have proved the following.

Lemma 5. For u0 ∈ H1/2 there exists T > 0 and a unique strong solution
u ∈ L2(0, T ;H3/2) ∩ C0([0, T ];H1/2) to the Burgers equations, in the sense
of (5).

Fix a representative of u that is continuous with respect to time into
H1/2. For almost every t ∈ [0, T ], we certainly have u(t) ∈ H1, in which
case we can apply Theorem 2 to obtain global classical solutions (on (t,∞))
with initial data u(t). By continuity of u and uniqueness of local strong
solutions these classical solutions agree with u on their common domain.
This completes the proof of Theorem 1.

4 Conclusions

We have shown that in the case of periodic boundary conditions the vector-
valued diffusive Burgers equations have a unique solution given initial data
in H1/2. These solutions become classical immediately after the initial time
and can be extended globally.

The results here contrast with classical results about the Navier–Stokes
equations, which have thus far only been shown to have local well-posedness
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in Ḣ1/2 (see Maŕın-Rubio et al. (2013) or Chemin et al. (2006)). The main
difference between these two systems seems to be the maximum principle
for the Burgers equations. In other respects the analysis is slightly more
straightforward in the case of Navier–Stokes, since we can make use of in-
compressibility.

In several places we appealed to the analysis of Fourier series but oth-
erwise we have not used the periodicity of the solution in an essential way.
Therefore we might expect similar results to hold on R3 or on other domains.

As discussed in the introduction we have not been able to find weak
solutions for less regular data u0 ∈ L2 and it would be interesting to seek
well-posedness of the Burgers equations in the various critical spaces that
are often used to find local well-posedness results for the Navier–Stokes
equations. Some examples of such spaces are: L3 (Kato (1984)), certain
Besov spaces (Cannone, Meyer & Planchon (1994)) and BMO−1 (Koch &
Tataru (2001)).

Irrespective of any approach in L3 and the other aforementioned spaces,
the existence of a maximum principle leads us to ask whether initial data
u0 ∈ L∞ ∩ L2 is enough to deduce local or global well-posedness. The
main obstacle to doing this seems to be that we must find classical solutions
before applying the maximum principle, since the maximum principle does
not seem to pass to the Galerkin approximations. Using another system of
approximations might avoid this difficulty, for example, a variation on the
time-discretisation approach of Kiselev & Ladyzhenskaya (1957).
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