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Abstract 
 

The differentiation of human endometrial stromal cells (HESCs) into specialised 

decidual cells prepares the endometrium for embryonic implantation. The biochemical 

and morphological transformation of these cells is highly temporally regulated in order 

to define a transient period of endometrial receptivity. Currently, the involvement of 

circadian machinery, and clock dependent pathways in this process are not fully 

understood. Firstly, analysis of circadian rhythms in HESCs revealed a consistent 

loss of oscillations in clock components upon decidualization. Down-regulation of 

Period 2 (PER2) expression, apparent in the early stages of differentiation, was 

shown to be sufficient to cause this aperiodicity. In turn, temporal suppression of 

PER2 expression was achieved via reduced CLOCK binding to a non-canonical E-

box enhancer in the PER2 promoter. RNA sequencing analysis upon premature 

PER2 knockdown revealed a disorganised decidual phenotype in which cell cycle and 

mitotic regulators were perturbed. As such, PER2 acts to uncouple the endometrium 

from circadian oscillations during decidualization.  

 

Secondly, the gene PRIP-1 was shown to be PER2 dependent in undifferentiated 

HESCs. Endometrial expression of PRIP-1 was induced and maintained upon 

decidualization by the post-ovulatory rise in progesterone. Analysis of Ca2+ fluxes 

demonstrated the ability of PRIP-1 to act as a chelator of IP3 signalling. Additionally, 

PRIP-1, via its regulation of the AKT pathway, is shown to be an anti-apoptotic 

regulator in decidual HESCs. Together, these results indicate PRIP-1 functions as a 

molecular switch in response to progesterone signalling. High PRIP-1 levels during 

differentiation enable AKT and IP3 mediated cell survival, whilst declining levels upon 

P4 withdrawal leads to decidual apoptosis. 

 

In summary, I provide a novel paradigm whereby both PER2 and PRIP-1 act to 

uncouple the endometrium from various signalling inputs, enabling an autonomous 

decidual response. Asynchrony in these pathways can lead to a cascade of events 

resulting in an array of adverse pregnancy complications. 
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1.1 The Human Endometrium 
 

The endometrium is the inner mucosal layer of the mammalian uterus and functions as a 

lining for the womb, maintaining the patency of the uterine cavity. Its main role 

reproductively is to provide a nutritive local environment permissible for viable embryo 

implantation (Tabibzadeh, 1998). It is an astonishingly plastic tissue. Throughout the 

female adult reproductive life, ovarian steroid hormones control continuous cycles of 

proliferation, differentiation and degeneration. In the absence of an implanting embryo, 

the functional layer of the endometrium is shed, however within 2 weeks full restoration 

of the tissue is apparent (Knobil, 2013). The events underlying this phenomenon are 

highly complex and not fully understood. However they are known to include re-

epithelialization, proliferation, angiogenesis, cell differentiation and extracellular matrix 

remodelling (Groothuis et al., 2007). Once the functional layer of the endometrium has 

successfully been re-established, the cyclic actions of oestrogen and progesterone prime 

the endometrium into a receptive state once more.  

 

1.2 Structure of the Endometrium 
 

The lining of the human uterus is composed primarily of two main compartments: the 

stratum basalis, a basal layer which persists from cycle to cycle, and the stratum 

functionalis, a transitory and dynamic layer which is highly responsive to ovarian 

steroid hormones (Figure 1.1). The apical edge of the endometrium comprises of a 

single layer of prismatic epithelial cells which rest of top of a deeply cellular stromal 

layer containing a rich supply of blood vessels creating a vascular bed (Rogers, 

1996). Blood supply to the endometrium originates from arteries within the 

myometrium, a smooth muscle layer consisting mainly of uterine myocytes. Although 

the main function of the myometrium is to provide uterine contractions, it also supports 

the endometrial stromal compartment both structurally and vascularly. Radial arteries 

within the myometrium split in the endometrium to form basal arteries which supply 
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the stratum basalis. Spiral arterioles extend towards the endometrial surface and 

supply the functional layer (Farrer‐Brown et al., 1970). These spiral arteries are 

distinctively coiled and are dynamic throughout the menstrual cycle. Additionally, 

tubular uterine glands are found in the functional layer of the endometrium and are 

lined by columnar epithelial cells. The glands secrete uterine histotroph, critical for 

survival and development of a conceptus (Gray et al., 2001). As the glands form part 

of the functional endometrial layer, their structure is regulated throughout the 

menstrual cycle. The functional layer undergoes cyclical changes in proliferation, 

differentiation and eventual resolution via menstruation. However in the presence of 

an implanting embryo, the stratus functionalis persists and together with the 

myometrial junctional zone forms the maternal part of the placenta (Brosens et al., 

2002).  

   

The permanent basal layer of the endometrium provides cells for generation of a new 

functional layer each month during a woman’s reproductive years. The average 

woman from a developed country will have around 400 cycles resulting in 

menstruation in her lifetime. Surprisingly, it is only recently that several studies have 

identified progenitor or stem-like cells in the human endometrium which are thought 

to be the basis of this cyclic regeneration. (Chan et al., 2004; Gargett & Masuda, 

2010; Masuda et al., 2010). The endometrium contains mesenchymal stem-like cells 

(MSCs), with initial studies identifying and isolating a population of stromal cells which 

demonstrated multipotentcy, immunoprivilege, clonogenicty and the capacity to 

reconstitute endometrium when xenotransplanted into mice (Gargett & Masuda, 

2010; Miyazaki et al., 2012; Wolff et al., 2007). Several approaches have been 

employed to isolate endometrial stromal populations enriched in MSCs, summarized 

in Table 1.1. Recent evidence has suggested that as well as residing within the basal 

layer, stem-like cells may also be found in the functional layer - as demonstrated by 

their presence in menstrual blood (Patel et al., 2008).  
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Figure 1.1: The human endometrium. 

The endometrium is divided into the superficial stratum functionalis and the persistent 

stratum basalis. The basal layer serves as an area of regeneration for the functional 

layer. Spiral arteries and uterine glands are illustrated.  
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Table 1.1: Isolation and characterisation of endometrial stem-like cells. 

 

Stem cell 

marker 

Property Results Reference 

Low Hoechst 

33342 

fluorescence 

DNA stain - 2% of total cells from human endometrium displayed side population phenotype by Hoeschst 

staining.  

- Side population cells differentiated in various endometrial cell types including glandular epithelium, 

stromal and endothelial cells.  

- Endometrial side population cells able to form mature blood vessels in mouse kidney. 

(Masuda et al., 2010) 

 CD146 and 

PDGF-Rβ 

Perivascular 

markers 

- FACS sorted into CD146+PDGF-Rβ+ and CD146-PDGF-rβ-populations. 

- Positive cells accounted for 1.5% of sorted population.  

- Positive cells enriched for colony forming ability. 

- Differentiate into adipogenic, osteogenic, myogenic and chondrogenic lineages. 

(Schwab et al., 2007) 

W5C5 Monoclonal 

antibody  

- W5C5 antibody selectively binds MSC enriched populations in endometrium and bone marrow. 

-  W5C5+ account for ≈ 5% of endometrial population depending on cell to cell contact and activation 

of Notch signalling pathways.  

- W5C5+ cells are the dominant source of chemokines and cytokines upon stromal cell 

differentiation.  

(Masuda et al., 2012; Murakami et 

al., 2014) 

CD117 and 

CD34 

Haematopoietic 

Stem cell 

markers 

- Stem cell markers consistently expressed in the stroma of the basalis layer (Cho et al., 2004) 
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1.3 The Menstrual Cycle 
 

In women of reproductive age, the endometrium undergoes cyclical changes in 

response to ovarian steroid hormones resulting in waves of proliferation, 

differentiation, inflammation, apoptosis and regeneration (Figure 1.2). Endometrial 

proliferation is induced by accumulating oestrogen production from granulosa cells 

within the ovarian follicle. During this proliferative phase (cycle days 5-13) epithelial 

and endothelial cells rapidly proliferate to reconstitute narrow uterine glands and 

lengthen the spiral arteries respectively (Brosens et al., 2002; Gray et al., 2001). 

Concurrently, endometrial stromal cells also proliferate as evidenced by numerous 

mitotic divisions. This proliferative phase results in an increase in endometrial 

thickness from 1-2mm after ovulation to 7-8mm by the time of ovulation (cycle day 

14). Increasing serum oestrogen concentrations result in a surge of luteinising 

hormone (LH) which in turn stimulates progesterone production from the corpus 

luteum, signifying the secretory phase of the cycle. Post-ovulatory progesterone 

inhibits endometrial proliferation and induces a differentiation programme termed 

decidualization. The secretory phase is characterised by dramatic structural and 

functional changes in order to render the endometrium receptive to an implanting 

blastocyst. Uterine glands become increasingly coiled with widened lumens and 

produce a glycogen rich secretion. This is accompanied by increased blood flow to 

spiral arteries, which also become more coiled in nature. An influx of specialised 

uterine natural killer (uNK) cells is apparent during this secretory phase, which is 

concomitant with extensive remodelling of the extracellular matrix (ECM) and local 

oedema within the stromal compartment (Gellersen & Brosens, 2003; Gellersen & 

Brosens, 2014; Hanna et al., 2006). Together, these modifications are required in 

order to provide a supporting environment for embryo implantation and development. 

Human chorionic gonadotrophin (hCG) secretion from the trophoblast sustains the 

corpus luteum and preserves progesterone production. However, in the absence of a 
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conceptus, the corpus luteum regresses and serum progesterone levels decline, 

triggering a cascade of events resulting in proteolytic breakdown. 

 

Menstruation is a rare occurrence with only humans, elephant shrews, fruit bats and 

some old world primates capable of monthly endometrial shedding (Emera et al., 

2012). Furthermore, decidualization in the absence of an implanting embryo only 

occurs within menstruating species. Changes in serum concentrations of 

progesterone are known to cause both of these phenomena with increasing and 

decreasing levels resulting in decidualization and menstruation respectively (Figure 

1.2). Thus, in mice, menstruation can be artificially induced if decidualization has been 

primed to occur prior to progesterone withdrawal (Xu et al., 2007). Proteolytic 

breakdown of the endometrium is characterized by apoptosis and infiltration of 

inflammatory neutrophils and mast cells. Leukocyte populations within the 

endometrium account for up to 40% of the total cell population immediately before 

menstruation, release pro-inflammatory cytokines into the stromal compartment 

(Salamonsen et al., 2002). Activation of matrix metalloproteinase (MMP) degrade the 

ECM, whilst local production of prostaglandin results in vasospasm of the spiral 

arterioles and ischemia, leading to sloughing of the superficial endometrium.    

 

Debate is still ongoing regarding the evolutionary purpose of menstruation. One 

theory predicts that menstruation is a form of protection against excessive maternal 

investment in poor quality embryos (Teklenburg et al., 2010a), whilst others argue 

that it is metabolically more efficient than maintaining a continual receptive state 

(Strassmann, 1996). The theory of preconditioning suggests that cyclic menstruation 

serves to condition uterine tissues to inflammatory and oxidative stressors associated 

with deep placentation (Brosens et al., 2009). However, more pragmatically many 

view menstruation as serving no purpose other than to restart the endometrial cycle 

in the absence of pregnancy.  
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Figure 1.2: The menstrual cycle. 

The menstrual cycle is governed by a series of cyclic change in levels of ovarian steroid 

hormones and can be divided into the follicular and luteal phases. Decidualization 

represents a period of endometrial selectivity in which embryo selection occurs. 

Menstruation signifies a period of endometrial shedding and subsequent regeneration 

from the stem cell niche.     
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1.4 Decidualization of the Endometrium 
 

The first morphological signs of decidualization are apparent 10 days after the post-

ovulatory rise in progesterone levels. These occur in the endometrial stromal cells 

surrounding the terminal spiral arteries and the underlying luminal epithelium. In their 

undifferentiated form, human endometrial stromal cells (HESCs) have an elongated 

spindle-shaped fibroblast appearance (Figure 1.3). Decidualization bestows a 

secretory and epithelioid phenotype on HESCs. Sub-cellularly this is characterised 

by the rounding of the nucleus, enlargement of the rough endoplasmic reticulum, and 

cytoplasmic accumulation of glycogen and lipid droplets. Additionally, numerous 

projections appear on the HESC surface which extend into the ECM or indent into 

adjacent cells. Decidualizing HESCs produce a wealth of ECM proteins including 

fibronectin, type IV collagen and heparin sulphate proteoglycan, which precipitate into 

a basement membrane-like material.  

 

In concert, the cytoskeleton of HESCs is extensively modified. Increases in 

filamentous actin polymerisation, dephosphorylation of light chain of myosin 2 

(MLC2), expression of desmin, vimentin and α-smooth muscle actin results in a more 

contractile myofibroblastic phenotype (Can et al., 1995; Glasser & Julian, 1986; 

Ihnatovych et al., 2007; Oliver et al., 1999). Acquisition of this characteristic 

phenotype enables decidualizing stromal cells to actively migrate and surround the 

implanting embryo, as evidenced by time-lapse imaging studies of human blastocysts 

placed on a monolayer of decidualizing HESCs (Grewal et al., 2010; Grewal et al., 

2008). The decidual process is critical for successful pregnancy in humans and other 

species with placentation as it bestows characteristics on the endometrium critical for 

placental formation, including the ability to regulate vascular and immune responses, 

withstand increased levels of reactive oxygen species, and establish maternal 

tolerance to foetal antigens. Accumulating evidence suggests that impaired 
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preparation of the endometrium may lead to a myriad of pregnancy complications, 

including miscarriage, pre-eclampsia, foetal growth restriction and preterm labour 

(Brosens & Gellersen, 2010).  
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Figure 1.3: Decidual transformation. 

Decidualization is initiated during the mid-secretory phase of the menstrual cycle by 

the post-ovulatory rise in progesterone. In vitro decidualization can be recapitulated by 

treatment of HESCs with a cell permeable cAMP analogue (8-br-cAMP) and a synthetic 

progestin MPA.  
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1.5 Decidualizing Signals  
 

1.5.1 cAMP Signalling Pathway 

  

The ubiquitous second messenger cyclic adenosine monophosphate (cAMP) is 

require for functional decidualization. It is produced upon binding of extracellular 

ligands to Gs protein-coupled receptors, resulting in activation of adenylyl cyclase 

which in turn generates cAMP from adenosine triphosphate (ATP). In vivo adenylyl 

cyclase activity, and thus cAMP levels, are higher during the secretory phase of the 

cycle (Tanaka et al., 1993) in response to endocrine cues including relaxin, 

cortiocotrophin-releasing hormone (CRH), and prostaglandin E2 (PGE2) (Bartsch et 

al., 2004; Milne et al., 2001; Zoumakis et al., 2000). Continued elevated cAMP levels 

are required for the induction of decidual marker genes. Inhibition of protein kinase A 

(PKA), a major downstream target of cAMP, inhibits this response (Yoshino et al., 

2003). Furthermore, inhibition of phosphodiesterase-4 (PDE4), a cAMP degrading 

enzyme, is sufficient to stimulate decidualization by increasing intracellular cAMP. As 

such, treatment with PDE4 inhibitors, such as Rolipram has therefore been suggested 

for application to the endometrium in subfertile women (Bartsch et al., 2004; Bartscha 

& Ivell, 2004).  

 

The holoenzyme PKA comprises of two regulatory (R) and two catalytic (C) subunits. 

Two cAMP molecules bind to each of the two R subunits. This causes a 

conformational change resulting in the release of the C subunits. The C subunits in 

turn phosphorylate numerous cytoplasmic and nuclear targets, propagating the 

extracellular signal.  These targets include cAMP response element (CRE), CRE 

binding protein (CREB) and CRE modulator (CREM). Upon PKA signalling, CREB is 

activated and drives transcription of genes with CRE motifs in their promoters 

(Telgmann et al., 1997). Additionally, CREM, due to alternative splicing and 
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alternative translation initiation, functions as both a transcriptional activator and 

transcriptional repressor of cAMP responsive genes (Gellersen et al., 1997). Other 

targets include STAT5, CCAAT-enhancer binding protein (CEBP-β) and Forkhead 

box protein O1 (FOXO1), all of which are required for functional decidualization of 

HESCs (Gellersen & Brosens, 2014). EPAC (exchange protein directly activated by 

cAMP) isoforms EPAC1 and EPAC2 have also been shown to play a role in cAMP-

dependent decidualization. Activated by cAMP, they act to exchange guanosine 

disphosphate (GDP) with guanosine triphosphate (GTP) on RAS proteins resulting in 

regulation of multiple processes including tissue remodelling and calcium 

homeostasis. Knockdown of either isoform halts differentiation of HESCs (Kusama et 

al., 2013).  

 

Contrary to other cell types, HESCs do not form a negative feedback loop resulting in 

reduction of cAMP levels. Instead they act to form a positive feed-forward mechanism, 

ensuring persistent elevated cAMP concentrations. This is achieved by shifting the 

ratio of R:C PKA subunits in favour of C. By selectively down-regulating the R 

subunits, kinase activity is sustained (Telgmann & Gellersen, 1998). Furthermore, 

inducible cAMP early repressor (ICER), which functions as a repressor of CRE-

responsive gene promoters (including its own) is constituently elevated upon 

decidualization, thereby preventing the creating a negative feedback loop. As such, 

persistent PKA signalling, together with stimulatory CREM isoforms maintains cAMP 

dependent signalling in these cells (Gellersen et al., 1997). 

 

1.5.2 Progesterone Signalling Pathway 

 

Although treatment of primary cultures with 8-br-cAMP is able to trigger the 

expression of the decidual markers prolactin (PRL) and insulin-like growth factor-

binding protein 1 (IGFBP1) within hours, the decidual phenotype cannot be sustained 
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by cAMP signalling alone. The addition of a progestin to cultures acts to enhance and 

maintain the cAMP induced response and is required for a sustained decidual 

phenotype. Progesterone acts predominately by binding its nuclear receptors PR-A 

and PR-B, (the two isoforms are derived from differential promoter usage from a 

single gene), in order to activate or repress target genes (Kastner et al., 1990). PR-A 

lacks the 164 N-terminal amino acids found in PR-B, however both isoforms display 

equivalent ligand and DNA-binding affinities (Li & O'Malley, 2003). PR-A acts 

primarily as a dominant inhibitor of PR-B and other nuclear receptors, whilst PR-B 

displays more transcriptional activation activity (Brosens et al., 2004; Li & O'Malley, 

2003). Double knockout of PR-A/PR-B renders the mouse uterus unable to mount a 

decidual response and thus implantation is impaired (Brosens et al., 1999; Conneely 

et al., 2001; Mote et al., 2000).  

 

The two isoforms are differentially spatiotemporally regulated during the menstrual 

cycle. PR-A is highly expressed in stromal cells throughout the cycle, however its 

expression in the epithelial compartment is high during the proliferative phase, 

although it drops post-ovulation. On the other hand, PR-B expression is found in both 

the stromal and epithelial compartments during the proliferative phase, however 

decidualization is associated with the rapid down regulation of PR-B, making PR-A 

the dominant isoform (Mangal et al., 1997; Mote et al., 2000; Mulac-Jericevic & 

Conneely, 2004). Regulation of PR-A and PR-B is essential as aberrations in the 

spatiotemporal ratio between the isoforms in the uterus has been linked to 

endometrial neoplasia (Arnett-Mansfield et al., 2001). The dominance of PR-A is 

demonstrated by knockdown. In its absence, progesterone acts to induce epithelial 

proliferation, decidual transformation is absent, and as a result the mice are sterile 

(Conneely et al., 2001). In addition to the regulation of PR isoforms, other 

mechanisms control the expression of PR. Promoter regulating RNAs have been 

shown to modulate the PR promoter by enhancing or diminishing gene expression 
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through binding noncoding transcripts overlapping target promoters (Chu et al., 

2012). Furthermore, several micro RNAs (miRNAs) have been shown to influence PR 

mRNA half-life (Lam et al., 2012).       

     

Structurally, the unliganded PR is a large multi-subunit complex containing various 

chaperone proteins, including heat shock proteins and immunophilins (Pratt & Toft, 

1997), which are necessary for maintaining a 3D structure permissible for 

progesterone binding. Upon hormone binding, the receptor undergoes a 

conformational change resulting in phosphorylation, dissociation from chaperone 

proteins, receptor dimerization, binding to specific progesterone response elements 

(PREs) in target genes, and recruitment of transcription machinery. Steroid-receptor 

co-activators (SRCs) are required for these latter events, including histone 

acetyltransferases CBP, CBP associated factor (pCAF) and coactivator associated 

arginine methyltransferase 1 (CARM1), in order to modify the chromatin landscape 

for induction of transcription. Conversely, corepressors such as silencing mediator of 

retinoid and thyroid receptor (SMRT) and nuclear receptor corepressor (N-CoR) are 

required for transcriptional repression (Shibata et al., 1996; Wagner et al., 1998).  

  

1.5.3 Convergence of cAMP and Progesterone Signalling  

 
Importantly, although primary HESCs express all the components of the progesterone 

signalling pathway, very few genes are acutely responsive to treatment with 

progesterone alone. It is apparent that the convergence of the cAMP and 

progesterone pathways is required in order for full decidualization. This is achieved 

via multiple mechanisms including epigenetic remodelling, post-translational 

modifications and induction of decidua-specific transcription factors (Gellersen & 

Brosens, 2014).  Functional decidualization requires an intracellular increase in cAMP 

levels in order to sensitize HESCs to progesterone signalling. Firstly, cAMP 
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analogues have been shown to enhance hormone dependent transcriptional activity 

of PR by possible disruption of protein:protein interactions between PR and 

corepressors such as NCoR and SMRT, and thus increasing interactions with 

coactivators including SRC-1 and CBP (Rowan & O’Malley, 2000; Wagner et al., 

1998). Activation of cAMP through PKA dependent and independent pathways also 

results in an increase of various transcription factors including CEBP/β, STAT5 and 

FOXO1, all of which are able to interact with PR (Christian et al., 2002a; Richer et al., 

1998; Takano et al., 2007). For example, FOXO1a augments the activity of the PRL 

decidua specific promoter (dPRL) in concert with CEBP/β through an incomplete PRE 

motif (Christian et al., 2002b). Furthermore, STAT5 significantly enhances dPRL 

activity in the presence of cAMP and progestin (Mak et al., 2002). Therefore, it is 

hypothesised that PR, along with multimeric complexes of cAMP induced factors, 

allows activation of a decidua specific gene network (Figure 1.4). Moreover, 

regulation of these transcription factors, including PR, are modulated by various 

posttranslational modifications including ubiquitination, acetylation and sumolylation. 

For example, cAMP attenuates ligand-dependent sumoylation of PR via protein 

inhibitors of activated STAT (PIAS) activity (Jones et al., 2006). As such, complete 

activation of decidua specific gene networks is absolutely reliant upon the conjunction 

and cooperation of multiple signalling pathways.           
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Figure 1.4: Convergence of cAMP and progesterone signalling during 

decidualization. Ligand binding to G-protein coupled receptors results in increased 

cAMP production and subsequent activation of the PKA-dependent and -independent 

pathways. These cascades result in the nuclear accumulation of CEBP/β, FOXO1 and 

STAT5. Liganded PR-A is able to interact with these factors resulting in transcription 

initiation of decidua-specific genes with co-activators (SRC, CBP, CARM) as binding 

to co-repressors (NCoR, SMRT) is disrupted. Figure adapted from Gellersen & 

Brosens (2003).  



 

18 
 

1.6 Implantation and Endometrial Receptivity 
 

Embryo implantation denotes the most critical step of the reproductive process. In 

order to occur, a competent embryo must attach to a receptive endometrial lining and 

be accepted and surrounded by the underlying decidual stroma. The process of 

implantation is considered to be a stepwise process of apposition, adhesion and 

subsequent encapsulation by the stroma, and requires a synchronised dialogue 

between maternal and embryonic tissues. Traditionally, implantation has been 

described as an invasion of trophoblast cells into the decidua, whilst the endometrium 

remains passive. Endovascular extravillous trophoblast cells display such an 

aggressive invasion of the spiral arteries they have been likened to a metastasising 

tumour (Ferretti et al., 2007). However, recent co-culture models have challenged this 

theory. When hatched blastocysts were placed onto a monoloayer of decidualized 

HESCs it was apparent that the decidual cells actively engulf and encapsulate the 

embryo (Grewal et al., 2008; Teklenburg et al., 2010b) highlighting the invasive and 

migratory capabilities of stromal cells.     

 

Implantation is the rate-limiting step in artificial reproductive technologies (ART) and 

is a major cause of infertility in otherwise healthy women. The average implantation 

rate in IVF is approximately 25%. Much debate remains as to whether the primary 

cause of implantation failure is embryonic or maternal in nature. Poor embryo quality 

due to the high incidence of chromosomal abnormalities in human embryos has long 

been considered the major contributor to implantation failure. These abnormalities 

and specifically aneuploidies increase with age and arise due to errors during meiosis 

or from the first mitotic divisions (Delhanty, 2005; Vanneste et al., 2009). However, 

recent studies have revealed genetic mosaicism affects up to 90% of human embryos 

during pre-implantation development, of which the majority appear to be euploid by 

the blastocyst stage (Santos et al., 2010). This suggests that although chromosomal 
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abnormalities are prevalent during the early first mitotic divisions, many of these 

errors are transient and embryos will ‘correct’ themselves by implantation. As such, 

pre-implantation genetic screening of 139 recurrent implantation failure patients 

showed no increase in implantation rate using fluorescent in situ hybridisation (FISH) 

(Blockeel et al., 2008).  

 

On the other hand, the inability of the endometrium to become receptive to embryo 

implantation is a further cause of implantation failure. The phenomenon of 

implantation is contained to a self-limiting time-frame termed the ‘window of 

implantation’. This spans between day 20 and 24 of a regular menstrual cycle (LH+6 

to LH+10), and during this time the endometrium is primed for blastocyst attachment 

triggered by changes in ovarian steroid hormones discussed previously (Bergh & 

Navot, 1992; Koot et al., 2012). The ‘window of implantation’ is time restricted to 

enable coordinated embryonic and endometrial development, thereby minimizing the 

risk of maternal investment in non-viable embryos. Many studies have examined 

putative biomarkers of endometrial receptivity. Table 1.2 summarises both 

morphological and molecular markers.  

 

Furthermore, the recent meta-analysis of various microarray studies examining 

differential gene expression in the endometrium during the ‘window of implantation’ 

has been used to create a Human Gene Expression Endometrial Receptivity 

database (HGEx-ERdb), which has been used to identify receptivity associated 

genes. Table 1.3 highlights genes with highest up- and down-regulation upon 

endometrial acquisition of a receptive phenotype.  
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Table 1.2 : Morphological and molecular biomarkers of endometrial receptivity and implantation. 

Biomarker Role in Implantation References 

Pinopodes 

(Epithelial cell 

membrane 

projections) 

- Thought to play a role in protection of the blastocyst from cilia on the endometrial wall. 

- Potentially facilitate molecular adhesion with the blastocyst 

- Studies have now identified pinopodes throughout the luteal phase and early pregnancy 

- Role remains unclear. 

(Bentin-Ley et al., 

1999; Quinn et al., 

2007) 

Prostaglandins 

(PGs) 

- Prostaglandins known to possess vasoactive factors to provide the blastocyst access to maternal vascular system. 

- Enzymes cytosolic phospholipase A2 (cPLA2), COX-1 and COX-2 synthesise PGs are upregulated by P4. 

- cPLA2 knockout mice show delayed implantation, with exogenous PG administration able to rescue the phenotype. 

- Recurrent implantation failure (RIF) patients express reduced levels of cPLA2α and COX-2. 

(Achache et al., 

2010; Song et al., 

2002; Wang et al., 

2010b) 

Mucins - High molecular weight glycoproteins that act as a barrier for implantation.  

- In vivo models suggest MUC-1 expression is increased during the implantation window but lost at implantation site.  

- Women suffering recurrent miscarriage shown to expressed reduced endometrial MUC-1.  

(Aplin et al., 1996; 

Meseguer et al., 

2001) 

Integrins - Family of transmembrane glycoproteins known for roles in cell-adhesions.  

- Expression of αVβ3 integrin coincides with the ‘window of implantation’ 

- Dysregulated αVβ3 integrin expression associated with unexplained infertility. 

(Klentzeris et al., 

1993; Lessey et al., 

1995) 

Cadherins - Responsible for Ca2+ dependent cell-to-cell adhesions 

- E-cadherin expression is P4 dependent via calcitonin and its downregulation thought to play a role in embryo 

invasion 

(Achache & Revel, 

2006; Li et al., 2002) 
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Leukaemia 

inhibitory 

factor (LIF) 

- Cytokine affecting proliferation, differentiation and cell survival.  

- Female mice with LIF gene deficiency display failed embryo implantation. 

- RIF patients display weakened induction of LIF from the proliferative to secretory phase.  

- However, clinical trials in which recombinant LIF was administered to RIF patients did not show any increase in 

implantation rate in the intervention group.  

(Achache & Revel, 

2006; Brinsden et al., 

2009; L Stewart, 

1994) 

Interleukin -1 

(IL-1) 

- IL-1 deficient mice were able to reach pregnancy, however intraperiotoneal injections of IL-1 receptor antagonist 

was sufficient to prevent implantation.  

- Attributed to regulation of integrin expression. 

- IL-1 supplementation of culture media of endometrial epithelial cells results in increase integrin β3 expression.  

(Simón et al., 1994; 

Simón et al., 1997) 

Interleukin- 6 

(IL-6) 

- IL-6 receptors are found both in the endometrium but also the blastocyst during implantation suggestive of a 

paracrine/autocrine role. 

- IL-6 deficient mice display reduced fertility due to impaired implantation. 

- Recurrent miscarriage patients reportedly have abnormal IL-6 expression during the late secretory phase.  

(Achache & Revel, 

2006; Lim et al., 

2000) 

Uterine 

Natural Killer 

cells  

(uNK) 

- uNKs are the most abundant immune cells present in the endometrium.  

- Elevated uNK cells in the stroma are associated with deregulation of cortisol biosynthesis and poor induction of key 

enzymes involved in lipid biogenesis and retinoid transport. 

- Excessive uNK cells in the stroma serve as a biomarker of suboptimal decidualization. 

- Percentage uNK used as a clinical test for women a risk of recurrent miscarriage.  

(Kuroda et al., 2013; 

Quenby & 

Farquharson, 2006; 

Tang et al., 2011) 

Micro-RNA 

(miRNA) 

- Roles in post-translational regulation of gene expression by regulating mRNA stability.  

- RIF patients displayed differential expression of 13 miRNAs compared to controls. 

- miRNAs involved included regulation of Wnt signalling, cell cycle regulation and cell-to-cell adhesions.  

(Kuokkanen et al., 

2010; Revel et al., 

2011) 
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GENE 

SYMBOL 

GENE NAME UPREGULATION 

SCORE 

SPP1 

 

GPX3 

Secreted phosphoprotein 1 

 

18 

GPX3 Glutathione peroxidase 3  14 

PAEP Progestogen-associated endometrial protein 12 

IGFBP7 Insulin-like growth factor binding protein 7 12 

IL15 Interleukin 15 12 

CD55 CD55 molecule, decay accelerating factor for complement 10 

CLDN4 Claudin 4 6 

DPP4 Dipeptidyl-peptidase 4 8 

COMP Cartilage oligomeric matrix protein 6 

LAMB3 Laminin, beta 3 6 

TIMP1 TIMP metallopeptidase inhibitor 1 4 

DCN Decorin 4 

LIF Leukaemia inhibitor factor 2 

TCN1 Transcobalamin I 

 

4 

C4BPA Complement component 4 binding protein alpha 4 

IL6ST Interleukin 6 signal transducer 4 

MAOA Monoamine oxidase A 4 

MFAP5 Microfibrillar associated protein 5 4 

TSPAN8 Tetraspanin 8 4 

FAM148B Family with sequence similarity 148, member B 4 

GADD45A Growth arrest and DNA damage inducible, alpha 4 

S100P S100 calcium binding protein P 4 

IGFBP3 Insulin like growth factor binding protein 3 4 

FXYD2 FXYD domain containing ion transport regulator 2 4 

 

GENE 

SYMBOL 

GENE NAME DOWN-

REGULATION 

SCORE 
EPHB3 EPH receptor B3 4 

CDC20 Cell division cycle 20 homolog 4 

PTTG1 Pituitary tumour transforming 1 4 

E2F2 E2F transcription factor 2 2 

CDC45L Cell division cycle 45 homolog 2 

BMP7 Bone morphogenetic protein 7 2 

KCNG1 Potassium voltage gated channel, subfamily G, member 1 2 

S100Z S100 calcium binding protein Z 2 

EFNA2 Ephrin A2 2 

S100A2 S100 calcium binding protein A2 2 

S100G S100 calcium binding protein G 2 

PLA1A Phospholipase A1 member A 2 

TRH Thyrotropin releasing hormone 2 

FOXM1 Forkhead box M1 2 

S100A5 S100 calcium binding protein A5 2 

GJB6 Gap junction protein beta 6 2 

TACC3 Transforming, acidic coiled coil containing protein 3 2 

KIF20A Kinesin family member 20A 2 

PAQR4 Progestin and adipoQ receptor family member 4 2 

CALB2 Calbindin 2 2 

 

Table 1.3: HGEx-ERdb top 25 and 20 genes with highest up- and down-

regulation upon endometrial acquisition of a receptive phenotype respectively 

(Bhagwat et al., 2013). 

 



 

23 
 

1.7 Cell Fate Decisions 
 

The processes of decidualization and endometrial receptivity both rely upon 

coordinated integration of various signalling pathways which cumulatively result in the 

molecular basis of life and death decisions in response to ovarian steroid hormones. 

These key cell fate decisions each cycle are able to shift the endometrial reaction to 

an appropriate response determined by the presence or absence of a competent or 

incompetent embryo. The role of key transcription factors and other proteins underpin 

these decisions and often lie at the junctions of various signalling pathways. For 

example, the balance between the progesterone induced promyelocytic leukaemia 

zinc finger protein (PLZF) and cAMP induced C-terminal fragment of heparin-binding 

epidermal growth factor-like growth factor (HB-EGF-C) is thought to participate 

endometrial stromal fate by the balancing anti- and pro-apoptotic signals respectively 

(Brosens & Gellersen, 2006; Nanba et al., 2003).  

 

FOXO1 is markedly induced upon decidualization and participates as part of 

multimeric transcription factor complexes driving expression of key decidual genes 

including PRL and IGFBP1. FOXO1 plays a critical role in proapoptotic pathway upon 

progesterone withdrawal in the absence of an implanting conceptus. FOXO1 nuclear 

accumulation is cAMP dependent, however progesterone treatment results in FOXO1 

translocation to the cytoplasm rending it inactive. In turn, progesterone withdrawal at 

the end of the menstrual cycle results in rapid nuclear re-accumulation of FOXO1, 

enabling it to target proapoptotic mediators such as BIM and Fas ligand (FASLG) 

(Brosens & Gellersen, 2006; Labied et al., 2006).  

 

Furthermore, cAMP induced protein stabilisation of p53 may also regulate cell fate in 

the endometrium. It is hypothesised that increased p53 protein during decidualization 

may be transcriptionally inert but still able to exert repression via protein:protein 
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interactions; however upon withdrawal of progesterone, p53 transcriptional activity is 

then released resulting in endometrial breakdown (Brosens & Gellersen, 2006; 

Christian et al., 2002a; Christian et al., 2002b) Thus, the balance between activated 

and non-activated p53 may serve as a critical decision making molecule in the 

endometrium.  

 

1.8 Recurrent Pregnancy Loss 
 

In humans, the incidence of embryo wastage and pregnancy loss is remarkably high. 

It is estimated that 30% of embryos are lost prior to implantation, 30% result in early 

pregnancy loss, and a further 10% in clinically recognised pregnancies (Rai & Regan, 

2006). Moreover, 1-2% of couples experience recurrent pregnancy loss (RPL), which 

is defined in Europe as three or more consecutive miscarriages and in the USA as 

two or more consecutive miscarriages (Quenby et al., 2002). By probability alone, the 

RPL rate in fertile couples would be 0.3-0.4%, therefore it appears that some couples 

are more susceptible to miscarriage than others. Alongside numerous anatomical, 

endocrine, immunological and thrombophilic perturbations, traditionally it was 

presumed that RPL was a result of maternal rejection of normal embryos. However a 

fairly recent shift in paradigm now suggests that RPL is the result of a failure to 

prevent ‘poor quality’ embryos implanting in the endometrium, and as such RPL can 

be thought of a defect of endometrial quality control (Aplin et al., 1996; Quenby et al., 

2002). This is supported by the finding that RPL and time to pregnancy (TTP) rates 

are linked. Retrospective analysis of RPL patients revealed up to 40% could be 

classed as ‘superfertile’ defined as a TTP of ≤ 3 months (Salker et al., 2010). As such, 

the lower levels of endometrial quality control result in the implantation and 

subsequent miscarriage of karyotypically abnormal embryos. Supporting this 

hypothesis is the finding that uterine receptivity is enhanced and prolonged in RPL 

patients as demonstrated by significantly higher and protracted PROK1 expression 
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(a promoter of embryo-uterine interactions by induction of LIF) (Salker et al., 2010) 

and a prolonged pro-inflammatory response (Salker et al., 2012). Furthermore, 

expression of the anti-adhesion molecule MUC-1 was found to be attenuated in RPL 

endometrium (Aplin et al., 1996). It is now assumed that both endometrial receptivity 

programming and endometrial responses to embryonic signals are deregulated in 

RPL, acting to extend the ‘window of implantation’ and thus permits out-of-phase 

implantation in an unsupportive uterine environment.  

 

1.9 The Central Circadian Clock  
 

The circadian clock is a molecular pacemaker, central to the temporal organisation of 

physiological, behavioural and biochemical activities of a vast array of organisms. 

Standard terminology states that a circadian rhythm is an endogenous biological 

rhythm that persists under constant environmental conditions with a period length of 

approximately 24 hours. Circadian rhythms permeate all aspects of mammalian 

physiology from sleep-wake cycles to mating behaviour (Jin et al., 1999; Sakai & 

Ishida, 2001); from hormone regulation to redox state (Karman & Tischkau, 2006; 

Merrow & Roenneberg, 2001). Circadian oscillations allow for the anticipation of 

environmental changes during the day and hence adaptation of multiple physiological 

processes. The presence of circadian pacemakers in cyanobacteria is suggestive of 

a conserved role of the clock throughout evolution (Dvornyk et al., 2003). It is  thought 

circadian rhythms served to time DNA replication to darkness to protect DNA from UV 

radiation (Gehring & Rosbash, 2003). 

 

In mammals, the biological basis of the central pacemaker is a cell-intrinsic molecular 

clock within a region of the anterior hypothalamus called the suprachiasmatic nucleus 

(SCN). This is a small structure consisting of approximately 20,000 neurons and glial 

cells. It is situated dorsal to the optic chiasm and is responsible for the establishment 
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of the daily rhythm (Moore et al., 2002). It is classically divided into ventral and dorsal 

regions, known as the SCN shell and the SCN core respectively. The ventral shell 

region contains vasoactive intestinal peptide (VIP) producing neurons as well as other 

non-VIP cell types inducing Gastrin-Releasing Peptide (GRP) producing neurons. 

The dorsal core, however, is known to contain neurons producing arginine 

vasopressin (AVP) and receives input from the VIP neurons (Ueyama et al., 1999). 

The spatial distribution of these subpopulations is highly specific and conserved 

across species, suggesting a localisation for the processing of circadian information 

(Abrahamson et al., 2001).  

 

The SCN is required for behavioural rhythmicity in mammals as it contains the most 

robust molecular clockwork in the body, and therefore is critical for many free-running 

rhythms in the absence of light (Husse et al., 2014). In other words, the SCN 

generates daily time autonomously. Explanted SCN tissue from mice is able to 

maintain circadian oscillations in both gene expression and neural activity (Abe et al., 

2002). Interestingly, studies have revealed that although SCN neurons are 

synchronised, they are not in phase with one another. Dorsal neurons are shown to 

peak 2-3 hours prior to ventral cells, creating a spatiotemporal wave throughout the 

SCN, critically dependent on synaptic integration. Specific SCN inhibition of voltage-

gated sodium channels dampens the phase relationship between neurons impairing 

the circadian wave (Yamaguchi et al., 2003). 

 

The second function of the SCN is to entrain biological rhythms to external cues, 

termed zeitgebers in order to adjust the rhythm to the environment. The strongest of 

these zeitgebers is light, which entrains the circadian rhythm via direct neural input 

from the eyes via the optic tract (Roenneberg et al., 2013). Emerging evidence 

suggests the involvement of melanopsin receptors for circadian entrainment. Light 

induced phase shifts of the SCN, as well as light induced inhibition of melatonin are 
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mediated by a mechanism independent of rods and cones (Lucas, 2001). Light 

information reaches the SCN via the retinohypothalamic tract (RHT) from the retina. 

In the SCN, VIPergic neurons integrate light input to confer intrinsic synchronisation 

of the SCN neurons (Antle & Silver, 2005). This is achieved by signalling to the 

rhythmic AVP neurons in the dorsal region via VPAC2 receptors. VIP or VPAC 

deficient mice display an 8 hour behavioural phase shift and lose rhythmicity in 

constant darkness due to defective synchrony between SCN neurons (Harmar et al., 

2002). 

 

As well as pace-making in the absence of external stimuli and entraining to light 

signals, the SCN must also convey temporal cues to the rest of the body ensuring 

rhythmic behavioural output appropriate to environmental conditions. This is thought 

to be directed from the AVP neurons which display high amplitude oscillations in 

neuronal firing, neuropeptide expression, and release. Interestingly, however, 

exogenous addition of AVP does not result in any measurable changes in circadian 

gene expression or behaviour (Arima et al., 2002). Output from the SCN is achieved 

directly by secreted factors and multisynaptic neural pathways. The SCN neurons 

project into the medial hypothalamus surrounding the SCN. Activity of these 

autonomic and neuro-endocrine target neurons are controlled by circadian timed 

release of vasopressin, GABA and glutamate. (Kalsbeek et al., 2006). The SCN is 

also known to secrete factors into the cerebrospinal fluid (CSF) including AVP, 

transforming growth factor, (TGFα) and prokineticin 2 (PK2) (Kennaway, 2005). PK2 

has been shown to influence sleep/wake cycles in mice (Cheng et al., 2002), whilst 

AVP is thought to be implicated in circadian temperature regulation. Additionally, 

hormonal signals are able to target peripheral organs as shown by the ability of 

glucocorticoids to re-set the circadian phase in multiple organs (Balsalobre et al., 

2000a) 
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One of the most studied outputs from the SCN is melatonin secretion from the pineal 

gland. Melatonin secretion at night is controlled by noradrenaline, which is secreted 

from sympathetic neurons in the superior cervical ganglion which in turn, project onto 

the pineal gland. Information from the SCN reaches the sympathetic system via the 

paraventricular nuclei and intermediolateral column of the spinal cord (Teclemariam-

Mesbah et al., 1999). Fluctuations in melatonin act to regulate day-night cycles with 

levels peaking in the middle of the night. Aberrations in melatonin regulation have 

been implicated with ageing and sleep disorders (Brzezinski et al., 2005). 

Interestingly, exogenous addition of melatonin is able to dampen the SCN neural firing 

rate, suggesting melatonin receptors in the SCN are able to mediate negative 

feedback, or phase-shifting events in the central clock (Dubocovich et al., 2005). 

 

1.10 Peripheral Clocks 
 

The SCN, as well as directly influencing circadian output, also synchronizes and 

influences multiple peripheral circadian clocks found throughout the body. Originally 

thought of as ‘slave’ oscillators, these peripheral clocks have been shown to be 

endogenous and self-sustained, maintaining up to 20 circadian cycles upon explant 

(Yoo et al., 2004). Ablation studies of the SCN in mice have shown that many organs 

continue to be rhythmic but no longer in time with each other. This suggests that 

peripheral oscillators are not connected in a paracrine manner and rely upon the SCN 

for synchronisation (Ripperger & Brown, 2010). Furthermore, experiments from Guo 

et al. (2006) demonstrated that signals derived from the SCN were able to entrain the 

circadian phase of both the liver and kidney.  

 

Current opinion describes an ‘orchestra’ model of the circadian clock in which the 

SCN behaves as a conductor, whilst each peripheral clock acts as a musician. 

Therefore, each peripheral oscillator is able to be influenced by its own environmental 

http://www.sciencedirect.com/science/article/pii/S0306452298006356#NEU8360
http://www.sciencedirect.com/science/article/pii/S0306452298006356#NEU11399
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conditions and is also able to influence circadian output, whilst the SCN is able to 

guide and adjust both the input to and the output of these peripheral clocks (Dibner 

et al., 2010). Circadian oscillations in gene expression have been found in tissue 

explants from nearly every peripheral organ, including heart, lung, cornea, pancreas 

and adrenal gland (Yamazaki et al., 2000; Yoo et al., 2004) which in turn leads to 

circadian regulation of key physiological functions such as lipid metabolism (Turek et 

al., 2005), endobiotic detoxification (Gachon et al., 2006), urine production (Nørgaard 

et al., 1985) and regulation of blood pressure (Millar-Craig et al., 1978). For example, 

anti-phase circadian regulation of glycogen synthase and glycogen phosphorylase 

ensures efficient glucose conversion in the liver (Ishikawa & Shimazu, 1980). A fully 

functional circadian clock is required for blood pressure regulation via rhythmic 

regulation of plasminogen activator inhibiot-1 (PAI-1) (Naito et al., 2003), and 

pathogenic recognition by Toll-like receptor 9 (TLR9) is disrupted upon circadian 

mutation (Silver et al., 2012). It is estimated that up to 10% of the human 

transcriptome and 20% of the proteome have rhythmic oscillations. The output of 

circadianally driven genes differs from tissue to tissue, allowing tissue-specific 

responsiveness to various cues both externally and internally via the SCN (Boden et 

al., 2013b; Oster et al., 2006). 

