
This is a repository copy of Wavelet phase analysis of two velocity components to infer the
structure of interscale transfers in a turbulent boundary-layer.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/95859/

Version: Accepted Version

Article:

Keylock, C.J. and Nishimura, K. (2016) Wavelet phase analysis of two velocity 
components to infer the structure of interscale transfers in a turbulent boundary-layer. Fluid
Dynamics Research, 48 (2). 021406. ISSN 0169-5983 

https://doi.org/10.1088/0169-5983/48/2/021406

This is an author-created, un-copyedited version of an article published in Fluid Dynamics 
Research. IOP Publishing Ltd is not responsible for any errors or omissions in this version 
of the manuscript or any version derived from it. The Version of Record is available online 
at http://dx.doi.org/10.1088/0169-5983/48/2/021406

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Wavelet phase analysis of two velocity components to infer the1

structure of interscale transfers in a turbulent boundary-layer2

Christopher J. Keylock1a, Kouichi Nishimura23

1Sheffield Fluid Mechanics Group and Department of Civil and Structural Engineering,4

University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK and5

2 Graduate School of Environmental