 

Entrainment and synchronisation of peripheral oscillators is influenced by both 

hormonal and neuronal signalling from the SCN. For example, plasma glucose and 

insulin concentrations are affected by treatment with GABAergic antagonists in 

mouse models. However, this effect is absent in SCN-ablated mice, suggestive of a 

requirement for GABAergic SCN inputs for liver regulated outputs (Kalsbeek et al., 

2008). Zeitgebers are also important for peripheral clocks. Daily feeding-fasting 

cycles are proposed to be the dominant environmental input for several peripheral 

oscillators. Restricted daytime feeding in mice results in an inverted phase of gene 

expression in the liver, while gene expression in the SCN remains unchanged, 
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effectively uncoupling the peripheral and central clocks (Damiola et al., 2000). 

Multiple signalling molecules and pathways including ghrelin, leptin and glucose 

concentrations as well as intracellular redox balance are all proposed to act as 

entraining signals for peripheral organs (Jaworek et al., 2005; Rutter et al., 2002).  

 

Single cell recordings have demonstrated that presence of functional oscillators in 

cultured cells including Rat-1 fibroblasts and NIH-3T3 cells (Akashi & Nishida, 2000; 

Balsalobre et al., 2000b). The circadian oscillations produced by cultured cells are 

both robust and self-sustained, although unsynchronised. Synchronisation can be 

achieved through activation of several signalling pathways including glucocorticoids, 

insulin or retinoic acid (Balsalobre et al., 2000a; Hirota & Fukada, 2004). Importantly, 

peripheral oscillations must be resistant to changes in temperature and must persist 

during cell division. Research has demonstrated that circadian gene expression 

passes on to daughter cells with minimal disruption to the phase. This is further 

exemplified in resilience to temperature fluctuations. In contrast to most biochemical 

processes, which will increase in speed upon rising temperature, the period of the 

circadian oscillations are temperature compensated and remain constant even in 

cultured fibroblasts (Takeuchi et al., 2007).  

 

The effectiveness of peripheral clocks is critically dependent upon their robustness. 

Small alterations in period length can result in larger phase-shifts causing deviations 

in circadian physiological behaviour. Evidence is still emerging concerning the 

organisation of the circadian system and the relationship between the SCN and 

multiple peripheral oscillators. What is becoming increasingly apparent is the high 

levels of redundancy and complexity within the system, integrating signals from 

multiple pathways. However, in order to appreciate the circadian system as a whole, 

one must understand the molecular mechanism underlying this daily cycle.  
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1.11 Molecular Basis of the Circadian Clock 
 

The circadian clock is constituted of temporally regulated activities of a core set of 

genes, resulting in a robust and stable transcriptional/translational 

feedback/feedforward loop (Figure 1.5) (Reppert & Weaver, 2002). The two key 

transcriptional activator genes are BMAL1 (brain muscle arnt-like 1, encoded by 

ARNTL) and CLOCK (circadian locomoter output cycle kaput). The protein products 

of these genes bind together via a PAS domain forming a heterodimer. This 

heterodimer binds to specific DNA motifs (termed E-boxes) in the promoter regions 

of many genes. Additionally, CLOCK possesses an intrinsic acetylase activity (Doi et 

al., 2006), which acts upon both histones and its binding partner, BMAL1. Chromatin 

immunoprecipitation studies have evidenced rhythmic daily binding of the 

CLOCK/BMAL1 heterodimer to E-box motifs, resulting in circadianally regulated 

expression of target genes.  

 

The CLOCK/BMAL1 heterodimer drives expression of the Period (PER1, PER2 and 

PER3) and Cryptochrome (CRY1 and CRY2) genes, causing their protein products 

to accumulate in the cytoplasm. Phosphorylation by Casein Kinase 1δ/ε (CK1δ/ε) 

targets PER proteins for degradation via the proteasome. This acts to limit the 

availability of PER proteins for association with CRY and CK1δ/ε in a stable complex. 

However, once formed, this complex translocates back to the nucleus where it inhibits 

the activity of the BMAL1/CLOCK dimer and in turn limits its own transcription. The 

PER/CRY/CK1δ/ε complex is degraded at night, thereby re-setting the oscillator for 

the following day (Pegoraro & Tauber, 2011).   

 

Additionally, the CLOCK/BMAL1 heterodimer also drives an auxiliary loop helping to 

maintain a 24 hour period. This is achieved by driving expression of two orphan 

nuclear receptors, REV-ERBα and RORα. REV-ERBα and RORα gene products bind 
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to ROR response elements (RREs) in the BMAL1 promoter and act to supress or 

induce transcription respectively (Guillaumond et al., 2005). The complete molecular 

feedback/feedforward loop takes approximately 24 hours to complete, and 

establishes itself as a robust, temperature insensitive and cell division independent 

oscillator. Due to the interlocking arms of the circadian oscillator and evolutionary 

conservation, it is unsurprising that many aspects show redundancy. Ablation studies 

of several of the core clock genes show minimal disruptive effects on circadian 

rhythms with many changes compensated for by alterations in other genes or post-

translational modifications (Ripperger & Brown, 2010). For example, redundancy is 

shown with multiple PER and CRY proteins in mammals. An exception is made with 

PER2, which appears to be essential for the continuation of circadian rhythms, 

however, it should be noted, a PER2 deletion can be rescued by an additional CRY2 

deletion (Albrecht et al., 2007). 
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Figure 1.5: Transcriptional/translational feedback loop of core clock genes. 

Accumulating levels of BMAL1 at the start of the subjective day promote BMAL1-

CLOCK heterodimer formation. These bind to E-box elements in promoter regions of 

PER, CRY and REV-ERBα genes activating their transcription. Accumulating PER 

proteins in the cytoplasm are phosphorylated by CK1ε, targeting them for degradation. 

However, as CRY proteins also accumulate in the cytoplasm, they promote formation 

of stable CKIε/PER/CRY complexes, which are translocated into the nucleus, where 

they act to disrupt the CLOCK/BMAL1 complex, inhibiting their own transcription. REV-

ERBα acts to inhibit BMALl1 and CRY transcription via an auxiliary loop.  Figure 

adapted from Fu & Lee (2003). 
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1.12 Circadian Post-transcriptional and Post-translational 

Modifications.  
 

In order to establish and maintain circadian oscillations, as well as rhythmic 

transcription, the action of the core clock proteins must be tightly controlled. A 

sufficient delay between transcription and repression is required in order to maintain 

a 24 hour period. A major mechanism to achieve this is by post-translational 

modifications of core clock proteins including protein phosphorylation, acetylation, 

ubiquitination and sumoylation (Vanselow et al., 2006). The majority of the core clock 

proteins are phosphorylated in vivo, and additionally, these phosphorylation events 

have been found to be circadian in pattern. Phosphorylation events regulate stability, 

proteasomal degradation and nuclear translocation of clock proteins (Figure 1.6). 

 

Casein kinase epsilon and delta (CK1ε/δ) are essential regulators of the negative 

feedback loop, with both isoforms widely assumed to have redundant roles. 

Phosphorylation of PER proteins by CK1ε/δ targets them for degradation via 

recruitment of the ubiqutin ligase adaptor protein β-TrCP (Vanselow et al., 2006). 

CK1ε/δ also has a role in PER and CRY cellular localisation, whereby phosphorylation 

masks the nuclear localisation signal, retaining PER proteins in the cytoplasm 

(Miyazaki et al., 2007). Furthermore, even when Per genes are constitutively 

expressed in rat-1-fibroblasts, PER protein abundance is still rhythmic (Fujimoto et 

al., 2006), suggesting post-translational modifications are sufficient to cause 

oscillatory protein abundance. Similarly, BMAL1 is phosphorylated by both CK1ε/δ 

and mitogen-activated protein kinase (MAPK) leading to opposing results. CK1ε/δ 

mediated phosphorylation of BMAL1 promotes its transcriptional activity (Eide et al., 

2002) whereas phosphorylation by MAPK acts to reduces it (Sanada et al., 2002).  
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Figure 1.6: Post-translational modifications of core clock machinery.  

Phosphorylation of CLOCK and BMAL1 is coincident with their highest transcriptional 

activity. After CLOCK:BMAL1 mediated transcription PER and CRY proteins 

accumulate in the cytoplasm. PER proteins are phosphorylated by CKI which triggers 

ubiquitinisation by β-TrCP leading to proteasomal degradation. CRY proteins are 

phosphorylated by GSK3β permitting FBXL3 mediated ubiquitinisation again leading 

to degradation. PP1 acts to dephosphorylate and stabilise PER proteins. CKI and CK2 

are involved in the nuclear localisation of PER proteins by differential phosphorylation, 

allowing the formation of the repressive complex. BMAL1 is SUMOylated and 

ubiquitinated facilitating proteasomal degradation.  Figure adapted from Vanselow & 

Kramer (2010).  
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Other kinases are also known to phosphorylate core circadian clock genes, including 

casein kinase 2 (CK2) and glycogen synthase kinase 3β (GSK3β). CK2 

phosphorylates PER2, and increases protein stability and influences nuclear 

localisation (Smith et al., 2008). GSK3β phosphorylation targets include PER2, CRY2 

and REV-ERBα. Interestingly, its own activity, as determined by phosphorylation 

status is circadianally regulated  (Iitaka et al., 2005).  

 

Opposing actions of kinases and phosphatases result in intricate temporal and spatial 

regulation of the molecular mechanism of the core clock genes. Phosphatases 

including PP5, PP2A and PP1 counteract the action of kinases. PP5 has been shown 

to bind to and activate CK1ε by releasing an auto-inhibitory tail domain (Partch et al., 

2006). CLOCK and BMAL1 are also phosphoproteins, and dimerise upon 

phosphorylation. Increasing CLOCK protein levels leads to hyperphosphorylation of 

BMAL1, which in turn is required for nuclear localisation of CLOCK (Kondratov et al., 

2003).   

 

Epigenetic modifications also alter protein activity. CLOCK itself has an internal 

histone acetyl transferase activity. It acetylates both histone H3 and H4, as well as its 

binding partner BMAL1 (Doi et al., 2006), which appears necessary for CRY2 

repressor activity. The histone deacetylase sirtuin 1 (SIRT1) counteracts CLOCK, and 

targets both BMAL1 and PER2. SIRT1 catalytic activity is NAD+ dependent, linking 

metabolic state to circadian oscillations (Rutter et al., 2002). Additionally, sumoylation 

of BMAL1 at lysine 259 facilitates BMAL1 ubiquitin mediated proteasomal 

degradation (Cardone et al., 2005).  

 

Emerging evidence also indicates an important role for post-transcriptional regulation 

including splicing, mRNA stability and regulation by microRNAs. This added level of 

complexity within the circadian system is thought to enhance both the robustness and 
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adaptability of the system. Use of alternative splicing of a single gene results in the 

generation of multiple isoforms with distinct structure and/or function from the full 

length transcript. RNA-sequencing has revealed tissue specific alternative splicing in 

both mouse and Drosophila. For example alternative splicing of per3 in Drosophila is 

clock regulated and permits temperature sensitive circadian regulation during 

changing seasons (Majercak et al., 2004).      

 

Micro-RNAs have recently been identified within mouse, rat, Arabidopsis and 

Drosophila as important for the functioning of the circadian clock. Within the mouse 

CREB targets miR132, whilst CLOCK targets miR219-1 resulting in circadian 

regulation of the two miRNAs. Disruption of miR219-1 caused a lengthening of wheel-

running rhythms (Cheng et al., 2007). Additionally, miR-192 and miR-194 have been 

implicated in the regulation of Per genes (Nagel et al., 2009), whilst miR-494 and miR-

142-3p in Bmal1 expression (Luo & Sehgal, 2012).  Furthermore, mRNA half-life will 

drastically impact upon functional protein abundances. Per mRNA transcripts in 

Drosophila show rhythmic abundance in the absence of circadian transcription 

indicative of circadian regulation of mRNA stability (So & Rosbash, 1997). 

 

In summary, combinations of rhythmic transcription coupled with post-transcriptional 

and post-translational modifications of just a small number of core clock genes 

provide a highly regulated and precise timing system that is able to regulate the 

circadian system throughout the organism.  

 

1.13 Circadian Regulation of Reproduction. 
 

In the majority of mammals, the circadian system needs to detect changes in the 

seasons to ensure reproduction occurs at the appropriate time of year. However non-

seasonal reproduction also involves many temporally regulated activities, from 
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oestrous cycles, ovulation, implantation, placentation and parturition. Peripheral 

clocks have been identified throughout reproductive tissues including the ovary, 

oviduct and uterus. Interestingly, the testis, along with the thymus is one of the two 

tissues shown to express constant rather than rhythmic expression of circadian clock 

genes (Alvarez & Sehgal, 2005). Female reproduction on the other hand is 

increasingly thought of as a circadianally regulated process (Figure 1.7).   

 

Firstly, in order for successful pregnancy, primordial follicles need to mature and 

ovulation must occur in concert with appropriate mating behaviour. During the late 

follicular phase, estradiol concentrations increase, stimulating gonadotrophin-

releasing hormone (GnRH) secretion resulting in sustained LH release from the 

anterior pituitary. This in turn, results in oocyte release from the ovary. Evidence 

suggests that the central circadian system impacts on these events. Tract-tracing 

identified direct SCN-GnRH neural connections which were found to be critical for 

driving the pre-ovulatory GnRH surge. Whilst elevated estradiol levels are mandatory 

for this hormone release, a time-restricted signal from the SCN is also required. 

Therefore, rats exposed to chronically high estradiol levels exhibited an LH surge on 

multiple successive days (Norman et al., 1973). As such, the LH surge of rats and 

mice is restricted to the late-afternoon of pro-oestrous with ovulation and mating 

occurring approximately 6 hours after darkness (Barbacka-Surowiak et al., 2003). In 

humans, the LH surge generally occurs between midnight and 8am with ovulation 

occurring 12-48 hours later (Luciano et al., 1990). Additionally, the sensitivity of the 

ovary to LH is also rhythmic with maximal receptiveness apparent in the middle of the 

night during pro-oestrous in rats (Sellix & Menaker, 2010). Next, the fertilised egg 

must traverse the oviduct, which also displays the molecular components of 

autonomous clocks. PAI expression in the oviduct is oscillatory and is proposed to 

protect the embryo from protease damage. Perturbed PAI rhythms may render the 
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embryo vulnerable to increased environmental damage and thus decrease embryonic 

viability (Kennaway et al., 2003a).    

 

In mice, the coupled timing of ovulation and mating are important for successful 

reproductive outcome. A delay in mating after ovulation causes deleterious effects on 

pre-implantation embryos (Sakai & Endo, 1988). This is also noted in humans 

whereby intrauterine insemination is most successful 24-42 hours post LH surge, with 

live birth rates almost halving when insemination is delayed to post 42 hours (Khattab 

et al., 2005). Experiments in which mouse uterine horns were flushed with soluble 

signals produced from day 4 decidual HESCs demonstrate histologically normal 

implantation, however, when soluble signals were derived from day 10 decidual 

HESCs, implantation was significantly impaired (Salker et al., 2012). Studies such as 

this are indicative of the ‘window of implantation’ which is critically timed for optimal 

reproductive outcome. Core clock genes have been identified as rhythmically 

expressed in the luminal epithelium, stroma and myometrial compartments of the 

uterus (Akiyama et al., 2010; Nakamura et al., 2005) and appear to be affected by 

both the menstrual cycle and stimulation with ovarian hormones (Nakamura et al., 

2008).   

 

Due to the requirement for synchronised embryonic development and maternal 

receptivity, implantation can be considered as a ‘chrono-event’. In humans the 

window of implantation is generally thought to be 6 to 10 days post-ovulation, whereas 

murine endometrium is receptive to implanting blastocysts on day 4. A study 

conducted by (Uchikawa et al., 2011) identified down-regulation of Per2 mRNA in 

endometrial stromal cells of rats during decidualization. ESCs from pregnant 

transgenic rats, in which the Per2 promoter was fused to a destabilized luciferase 

reporter gene, were prepared during the implantation window (day 4.5 of gestation) 

and during decidualization (day 6.5 of gestation). Rhythmic oscillations of both Per2 
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transcripts and protein were enhanced in cells from day 4.5, but attenuated during 

day 6.5 (during decidualization). This evidence suggests that the circadian oscillator 

may be impaired during decidualization in the endometrial stroma. With further regard 

to implantation, exposure of mice to an altered photoperiod (both phase advances 

and delays) between fertilisation and implantation led to an acute reduction in 

successful pregnancy outcome (Summa et al., 2012). Furthermore, entrainment of 

mice to photoperiods of 26 hours throughout pregnancy reduced the number of 

successful implantation sites (Endo & Watanabe, 1989). 

 

Due to medical interventions, the timing of labour and parturition in humans is unclear; 

however consistent observations show that the timing of birth is unevenly distributed 

over the circadian day with higher birth rates apparent late at night and early in the 

morning, even in pre-term births (Lindow et al., 2000). Selective advantage means 

parturition is timed to the night or daytime phase depending on the temporal niche of 

the species. Rats commonly give birth during day-light hours; however, ablation of 

the SCN disrupts this timing (Boden et al., 2013a; Reppert et al., 1987). Furthermore, 

this effect was shown to be mediated by melatonin. Pinealectomised rats (who do not 

produce melatonin) failed to deliver pups exclusively during daylight hours, and 

instead delivered randomly throughout the day. Appropriately timed melatonin 

administration was able to rescue the phenotype (Takayama et al., 2003). The role 

for melatonin signalling during human parturition is less well characterised. However, 

parallel up-regulation of the melatonin receptor alongside the canonical oxytocin 

receptor has been identified in labouring women, when compared to pregnant, non-

labouring women. Furthermore, melatonin acted to enhance oxytocin induced 

contractility and facilitate gap junction activity in term labour in vitro myometrium 

biopsies (Sharkey et al., 2009).   
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Figure 1.7: Circadian clock function in peripheral tissues of the female 

reproductive system.  

The central SCN clock drives rhythmic GnRH secretion from GnRH neurons in the 

hypothalamus. In addition to these neuroendocrine pacemakers, clocks are also 

present in peripheral tissues including the ovary, uterus and oviduct where they have 

been implicated in ovulation, steroid hormone synthesis, embryo protection, 

implantation, decidualization and parturition. Synchronisation of central and peripheral 

oscillators is mediated by hormonal, neural and humoral cues. Furthermore, feedback 

signals from the periphery are able to fine tune the clock of the HPG axis. Figure 

adapted from Sellix (2013)..   
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1.14 Circadian Rhythms in the Embryo. 
 

Mammalian oocytes express core circadian clock genes, however, post fertilisation 

expression of these genes decreases to very low levels. It is therefore likely the 

transcripts are maternal mRNAs and are not translated by the embryo. This suggests 

that during early embryonic development there is an absence of a molecular clock 

(Amano et al., 2010). During foetal development the prenatal environment is innately 

circadian in nature. The developing foetus is exposed to the maternal circadian milieu 

including daily rhythms of temperature, maternal feeding patterns and melatonin 

concentrations- melatonin being one of the few maternal hormones found to cross 

the foetal-maternal interface unaltered. Development of circadian rhythms are 

demonstrated by the entrainment of 24 hour oscillations of foetal heart rate, foetal 

movement and respiratory movements (Seron‐Ferre et al., 2007). However, it is 

currently unclear as to whether these rhythms are foetal or maternally controlled.  

 

In both rodents and humans, the SCN is histologically apparent by mid-gestation and 

displays day and night-time regulation of metabolic activity and AVP mRNA 

expression before birth. (Shibata & Moore, 1988). However, little data has been found 

to support rhythmic expression of core clock genes during foetal development. Data 

from foetal rat and hamster tissues demonstrate constitutive expression of the 

clockwork genes in the liver and heart (Dolatshad et al., 2009) However, observations 

of SCN-driven rhythms of oxygen consumption and body temperature in human 

preterm infants born post 32 weeks gestation suggests the foetal SCN is functional in 

late gestation (Bauer et al., 2009). Interestingly, melanopsin receptors in the retina 

are thought to be accountable for circadian entrainment in infants. Cots in a neonatal 

wards fitted with a circadian filter (on for 12 hours, off for 12 hours) specifically 

targeting the wavelength of light detected by melanopsin receptors, were shown to 

increase weight gain and head circumference in preterm infants (Watanabe et al., 
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2013). It could be proposed that the circadian arrangement in the foetus in similar to 

that of a peripheral clock and is entrained by maternal circadian signals allowing the 

conceptus to maintain synchrony with the mother.   

 

1.15 Clock Gene Disruption and Fertility.  
 

As there is accumulating evidence of a critical role for circadian output during 

reproduction, it could be assumed that disruption of core clock genes would lead to 

profound reproductive deficient phenotypes. Surprisingly, mutation of clock genes 

seems to have subtle effects on reproductive outcome, suggestive of compensatory 

mechanisms in order to maintain reproductive function under an altered circadian 

timing system. Studies examining core gene disruption are summarized in Table 1.4.  

 

Remarkably, there are only a handful of studies addressing the involvement of 

circadian rhythms in human reproduction. This is likely due to the invasive nature that 

such studies would require, however, some data is available concerning women 

working shifts and/or travelling across time zones. The evidence of the impact of shift 

work on female reproduction is fairly inconclusive with conflicting conclusions from a 

number of studies. (Bisanti et al., 1996) reported an association between female shift 

work and subfecundity (adjusted odds ratio (AOR): 2.0; 95% confidence interval: (CI) 

0.9-2.3). However, a larger study concluded there was no causal association between 

shift work and prolonged time to pregnancy (AOR: 0.99; 95% CI: 0.91-10.7) (Zhu et 

al., 2003). A recent meta-analysis reported a significant association between shift 

work and menstrual disruption (AOR: 1.22; 95% CI: 1.15-1.29) and infertility (AOR: 

1.80; 95% CI: 1.01-3.20), but not miscarriage (AOR: 0.96; 95% CI: 0.88-1.05). 

However, night shifts (starting between 8pm and 10pm and lasting 10-12 hours) were 

associated with an increased incidence of early spontaneous pregnancy loss 

(adjusted odds ratio: 1.41; 95% confidence interval: 1.22-1.63) (Stocker et al., 2014). 
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Additionally, small adverse effects of shift work on risk of low birth weight (AOR: 1.27: 

95% CI: 0.93-1.74) and small for gestational age infants (AOR 1.12: 95% CI: 1.03-

1.22) have been observed (Bonzini et al., 2011). Overall, these findings suggests that 

reproductive risk arising from shift work is small, and there is ‘currently insufficient 

evidence for clinicians to advise restricting shift work in women of reproductive age’ 

(Stocker et al., 2014).  Interestingly, although there has been no association observed 

between circadian disruption and pre-eclampsia, the protective property of 

administration of low dose aspirin appears to be influenced by ingestion time. 

Administration at night time is effective in lowering blood pressure; however, when 

taken in the morning, this effect is lost. The authors propose that this may be related 

to the circadian secretion pattern of blood pressure regulators (Ditisheim et al., 2013). 

This chronotherapy approach may also be applied in the future with regard to assisted 

reproductive technologies.      

 

At a molecular level, women with a single-nucleotide polymorphism in BMAL1 were 

found to have a greater rate of implantation; however, this was accompanied by an 

increased incidence of miscarriages, consistent with data observed in mice. 

Furthermore, a polymorphism in Neuronal PAS domain-containing protein 2 

(NPAS2), a CLOCK analogous gene, may be protective as it is associated with a 

reduced number of pregnancy losses (Kovanen et al., 2010).    
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Table 1.4: Reproductive phenotype of disrupted circadian core genes. 

 

Circadian 

Gene 

Mutation Reproductive Effects References 

Clock ClockΔ19 

51 amino acid 

deletion in 

transcriptional 

activation 

domain. 

Unable to bind 

E-box motifs 

- Normal steroid hormone levels, 

follicular development and ovulation. 

- Higher proportion irregular oestrous 

cycles with a  greater time spent in 

oestrous 

- Failure to initiate an LH surge in 

response to estradiol 

- High proportion of reabsorbed 

embryos by day 11 post-conception. 

(Dolatshad 

et al., 2006) 

(Miller et al., 

2004) 

Per 1 Per1Bdrm 

Per1 protein 

non functional 

 

- Normal reproductive phenotype as 

young adults 

- Aged mice demonstrated smaller litter 

sizes and abnormal parturition 

- Higher loss of implanted embryos 

(Pilorz & 

Steinlechner, 

2008) 

Per 2 Per2Brdm 

Per 2 protein 

non functional 

- Normal reproductive phenotype as 

young adults 

- Aged mice demonstrated smaller litter 

sizes and abnormal parturition 

- Higher loss of implanted embryos 

- Dampened glucocorticoid secretion 

rhythms 

- Altered sex behaviour 

(Pilorz & 

Steinlechner, 

2008) 

Bmal1 Knock out - Delayed puberty, irregular oestrous 

cycles, and small ovaries. 

- Still able to ovulate 

- Complete implantation failure due to 

impaired steroidogenesis and loss of 

StAR enzyme 

(Ratajczak et 

al., 2009) 
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1.16 Hormonal Regulation of Circadian Rhythms.  
 

Rhythms of Per1, Per2 and Bmal1 have been shown to be influenced by the stage of 

the oestrous cycle in rat uteri, supporting the hypothesis that the oestrous cycle drives 

changes in the timing of the clock in reproductive tissues. However, these changes 

were variable in other tissues including the kidney and liver (Nakamura et al., 2008). 

This suggests there are tissue specific effects of oestrogen on clockwork gene 

expression. A putative explanation for this observation is the differential tissue 

distribution of oestrogen receptors, which, furthermore, are known to be modified by 

clock genes (Urlep & Rozman, 2013). Thus, on one hand, oestrogen is able to 

influence the clock machinery, whilst on the other, the clock proteins are able to 

influence oestrogenic effects by mediating its receptors. Little is known about the 

influence of progesterone upon circadian clock expression, however exogenous 

application of progesterone acutely induces clock gene expression in MCF-7 human 

cancer cells via activation of the Per1 gene (Nakamura et al., 2010). This is supported 

by the finding of a PRE half site in the 5’ region of the mouse Per1 gene. Taken 

together, it can be proposed that oestrogen and progesterone act both independently 

and in concert to regulate circadian oscillations in reproductive tissues.  
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1.17 Research Justification and Aims. 
 

Recently chronotherapy has been used in the treatment of many disorders including 

depression, cancer and kidney disease amongst others. Chronotherapy acts to 

coordinate treatment and/or drug delivery with circadian rhythms in order to enhance 

effectiveness or reduce side effects of the given treatment. Due to increasing demand 

for ART, it is important to understand the contribution of circadian rhythms to 

reproductive outcome. It seems counterintuitive that for such temporally regulated 

events as ovulation, fertilisation, implantation and parturition, circadian rhythms are 

largely ignored. In vitro technologies tend to overlook the fact that the embryo is 

cultured in a non-circadian environment, and will be returned to an ‘out of sync’ uterus. 

Therefore, the temporally regulated characteristics of reproduction need to be 

considered and understood more in depth.  

 

The specific aims of this project are: 

- To determine the role of both overall circadian rhythms and circadian 

dependent genes in the context of decidualization and implantation. 

- To define the mechanism of circadian rhythm regulation during 

decidualization in HESCs. 

- To utilise and validate transcriptomic analysis to visualise the impact of 

knockdown of a core clock gene.  

- Examine relevant clock gene dependent transcripts in the context of key cell 

fate decision pathways critical for reproductive success.    

- Characterise important mechanistic pathways that define the organisation of 

HESC decidualization by manipulation of key genes.   

- To establish the clinical relevance of these pathways. 
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Chapter 2 
 

Materials and Methods 
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2.1 Materials  
 

2.1.1 Cell Culture Materials  
 

Reagent Manufacturer 

Dulbecco’s Modified Eagle Medium (DMEM)/F12 (1:1) with L-

glutamine with phenol red 
Fisher Scientific 

Dulbecco’s Modified Eagle Medium (DMEM)/F12 (1:1) with L-

glutamine, phenol free 
Fisher Scientific 

Charcoal Sigma-Aldrich 

Collagenase type IA Sigma-Aldrich 

Dextran Fisher Scientific 

Deoxyribonuclease I (DNAse I) Roche 

Foetal bovine serum (FBS) heat inactivated Gibco 

Insulin Sigma-Aldrich 

L-Glutamine Gibco 

Penicillin (10,000 µg/ml)- Streptomycin (10,000µg/ml) solution Invitrogen 

RNA-later Sigma-Aldrich 

Trypsin-EDTA solution Gibco 

Plastic-ware VWR 

 

2.1.2 Cell Culture Treatments 
 

Hormone Concentration Manufacturer  

8-br-cAMP 0.5mM Sigma-Aldrich 

Basic fibroblast growth 

factor  

10ng/ml Merck-Millipore 

Estradiol  1nM Sigma-Aldrich 

Dexamethasone 0.1µM Sigma-Aldrich 

Medroxyprogesterone 

acetate (MPA) 

1µM Sigma-Aldrich 

Progesterone 1µM Sigma-Aldrich 
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2.1.3 siRNA 
 

All siRNA reagents were purchased from Dharmacon GE Healthcare.  

 

SMARTpool ON-TARGETplus for human PER2. 

SMARTpool ON-TARGETplus for human BRE-AS1. 

SMARTpool ON-TARGETplus for human PRIP-1. 

ON-TARGETplus Non-targeting Pool 1.  

 

2.1.4 Antibodies  
 

Primary  

 

Antibody Dilution  Manufacturer  

CLOCK 1:3000 Abcam 

BMAL1 1:400 Abcam 

CRY1 1:500 Abcam 

CRY2 1:2000 Abcam 

PER1 1:300 Abcam 

PER2 1:300 Abcam 

PRIP-1 1:500 (Western blotting) 

1:100 (Immunohistochemistry) 

Sigma-Aldrich 

Total AKT 1:1000 Cell Signalling 

Phospho-AKT (Ser473) 1:1000 Cell Signalling 

FOXO1A 1:1000 Cell Signalling 

FOXO3A 1:1000 Cell Signalling 

BIM 1:1000 Cell Signalling 

IgG 1:2000 Sigma-Aldrich 

β-ACTIN 1:100,000 Abcam 
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Secondary 

 

Antibody Dilution Manufacturer 

Horseradish peroxidase 

(HRP)-conjugated goat 

anti-rabbit 

1:2000 Dako 

Horseradish peroxidase 

(HRP)-conjugated goat 

anti-mouse 

1:6000 Dako 

 

2.1.5 Chemical Reagents  
 

Reagent Manufacturer  

Actinomycin D Sigma-Aldrich 

30% acrylamide/Bis solution Bio-rad 

Agarose powder Sigma-Aldrich 

Ammonium Persulphate (APS) Fisher Scientific 

Ampicillin Sigma-Aldrich 

Bovine serum albumin (BSA) Sigma-Aldrich 

Bromophenol blue Sigma-Aldrich 

2-Butanol VWR 

Coelenterazine Invitrogen 

Chloroform AnalaR 

Deoxycholate Fisher Scientific 

Dimethyl sulphoxyde (DMSO) Life Technologies 

Dithiothreitol (DTT) Sigma-Aldrich 

DPX mountant Sigma-Aldrich 

Ethidium bromide Sigma-Aldrich 

Ethylenediaminetetraacetic acid (EDTA) Fisher Scientific 

Fluo-4-AM Life Technologies 

Formaldehyde  J.T. Baker 

Formalin  Leica 

Glycerol Sigma-Aldrich 

Glycine Fisher Scientific 

Haematoxylin Leica 
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Hydrochloric acid Sigma-Aldrich 

Hydrogen peroxide solution (30%) Fisher Scientific 

Histo-clear Sigma-Aldrich 

Isopropanol Sigma-Aldrich 

Lithium Chloride VWR 

m-3M3FBS Tocris Bioscience 

Magnesium chloride  Sigma-Aldrich 

Methanol Fisher Scientific  

NP-40 Calbiochem 

N,N,N,N’-tetramethyl-ethane-1,2-diamine (TEMED) Sigma-Aldrich 

(4-(2-hydroxyeyhyl)-1-piperazineethanesulphonic acid 

(HEPES) 

Sigma-Aldrich 

Paraformaldehyde (PFA) Sigma-Aldrich 

Potassium chloride Fisher Scientific 

Propidium Iodide  Sigma-Aldrich 

Ribonuclease-A Qiagen 

RNase Invitrogen 

Sodium butyrate  Fisher Scientific 

Sodium chloride Fisher Scientific 

Sodium dodecyl sulphate (SDS) Thermo 

Sodium hydroxide  Fisher Scientific 

Tris base Sigma-Aldrich 

Tris-borate Sigma-Aldrich 

Tris HCl Sigma-Aldrich 

Triton X-100 Sigma-Aldrich 

Trypan blue Invitrogen 

Tween 20 Sigma-Aldrich 

β-mercaptoethanol  Fisher Scientific 

 

2.1.6 Miscellaneous Reagents  
 

Reagent Manufacturer  

Bio-Rad Protein Assay Dye Bio-Rad 

Bioruptor sonicator Diagenode 

cOmplete EDTA free protease inhibitors Roche  
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ECL hyperfilm GE Healthcare 

Fibronectin Sigma-Aldrich 

gDNA wipeout Qiagen 

Hybond PVDF membrane GE Healthcare 

Milk powder AppliChem 

Phosphatase inhibitor cocktail  Sigma-Aldrich 

Primers Sigma-Aldrich 

Protease K Sigma-Aldrich 

Protein A Dynabeads Life Technologies 

Protein ladders Life Technologies 

RIPA Millipore 

RNA ladders Sigma-Aldrich 

RNAse free tubes Life-Technologies 

RNAse free water Life Technologies 

RNase ZAP Fisher Scientific 

Stat-60 AMS Biotechnology 

SYBR Green Mastermix Life Technologies 

 

2.1.7 Kits 
 

Kit Manufacturer  

ApoOne Caspase 3/7 Assay Kit Promega 

ECL Prime Western Blotting detection system GE Healthcare 

IGFBP1 ELISA Kit R&D Systems 

jetPRIME Transfection Kit VWR 

Novolink Polymer Detection System Leica Biosystems 

PRIP-1 ELISA Kit Antibodies-Online 

PRL ELISA Kit R&D Systems 

Proteome Human Phospho MAPK Array Kit R&D Systems 

QIAquick Gel Extraction Kit Qiagen 

QIAquick PCR Purification Kit Qiagen 

QuantiTECT Reverse Transcription Kit Qiagen 

XTT Assay Kit Cell Signalling 
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2.1.8 Buffers and Solutions 
 

2.1.8.1 General 

 

TBS 

130mM NaCl 

20mM Tris, pH 7.6 

 

TBS-Tween 

0.1% Tween in 1x TBS 

 

TBE 

0.9M Tris-borate 

2mM EDTA, pH8.0 

 

4% Paraformaldehyde 

4% PFA (W/v) in PBS 

pH 7.4 with NaOH 

 

RIPA Buffer 

50mM Tris HCl pH 7.4 

1% NP40 

0.5% deoxycholate 

0.1% SDS 

150mM NaCl 

2mM EDTA 

50mM NaF 
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DNA Loading Buffer 

0.2% (w/v) Bromophenol blue 

40% (v/v) glycerol 

0.25M EDTA pH8.0 

 

Laemmli Buffer 

50mM Tris-HCl, pH 6.8 

1% (w/v) SDS 

10% (v/v) glycerol 

2% (v/v) β-mercaptoethanol  

0.002% (w/v) Bromophenol blue  

 

2.1.8.2 Immunohistochemistry  

 

Blocking and Antibody Incubation Solution 

3% BSA (w/v) in PBS 

 

2.1.8.3 Western Blotting 

  

Running Buffer (10x) 

250mM Tris Base 

192mM glycine  

1% (w/v) SDS 

 

Transfer Buffer 

250mM Tris Base 

192mM glycine  

20% (v/v) methanol 
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Blocking and Antibody Incubation Solution 

5% BSA (w/v) in TBS-Tween or 

5% skimmed milk powder (w/v) in TBS-Tween (antibody dependent) 

 

Stripping buffer 

100mM β-mercaptoethanol 

2% (w/v) SDS 

62.5mM Tris-HCl, pH6.7 

 

2.1.8.4 ChIP  

 

SDS Lysis Buffer 

1% SDS 

1% Triton X-100 

0.5% deoxycholate 

10mM EDTA 

500mM Tris HCl pH 8.1 

 

Swelling Buffer 

25mM 4-(2-hyroxyethyl)-1-piperazineethanesulphonic acid pH 7.9 

1.5mM MgCl2 

10mM KCl 

0.1% NP40 

 

Immunoprecipitation Buffer 

0.01% SDS 

1.1% Triton X-100 

1.2mM EDTA 

16.7mM Tris HCl pH 8.1 
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167mM NaCl 

 

Low Salt Solution 

0.1% SDS 

1% Triton X-100 

2mM EDTA 

20mM Tris-HCl pH 8.1 

150mM NaCl 

 

High Salt Solution 

0.1% SDS 

1% Triton X-100 

2mM EDTA 

20mM Tris-HCl pH 8.1 

500mM NaCl 

 

Lithium Chloride Solution 

250mM LiCl 

1% NP40 

1% deoxycholate 

1mM EDTA 

10mM Tris-HCl pH 8.1  

 

Tris-EDTA Buffer 

10mM Tris-HCl pH 8.0 

1mM EDTA 
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Elution Buffer 

1% SDS 

100mM NaHCO3 

 
2.1.8.4 Calcium Profiling  

 

Krebs’-Heinselet Buffer 

133mM NaCl 

4.7mM KCl 

11.1mM Glucose 

1.2mM MgSO4 

1.2 KH2PO4 

2.5mM CaCl 

10mM TES pH 7.4 

 

2.2. Methods 
 

2.2.1 Human Endometrial Biopsies 
 

Endometrial biopsies were obtained from patients recruited from the Implantation 

Clinic, a dedicated research unit at University Hospitals Coventry and Warwickshire 

National Health Service Trust. All patients gave informed written consent and the 

study was approved by the NHS National Research Ethics Committee of 

Hammersmith and Queen Charlotte’s Hospital NHS Trust.  All biopsies were timed to 

the mid-secretory phase, 5 to 11 days after the post-ovulatory LH surge and none of 

the patients were taking hormonal treatments for at least 3 months prior to the biopsy. 

For immediate isolation of endometrial stromal cells, biopsies were placed in 7ml 10% 

dextran-coated charcoal treated foetal bovine serum (DCC-FBS) supplemented 

DMEM-F12. For protein analysis, biopsies were snap frozen in liquid nitrogen and 
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stored at -80˚C, and for RNA studies, small tissue pieces were immersed in RNA later 

and stored at -80˚C.  

 

2.2.2 Cell Culture 

 

2.2.2.1 Preparation of Dextran Coated Charcoal Treated Stripped Foetal Calf 

Serum 

 

FBS was stripped of various small molecules including endogenous hormones by 

DCC treatment. 500ml of FBS was treated with 1.25g of charcoal and 125mg of 

dextran and incubated at 57C for 2 hours with regular mixing. Supernatant was 

collected following a 30 minute centrifugation at 400 x g, sterile filtered and aliquoted 

for future use.  

 

2.2.2.2 Preparation of Isolated Endometrial Stromal Cells 

 

Endometrial biopsies were collected in 10% DCC-FBS supplemented DMEM-F12. 

Excess media was removed, and biopsies were finely minced with scalpels in a Petri 

dish and enzymatically digested with 0.5mg/ml collagenase type 1A and 0.1mg/ml 

DNAse I in 10ml phenol free DMEM-F12 for 1 hour at 37°C, with vigorous shaking 

every 20 minutes. Collagenase activity was stopped by addition of 10ml 10% DCC-

FBS supplemented DMEM followed by centrifugation at 400g for 5 min. Cell pellets 

were resuspended in  DMEM/F12, 10% DCC-FBS, 1% penicillin-streptomycin, 

2mM L-glutamine, 1nM estradiol and 2mg/ml insulin and transferred to an 

appropriately size tissue culture flask and incubated at 37°C and 5% v/v CO2. 

Endometrial stromal cells were isolated from epithelial cells by attachment timings, 

by removing any suspension cells (epithelial and blood cells), washing attached cells 

with warmed PBS and replacing with fresh 10% DCC-FBS supplemented media.  



 

60 
 

2.2.2.3 Primary Cell Culture 

 

All HESCs were managed under standard cell culture incubation conditions using a 

Heracell CO2 incubator which provided a humid atmosphere with 5% v/v CO2 

maintained at 37˚C. A class II microbiological safety cabinet was used for all cell 

culture.  HESCs were maintained in 10% DCC-FBS supplemented DMEM-F12 media 

which was changed every other day. Confluent monolayers of endometrial stromal 

cells were passaged by treatment with 3ml trypsin-EDTA for 5 min at 37°C. Flasks 

were tapped to dislodge any remaining attached cells. Trypsin treatment was 

subsequently inhibited by the addition of 7ml 10% DCC-FBS supplemented media. 

Cells were collected by centrifugation at 400g for 5 min. Cells were split at a ratio of 

1 in 3 and resuspended in 10% DCC-FBS supplemented media.   

 

2.2.2.4 Hormone Treatment 

 

For experimental assays confluent monolayers were placed in phenol red-free 2% 

DCC-FBS supplemented DMEM-F12 overnight and hormonal treatments completed 

the following day. For standard decidualization treatment, HESCs were treated in 

phenol red-free DMEM/F12 containing 2% DCC-FBS with 0.5mM 8-bromo-cAMP 

alone or in combination with and 1µM medroxyprogesterone acetate, 0.1µM 

dexamethasone, 1µM dihydrotestosterone or 1µM P4. All experimental treatments 

were carried out before the fourth cell passage. 

 

2.2.2.5 Dexamethasone Mediated Circadian Synchronization 

 

In order to achieve circadian oscillatory synchronization in culture, 100nM 

dexamethasone was added to confluent monolayers of HESCs in additive and 
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phenol-free DMEM/F12 media for 30 minutes. This treatment was carried out either 

post-transfection or post-differentiation.  

 

2.2.3 Transient Transfections 

 

Primary HESCs were transfected using jetPRIME Polyplus transfection kit, a non-

liposomal, cationic polymer based transfection reagent. Transfections were 

performed at approximately 80% confluency and in the presence of 10% DCC-FBS 

supplemented media. 50nM of siRNA was diluted in jetPRIME buffer and vortexed. 

JetPRIME reagent was added at an appropriate volume, vortexed and incubated at 

room temperature for 10 minutes   1/10th of the volume of culture media of the 

transfection solution was added dropwise to cells. Media was changed 24 hours post-

transfection.  All targeted siRNA used were siGENOME SMARTpool duplexes, with 

siGENOME Non-Targeting siRNA Pool 1 used as a control.  

 

2.2.4 Protein Analysis 
 

2.2.4.1 Protein Extraction  

 

Whole cell protein extracts were obtained by direct lysis in RIPA buffer. RIPA buffer 

was supplemented with cOmplete EDTA-free protease inhibitor. Media was aspirated 

from cells and cells washed with PBS. 60μl RIPA solution was added per well (in a 6 

well plate, scaled volumes were applied for other plasticware). Cells were scraped 

using a silicon scraper and collected in microcentrifuge tubes. Samples were 

centrifuged at 12,000 x g for 15 minutes at 4°C and supernatant containing protein 

lysates collected and stored at -80°C. 
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2.2.4.2 Assessment of Protein Concentration 

 

Protein concentration was determined via Bradford assay. Bradford assay reagent 

contains a Coommassie dye which exhibits an absorbance shift when bound to 

specific amino acid residues in proteins, observable by a colour shift from red to blue. 

Stock Bovine Serum Albumin (BSA) was diluted to a concentration range of 0, 0.5, 

1.0, 1.5, 2.0, 2.5, 3.0 and 3.5μg/well in a 96 well plate format. 20μl of Biorad protein 

dye was pipetted into each well for the protein standard and sample wells in triplicate. 

The protein samples to be quantified were diluted 1:400 in distilled water and added 

to each well. Plates were loaded onto the Multiskan Ascent plate reader and 

absorbance measured at 595nm. Protein concentrations of the samples were 

calculated by reference to known standards.  

 

 2.2.4.3 SDS-PAGE 

 

Appropriate concentrations of protein were diluted in Laemmli buffer and heated to 

100˚C for 5 minutes and quickly cooled on ice. Proteins were resolved on 

discontinuous polyacrylamide gels using the Invitrogen XCell SureLock Mini-cell 

apparatus. Gels were prepared in disposable plastic cassettes from two solutions to 

form an upper stacking gel (usually 5%) and a lower resolving gel (variable % 

depending on protein size). The stacking gel was prepared to pH 6.8 and the resolving 

gel to pH 8.8. Polymerisation in the gel was instigated by the addition of TEMED and 

10% APS. The resolving gel was poured into the cassette, overlayed with 100% 

isopropanol and left to polymerise. Once set, isopropanol was rinsed off with distilled 

water and the stacking gel overlayed and combs inserted.  

Gels were inserted into the electrophoresis tank with running buffer. Equal 

concentrations of proteins were loaded into the wells, along with a pre-stained 
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molecular weight marker. A constant voltage of 100V was applied until separation 

had occurred. The cassette was opened and gel removed for Western blotting. 

 

2.2.4.4 Western Blotting 

 

Protein samples resolved by SDS-Page were transferred to PVDF membrane for 

immunoprobing using a wet-blot method. Gel/membrane sandwiches were made 

consisting of pre-soaked blotting pads on the cathode shell, followed by a pre-soaked 

Whatman filter paper. The gel and the 100% methanol activated PVDF membrane 

were orientated next, followed by another filter paper and finally two pre-soaked 

blotting pads towards the anode shell. Once assembled the sandwich was rolled to 

eliminate any bubbles and placed in the transfer tank with transfer buffer enriched 

with variable volumes of methanol dependent upon protein size. Transfer was 

performed at a constant voltage of 30V for 2 hour. Following transfer, the PVDF 

membrane was air dried, reactivated in 100% methanol, and blocked in 5% w/v milk 

powder in TBS-Tween for 1 hour. The membrane was subsequently incubated with 

the primary antibody diluted in 5% milk TBS-Tween overnight at 4˚C. The membrane 

was washed 5 x in TBS-Tween, and subsequently incubated in the secondary 

antibody conjugated to horseradish peroxidise in the appropriate species diluted in 

5% milk TBS-Tween for 1 hour at room temperature. Following three washes in TBS-

Tween, the membrane was washed finally in distilled water. Chemiluminescent 

signals were visualized by using ECL Plus Western Blotting Detection System either 

onto autoradiography film or using a G:Box Chemie XX6. 

 

2.2.4.5 Phospho-MAPK Array 

 

Relative phosphorylation of 26 phospho-kinases was determined by Proteome 

Profiler Human Phospho-MAPK array kit. The array was performed according to 
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manufacturer’s specifications using 250μg total protein lysates. Briefly, cell lysates 

are diluted and mixed with a cocktail of biotinylated detection antibodies. The lysates 

are then incubated overnight with the phosphor-MAKP array blot. The membrane was 

washed several times to remove any unbound material. Streptavidin-HRP and 

chemiluminsence detection reagents were applied producing a signal at each capture 

spot corresponding to the amount of phosphorylated protein bound. Densitometry 

was performed with individual phospho-proteins expressed as a percentage of 

reference dots.   

 

2.2.4.6 Enzyme-linked Immunosorbent Assay (ELISA) 

 

Several ELISA kits were used throughout the study for detection of PRIP1, sST2, PRL 

and IGFBP1. For detection of PRIP1, total protein lysates were used, for the detection 

of sST2, PRL and IGFBP1, supernatant from cell culture was used. All ELISA kits 

used were solid phase sandwich ELISAs.  

In brief, a serial dilution of known protein concentration was added to an antibody 

specific pre-coated microplate along with unknown samples. The plate was sealed 

and incubated for 2 hours at 37˚C. Following incubation, the samples are aspirated 

and biotinylated detection antibody was added to each well and again sealed and 

incubated for 1 hour at 37˚C. Following three washes, horseradish peroxidase (HRP) 

conjugated streptavidin was added to each well and incubated for 1 hour at 37˚C. 

Again, following three wash steps, a substrate solution was added to the wells and 

colour develops in proportion to the amount of protein bound in the initial step. The 

colour development was stopped and the intensity of the colour measured 

immediately using a PheraStar microplate reader at 450nm with correction deducted 

from 540nm. Results were derived using a 4-paramenter logistic regression analysis 

and normalised to total protein concentration as determined by Bradford assay.  
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2.2.5 RNA Extraction 
 

To minimize risks of RNA degradation, RNase-free plastic-ware and nuclease free 

water was used throughout and in combination with RNase ZAP. Supernatant was 

removed from the cells and frozen at -80C for future analysis. Total RNA was 

extracted from cells and tissues using STAT-60 reagent; a monophasic solution of 

phenol and guanidine isothiocyanate, which maintains RNA integrity whilst 

simultaneously disrupting other cellular components.  400μl of reagent RNA Stat-60 

reagent was added per well in a 6 well plate ensuring all cells were covered and left 

to stand at room temperature for 5-10mins. Cells were scraped thoroughly using a 

Corring Cell Scraper and transferred to pre-chilled RNase-free 1.5ml eppendorfs and 

placed on ice. 20% volume of ice cold 100% chloroform was added to the Stat-60 

solution and mixed well by vortexing. Samples were snap frozen and placed at -80°C 

overnight. Samples were defrosted on ice and centrifuged at 12,000 x g at 4°C for 30 

minutes in order to separate the sample into an aqueous and an organic phase. RNA 

remains exclusively in the colourless upper aqueous phase. The aqueous phase was 

carefully transferred into 50% volume of 100% ice cold isopropanol, incubated at 

room temperature for 10 minutes to precipitate the RNA. RNA was pelleted by 

centrifugation at 12,000 x g at 4°C for 15 minutes, washed twice with 1ml 75% ice 

cold ethanol and air-dried and dissolved in an appropriate volume of nuclease free 

water. RNA concentration and quality was assessed by nanodrop. Satisfactory values 

were considered equal to or greater than 1.80 on the 260/280 absorbance scale, 

indicating pure RNA without contamination of protein. Samples were stored at -80°C.    

 

 

 

 



 

66 
 

2.2.6 RNA Analysis 
 

2.2.6.1 Actinomycin D Assay 

 

Actinomycin D is a known inhibitor of transcription by binding DNA at the transcription 

initiation complex and interfering with the elongation of growing RNA chains. It was 

therefore used to assess changes in mRNA stability.  

Confluent HESCs were treated with 2µM Actinomycin D in DMSO or with a DMSO 

vehicle control in additive and phenol-free media. RNA was harvested as per protocol. 

RNA stability was expressed as a percentage of vehicle treated control. Results were 

analysed using a single phase exponential decay function.  

 

2.2.7 Gene Expression Analysis by qRT-PCR 
 

2.2.7.1 cDNA Synthesis  

 

QuantiTech Reverse Transcription Kit was used for cDNA synthesis. All reagents 

were thawed on ice, mixed and centrifuged briefly to prevent any concentration 

gradients. 2μl of 7x gDNA wipeout buffer was added to 1μg template RNA made up 

to a total volume of 14μl with RNase-free water. This was done to remove any traces 

of genomic DNA. The samples were incubated at 42°C for 2 minutes and placed 

immediately on ice. A reverse-transcription master mix was prepared to a volume of 

10% greater than that required. Per reaction, 1μl of Quantiscript Reverse 

Transcriptase was added to 4μl 5x Quantiscript RT Buffer, along with 1μl RT Primer 

Mix. This was then added to the 14μl template RNA, reactions were mixed and stored 

on ice. Minus RT controls were also used in which 1μl nuclease free water replaced 

the 1μl of Quantiscript Reverse Transcriptase. All other stages were identical. 

Reactions were incubates at 42°C for 30 minutes, then inactivated by incubation at 
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95˚C for 3 minutes. cDNA samples were diluted with 30µl nuclease free water to give 

a final volume of 50µl.   

 

2.2.7.2 Primer Design  

 

Sequences were obtained from the Enseml Human Genome datatbase 

(www.ensenbl.org). Primers were designed to the following requirements: 

Melting temperature (Tm) is calculated with the formula Tm = 69.3 + (41(GC/L)) - 

(650/L), where GC is the number of G and C bases in the primer and L is the number 

of nucleotides in the primer. 

a) Tm to be between 58.0°C and 59.9°C 

b) Total amplicon length to be between 75 and 110 base pairs 

c) Tms shouldn’t differ from the forward and reverse primer by greater than 1˚C 

d) At the 3’ end of the primer, of the last five bases, 2 bases should be either G 

or C 

e) There is no more than four of the same base consecutively  

f) Primer length should be between 18-24 bases 

g) Primers are required to be exon spanning (to distinguish between cDNA and 

gDNA)  

h) Amplicon Tm is calculated by the following = 64.9+(0.41*(((C+G)/L)*100))-

(500/L) 

Designed primers were cross-referenced using the Primer 3 Output Programme to 

screen for primer dimer formation and secondary structure formation. See Appendix 

1 for primer sequences.  

 

2.2.7.3 Primer Optimization 

 

Primers were optimized to determine efficiencies. Forward and reverse primers were 

used at 300nM in a total volume of 19μl in a SYBR Green master mix and loaded 

http://www.ensenbl.org/
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onto a 96 well plate. 1μl of pooled cDNA or 1μl nuclease free water was added per 

well in triplicate. The amplified product of the triplicate well combined, mixed with 

loading dye and ran on a 1% agarose gel, which was ran for approximately 50 minutes 

at 100V. The purified product was excised from the gel using Qiagen Gel Extraction 

Kit (as described below) and cDNA concentration measured. 

Purified cDNA was serially diluted between 100pg/μl to 10ag/μl in 1/10 dilution factor 

providing 8 dilutions. The serial dilutions were amplified using the appropriate primers 

and a SYBR Green Master Mix and Ct Values measured. The log of the concentration 

of cDNA was plotted against average Ct values. To calculate primer efficiencies the 

following calculation was used. See Figure 2.1 for examples. 

 

𝑃𝑟𝑖𝑚𝑒𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  10
−1

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒 
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Figure 2.1.  Primer Optimization of core circadian clock genes  

300nM of designed primers were tested using pooled cDNA samples. The amplified products 

was purified, serially diluted, and amplified using the appropriate primers and a SYBR 

Green Master Mix. Ct Values were measured and from this data primer efficiencies 

were calculated.  
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2.2.7.4 Agarose Gels and Gel Extraction 

 

Gels were made by dissolving powered agarose in 1x TBE solution in a conical flask 

and microwaving. 1μl per 50ml gel of ethidium bromide was added. Gel was allowed 

to cool slightly and poured into the gel tank and left to set. Gels were run in 1x TBE 

buffer at 10V per cm of gel. Purified products were visualised under the UV 

transilluminator. 

Gel Extraction was carried out using the Qiagen Quick Gel Extraction Kit. Briefly, gel 

slices were weighed and 3 volumes buffer QC added per 1 volume of gel and 

incubated at 50°C for 10 min until the gel had dissolved fully. 1 volume of 100% 

isopropanol was added and sample placed in a QIAquick spin column and centrifuged 

at 12,000 x g for 1 min. Flow through was discarded and 0.5ml buffer QC added and 

centrifuged at the above conditions again. The product was washed by adding 0.75ml 

buffer PE and samples left to stand at room temperature for 3 minutes, then 

centrifuged as above. The column was placed into an RNase-free eppendorf, 30μl of 

nuclease free water added, left to stand for 3 minutes then centrifuged as above to 

elute the cDNA.  

 

2.2.7 5 Real Time Quantitative Polymerase Chain Reaction (qRT-PCR) 

 

Genes of interest were amplified using SYBR Green detection reagent. Reactions 

were carried out on a 96 well plate in a total volume of 20μl. Primers were used at a 

concentration of 300nM and at a 50:50 ratio between forward and reverse primers. 

1μl of cDNA template was added to the well and set up in triplicate for technical 

replicate. Non-template controls in which 1μl nuclease free water replaced the cDNA 

were also used. The optical plate was sealed with an optical cover, briefly centrifuged 

to remove air bubbles and placed in the qRT-PCR machine.  

Thermocycling conditions were as follows:   

1) 50°C for 2 mins 
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2) 95°C for 10 mins 

3) 95°C for 15 seconds 

4) 60°C for 1 min 

Dissociation curves were also ran to determine that the amplified products were 

specific, and that SYBR Green I fluorescence is a direct measure of accumulation of 

the product of interest.  

Real time analysis  

Real time quantitative polymerase chain reaction was used to determine mRNA 

abundance, indicative of gene expression, using the ABI PRISM 7500 Sequence 

Detection System. A SYBR Green based assay was used in which a fluorescent 

signal is emitted once SYBR Green is incorporated into double stranded DNA. 

Therefore as the PCR progresses, higher quantities of double stranded DNA 

accumulated, and is measured at each cycle, thus allowing DNA concentrations to be 

quantified and assigned a Ct (cycle threshold) value. Ct values are defined as the 

number of cycles required for the fluorescent signal to cross a given threshold (i.e. 

exceeds background level). 

Analysis was carried out using the Delta Delta Ct Method, by which comparisons 

between the Ct values of the samples of interest with a control or normaliser such as 

a non-treated sample. The Ct values of both the normaliser and the samples of 

interest are adjusted to the housekeeping gene L19. This results in a fold change 

value indicating the relative fold change of expression between the sample of interest 

and the normaliser.  
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2.2.8 Chromatin Immunoprecipitation (ChIP) 
 

2.2.8.1 ChIP 

 

Confluent HESC cultured in 10-cm dishes were fixed with 1% formaldehyde for 10 

minutes at 37°C. Fixation was stopped with 125 mM glycine and nuclei were isolated 

by incubating at 4°C for 10 min in 1ml of Swelling buffer. Stromal cells were scraped, 

homogenized, and centrifuged for 3 minutes at 16,000 × g at 4°C. Pelleted nuclei 

were resuspended in 500μl of SDS lysis buffer and sonicated for 30 minutes at 4°C 

on high power in a Diagenode Bioruptor sonicator. The resulting suspension was 

centrifuged for 15 minutes at 16,000 × g at 4°C and supernatant diluted in IP buffer, 

and subsequently pre-cleared at 4°C for 3 hours with Protein A Dynabeads. The 

chromatin was then complexed overnight at 4°C with the appropriate antibody bound 

to Protein A Dynabeads. Post complexing, samples were washed with low salt buffer, 

high salt buffer, LiCl buffer, and Tris-EDTA buffer respectively before eluting the 

chromatin with 250μl of Elution buffer and incubating at room temperature for 15 

minutes. 200 mM NaCl was added to reverse cross-link the proteins and the DNA. 

After an overnight incubation at 65°C, 10 mM EDTA, 40 mM Tris-HCl (pH 8), and 40 

μg/ml Protease K were added and the sample incubated for a further hour at 55°C 

before proceeding with the DNA purification using QIAquick PCR Purification kit. 

Buffers were supplemented with protease and phosphatase inhibitor cocktails and 10 

mM sodium butyrate. The following antibodies were used in the ChIP experiments: 

CLOCK, BMAL1 and as negative control the rabbit polyclonal antimouse IgG was 

used. The purified DNA was amplified by qRT-PCR.  

 

2.2.8.2 DNA Purification  

 

The QIAquick Spin kit was used for DNA purification following ChIP. This using 

selective binding to a silica membrane and appropriate salt buffers to remove 
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contaminants from previous procedures. PCR products were diluted in 5 volumes of 

isopropanol containing guanidinium chloride buffer (buffer PB) and applied to a silica 

membrane and centrifuged at 17,900 x g for 1 minute. DNA was washed with 0.75ml 

ethanol containing buffer (buffer PE) to remove salt contaminants by centrifugation 

as above. Purified DNA was eluted with 50µl of 10mM Tris-Cl (pH 7.0) and stored at 

-20˚C for assessment by qRT-PCR. Primer sequences can be found in Appendix 2.    

 

2.2.9 Calcium Profiling  
 

HESCs were cultured on 35mm glass bottomed dishes and transfected and treated 

as appropriate. For calcium profiling, HESCs were washed in modified Krebs’-

Heinselet buffer and loaded with 5μM Fluo-4-AM for 1 hour at room temperature. 

Cells were washed and incubated in 2ml Krebs’-Heinselet buffer on the stage of a 

Zeiss Axiovert 200M inverted microscope and visualized with a 40x objective lens. 

Temperatures were maintained at 37oC with a peltier unit. Using a Zeiss LSM 510 

confocal imaging system, cells were excited with a krypton/argon laser at 488nm and 

emitted light was collected above 510nm. Cells were challenged with 5µM m-

3M3FBS or control DMSO vehicle by direct addition into the cell chamber and imaged 

for 10 minutes. Fluorescence was captured by a cooled charge-couple device (CCD) 

camera at a rate of approximately one frame per second and used as an indication of 

changes in [Ca2+]i. Videos were visualised with LSM work station image analysis 

software, whereby changes in regions of interest within cells were expressed as a 

fold increase from time 0 (F/F0). Data was analysed and expressed graphically where 

peak response, area under the curve, and oscillatory frequency were calculated.  
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2.2.10 Microscopy 
 

2.2.10.1 Immunohistochemistry 

 

Paraffin-embedded, formalin fixed endometrial specimens were immunostained for 

PRIP-1 immunoreactivity using the Novolink polymer detection system. 5µm sections 

were sliced by microtome. Sections were dewaxed in histoclear, rehydrated in 

descending ethanol solutions and rinsed with water. Slides were exposed to 30% v/v 

hydrogen peroxide for 5 minutes, rinsed with TBS and blocked in 

immunohistochemistry blocking solution, using serum from the species in which the 

secondary antibody was raised, in a humidified chamber for 5 minutes at room 

temperature. Immunostaining was carried out using primary antibodies against PRIP-

1 (1:100 dilution), in a humidified chamber overnight at 4˚C. For negative controls, 

the primary antibody was omitted and replaced by the corresponding IgG isotype. 

Slides were rinsed twice in TBS and incubated with a post primary solution (Rabbit 

anti Mouse IgG) for 30 minutes. Slides were once again rinsed in TBS and incubated 

with Novolink Polymer, which detected rabbit immunoglobulins for 30 minutes and 

rinsed in TBS again. Peroxidase activity was developed using a diaminobenzidine 

(DAB) solution to produce a visible brown precipitate at the antigen site. Sections 

were counterstained with Hematoxylin and coverslipped.   

 

2.2.10.2 Immunofluorescence  

 

HESCS were cultured on 4 well chamber slides. Following media aspiration, cells 

were washed with PBS and fixed in 4% paraformaldehyde for 1 hour at room 

temperature. The slides were washed with filtered PBS and permeabilized in 0.1% 

v/v Triton X-100 for 1 hour at room temperature with rocking. Cells were washed again 

3 times with filtered PBS (3 x 5 minutes). 1% w/v BSA in PBS was added to block 

unspecific binding of antibodies and incubated for 1 hour at 4˚C with rocking. Primary 
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antibodies against PRIP-1 were diluted 1:100 in 1% w/v BSA and incubated with cells 

overnight at 4˚C. As a negative control, primary antibodies were omitted. The slides 

were then washed in cold 1% w/v BSA for 30 minutes at 4˚C. Secondary goat Alex 

Fluor-388 conjugated anti-rabbit antibody was diluted 1:200 in 1% w/v BSA and 

incubated with cells for 2 hours at 4˚C. The slides were washed with PBS and 

mounted in Vectashield with DAPI for nuclear counterstain. Staining was visualized 

with a Zeiss LSM 510 confocal imaging system. 

 

2.2.11 In vitro Colony-forming Assay 

 

2.2.11.1 Staining  

 

Transfected HESCs were seeded at a clonal density of 50 cells/cm2 to ensure equal 

loading onto fibronectin-coated 60mm culture dishes and cultured in normal growth 

medium supplemented with 10ng/ml basic fibroblast growth factor. Culture medium 

was first changed was after 7 days. Colonies were monitored microscopically to 

ensure that they were derived from single cells. Cultures were terminated at 10 days. 

Media was aspirated and cells washed 3 times with 3ml PBS. Colonies were fixed 

with 2ml 10% v/v formalin for 10 minutes at room temperature and subsequently 

washed again 3 times in 3ml sterile distilled water. 2ml filtered haematoxylin was 

added to colonies for 4 minutes to stain and then washed again 3 times in 3ml sterile 

distilled water. 2ml of PBS was added to colonies to intensify the staining for 4 minutes 

at room temperature, aspirated and dishes allowed to dry. Staining was visualized 

using the G:Box Chemie XX6. 
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2.2.11.2 Image Analysis  

 

Images were analysed using Image J software. Brightness and contrast was adjusted 

to set levels for all images. Colony area was calculated using the ‘analyse particles’ 

function. 

 

2.2.12 Viability and Proliferation Assays 
 

2.2.12.1 Trypan Blue Exclusion 

 

Transfected cells were trypsinised and resuspended in 1ml of 2% DCC-FBS 

supplemented media. To 10µl of cells, 10µl of trypan blue stain was added. Cell 

counts were measured using a Luna cell counter and conducted in quadruplet. 

Percentage viability was calculated.  

 

2.2.12.2 Caspase 3/7 Apoptosis Assay 

 

Caspase 3/7 activity was measured using the Apo-ONE Homogenous Caspase 3/7 

Assay kit. The buffer supplied with this kit rapidly lyses cultured cells. The caspase 

3/7 substrate rhodamine 110, bis(N-CBZ-L-aspartyl-L-glutamyl-L-valyl-L-aspartic 

acid amide) exits as a profluorescent substrate. Upon sequential cleavage by 

caspase 3/7 activity and excitation at 499nm, the rhodamine 110 group becomes 

intensity fluorescent. The amount of fluorescent product is proportional to the amount 

of caspase 3/7 activity in the sample, indicative of apoptosis.  

100µl of Apo-ONE Caspase 3/7 reagent was added to 100µl of cultured cells in 

normal 10% DCC-FBS supplemented media a 96 well format. Blank wells with no 

cells were used as a negative control. Contents of the wells were mixed on a plate 

shaker and the plate incubated at room temperature. The assay incubation time was 
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optimized empirically to 4 hours. Fluorescence was measured at 530nm emission 

and 490nm excitation on the PHERAStar FS microplate reader.   

 

2.2.12.3 XTT assay 

 

Cellular viability is determined by the cell’s ability to reduce tetrazolium salts (XTT) 

into coloured formazan compounds by mitochondrial enzymes. These coloured 

formazan compounds can then be detected colorimetrically. 50µl of XTT detection 

solution was added to 100µl of cultured cells in normal 10% DCC-FBS supplemented 

media in a 96 well format. The plate was incubated at 37˚C for 4 hours. Dye 

absorbance was measured at 450 nm on the PHERAStar FS microplate reader and 

is proportional to the number of viable cells per well. 

 

2.2.12.4 Real-time Adherent Cell Proliferation   

 

Real-time adherent cell proliferation was determined by the label-free xCELLigence 

Real-Time Cell Analyser (RTCA) DP instrument, which utilizes specialized microtitre 

culture plates containing an interdigitized gold microelectrode on which cells attach 

and proliferate. Cell contact with the electrode increases the impedance across these 

gold arrays and reported as an arbitrary ‘cell index’ value as an indication of 

confluency and adherence. HESCs were seeded into 16-well E-plates at a density of 

10,000 cells per well and cultured in 10% DCC-FBS supplemented media until ~80% 

confluent. The RTCA DP instrument was placed at 37C in a humidified environment 

with 95% air and 5% CO2.  Cells were either left undifferentiated or decidualized 

following transient transfection as per standard protocols. Individual wells within the 

E-plate were referenced immediately and monitored first every 15 min for 3 hours and 

then hourly for 4 days. Changes in cell index were captured and analysed using the 

RTCA Software v1.2 supplied with the instrument. 
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2.2.13 Flow Cytometry 

 

Transfected HESCs were harvested from T25 plastic culture-ware by trypsinization 

and centrifugation at 300 x g for 5 minutes. Cell pellets were resuspended in 600µl of 

sterile filtered cold PBS. 1400µl of ice cold 100% ethanol was added drop wise whilst 

concurrently mixing. Samples were stored on ice for at least 1 hour. For propidium 

iodide staining, cells were collected by centrifugation at 300 x g for 5 minutes. Ethanol 

solution was removed and pellets washed twice in 2ml 1% w/v BSA in PBS with 

centrifugation between each wash. Pellets were resuspended in 1ml PBS 

supplemented with 100µg/ml RNse and 100µg/ml propidium iodide. Samples were 

incubated in this solution for 30 minutes at 37˚C in the dark. 50,000 cells per sample 

were subjected to flow cytometry analysis using a FACScaliber with CellQuestPro 

software. Cell cycle distribution was assessed using FlowJo software using the 

Watson (Pragmatic) model.  

 

2.2.14 RNA Sequencing  
 

2.2.14.1 Sample Preparation and Selection 

 

Primary HESCs cultures were transfected with either PER2 or non-targeting siRNA 

and then decidualized with 8-br-cAMP and MPA for 24 hours. Three biological repeat 

experiments were performed. To ensure samples had sufficient levels of gene 

knockdown and responded appropriately to decidualization stimuli, aliquots of RNA 

were used for cDNA synthesis followed by qRT-PCR to assess expression of PER2 

mRNA, as well as decidualization markers prolactin and IGFBP1. All samples showed 

reduced PER2 expression upon PER2 siRNA transfection. All samples transfected 

with non-targeting siRNA showed normal induction of decidual markers.  
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2.2.14.2 RNA Quality Control  

 

RNA quality was analysed on an Agilent 2100 Bioanalyser and assessed with the 

Eukaryotic Total RNA Nano program according to the manufacturer’s instructions. 

RNA integrity number (RIN) score for all samples was ≥ 8.9. 

 

2.2.14.3 Library Preparation 

 

TruSeq stranded mRNA library preparation was carried out by Source Bioscience 

from the RNA provided. In principal mRNA in total RNA in converted into a library of 

template molecules suitable for sequencing. Poly-A containing mRNA molecules are 

first purified by separation using oligo-dT conjugated magnetic beads. Following 

purification, mRNA is fragmented using divalent cations under elevated temperatures. 

The cleaved mRNA fragments are then copied into first strand cDNA using reverse 

transcription and random primers. This is followed by second strand cDNA synthesis 

using DNA Polymerase I and RNase H. The cDNA fragments are subjected to end 

repair, addition of a single ‘A’ base and ligation of adapters. The fragments are finally 

purified and enriched by PCR to create the cDNA library suitable for sequencing.   

 

2.2.14.4 Sequencing  

 

Illumina HiSeq was carried out by Source Bioscience. Single end next generation 

sequencing was utilized with a read length of 100 base pairs.  

 

2.2.14.5 Data Analysis and Quality Control  

 

Transcriptomic alignments were identified using bowtie-0.12.8, samtools-0.1.18, and 

tophat-2.0.4 against the University of California Santa Cruz (UCSC) hg19 reference 

transcriptome from the Illumina iGenomes resource. Gene counts were estimated 
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using HTSeq-0.5.3p3 (http://wwwhuber.embl.de/users/anders/HTSeq/) and 

transcripts per million (TPM) calculated. Count data from the TopHat-HTSeq pipeline 

were analysed using two different methods for differential expression detection; 

DESeq and edge R. Gene transcript abundances were considered to be significantly 

different if the false discovery rate (FDR) value (edgeR) or adjusted P value (DESeq) 

was < 0.01. Differentially expressed genes were retained if they were detected by at 

least two of the methods used. 

 

2.2.15 Data Mining  
 

Datasets from the GEO repository were data-mined for expression data of various 

genes. The following data sets were used; 

Endometrium through the menstrual cycle: GDS2052  

Preimplantation embryonic development (HG-UG133_Plus_2): GDS3959 

 

2.2.16 Statistical Analysis  

 

Data was analysed using the statistical package GraphPad Prism. Where 

appropriate, a 2-tailed paired Student’s t-test or one-way analysis of variance 

(ANOVA) was applied. Variables that were not normally distributed were analysed 

using the Kruskal-Wallis test. Mann-Whitney U test was used for paired comparisons. 

Spearman’s’ rank test was utilised for correlative analysis. Results were expressed 

as means ± standard error of the mean (SEM). Values of P<0.05 were considered 

statistically significant.  

 

 

 

 

 

 

http://wwwhuber.embl.de/users/anders/HTSeq/
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Chapter 3 
 

The Circadian Protein PER2 
Synchronises Mitotic Expansion 
and Decidualization in HESCs. 
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3.1 Introduction  
 

As discussed in the chapter 1, mammalian reproduction is critically dependent upon 

precisely timed interconnecting signalling networks. These networks act in concert to 

control the onset of puberty, timing of ovulation, blastocyst implantation and 

parturition (Boden et al., 2013a). The circadian system is highly evolutionary 

conserved and acts as an exquisitely accurate internal biological clock, timing daily 

events. The finding that most peripheral organs and tissues express circadian 

oscillations has unlocked a series of questions concerning the role of rhythms as well 

are the architecture of circadian clocks in the reproductive system (Dolatshad et al., 

2009; Karman & Tischkau, 2006; Kennaway et al., 2003b). It is now increasingly 

evident that oscillators within individual cells are able to respond diversely to 

entraining signals, control various physiological outputs and interact cooperatively 

with each other and within the circadian system as a whole. Within the human uterus, 

the action of ovarian steroid hormones have been shown to influence clock gene 

expression in all of the major tissue types including the epithelium, stroma and 

myometrium (Czeisler & Klerman, 1998; Nakamura et al., 2008).  

 

Decidualization, the most prominent feature in the human reproductive cycle, defines 

a cellular differentiation process which is both highly dynamic and temporally 

regulated. Emerging evidence highlights the role for a biphasic inflammatory 

response. This begins with a tightly defined acute pro-inflammatory phase, 

characterised by the production of free radicals, chemokines, interleukins and other 

inflammatory mediators. This is then critically followed by a profound anti-

inflammatory response during the late luteal phase of the cycle in which stromal cells 

acquire a characteristic secretory phenotype (Salker et al., 2010; Salker et al., 2012). 

Timings of these inflammatory phases define the ‘window of implantation’ and are 

critical for successful embryonic implantation. Disruption of the temporal organization 



 

83 
 

of the decidual response is associated with reproductive failure. For example, 

endometriosis is associated with uterine progesterone resistance, an attenuated 

decidual response, implantation failure and conception delay (Al-Sabbagh et al., 

2012). Conversely, a protracted pro-inflammatory response prolongs the window of 

endometrial receptivity, which in turn increases the risk of developmentally delayed 

embryo implantation and early pregnancy loss. Thus synchronised endometrial 

receptivity and embryonic development are critical to prevent pregnancy related 

pathologic events.   

 

Disruption of clock genes either through mutation or knockout have highlighted the 

importance of cell autonomous peripheral clocks in reproduction. Conditional deletion 

of Bmal1 in rat pituitary gonadotrophs affects oestrous length (Chu et al., 2013), whilst 

deletion in the ovary results in complete implantation failure due to impaired 

steroidogenesis (Ratajczak et al., 2012; Ratajczak et al., 2009). Other studies have 

demonstrated that mice lacking both Per1 and Per2 have more embryonic 

implantation sites, yet fewer live offspring when compared to wild type controls (Pilorz 

& Steinlechner, 2008). It is suspected that these Per gene deletions result in an 

accelerated ageing reproductive phenotype in mice.  

 

In this chapter I aim to establish the role of circadian rhythms in primary HESCs and 

their effects upon the differentiation programme. Primarily, it was observed that alike 

in rats, circadian oscillations are highly temporally regulated during the differentiation 

programme in the human endometrium. I will further investigate the precisely timed 

down-regulation of the core clock gene PER2, and its ability to create a ‘pause’ in the 

circadian programme, permissive for successful decidualization. I will additionally 

discuss the critical timing of this event, and investigate the effects of premature loss 

of PER2 in HESCs during the initial stages of the decidual response by utilising RNA-

sequencing. The importance of this transitional pathway was emphasised by analysis 
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of mid-luteal endometrial biopsies from 70 women suffering consecutive miscarriage, 

showing significant correlations between PER2 mRNA levels with both age and the 

number of preceding pregnancy losses. The results discussed within this chapter 

highlight the significance of circadian coordination within female reproduction.   

3.2 Results 
 

3.2.1 In vivo Expression of Core Circadian Clock Genes. 
 

I speculate that circadian rhythms may have an important role in the regulation of 

decidual transformation of HESCs and therefore implantation. In other words, 

circadian genes may act to influence the monthly menstrual cycle as well as critically 

maintain the daily circadian cycle. To test this hypothesis, data mining of the Gene 

Expression Omnibus (GEO) revealed changes in expression levels of six of the core 

clock genes over the course of the menstrual cycle (GDS2052). Transcript levels of 

CLOCK (circadian locomoter output cycles kaput), BMAL1 (brain muscle arnt-like 1), 

CRY1, CRY2 (cryptochrome 1 and 2), PER1 and PER2 (period 1 and 2) were 

investigated, as their gene products establish the basis of a robust and stable 

circadian transcriptional and translational feedback loop. 

 

Data revealed transcript levels of these 6 genes from the proliferative, early secretory, 

mid secretory and late secretory stages from a total of 27 samples (Figure 3.1). 

Expression levels of CLOCK and CRY1 showed no significant changes over the 

course of the menstrual cycle. mRNA transcript levels of BMAL1 and CRY2 displayed 

significant increases during the secretory phase, whilst both PER gene transcripts 

revealed a biphasic response. PER1 and PER2 increased 2 fold and 4 fold 

respectively between the proliferative and early-secretory phase. Elevated levels are 

maintained during the mid-secretory phase, but then fall in concert during the late 

secretory phase when known decidual marker genes such as LEFTY2 and IGFBP1 
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are sharply induced. These results highlight significant gene regulation of circadian 

transcripts during the menstrual cycle. 

 

Further data mining of the GEO revealed changes in expression levels of 6 of the 

core clock genes during preimplantation human embryonic development (GDS3959). 

Data from the microarray revealed transcript levels of these six genes from the 1 cell 

to blastocyst stage from a total of 18 samples (Figure 3.2). Expression profiles of 

CLOCK, BMAL1, CRY1 and PER2 display high expression during the very early 

stages of development but decline rapidly. This is likely attributable to the degradation 

of stored maternal transcripts. No induction during embryonic gene activation is 

apparent. Interestingly CRY2 and PER1 expression profiles show an up-regulation of 

transcripts during embryonic development, with increased transcripts apparent at the 

morula and blastocysts stages. This suggests these genes are actively transcribed 

by the zygotic genome, as opposed to the maternal genome.    
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Figure 3.1 Expression of core circadian clock genes through the menstrual 

cycle. GEO profile microarray of circadian transcripts, CLOCK, BMAL1, CRY1, 

CRY2, PER1 and PER2 and decidual markers LEFTY2 and IGFBP1 during the 

proliferative, early secretory, mid-secretory and late secretory phases of the 

menstrual cycle in 28 subjects using Affymetrix Human Genome U133 Array. 

*P<0.05; ** P<0.01; ***P<0.001.  Data are presented as means ± S.E.M.  
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Figure 3.2 In vivo expression of core circadian clock genes during human 

pre-implantation embryonic development. GEO profile microarray of CLOCK, 

BMAL1, CRY1, CRY2, PER1 and PER2 transcripts from the 1 cell, 2 cell, 4 cell, 

8 cell, morula and blastocyst stages of embryonic development from 18 samples 

using Affymetrix Human Genome U133 Array. *P<0.05.  Data are presented as 

means ± S.E.M.  
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3.2.2 Loss of Circadian Oscillations upon Decidualization of 

HESCs. 
 

Decidualization of stromal cells in the rat uterus has been shown to be associated 

with the loss of circadian rhythmicity (Uchikawa et al., 2011). I therefore speculated 

that this phenomenon may be conserved in humans and acts to synchronize maternal 

and embryonic gene expression at implantation. To investigate this hypothesis, 

transcript levels of the 6 core clock genes were measured in primary undifferentiated 

HESCs and cells that had first been decidualized for 4 days with 8-br-cAMP and MPA, 

representing the window of implantation.  

 

In vitro, single cells have been shown to harbour self-sustained and cell autonomous 

circadian oscillations (Nagoshi et al., 2004), however once isolated they are no longer 

in synchrony. In other words, each cell will by cycling independently. In order to detect 

changes in circadian oscillations within a whole culture, circadian rhythms must first 

be synchronized. This was achieved with a short dexamethasone pulse, which is 

known to act as a resetting stimulus in vitro. As shown in Figure 3.3, all 6 clock genes 

exhibited circadian regulation in undifferentiated cells with amplitude of gene 

expression varying up to 5 fold over a 26 hour period. However, upon decidualization, 

expression was uniformly aperiodic across the circadian time-course. These results 

indicate that differentiation of HESCs is associated with a concurrent loss of circadian 

rhythmicity.  

 

Given the positive and negative transcriptional/translational feedback loop the 

circadian system is centred around, it was concerning that all of the core clock genes 

measured were approximately in phase with one another. Peak transcript levels were 

all focused between 2-10 hours post synchronization, whereas it is known that several 

transcripts are anti-phase to each other, including BMAL1 and PER2. I speculated 
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that measurement of RNA transcript levels within the 26 hours immediately post 

dexamethasone treatment may have contributed to this ‘in phase’ phenomenon. In 

order to confirm normal circadian rhythms in undifferentiated cultures, BMAL1 and 

PER2 expression was measured in an extended time-course. RNA was extracted 

every 4 hours between 12 and 48 hours post dexamethasone synchronization and 

subjected to qRT-PCR. Over this timeframe, BMAL1 and PER2 were shown to be 

anti-phase to each other, confirming the presence of normal circadian oscillations in 

undifferentiated HESCs (Figure 3.4).  
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Figure 3.3 Decidualization of primary endometrial stromal cells is 

associated with loss of rhythmic expression of core clock genes. Expression 

of CLOCK, BMAL1, CRY1, CRY2, PER1 and PER2 mRNA transcripts in 

undifferentiated HESCs or cells decidualized for 6 days with 8-br-cAMP and MPA, 

Both cultures were synchronized with dexamethasone for 30 minutes. mRNA was 

collected at indicated time points and transcript expression analysed using qRT-

PCR. *P<0.05.  Data are presented as mean fold change ± S.E.M. 
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Figure 3.4 Confirmation of anti-phase expression pattern of PER2 and 

BMAL1. Expression of (a) PER2 and (b) BMAL1 mRNA transcripts in 

undifferentiated HESCs over an extended timeframe. (c) Overlay of PER2 and 

BMAL1 expression to indicate anti-phase expression. Cultures were synchronized 

with dexamethasome for 30 minutes and mRNA was collected at indicated time 

points, transcript expression was analysed using qRT-PCR. Data are presented 

as mean fold change ± S.E.M. 
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3.2.3 Resumption of Circadian Oscillations. 
 

It is known that circadian rhythms are present at the time of parturition in humans 

(Honnebier & Nathanielsz, 1994; Longo & Yellon, 1988; Srinivasan et al., 2009), 

therefore I speculated that oscillations of the core clock machinery are potentially only 

‘paused’ upon decidualization of HESCs. Whilst it was observed that circadian 

oscillations are switched off at day 4 of decidualization, it was unknown as to when 

circadian oscillations resume. To investigate this, transcript levels of the same 6 core 

clock genes were measured in primary undifferentiated HESCs and cells that had first 

been decidualized for 12 days with 8-br-cAMP and MPA. Results unfortunately were 

inconclusive (Figure 3.5). Oscillations in undifferentiated HESCs were inconsistent 

with previous data, whilst those from HESCs decidualized for 12 days were present 

in CRY1 but erratic in all other genes. I hypothesise that this inconclusive data is a 

result of cells being maintained in reduced serum media for a prolonged period of 

time. Alternatively, it is possible that resumption of circadian cyclicity is dependent 

upon embryonic signals.     
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Figure 3.5 The resumption of rhythmic expression of core clock genes at 

decidual day 12 is inconclusive. mRNA transcript expression of the six core 

clock genes in undifferentiated HESCs or cultures decidualized for 12 days with 

8-br-cAMP and MPA. Both sample sets were synchronized with 100nM 

dexamethasone for 30 minutes. mRNA was harvested at indicated time points and 

transcript expression analysed by qRT-PCR. Data are presented as mean fold 

change ± S.E.M. 
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3.2.4 Expression of Core Clock Genes in Decidualized HESCs.   
 

To investigate the underlying mechanism of the observed loss of rhythmicity, 

expression profiles of the same core clock genes were examined in unsynchronized 

HESCs, which were either undifferentiated or decidualized  for 2, 4 or 8 days. qRT-

PCR analysis revealed modest but consistent changes in the expression of several 

transcripts upon differentiation (Figure 3.6a). CLOCK is known to be stably 

transcribed over the circadian cycle, and expression both at RNA and protein level 

remained constant over the 8-day time-course. BMAL1 and PER1 transcripts were 

both increased by day 2, and maintained over the 8 day period, although this 

response did not reach statistical significance. By contrast, protein expression 

demonstrated a lag and accumulated as decidual transformation unfolded, reaching 

maximal expression by day 8 (Figure 3.6b). Down-regulation of both CRY1 and CRY2 

was observed both at mRNA and protein level. Once again, protein expression 

exhibited a time lag following transcript loss. Circadian genes are known to be post-

translationally modified (Lee et al., 2008; O'Neill et al., 2013; Stojkovic et al., 2014), 

which may account for observed delays in protein expression. The most striking 

observation, however, was the rapid and profound inhibition of PER2 expression with 

transcript levels falling by 80% within 2 days of differentiation. Western blot analysis 

confirmed the dramatic decline in PER2 levels upon decidualization. Furthermore, 

PER2 mobility on SDS-PAGE became more focused and noticeably enhanced, 

suggesting that decidualization also impacts on the post-translational modification 

status of this component of the circadian machinery.  
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Figure 3.6 Uterine stromal decidualization is associated with attenuation of 

PER2. (a) Core clock gene expression in cultures decidualized with 8-br-cAMP 

and MPA for 2-8 days. Transcript expression was normalized to that of 

undifferentiated cells (Day 0). *P<0.05; ** P<0.01; ***P<0.001. Data are presented 

as mean fold change ± S.E.M. (b) Western blot analysis of total cell lysates of 

timed paired undifferentiated or decidualized HESCs (2-8 days).  
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3.2.5 Investigations into PER2S, a Splicing Variant of PER2. 
 

Splicing variants have been reported for BMAL1 and PER1 (Ikeda & Nomura, 1997; 

Yu et al., 1999). PER2S, has been recently identified as a novel splicing variant of 

the human PER2 gene. PER2S is 1215 base pairs long, corresponding to a protein 

of 404 amino acids, whilst canonical PER2 is much longer at 3767 base pairs, 

producing a protein of 1255 amino acids. Studies have highlighted sequence 

homology between the two isoforms in nucleotides 1-1046 and 1155-1215, whilst 

nucleotides spanning 1047-1154 and 1616-3767 were only present in the full length 

variant (Avitabile et al., 2014). Using ExPASy software, it was calculated that the 

protein product of the PER2S isoform would have a molecular weight of 45kDa, whilst 

the known molecular weight of the full length PER2 isoform is 140kDa.  

 

Upon western blot analysis, whilst the full length isoform confirmed the decline in 

PER2 levels during decidualization, a band also appeared at approximately 50kDa 

which showed an inverse pattern, with clear up-regulation upon differentiation (Figure 

3.7a). I therefore speculated that this product may be the result of the PER2S isoform, 

and the balance between the protein products of these may regulate circadian 

function in HESCs during decidualization. Primers were designed that were able to 

distinguish between the two isoforms (Figure 3.7b). qRT-PCR analysis revealed that 

the PER2S variant was only very lowly expressed within HESCs, whilst the full length 

isoform was consistent with the results previously observed (Figure 3.7c). 

Additionally, the abundance of the lower molecular weight band in decidualizing cells 

was constant throughout the time-course indicting that it is likely non-specific; 

therefore I conclude that the full length isoform is the critical variant subject to 

regulation in these cells. 
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Figure 3.7 Down-regulation of PER2 is driven by the full length 

isoform. (a) Representative western blot analysis of total cell lysates of 

timed paired undifferentiated or decidualized HESCs, identifying the full 

length 132kDa PER2 protein and an additional band at approximately 

50kDa with inverse expression. (b) PER2 and PER2S cDNA coding 

sequences. Arrows indicated location of amplicons. (c)  Full length PER2 

and truncated PER2S expression in decidualizaed HESCs (0-8 days) as 

analysed by qRT-PCR. Data are presented as mean fold change ± S.E.M.   
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3.2.6 Convergence of cAMP and P4 Signalling Downregulates 

PER2. 
 

The convergence of the cAMP and progesterone pathways drives the decidual 

phenotype in HESCs (Brar et al., 1997). To further explore the regulation of PER2, 

HESCs were treated with either 8-br-cAMP or MPA alone or in combination for a total 

of 2 days. The decline in PER2 expression was more pronounced with MPA 

compared to 8-br-cAMP, although the level of inhibition was not statistically significant 

with either treatment. By contrast, combined treatment elicited an 80% reduction in 

PER2 expression after 48 hours when compared to vehicle-treated control (Figure 

3.8). This is indicative of a synergistic response common in many decidual associated 

genes.   

  

3.2.7 PER2 Regulation is Independent of RNA Stability.  
 

In addition to evidence demonstrating circadian control of transcription, results from 

various studies have suggested posttranscriptional regulatory mechanisms at the 

RNA level (Woo et al., 2010; Woo et al., 2009). I therefore speculated that PER2 

expression could be differentially controlled by the stability of its RNA transcripts. To 

test this hypothesis, undifferentiated and HESCS decidualized for 4 days were 

subjected to actinomycin D treatment, a known potent transcription inhibitor, for 30 

minutes, 1, 2, 4 or 8 hours. Using qRT-PCR analysis, the rate of decay of PER2 

mRNA transcripts was measured. Exponential decay analysis resulted in comparable 

non-significant half-lives in undifferentiated and decidualized cells (2.93 hours in 

undifferentiated cells versus 3.39 hours in decidual cells). 
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Figure 3.8 PER2 downregulation is driven by coordinating cAMP and 

progesterone signalling pathways.  Primary HESC cultures were treated with 

either 8-br-cAMP or MPA for 48 hours as indicated and PER2 transcript levels 

measured. Transcript expression was normalized to that of undifferentiated 

control. **P<0.01. Data is presented as mean fold change ± S.E.M. 

 

Figure 3.9 Reduction if PER2 expression is not associated with alterations 

in RNA stability. Undifferentiated or decidualized HESC (2 days) were treated 

with 2µM actinomycin D. RNA was harvested at indicated time points and PER2 

mRNA expression quantified by qRT-PCR. Exponential decay analysis was used 

to determine RNA half-life. Data are presented as means ± S.E.M 
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3.2.8 PER2 Down-regulation is Dependent upon Attenuated 

CLOCK Binding to an E2 Enhancer Element. 
 

Sustained expression of circadian oscillations in peripheral tissues requires the 

integrity of the transcriptional/translational feedback loop. In the mouse, Per2 

expression is critically dependent upon a non-canonical 5’-CACGTT-3’ E-box 

enhancer element, termed E2, located 20 base pairs upstream of the transcriptional 

start site (Yoo et al., 2005). This enhancer element and its flanking regions 

corresponding to the core CLOCK:BMAL1 heterodimer M34 core binding site are 

conserved at the human PER2 locus on chromosome 2q37.3. I therefore speculated 

that disruption of CLOCK:BMAL1 binding to this specific E2 enhancer may contribute 

to the down-regulation of PER2 expression observed upon decidualization.   

 

In order to investigate this possibility, ChIP analysis was optimised using CLOCK, 

BMAL1 and control IgG antibodies, followed by qRT-PCR, with primers specifically 

targeting the E2 element. In undifferentiated HESCs, results indicated that CLOCK 

antibody pulldown resulted in a near 3% enrichment of the E2 locus, compared to ≈ 

1% with BMAL1. Rabbit IgG antibody was used a negative control, and showed very 

little (<0.07%) enrichment. (Figure 3.10a).  Due to the increased E2 locus enrichment 

upon CLOCK pulldown, this antibody was used for future assays.   

 

HESC cultures from three independent patients were either undifferentiated, or 

decidualized with 8-br-cAMP and MPA for 12, 24, 48, 96 or 192 hours. Results show 

that decidualization was associated with a rapid and sustained loss of CLOCK binding 

at the E2 enhancer locus (amplicon -301 to -162 base pairs). After 12 hours of 

treatment, CLOCK binding was reduced by 59%, and this level of reduction was 

maintained throughout the whole time-course. In order to validate results, primers 

targeted to the PER2 gene body (off target), were employed. This locus showed no 
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enrichment.  Additionally, primers were designed to target the E-box located in the 

PER1 promoter (E5, amplicon -142 to -54 base pairs) to prove specificity (Figure 

3.10b). The PER1 gene was shown to be upregulated slightly upon decidualization. 

This response was again mirrored by enriched CLOCK binding over the decidual 

time-course (2.8 fold increase by 24 hours), however, results did not reach 

significance. PER1 gene body (off target) primers showed no enrichment (Figure 

3.10c). Thus, the attenuated binding of CLOCK to the E2 enhancer element in the 

PER2 promoter cannot be accounted for by a general reduction in the DNA-binding 

activity of the CLOCK:BMAL1 heterodimer.  
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Figure 3.10. Reduction in PER2 expression is associated with a reduction in 

CLOCK promoter binding. (a) ChIP enrichment for the PER2 E2 enhancer 

element when chromatin is immunoprecipitated with CLOCK, BMAL1 and control 

IgG antibodies in primary HESCs decidualized for indicated time points. (b) ChIP 

enrichment of the PER2 enhancer element and PER2 gene body upon CLOCK 

binding in HESCs during a decidual time course. (c) Enrichment of PER1 E5 E-

box element and PER1 gene body in HESCs described above. Data are mean 

percentage of input ± S.E.M. ** P<0.01; ***P<0.001 
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3.2.9 PER2 Knockdown Disrupts other Core Circadian 

Components. 
 

Circadian oscillations are predicated on the basis of autoregulatory feedback loops, 

therefore I speculated that PER2 knockdown by siRNA in undifferentiated HESCs 

may recapitulate the changes observed in other core clock components associated 

with decidualization. In order to investigate this, three independent HESC cultures 

were transfected with either non targeting control siRNA or PER2 siRNA. RNA and 

protein were harvested 4 days post transfection. Analysis by qRT-PCR confirmed 

PER2 transcriptional knockdown by 77% (Figure 3.11a). Western blot analysis 

additionally confirmed PER2 loss of expression at functional protein level (Figure 

3.11b). CLOCK expression was previously shown to be stable throughout 

decidualization. PER2 knockdown did not alter CLOCK expression at either mRNA 

or protein level. BMAL1 expression was induced 2-fold during decidualization. PER2 

knockdown resulted in a modest, non-significant up-regulation in BMAL1 mRNA, but 

no changes in protein expression were observed. Both CRY1 and CRY2 were down-

regulated during HESC differentiation. Upon PER2 knockdown, CRY1 transcripts 

were strikingly upregulated by over 6 fold; however, changes at the protein level were 

modest. In regards to CRY2 expression, no real changes were observed at RNA level; 

however, CRY2 protein appeared heightened upon treatment with PER2 siRNA. 

PER2 knockdown recapitulated the changes observed in PER1 expression upon 

decidualization, with a reciprocal up-regulation confirmed by qRT-PCR and western 

blot analysis. However, this induction in PER1 mRNA was enhanced upon PER2 

knockdown as compared to decidualization. Therefore, although PER2 knockdown 

resulted in recapitulation of some decidual changes in core clock component 

expression, it did not result in a complete reproduction of the phenotype. This 

suggests that multiple clock regulators are modulated in response to HESC 
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decidualization. Additionally, due to the highly redundant nature of the circadian 

system, perturbations in one gene are likely to cause alterations in other core genes.  
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Figure 3.11 siRNA mediated knockdown of PER2 is associated with 

compensatory modifications in other core clock genes (a) Core clock gene 

expression in primary HESC cultures transfected with NT or PER2 siRNA for 48 

hours and analysed by qRT-PCR. (b) Western blot analysis of total cell lysates of 

primary HESC cultures transfected as indicated for 48 hours. ** P<0.01; 

***P<0.001. Data are presented as mean fold change ± S.E.M.  
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3.2.10 PER2 Knockdown Silences Circadian Oscillations and 

Disrupts HESC Decidualization. 
 

Next, I investigated if PER2 knockdown in undifferentiated HESCs would suffice to 

disturb circadian rhythm generation and phenocopy the silencing of core clock 

oscillations observed upon decidualization. To do this, three independent paired 

primary cultures were transfected with either NT or PER2 siRNA and synchronized 

as previously described with a dexamethasone pulse. Following 12 hours post 

glucocorticoid shock, total RNA was harvested at 4 hour intervals over a 28 hour 

period. Cells transfected with NT siRNA demonstrated robust circadian oscillations in 

the 6 core clock genes, with normal anti-phase observed between BMAL1 and PER2 

transcript profiles (Figure 3.12). In HESCs transfected with PER2 siRNA, gene 

expression in core clock components was uniformly non-oscillatory. This indicates 

that the down-regulation of PER2 observed during HESC differentiation is both 

necessary and sufficient to cause the loss of autonomous circadian rhythms in 

decidual cells.  
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Figure 3.12 Knockdown of PER2 expression is sufficient to cause the loss 

of oscillatory expression in core clock genes. mRNA transcript expression of 

CLOCK, BMAL1, CRY1, CRY2, PER1 and PER2 in undifferentiated HESCs 

transfected with NT siRNA or PER2 siRNA for 48 hours. Cultures were 

synchronized with 100nM dexamethasone for 30 minutes. mRNA was harvested 

at indicated time points. qRT-PCR was utilised for transcript expression analysis. 

*P<0.05; ** P<0.01; ***P<0.001.  Data are presented as mean fold change ± 

S.E.M.    
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Next, it was therefore hypothesized that PER2 down-regulation may sensitize HESCs 

to differentiation signals. In order to investigate this, HESCs were transfected with 

either NT or PER2 siRNA and subsequently decidualized for 2 days. Expression of 

four cardinal decidual markers (PRL, IGFBP1, WNT4 and 11HSD) were quantified 

using qRT-PCR. Surprisingly, instead of the hypothesized sensitization, PER2 

knockdown severely attenuated the induction of these genes. PRL induction was 

suppressed by 63%, IGFBP1 by 82%, WNT4 by 52% (non-significant) and 11HSD by 

78% (Figure 3.13). This indicates that although PER2 down-regulation is a striking 

feature of decidual cells, this core clock protein is somehow critically required for the 

initial responsiveness of HESCs to deciduogenic cues.  

 

In order to examine the role of PER2 during the initial decidualization of HESCs, 

investigations were undertaken into the earlier kinetics of this core clock gene after 

deciduogenic treatment. The previous data has shown that PER2 gene expression is 

already suppressed by 82% by day 2 of a decidual time-course. HESCs were 

therefore subjected to 8-br-cAMP and MPA for 6, 12, 24 or 48 hours, or left untreated. 

Expression of PER2 was shown to be biphasic in its response. Transcript levels 

transiently increased at early stages of decidualization, with levels peaking at 12 

hours. This was followed by a sharp drop at 24 hours which was maintained at 48 

hours. It is well established that induction of PRL expression upon decidualization is 

also biphasic. It is characterized by an initial cAMP dependent, rapid but modest 

response, followed by an accelerated rise in promoter activity after 12 hours of 

stimulation. Quantification by qRT-PCR revealed PRL and IGFBP1 were induced as 

anticipated: a modest increase in expression during the first 12 hours of stimulation 

(in concert with increased PER2 expression), and a further rapid increase in 

expression after 24 hours (in concert with falling PER2 transcript levels). From figure 

3.14 it can be seen there is an intriguing partial inverse correlation between 

expression of PER2 and these key decidual marker genes.   
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To investigate further the consequences of PER2 knockdown on the activation of 

decidualization, previous knockdown assays were repeated at 12 and 24 hours. 

Briefly, three independent HESC cultures were transfected with NT or PER2 siRNA 

and then treated with decidualizing stimuli for 12 or 24 hours. RT-PCR confirmed a 

74% and 76% reduction in PER2 expression at 12 and 24 hours respectively. 

Interestingly, PER2 knockdown had no significant impact on expression of PRL or 

IGFBP1 transcripts in the first 12 hours of decidualization. However, knockdown did 

inhibit the accelerated induction of these decidual markers as measured at 24 hours, 

thereby halting functional decidualization. This is suggests that PER2 may act as a 

precise timing mechanism during the initiation of HESC differentiation (Figure 3.15).    
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Figure 3.13 Expression of PER2 is vital for functional decidualization of 

HESCs. Transcript expression of key decidualization markers PRL, IGFBP1, 

WNT4 and 11HSD in primary HESCs transfected with NT siRNA or PER2 siRNA. 

HESCs were subsequently undifferentiated or decidualized for 2 days with 8-br-

cAMP and MPA. Expression was normalised to the undifferentiated control within 

the group. *P<0.05. Data are presented as mean fold change ± S.E.M. 
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Figure 3.14 Early decidual kinetics of PER2 and key decidual marker genes. 

The gene expression kinetics of PER2 and the decidual marker genes PRL and 

IGFBP1 in primary HESCs decidualized for 6, 12, 24 or 48 hours. Transcript levels 

were normalised to that of undifferentiated cells (0 hour). *P<0.05; **P<0.01. Data 

represent fold change ± S.E.M.  
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Figure 3.15 Timed PER2 regulation is critical for induction of 

decidualization. Primary HESCs from three independent cultures were 

transfected with NT or PER2 siRNA. 48 hours post transfection, cultures were 

treated with 8-br-cAMP and MPA for 12 or 24 hours. Transcript levels of PER2 

and the decidual marker genes PRL and IGFBP1 were assessed by qRT-PCR.  

Transcript levels were normalised to those of undifferentiated cells.. *P<0.05; 

**P<0.01. Data represent mean fold change ± S.E.M.  
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3.2.11 Premature PER2 Down-regulation Deregulates 

Decidualization.   
 

To further this hypothesis, I established paired NT and PER2 knockdown cultures 

from three mid-luteal biopsies, and then decidualized the cells for 24 hours. 

Transcriptomes were profiled by RNA sequencing. On average, 25 million single end 

reads were sequenced per sample. Of 19,721 expressed genes, 1,202 and 2,398 

were identified as significantly different between NT and PER2 knockdown cultures 

by edgeR and DESeq differential expression analyses, respectively. Combining these 

analyses, we identified a robust list of 1121 differentially expressed genes detected 

by both methods. 572 (51%) of which were up-regulated (≥ 2 fold induction) and 549 

(49%) down-regulated (≥ 2 fold repression). Lists of differentially expressed genes 

can be found in Appendix 3 and 4 (up- and down-regulated respectively). To assess 

further the relatedness of the cultures, we calculated z scores of the transcripts-per-

million values for the differentially expressed genes and depicted as a heat map 

(Figure 3.16a) 

 

The most up-regulated genes encoded for secretogranin II (SCG2), a peptide 

hormone packaging gene (40-fold induction); brain and reproductive organ expressed 

anti-sense I (BRE-AS1), a novel long non-coding RNA antisense to BRE (a known 

component of the DNA damage response complex) (33-fold induction); and solute 

carrier family 6 member 12 (SLC6A13), a sodium dependent GABA transporter (28-

fold induction). The most down-regulated genes were ATPase calcium transporting 

plasma membrane 3 (ATP2B3), a critical component in intracellular calcium 

homeostasis (10-fold repression); insulin receptor-related receptor (INSRR), an AKT 

activating pH sensing receptor (7-fold repression); and claudin 20 (CLDN20), a cell 

adhesion gene involved in tight junction strands (7-fold repression).   
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Amongst the list of down-regulated genes upon PER2 siRNA mediated knockdown 

were PRL and IGFBP1, confirming qRT-PCR results. However, PER2 knockdown 

actually upregulated various other decidual genes. These included key transcription 

factors such as CREM, CEBPβ, CEBPα, and NURR1, kinases and phosphatases 

including SGK1 and MKP1, the cell surface receptor for IL33 (IL1RL1, also known as 

ST2), and BMP2, a key decidual morphogen. Strikingly, also observed were the 

induction of several genes coding metabolic regulators, including peroxisome 

proliferator-activated receptor γ (PPARG) and PPARG coactivator 1-α, following 

PER2 inhibition were also observed. Taken together, these results suggest that rather 

than preventing or halting differentiation, premature loss of PER2 expression 

predisposes HESCs to a disordered decidual phenotype.  

 

Gene Ontology (GO) enrichment analysis was applied to the list of up- and down- 

regulated genes to discover which biological processes associated with the 

differentially expressed genes were over-represented. The top 15 processes are 

shown in the pie chart in Figure 3.16b. Signal transduction, anatomical development 

and metabolic process were the most over-represented biological functions upon 

PER2 siRNA mediated knockdown at 24 hours decidualization. Cell differentiation, 

apoptosis, cell cycle and cell proliferation were all also prominently affected, indicative 

of a key role for PER2 in cell fate decisions.     
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Figure 3.16 Premature loss of PER2 mediated by siRNA results in a 

disordered decidual phenotype.  Three paired independent biopsies were 

transfected with either NT or PER2 siRNA and subsequently decidualized for 24 

hours. Samples were subjected to Illumina HiSeq RNA-Sequencing analysis. (a) 

Venn diagram comparison of differentially expressed transcripts identified by 

DESeq2 and edgeR. Clustered heat map shows relatedness of top-ranked 

differentially expressed transcripts. (b) Pie chart representing the top 15 GO 

annotations of biological processes of the differentially expressed genes.    
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3.2.12 Loss of PER2 Prevents HESC Clonal Expansion by Cell 

Cycle Arrest.  
 

Gene ontology analysis revealed proliferation was significantly influenced by PER2 

loss. Previous studies have shown that prior to decidual transformation, HESCs 

undergo a round of cell division. Stromal cells have been observed to synthesize DNA 

preceding the development of uterine sensitivity to deciduogenic stimuli (Moulton & 

Koenig, 1983; Moulton & Koenig, 1984). It was therefore supposed that PER2 

expression may be required for this mitotic expansion. Transfected HESCs were 

consequently seeded in triplicate at low density (50 cells/cm2) onto culture plates and 

cultured over a prolonged time, in order to permit colony formation. Results show that 

the ability of HESCs to form colonies was severely attenuated upon knockdown of 

PER2 as compared to controls (colony area; 2% to 24% respectively, Figure 3.17). 

This suggests that premature PER2 inhibition acts to deregulate decidual gene 

expression by interrupting the proliferative ability of HESCs prior to the onset of 

differentiation.      

 

Similarly, gene ontology analysis also revealed ‘cell cycle’ as another biological 

process over represented upon PER2 knockdown. To further elucidate the role of 

PER2 within the cell cycle, HESCs were once again transfected with NT or PER2 

siRNA and then subjected to propidium iodide staining. This intercalating dye stains 

DNA quantitatively, and the fluorescent intensity emitted upon flow cytometric 

analysis at certain wavelengths corresponds to the amount of DNA contained within 

the nucleus. This can then be attributed to a particular stage of the cell cycle. This 

study critically revealed an accumulation of HESCs within the G2/M portion of the cell 

cycle upon PER2 knockdown when compared to NT controls (22.1% and 8.8% 

respectively). This was correlated with a reduced proportion of cells in mitotic S phase 

(11.6% compared to 17.6%). Of note, the <2N, or apoptotic fraction was also 
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significantly smaller upon PER2 knockdown (Figure 3.18a and b). This data 

demonstrates that the lack of mitotic proliferation observed upon PER2 knockdown 

is, at least in part, due to imposition of a cell cycle block at the G2/M stage. This 

observation correlates well with the RNA sequencing data which revealed that 52 of 

the 73 cell cycle related genes disturbed upon PER2 knockdown are involved in the 

G2/M checkpoint. For cell cycle genes differentially regulated upon PER2 knockdown 

see Appendix 5.   

 

To further confirm these results, real-time monitoring of cell proliferation over 100 

hours using microelectronic sensor technology was utilised. 10,000 HESCs from 

three independent biopsies were plated in triplicate into 16 well E-plates containing 

interdigitized gold microelectrodes. Cells were grown until 80% confluent and then 

transfected within the E-plate with either NT or PER2 siRNA. Mock transfected 

HESCs were used as growth controls and maintained in either 10% DCC-FBS 

supplemented media or 0% un-supplemented media. HESCs transfected with siRNA 

were maintained in 10% DCC-FBS. Adherence to the gold microelectrodes was 

recorded over the following 100 hours. The data confirmed that knockdown of PER2 

resulted in a significant growth inhibition of HESCs as analysed by ANOVA. (Figure 

3.19) Transfection with NT siRNA additionally resulted in growth retardation when 

compared to mock transfected cells in 10% DCC-FBS media, although this can be 

attributed to the presence of transfected siRNA and off target effects.  
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Figure 3.17 PER2 knockdown prevents clonal expansion of HESCs. (a) 

Haematoxylin stained representative colonies of 2 independent primary HESC 

cultures first transfected with NT or PER2 siRNA. Cells were plated at low density 

to permit colony formation and terminated at 10 days. (b) Total colony area as 

quantified by ImageJ analysis. **P<0.01. Data represent mean ± S.E.M.  
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Figure 3.18 PER2 knockdown induces a G2/M cell cycle block. (a) 

Representative gated cell cycle histograms obtained 48 hours post transfection 

with NT or PER2 siRNA in primary HESCs. Cell cycle distribution was assessed 

using the Watson model. (b) Graphical representation of cell cycle distribution 

from 3 independent HESC cultures transfected and treated as above. **P<0.01. 

Data represent mean ± S.E.M.  
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Figure 3.19 PER2 loss prevents mitotic expansion of HESC cultures. Real-

time monitoring of cell growth and adherence as measured by electrical 

impedance using an xCelligence analyser. HESCs were seeded into 16 well 

plates and transfected within the plate with NT or PER2 siRNA. Untransfected 

HESCs cultured in 10 or 0% DCC-FBS supplemented media were used as 

controls. Cell index measurements were captured over 100 hours.  
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3.2.13 Partial Rescue of Decidual Phenotype by Double 

Knockdown of PER2 and BRE-AS1. 
 

Results from RNA-seq data revealed that one of most upregulated genes upon PER2 

knockdown was for a long non-coding RNA called BRE-AS1 (brain and reproductive 

organ expressed anti-sense 1). Expression was consistently up-regulated with a 

mean 33-fold increase upon PER2 loss in HESCs decidualized for 24 hours. In order 

to confirm these results, primers were designed to specifically target BRE-AS1. 

Confirmation of primer specificity was confirmed using melt curve analysis and primer 

efficiency calculated as previously described (Figure 3.20a). Firstly I examined if 

BRE-AS1 displayed rhythmic circadian oscillations. Results showed that variation in 

transcript expression over 28 hours was not sufficient to indicate circadian regulation. 

(Figure 3.20b). 

  

In order to confirm the up-regulation in BRE-AS1 upon PER2 knockdown observed in 

RNA-seq, transcripts levels were measured in three independent cultures transfected 

with NT or PER2 siRNA and subjected to deciduogenic stimuli for 48 hours. Whilst 

transcript levels were comparable in undifferentiated HESCs transfected with either 

NT or PER2 siRNA, upon decidualization BRE-AS1 expression was induced by 66-

fold in PER2 siRNA transfected cells, compared to only 15 fold in NT siRNA 

transfected HESCs (Figure 3.20c). Next, confluent HESCs were transfected with 

either NT, PER2 or a combination of PER2 and BRE-AS1 siRNA. Transfected cells 

were then decidualized for 24 or 48 hours. Transfected undifferentiated cells were 

used as controls. To confirm knockdown, RNA was extracted and subjected to qRT-

PCR analysis. BRE-AS1 expression showed a small increase upon decidualization in 

NT HESCs (D4; 1.44 fold, D8; 2.23 fold).  As expected, PER2 knockdown resulted in 

increased expression of BRE-AS1 both in undifferentiated HESCs and upon 

decidualization, although this increase was smaller than previously observed (D4; 
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12.85 fold, D8; 13.95 fold). Upon double knockdown, BRE-AS1 expression was 

reduced to levels comparable with NT controls (Figure 3.20d). Furthermore, PER2 

knockdown was confirmed in samples transfected with both PER2 siRNA and 

PER2/BRE-AS1 siRNA (Figure 3.20e). As BRE-AS1 is antisense to the gene BRE, 

this coding transcript was also quantified. Results demonstrated a small increase in 

BRE expression upon decidualization in both controls and cells transfected with PER2 

siRNA alone. Double knockdown resulted in a small but significant increase in BRE 

transcripts in the undifferentiated state (P=0.002), but no change was observed once 

HESCs were subjected to differentiation signals (Figure 3.20f). 

 

As BRE-AS1 was only upregulated upon PER2 knockdown when cells were 

decidualized, it was hypothesized that it may play a role in the sensitization of HESCs 

to early deciduogenic stimuli. Experiments were designed to determine if appropriate 

decidual responses would return upon double knockdown of PER2 and BRE-AS1. 

The same four key decidual markers were used, PRL, IGFBP1, WNT4 and 11HSD. 

Confirming previous results, single PER2 knockdown severely attenuated the 

induction of these genes upon decidualization. PRL induction was suppressed by 

35% and 69%, IGFBP1 by 75% and 81%, WNT4 by 37% and 43%, and 11HSD by 

59% and 55% at 24 and 48 hours respectively, further confirming the critical 

requirement of PER2 for normal decidual initiation (Figure 3.21). Interestingly, upon 

concurrent PER2 and BRE-AS1 knockdown, near complete phenotypic rescue was 

observed. No statistical significance was observed in any of the decidual markers 

genes between NT controls and double knockdowns. This suggests that PER2 siRNA 

mediated increased expression in BRE-AS1 is at least partially responsible for the 

disordered decidual phenotype observed.   
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Figure 3.20 Expression of the long non-coding transcript BRE-AS1. (a) 

Optimization of BRE-AS1 primers to determine primer efficiency for the long non-

coding transcript. (b) Rhythmic assessment of mRNA transcript expression of 

BRE-AS1 in synchronized undifferentiated or decidualized HESCs. (c) HESCs 

transfected as indicated were subjected to deciduogenic stimuli for 48 hours or 

left untreated. BRE-AS1 transcript expression assessed by qRT-PCR. Transcript 

expression of (d) BRE-AS1, (e) PER2 and (f) BRE in primary HESCs transfected 

with NT siRNA, PER2 siRNA alone or PER2 and BRE-AS1 siRNA combined. 

HESCs were subsequently undifferentiated or decidualized for 24 or 48 hours with 

8-br-cAMP and MPA. Expression was normalised to NT 0 hour *P<0.0; **P<0.01; 

***P<0.001. Data are presented as means ± S.E.M 
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Figure 3.21 Partial rescue of functional decidualization following double 

knockdown of PER2 and BRE-AS1 Transcript expression of key decidualization 

markers PRL, IGFBP1, WNT4 and 11HSD in primary HESCs transfected with NT 

siRNA, PER2 siRNA alone or PER2 and BRE-AS1 siRNA combined. HESCs were 

subsequently undifferentiated or decidualized for 24 or 48 hours with 8-br-cAMP 

and MPA. Expression was normalised to the undifferentiated control within the 

group. *P<0.0; **P<0.01. Data are presented as mean fold change ± S.E.M 

 

 

* 
* 
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3.2.14 Mid-luteal Endometrial PER2 Expression in Recurrent 

Miscarriage.  
 

Finally, I examined the expression levels of PER2 transcripts in timed mid-luteal 

endometrial biopsies from 70 women with ovulatory cycles attending a dedicated 

miscarriage clinic. All of the patients examined suffered consecutive miscarriages, 

ranging between 2 and 11 pregnancy losses. Other patient demographics associated 

with miscarriage were also collected, including age, BMI, percentage of uterine 

natural killer cells (Kuroda et al.), and the day of cycle (post LH surge). Small tissue 

pieces were collected and stored in RNA later. RNA was subsequently extracted as 

previously described and PER2 mRNA transcript levels quantified using qRT-PCR. 

Statistical analysis revealed none of the patient demographics correlated with PER2 

levels in a Gaussian distribution, therefore linear regression analysis was applied and 

statistical significance determined using Spearman’s rank test. Within this cohort BMI 

(Spearman’s rank test ρ=0.0107, P= 0.9315), uNK % (ρ=0.0624, P= 0.5998) and the 

day of cycle (ρ=-0.1879, P= 0.1165) showed no association with PER2 transcript 

levels (Figure 3.22b-d). Patient age was inversely correlated with PER2 expression 

(ρ=-0.2588, P= 0.0240), as was the number of previous pregnancy losses (ρ=0.3260, 

P=0.0046, [Figure 3.22a and e]). To investigate this further, biopsies from 5 control 

and 5 recurrent pregnancy loss patients were taken. Stromal cells were grown in vitro 

and decidualized for 2, 4 or 8 days, or remained undifferentiated. PER2 transcript 

levels were assessed by qRT-PCR. As previously observed, PER2 transcript levels 

were attenuated in all ten patients upon decidualization. Additionally, in accordance 

with the previous correlative data, PER2 transcript levels were consistently lower in 

RPL patients compared to controls (Figure 3.22f). The disparity between the two 

cohorts increased over the differentiation time-course, reaching statistical 

significance at day 4 and day 8 (P=0.040 and P=0.024 respectively). See Appendix 

6 for patient demographics. 
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Figure 3.22 Timed mid-luteal endometrial expression of PER2 in a recurrent 

miscarriage cohort. Endometrial PER2 expression in a cohort of 70 recurrent 

miscarriage patients. Correlation between PER2 expression in mid-luteal endometrial 

biopsies and (a) age, (b) BMI, (c) uterine NK cell percentage, (d) day of cycle (post LH 

surge) and (e) the number of previous pregnancy losses, using regression analysis. 

Dotted lines represent 95% confidence intervals. Spearman’s ρ value and probability 

(P) shown. (f) PER2 expression in primary HESC cultures from 5 control and 5 RPL 

patients decidualized with 8-br-cAMP and MPA for 2, 4 or 8 days, or left untreated. 

*P<0.05. Data presented as mean fold change.  
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3.3 Discussion  
 

Circadian rhythms permeate a vast array of biological processes by permitting 

anticipation of environmental change (Ko & Takahashi, 2006). Decidualization is a 

spatiotemporally controlled event initiated during the mid-secretory phase of the 

menstrual cycle, preceded by proliferation in the superficial endometrial layer. 

Differentiating cells then pass though tightly defined phenotypic changes, which 

control endometrial receptivity, embryo selection and ultimately resolution via 

pregnancy or menstrual shedding (Gellersen & Brosens, 2014).  

 

Successful implantation is dependent upon coordinated two-way communication 

between a competent embryo and a receptive endometrium. It is therefore not beyond 

speculation that circadian rhythms in the female reproductive system provide timing 

cues required for successful decidualization and successive implantation. It is shown 

in this chapter that core clock machinery is temporally regulated throughout the 

menstrual cycle. Additionally, human pre-implantation embryos do not express the 

majority of the core circadian genes, except for maternal transcripts which are 

degraded prior to implantation (Boden et al., 2013b). Here, I demonstrate that 

rhythmic oscillations of the core clock machinery are halted (or potentially ‘paused’) 

upon decidualization of HESCs. One possible explanation of this phenomenon is to 

permit functional embryo-maternal synchronisation, thus allowing the maternal 

environment to dictate the daily clock, preventing out of phase oscillations between 

mother and foetus.  

 

Evidently, although there is loss of overall circadian oscillations, both mRNA and 

protein of the core clock components are still expressed. This may suggest that the 

endometrium is poised, ready to resume circadian oscillations once the blastocyst 

has implanted. It is conceivable that the blastocyst may provide such an entraining 
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signal to the endometrium to resume ‘in sync’ rhythms. Unfortunately, data from day 

12 decidual cells was inconsistent, likely due to prolonged serum starvation. 

Therefore, although it is known circadian rhythms are present in the endometrium at 

parturition, further work is required to establish when they are switched back on after 

decidualization associated silencing.     

 

As a core circadian gene, PER2 shows a high degree of temporal regulation in 

response to deciduogenic stimulants. The data provided here support previous 

studies in rats, where PER2 down-regulation signals the transition from an oscillatory 

receptive endometrium to a non-oscillatory post receptive decidual endometrium 

(Uchikawa et al., 2011). It is reported here that a similar expression profile is 

recapitulated in human cells, where declining PER2 transcript levels signal the 

progression from mid- to late-secretory endometrium. Concordant PER2 regulation 

between the two species is indicative of an evolutionary conserved mechanism. This 

is striking given the vast dissimilarities between human and rodent reproduction. 

Whilst both are mammals, rodent decidualization is initiated by the presence of an 

implanting embryo, whereas human decidualization is under maternal control and 

hence initiated each cycle, irrespective of the presence or absence of a conceptus.   

 

In this study, dexamethasone was used as a synchronizing agent enabling 

measurement of rhythms within a culture of cells. As a glucocorticoid, dexamethasone 

binds to the glucocorticoid receptor (GR) which in turn activates genes with a 

glucocorticoid response elements (GREs) within their promoters. Multiple clock genes 

have been shown to contain GREs and be directly regulated by GR (So et al., 2009). 

As decidualization is associated with a gradual decrease in GR expression and a 

concurrent increase in mineralocorticoid receptor (MR) expression (Kuroda et al., 

2012) it could be argued that the loss of rhythmicity observed upon decidualization is 

an artefact due to a decreased ability to be synchronized by dexamethasone. 



 

129 
 

However, as shown here, PER2 siRNA mediated knockdown in undifferentiated 

HESCs is sufficient to silence circadian oscillations, recapitulating conditions 

observed upon differentiation. Furthermore, the downstream effects mediated by 

PER2 knockdown including cell cycle arrest, provide a rational explanation for this 

observed loss of rhythmicity. Further work would be designed to include assessment 

of GR levels in the various conditions.     

 

This study provides evidence that down-regulation of PER2 is attributed to the full 

length 3768 base pair transcript and expression synergistically mediated by cAMP 

and progesterone. Previous reports indicate PER2 is acutely responsive to hormonal 

signals that converge onto a cAMP-response element (CRE) in its promoter region 

(Koyanagi et al., 2011; O'Neill et al., 2008). Additionally, progesterone-response 

element (PRE) – half sites have been located upstream of the PER2 transcriptional 

start site indicative of cis- acting regulation (Rubel et al., 2012). These pathways 

provides a likely explanation for the initial transient rise in PER2 transcript levels in 

differentiating HESCs. However, in this chapter data is provided to show that the loss 

of PER2 expression in decidualizing HESCs coincided with specific attenuated 

CLOCK binding to the highly conserved non-canonical E2 enhancer element in the 

PER2 promoter. The data further shows that this attenuation could not be accounted 

for by a general reduction in the DNA binding activity of the CLOCK:BMAL1 

heterodimer as demonstrated by constitutive binding to the PER1 E5 E-box. It has 

previously been suggested that binding of p53 to a response element found in the 

promoter region of PER2 which overlaps the E2 enhancer, prevents heterodimer 

binding, leading to repression of PER2 expression (Sun et al., 2010). Further work is 

required to determine if this phenomenon is occurring during decidualization.  

  

Furthermore, due to the high level of redundant and compensatory mechanisms 

within the circadian machinery (Erzberger et al., 2013; Reppert & Weaver, 2002), it 



 

130 
 

was suspected that decidual associated repression of PER2 alone would not be 

adequate to cause the overall cessation of rhythms during decidualization. However, 

data shown in this chapter shows that siRNA mediated PER2 repression is sufficient 

to cause loss of circadian oscillations in the core clock machinery. PER2 knockdown 

in undifferentiated HESCs results in a complete aperiodic expression profile 

reminiscent of a decidual circadian phenotype. 

 

The data here shows that regulation of PER2 expression occurs within a precise 

timeframe. Loss of expression observed 2 days after treatment with deciduogenic 

stimuli is preceded by a transient increase in expression between 6-12 hours post 

treatment. This corresponds to the known induction of PRL; whilst a weak induction 

up to 12 hours is dependent upon a non-palindromic cAMP response element (CRE), 

a much more intense induction is observed from 24 hours via an enhancer region. 

Thus, initially the data suggested that PER2 acts as a major repressor of decidual 

gene expression; therefore, it was hypothesised that knockdown may act to sensitise 

HESCs to deciduogenic signals. However, paradoxically siRNA knockdown 

demonstrated that this core clock protein is critically required for successful HESC 

differentiation as measured by transcript expression of PRL, IGFBP1, WNT4 and 

11HSD, four key decidual marker genes. Further analysis via RNA-sequencing 

indicated that rather than preventing differentiation, PER2 knockdown actually results 

in a wholly disordered decidual response.  

 

Moreover, data provided here goes some way to explain this chaotic differentiation 

observed upon PER2 knockdown. Several lines of evidence show that HESCs 

undergo an obligatory round of mitotic proliferation prior to decidualization (Wang et 

al., 2010a). This study demonstrates PER2 is functionally required for this event. 

Knockdown resulted in a complete failure of HESCs to form colonies, growth 

retardation and imposition of a G2/M cell cycle block. These results are contrary to 
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the widely regarded nature of PER2 as a tumour suppressor (Fu et al., 2002; Sun et 

al., 2010; Thoennissen et al., 2012). In leukaemia cell lines, PER2 overexpression 

induces growth arrest in G2/M by inhibition of c-MYC and cyclin B1 and upregulation 

of p53 (Sun et al., 2010). The ability of PER2 to promote or inhibit cell cycle 

progression therefore seems to be tissue or cell type specific.  

 

Additionally, in this chapter I demonstrate that the aberrant decidual phenotype 

observed upon premature PER2 loss by siRNA is at least partially rescued by co-

knockdown of BRE-AS1. This is a poorly characterised long non-coding RNA, 

antisense to BRE, both of which are located on overlapping regions of chromosome 

2. BRE-AS1 was demonstrated to be amongst the most induced transcripts upon 

PER2 knockdown. Findings of up-regulation during the late secretory phase of the 

menstrual cycle suggest that this long non-coding RNA may play an important role 

during HESC decidualization. Concurrent siRNA mediated knockdown of PER2 with 

BRE-AS1 acts to rescue induction of key decidual marker genes. Further research is 

required to determine if double knockdown is also able to rescue other PER2 

knockdown mediated phenotypes, including the G2/M cell cycle block. However, this 

preliminary data suggests that long non-coding RNAs may be unknown key regulators 

of human decidualization.    

 

Finally, the finding that PER2 transcript levels inversely correlate with age lends 

credence to previous studies reporting age related decline in circadian output (Jud et 

al., 2009; Nakamura et al., 2011). It is feasible that low PER2 expression in the mid-

luteal phase of the cycle may contribute to an accelerated ageing phenotype as 

observed upon mutation in mice, resulting in poor reproductive fitness (Pilorz & 

Steinlechner, 2008). Critically, the observation of a significant inverse correlation 

between mid-luteal PER2 transcript levels and the number of previous miscarriages 

strongly implicate that deregulation of this core clock gene increases the likelihood of 
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persistent miscarriages. These findings were further supported with data showing 

reduced PER2 expression in cultured HESCs from RPL patients upon 

decidualization. Taken together, these observations demonstrate that disruption of 

circadian clock output predisposes for reproductive failure.   
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Chapter 4 

 

 PRIP-1 acts as a Molecular 
Switch Promoting HESC Survival 

via Regulation of the AKT 
Pathway. 
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4.1 Introduction 
 

During decidualization the endometrial stromal compartment is extensively 

remodelled in order to establish maternal immunological tolerance to foetal antigens, 

ensure tissue integrity during trophoblast invasion, and, significantly, to actively 

encapsulate the implanting conceptus (Brosens & Gellersen, 2010; Hanna et al., 

2006; Trowsdale & Betz, 2006). In order to protect the blastocyst from environmental 

insults, decidualization acts to uncouple the stroma from the environmental stressors. 

For example, stress-induced signalling through JNK and p38 pathways are selectively 

inactivated upon differentiation when potentially harmful concentrations of reactive 

oxygen species (ROS) are present (Leitao et al., 2010). Moreover, as shown, 

circadian oscillations within the endometrium are firmly disabled upon decidualization, 

further isolating the decidua from the peripheral environment (Muter et al., 2015).   

 

An interesting observation obtained from the PER2 knockdown sequencing data was 

the emergence of PRIP-1 [Phospholipase C (PLC)-Related, but catalytically Inactive 

Protein-1], also known as PLCL1, amongst down-regulated genes. As such, PRIP-1 

expression is PER2 dependent. PRIP-1 has previously been implicated in a 

reproductive deficient phenotype in mice via its control of gonadotrophin secretion 

(Matsuda et al., 2009), as well as being found to be a P4 responsive gene in the 

human myometrium (Chan et al., 2014).  

 

Two non-catalytic phospholipase C-like enzymes (PRIP-1/2) have been identified 

with structural homology to the phospholipase C protein family (Matsuda et al., 1998; 

Uji et al., 2002). Structural organisation closely mirrors PLC-enzymes and contains a 

pleckstrin homology (PH) domain allowing it to bind inositol 4,5 bisphosphate (IP3) 

and other phosphoinositides. Further similarities include the presence of EF hands, 

catalytic X and Y domains and a C2 domain. (Figure 4.1) However, 2 key amino-acid 
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mutations within the catalytic domain abolish enzymatic activity and thus the catalysis 

of phosphatidylinositol 4,5-bisphosphate (PIP2) to IP3 and DAG is abated, as is the 

subsequent ability of IP3 to release Ca2+ from endoplasmic reticulum (Murakami et 

al., 2006). Interestingly, both overexpression and knockdown of PRIP-1 have been 

shown to reduce IP3 mediated Ca2+ release, indicative of a requirement for precise 

expression of PRIP-1 for functional IP3/Ca2+ signalling (Harada et al., 2005) (Figure 

4.1). Further studies have identified PRIP-1 as a novel protein scaffold with the ability 

to bind and regulate key protein phosphatases 1 and 2A (PP1 and PP2A) as well as 

the serine/threonine kinase Akt (Fujii et al., 2010; Sugiyama et al., 2013). Through 

this phospho-regulatory function, PRIP-1 has been shown to modulate γ-aminobutyric 

acid type A (GABAA) receptor function and trafficking (Kanematsu et al., 2007; 

Terunuma et al., 2004), as well as SNAP-25-phosphoregulated exocytosis (Zhang et 

al., 2013). As mentioned, gene deletions in mice have highlighted the importance of 

both PRIP-1 and 2 in reproduction. Double Prip-1 and Prip-2 knockout mice display 

reduced litter sizes and exhibit prolonged intervals between litters. Furthermore, 

mutant female mice demonstrated smaller uteri at puberty, increased time spent in 

oestrous, and higher serum LH concentrations - attributed to increased 

gonadotrophin secretion (Matsuda et al., 2009) . These findings suggest that PRIP 

proteins are essential for optimal regulation of the HPG axis in female mice. 

 

This chapter investigates the role and regulation of PRIP-1 during decidual 

transformation of HESCs. Here I report that endometrial expression of PRIP-1 is 

induced and maintained by progesterone signalling and contributes to decidual cell 

survival via the Akt pathway. Furthermore, I show PRIP-1 is a chelator of IP3 signalling 

within the decidua, positioning it as a central mediator of multiple signalling pathways 

ensuring cellular homeostasis under adverse environmental conditions. 
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Figure 4.1 Structure of the Phospholipase C family of proteins. Schematic 

representation of structural motifs in phospholipase C family of proteins and PRIP-

1/2. Note the mutations in the catalytic domain of PRIP-1/2.   
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4.2 Results 
 

4.2.1 Endometrial PRIP-1 Expression is Strongly Correlated with 

PER2 Expression. 
 

RNA-seq data from PER2 knockdown revealed a 59% reduction of PRIP-1 transcript 

levels. In order to elucidate the relationship between the two genes, expression was 

measured in a cohort of 101 mid-luteal endometrial biopsies. Regression analysis 

showed expression of PRIP-1 and PER2 exhibited a robust positive correlation. 

[P=<0.0001] (Figure 4.2a). I therefore hypothesised that PRIP-1 may be a putative 

clock controlled gene (CCG).  To test this, PRIP-1 mRNA expression was measured 

over a circadian period of 28 hours. Three independent undifferentiated primary 

HESC cultures were synchronized using a dexamethasone pulse and RNA harvested 

over a 28 hour period. As previously described, PER2 expression is robustly rhythmic, 

whereas PRIP-1 oscillations are weak. However as shown in Figure 4.2b, both PER2 

and PRIP-1 oscillate within the same phase with peak gene expression 16-20 hours 

post-synchronization.   
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Figure 4.2 Endometrial PRIP-1 expression strongly correlates with PER2 

expression in mid-luteal samples. (a) Spearman’s rank correlation of PRIP-1 and 

PER2 mRNA transcripts in timed endometrial biopsies. Spearman’s ρ value and 

probability (P) shown. (b) Triplicate cultures of primary undifferentiated HESCs were 

synchronized with dexamethasone for 30 minutes, mRNA collected at indicated time 

points and transcript expression of PRIP-1 and PER2 analysed using qRT-PCR. 

Overlay shows fold change in gene expression of the two transcripts. Data are 

presented as mean fold change ± S.E.M. 
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4.2.2 PRIP-1 is Up-regulated upon Decidualization by P4.  
 

To provide insight into the regulation of PRIP-1 within the human endometrium, 

transcript levels were measured in undifferentiated HESCs and cells decidualized first 

for either 2, 4, or 8 days. Notably, decidualization elicited an up-regulation in PRIP-1 

mRNA, with transcript levels rising >30 fold by day 2, and this was maintained 

throughout the 8 day decidual time-course (Figure 4.3a). Western blot analysis 

confirmed the increase in PRIP-1 during decidualization. However, it also revealed a 

lag in the induction of protein when compared to mRNA (Figure 4.3b). PRIP-1 protein 

gradually accumulated in HESCs over the course of decidualization, with maximal 

expression apparent at day 8. In order to understand the mechanism involved in 

PRIP-1 up-regulation, primary HESCs were treated with either 8-br-cAMP, MPA or in 

combination. Treatment with a cAMP analogue resulted in weak induction of PRIP-1 

transcripts. In contrast, MPA treatment in 3 biological repeat experiments resulted in 

an induction >24-fold. Combined treatment resulted in an up-regulation of PRIP-1 

mRNA nearly identical to that of MPA alone, indicating a critical dependence upon 

progesterone signalling (Figure 4.3c). Conversely, protein expression demonstrated 

a disparate synergistic response. Whilst treatment with 8-br-cAMP only resulted in a 

slight up-regulation of PRIP-1 protein, combined treatment elicited a greater induction 

of PRIP-1 than that of MPA alone (Figure 4.3d).  
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Figure 4.3 Uterine stromal decidualization is associated with up-regulation of 

PRIP-1. (a) PRIP-1 expression in cultures decidualized with 8-br-cAMP and MPA for 

2-8 days. Transcript expression was normalised to that of undifferentiated HESCs 

(Day 0). (b) Western blot analysis of total cell lysates of timed paired undifferentiated 

or decidualized HESCs. (c) Primary HESC cultures were treated with 8-br-cAMP or 

MPA as indicated for 4 days. PRIP-1 expression measured by qRT-PCR. (d) Total 

protein lysates from parallel cultures were subjected to Western blotting. *P<0.05; 

**P<0.01.  Data are presented as means ± S.E.M. 
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In order to establish if maintenance of PRIP-1 expression is also dependent upon P4 

signalling, PRIP-1 RNA and protein expression was measured in the hours following 

deciduogenic stimuli withdrawal. Briefly, triplicate cultures of HESCs were 

decidualized as above for 4 days and subsequently had cAMP and MPA withdrawn 

from culture media for 12, 24, 48 or 72 hours. PRIP-1 RNA and protein expression 

was assessed by qRT-PCR and ELISA respectively. Stimuli withdrawal resulted in a 

reduction in PRIP-1 transcripts by 29%, 50% and 35% at 24, 48 and 72 hours 

respectively (Figure 4.4a). Protein expression of PRIP-1 was reduced slightly upon 

withdrawal at 48 and 72 hours compared to D4 decidualized HESCs (10% and 20% 

respectively, Figure 4.4b). These results show that although PRIP-1 induction is 

acutely responsive to P4, withdrawal does not result in a sharp decline in PRIP-1 

protein abundance.  

 

GEO data mining revealed a biphasic expression profile of PRIP-1 over the course of 

the menstrual cycle (Accession number GDS2052). During the proliferative phase, 

PRIP-1 expression is low. It is subsequently induced during the early secretory phase, 

followed by progressively declining levels during the mid- and late-secretory phases 

(Figure 4.5a). Detailed analysis of the peri-implantation window revealed that within 

this defined period PRIP-1 expression is also biphasic. PRIP-1 transcript levels were 

measured in 73 women with ovulatory cycles 5-12 days post LH surge. Low transcript 

levels are apparent between days 5 and 6, increased expression between days 6 and 

8 and reduced levels between days 9 and 12 post LH surge (Figure 4.5b). Confirming 

previous observations of disparate expression between mRNA transcripts and 

protein, ELISA analysis of 25 biopsies obtained 6 to 10 days post LH surge showed 

a significant positive correlation of PRIP-1 protein levels with increasing day of cycle 

(Figure 4.5c). Taken together, these results highlight a lag period between the 

induction of mRNA and upregulation of protein of approximately 48 hours. This 
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indicates additional levels of regulation by post-transcriptional modifications, and/or 

degradation in the determination of protein concentration. 
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Figure 4.4 Progesterone withdrawal leads to loss of PRIP-1. (a) PRIP-1 transcript 

expression in cultures which were decidualized with 8-br-cAMP and MPA for 4 days 

and then had cAMP and MPA withdrawn for indicated time-points. Transcript 

expression was normalised to that of undifferentiated HESCs. (b) PRIP-1 protein 

expression as measured by ELISA on total cell lysates of decidualized HESCs which 

then had cAMP and MPA withdrawn for indicated time-points. Dotted line indicated 

undifferentiated HESCs. Data was normalised to total protein concentration. *P<0.05; 

**P<0.01. Data are presented as means ± S.E.M. 

* 
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Figure 4.5 PRIP-1 expression is regulated throughout the menstrual cycle (a) 

GEO profile microarray of PRIP-1 transcripts during the proliferative, early-, mid- and 

late-secretory phases of the menstrual cycle in 28 subjects using Affymetrix Human 

Genome U133 Array. *P<0.05. Data are presented as means ± S.E.M. (b) 

Endometrial PRIP-1 gene expression in a cohort of 73 patients correlated with day of 

menstrual cycle (post LH surge). Data is fitted to a Guassian distribution. (c) PRIP-1 

protein expression by ELSIA from 25 patients correlated with day of cycle. Data is 

analysed using regression analysis. Dotted lines represent 95% confidence intervals. 

Spearman’s ρ value and probability (P) shown. 
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4.2.3 Tissue Distribution of PRIP-1 in Mid-luteal Endometrium.  
 

To examine the localisation of expression of PRIP-1 in the endometrium, mid-luteal 

biopsies were stained with PRIP-1 antibody. H and E staining shows normal mid-

luteal physiology. Uterine glands, spiral arteries, luminal and glandular epithelia and 

the underlying stroma can all be observed (Figure 4.6a). Absence of primary antibody 

was used as a negative control (Figure 4.6b). PRIP-1 immunoreactivity can be 

observed predominantly in the luminal and glandular epithelium, however staining is 

also apparent in the stromal compartment and surrounding the spiral arteries (Figure 

4.6c&d).   
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PRIP-1 40x 

Figure 4. 6 PRIP-1 expression in mid-luteal endometrium (a) H and E staining of 

mid-luteal endometrium. Magnification x 10 (b) Negative control showing a lack of 

unspecific staining (c) PRIP-1 immunoreactivity in mid-luteal endometrium. Staining 

was apparent not only in luminal and glandular epithelial cells, but also in the stromal 

compartment. (d) Higher magnification (x40) of the area also shows PRIP-1 staining 

especially close to the spiral arteries. 
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4.2.4 PRIP-1 Loss Reduces Basal Expression of Decidual 

Markers but does not Impact Their Induction upon 

Decidualization.  
 

I hypothesised PRIP-1 knockdown in HESCs may disrupt the expression of key 

decidual regulators. Therefore primary cultures were transfected with either NT or 

PRIP-1 siRNA prior to differentiation for 4 days. Proof of knockdown was confirmed 

both at mRNA and protein levels (Figure 4.7a). PRIP-1 knockdown lowered the basal 

expression levels of both PRL and IGFBP1 in undifferentiated HESCs (Figure 4.7b); 

however, the induction of these genes upon decidualization (as indicated by fold 

change, Figure 4.7c) remained unchanged and, in the case of PRL, was relatively 

increased. 
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Figure 4.7 PRIP-1 is not required for induction of decidual markers. (a) mRNA 

levels of PRIP-1 were determined 48 hours following transfection of primary cultures 

with NT or PRIP-1 siRNA. Total protein lysates from parallel cultures were subjected 

to Western blotting. β-Actin served as a loading control. (b) Primary HESCs were 

transfected with NT or PRIP-1 siRNA. The cultures remained untreated or were 

decidualized for 4 days. The data show both relative expression and fold induction 

(means + SEM) of the decidual marker genes PRL and IGFBP1 from cultures 

established from 3 independent biopsies. *P < 0.05; ***P < 0.001.  
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4.2.5 PRIP-1 is Not Essential for Secretory Transformation of 

HESCs.  
 

PRIP-1 plays a role in exocytosis function via regulation of the phospho-status of 

SNAP-25, a component of the SNARE complex necessary for vesicle fusion (Zhang 

et al., 2013). As decidualization is defined as the acquisition of a secretory phenotype, 

PRIP-1 may serve in the exocytosis of critical decidual factors required for the 

creation of a rich extracellular environment for embryo implantation. To test this 

hypothesis, secretion of three key decidual genes were measured from the 

supernatant of transfected HESCs. Cultures were transfected with NT or PRIP-1 

siRNA and decidualized for 8 days or left undifferentiated. Cell supernatant was 

collected at day 2, 4 and 8 of the decidual time-course and applied in ELISAs for 

sST2, IGFBP1 and PRL. As expected, secretion of all three factors was increased 

upon decidualization when compared to undifferentiated cells. However, no change 

was observed in the secretion of any of the decidual factors upon PRIP-1 knockdown 

in comparison to controls (Figure 4.8a-c).      
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Figure 4.8 PRIP-1 does not influence secretion in HESCs. Protein expression 

of (a) sST2, (b) IGFBP1 and (c) PRL as measured by ELISA in supernatant from 

transfected HESCs as indicated which were subsequently decidualized for 0, 2, 

4 or 8 days with 8-br-cAMP and MPA.  Data show mean normalised to total 

protein concentration.  
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4.2.6 PRIP-1 Acts as a Chelator of Calcium Signalling. 
 

Investigations into PRIP-1 have previously demonstrated its role as a regulator of 

Ca2+ signalling via its known interaction with IP3 (Harada et al., 2005). To test if this 

function is maintained in human endometrial cells, Ca2+ oscillations were assessed. 

Briefly, cells were transfected with either NT or PRIP-1 siRNA, decidualized, and 

loaded with the fluorescent calcium indicator Fluo-4-AM. Samples were subsequently 

challenged with the PLC activator m-3M3FBS or DMSO vehicle. PRIP-1 knockdown 

was confirmed by qRT-PCR (Figure 4.9a). Decidualized HESCs transfected with NT 

siRNA displayed limited fluorescence over a 10 minute exposure, indicative of an 

absence of Ca2+ signalling (Figure 4.9b). However, cells transfected with PRIP-1 

siRNA exhibited robust and sustained fluorescence over the entirety of the time-

course, signifying the presence of Ca2+ fluxes (Figure 4.7c). Analysis of these traces 

revealed a 3-fold increase in area under the curve, 2-fold increase in oscillation 

frequency and a 2-fold increase in maximal fluorescence upon PRIP-1 knockdown 

(Figure 4.9d-f). These results demonstrate PRIP-1 expression in the endometrial 

stroma during decidualization acts to sequester phosphoinositides and limit functional 

Ca2+ signalling pathways.   
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Figure 4.9 m-3M3FBS-mediated Ca2+ signalling in decidualized HESCs. (a) HESCs were 

transfected with NT and PRIP-1 siRNA and decidualized for 4 days and challenged with 5µM 

m-3M3FBS. PRIP-1 expression quantified by qRT-PCR. HESCs transfected with (b) NT 

siRNA or (c) PRIP-1 siRNA were loaded with 5μM Fluo-4-AM and imaged by confocal 

microscopy with cytosolic fluorescence used as an index of [Ca2+]i. Cells were then challenged 

with 5μM m-3M3FBS at t-30s and imaged for 10min. Traces showing fluorescence within 

individual cells are expressed as a fold increase over fluorescence at time-0 (F/F0). Data are 

representative of n=4. (d) Traces were analysed to assess the maximal changes in 

fluorescence, (e) the area under the curve (baseline = y=1) and (f) oscillation frequency 

(oscillations per minute). Data show mean + SEM., n=4, **** denotes P < 0.0001. 
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4.2.7 PRIP-1 Promotes HESC Survival.  
 

Decidual cells are highly resistant to environmental stressors, yet are poised to 

undergo apoptosis in response to P4 withdrawal. Visual observations upon PRIP-1 

knockdown indicated a recurrent partial loss of cellular viability. To investigate this 

phenomenon further I used a range of viability assays to quantify this effect. A trypan 

blue exclusion assay revealed a 28% reduction in live cell numbers in decidualized 

HESCs upon PRIP-1 knockdown (Figure 4.10a). This was accounted for by an 

increase in apoptosis as measured by caspase 3/7 activity in decidual cells. 

Knockdown of PRIP-1 resulted in a 3.4-fold increase in fluorescence, indicating 

caspase 3/7 sequential cleavage of a pro-fluorescent substrate. (Figure 4.10b). 

Additionally, real-time monitoring of cell proliferation > 100 hours using xCELLigence 

technology was used. Once again, HESCs were transfected with NT or PRIP-1 siRNA 

and then subjected to deciduogenic stimuli for 4 days. Mock transfected 

undifferentiated cells were used as growth controls and maintained in either 10% or 

0% DCC-FBS supplemented media. Triplicate biological repeat experiments revealed 

knockdown of PRIP-1 resulted in complete growth inhibition. (Figure 4.10c).  
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Figure 4.10 PRIP-1 is a critical survival factor in HESCs. (a)  Cell viability as 

measured by trypan blue exclusion assay in 3 independent primary cultures first 

transfected with wither NT or PRIP-1 siRNA. The cultures were decidualized for 4 

days. (b) Triplicate undifferentiated HESC cultures were transfected as indicated and 

decidualized for 4 days. Caspase 3/7 activity measured in fluorescent intensity units 

(F.I.U). (c) . Real-time monitoring of cell growth and adherence as measured by 

electrical impedance using an xCelligence analyser over 100 hours. HESCs were 

seeded into 16 well plates and transfected within the plate with NT or PRIP-1 siRNA. 

Untransfected HESCs cultured in 10 or 0% DCC-FBS supplemented media were 

used as controls. Cell index measurements were captured. 
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4.2.8 PRIP-1 Acts as a Survival Factor Through AKT Signalling.  
 

PRIP-1 is a known binding partner of active AKT (Sugiyama et al., 2013), therefore, I 

speculated that PRIP-1 loss may compromise the activity of the PI3K/AKT/FOXO1 

survival pathway. To investigate this, I ran a proteome array to detect the relative 

levels of phosphorylation of 26 kinases on lysates obtained from HESCs first 

transfected with either control or PRIP-1 siRNA (Figure 4.11a). This revealed a 

dramatic yet specific inhibition of active phosphorylated-AKT upon PRIP-1 

knockdown. Levels of phospho-AKT1 (S473), phospho-AKT2 (S474), phospho-AKT3 

(S472) and pan-phospho-AKT (S473, S474, S472) were all attenuated upon PRIP-1 

loss by 69%, 59%, 46% and 58% respectively. Phospho-status of any other kinases 

in the array did not demonstrate any significant regulation upon PRIP-1 knockdown 

(Figure 4.11b and c), highlighting the specific impact upon AKT. To confirm these 

results western blot analysis was undertaken on total cell lysates from NT or PRIP-1 

siRNA transfected decidual HESCs. Total un-phosphorylated AKT levels did not 

change upon knockdown; however, confirmation of a loss of phospho-AKT can be 

observed. Furthermore, the downstream AKT effector FOXO1A was shown to be 

induced upon PRIP-1 loss as well as the pro-apoptotic regulator BIM. Taken together, 

these results indicate that PRIP-1 acts as a critical survival factor during 

decidualization, mediated via AKT signalling. 
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Figure 4.11 PRIP-1 acts to influence the AKT pathway.(a) Location and list of 

phosphorylated genes analysed by array. (b) Blot array membranes of primary 

HESCs were transfected with NT or PRIP-1 siRNA. Cultures were harvested at 48 

hours post transfection and protein lysates subjected to Proteome Profiler MAPK 

array membranes (c) Densitometry analysis of above blots; inset highlights differential 

regulation of the AKT pathway upon PRIP-1 knockdown. The data show mean ± SEM; 

**P < 0.01; ***P < 0.001 
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Figure 4.12 Expression of AKT and its downstream effectors upon PRIP-1 loss.  

Western blots of total protein lysates from HESCs transfected with NT siRNA or PRIP-

1 siRNA as indicated and decidualized for 4 days. β-Actin serves as a loading control.    
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4.2.9 PRIP-1 Expression in Mid-luteal Biopsies. 
 

Finally, I examined the expression levels of PRIP-1 transcripts in mid-luteal 

endometrial biopsies. This cohort consisted of 101 patients with varying fertility issues 

(Appenidx 7). Once again, statistical analysis revealed none of the patient 

demographics correlated with PRIP-1 levels in a Gaussian distribution; therefore, 

linear regression analysis was applied and statistical significance determined using a 

Spearman’s rank test. Findings demonstrate that neither age (Spearman’s rank test 

ρ=-0.0640, P= 0.4945), BMI (ρ=-0.0498, P= 0.6154) nor uNK % (ρ=0.0385, P= 

0.6939) showed association with PRIP-1 mRNA levels during the mid-luteal phase 

(Figure 4.13a-c). To determine if any correlation was observed within a sub-cohort of 

miscarriage patients, correlation was assessed between PRIP-1 transcript levels and 

number of previous pregnancy losses in women who had suffered consecutive 

miscarriages, ranging between 2 and 11 losses. Once again, no association with 

PRIP-1 expression was observed (ρ=-0.1901, P= 0.1073, Figure 4.13d). Due to the 

disparate expression of PRIP-1 mRNA and protein, I also examined correlations 

between patient demographics relevant to reproduction and PRIP-1 protein levels by 

ELISA. As with mRNA, in a cohort of 25 women no significant associations were found 

between age (ρ=-0.1559, P= 0.4283), BMI (ρ=-0.0010, P= 0.9613), uNK% (ρ=-

0.2379, P= 0.2834) or previous number of miscarriages (sub-cohort of 15 patients 

(ρ=-0.2379, P= 0.2834)) with PRIP-1 protein expression (Figure 4.14a-d). 
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Figure 4.13 Timed mid-luteal endometrial mRNA expression of PRIP-1 in a 

cohort of 101 women. Correlation between PRIP-1 expression in mid-luteal 

endometrial biopsies and (a) age, (b) BMI, (c) uterine NK cell percentage, and (d) the 

number of previous pregnancy losses in a sub-cohort of recurrent miscarriage patients 

using regression analysis. Dotted lines represent 95% confidence intervals. 

Spearman’s ρ value and probability (P) shown.  
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Figure 4.14 Timed mid-luteal endometrial protein expression of PRIP-1 in a 

cohort of 25 women. Correlation between PRIP-1 protein expression in endometrial 

biopsies and (a) age, (b) BMI, (c) uterine NK cell percentage, and (d) the number of 

previous pregnancy losses in a sub-cohort of recurrent miscarriage patients using 

regression analysis. Dotted lines represent 95% confidence intervals. Spearman’s ρ 

value and probability (P) shown.  
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 4.3 Discussion 
 

This study was initiated by the observation that PRIP-1 expression is PER2 

dependent in undifferentiated HESCs. PRIP-1 promoter analysis reveals the 

presence of an E-box, a motif typically associated with circadian regulation. However, 

although both genes showed expression peaks during the same circadian phase, the 

amplitude of PRIP-1 oscillations was very weak, and therefore unlikely to be 

circadianally regulated. As both genes are located on the long arm of chromosome 2 

(40 mega base pairs apart), PER2 and PRIP-1 may be expressed as a single unit of 

co-regulated genes that are not otherwise functionally related. Importantly, however, 

PER2 and PRIP-1 display opposite responses during HESC decidualization. Whilst 

PER2 expression is critically down-regulated, PRIP-1 is induced. This suggests that 

whilst PRIP-1 expression is PER2 dependent in undifferentiated HESCs, the impact 

of deciduogenic signals is sufficient to drive independent regulation.  

 

In this chapter, divergent regulation of PRIP-1 mRNA and protein is shown. Protein 

abundance is controlled by the balance of both RNA and protein production and 

turnover rates. 3’ UTR analysis of PRIP-1 demonstrates the presence of a K-box 

motif, known to interact with miRNA and exert transcriptional repression, which may 

account for some of the lagging expression patterns. Protein post-translational 

modifications are likely to mediate disparate expression. PRIP-1 is known to be 

phosphorylated by protein kinase A (Sugiyama et al., 2013). However, due to the 

prolonged period between peak mRNA and protein expression in HESCs, this is more 

likely attributed to the lengthy protein turnover rate as calculated by ExPASY analysis 

as above 30 hours (http://web.expasy.org/protparam/).   

 

http://web.expasy.org/protparam/
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Data provided here demonstrates that although PRIP-1 knockdown does not affect 

induction or secretion of key decidual factors, it acts to reduce basal levels of PRL 

and IGFBP1. As such, PRIP-1 may act to augment the decidual phenotype. 

 

Importantly, PRIP-1 sequesters IP3. Challenge with a PLC activating compound 

revealed sustained calcium flux upon PRIP-1 knockdown, not apparent in control 

transfected decidual HESCs. Decidualizing cells are known to mount an endoplasmic 

reticulum (ER) stress response associated with acquisition of a secretory phenotype 

(Leitao et al., 2010). This is characterised by up-regulation of various chaperones 

including protein disulphide isomerase (PDI), BIP and calnexin. ER stress is also 

associated with calcium release which then accumulates in mitochondrial matrices 

(Deniaud et al., 2008). Sustained Ca2+ accretion can act to trigger pro-apoptotic 

signals leading to cell death (Orrenius et al., 2003). As such, it may be speculated 

that up-regulation of PRIP-1 during decidualization acts to maintain Ca2+ homeostasis 

during a decidual ER stress response. This is further supported by data showing that 

PRIP-1 acts as a survival factor during decidual transformation, as shown by 

increased apoptosis and attenuated real time proliferation upon gene knockdown. 

The demonstrated association between PRIP-1 and the AKT pathway further 

supports this hypothesis. AKT is known to influence multiple factors involved in 

apoptosis by transcriptional regulation or direct phosphorylation, including inhibition 

of the caspase cascade, phosphorylation of the forkhead family of transcription 

factors, and activation of the pro-survival genes CREB and MDM2 (Brunet et al., 

1999). The data provided here shows active phospho-forms of AKT are reduced upon 

PRIP-1 loss. Furthermore, western blot analysis shows up-regulation of both FOXO1 

and BIM upon PRIP-1 knockdown. This further supports the hypothesis of an anti-

apoptotic role for PRIP-1, acting to protect the implanting conceptus from damaging 

input signals. As PRIP-1 is known to act as a protein scaffold to PP1 and PP2A, it is 

tempting to speculate that during decidualization PRIP-1 acts a regulatory switch 
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controlling the phospho-status of AKT. This may be achieved by either binding and 

presenting AKT to appropriate kinases, or by sequestering PP2A, thus preventing 

AKT dephosphorylation and deactivation.    

 

Up-regulation of PRIP-1 in the endometrium is critically dependent upon 

progesterone signalling. This is unusual as very few genes are acutely responsive to 

progesterone treatment alone and often require convergent activation of the cAMP 

pathway(Gellersen & Brosens, 2003)(Gellersen & Brosens, 2003). The P4 specific 

up-regulation of PRIP-1 during the mid-secretory phase, and continued PRIP-1 

protein expression past the window of implantation, suggests that it is required for the 

post-implantation environment. Continued progesterone signalling is critical for 

ongoing pregnancy, as once decidualized, constant P4 is required to maintain the 

integrity of the decidua (Brosens & Gellersen, 2006). In the absence of successful 

implantation, declining P4 levels trigger breakdown of the superficial endometrial 

layer leading to focal bleeding and menstruation. I show here PRIP-1 expression 

drops during the late-secretory phase when P4 levels are declining, suggesting 

maintenance of PRIP-1 expression is dependent upon P4. This is supported by 

evidence demonstrating PRIP-1 transcript induction by low dose hCG during the 

follicular phase of the cycle (Blockeel et al., 2011), as hCG acts to signal to the corpus 

luteum to secrete P4 to maintain the decidual phenotype. P4 withdrawal is associated 

with FOXO1 reactivation, PLZF down-regulation and p53 mediated cell death 

(Brosens & Gellersen, 2006). I therefore propose that PRIP-1 functions as a 

molecular switch within this pathway. As such, high PRIP-1 levels present during 

decidualization lead to AKT and IP3 mediated cell survival, whilst declining levels upon 

P4 withdrawal reverse this cell-fate decision. This leads to calcium influx and 

deactivation of the AKT pathway, ultimately leading to tissue destabilisation 

surrounding the spiral arteries, and the breakdown of the superficial endometrium.  

Finally, although PRIP-1 expression was not correlated with demographics 
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associated with miscarriage, these results do not suggest that PRIP-1 is not vital for 

decidualization and ongoing pregnancy. 
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Chapter 5 
 

General Discussion 
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5.1 The Challenges of Human Reproduction. 
 

Human implantation presents unique challenges that must be overcome for 

successful pregnancy. The balance between endometrial receptivity and selectivity is 

central to this. The vast majority of foetal loss occurs prior to placental perfusion, 

thereby limiting maternal investment in poor quality embryos. Human reproduction is 

typified by a high rate of embryo wastage, which can be attributed to the vast 

embryological diversity required for evolution (Bielanska et al., 2002). Pre-

implantation human embryos are characterised by mosaicism, aneuploidies, and 

result in deeply invading placenta (Delhanty et al., 1997). Genomic studies have 

found genes associated with reproduction are amongst the most rapidly evolving in 

the human genome  (Swanson & Vacquier, 2002). As such, the ability of the decidua 

to detect and select high quality embryos, or destroy low quality embryos represents 

a maternal adaptation to these conditions.   

 

Assisted reproductive technologies are increasingly in demand as maternal age upon 

childbearing rises. Failed outcomes of both infertility and pregnancy loss are often 

associated with psychological distress including anxiety and depression (Lok & 

Neugebauer, 2007). As such it is important that we expand our knowledge regarding 

the molecular mechanisms that control early embryo–maternal interactions as 

implantation remains the least understood key rate-limiting step in human 

reproduction. Whilst implantation cannot be studied directly in humans, mouse 

models, primary and cell line cultures, and the analysis of IVF treatment successes 

and failures provide insight into these critical mechanisms determining reproductive 

outcome. Recent work has proposed a spectral model balancing endometrial 

receptivity and selectivity at opposing poles. Women who fall at the high 

receptivity/low selectivity extremity demonstrate rapid time to pregnancy 

(superfertility), and may have increased likelihood of recurrent miscarriage. On the 
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other hand, women with extreme low receptivity/high selectivity are more likely to 

present as infertile, and have recurrent implantation failure during IVF as their ‘quality 

control’ mechanism is too stringent. Thus, normal implantation relies upon a balance 

of receptivity and selectivity giving rise to a defined ‘window of implantation’ (Salker 

et al., 2011)(Salker et al., 2011)(Brosens et al., 2014; Salker et al., 2011; Teklenburg 

et al., 2010a). However, what is unknown is the role the internal body clock plays in 

how this window is temporally defined within the decidual transformation. 

Furthermore, implantation relies upon synchrony between endometrial and 

embryonic development and how this synchrony is achieved is also unknown. This 

thesis has investigated the circadian molecular mechanisms underpinning the precise 

timing of stromal decidualization, and cell fate decisions in the endometrium 

controlling receptivity and selectivity.   

 

In summary, I provide data showing that:  

i. Circadian rhythms are silenced at the time of implantation via down-regulation 

of the core clock gene PER2.    

ii. PER2 acts to synchronise endometrial proliferation with the initiation of 

decidual gene expression.  

iii. Women who have suffered previous miscarriage are more likely to have 

deregulated levels of PER2, and as such may not be able to adjust decidual 

synchrony within the endometrium.  

iv. Although PRIP-1 is a PER2 dependent gene in undifferentiated cells, this 

dependency becomes uncoupled in decidualizing cells, rendering PRIP-1 

under the control of P4. 

v. P4-dependent induction of PRIP-1 is essential for autonomous functioning of 

decidual cells in early pregnancy.  
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5.2 PER2 and PRIP-1 are Mediators of Cell Fate 

Decisions in Decidualizing HESCs. 
 

The maternal ability to abort non-viable pregnancies via miscarriage is functionally 

linked to the mechanism of monthly spontaneous decidualization and menstrual 

shedding in the absence of a viable embryo. Menstrual preconditioning suggests that 

cyclical endometrial shedding serves to sensitise uterine tissues to inflammatory and 

oxidative stressors associated with deep placentation, and to coordinate an 

appropriate spatio-temporal decidual response (Brosens et al., 2009). Paracrine 

signalling from decidualizing HESCs results in tissue wide reorganisation to form a 

decidual matrix receptive to embryo implantation. Stromal cell differentiation 

represents the ‘tipping point’ of the superficial endometrium. HESCs will either give 

rise to the maternal portion of the placenta, or be lost by menstrual shedding or in 

early pregnancy loss via a menstrual shedding like event.   

 

Both PER2 and PRIP-1 are important regulators of this tipping point, mediating cell 

fate decisions. PER2 acts to silence the circadian clock by signalling the progression 

from mid- to late-secretory endometrium in response to deciduogenic stimuli. By 

regulation of the G2/M cell cycle checkpoint, PER2 is required for the obligatory round 

of mitotic proliferation prior to decidualization. In the absence of PER2, cell cycle 

progression is halted, and as a consequence, a disorganised decidual phenotype is 

observed. This timed regulation of PER2 appears to be evolutionary conserved as it 

has been previously observed in mice (Uchikawa et al., 2011). I show here that this 

temporal suppression was achieved via regulation of CLOCK binding to the PER2 

enhancer element. Recent studies have shown further regulation of circadian 

components by epigenetic and RNA modifications including m6-RNA methylation, 

which affects transcript production and nuclear retention (Fustin et al., 2013). The 

level of complexity and redundancy within the circadian system indicate that the 
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specific silencing of PER2 and the consequent suppression of the circadian clock at 

decidualization is significant.  As such, I propose, PER2 acts as a potential trigger 

mechanism defining the onset of decidualization.  

 

PRIP-1 appears to act later in the decidual response, acting as an activating 

mechanism for apoptosis in a non-implanting cycle. However, as PRIP-1 protein 

shows minimal responsiveness to acute progesterone withdrawal, I hypothesise that 

although PRIP-1 may not trigger embryo rejection, but instead act to protect the 

conceptus from progesterone flux within the endometrium. This is supported by the 

finding of contrasting regulation of PRIP-1 mRNA (fast) and protein (Bedaiwy et al.) 

upon P4 addition and withdrawal. As such, this enables a lag between PRIP-1 mRNA 

and protein concentrations. I speculate that this enables flux in progesterone 

concentrations without activation of a potentially damaging apoptotic response.  

 

These mechanisms act to define the window of implantation temporally. Failure to 

both initiate and terminate the window of receptivity is associated with reproductive 

failure. RPL is associated with a prolonged period of receptivity and thus permits out-

of-phase implantation. It seems logical that central circadian components influence 

these timings. This is supported by the finding of an inverse correlation between 

PER2 transcript levels and the previous number of miscarriages in women suffering 

reproductive failure. As such, these women may not be able to regulate decidual 

synchrony within the endometrium, which is critical to prevent pregnancy related 

pathologic events. Additionally, the small but significant association between PER2 

transcript levels and patient age suggests that the ability of the circadian system to 

appropriately time the onset of decidualization may decline with increasing age. It is 

well established that the amplitude of circadian rhythms decreases with age 

(Nakamura et al., 2011), as well as reproductive function. Furthermore previous 

studies have identified an accelerated reproductive phenotype in Per1/Per2 deficient 
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mice (Pilorz & Steinlechner, 2008). As such, low levels of PER2 could represent an 

‘aged’ reproductive phenotype and contribute to adverse outcome. Further work into 

this association may yield interesting results.    

 

5.3 The Role of PER2 and PRIP-1 in Defining Cell 

Populations Within the Stroma.  
 

The most remarkable characteristic of the endometrium is its inherent plasticity and 

regenerative capacity, with extensive remodelling apparent in response to 

menstruation, miscarriage or birth. Unsurprisingly, the basal layer of endometrium is 

rich in multipotent mesenchymal stem-like cells (Gargett, 2007; Meng et al., 2007; 

Murakami et al., 2014). One theory suggests that the ability to expand the endometrial 

stem cell niche is required as part of a pre-conditioning reaction in response to deep 

trophoblast invasion. It is therefore notable that the majority of adolescent menstrual 

cycles are anovulatory (Brosens et al., 2009; Wheeler, 1991), and the risk of early 

pregnancy loss in very young mothers is raised (Fraser et al., 1995). This is 

suggestive of an evolutionary response ensuring that stem cell mobilisation precedes 

pregnancy.  

 

Emerging evidence suggest that the composition of the decidua itself is more complex 

than previously appreciated. Recent work has indicated that a balance between ‘true’ 

decidual cells and ‘senescent’ decidual cells is critical for the formation of a honey 

comb like structure required for the active envelopment of an implanting conceptus 

(unpublished data). Various networks of signalling pathways are presumed to 

critically define these subpopulations within the decidua, including cell to cell 

signalling via the Notch pathway (Murakami et al., 2014). As PER2 knockdown results 

in a disordered decidual gene expression profile, I speculate that the balance between 
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resident stromal cells may be affected by loss of this protein. Future work could be 

carried out to establish and assess the impact of PER2 loss on the balance of cell 

populations within the stroma. Furthermore, the ability of the long non-coding RNA 

BRE-AS1 to rescue the induction of key decidual markers may indicate that it acts to 

re-establish the balance of subpopulations. Further research is required to assess its 

ability to reverse other PER2 knockdown mediated phenotypes, including failed 

endometrial proliferation. 

 

5.4 PER2 and PRIP-1 Serve as Protectors Against 

Environmental Stressors. 
 

One of the unique challenges of human implantation that must be overcome for 

successful pregnancy is one of protection. The implanting conceptus requires 

shielding from various environmental factors. This is achieved by the formation of a 

decidual matrix designed to buffer and absorb such stressors. Various mechanisms 

of protection have previously been described including inactivation of the JNK and 

p38 stress-responsive pathways via SUMO regulation (Feligioni et al., 2011; Leitao 

et al., 2011), and increased ROS scavenging by HESCs (Sugino et al., 1996). 

 

In this thesis, I report two further mechanisms for the isolation of the endometrium 

and protection of the implanting blastocyst. Firstly, PER2 switches off the endometrial 

circadian clock, thereby protecting the embryo from daily oscillations in gene 

expression. As PER2 is known to influence circadian output by interaction with 

various nuclear receptors (Schmutz et al., 2010), it can be envisaged that the absence 

of a functional circadian clock in the endometrium could act to stabilise steroid 

hormone receptor availability. As such, PER2 may create a hormonal steady state at 

implantation. As stated previously, PRIP-1 may have a similar functional protective 

role by enabling minor progesterone flux without activation of an apoptotic response. 
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As such, PER2 and PRIP-1 act as mediators of endometrial autonomy, isolating the 

endometrium from variations of environmental inputs. Further work examining the 

balance between PER2, PRIP-1 and daily endometrial progesterone concentrations 

would provide insight into how fluctuations in this steroid hormone affect reproductive 

outcome. It can be envisaged that an optimal ratio between PER2 and PRIP-1 exists 

and manipulation of this balance may help to determine endometrial receptivity. 

Conversely, aberrations in these pathways may predispose to adverse reproductive 

outcomes.   

 

5.5 Implications of the Thesis. 
 

Currently, the implications of this work are not fully apparent. However, recent 

successes of various chronotherapy trials suggests that timed drug delivery may reap 

certain benefits in various conditions (Hermida et al., 2008; Levi, 2001; Wu et al., 

2009). As stated previously, the apparent disregard of circadian rhythms in the 

reproductive context seems counterintuitive, as manipulation of the clockwork may 

help to increase reproductive success. One theory meriting further investigation is 

that oscillations are inhibited at implantation to allow synchronisation between the 

embryo and endometrium. In vitro technologies maintain embryos in a non-circadian 

environment, and as such may be transferred to an ‘out of sync’ uterus. It would be 

interesting to investigate the effect of timed embryo transfer; however, as 

decidualization renders the endometrium non-oscillatory, I speculate that this may 

have minimal effect. Other circadian manipulations could potentially be implicated into 

artificial reproductive technologies. Timing of semen collection may be maximised as 

diurnal variations in semen quality in males has been observed with higher number 

and concentrations of spermatozoa apparent in specimens collected in the afternoon 

(Cagnacci et al., 1999). Clinical trials of low dose melatonin supplements have 
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indicated a positive impact on the quality of oocytes and embryos, which is postulated 

to be attributed to an antioxidant effect (Rizzo et al., 2010; Tamura et al., 2008). 

Furthermore, removal of the pineal gland in female rats results in impaired 

implantation, which can be reversed by administration of melatonin (Dair et al., 2008). 

This suggests melatonin has an active regulatory role in early pregnancy. Whilst the 

effect of melatonin on human stromal differentiation has not yet been investigated, 

melatonin receptors in mice are progressively down-regulated upon decidualization. 

As such, future work could assess the impact of melatonin administration on circadian 

rhythms within the endometrium, both across the menstrual cycle and during 

decidualization.  

 

Currently, women with recurrent pregnancy loss can attend a dedicated miscarriage 

clinic to assess uNK cell levels in midluteal endometrial biopsies. Increased uNK cell 

density is associated with impaired corticosteroid signalling in the endometrium 

(Kuroda et al., 2013), and thus, women with a greater than a 5% uNK density are 

offered steroid treatment. Although no association between PER2 and uNK density 

was observed, PER2 expression was inversely correlated with the number of previous 

pregnancy losses. Therefore, as release of glucocorticoids follows a circadian pattern 

(Chung et al., 2011), and chronotherapeutic administration of steroids has shown to 

be beneficial in the treatment of asthma (Martin & Banks-Schlegel, 1998) and multiple 

sclerosis (Glass-Marmor et al., 2007), timed drug delivery for the treatment of 

recurrent miscarriage may be advantageous. Further applications of chronotherapy 

could extend to IVF drug delivery and treatment of other reproductive pathologies, 

such as polycystic ovarian syndrome and endometriosis. In essence, clinical 

management of reproductive difficulties should include the recognition of circadian 

influence throughout human reproduction.   
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Although my work has begun to answer some important questions, many new 

questions arose. The role of epigenetic modifications is gaining recognition within the 

context of decidualization. This raises the possibility of genomic profiling examining 

changes in circadian and clock controlled gene modifications during the menstrual 

cycle and decidualization. Secondly, what and when are the signals to turn the 

molecular clockwork back on after implantation? Are these signals embryonically or 

placentally derived, and do they ensure synchrony between mother and baby? 

Additionally, what is the role of long non-coding RNAs in regulating decidualization 

specific pathways, and how do they interact with the circadian clockwork?  

 

In conclusion, in this thesis I have characterised the mechanism of circadian 

regulation during decidualization for normal embryo implantation. Furthermore I have 

highlighted the importance of the anti-apoptotic role of the poorly characterised gene 

PRIP-1.  Asynchrony during decidualization can lead to a cascade of events resulting 

in pregnancy complications. Only by further research into reproductive health, with 

especial focus on the endometrial environment, are we able to tackle the far-reaching 

ramifications of reproductive pathologies.  
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Appendix 1: qRT-PCR primers  
 

Gene Forward Primer Reverse Primer 

11HSD 5’-caa tgg aag cat tgt ttg tcg-3’ 5’-ggc agc aac cat tgg ata ag-3’ 

BMAL1 5′-gac att cct tcc agt ggc cta-3′  5′-tac cta tgt ggg ggt tct cac-3′ 

BRE 5’-ccc ctc agc ttt gca gaa t-3’ 5’-ttg caca ag ttc ctt cac ca-3’ 

BRE-AS1 5’-gtg att tcg ggc agt cag g-3’ 5’-acc tgg acg gtg acc tct-3’ 

CLOCK 5′-gac aaa gcg aaa aga gta tct 

ag-3′ 

5′-cat ctt tct agc att acc agg aa-

3′ 

CRY1 5′-cat cct gga ccc ctg gtt-3′ 5′-cac tga agc aaa aat cgc c-3′ 

CRY2 5′-ctg ttc aag gaa tgg gga gtg-3′ 5′-ggt cat aga ggg tat gag aat 

tc-3′ 

IGFBP1 5’-cga agg ctc tcc atg tca cca-3’ 5’-tgt ctc ctg cct tgg cta aac-3’ 

L19 5’-gcg gaa ggg tac agc caa-3’ 5’-gca gcc ggg cgc aaa-3’ 

PER1 5′-atg gtt cca ctg ctc cat ctc-3′ 5′-ccg gtc agg acc tcc tc-3′ 

PER2 5′-gtc cga aag ctt cgt tcc aga-3′ 5′-gtc cac atc ttc ctg cag tg-3′ 

PER2S 5’-gag aga gtg cac tct ggt ta-3’ 5’-tga ctg cag gac atc cac at-3’ 

PRIP-1 5’-gca gca gca tca tca agg-3’ 5’-gct gct gaa aga cac ggt tt-3’ 

PRL 5′-aag ctg tag aga ttg agg agc 

aaa c-3′ 

5′-tca gga tga acc tgg ctg act a-

3′ 

WNT4 5’-gca gag ccc tca tga acc t-3’ 5’-cac cgc atg tgt gtc ag-3’ 
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Appendix 2: qRT-PCR primers following ChIP 
 

Gene Forward Primer Reverse Primer 

PER1 E box 5′-cac gtg cgc ccg tgt gt-3′ 5′-ccg att ggc tgg gga tct c-3′ 

PER1 Off target 5′-atg gtt cca ctg ctc cat ctc-3′ 5′-ccg gtc agg acc tcc tc-3′ 

PER2 E box 5′-cag at gaga cgg agt cgc-3′ 5′-ccc aca gct gca cgt atc-3′ 

PER2 Off target 5′-gtc cga aag ctt cgt tcc aga-3′ 5′-gtc cac atc ttc ctg cag tg-3′ 
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Appendix 3: Up-regulated genes: Fold Change >2.0 
 

GENE SYMBOL GENE NAME FOLD 

CHANGE 

P VALUE 

SCG2 secretogranin II 40.35598 0.001753 

BRE-AS1 BRE antisense RNA 1 32.68074 3.16E-05 

SLC6A13 solute carrier family 6 (neurotransmitter transporter), member 13 27.9465 0.000936 

RHCG Rh family, C glycoprotein 27.79435 0.066707 

IL10RA interleukin 10 receptor, alpha 24.54574 0.065746 

FOXQ1 forkhead box Q1 17.08307 0.020332 

RASD2 RASD family, member 2 16.85334 0.001382 

KLKB1 kallikrein B, plasma (Fletcher factor) 1 16.68146 0.090497 

ALOXE3 arachidonate lipoxygenase 3 14.68952 0.043206 

IRX2 iroquois homeobox 2 14.37181 0.012281 

FREM2 FRAS1 related extracellular matrix protein 2 12.3521 0.032508 

LPL lipoprotein lipase 11.17344 0.314057 

PHF21B PHD finger protein 21B 9.97597 0.016302 

MN1 meningioma (disrupted in balanced translocation) 1 9.971293 0.001172 

KCNG3 potassium channel, voltage gated modifier subfamily G, member 3 9.665192 0.00186 

SLC4A5 solute carrier family 4 (sodium bicarbonate cotransporter), member 4 9.335809 0.000133 

AMH anti-Mullerian hormone 9.308525 0.01427 

C19ORF38 chromosome 19 open reading frame 38 9.026967 0.006509 

NOXRED1 NADP-dependent oxidoreductase domain containing 1 8.561398 0.051487 

C11ORF53 chromosome 11 open reading frame 53 8.389231 0.016988 

DNAH17 dynein, axonemal, heavy chain 17 8.091413 0.011364 

DNAH6 dynein, axonemal, heavy chain 6 7.558104 0.005469 

HIST1H4E histone cluster 1, H4e 7.546458 0.008295 

EYA4 EYA transcriptional coactivator and phosphatase 4 7.511637 0.0572 

SMOC1 SPARC related modular calcium binding 1 7.309043 0.1153 

OASL 2'-5'-oligoadenylate synthetase-like 7.164212 0.000683 

PDLIM3 PDZ and LIM domain 3 7.148204 0.03935 

GEM GTP binding protein overexpressed in skeletal muscle 7.08656 0.001013 

BEX2 brain expressed X-linked 2 7.05143 0.002994 

SPINK5 serine peptidase inhibitor, Kazal type 5 7.027469 0.003839 

DNAH12 dynein, axonemal, heavy chain 12 6.98742 0.029408 

NPPB natriuretic peptide B 6.871499 0.005736 

ACTN2 actinin, alpha 2 6.816899 0.045805 

SPINK1 serine peptidase inhibitor, Kazal type 1 6.761275 0.020071 

NEB nebulin 6.417897 0.00741 

ESM1 endothelial cell-specific molecule 1 6.385958 0.140299 

NRARP NOTCH-regulated ankyrin repeat protein 6.368778 0.002302 

PKIB protein kinase (cAMP-dependent, catalytic) inhibitor beta 6.319142 0.005423 

P2RY11 purinergic receptor P2Y, G-protein coupled, 11 6.158358 0.631993 

HLF hepatic leukemia factor 5.961905 0.011033 

HPX hemopexin 5.913101 0.112248 

HIST1H2BG histone cluster 1, H2bg 5.853555 0.01341 

MYH3 myosin, heavy chain 3, skeletal muscle, embryonic 5.818122 0.00038 

ANKRD1 ankyrin repeat domain 1 (cardiac muscle) 5.692344 0.046822 

PPARG peroxisome proliferator-activated receptor gamma 5.684692 0.009657 

KLF17 Kruppel-like factor 17 5.665481 0.00472 

FOXD1 forkhead box D1 5.649442 0.065279 

SLC28A3 solute carrier family 28 (concentrative nucleoside transporter), member 3 5.580816 0.159565 

KRT36 keratin 36, type I 5.403947 0.036606 

CBLN1 cerebellin 1 precursor 5.397832 0.018944 

INHBA-AS1 INHBA antisense RNA 1 5.353157 9.62E-05 

SNORA68 small nucleolar RNA, H/ACA box 68 5.32503 0.063758 

CABLES1 Cdk5 and Abl enzyme substrate 1 5.24088 0.098239 

WNT1 wingless-type MMTV integration site family, member 1 5.24029 0.059734 

MYOM2 myomesin 2 5.207824 0.16913 
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ENOX1 ecto-NOX disulfide-thiol exchanger 1 5.160391 0.034179 

SRRM5 serine/arginine repetitive matrix 5 5.11152 0.08521 

CAPNS2 calpain, small subunit 2 5.107833 0.077856 

PCSK1 proprotein convertase subtilisin/kexin type 1 5.054108 0.048695 

ANKRD24 ankyrin repeat domain 24 4.962964 0.082959 

KCTD16 potassium channel tetramerization domain containing 16 4.929545 0.024688 

KCP kielin/chordin-like protein 4.91864 0.187707 

ARHGAP11B Rho GTPase activating protein 11B 4.912781 0.119033 

NBPF20 neuroblastoma breakpoint family, member 20 4.900556 0.093676 

PTX3 pentraxin 3, long 4.854831 0.0003 

TRABD2A TraB domain containing 2A 4.854065 0.071245 

COLCA2 colorectal cancer associated 2 4.847806 0.117956 

ATF3 activating transcription factor 3 4.838741 0.02754 

MARCH10 membrane-associated ring finger (C3HC4) 10, E3 ubiquitin protein ligase 4.816433 0.014606 

CDKL2 cyclin-dependent kinase-like 2 (CDC2-related kinase) 4.743907 0.043887 

PSAT1 phosphoserine aminotransferase 1 4.717655 0.046484 

DNER delta/notch-like EGF repeat containing 4.640589 0.027429 

LINC00471 long intergenic non-protein coding RNA 471 4.610674 0.154331 

FOXP2 forkhead box P2 4.592131 0.037046 

BDNF brain-derived neurotrophic factor 4.574596 0.005907 

IRF8 interferon regulatory factor 8 4.53196 0.08196 

S1PR1 sphingosine-1-phosphate receptor 1 4.527865 0.064783 

HIST1H2AG histone cluster 1, H2ag 4.526735 0.030329 

AURKC aurora kinase C 4.526693 0.038287 

HILS1 histone linker H1 domain, spermatid-specific 1, pseudogene 4.509022 0.11596 

PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 4.503735 0.003463 

LHX4 LIM homeobox 4 4.473903 0.048803 

LINC01366 long intergenic non-protein coding RNA 1366 4.432831 0.003088 

DDX43 DEAD (Asp-Glu-Ala-Asp) box polypeptide 43 4.431013 0.056892 

IFIT2 interferon-induced protein with tetratricopeptide repeats 2 4.424701 0.000529 

AKAP3 A kinase (PRKA) anchor protein 3 4.411586 0.011219 

GATA4 GATA binding protein 4 4.404193 0.179117 

TCP10L t-complex 10-like 4.338226 0.290163 

SERPINB5 serpin peptidase inhibitor, clade B (ovalbumin), member 5 4.336087 0.239519 

TIGD3 tigger transposable element derived 3 4.293715 0.39965 

CCSER1 coiled-coil serine-rich protein 1 4.290164 0.056126 

DIRC3 disrupted in renal carcinoma 3 4.229444 0.001982 

CGA glycoprotein hormones, alpha polypeptide 4.195015 0.040765 

CXCR4 chemokine (C-X-C motif) receptor 4 4.192616 0.004209 

LRRN3 leucine rich repeat neuronal 3 4.156441 0.138117 

KLF15 Kruppel-like factor 15 4.144916 0.019861 

ATP2A3 ATPase, Ca++ transporting, ubiquitous 4.144021 0.028562 

ITGA9 integrin, alpha 9 4.141512 0.002565 

LEKR1 leucine, glutamate and lysine rich 1 4.136563 0.216708 

BEX1 brain expressed, X-linked 1 4.128414 0.099792 

HSPBAP1 HSPB (heat shock 27kDa) associated protein 1 4.099061 0.054849 

FOS FBJ murine osteosarcoma viral oncogene homolog 4.089312 0.075762 

SMG1P3 SMG1 pseudogene 3 4.060144 0.021983 

GATA3 GATA binding protein 3 4.040405 0.00482 

PPP1R15A protein phosphatase 1, regulatory subunit 15A 4.03289 0.003372 

FGD4 FYVE, RhoGEF and PH domain containing 4 3.998585 0.007994 

KIAA1045 KIAA1045 3.997659 0.055803 

CEBPA CCAAT/enhancer binding protein (C/EBP), alpha 3.987311 0.004566 

KRTAP1-5 keratin associated protein 1-5 3.963987 0.007325 

SMG1P5 SMG1 pseudogene 5 3.957599 0.014826 

DDIT3 DNA-damage-inducible transcript 3 3.955194 7.6E-05 

ADM2 adrenomedullin 2 3.930041 0.03292 

ZNF90 zinc finger protein 90 3.914722 0.112753 

C12ORF60 chromosome 12 open reading frame 60 3.871922 0.019929 

SNORD68 small nucleolar RNA, C/D box 68 3.838061 0.001171 

DUSP10 dual specificity phosphatase 10 3.834297 0.002378 
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FTO-IT1 FTO intronic transcript 1 3.833429 0.060607 

CSGALNACT1 chondroitin sulfate N-acetylgalactosaminyltransferase 1 3.821244 0.000886 

FAM24B family with sequence similarity 24, member B 3.815758 0.024808 

P2RX5-TAX1BP3 P2RX5-TAX1BP3 readthrough (NMD candidate) 3.805052 0.722621 

SNORD83A small nucleolar RNA, C/D box 83A 3.801698 0.237621 

DLL4 delta-like 4 (Drosophila) 3.794204 0.038878 

CDC25C cell division cycle 25C 3.787476 0.004606 

EPHA5-AS1 EPHA5 antisense RNA 1 3.76905 0.325557 

IL11 interleukin 11 3.76375 0.187882 

TACR2 tachykinin receptor 2 3.758076 0.059331 

RPPH1 ribonuclease P RNA component H1 3.752795 0.554347 

SLC7A5 solute carrier family 7 (amino acid transporter light chain, L system), 

member 5 

3.749372 0.002442 

SLC7A5P2 solute carrier family 7 (amino acid transporter light chain, L system), 

member 5 pseudogene 2 

3.749122 0.099779 

NBPF9 neuroblastoma breakpoint family, member 9 3.734495 0.020498 

CLDN6 claudin 6 3.717031 0.076136 

ALDH8A1 aldehyde dehydrogenase 8 family, member A1 3.712389 0.01495 

CX3CR1 chemokine (C-X3-C motif) receptor 1 3.711898 0.32078 

MATN1-AS1 MATN1 antisense RNA 1 3.703392 0.008789 

ZNF695 zinc finger protein 695 3.696745 0.114876 

EPHA6 EPH receptor A6 3.657505 0.37068 

CYP19A1 cytochrome P450, family 19, subfamily A, polypeptide 1 3.632826 0.143731 

SH2D5 SH2 domain containing 5 3.626265 0.002934 

SYCE2 synaptonemal complex central element protein 2 3.617386 0.235453 

NR4A2 nuclear receptor subfamily 4, group A, member 2 3.605151 0.002499 

MAP1LC3B2 microtubule-associated protein 1 light chain 3 beta 2 3.593138 0.029082 

UNC5B-AS1 UNC5B antisense RNA 1 3.588267 0.053386 

TMEM88 transmembrane protein 88 3.583821 0.457157 

SMG1P1 SMG1 pseudogene 1 3.58309 0.00938 

PHKG1 phosphorylase kinase, gamma 1 (muscle) 3.582165 0.030849 

CPNE7 copine VII 3.579597 0.001869 

HLA-DRB1 major histocompatibility complex, class II, DR beta 1 3.558108 0.403745 

CREBRF CREB3 regulatory factor 3.551274 0.003898 

GAD1 glutamate decarboxylase 1 (brain, 67kDa) 3.549436 0.059036 

SLC46A2 solute carrier family 46, member 2 3.541732 0.128735 

C9ORF169 cysteine-rich tail protein 1 3.536247 0.214178 

FAM72B family with sequence similarity 72, member B 3.533649 0.047567 

ASGR1 asialoglycoprotein receptor 1 3.529779 0.060112 

PKN2-AS1 PKN2 antisense RNA 1 3.527801 0.077111 

SNRPN small nuclear ribonucleoprotein polypeptide N 3.495639 0.995633 

FAM86B2 family with sequence similarity 86, member B2 3.490673 0.071258 

PLS3-AS1 PLS3 antisense RNA 1 3.481046 0.112948 

KIF2C kinesin family member 2C 3.465041 0.009244 

LRRC70 leucine rich repeat containing 70 3.45518 0.060524 

GRAP2 GRB2-related adaptor protein 2 3.452644 0.265733 

TFAP2A transcription factor AP-2 alpha (activating enhancer binding protein 2 

alpha) 

3.446071 0.018679 

FAM46A family with sequence similarity 46, member A 3.436669 0.003308 

TINCR tissue differentiation-inducing non-protein coding RNA 3.431167 0.012816 

HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1 3.42158 0.261549 

CHGB chromogranin B 3.417227 0.018933 

SLC6A9 solute carrier family 6 (neurotransmitter transporter, glycine), member 9 3.41713 0.079271 

THBD thrombomodulin 3.416427 0.005182 

BACH2 BTB and CNC homology 1, basic leucine zipper transcription factor 2 3.41415 0.042734 

C12ORF36 long intergenic non-protein coding RNA 1559 3.41364 0.51862 

LINC00174 long intergenic non-protein coding RNA 174 3.411484 0.003242 

ZNF844 zinc finger protein 844 3.404071 0.00087 

TSLP thymic stromal lymphopoietin 3.398721 0.135685 

DGKI diacylglycerol kinase, iota 3.385548 0.003711 

MSR1 macrophage scavenger receptor 1 3.372855 0.232299 

HIST1H3D histone cluster 1, H3d 3.367563 0.073497 

GLS2 glutaminase 2 (liver, mitochondrial) 3.36406 0.14138 

HERC5 HECT and RLD domain containing E3 ubiquitin protein ligase 5 3.362692 0.043984 
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PDK4 pyruvate dehydrogenase kinase, isozyme 4 3.356822 0.003353 

VLDLR-AS1 VLDLR antisense RNA 1 3.354724 0.040397 

GLP2R glucagon-like peptide 2 receptor 3.354036 0.413873 

UBE2C ubiquitin-conjugating enzyme E2C 3.341854 0.000386 

NBPF8 neuroblastoma breakpoint family, member 8 3.334013 0.017878 

ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4 3.33142 0.10563 

LURAP1L leucine rich adaptor protein 1-like 3.328002 8.5E-05 

PHGDH phosphoglycerate dehydrogenase 3.324223 0.023078 

MIR1204 microRNA 1204 3.318889 0.065666 

GPR158 G protein-coupled receptor 158 3.317338 0.406191 

TLL1 tolloid-like 1 3.316414 0.025383 

ENTPD3-AS1 ENTPD3 antisense RNA 1 3.315203 0.069427 

LSMEM1 leucine-rich single-pass membrane protein 1 3.307779 0.012312 

CYP21A2 cytochrome P450, family 21, subfamily A, polypeptide 2 3.307422 0.16019 

KLF4 Kruppel-like factor 4 (gut) 3.298949 0.070299 

TRPM6 transient receptor potential cation channel, subfamily M, member 6 3.297833 0.005948 

HGF hepatocyte growth factor (hepapoietin A; scatter factor) 3.292272 0.06738 

TRPA1 transient receptor potential cation channel, subfamily A, member 1 3.277529 0.082234 

GJA4 gap junction protein, alpha 4, 37kDa 3.259821 0.140384 

PTPRR protein tyrosine phosphatase, receptor type, R 3.259629 0.027492 

EREG epiregulin 3.244596 0.155931 

CFL1P1 cofilin 1 (non-muscle) pseudogene 1 3.235453 0.104329 

ZNF331 zinc finger protein 331 3.220076 0.005526 

PDE2A phosphodiesterase 2A, cGMP-stimulated 3.217862 2.02E-05 

CSRNP1 cysteine-serine-rich nuclear protein 1 3.212832 0.015226 

SGCG sarcoglycan, gamma (35kDa dystrophin-associated glycoprotein) 3.198142 0.044676 

TSPAN8 tetraspanin 8 3.196236 0.022856 

PILRA paired immunoglobin-like type 2 receptor alpha 3.19339 0.235682 

DNM1P46 dynamin 1 pseudogene 46 3.184432 0.153544 

C14ORF105 chromosome 14 open reading frame 105 3.161444 0.468984 

ULBP1 UL16 binding protein 1 3.15282 0.001193 

GABBR2 gamma-aminobutyric acid (GABA) B receptor, 2 3.150347 0.116238 

KRT86 keratin 86, type II 3.136028 0.051083 

PLK1 polo-like kinase 1 3.128484 0.018114 

JMY junction mediating and regulatory protein, p53 cofactor 3.115133 0.005135 

HIF1A-AS2 HIF1A antisense RNA 2 3.111121 0.00835 

USP6 ubiquitin specific peptidase 6 3.093671 0.656691 

HIST2H2AC histone cluster 2, H2ac 3.082679 0.083428 

CLEC4E C-type lectin domain family 4, member E 3.066077 0.455286 

DCAF4L1 DDB1 and CUL4 associated factor 4-like 1 3.063424 0.012132 

MS4A7 membrane-spanning 4-domains, subfamily A, member 7 3.055027 0.293386 

CDCA8 cell division cycle associated 8 3.052697 0.009945 

TMEM178B transmembrane protein 178B 3.049165 0.220627 

LINC00242 long intergenic non-protein coding RNA 242 3.040287 0.127377 

SYT16 synaptotagmin XVI 3.028402 0.379503 

FLRT3 fibronectin leucine rich transmembrane protein 3 3.023931 0.000168 

BMP6 bone morphogenetic protein 6 3.023781 0.142744 

IL33 interleukin 33 3.021821 0.266084 

GLDC glycine dehydrogenase (decarboxylating) 3.020976 0.735582 

BCL2L10 BCL2-like 10 (apoptosis facilitator) 3.020695 0.016494 

MT2A metallothionein 2A 3.013131 0.080466 

KLK1 kallikrein 1 3.012437 0.581218 

LAT2 linker for activation of T cells family, member 2 3.011897 0.020368 

BOK-AS1 BOK antisense RNA 1 3.00487 0.571666 

C4ORF19 chromosome 4 open reading frame 19 3.001861 0.002093 

FGF7 fibroblast growth factor 7 2.998131 0.040102 

IL17B interleukin 17B 2.997338 0.18843 

CHRM2 cholinergic receptor, muscarinic 2 2.995387 0.159552 

ESAM endothelial cell adhesion molecule 2.986536 0.439963 

PTGIS prostaglandin I2 (prostacyclin) synthase 2.98525 0.044228 

LRRC37B leucine rich repeat containing 37B 2.975165 0.001956 
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CCT6P3 chaperonin containing TCP1, subunit 6 (zeta) pseudogene 3 2.972086 0.00036 

RPL13AP20 ribosomal protein L13a pseudogene 20 2.969018 0.028632 

C10ORF10 chromosome 10 open reading frame 10 2.967802 0.009181 

CHL1 cell adhesion molecule L1-like 2.967166 0.072234 

SLC6A2 solute carrier family 6 (neurotransmitter transporter), member 2 2.963779 0.171125 

RPSAP52 ribosomal protein SA pseudogene 52 2.963653 0.225569 

C2ORF66 chromosome 2 open reading frame 66 2.962743 0.00748 

AGAP11 ankyrin repeat and GTPase domain Arf GTPase activating protein 11 2.94869 0.025456 

SMG1P2 SMG1 pseudogene 2 2.943823 8.05E-06 

ALS2CR12 amyotrophic lateral sclerosis 2 (juvenile) chromosome region, candidate 

12 

2.941992 0.198586 

ZGLP1 zinc finger, GATA-like protein 1 2.934546 0.087072 

MAP7 microtubule-associated protein 7 2.933407 0.000628 

ADAMTS9-AS2 ADAMTS9 antisense RNA 2 2.923742 0.010753 

KLF2 Kruppel-like factor 2 2.920857 0.027027 

DEPDC1 DEP domain containing 1 2.916187 0.093451 

HSD17B2 hydroxysteroid (17-beta) dehydrogenase 2 2.899715 0.058877 

KDR kinase insert domain receptor 2.894599 0.132142 

CXCL2 chemokine (C-X-C motif) ligand 2 2.89343 0.052264 

SLC7A5P1 solute carrier family 7 (amino acid transporter light chain, L system), 

member 5 pseudogene 1 

2.888839 0.058606 

SNORD16 small nucleolar RNA, C/D box 16 2.885772 0.150891 

SLC1A3 solute carrier family 1 (glial high affinity glutamate transporter), member 3 2.882991 0.893452 

MEF2BNBMEF2B MEF2BNB-MEF2B readthrough 2.880342 0.0022 

FGF9 fibroblast growth factor 9 2.866673 0.08697 

UPK1A uroplakin 1A 2.864375 0.210993 

TRIB1 tribbles pseudokinase 1 2.863277 0.001133 

LRRC37A leucine rich repeat containing 37A 2.860609 0.19199 

LINC00941 long intergenic non-protein coding RNA 941 2.848847 0.992183 

MAST1 microtubule associated serine/threonine kinase 1 2.834263 0.073894 

TMEM74 transmembrane protein 74 2.833628 0.767981 

S100A14 S100 calcium binding protein A14 2.832583 0.001147 

S100A14 S100 calcium binding protein A11 pseudogene 1 2.830217 0.147091 

OLAH oleoyl-ACP hydrolase 2.828839 0.493026 

FAM83F family with sequence similarity 83, member F 2.817513 0.001935 

KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog 2.817387 0.170283 

C1ORF162 chromosome 1 open reading frame 162 2.813095 0.001614 

HIST1H4H histone cluster 1, H4h 2.811635 0.469863 

SERPINF2 serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment 

epithelium derived factor), member 2 

2.811199 0.000438 

ZNF670 zinc finger protein 670 2.807234 0.151184 

FCER1G Fc fragment of IgE, high affinity I, receptor for; gamma polypeptide 2.806785 0.003494 

FAM83D family with sequence similarity 83, member D 2.806312 0.070823 

TLR9 toll-like receptor 9 2.801498 0.043087 

CYP26B1 cytochrome P450, family 26, subfamily B, polypeptide 1 2.791304 0.150797 

FGF17 fibroblast growth factor 17 2.789151 0.177747 

PATL2 protein associated with topoisomerase II homolog 2 (yeast) 2.779975 0.00028 

ITPRIP inositol 1,4,5-trisphosphate receptor interacting protein 2.778692 0.098644 

FAM160A1 family with sequence similarity 160, member A1 2.777415 0.002822 

PTHLH parathyroid hormone-like hormone 2.77606 0.001137 

STC2 stanniocalcin 2 2.775216 0.001636 

HMOX1 heme oxygenase 1 2.772826 0.00456 

PMAIP1 phorbol-12-myristate-13-acetate-induced protein 1 2.772025 0.533701 

UPK2 uroplakin 2 2.768118 0.225917 

ZMAT1 zinc finger, matrin-type 1 2.764995 0.199847 

C9 complement component 9 2.762244 0.026707 

KIF4A kinesin family member 4A 2.761674 0.000178 

STX3 syntaxin 3 2.761272 0.140042 

PRSS27 protease, serine 27 2.759722 0.355863 

USP2-AS1 USP2 antisense RNA 1 (head to head) 2.75144 0.209125 

SAMD13 sterile alpha motif domain containing 13 2.746362 0.000804 

AEN apoptosis enhancing nuclease 2.742265 0.017433 

SKA1 spindle and kinetochore associated complex subunit 1 2.738621 0.219965 

CHIT1 chitinase 1 (chitotriosidase) 2.738621 0.125632 
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SCARNA9 small Cajal body-specific RNA 9 2.738621 0.105394 

STOX2 storkhead box 2 2.738218 0.002465 

PLD6 phospholipase D family, member 6 2.736885 0.100641 

TCF21 transcription factor 21 2.733878 0.000183 

OTUD1 OTU deubiquitinase 1 2.732984 0.345331 

ADRB2 adrenoceptor beta 2, surface 2.731529 0.206695 

GDF6 growth differentiation factor 6 2.729113 0.013053 

GATM glycine amidinotransferase (L-arginine:glycine amidinotransferase) 2.726154 0.016816 

SPATA25 spermatogenesis associated 25 2.719146 0.005007 

FAM181B family with sequence similarity 181, member B 2.717419 0.007078 

UTS2B urotensin 2B 2.716809 0.23684 

LINC00622 long intergenic non-protein coding RNA 622 2.711801 0.23181 

MMP27 matrix metallopeptidase 27 2.701506 0.01495 

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B 2.699532 0.878053 

CATSPERG catsper channel auxiliary subunit gamma 2.697429 0.297261 

SLC22A1 solute carrier family 22 (organic cation transporter), member 1 2.696197 0.071979 

ANGPTL4 angiopoietin-like 4 2.695557 0.006628 

AURKA aurora kinase A 2.695076 0.042552 

RRAGD Ras-related GTP binding D 2.692067 0.047623 

BMP7 bone morphogenetic protein 7 2.688387 0.587287 

NPFFR2 neuropeptide FF receptor 2 2.687333 0.124757 

NETO1 neuropilin (NRP) and tolloid (TLL)-like 1 2.68374 0.16071 

KIF18A kinesin family member 18A 2.681873 0.254663 

IL12A interleukin 12A 2.681686 0.190047 

ASCL2 achaete-scute family bHLH transcription factor 2 2.678214 0.675292 

PCLO piccolo presynaptic cytomatrix protein 2.669993 0.00954 

CDC20 cell division cycle 20 2.667545 0.225836 

FOXF2 forkhead box F2 2.665554 0.000382 

NR4A3 nuclear receptor subfamily 4, group A, member 3 2.664375 0.030398 

NUF2 NUF2, NDC80 kinetochore complex component 2.663668 0.00047 

AVPI1 arginine vasopressin-induced 1 2.660481 0.112498 

KCNH1 potassium channel, voltage gated eag related subfamily H, member 1 2.656892 0.000328 

BMP2 bone morphogenetic protein 2 2.650371 0.140596 

ACVR2B-AS1 ACVR2B antisense RNA 1 2.648724 0.190385 

VWCE von Willebrand factor C and EGF domains 2.642559 0.003169 

KRT81 keratin 81, type II 2.641219 0.237881 

HAS2 hyaluronan synthase 2 2.640043 0.420347 

PILRB paired immunoglobin-like type 2 receptor beta 2.638555 0.004119 

CDK1 cyclin-dependent kinase 1 2.637401 0.062174 

USP44 ubiquitin specific peptidase 44 2.631198 0.187157 

GSG1 germ cell associated 1 2.631082 0.104538 

NALCN sodium leak channel, non selective 2.627576 0.443859 

MYH7B myosin, heavy chain 7B, cardiac muscle, beta 2.626637 0.243178 

TBX18 T-box 18 2.626302 0.071711 

GEMIN8P4 gem (nuclear organelle) associated protein 8 pseudogene 4 2.626182 0.033863 

PKD1L1 polycystic kidney disease 1 like 1 2.61998 0.208156 

ASPM asp (abnormal spindle) homolog, microcephaly associated (Drosophila) 2.617089 0.089505 

CCDC11 cilia and flagella associated protein 53 2.615061 0.005585 

USP36 ubiquitin specific peptidase 36 2.614838 0.026783 

MAFF v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog F 2.613701 0.252083 

PXDNL peroxidasin-like 2.61145 0.092769 

HTR1B 5-hydroxytryptamine (serotonin) receptor 1B, G protein-coupled 2.611387 0.19888 

KIF14 kinesin family member 14 2.607657 0.161715 

EBF3 early B-cell factor 3 2.607335 0.150129 

HK2 hexokinase 2 2.604334 0.050532 

DEPDC1B DEP domain containing 1B 2.596975 0.874854 

CALB1 calbindin 1, 28kDa 2.593534 0.657529 

TBX4 T-box 4 2.5875 0.009518 

DTNA dystrobrevin, alpha 2.58688 0.085829 

CCDC62 coiled-coil domain containing 62 2.586776 0.085929 

GFRA2 GDNF family receptor alpha 2 2.586028 0.010237 
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MYPN myopalladin 2.585581 0.043464 

CD177 CD177 molecule 2.576405 0.041124 

CCDC150 coiled-coil domain containing 150 2.574954 0.01177 

JMJD1C-AS1 JMJD1C antisense RNA 1 2.571052 0.116094 

NBPF10 neuroblastoma breakpoint family, member 10 2.568466 0.035398 

C7ORF61 chromosome 7 open reading frame 61 2.565686 0.831401 

LRRN4 leucine rich repeat neuronal 4 2.563496 0.310325 

SCARNA17 small Cajal body-specific RNA 17 2.553329 0.026275 

IDNK idnK, gluconokinase homolog (E. coli) 2.552774 0.03603 

LINC00673 long intergenic non-protein coding RNA 673 2.552298 0.000728 

MAP3K7CL MAP3K7 C-terminal like 2.551774 0.344523 

SCGB1D2 secretoglobin, family 1D, member 2 2.551659 0.085988 

C16ORF96 chromosome 16 open reading frame 96 2.55022 0.003179 

PIWIL4 piwi-like RNA-mediated gene silencing 4 2.545824 0.015438 

RASGRP3 RAS guanyl releasing protein 3 (calcium and DAG-regulated) 2.54453 0.053963 

C19ORF18 chromosome 19 open reading frame 18 2.542031 0.186088 

HIST2H2BA histone cluster 2, H2ba (pseudogene) 2.54135 0.00087 

TMEM79 transmembrane protein 79 2.540579 0.00139 

CLEC4A C-type lectin domain family 4, member A 2.539739 0.000101 

ABHD17C abhydrolase domain containing 17C 2.539493 0.053977 

GPR183 G protein-coupled receptor 183 2.536257 0.134906 

SOX11 SRY (sex determining region Y)-box 11 2.536084 0.146917 

KIAA1875 KIAA1875 2.533882 0.306065 

CENPE centromere protein E, 312kDa 2.533435 0.105337 

SLC4A4 solute carrier family 4 (sodium bicarbonate cotransporter), member 4 2.532326 0.194606 

INHBA inhibin, beta A 2.530978 0.058933 

ENTPD2 ectonucleoside triphosphate diphosphohydrolase 2 2.529541 0.625072 

SCNN1B sodium channel, non voltage gated 1 beta subunit 2.52658 0.108667 

KLRD1 killer cell lectin-like receptor subfamily D, member 1 2.526456 0.352309 

RNF39 ring finger protein 39 2.517664 0.025083 

RGS6 regulator of G-protein signaling 6 2.513074 0.003273 

NUAK1 NUAK family, SNF1-like kinase, 1 2.507613 0.009007 

OVGP1 oviductal glycoprotein 1, 120kDa 2.507483 0.026761 

GTSE1 G-2 and S-phase expressed 1 2.506531 0.361392 

CIB4 calcium and integrin binding family member 4 2.504769 0.058158 

KLHL7-AS1 KLHL7 antisense RNA 1 (head to head) 2.50334 0.051407 

SLC6A12 solute carrier family 6 (neurotransmitter transporter), member 12 2.502656 0.252082 

VMO1 vitelline membrane outer layer 1 homolog (chicken) 2.500073 0.069923 

PLD5 phospholipase D family, member 5 2.500004 0.00559 

TGFB2 transforming growth factor, beta 2 2.499759 0.015629 

NANOS1 nanos homolog 1 (Drosophila) 2.498525 0.125088 

STAC SH3 and cysteine rich domain 2.496651 0.137428 

GDF5 growth differentiation factor 5 2.492046 0.642754 

KLK11 kallikrein-related peptidase 11 2.492012 0.001748 

SLC3A2 solute carrier family 3 (amino acid transporter heavy chain), member 2 2.490633 0.196897 

CENPF centromere protein F, 350/400kDa 2.488301 6.92E-05 

PVT1 Pvt1 oncogene (non-protein coding) 2.482566 0.063677 

GK glycerol kinase 2.48128 0.03617 

EN2 engrailed homeobox 2 2.472678 0.30871 

PPM1E protein phosphatase, Mg2+/Mn2+ dependent, 1E 2.468831 0.046382 

FOSB FBJ murine osteosarcoma viral oncogene homolog B 2.467385 0.093423 

AOC2 amine oxidase, copper containing 2 (retina-specific) 2.466604 0.021875 

ATP6AP1L ATPase, H+ transporting, lysosomal accessory protein 1-like 2.466266 0.447371 

CDKN2B-AS1 CDKN2B antisense RNA 1 2.465602 0.214359 

BATF3 basic leucine zipper transcription factor, ATF-like 3 2.462767 0.894741 

LINC01301 long intergenic non-protein coding RNA 1301 2.459661 0.044289 

B4GALNT2 beta-1,4-N-acetyl-galactosaminyl transferase 2 2.459601 0.032996 

C2ORF82 chromosome 2 open reading frame 82 2.459247 0.902599 

SNORD45C small nucleolar RNA, C/D box 45C 2.45917 0.573722 

C14ORF182 long intergenic non-protein coding RNA 1588 2.45604 0.028296 

FIGN fidgetin 2.455922 0.02084 
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KCNJ8 potassium channel, inwardly rectifying subfamily J, member 8 2.455736 0.008565 

ABL2 ABL proto-oncogene 2, non-receptor tyrosine kinase 2.455698 0.013345 

CCNB1 cyclin B1 2.454787 0.190681 

VWA3A von Willebrand factor A domain containing 3A 2.453681 0.57783 

NHLH1 nescient helix loop helix 1 2.44586 0.017161 

C11ORF87 chromosome 11 open reading frame 87 2.444549 0.039847 

ASNS asparagine synthetase (glutamine-hydrolyzing) 2.443798 0.000473 

THUMPD2 THUMP domain containing 2 2.443342 0.120349 

POLQ polymerase (DNA directed), theta 2.443227 0.0583 

MMP12 matrix metallopeptidase 12 2.442603 0.20469 

SNORD23 small nucleolar RNA, C/D box 23 2.440868 0.033384 

CDCA2 cell division cycle associated 2 2.440488 0.164396 

MGAT4A mannosyl (alpha-1,3-)-glycoprotein beta-1,4-N-

acetylglucosaminyltransferase, isozyme A 

2.439903 0.29474 

LEMD1 LEM domain containing 1 2.434859 0.006677 

CFP complement factor properdin 2.425606 0.336695 

HNF4G hepatocyte nuclear factor 4, gamma 2.424567 0.012321 

FAM167A family with sequence similarity 167, member A 2.420792 0.342234 

ZNF560 zinc finger protein 560 2.419369 0.159992 

SVILP1 supervillin pseudogene 1 2.417527 0.588531 

NEK2 NIMA-related kinase 2 2.415884 5.83E-05 

WNT10B wingless-type MMTV integration site family, member 10B 2.4147 0.081497 

NPIPB9 nuclear pore complex interacting protein family, member B9 2.413094 0.002909 

SLC25A25 solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 

25 

2.412549 0.000429 

IFRD1 interferon-related developmental regulator 1 2.409321 0.279911 

SCN9A sodium channel, voltage gated, type IX alpha subunit 2.408863 0.082408 

REREP3 arginine-glutamic acid dipeptide (RE) repeats pseudogene 3 2.407186 0.022653 

IKZF3 IKAROS family zinc finger 3 (Aiolos) 2.401815 0.066283 

TPI1P2 triosephosphate isomerase 1 pseudogene 2 2.398885 0.041891 

TRIM54 tripartite motif containing 54 2.397828 0.039532 

SHC2 SHC (Src homology 2 domain containing) transforming protein 2 2.397558 0.03579 

FAM132B family with sequence similarity 132, member B 2.386437 0.132016 

CKAP2L cytoskeleton associated protein 2-like 2.386357 0.00054 

CCT6P1 chaperonin containing TCP1, subunit 6 (zeta) pseudogene 1 2.385375 0.163316 

KRTAP20-2 keratin associated protein 20-2 2.384576 2.88E-05 

ACKR3 atypical chemokine receptor 3 2.380998 0.05919 

SIK1 salt-inducible kinase 1 2.380654 0.057035 

PMF1-BGLAP PMF1-BGLAP readthrough 2.377103 0.004636 

DUSP16 dual specificity phosphatase 16 2.374763 0.882022 

WNT10A wingless-type MMTV integration site family, member 10A 2.374523 0.00369 

LINC00473 long intergenic non-protein coding RNA 473 2.373688 0.003561 

BBC3 BCL2 binding component 3 2.37103 0.366703 

LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 2.370031 0.025703 

CENPA centromere protein A 2.367542 0.268104 

WWTR1-AS1 WWTR1 antisense RNA 1 2.36612 0.019376 

ZNF521 zinc finger protein 521 2.358332 0.130349 

C9ORF152 chromosome 9 open reading frame 152 2.356503 0.004066 

CELF2 CUGBP, Elav-like family member 2 2.35591 0.000611 

MYO16 myosin XVI 2.348411 0.038806 

PBX4 pre-B-cell leukemia homeobox 4 2.348337 0.002861 

YRDC yrdC N(6)-threonylcarbamoyltransferase domain containing 2.348197 0.002295 

DUSP1 dual specificity phosphatase 1 2.345399 0.941845 

POU2F3 POU class 2 homeobox 3 2.345278 0.037734 

ZNF442 zinc finger protein 442 2.343016 0.00143 

PFKFB4 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 2.342982 0.014713 

FGD5P1 FYVE, RhoGEF and PH domain containing 5 pseudogene 1 2.342419 0.231017 

DDX12P DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 12, pseudogene 2.34183 0.466015 

CXCL6 chemokine (C-X-C motif) ligand 6 2.341753 0.000259 

WEE1 WEE1 G2 checkpoint kinase 2.341618 0.046812 

PRC1 protein regulator of cytokinesis 1 2.339543 0.074948 

ATE1-AS1 ATE1 antisense RNA 1 (head to head) 2.336419 0.010846 

IQGAP3 IQ motif containing GTPase activating protein 3 2.334681 0.244914 
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FLRT1 fibronectin leucine rich transmembrane protein 1 2.331191 0.477853 

VSIG2 V-set and immunoglobulin domain containing 2 2.330027 0.057526 

HS3ST1 heparan sulfate (glucosamine) 3-O-sulfotransferase 1 2.329577 0.471514 

TMC5 transmembrane channel-like 5 2.329472 0.350338 

C20ORF26 cilia and flagella associated protein 61 2.324676 0.052592 

KCNH5 potassium channel, voltage gated eag related subfamily H, member 5 2.322501 0.962657 

RDH5 retinol dehydrogenase 5 (11-cis/9-cis) 2.321924 0.009577 

RBKS ribokinase 2.32021 0.330662 

STAM-AS1 STAM antisense RNA 1 (head to head) 2.318868 0.176761 

HERC2P4 hect domain and RLD 2 pseudogene 4 2.315731 0.309708 

LRRC32 leucine rich repeat containing 32 2.315183 0.003547 

EPB41L4A-AS1 EPB41L4A antisense RNA 1 2.313901 0.005432 

SYCP2L synaptonemal complex protein 2-like 2.312575 0.056284 

ZNF763 zinc finger protein 763 2.310954 0.005003 

ZNF625 zinc finger protein 625 2.309777 0.021094 

BAMBI BMP and activin membrane-bound inhibitor 2.307777 0.099217 

SHISA2 shisa family member 2 2.306207 0.284491 

PTGS2 prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and 

cyclooxygenase) 

2.302252 0.085859 

TAS2R20 taste receptor, type 2, member 20 2.302012 0.275785 

FAM189A1 family with sequence similarity 189, member A1 2.301338 0.143271 

IL1RL1 interleukin 1 receptor-like 1 2.300686 0.008171 

CCDC148 coiled-coil domain containing 148 2.300551 4.45E-05 

DUSP5 dual specificity phosphatase 5 2.299975 0.039842 

RUNX3 runt-related transcription factor 3 2.298745 0.550284 

PTPRC protein tyrosine phosphatase, receptor type, C 2.298133 0.076445 

TMEM253 transmembrane protein 253 2.296439 0.332836 

RGS18 regulator of G-protein signaling 18 2.295255 0.304232 

GPR35 G protein-coupled receptor 35 2.292942 0.057361 

SOX8 SRY (sex determining region Y)-box 8 2.290589 0.059043 

RRAD Ras-related associated with diabetes 2.289981 0.010769 

CKS1B CDC28 protein kinase regulatory subunit 1B 2.28855 0.020883 

CPA4 carboxypeptidase A4 2.288268 0.413293 

SCNN1G sodium channel, non voltage gated 1 gamma subunit 2.287776 0.002352 

TACC3 transforming, acidic coiled-coil containing protein 3 2.284766 0.187372 

WNT11 wingless-type MMTV integration site family, member 11 2.277453 0.261846 

NAPA-AS1 NAPA antisense RNA 1 2.277167 0.155573 

LONRF3 LON peptidase N-terminal domain and ring finger 3 2.276886 0.139262 

LINC00842 long intergenic non-protein coding RNA 842 2.275593 0.003982 

TMEM9B-AS1 TMEM9B antisense RNA 1 2.270741 0.320306 

PSG2 pregnancy specific beta-1-glycoprotein 2 2.270317 0.233545 

C5AR1 complement component 5a receptor 1 2.270083 0.330286 

NGFR nerve growth factor receptor 2.267948 0.027037 

SPAG5 sperm associated antigen 5 2.267825 0.172922 

COLGALT2 collagen beta(1-O)galactosyltransferase 2 2.267676 0.043446 

TMEM44-AS1 TMEM44 antisense RNA 1 2.267355 0.000555 

MB21D2 Mab-21 domain containing 2 2.266913 0.270817 

VAV3 vav 3 guanine nucleotide exchange factor 2.26685 0.255612 

CD22 CD22 molecule 2.266595 0.167596 

SLC11A1 solute carrier family 11 (proton-coupled divalent metal ion transporter), 

member 1 

2.264512 0.179058 

KIF15 kinesin family member 15 2.261292 0.020101 

IL1A interleukin 1, alpha 2.257896 0.236211 

KIF20B kinesin family member 20B 2.25722 0.009362 

CDH26 cadherin 26 2.257064 0.329296 

LINC00643 long intergenic non-protein coding RNA 643 2.25227 0.530408 

C9ORF135 chromosome 9 open reading frame 135 2.250492 0.088925 

GTF2H2C_2 GTF2H2 family member C, copy 2 2.247436 0.38315 

CYBB cytochrome b-245, beta polypeptide 2.242709 0.329114 

CNKSR1 connector enhancer of kinase suppressor of Ras 1 2.24263 0.114731 

KYNU kynureninase 2.241372 0.020501 

PTTG1 pituitary tumor-transforming 1 2.240483 0.000586 

HLX H2.0-like homeobox 2.240463 0.009578 
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NFIL3 nuclear factor, interleukin 3 regulated 2.239077 0.027318 

MT1L metallothionein 1L (gene/pseudogene) 2.238269 0.263579 

FAM86FP family with sequence similarity 86, member F, pseudogene 2.236342 0.002069 

UOX urate oxidase, pseudogene 2.234357 0.021498 

PROX1 prospero homeobox 1 2.23383 0.163992 

HGFAC HGF activator 2.232926 0.076288 

NOG noggin 2.232593 0.012179 

GLCCI1 glucocorticoid induced 1 2.231947 0.003931 

SMC5-AS1 SMC5 antisense RNA 1 (head to head) 2.231939 0.053677 

WDR62 WD repeat domain 62 2.225934 0.19383 

MT1M metallothionein 1M 2.225534 0.001346 

GDF15 growth differentiation factor 15 2.221188 0.061062 

JADE1 jade family PHD finger 1 2.220952 0.122934 

HMMR hyaluronan-mediated motility receptor (RHAMM) 2.220346 0.018487 

CCL26 chemokine (C-C motif) ligand 26 2.220251 5.23E-05 

ADM adrenomedullin 2.219307 0.90979 

FAM106CP family with sequence similarity 106, member C, pseudogene 2.214575 0.238022 

RDH14 retinol dehydrogenase 14 (all-trans/9-cis/11-cis) 2.214338 0.298775 

OTUD7A OTU deubiquitinase 7A 2.211456 0.074679 

CASC8 cancer susceptibility candidate 8 (non-protein coding) 2.207733 0.147376 

ERN1 endoplasmic reticulum to nucleus signaling 1 2.207716 0.031409 

ZNF620 zinc finger protein 620 2.206401 0.003268 

HIST1H1C histone cluster 1, H1c 2.205077 0.101382 

SEMA3A sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 

(semaphorin) 3A 

2.200258 0.701298 

DDX11-AS1 DDX11 antisense RNA 1 2.199701 0.009246 

TTC21A tetratricopeptide repeat domain 21A 2.197934 0.29345 

OSER1-AS1 OSER1 antisense RNA 1 (head to head) 2.197382 0.264623 

LINC00933 long intergenic non-protein coding RNA 933 2.195371 0.201304 

HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled 2.194944 0.182416 

FAM129A family with sequence similarity 129, member A 2.193413 0.174837 

HLA-DRA major histocompatibility complex, class II, DR alpha 2.193272 0.030935 

SLC13A5 solute carrier family 13 (sodium-dependent citrate transporter), member 5 2.192081 0.00743 

TG thyroglobulin 2.191217 0.685064 

SNORD69 small nucleolar RNA, C/D box 69 2.190781 0.630862 

TXK TXK tyrosine kinase 2.190208 0.07166 

GRB14 growth factor receptor-bound protein 14 2.188137 0.038561 

C11ORF96 chromosome 11 open reading frame 96 2.185818 0.481074 

GREM2 gremlin 2, DAN family BMP antagonist 2.182463 0.03729 

FANCD2 Fanconi anemia, complementation group D2 2.181591 0.06578 

ATP2C2 ATPase, Ca++ transporting, type 2C, member 2 2.177762 0.009037 

GKAP1 G kinase anchoring protein 1 2.176509 0.003273 

LINC00312 long intergenic non-protein coding RNA 312 2.172506 0.111326 

HOXD-AS2 HOXD cluster antisense RNA 2 2.169118 0.126575 

IL13RA2 interleukin 13 receptor, alpha 2 2.165819 0.045398 

FLVCR2 feline leukemia virus subgroup C cellular receptor family, member 2 2.165572 0.426014 

TPTE2 transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 2.165166 0.00726 

OVOL2 ovo-like zinc finger 2 2.163228 0.002825 

TBC1D15 TBC1 domain family, member 15 2.163224 0.260586 

PSG6 pregnancy specific beta-1-glycoprotein 6 2.16269 0.013659 

PGAP1 post-GPI attachment to proteins 1 2.160524 0.003891 

IL4R interleukin 4 receptor 2.157757 0.079133 

CASP9 caspase 9, apoptosis-related cysteine peptidase 2.157693 0.01828 

THSD1 thrombospondin, type I, domain containing 1 2.15706 0.032545 

HGD homogentisate 1,2-dioxygenase 2.156794 0.0737 

BUB1 BUB1 mitotic checkpoint serine/threonine kinase 2.156388 0.002721 

ELL2 elongation factor, RNA polymerase II, 2 2.152855 0.004498 

SHBG sex hormone-binding globulin 2.152652 0.045276 

JUN jun proto-oncogene 2.148369 0.358982 

NPTX1 neuronal pentraxin I 2.143098 0.553208 

GPR132 G protein-coupled receptor 132 2.143076 0.080764 

TOP2A topoisomerase (DNA) II alpha 170kDa 2.142692 0.017925 
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CREB5 cAMP responsive element binding protein 5 2.142303 0.048749 

DYSF dysferlin 2.141889 0.818732 

TCTEX1D1 Tctex1 domain containing 1 2.140722 0.019389 

DLGAP1-AS2 DLGAP1 antisense RNA 2 2.140428 0.062655 

ABCC2 ATP-binding cassette, sub-family C (CFTR/MRP), member 2 2.138725 0.000157 

TGIF1 TGFB-induced factor homeobox 1 2.137583 0.227825 

PIWIL2 piwi-like RNA-mediated gene silencing 2 2.136086 0.113444 

CHAC1 ChaC glutathione-specific gamma-glutamylcyclotransferase 1 2.135851 0.022689 

MARC1 mitochondrial amidoxime reducing component 1 2.134405 0.006474 

CDKL4 cyclin-dependent kinase-like 4 2.133749 0.130579 

CHTF18 CTF18, chromosome transmission fidelity factor 18 homolog (S. 

cerevisiae) 

2.129102 0.72846 

DDTL D-dopachrome tautomerase-like 2.127849 0.117634 

STX18-AS1 STX18 antisense RNA 1 (head to head) 2.127331 0.197896 

ERVV-2 endogenous retrovirus group V, member 2 2.126191 0.103271 

TAS2R5 taste receptor, type 2, member 5 2.126145 0.053322 

IL18R1 interleukin 18 receptor 1 2.124003 0.861863 

IFNLR1 interferon, lambda receptor 1 2.122404 0.001161 

KRTAP5-AS1 KRTAP5-1/KRTAP5-2 antisense RNA 1 2.12007 0.022369 

CMSS1 cms1 ribosomal small subunit homolog (yeast) 2.119727 0.327936 

ANK2 ankyrin 2, neuronal 2.118739 0.11636 

DUSP6 dual specificity phosphatase 6 2.118247 0.065508 

OSER1 oxidative stress responsive serine-rich 1 2.117515 0.001153 

FIBIN fin bud initiation factor homolog (zebrafish) 2.116446 0.273208 

SSTR1 somatostatin receptor 1 2.115884 0.144194 

PROSER2 proline and serine rich 2 2.11511 0.006061 

CCDC147 cilia and flagella associated protein 58 2.110141 0.059918 

EID3 EP300 interacting inhibitor of differentiation 3 2.109674 0.063193 

PID1 phosphotyrosine interaction domain containing 1 2.109563 0.267154 

HSPA6 heat shock 70kDa protein 6 (HSP70B') 2.108911 0.092674 

SNORA41 small nucleolar RNA, H/ACA box 41 2.108344 0.359851 

SAMD5 sterile alpha motif domain containing 5 2.104043 0.294116 

SLCO2B1 solute carrier organic anion transporter family, member 2B1 2.102214 0.902978 

KCNJ15 potassium channel, inwardly rectifying subfamily J, member 15 2.099995 0.33138 

NRK Nik related kinase 2.098872 0.014514 

MKX mohawk homeobox 2.095703 0.169525 

CBWD6 COBW domain containing 6 2.095603 0.007594 

KIF18B kinesin family member 18B 2.091011 0.004695 

TSACC TSSK6 activating co-chaperone 2.086825 0.875937 

STX11 syntaxin 11 2.083951 0.025794 

FAM209A family with sequence similarity 209, member A 2.082286 0.078771 

M1AP meiosis 1 associated protein 2.082286 0.047692 

ABCG1 ATP-binding cassette, sub-family G (WHITE), member 1 2.080872 0.02837 

GABRA2 gamma-aminobutyric acid (GABA) A receptor, alpha 2 2.078895 0.594161 

TAF1D TATA box binding protein (TBP)-associated factor, RNA polymerase I, D, 

41kDa 

2.078397 0.009115 

BRCA2 breast cancer 2, early onset 2.077935 0.277313 

HJURP Holliday junction recognition protein 2.074836 0.011772 

SH3RF2 SH3 domain containing ring finger 2 2.074048 0.176088 

SIRT1 sirtuin 1 2.073554 0.000674 

SYNPO synaptopodin 2.07315 0.004453 

RSPH4A radial spoke head 4 homolog A (Chlamydomonas) 2.07083 0.09597 

SGK1 serum/glucocorticoid regulated kinase 1 2.069261 0.554172 

MND1 meiotic nuclear divisions 1 homolog (S. cerevisiae) 2.069118 0.001014 

KIFC1 kinesin family member C1 2.06902 0.017454 

AGTPBP1 ATP/GTP binding protein 1 2.068323 0.025333 

KLHL24 kelch-like family member 24 2.066072 0.029773 

C21ORF88 B3GALT5 antisense RNA 1 2.066051 0.003755 

DYRK3 dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 3 2.062762 0.302324 

KLF6 Kruppel-like factor 6 2.061894 0.001958 

ZNF582-AS1 ZNF582 antisense RNA 1 (head to head) 2.061819 0.001368 

LINC00571 long intergenic non-protein coding RNA 571 2.060475 0.147205 

PIK3CG phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma 2.059149 0.306829 
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BCL6 B-cell CLL/lymphoma 6 2.058025 0.635482 

KLHL41 kelch-like family member 41 2.057858 0.002811 

SLC19A2 solute carrier family 19 (thiamine transporter), member 2 2.0567 0.34483 

ZNF257 zinc finger protein 257 2.056224 0.017681 

COBLL1 cordon-bleu WH2 repeat protein-like 1 2.054908 0.288691 

LTB4R2 leukotriene B4 receptor 2 2.051448 0.777557 

HSBP1L1 heat shock factor binding protein 1-like 1 2.049272 0.776186 

FBXO32 F-box protein 32 2.048952 0.023585 

MCF2 MCF.2 cell line derived transforming sequence 2.048733 0.001615 

NKX3-1 NK3 homeobox 1 2.048291 0.093827 

TNNT1 troponin T type 1 (skeletal, slow) 2.046834 0.119707 

LINC00310 long intergenic non-protein coding RNA 310 2.046034 0.312179 

LMNB1 lamin B1 2.044543 0.980749 

KLF11 Kruppel-like factor 11 2.043974 0.001486 

SNHG17 small nucleolar RNA host gene 17 2.043103 0.556727 

ZC3H6 zinc finger CCCH-type containing 6 2.042724 0.005129 

SPSB1 splA/ryanodine receptor domain and SOCS box containing 1 2.042645 0.054769 

CIT citron rho-interacting serine/threonine kinase 2.042483 0.004601 

NR3C1 nuclear receptor subfamily 3, group C, member 1 (glucocorticoid receptor) 2.041658 0.105866 

LOXL4 lysyl oxidase-like 4 2.039479 0.010183 

PBK PDZ binding kinase 2.039076 0.000329 

PI3 peptidase inhibitor 3, skin-derived 2.034858 0.04962 

BNC1 basonuclin 1 2.034791 0.165321 

PHACTR1 phosphatase and actin regulator 1 2.034385 0.062542 

AGR2 anterior gradient 2 2.033954 0.56953 

ADORA3 adenosine A3 receptor 2.032531 0.170493 

SLC25A33 solute carrier family 25 (pyrimidine nucleotide carrier), member 33 2.032524 0.127976 

CD274 CD274 molecule 2.030926 0.006145 

FLG filaggrin 2.025603 0.007953 

CTNNA2 catenin (cadherin-associated protein), alpha 2 2.025003 0.675819 

CENPW centromere protein W 2.024523 0.289229 

PIGA phosphatidylinositol glycan anchor biosynthesis, class A 2.02325 0.002616 

VPREB3 pre-B lymphocyte 3 2.023111 0.005042 

SH3GL1P1 SH3-domain GRB2-like 1 pseudogene 1 2.021666 0.087765 

PPM1D protein phosphatase, Mg2+/Mn2+ dependent, 1D 2.019539 0.165605 

DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 2.019303 0.002092 

KRT16 keratin 16, type I 2.018915 0.167412 

MIR25 microRNA 25 2.017898 0.068395 

SLC1A4 solute carrier family 1 (glutamate/neutral amino acid transporter), member 

4 

2.01723 0.147104 

AFAP1L2 actin filament associated protein 1-like 2 2.014299 0.041546 

RP9P retinitis pigmentosa 9 pseudogene 2.012808 0.070512 

FICD FIC domain containing 2.011473 0.015746 

C6ORF52 chromosome 6 open reading frame 52 2.011029 0.00216 

OSGIN2 oxidative stress induced growth inhibitor family member 2 2.010896 0.338914 

NCAPH non-SMC condensin I complex, subunit H 2.010476 0.105437 

TOX3 TOX high mobility group box family member 3 2.009449 0.066634 

CPEB2 cytoplasmic polyadenylation element binding protein 2 2.009425 0.315551 

EMILIN3 elastin microfibril interfacer 3 2.00934 0.042451 

EMILIN3 multimerin 2 2.007223 0.005745 

SUSD4 sushi domain containing 4 2.006658 0.764658 

ARID3B AT rich interactive domain 3B (BRIGHT-like) 2.00595 0.013243 

TMEM71 transmembrane protein 71 2.004957 0.036808 

CDC25A cell division cycle 25A 2.003399 0.023231 

TYMSOS TYMS opposite strand 2.002887 0.344621 

ZSCAN16 zinc finger and SCAN domain containing 16 2.002592 0.001873 

SNORD63 small nucleolar RNA, C/D box 63 2.0017 0.301688 

MMP10 matrix metallopeptidase 10 2.000415 0.130854 
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Appendix 4: Down-regulated genes: Fold Change <0.5 
 

GENE SYMBOL GENE NAME FOLD 
CHANGE 

 
P VALUE 

ATP2B3 ATPase, Ca++ transporting, plasma membrane 3 0.098869 0.001708 

INSRR insulin receptor-related receptor 0.135885 0.019929 

CLDN20 claudin 20 0.13821 0.000366 

SLC8A1-AS1 SLC8A1 antisense RNA 1 0.140338 0.004357 

MYLK3 myosin light chain kinase 3 0.142121 0.088042 

IGDCC3 immunoglobulin superfamily, DCC subclass, member 3 0.143596 0.010158 

NPAP1 nuclear pore associated protein 1 0.152822 0.234059 

FXYD6 FXYD domain containing ion transport regulator 6 0.153192 0.072693 

APOA1 apolipoprotein A-I 0.163728 0.065436 

KIAA1210 KIAA1210 0.165262 0.127152 

LRFN2 leucine rich repeat and fibronectin type III domain containing 2 0.168542 0.132257 

STAR steroidogenic acute regulatory protein 0.170075 0.000975 

PNMA3 paraneoplastic Ma antigen 3 0.187661 0.000429 

JAKMIP3 Janus kinase and microtubule interacting protein 3 0.193342 0.019728 

PROK1 prokineticin 1 0.193583 0.172855 

NRXN1 neurexin 1 0.199916 0.090250 

RGS17 regulator of G-protein signaling 17 0.209787 0.053486 

KCNIP2 Kv channel interacting protein 2 0.216627 0.000204 

NUDT10 nudix (nucleoside diphosphate linked moiety X)-type motif 10 0.217543 1.25E-05 

HTR1E 5-hydroxytryptamine (serotonin) receptor 1E, G protein-coupled 0.218103 0.015159 

VCAM1 vascular cell adhesion molecule 1 0.21914 0.007359 

TH tyrosine hydroxylase 0.224251 0.014333 

LDHD lactate dehydrogenase D 0.23495 0.294131 

AGAP2 ArfGAP with GTPase domain, ankyrin repeat and PH domain 2 0.2351 0.03005 

SLC18A2 solute carrier family 18 (vesicular monoamine transporter), member 2 0.235357 0.105115 

FAM124B family with sequence similarity 124B 0.242967 0.113531 

AGXT2 alanine--glyoxylate aminotransferase 2 0.248049 0.079055 

SUSD5 sushi domain containing 5 0.249302 0.00202 

ASTN1 astrotactin 1 0.250902 0.262441 

CCL8 chemokine (C-C motif) ligand 8 0.250923 0.004559 

TUB tubby bipartite transcription factor 0.252774 0.134525 

GRM7 glutamate receptor, metabotropic 7 0.258841 0.440666 

TMEM35 transmembrane protein 35 0.260326 0.221635 

CILP cartilage intermediate layer protein, nucleotide pyrophosphohydrolase 0.261895 0.024731 

TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 1 0.263373 0.004527 

IL12RB1 interleukin 12 receptor, beta 1 0.264821 0.012681 

RNF112 ring finger protein 112 0.26599 0.003684 

UNC5C unc-5 homolog C (C. elegans) 0.266302 0.021621 

PTGES2-AS1 PTGES2 antisense RNA 1 (head to head) 0.267006 0.079965 

GNG2 guanine nucleotide binding protein (G protein), gamma 2 0.267549 0.034755 

MIR1307 microRNA 1307 0.268323 0.24646 

MSTN Myostatin 0.268537 0.259197 

NDRG4 NDRG family member 4 0.271667 0.128012 

BAI1 adhesion G protein-coupled receptor B1 0.272441 0.003254 

ENTPD1 ectonucleoside triphosphate diphosphohydrolase 1 0.27428 0.144811 

SNORA55 small nucleolar RNA, H/ACA box 55 0.274979 0.00613 

RIMBP2 RIMS binding protein 2 0.276509 0.07219 

GPR20 G protein-coupled receptor 20 0.277769 0.294267 

ADAM22 ADAM metallopeptidase domain 22 0.281613 0.150831 

BCHE butyrylcholinesterase 0.284942 0.005299 

LRGUK leucine-rich repeats and guanylate kinase domain containing 0.287656 0.008671 

KCNB1 potassium channel, voltage gated Shab related subfamily B, member 1 0.289093 0.154694 

FTCD formimidoyltransferase cyclodeaminase 0.290813 0.044019 

FAIM2 Fas apoptotic inhibitory molecule 2 0.293523 0.168667 

CCR1 chemokine (C-C motif) receptor 1 0.295471 0.155518 

CXCL14 chemokine (C-X-C motif) ligand 14 0.299891 0.007237 
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MAP2K6 mitogen-activated protein kinase kinase 6 0.307304 0.013021 

MLC1 megalencephalic leukoencephalopathy with subcortical cysts 1 0.307557 0.05073 

MIR641 microRNA 641 0.310459 0.212918 

CRB2 crumbs family member 2 0.311363 0.044785 

ENHO energy homeostasis associated 0.31243 0.228595 

CPB2-AS1 CPB2 antisense RNA 1 0.314 0.24014 

SLC44A5 solute carrier family 44, member 5 0.315309 0.067067 

LCNL1 lipocalin-like 1 0.31719 0.001536 

MIR3605 microRNA 3605 0.317824 0.328648 

CCDC116 coiled-coil domain containing 116 0.320042 0.00443 

LCN1 lipocalin 1 0.321335 0.215772 

TMEM229B transmembrane protein 229B 0.321762 0.080368 

IPCEF1 interaction protein for cytohesin exchange factors 1 0.321829 0.203266 

AKAP5 A kinase (PRKA) anchor protein 5 0.322006 0.031401 

NRTN Neurturin 0.323115 0.092456 

GABRG3 gamma-aminobutyric acid (GABA) A receptor, gamma 3 0.323749 0.002829 

GCK glucokinase (hexokinase 4) 0.32388 0.004024 

SEC14L4 SEC14-like 4 (S. cerevisiae) 0.324021 0.015625 

DACT3 dishevelled-binding antagonist of beta-catenin 3 0.324156 0.038714 

PYGM phosphorylase, glycogen, muscle 0.324452 0.24496 

CLCN1 chloride channel, voltage-sensitive 1 0.32908 0.082666 

OLFML2B olfactomedin-like 2B 0.329419 0.098547 

ARL9 ADP-ribosylation factor-like 9 0.330146 0.014419 

DEFB124 defensin, beta 124 0.331061 0.038074 

CDH23 cadherin-related 23 0.33263 0.260338 

METTL7A methyltransferase like 7A 0.333004 0.036769 

MED14OS MED14 opposite strand 0.33333 0.005049 

KIAA1644 KIAA1644 0.334094 0.031833 

KIAA0319 KIAA0319 0.33534 0.004567 

NAT2 N-acetyltransferase 2 (arylamine N-acetyltransferase) 0.335671 0.291894 

F2RL2 coagulation factor II (thrombin) receptor-like 2 0.340174 0.053122 

COL4A6 collagen, type IV, alpha 6 0.342459 0.184529 

H2BFM H2B histone family, member M 0.34261 0.035432 

EFHC2 EF-hand domain (C-terminal) containing 2 0.34342 0.038866 

CRYGN crystallin, gamma N 0.343552 0.198788 

NDP Norrie disease (pseudoglioma) 0.343828 0.248835 

CORO1A coronin, actin binding protein, 1A 0.34396 0.047852 

SLC38A11 solute carrier family 38, member 11 0.345017 0.103141 

ME1 malic enzyme 1, NADP(+)-dependent, cytosolic 0.345268 0.004179 

ABCA13 ATP-binding cassette, sub-family A (ABC1), member 13 0.347566 0.001537 

GPBAR1 G protein-coupled bile acid receptor 1 0.348361 0.016534 

GPR155 G protein-coupled receptor 155 0.348389 0.009015 

PCDHA10 protocadherin alpha 10 0.349549 0.043033 

F13A1 coagulation factor XIII, A1 polypeptide 0.350272 0.377521 

TDRD6 tudor domain containing 6 0.350369 0.16071 

PTGIR prostaglandin I2 (prostacyclin) receptor (IP) 0.351748 0.001184 

KCNE2 potassium channel, voltage gated subfamily E regulatory beta subunit 2 0.35203 0.310514 

JPH4 junctophilin 4 0.35304 0.005689 

DOK5 docking protein 5 0.353363 0.118165 

TAF7L TAF7-like RNA polymerase II, TATA box binding protein (TBP)-associated 
factor, 50kDa 

0.355122 0.000733 

EPB41L3 erythrocyte membrane protein band 4.1-like 3 0.355208 0.000544 

OGN osteoglycin 0.35604 0.228826 

EME2 essential meiotic structure-specific endonuclease subunit 2 0.356485 0.036861 

KCNE3 potassium channel, voltage gated subfamily E regulatory beta subunit 3 0.356645 0.00553 

ATP1B2 ATPase, Na+/K+ transporting, beta 2 polypeptide 0.357035 0.348153 

TMEM63C transmembrane protein 63C 0.359761 0.023393 

DPYSL2 dihydropyrimidinase-like 2 0.36016 0.005037 

TMED10P1 transmembrane emp24-like trafficking protein 10 (yeast) pseudogene 1 0.361826 0.009377 

MFAP4 microfibrillar-associated protein 4 0.362302 0.068081 

ANKRD34A ankyrin repeat domain 34A 0.362467 0.000982 
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NNAT Neuronatin 0.362918 0.017876 

PRELP proline/arginine-rich end leucine-rich repeat protein 0.365948 0.126195 

LINC00894 long intergenic non-protein coding RNA 894 0.365952 0.052798 

PLCD4 phospholipase C, delta 4 0.366218 0.00231 

GCOM1 GRINL1A complex locus 1 0.366271 0.108009 

NLGN1 neuroligin 1 0.366309 0.010425 

SNORA71B small nucleolar RNA, H/ACA box 71B 0.367075 0.022759 

GALNT16 polypeptide N-acetylgalactosaminyltransferase 16 0.368068 0.056692 

B4GALNT1 beta-1,4-N-acetyl-galactosaminyl transferase 1 0.368097 0.002055 

SAMD9L sterile alpha motif domain containing 9-like 0.369056 0.022038 

CYP4B1 cytochrome P450, family 4, subfamily B, polypeptide 1 0.369263 0.110177 

LSAMP limbic system-associated membrane protein 0.3698 0.180642 

LRP12 low density lipoprotein receptor-related protein 12 0.371104 0.001658 

CES4A carboxylesterase 4A 0.372345 0.019498 

SELENBP1 selenium binding protein 1 0.372468 0.019709 

PER2 period circadian clock 2 0.372579 0.002597 

ENPP2 ectonucleotide pyrophosphatase/phosphodiesterase 2 0.372982 0.065713 

WNT6 wingless-type MMTV integration site family, member 6 0.37304 0.157259 

EPYC Epiphycan 0.373514 0.168433 

SOAT2 sterol O-acyltransferase 2 0.375926 0.001037 

COL26A1 collagen, type XXVI, alpha 1 0.376523 0.2231 

CPA1 carboxypeptidase A1 (pancreatic) 0.376603 0.041795 

SEMA3G sema domain, immunoglobulin domain (Ig), short basic domain, secreted, 
(semaphorin) 3G 

0.377545 0.067579 

GLT1D1 glycosyltransferase 1 domain containing 1 0.37767 0.012984 

KLK3 kallikrein-related peptidase 3 0.378429 0.183928 

ADAMTS9 ADAM metallopeptidase with thrombospondin type 1 motif, 9 0.378611 0.012479 

C7 chemokine (C-X-C motif) ligand 10 0.379054 0.01652 

CLEC3B C-type lectin domain family 3, member B 0.379099 0.002208 

PNMAL2 paraneoplastic Ma antigen family-like 2 0.380285 0.023818 

GPD1L glycerol-3-phosphate dehydrogenase 1-like 0.380534 0.00491 

LRRC16B leucine rich repeat containing 16B 0.380808 0.232462 

PDGFD platelet derived growth factor D 0.382451 0.0096 

RGS11 regulator of G-protein signaling 11 0.383979 0.072987 

LINC00908 long intergenic non-protein coding RNA 908 0.384759 0.050527 

COL6A6 collagen, type VI, alpha 6 0.385698 0.02972 

SCN2A sodium channel, voltage gated, type II alpha subunit 0.386124 0.021629 

MAP1A microtubule-associated protein 1A 0.386755 0.049926 

GSTA2 glutathione S-transferase alpha 2 0.387509 0.028191 

GOLGA8O golgin A8 family, member O 0.387509 0.120581 

SLFN12L schlafen family member 12-like 0.387509 0.208609 

VAC14-AS1 VAC14 antisense RNA 1 0.387509 0.363239 

ACY3 aminoacylase 3 0.389631 0.110946 

ZNF208 zinc finger protein 208 0.390337 0.230132 

LINC01123 long intergenic non-protein coding RNA 1123 0.390849 0.044634 

CALML6 calmodulin-like 6 0.392717 0.047302 

ERVK13-1 endogenous retrovirus group K13, member 1 0.393692 0.014464 

CARNS1 carnosine synthase 1 0.39473 0.017233 

BCAN Brevican 0.39473 0.45256 

SRI Sorcin 0.395124 0.000586 

B3GALNT1 beta-1,3-N-acetylgalactosaminyltransferase 1 (globoside blood group) 0.395294 0.008581 

PNPLA3 patatin-like phospholipase domain containing 3 0.395731 0.028521 

GALNT13 polypeptide N-acetylgalactosaminyltransferase 13 0.396511 0.30502 

ALDH3A1 aldehyde dehydrogenase 3 family, member A1 0.397069 0.584979 

ZNF883 zinc finger protein 883 0.397518 0.058367 

GAB3 GRB2-associated binding protein 3 0.397974 0.004228 

ANO7 anoctamin 7 0.399409 0.011404 

CBLN4 cerebellin 4 precursor 0.399688 0.236214 

ACOX2 acyl-CoA oxidase 2, branched chain 0.399977 0.008606 

NACAD NAC alpha domain containing 0.400526 0.000832 

ZNF860 zinc finger protein 860 0.401293 0.024119 
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PHEX phosphate regulating endopeptidase homolog, X-linked 0.401522 0.015585 

ABCG4 ATP-binding cassette, sub-family G (WHITE), member 4 0.402874 0.176945 

RIPPLY3 ripply transcriptional repressor 3 0.403747 0.10539 

ADCY1 adenylate cyclase 1 (brain) 0.405111 0.234972 

ANO2 anoctamin 2, calcium activated chloride channel 0.405573 0.027369 

LGI2 leucine-rich repeat LGI family, member 2 0.405874 0.185637 

FUCA1 fucosidase, alpha-L- 1, tissue 0.405911 0.029809 

TMEM179 transmembrane protein 179 0.407101 0.011273 

ASPN Aspirin 0.407387 0.027794 

GABRB3 gamma-aminobutyric acid (GABA) A receptor, beta 3 0.407669 0.196882 

ROS1 ROS proto-oncogene 1 , receptor tyrosine kinase 0.408101 0.02168 

TIAF1 TGFB1-induced anti-apoptotic factor 1 0.408342 0.06781 

LINC00260 long intergenic non-protein coding RNA 260 0.408352 0.116038 

RAB6B RAB6B, member RAS oncogene family 0.40952 0.000213 

TMOD2 tropomodulin 2 (neuronal) 0.410408 0.030245 

C1QL1 complement component 1, q subcomponent-like 1 0.410594 0.012907 

MIR29C microRNA 29c 0.411126 0.014302 

CORO2A coronin, actin binding protein, 2A 0.411261 0.012579 

PODNL1 podocan-like 1 0.411631 0.021094 

DIRAS3 DIRAS family, GTP-binding RAS-like 3 0.411832 0.136993 

IL17RD interleukin 17 receptor D 0.411963 0.092121 

VDAC3 voltage-dependent anion channel 3 0.413709 0.000712 

CDON cell adhesion associated, oncogene regulated 0.413937 0.047271 

KCND1 potassium channel, voltage gated Shal related subfamily D, member 1 0.414327 0.002425 

ZNF815P zinc finger protein 815, pseudogene 0.414358 0.007193 

PROSER2-AS1 PROSER2 antisense RNA 1 0.414876 0.057305 

NAALAD2 N-acetylated alpha-linked acidic dipeptidase 2 0.415938 0.164584 

CHST1 carbohydrate (keratan sulfate Gal-6) sulfotransferase 1 0.415986 0.329121 

PLCL1 phospholipase C-like 1 0.41613 0.043636 

MPP6 membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6) 0.416148 0.022909 

ZP1 zona pellucida glycoprotein 1 (sperm receptor) 0.416541 0.054109 

P2RX6 purinergic receptor P2X, ligand gated ion channel, 6 0.416621 0.002271 

PRLR prolactin receptor 0.416899 0.016699 

PRUNE2 prune homolog 2 (Drosophila) 0.417636 0.019911 

UBE2N ubiquitin-conjugating enzyme E2N 0.417659 8.4E-05 

LINC01016 long intergenic non-protein coding RNA 1016 0.418006 0.180946 

ANXA13 annexin A13 0.418085 0.030516 

SNORD35A small nucleolar RNA, C/D box 35A 0.418125 0.023067 

CORO2B coronin, actin binding protein, 2B 0.418406 0.145299 

GPRC5B G protein-coupled receptor, class C, group 5, member B 0.418721 0.038715 

ADD3 adducin 3 (gamma) 0.419387 0.00752 

MPZ myelin protein zero 0.419406 0.003314 

STXBP6 syntaxin binding protein 6 (amisyn) 0.419933 0.004303 

C21ORF67 long intergenic non-protein coding RNA 1547 0.421553 0.005522 

NFIX nuclear factor I/X (CCAAT-binding transcription factor) 0.421874 0.04146 

ITGA6 integrin, alpha 6 0.422069 0.034479 

RASA4B RAS p21 protein activator 4B 0.422539 0.028664 

RRAS related RAS viral (r-ras) oncogene homolog 0.422821 0.000403 

LRRTM1 leucine rich repeat transmembrane neuronal 1 0.423611 0.516123 

CHGA chromogranin A 0.423633 0.021171 

MRAP2 melanocortin 2 receptor accessory protein 2 0.423646 0.194594 

RASSF2 Ras association (RalGDS/AF-6) domain family member 2 0.424965 0.02866 

PURG purine-rich element binding protein G 0.425068 0.037608 

IQSEC3 IQ motif and Sec7 domain 3 0.425332 0.000356 

NBEAP1 neurobeachin pseudogene 1 0.42574 0.049376 

GPR173 G protein-coupled receptor 173 0.426423 0.00255 

DNAJC22 DnaJ (Hsp40) homolog, subfamily C, member 22 0.426821 0.087534 

PCDHB11 protocadherin beta 11 0.427099 0.007548 

FAM171A2 family with sequence similarity 171, member A2 0.42722 0.266227 

GPR180 G protein-coupled receptor 180 0.427813 0.019914 

ASB2 ankyrin repeat and SOCS box containing 2 0.427851 0.006277 
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PSD2 pleckstrin and Sec7 domain containing 2 0.42854 0.082224 

TRIM14 tripartite motif containing 14 0.430429 0.001629 

ANO3 anoctamin 3 0.432207 0.055591 

CACNA2D2 calcium channel, voltage-dependent, alpha 2/delta subunit 2 0.433124 0.149673 

PCDHGB3 protocadherin gamma subfamily B, 3 0.433695 0.103769 

SH2D3C SH2 domain containing 3C 0.433704 0.017317 

PKD1L2 polycystic kidney disease 1-like 2 (gene/pseudogene) 0.434284 0.252857 

NRG2 neuregulin 2 0.434355 0.073787 

STAG3L3 stromal antigen 3-like 3 (pseudogene) 0.434908 0.058374 

SGCE sarcoglycan, epsilon 0.435682 0.00735 

GAL3ST4 galactose-3-O-sulfotransferase 4 0.436786 0.03158 

SERPIND1 serpin peptidase inhibitor, clade D (heparin cofactor), member 1 0.437221 0.076266 

FABP3 fatty acid binding protein 3, muscle and heart 0.437652 0.215958 

SNORD45A small nucleolar RNA, C/D box 45A 0.43782 0.01663 

CEND1 cell cycle exit and neuronal differentiation 1 0.437998 0.055063 

CPAMD8 C3 and PZP-like, alpha-2-macroglobulin domain containing 8 0.438207 0.003453 

VMA21 VMA21 vacuolar H+-ATPase homolog (S. cerevisiae) 0.438236 0.000456 

ASIC1 acid sensing (proton gated) ion channel 1 0.438693 0.017652 

RNF207 ring finger protein 207 0.438858 0.001842 

RUSC1-AS1 RUSC1 antisense RNA 1 0.439346 0.146982 

RFTN2 raftlin family member 2 0.439546 0.129576 

LINC00924 long intergenic non-protein coding RNA 924 0.43956 0.675144 

MAPK6 mitogen-activated protein kinase 6 0.440512 0.003602 

SEPT6 septin 6 0.442488 0.035424 

SSPO SCO-spondin 0.442654 0.186779 

TMEM119 transmembrane protein 119 0.442795 0.019395 

PRSS30P protease, serine, 30, pseudogene 0.442968 0.073497 

PCSK9 proprotein convertase subtilisin/kexin type 9 0.443769 0.107103 

NRN1L neuritin 1-like 0.445217 0.093202 

CPXM1 carboxypeptidase X (M14 family), member 1 0.445253 0.061474 

HYAL1 hyaluronoglucosaminidase 1 0.445532 0.021313 

IZUMO4 IZUMO family member 4 0.445568 0.085975 

PSD pleckstrin and Sec7 domain containing 0.445808 0.010259 

PCAT6 prostate cancer associated transcript 6 (non-protein coding) 0.447544 0.002071 

HEPH hephaestin 0.447567 0.304443 

C1ORF233 chromosome 1 open reading frame 233 0.447581 0.003255 

KCNAB3 potassium channel, voltage gated subfamily A regulatory beta subunit 3 0.447959 0.098738 

SYNDIG1 synapse differentiation inducing 1 0.448352 0.005183 

CD81-AS1 CD81 antisense RNA 1 0.44858 0.094691 

JAZF1-AS1 JAZF1 antisense RNA 1 0.448959 0.029533 

SSBP2 single-stranded DNA binding protein 2 0.449184 0.000995 

OSTM1 osteopetrosis associated transmembrane protein 1 0.449842 0.000323 

SERHL2 serine hydrolase-like 2 0.451955 0.002111 

TPTE2P1 transmembrane phosphoinositide 3-phosphatase and tensin homolog 2 
pseudogene 1 

0.452308 0.057568 

EPB41L4A-AS2 EPB41L4A antisense RNA 2 (head to head) 0.452376 0.006197 

SNORA69 small nucleolar RNA, H/ACA box 69 0.452376 0.023759 

MAPT microtubule-associated protein tau 0.453449 0.219509 

GPR161 G protein-coupled receptor 161 0.453502 0.008976 

ASB9 ankyrin repeat and SOCS box containing 9 0.454877 0.139141 

HS2ST1 heparan sulfate 2-O-sulfotransferase 1 0.45504 0.002156 

FAM43B family with sequence similarity 43, member B 0.455836 0.004274 

CCNG1 cyclin G1 0.456204 0.001686 

TFF3 trefoil factor 3 (intestinal) 0.456531 0.229759 

AIRE autoimmune regulator 0.456576 0.132449 

SCARF1 scavenger receptor class F, member 1 0.457005 0.034233 

VN1R1 vomeronasal 1 receptor 1 0.457283 0.5525 

ACAT2 acetyl-CoA acetyltransferase 2 0.457683 0.070981 

CCL28 chemokine (C-C motif) ligand 28 0.457804 0.073004 

ITIH1 inter-alpha-trypsin inhibitor heavy chain 1 0.458467 0.425543 

LINC01305 long intergenic non-protein coding RNA 1305 0.458467 0.425543 
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CYP4F3 cytochrome P450, family 4, subfamily F, polypeptide 3 0.458467 0.412278 

KERA Keratocan 0.458467 0.546005 

ATP9A ATPase, class II, type 9A 0.45926 0.110276 

PLEKHA6 pleckstrin homology domain containing, family A member 6 0.459402 0.02697 

SUFU suppressor of fused homolog (Drosophila) 0.460196 0.150243 

PPFIA3 protein tyrosine phosphatase, receptor type, f polypeptide (PTPRF), 
interacting protein (liprin), alpha 3 

0.46101 0.00434 

DIRAS2 DIRAS family, GTP-binding RAS-like 2 0.46154 0.001375 

FAM65C family with sequence similarity 65, member C 0.463289 0.436337 

C22ORF34 chromosome 22 open reading frame 34 0.463527 0.469117 

EVL Enah/Vasp-like 0.464386 0.06901 

FAM71F2 family with sequence similarity 71, member F2 0.46449 0.007969 

GAREM GRB2 associated, regulator of MAPK1 0.464727 0.084988 

LRRC75A leucine rich repeat containing 75A 0.464816 0.030022 

H19 H19, imprinted maternally expressed transcript (non-protein coding) 0.465214 0.01936 

SLC29A4 solute carrier family 29 (equilibrative nucleoside transporter), member 4 0.465356 0.08886 

ZNF491 zinc finger protein 491 0.465744 0.001406 

MGAT3 mannosyl (beta-1,4-)-glycoprotein beta-1,4-N-
acetylglucosaminyltransferase 

0.465869 0.177274 

HECW1 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 1 0.466238 0.01047 

STEAP4 STEAP family member 4 0.466304 0.038852 

SNORD123 small nucleolar RNA, C/D box 123 0.466566 0.006511 

TMSB15A thymosin beta 15a 0.466994 0.029159 

OTOF Otoferlin 0.467057 0.016101 

MARCKSL1 MARCKS-like 1 0.46706 0.056142 

KIF3C kinesin family member 3C 0.468013 0.002951 

DFNB31 deafness, autosomal recessive 31 0.468067 0.018951 

PCDHGA1 protocadherin gamma subfamily A, 1 0.468302 0.143704 

ANKRD44 ankyrin repeat domain 44 0.468522 0.085212 

HVCN1 hydrogen voltage gated channel 1 0.468598 0.001118 

PRL Prolactin 0.468645 0.085963 

ELOVL6 ELOVL fatty acid elongase 6 0.468651 0.08156 

MIR4697HG MIR4697 host gene 0.46923 0.063817 

CHRDL1 chordin-like 1 0.469503 0.059216 

CPNE5 copine V 0.469544 0.149565 

PAK3 p21 protein (Cdc42/Rac)-activated kinase 3 0.469748 0.180415 

KCNQ4 potassium channel, voltage gated KQT-like subfamily Q, member 4 0.469967 0.032846 

RASA4 RAS p21 protein activator 4 0.470116 0.03576 

C6 complement component 6 0.471198 0.18538 

KCTD14 potassium channel tetramerization domain containing 14 0.471298 0.027396 

NUDT8 nudix (nucleoside diphosphate linked moiety X)-type motif 8 0.471591 0.023507 

CROCCP3 ciliary rootlet coiled-coil, rootletin pseudogene 3 0.47165 0.003562 

SARDH sarcosine dehydrogenase 0.471881 0.145899 

COL21A1 collagen, type XXI, alpha 1 0.472418 0.375665 

PNMA2 paraneoplastic Ma antigen 2 0.472434 0.033757 

SOBP sine oculis binding protein homolog (Drosophila) 0.472825 0.268555 

MTUS2 microtubule associated tumor suppressor candidate 2 0.472883 0.149522 

PLIN4 perilipin 4 0.473089 0.067284 

ST7-AS1 ST7 antisense RNA 1 0.473219 0.05056 

ZYG11B zyg-11 family member B, cell cycle regulator 0.473964 0.003407 

CHURC1 churchill domain containing 1 0.474046 0.038121 

DNM1P41 dynamin 1 pseudogene 41 0.474047 0.082849 

KIRREL2 kin of IRRE like 2 (Drosophila) 0.474127 0.017784 

C5ORF64 chromosome 5 open reading frame 64 0.474187 0.085744 

SPEF1 sperm flagellar 1 0.474246 0.026844 

INTS4L2 integrator complex subunit 4 pseudogene 2 0.475066 0.029673 

TSPAN11 tetraspanin 11 0.475461 0.361051 

CLMN calmin (calponin-like, transmembrane) 0.475707 0.118588 

BACE1 beta-site APP-cleaving enzyme 1 0.476148 0.027605 

WNK2 WNK lysine deficient protein kinase 2 0.476487 0.213036 

SEMA4G sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) 
and short cytoplasmic domain, (semaphorin) 4G 

0.476664 0.212037 
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SMARCC2 SWI/SNF related, matrix associated, actin dependent regulator of 
chromatin, subfamily c, member 2 

0.476729 0.011611 

L3MBTL1 l(3)mbt-like 1 (Drosophila) 0.477108 0.067841 

LAMP5 lysosomal-associated membrane protein family, member 5 0.477257 0.13946 

C9ORF41 chromosome 9 open reading frame 41 0.477535 0.008264 

LRRC17 leucine rich repeat containing 17 0.478473 0.063804 

OMD osteomodulin 0.478695 0.083174 

NLGN3 neuroligin 3 0.479025 0.220931 

METAP2 methionyl aminopeptidase 2 0.479153 0.002276 

ZNF423 zinc finger protein 423 0.479187 0.369713 

FAM32A family with sequence similarity 32, member A 0.480214 5.53E-05 

SCARA5 scavenger receptor class A, member 5 0.480365 0.038808 

ESRRG estrogen-related receptor gamma 0.480565 0.034137 

PRG2 proteoglycan 2, bone marrow (natural killer cell activator, eosinophil 
granule major basic protein) 

0.481555 0.002004 

BHMT betaine--homocysteine S-methyltransferase 0.482006 0.152955 

SLC39A6 solute carrier family 39 (zinc transporter), member 6 0.482232 0.006232 

LRRC29 leucine rich repeat containing 29 0.482587 0.001432 

SNORA51 small nucleolar RNA, H/ACA box 51 0.482685 0.114144 

ATP8A2 ATPase, aminophospholipid transporter, class I, type 8A, member 2 0.483 0.40961 

EXTL1 exostosin-like glycosyltransferase 1 0.483018 0.082272 

C2ORF16 chromosome 2 open reading frame 16 0.483041 0.498024 

LRFN1 leucine rich repeat and fibronectin type III domain containing 1 0.483196 0.227532 

TEKT4 tektin 4 0.483309 0.020047 

CRABP2 cellular retinoic acid binding protein 2 0.483456 0.299121 

INMT indolethylamine N-methyltransferase 0.483769 0.754468 

SLC38A4 solute carrier family 38, member 4 0.483833 0.236965 

CD302 CD302 molecule 0.484378 0.000378 

LMTK3 lemur tyrosine kinase 3 0.484406 0.067577 

MAGI3 membrane associated guanylate kinase, WW and PDZ domain containing 
3 

0.484518 0.060058 

SYT3 synaptotagmin III 0.484671 0.246265 

USP3-AS1 USP3 antisense RNA 1 0.485092 0.069417 

LINC00910 long intergenic non-protein coding RNA 910 0.485387 0.013346 

PITRM1-AS1 PITRM1 antisense RNA 1 0.486084 0.180269 

KCNIP1 Kv channel interacting protein 1 0.486084 0.333361 

KIF26B kinesin family member 26B 0.486162 0.159327 

PPM1K protein phosphatase, Mg2+/Mn2+ dependent, 1K 0.487087 0.027612 

ADCY7 adenylate cyclase 7 0.487394 0.005609 

RCOR1 REST corepressor 1 0.487836 0.007718 

GSTM2 glutathione S-transferase mu 2 (muscle) 0.488045 0.000616 

IGSF22 immunoglobulin superfamily, member 22 0.488351 0.13571 

MIR497HG mir-497-195 cluster host gene 0.488446 0.146457 

RCOR2 REST corepressor 2 0.488796 0.022931 

TNNT2 troponin T type 2 (cardiac) 0.488988 0.223074 

GFAP glial fibrillary acidic protein 0.489484 0.116144 

PALD1 phosphatase domain containing, paladin 1 0.490346 0.045902 

DPYD dihydropyrimidine dehydrogenase 0.490563 0.014799 

PTGES3L-
AARSD1 

PTGES3L-AARSD1 readthrough 0.490569 0.035594 

ABI3BP ABI family, member 3 (NESH) binding protein 0.490899 0.380921 

CRMP1 collapsin response mediator protein 1 0.491699 0.003372 

STAC2 SH3 and cysteine rich domain 2 0.491979 0.39548 

ENPP4 ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative) 0.492341 0.085458 

SPRN shadow of prion protein homolog (zebrafish) 0.492947 0.000285 

ATP6V1G2 ATPase, H+ transporting, lysosomal 13kDa, V1 subunit G2 0.493067 0.065703 

CFH complement factor H 0.493913 0.020039 

PCDHA12 protocadherin alpha 12 0.493959 0.110712 

WT1 Wilms tumor 1 0.493999 0.003631 

DNAJC4 DnaJ (Hsp40) homolog, subfamily C, member 4 0.494619 0.000752 

KRT37 keratin 37, type I 0.494732 0.160559 

KIAA1024 KIAA1024 0.494835 0.016429 

EPHX2 epoxide hydrolase 2, cytoplasmic 0.495568 0.00444 
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PLXNA4 plexin A4 0.495635 0.202007 

CSRNP3 cysteine-serine-rich nuclear protein 3 0.495762 0.015561 

MIR3176 microRNA 3176 0.49592 0.349265 

SPTBN4 spectrin, beta, non-erythrocytic 4 0.496179 0.020547 

GSTM5 glutathione S-transferase mu 5 0.496239 0.006033 

AVPR1A arginine vasopressin receptor 1A 0.496311 0.074067 

KALRN kalirin, RhoGEF kinase 0.496628 0.008288 

C2ORF50 chromosome 2 open reading frame 50 0.496825 0.158667 

CDH20 cadherin 20, type 2 0.497078 0.254056 

WDR86 WD repeat domain 86 0.49759 0.261966 

JSRP1 junctional sarcoplasmic reticulum protein 1 0.498405 0.258728 

OAS2 2'-5'-oligoadenylate synthetase 2, 69/71kDa 0.499919 0.01178 

MICAL1 microtubule associated monooxygenase, calponin and LIM domain 
containing 1 

0.499961 0.034979 

OLFML2A olfactomedin-like 2A 0.500438 0.147682 

LINC01266 long intergenic non-protein coding RNA 1266 0.500581 0.550131 

IGFBP1 insulin-like growth factor binding protein 1 0.500735 0.00177 
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Appendix 5: Genes implicated in cell cycle regulation 
 

Differentially expressed genes involved in cell cycle regulation upon PER2 

knockdown in decidualizing HESCs. Gene names annotated in bold are implicated in 

G2/M cell cycle progression 

 

GENE 
SYMBOL   

GENE NAME FOLD 
CHANGE 

ASNS asparagine synthetase (glutamine-hydrolyzing) 2.44 

AURKA aurora kinase A 2.70 

AVPI1 arginine vasopressin-induced 1 2.66 

BEX2 brain expressed X-linked 2  7.05 

BMP2 bone morphogenetic protein 2  2.66 

BUB1 BUB1 mitotic checkpoint serine/threonine kinase  2.16 

BUB1B BUB1 mitotic checkpoint serine/threonine kinase B  2.70 

CABLES1 Cdk5 and Abl enzyme substrate 1  5.24 

CCNB1 cyclin B1  2.46 

CCNG1 cyclin G1  0.46 

CDC20 cell division cycle 20  2.67 

CDC25A cell division cycle 25A  2.00 

CDC25C cell division cycle 25C  3.79 

CDCA2 cell division cycle associated 2  2.44 

CDCA8 cell division cycle associated 8  3.08 

CDK1 cyclin-dependent kinase 1 2.64 

CENPA centromere protein A  2.37 

CENPW centromere protein W  2.02 

CHTF18 CTF18, chromosome transmission fidelity factor 18 homolog (S. cerevisiae)  2.13 

CKS1B CDC28 protein kinase regulatory subunit 1B  2.29 

CYP26B1 cytochrome P450, family 26, subfamily B, polypeptide 1  2.80 

DDIT3 DNA-damage-inducible transcript 3  3.96 

DUSP1 dual specificity phosphatase 1  2.35 

FAM32A family with sequence similarity 32, member A  0.48 

FAM83D family with sequence similarity 83, member D  2.81 

FANCD2 Fanconi anemia, complementation group D2  2.18 

FIGN fidgetin  2.46 

GATA3 GATA binding protein 3  4.04 

GEM GTP binding protein overexpressed in skeletal muscle  7.09 

GTSE1 G-2 and S-phase expressed 1  2.51 

HERC5 HECT and RLD domain containing E3 ubiquitin protein ligase 5  3.36 

HGF hepatocyte growth factor (hepapoietin A; scatter factor)  3.29 

HIST1H4E histone cluster 1, H4e  7.55 

HJURP Holliday junction recognition protein  2.07 

IQGAP3 IQ motif containing GTPase activating protein 3  2.34 

JADE1 jade family PHD finger 1  2.22 

JMY junction mediating and regulatory protein, p53 cofactor  3.12 

JUN jun proto-oncogene  2.15 

KIF15 kinesin family member 15  2.26 

KIF18B kinesin family member 18B  2.09 

KIF2C kinesin family member 2C  3.47 

KIFC1 kinesin family member C1 2.07 

KLF11 Kruppel-like factor 11  2.04 

L3MBTL1 l(3)mbt-like 1 (Drosophila)  0.48 

MAP2K6 mitogen-activated protein kinase kinase 6  0.31 

MAPK6 mitogen-activated protein kinase 6  0.44 

MYO16 myosin XVI  2.36 

NEK2 NIMA-related kinase 2  2.42 

NUF2 NUF2, NDC80 kinetochore complex component  2.66 
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PBK PDZ binding kinase  2.03 

PER2 period circadian clock 2  0.37 

PHGDH phosphoglycerate dehydrogenase  3.32 

PIWIL4 piwi-like RNA-mediated gene silencing 4  2.55 

PLD6 phospholipase D family, member 6  2.74 

PLK1 polo-like kinase 1  3.13 

PPM1D protein phosphatase, Mg2+/Mn2+ dependent, 1D  2.02 

PPP1R15A protein phosphatase 1, regulatory subunit 15A  4.03 

PRC1 protein regulator of cytokinesis 1  2.34 

PROX1 prospero homeobox 1  2.23 

PTTG1 pituitary tumor-transforming 1  2.24 

RASSF2 Ras association (RalGDS/AF-6) domain family member 2  0.42 

SEPT6 septin 6  0.44 

SIK1 salt-inducible kinase 1  2.38 

SIRT1 sirtuin 1  2.07 

SKA1 spindle and kinetochore associated complex subunit 1  2.74 

SPAG5 sperm associated antigen 5  2.27 

TACC3 transforming, acidic coiled-coil containing protein 3  2.29 

TGFB2 transforming growth factor, beta 2  2.50 

TOP2A topoisomerase (DNA) II alpha 170kDa  2.14 

TPX2 TPX2, microtubule-associated  2.07 

UBE2C ubiquitin-conjugating enzyme E2C  3.34 

USP44 ubiquitin specific peptidase 44  2.64 

WEE1 WEE1 G2 checkpoint kinase  2.34 
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Appendix 6: Demographics of participating subjects in 

correlative analysis.  
 

(n = 70) Median S.E.M 

Age (year): 37.0 0.59 

Body Mass Index (BMI): 25.0 0.62 

First Trimester Loss (n): 4.0 0.23 

Live Birth (n): 0 0.07 

Day of biopsy relative to LH surge: +8.0 0.16 
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Appendix 7: Demographics of participating subjects in 

PRIP-1 correlative analysis.  
 

(n = 101) Median S.E.M 

Age (year): 37.0 0.46 

Body Mass Index (BMI): 25.0 0.45 

First Trimester Loss (n): 3.0 0.23 

Live Birth (n): 0 0.05 

Day of biopsy relative to LH surge: +8.0 0.13 
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ABSTRACT Implantation requires coordinated inter-
actions between the conceptus and surrounding decidual
cells, but the involvement of clock genes in this process is
incompletely understood. Circadian oscillations are pred-
icated on transcriptional-translational feedback loops,
whichbalance the activities of the transcriptional activators
CLOCK (circadian locomotor output cycles kaput) and
brain muscle arnt-like 1 and repressors encoded by PER
(Period) and Cryptochrome genes. We show that loss of
PER2 expression silences circadian oscillations in decidu-
alizing human endometrial stromal cells (HESCs). Down-
regulation occurred between 12 and 24 hours following
differentiation and coincided with reduced CLOCK
binding to a noncanonical E-box enhancer in the PER2
promoter. RNA sequencing revealed that premature in-
hibition of PER2 by small interfering RNA knockdown
leads to a grossly disorganized decidual response. Gene
ontology analysis highlighted apreponderance of cell cycle
regulators among the 1121 genes perturbed upon PER2
knockdown. Congruently, PER2 inhibition abrogated mi-
totic expansion of differentiating HESCs by inducing cell
cycle block at G2/M. Analysis of 70 midluteal endometrial
biopsies revealed an inverse correlation between PER2
transcript levels and the number ofmiscarriages in women
suffering reproductive failure (Spearman rank test,
r = 20.3260; P = 0.0046). Thus, PER2 synchronizes en-
dometrial proliferation with initiation of aperiodic de-
cidual gene expression; uncoupling of these events may
cause recurrent pregnancy loss.—Muter, J., Lucas, E. S.,
Chan, Y.-W., Brighton, P. J., Moore, J. D., Lacey, L.,
Quenby, S., Lam, E. W.-F., Brosens, J. J. The clock protein
period 2 synchronizes mitotic expansion and decidual trans-
formation of human endometrial stromal cells. FASEB J.
29, 1603–1614 (2015). www.fasebj.org

Key Words: endometrium • circadian rhythm • cell cycle •

miscarriage

MAMMALIAN REPRODUCTION IS dependent on a series of
interlocking signals that control the onset of puberty and
the timing of ovulation, blastocyst implantation, and par-
turition (1). The central circadian pacemakers in the
suprachiasmatic nucleus (SCN) are responsible for the
establishment of daily rhythms entrained by environmen-
tal cues (2–4). These SCN pacemakers relay photic in-
formation to GnRHs in the hypothalamus, which is
cascaded to the ovaries through the release of pituitary
gonadotropins and thus control reproductive cyclicity and
ovulation (5, 6). In addition, various cell types in the ovary,
fallopian tube, and uterus have their own functional mo-
lecular clocks that control circadian gene expression (5, 7,
8). At a cellular level, the circadian clockwork is composed
of a set of 4 core clock genes and their paralogs that es-
tablish robust and stable transcriptional and translational
feedback loops (4). BMAL1 [brain muscle arnt-like 1,
encodedby aryl hydrocarbon receptornuclear translocator-
like (ARNTL)] and CLOCK (circadian locomotor output
cycles kaput) formaheterodimer that binds to specificDNA
motifs (E-boxes) in the promoter regions of target genes,
including the Period (PER; 1, PER2, and PER3) and the
Cryptochrome (CRY; 1 and 2) genes. PER and CRY proteins
then accumulate in the cytoplasm and, after a lag period,
return to the nucleus to inhibit their own transcription as
well as the expression of other genes activated by the
CLOCK-BMAL1 heterodimer (9, 10). In addition, clock

Abbreviations: 8-br-cAMP, 8-bromoadenosine-cAMP; ARNTL,
aryl hydrocarbon receptor nuclear translocator-like; BMAL1,
brain muscle arnt-like 1; bp, base pair; ChIP, chromatin immu-
noprecipitation; CLOCK, circadian locomotor output cycles ka-
put; CRY, cryptochrome; DCC-FBS, dextran-coated charcoal-
treated fetal bovine serum; ERa, estrogen receptor-a;
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proteins are subjected to a wide range of posttranslational
modifications, including phosphorylation (11), acetylation
(12), ubiquitination (13), and sumoylation (14), that act to
fine-tune rhythmic oscillations over an;24 hour period.

Tissue-specific gene deletions in mice have highlighted
the importance of the peripheral clocks in female re-
production. For example, conditional deletion of Bmal1 in
pituitary gonadotropes impacts on estrous cycle length
(15), whereas in the ovary and myometrium, it perturbs
steroidogenesis and the timing of parturition, respectively
(16, 17). A key uterine response indispensable for preg-
nancy is decidualization, a process characterized by the
transformation of endometrial stromal cells into specialist
secretory cells that provide a nutritive and immune-
privileged matrix for the invading blastocyst and sub-
sequent placental formation (18). Previous studies using
transgenic rats expressing a destabilized luciferase re-
porter under the control of themouse Per2 promoter have
shown that decidualization is associated with down-
regulation of Per2 and loss of circadian luciferase oscil-
lations (19). Moreover, female mice lacking both Per1 and
Per2 reportedly havemore implantation sites but fewer live
offspring when compared to wild-type animals (20), in-
dicating that these clock proteins are indispensable for
optimal utero-placental interactions.

Unlike the rat and other rodents, decidualization of the
human endometrium is not under the control of an
implanting blastocyst. Instead, this process is driven by the
postovulatory rise in progesterone levels and increasing lo-
cal cAMPproduction. Consequently, this process is initiated
in each ovulatory cycle and enhanced in response to em-
bryonic signals (18, 21). Decidualization is a dynamic and
temporally regulated process that commences with pro-
liferative expansionof the stromal cells during themidluteal
phase of the cycle (22). Once initiated, differentiating hu-
man endometrial stromal cells (HESCs) mount a transient
proinflammatory response that renders the endometrium
receptive to implantation. This is followed by an anti-
inflammatory response, expansion of cytoplasmic organ-
elles, and acquisition of a secretory phenotype that charac-
terizes decidualizing cells during the late-luteal phase of the
cycle (23, 24). Disruption of the temporal organization of
the decidual response leads to reproductive failure. For
example, endometriosis is associated with uterine pro-
gesterone resistance, a blunted decidual response, implan-
tation failure, and conception delay (25). Conversely,
a disordered proinflammatory decidual response prolongs
the window of endometrial receptivity, which in turn
increases the risk for out-of-phase implantation and re-
current pregnancy loss (RPL) (23, 24).

This study investigated the role and regulation of clock
proteins during decidual transformation of HESCs. As is

the case in rodents, we found that circadian oscillations are
lost in differentiating HESCs as a consequence of down-
regulation of PER2, which occurs between 12 and 24 hours
after exposure of a deciduogenic stimulus. Timing of this
event is critical because premature loss of PER2 abolishes
mitotic expansion of HESCs and predisposes for a highly
disorganized decidual response. The importance of this
transitionalpathwaywasunderscoredbyanalysisofmidluteal
endometrial biopsies from recurrent miscarriage patients,
showing an inverse correlation between PER2mRNA levels
and the number of preceding failed pregnancies.

MATERIALS AND METHODS

Patient selection and endometrial sampling

The study was approved by the National Health Service (NHS)
NationalResearchEthics-Hammersmith andQueenCharlotte’s&
Chelsea Research Ethics Committee (1997/5065). Subjects were
recruited fromthe ImplantationClinic, adedicated researchclinic
at University Hospitals Coventry and Warwickshire NHS Trust.
Written informed consent was obtained from all participants in
accordance with the guidelines in The Declaration of Helsinki
2000. Samples were obtained using a Wallach Endocell sampler
(Wallach Surgical Devices, Trumbull, CT, USA), starting from the
uterine fundus and moving downward to the internal cervical os-
tium. A total of 57 fresh endometrial biopsies were processed for
primary cultures. The average age (6SD) of the participants was
35.16 4.7 years. For analysis of PER2mRNA expression, 70 addi-
tional biopsies stored in RNAlater solution (Sigma-Aldrich, Poole,
United Kingdom) were obtained from patients with RPL. De-
mographic details are summarized in Supplemental Table 1. All
endometrial biopsies were timed between 6 and 10 days after the
preovulatory LH surge. None of the subjects was on hormonal
treatments for at least 3 months before the procedure.

Primary cell culture

HESCs were isolated from endometrial tissues as described pre-
viously (26). Purified HESCs were expanded in maintenance
medium of DMEM/F-12 containing 10% dextran-coated
charcoal-treated fetal bovine serum (DCC-FBS), L-glutamine
(1%), and 1% antibiotic-antimycotic solution. Confluent mono-
layersweredecidualized inDMEM/F-12 containing2%DCC-FBS
with 0.5 mM 8-bromoadenosine-cAMP (8-br-cAMP; Sigma-
Aldrich) with or without 1026 M medroxyprogesterone acetate
(MPA; Sigma-Aldrich) to induce a differentiated phenotype. For
synchronization, dexamethasone (Sigma-Aldrich) was used at
100 nM for 30minutes. Actinomycin D (Sigma-Aldrich) was used
at a final concentration of 2 mM in DMSO. All experiments were
carried out before the third cell passage.

Real-time quantitative RT-PCR

Total RNA was extracted from HESC cultures using RNA STAT-
60 (AMS Biotechnology, Abingdon, United Kingdom). Equal
amounts of totalRNA(1mg)were treatedwithDNase and reverse
transcribed using the QuantiTect Reverse Transcription Kit
(Qiagen, Manchester, United Kingdom), and the resulting
cDNA was used as template in quantitative RT-PCR (qRT-PCR)
analysis. Detection of gene expression was performed with Power
SYBR Green Master Mix (Life Technologies, Paisley, United
Kingdom) and the 7500 Real-Time PCR System (Applied Bio-
systems, Foster City, CA, USA). The expression levels of the
samples were calculated using the DCt method, incorporating
the efficiencies of each primer pair. The variances of input cDNA

(continued from previous page)
GEO, Gene Expression Omnibus; GO, gene ontology; HESC,
human endometrial stromal cell; ID, identification; IGFBP1,
IGF-binding protein-1; MPA, medroxyprogesterone acetate;
NHS, National Health Service; NT, nontargeting; PER1, period
1; PER2, period 2; PPARG, peroxisome proliferator-activated
receptor g; PRL, prolactin; qRT-PCR, quantitative RT-PCR;
RPL, recurrent pregnancy loss; RTCA, real-time cell analyzer;
SCN, suprachiasmatic nucleus; SDS, sodium dodecyl sulfate;
siRNA, small interfering RNA; TPM, transcripts per million
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were normalized against the levels of the L19 housekeeping
gene. All measurements were performed in triplicate. Melting
curve analysis confirmed amplification specificity. Primer se-
quences used are as follows: CLOCK, forward 59-gac aaa gcg aaa
aga gta tct ag-39 and reverse 59-cat ctt tct agc att acc agg aa-39;
BMAL1, forward 59-gac att cct tcc agt ggc cta-39 and reverse
59-tac cta tgt ggg ggt tct cac-39; CRY1, forward 59-cat cct gga ccc
ctg gtt-39 and reverse 59-cac tga agc aaa aat cgc c-39; CRY2,
forward 59-ctg ttc aag gaa tgg gga gtg-39 and reverse 59-ggt cat
aga ggg tat gag aat tc-39; PER1, forward 59-atg gtt cca ctg ctc
cat ctc-39 and reverse 59-ccg gtc agg acc tcc tc-39; PER2, for-
ward 59-gtc cga aag ctt cgt tcc aga-39 and reverse 59-gtc cac atc
ttc ctg cag tg-39; and prolactin (PRL), forward 59-aag ctg tag
aga ttg agg agc aaa c-39 and reverse 59-tca gga tga acc tgg ctg act
a-39. In the actinomycin D experiments, PER2 mRNA half-life
was calculated using t1/2 = 0.693/k, where k is the slope derived
from the linear equation lnC = lnC0 2 kt, and where C is the
relative level of PERmRNA in HESCs (27).

Western blot analysis

Whole-cell protein extracts were prepared by lysing cells in RIPA
buffer containing protease inhibitors (cOmplete, Mini, EDTA-
free; Roche, Welwyn Garden City, United Kingdom). Protein
yield was quantified using the Bio-Rad Protein Assay Dye Re-
agent Concentrate (Bio-Rad Laboratories, Hemel Hempstead,
United Kingdom). Equal amounts of protein were separated by
SDS-PAGE before wet transfer onto PVDF membrane (GE
Healthcare, Buckinghamshire, United Kingdom). Nonspecific
binding sites were blocked by overnight incubation with 5%
nonfat dry milk in Tris-buffered saline with 1% Tween 20
[130 mM NaCl, 20 mM Tris (pH 7.6), and 1% Tween 20]. The
following primary antibodies were purchased from Abcam
(Cambridge, United Kingdom): anti-CLOCK (catalog number
ab3517, diluted 1:3000); anti-BMAL1 (ab3350, 1:375); anti-CRY1
(ab54649, 1:500); anti-CRY2 (ab38872, 1:2000); anti-PER1
(ab3443, 1:300); anti-PER2 (ab179813, 1:300); and anti-b-actin
(ab8226, 1:10,000). Protein complexes were visualized with ECL
Plus chemiluminescence (GEHealthcare). TheWestern blots are
collated in Supplemental Fig. 1.

Transient transfection

Primary HESCs were transfected with small interfering RNA
(siRNA) by jetPRIME Polyplus transfection kit (VWR Inter-
national, Lutterworth, United Kingdom). For gene silencing, un-
differentiated HESCs were transiently transfected with 50 nM
PER2-siGENOME SMARTpool or siGENOME Non-Targeting
siRNAPool 1 (Dharmacon,GEHealthcare). Transfection studies
were performed in triplicate and repeated on primary cultures
from 3 subjects.

Chromatin immunoprecipitation

HESCs in 10 cm culture dishes were fixed with 1% form-
aldehyde for 10 minutes at 37°C. Fixation was stopped with
125 mM glycine, and nuclei were isolated by incubating at 4°C for
10 minutes in 1 ml Swelling buffer [25 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonicacid(pH7.9),1.5mMMgCl2,10mMKCl,
and 0.1% NP40 alternative]. The cells were scraped, homoge-
nized, and centrifuged for 3 minutes at 16,000 3 g at 4°C. Pel-
leted nuclei were resuspended in 500ml sodium dodecyl sulfate
(SDS) lysis buffer [1% SDS, 1% Triton X-100, 0.5% deoxy-
cholate, 10 mM EDTA, and 500 mM Tris-HCl (pH 8.1)] and
sonicated for 30 minutes at 4°C on high power in a Diagenode
Bioruptor sonicator (Diagenode, Liege, Belgium). The

resulting suspension was centrifuged for 15minutes at 16,0003 g
at 4°C and supernatant diluted in immunoprecipitation buffer
[0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA, 16.7 mM Tris-
HCl (pH 8.1), and 167mMNaCl] and then precleared at 4°C for
3 hours with Protein A Dynabeads (Life Technologies, Carlsbad,
CA, USA). The chromatin was then complexed overnight at
4°C with the appropriate antibody bound toProteinADynabeads.
Post complexing, samples were washed with the following buff-
ers before eluting the chromatin with 250 ml Elution buffer
(1% SDS and 100 mM NaHCO3) and incubating at room
temperature for 15 minutes: low-salt buffer [0.1% SDS, 1%
Triton X-100, 2 mM EDTA, 20 mM Tris-HCl (pH 8.1), and
150 mM NaCl]; high-salt buffer [0.1% SDS, 1% Triton X-100,
2 mM EDTA, 20 mM Tris-HCl (pH 8.1), and 500 mM NaCl];
LiCl buffer [250 mM LiCl, 1% NP40 alternative, 1% deoxy-
cholate, 1mMEDTA, and 10mMTris-HCl (pH8.1)]; andTris-
EDTA buffer [10 mM Tris-HCl (pH 8) and 1 mM EDTA].
A total of 200 mM NaCl was added to reverse cross-link the
proteins and the DNA. After an overnight incubation at 65°C,
10mMEDTA, 40mMTris-HCl (pH 8), and 40mg/ml protease
K (Sigma-Aldrich) were added, and the sample was incubated
for a further hour at 55°C before proceeding with the DNA pu-
rification using the QIAquick PCR purification kit (Qiagen).
Buffers were supplemented with protease and phosphatase in-
hibitor cocktails (Sigma-Aldrich) and 10 mM sodium butyrate
(28). The following antibodies were used in the chromatin im-
munoprecipitation (ChIP) experiments: CLOCK (Abcam), and
asnegative control, the rabbit polyclonal anti-mouse IgG (M7023;
Sigma-Aldrich). The purified DNA was amplified by qRT-PCR
using the following primers: PER2 E-box, forward 59-cag at gaga
cgg agt cgc-39 and reverse 59-ccc aca gct gca cgt atc-39; and PER1
E-box, forward 59-cac gtg cgc ccg tgt gt-39 and reverse 59-ccg att
ggc tgg gga tct c-39.

RNA sequencing and data analysis

Total RNA was extracted using RNA STAT-60 from primary
HESC cultures first transfected with either PER2 or nontargeting
(NT) siRNA and then decidualized with 8-br-cAMP andMPA for
24 hours. There were 3 biologic repeat experiments performed.
RNAqualitywas analyzedonanAgilent2100Bioanalyzer (Agilent
Technologies, Wokingham, United Kingdom). RNA integrity
number score for all samples was $8.9. Transcriptomic maps
of single-end reads were generated using Bowtie 2.2.3 (29),
SAMtools 0.1.19, and TopHat 2.0.12 (30) against the University
of California, Santa Cruz, hg19 reference transcriptome (2014)
from the Illumina iGenomes resource using the fr-firststrand
setting. Gene counts were estimated using HTSeq 0.6.1 (www-
huber.embl.de/users/anders/HTSeq/).Transcriptspermillion(TPM)
were calculated as recently described (31). Count data from the
TopHat-HTSeqpipelinewere analyzedusing 2differentmethods
for differential expression detection, i.e., DESeq and edgeR
(32, 33). Expression was considered to be significantly different
if the false discovery rate value (edgeR) or adjusted P value
(DESeq) was,0.01. Differentially expressed genes were retained
if they were detected by at least 2 of themethods used. Expression
data have been submitted to the Gene Expression Omnibus
(GEO) repository (GSE62854).

In vitro colony-forming assay

TransfectedHESCswere seededat a clonal density of 50 cells/cm2

(to ensure equal loading) onto fibronectin-coated 60 mm cul-
ture dishes and cultured in growth medium: DMEM/F-12
containing 10% DCC-FBS, 1% L-glutamine (Invitrogen,
Paisley, United Kingdom), 1% antibiotic-antimycotic solution
(Invitrogen), insulin (2 mg/ml) (Sigma-Aldrich), estradiol
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(1 nM) (Sigma-Aldrich), and basic fibroblast growth factor
(10 ng/ml) (Merck Millipore, Watford, United Kingdom).
The first medium change was after 7 days. Colonies were moni-
tored microscopically to ensure that they were derived from
single cells. Cultures were terminated at 10 days and stained
with hematoxylin.

Cell cycle analysis, viability, and proliferation assays

For cell cycle analysis, HESCs in suspension were washed with
PBS, fixed with cold 70% ethanol, ribonuclease-A (Qiagen)
treated, stained with propidium iodide (Sigma-Aldrich), and
subjected to flow cytometry analysis. Cell cycle distribution was
assessed using FlowJo software (Ashland, OR, USA).

Real-time adherent cell proliferationwas determinedby the
label-free xCELLigence Real-Time Cell Analyzer (RTCA) DP
instrument (Roche Diagnostics Gesellschaft mit beschränkter
Haftung, Basel, Switzerland), which utilizes specialized
microtiter culture plates containing an interdigitized gold
microelectrode on which cells attach and proliferate. Cell
contact with the electrode increases the impedance across
these gold arrays and reported as an arbitrary “cell index”
value as an indication of confluency and adherence (34).
HESCs were seeded into 16-well plates (E-plate-16; Roche
Diagnostics Gesellschaft mit beschränkter Haftung) at a den-
sity of 10,000 cells per well and cultured in 10%DCC-FBS until
;80% confluent. The RTCA DP instrument was placed at
37°C in a humidified environment with 95% air and 5% CO2,
and cells were decidualized following transient transfection as
per standard protocols. Individual wells within the E-plate-16
were referenced immediately and monitored first every
15 minutes for 3 hours and then hourly for 4 days. Changes in
cell index were captured and analyzed using the RTCA
Software v1.2 supplied with the instrument.

Statistical analysis

Data were analyzed with the statistical packageGraphPad Prism 6
(GraphPad Software Incorporated, La Jolla, CA,USA). Unpaired
Student’s t test, Mann–Whitney U test, Spearman rank correla-
tion, and 1-way ANOVA with post hoc Tukey’s test were used when
appropriate. Statistical significance was assumed when P, 0.05.

RESULTS

Loss of circadian oscillations upon decidualization
of HESCs

Decidualization of stromal cells in the rat uterus is associ-
ated with loss of circadian rhythms (19). We speculated
that this phenomenon may aid in synchronizing maternal
and embryonic gene expression at implantation and, thus,
be conserved. To test this hypothesis, we measured the
transcript levels of 6 core clock genes, i.e., CLOCK, BMAL1
(ARNTL), CRY1, CRY2, PER1, and PER2, in primary un-
differentiated HESCs and cells decidualized for 4 days.
Following dexamethasone synchronization, all 6 clock
genes exhibited circadian regulation in undifferentiated
cultures with the amplitude of gene expression varying up
to 5-fold over a 26 hour period (Fig. 1). By contrast, ex-
pressionwas uniformly aperiodic in decidualizing cultures,
confirming that differentiation of HESCs is also associated
with loss of rhythmicity.

To investigate the underlying mechanism, we profiled
the expression of the same clock genes in undifferentiated
HESCs and cells decidualized for 2, 4, or 8 days. Decidu-
alization elicited modest but consistent changes in the

Figure 1. Decidualization silences circadian oscillations in HESCs. Primary undifferentiated HESCs and cultures first decidualized
with 8-br-cAMP and MPA for 4 days were treated with dexamethasone for 30 minutes, and transcript levels of 6 core clock genes
were measured at the indicated time points. The data show relative change (mean 6 SEM) in transcript levels in 3 independent
primary cultures. *P , 0.05.
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expression of several transcripts, including up-regulation
of BMAL1mRNA levels and down-regulation of CRY1 and
CRY2 expression (Fig. 2A). The changes at transcript level
were also apparent at protein level (Fig. 2B). Although up-
regulation of PER1 transcripts did not reach statistical sig-
nificance, expression of the protein gradually increased as
the decidual process unfolded. By contrast, CLOCK ex-
pression remained constant over the 8 day time course.
Themost striking observation, however, was the rapid and
profound inhibition of PER2 expression with transcript
levels falling by 80% within 2 days of differentiation (Fig.
2A). Western blot analysis confirmed the dramatic decline
in PER2 levels upon decidualization (Fig. 2B). Further-
more, PER2mobility on SDS-PAGE becamemore focused
and noticeably enhanced, suggesting that decidualization
also impacts on the posttranslationalmodification status of
this component of the circadian machinery.

Because circadian oscillations are predicated on auto-
regulatory feedback loops, we postulated that PER2
knockdown in undifferentiatedHESCs would recapitulate
the changes in core clock components associated with

decidualization. To test this hypothesis, primary undif-
ferentiated HESCs were transfected with either PER2 or
NT siRNA and harvested after 4 days. Although PER2
knockdown resulted in a reciprocal up-regulationof PER1,
it did not recapitulate the other decidual changes, sug-
gesting that multiple clock regulators are modulated in
response to HESC differentiation (Fig. 2C, D).

Mechanism of PER2 inhibition

To provide insight into the mechanism of PER2 down-
regulation, wefirst treatedprimaryHESCswith 8-br-cAMP,
MPA, or a combination. The decline in PER2 expression
wasmorepronouncedwithMPA than8-br-cAMP(Fig. 3A),
although the level of inhibition was not statistically signifi-
cant with either treatment. By contrast, combined treat-
ment had an additive effect, reducing PER2 expression by
70% after 48 hours when compared to vehicle-treated
control (P , 0.01). Mining of available ChIP data sets
revealed no changes in the levels of trimethylated lysine

Figure 2. Expression of clock genes in decidualizing HESCs. A) The transcripts levels of 6 core clock genes were measured in
undifferentiated HESCs and cells decidualized with 8-br-cAMP and MPA for 2, 4, or 8 days. The data show expression (mean 6
SEM) relative to that in undifferentiated cells (dotted line) in 3 independent primary cultures. B) Total protein lysates from
parallel cultures were subjected to Western blotting. b-Actin served as a loading control. C) Western blot analysis of total cell
lysates obtained 48 hours following transfection of primary cultures with NT or PER2 siRNA. D) mRNA levels of core clock genes
were also determined 48 hours following transfection of primary cultures with NT or PER2 siRNA. At 2 days after transfection, the
efficacy of siRNA-mediated knockdown of PER2 was 87 and 53% at mRNA and protein level, respectively. The data show relative
change (mean 6 SEM) in transcript levels in 3 independent primary cultures. *P , 0.05; **P , 0.01; ***P , 0.001.
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27 or lysine 4 of histone 3 (H3K27me3 and H3K4me3,
respectively) at the PER2 promoter upon decidualization
(data not shown). In the absence of obvious epigenetic
changes, we speculated that PER2 could be regulated at
the level of RNA stability. To test this hypothesis, undif-
ferentiated and decidualized HESCs were treated with ac-
tinomycinD, apotent transcription inhibitor, for 0.5, 1, 2, 4,
or 8 hours. As shown in Fig. 3B, the half-life of PER2 tran-
scripts was comparable in undifferentiated and decidual-
izing cells (2.93 versus 3.39 hours, respectively; P. 0.05).

In the mouse, Per2 expression is critically dependent on
constitutive binding of CLOCK to a noncanonical 59-
CACGTT-39 E-box enhancer, termed E2, located 20 base
pairs (bp) upstream of the transcriptional start site (35).
The E2 enhancer and the extended CLOCK:BMAL1M34
core binding site are highly conserved in humans, raising
the possibility that disruption of CLOCK binding disables
PER2 transcription in decidualizing cells. ChIP analysis
using a CLOCK antibody showed that decidualization was
associated with a rapid and sustained loss of CLOCK
binding at this locus (amplicon 2301 to 2162 bp). In 3
independent time course cultures, treatment with MPA
and 8-br-cAMP for 24 hours was sufficient to reduce
CLOCK binding to E2 in PER2 promoter by 59%, and this
level of repression was maintained over an 8 day time
course (Fig. 3C). By contrast, CLOCKbinding to the E-box
(E5; amplicon 2142 to 254 bp) in the PER1 promoter
remained constant throughout the time course (Fig. 3D).

PER2 knockdown silences circadian oscillations and
disrupts HESC decidualization

Next, we examined whether PER2 knockdown in un-
differentiated HESCs would suffice to disrupt circadian
rhythm generation. Paired primary cultures transfected
with either NT or PER2 siRNA were synchronized with
dexamethasone, and total RNA was harvested at 4 hours

intervals over a 28 hour period. Cells transfected with NT
siRNA demonstrated robust circadian oscillations in the
6 core clock genes. PER2 knockdown resulted in a non-
oscillating expression profile in undifferentiated HESCs
(Fig. 4), indicating that down-regulation of this clock pro-
tein accounts for the loss of autonomous circadian oscil-
lations in decidual cells.

We speculated that loss of PER2-dependent circadian
oscillations may sensitize undifferentiated HESCs to decid-
uogenic cues. However, this was not the case. Instead, PER2
knockdown severely compromised the induction of PRL
and IGFBP1 (IGF-binding protein-1), 2 cardinal decidual
marker genes, in response to cAMP and MPA signaling
(Fig. 5). Thus, whereas PER2 down-regulation is a striking
feature of decidual cells, this clock protein seems never-
theless essential for the initial responsiveness of HESCs to
differentiation signals.

Based on the kinetics of cAMP-dependent induction of
the decidual PRL promoter activity, HESC differentiation
has been shown to be a biphasic process, characterized by
an initial rapid but modest response, which is followed by
an accelerated rise in promoter activity after 12 hours of
stimulation (36).Hence,we examined the kinetics ofPER2
inhibition and PRL induction in a short time course. PER2
transcript levels transiently increased in response to 8-br-
cAMP andMPA, with levels peaking at 12 hours, which was
followed by a sharp drop by 24 hours (Fig. 6A). As antici-
pated, the rise in PRL mRNA was modest within the first
12hoursof stimulationbut thenaccelerated in concertwith
the drop in PER2 transcript levels (Fig. 6B). Intriguingly,
PER2 knockdown in HESCs had no significant impact on
the expression of PRL transcripts in the first 12 hours of
stimulation but inhibited the accelerated induction of this
decidual marker between 12 and 24 hours (Fig. 6C).

To investigate further the consequences of PER2
knockdown on activation of the decidual transcriptome,
total RNA harvested from 3 independent unsynchronized
HESC cultures, first transfected with either PER2 or NT

Figure 3. Regulation of PER2 in decidualizing
HESCs. A) Primary HESC cultures were treated
with 8-br-cAMP, MPA, or a combination for
48 hours and PER2 transcript levels measured.
The data show relative change (mean 6 SEM) in
mRNA levels compared to vehicle-treated un-
differentiated cultures established from 3 dif-
ferent biopsies. B) Primary cultures remained
undifferentiated or were decidualized for
48 hours prior to treatment with 5 mg/ml
actinomycin D. RNA was extracted at the
indicated time points and subjected to qRT-
PCR analysis. C) Binding of CLOCK to E2,
a noncanonical E-box enhancer in the PER2
promoter, was assessed by ChIP in 3 indepen-
dent primary cultures, either undifferentiated
(0 hour) or decidualized for the indicated time
points. The data show relative enrichment
compared to input. D) In parallel, CLOCK
binding to a regulatory E-box element (E5) in
the PER1 promoter was determined. The data
show the mean6 SEM. **P, 0.01; ***P, 0.001.
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siRNAand thendecidualized for 24hours, was subjected to
RNA sequencing. On average, 25 million single-end reads
were sequenced per sample. By combining 2 different
analysis tools, DESeq and edgeR, we identified 1121 genes
that were significantly altered upon PER2 knockdown, 572
(51%) of which were up-regulated and 549 (49%) down-
regulated. To assess further the relatedness of the cultures,
we calculated Z scores of the TPM values for the differen-
tially expressed genes. A heat map of this association is
depicted in Fig. 6D.

Among the down-regulated genes were PRL and
IGFBP1, confirming the initial qRT-PCR analysis. More
puzzling, however, was the observation that PER2 knock-
down up-regulated various other genes essential for
decidual transformation in HESCs, including genes
encoding key transcription factors [e.g., CREM, CEBPb,
CEBPa, and NURR1 (37, 38)], kinases and phosphatases
(e.g., SGK1 andMKP1) (39, 40), the cell surface receptor
for IL33 (IL1RL1, also known as ST2) (23), and BMP2,
a key decidual morphogen (41). Thus, rather than pre-
venting or attenuating differentiation, premature down-
regulation of PER2predisposes for a disordered decidual
program. Also striking was the induction of genes coding
metabolic regulators, including peroxisome proliferator-
activated receptorg (PPARG) and PPARGcoactivator 1-a,
following siRNA-mediated PER2 inhibition.

PER2 prevents clonal expansion of HESCs by
inducing G2/M arrest

Gene ontology (GO) analysis (GO slim) identified “cell
cycle” and “proliferation” among the biologic processes
prominently affected by PER2 knockdown (Fig. 6E). It is

well established that stromal cells must undergo mitotic
expansion prior to full decidualization (22). Based on
the sequencing data, we speculated that premature PER2
inhibition deregulates decidual gene expression by in-
terfering with the proliferative potential of HESCs. In
agreement, the ability of HESCs to form colonies when
platedat lowdensitywas severely compromiseduponPER2
knockdown (Fig. 7A, B). Flow cytometry analysis of 3 in-
dependent primary cultures revealed accumulation of
HESCs in G2/M phase of the cycle following transfection
with PER2 siRNA when compared to NT siRNA (mean6
SEM, 22.16 1.4% versus 8.8%6 2.3, respectively; P = 0.03),
which was accompanied by a reduction of cells in S phase
(11.7 6 1.1% versus 17.6 6 1.0%, respectively; P = 0.03)
(Fig. 7C). Interestingly, the apoptotic cell fraction (,2 N)
tended to be lower upon transfection with PER2 siRNA
when compared to NT siRNA. Real-time monitoring of
cell proliferation over 100 hours using microelectronic
sensor technology (xCELLigence) confirmed that siRNA-
mediated PER2 knockdown results in complete growth
inhibition of HESC cultures (Fig. 7D). These results show
that the lack of mitotic expansion observed upon PER2
knockdown is, at least inpart,due to impositionof cell cycle
block at G2/M. This observation fits well with the RNA-
sequencing data, showing that 52 of the 73 cell cycle-
related genes perturbed upon PER2 knockdown are
involved in G2/M transition (Supplemental Table 2).

Midluteal endometrial PER2 expression in
recurrent miscarriage

A search of the GEO database revealed that endometrial
PER2 transcript levels [GEO profiles; identification (ID)

Figure 4. PER2 knockdown in HESCs causes loss of rhythmic expression in core clock genes. Primary HESC cultures were
transfected with either NT or PER2 siRNA. After 48 hours, the cultures were synchronized with dexamethasone, and total RNA
was harvested at indicated time points. Transcript levels of core clock genes were analyzed by qRT-PCR in 3 independent
experiments. The data show the mean 6 SEM. *P , 0.05; **P , 0.01; ***P , 0.001.
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24460199] increase 4-fold between the proliferative and
early-secretory phase of the cycle (Fig. 8A). Elevated levels
aremaintained during themidluteal phase of the cycle but
then fall in concert with a sharp increase in the expres-
sion of decidual marker genes, including IGFBP1 (ID
24460250) (42). Next, we examined PER2 expression in
midluteal endometrial biopsies obtained from 70 women
with ovulatory cycles attending a dedicated miscarriage
clinic. All patients suffered consecutive miscarriages,
ranging between 2 and 11 (median 6 SD, 4 6 2). Most
losses occurred in the first trimester of pregnancy. Within
this cohort, endometrial PER2 transcript levels correlated
inversely with the number of previous miscarriages
(Spearman rank test, r =20.3260; P = 0.0046) (Fig. 8B). By
contrast, no association was found between PER2 expres-
sion and other demographics relevant to miscarriages
such as age (r = 0.01070; P = 0.9) or body mass index
(r = 20.1501; P = 0.2) (Fig. 8C, D).

DISCUSSION

Circadian rhythms permeate a vast array of physiologic
processesbymaintaining tissuehomeostasis in anticipation
of environmental change (43). We show that oscillations
of the core clock machinery are halted, or potentially
“paused,”upondecidualization ofHESCs.Decidualization

is a tightly spatiotemporally controlled process that com-
mences with proliferative expansion of stromal cells in the
superficial endometrial layerduring themidlutealphaseof
the cycle.Differentiating cells then transit throughdefined
phenotypic changes that sequentially control endometrial
receptivity, embryo selection, and, ultimately, either men-
strual shedding or resolution of pregnancy (18). Human
preimplantation embryos do not express circadian genes
apart from maternal transcripts, but these are degraded
prior to the implantation-competent blastocyst stage (1). A
parsimonious explanation for the silencing of circadian
oscillations in both conceptus and surrounding decidual-
izing cells is that it synchronizes embryo-maternal inter-
actions. Although PER2 levels drop significantly, all
components of the core clock machinery remain ex-
pressed in nonoscillatory decidual cells, suggesting that
these cells are poised to resume rhythmicity, possibly
entrained by embryonic cues.

Down-regulation of PER2 in the endometrium is pre-
cisely timed. In the rat, it marks the transition from
oscillatory receptivity to the nonoscillatory decidual
(postreceptive) endometrium (19). This pattern of ex-
pression is recapitulated in the human uterus with the
decline inPER2 transcript levelsheralding theprogression
frommid-to-late-luteal endometrium. In primary culture,
down-regulationofPER2mRNAoccurredbetween12and
24 hours following exposure to a standard deciduogenic
treatment. Again, inhibition of this clock genemarked the
onset of an important transitional phase, characterized by
increases in reactive oxygen production, altered redox
signaling, and accelerated expression of decidual marker
genes (26, 44). Previous studies reported that PER2 is
acutely responsive to hormonal and other signals that
converge onto a cAMP-response element in its promoter
region(45–47).Thispathwayprovides a likely explanation
for the initial transient rise in PER2 transcript levels in
differentiating HESCs. However, sustained expression and
circadian oscillations in peripheral tissues require consti-
tutive binding of a transcriptional complex containing
CLOCK to the highly conserved E2 enhancer in the
proximal PER2 promoter. In agreement, we found that
loss of PER2 expression in decidualizingHESCs coincided
with attenuated binding of CLOCK to the E2 enhancer.
This was not accounted for by a general reduction in the
DNA-binding activity of the CLOCK:BMAL1 heterodimer
as exemplified by the ChIP analysis of the PER1 promoter.
The precise mechanism of selective silencing of PER2 in
differentiating HESCs remains to be defined. One possi-
bility is that PER2 repression in decidualizing cells reflects
accumulation of p53 (48), which in other cell systems has
been shown to disrupt the binding of CLOCK to the E2
enhancer (49).

PER2 differs from other core clock proteins in that it
exhibits several structural features of steroid receptor cor-
egulators (50), including 2 conserved nuclear receptor-
binding motifs (LXXLL). Furthermore, PER2 has been
shown to bind estrogen receptor-a (ERa) and antagonize
estrogen-dependent proliferation of breast cancer cell
lines, at least in part by enhancing receptor degradation
(51, 52). It acts as a transcriptional corepressor by recruit-
ing histonedeacetylases (e.g., HDAC2) and components of
the polycomb repressor complex (e.g., EZH2 and SUZ12)
to promoter regions of target genes (53). The kinetics of

Figure 5. PER2 is required for the induction of decidual
marker genes. Primary HESCs were transfected with NT or
PER2 siRNA. The cultures remained untreated or were
decidualized for 48 hours. The data show relative induction
(mean 6 SEM) of the decidual marker genes PRL and IGFBP1
in 3 independent primary cultures. *P , 0.05.
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PER2down-regulation indifferentiatingHESCs coupled to
the enhanced activation of marker genes, such as PRL and
IGFBP1, suggest that this clock protein is a major repressor
of decidual gene expression, either through an epigenetic
mechanism, as a putative corepressor of the progesterone
receptor, or possibly through a combination of these
mechanisms. Yet, PER2 knockdown did not sensitize
HESCs to deciduogenic signals but resulted in a grossly
disordered differentiation response. These seemingly
contradictory findings are explained by the imposition of
G2/Mblock upon PER2 knockdown, which prevented the
obligatory mitotic expansion of stromal cells prior to the
onset of decidual gene expression. This observation is itself
intriguing because PER2 is widely regarded to be a tumor
suppressor (54, 55). As mentioned previously, PER2 knock-
down accelerates proliferation of ERa-positive breast cancer

cells (51). Notably, endometrial PER2 transcript levels
are also low during the proliferative phase of the cycle. In
leukemia cell lines, PER2 overexpression induces growth
arrest in the G2/M phase of the cell cycle by inhibiting
c-MYCandcyclinB1andup-regulatingp53 (54).Thus, the
ability of PER2 to promote or inhibit cell cycle progression
seems to be dependent on hormonal inputs within a cell-
specific context.

Miscarriage is the most common complication of preg-
nancy. One in 7 recognized pregnancies ends in mis-
carriage during the first trimester, and 1–2% fail between
13 and 24 weeks gestation (18). The American Society for
Reproductive Medicine defines RPL as $2 consecutive
miscarriages before the fetus reaches viability. Affected
couples are routinely screened for various anatomic, en-
docrine, immunologic, thrombophilic, and genetic risk

Figure 6. Premature PER2 down-regulation leads to a disorganized decidual response. A) The kinetics of PER2 expression in
response to 8-br-cAMP and MPA treatment were monitored in 3 independent cultures at the indicated time points by qRT-PCR.
PER2 transcript levels were normalized to those in undifferentiated cells. B) Kinetics of PRL induction in the same short time
course. C) Primary HESCs were transfected with NT or PER2 siRNA. After 48 hours, the cultures were treated with 8-br-cAMP
and MPA for 12 or 24 hours. PRL mRNA levels were normalized to those in undifferentiated cells. The data show mean fold
change (6SEM) in 3 independent cultures. *P , 0.05. D) Venn diagram comparison of differentially expressed transcripts,
identified by DESeq and edgeR, in primary HESCs decidualized for 24 hours following transfection with either NT or PER2
siRNA. Numbers represent differentially expressed transcripts with nonzero counts in 3 independent experiments. Clustered
heat map of top-ranked differentially expressed transcripts is also shown. E) Graphic representation of the top 15 GO slim
annotations of differentially expressed genes.
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factors, although the value of these investigations is highly
contentious. In a majority of patients, no underlying asso-
ciations are found, and conversely, many subclinical dis-
orders or risk factors perceived to cause miscarriages are
also prevalent in women with uncomplicated pregnancies.

Embryonic chromosomal imbalances are estimated to ac-
count for approximately 50% of all miscarriages; but im-
portantly, the incidence of euploidic fetal loss increases
with each additionalmiscarriage, whereas the likelihoodof
a future successful pregnancy decreases (56–58). In other

Figure 7. PER2 knockdown blocks mitotic
expansion of HESCs. A) Colony-forming assays
of 3 independent primary cultures first trans-
fected with either NT or PER2 siRNA. B) Total
colony area as measured by ImageJ analysis
(U.S. National Institutes of Health, Bethesda,
MD, USA), and the data represent mean
colony area (6SEM). C) Representative gated
cell cycle histograms obtained 48 hours after
transfection of primary HESCs with either NT
or PER2 siRNA. D) Real-time monitoring of
cell growth over 100 hours following trans-
fection with NT or PER2 siRNA. **P , 0.01.

Figure 8. Endometrial PER2 expression in RPL.
A) PER2 transcripts, expressed in arbitrary units
(A.U.), in proliferative (P), early-secretory (ES),
midsecretory (MS), and late-secretory (LS)
human endometrium. Expression levels were
derived from in silico analysis of publicly available
microarray data (GEO profiles; ID 24460199)
(42). B) Correlation between PER2 transcript
levels in midluteal endometrial biopsies and the
number of preceding miscarriages in 70 subjects
with RPL. C) Correlation between PER2 tran-
script levels in midluteal endometrial biopsies
and body mass index (BMI) in the RPL cohort.
D) Correlation between PER2 transcript levels in
midluteal endometrial biopsies and age of
cohort subjects. **P , 0.01; ***P , 0.001.
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words, the likelihood of a causal maternal factor increases
with each additional pregnancy loss.

Several lines of evidence from experimental as well as
epidemiologic studies suggest that an aberrant decidual
response predisposes for subsequent pregnancy failure
(18, 23, 39). The observation of a significant inverse cor-
relation between midluteal PER2 transcript levels and the
number of previous miscarriages strongly infers that de-
regulation of this core clock gene increases the likelihood
ofpersistentmiscarriages.Additional studies arewarranted
toassess the roleof PER2 in theendometrial epithelial cells
and to examine the tissue distribution of this clock protein
in patients with RPL and control subjects. Interestingly,
a recent systematic review and meta-analysis reported
a significant association between night shifts and mis-
carriages (adjusted odds ratio, 1.41; 95% confidence in-
terval, 1.22–1.63) (59). Taken together, these observations
demonstrate that disruption of both central as well as pe-
ripheral circadian outputs predisposes for reproductive
failure.
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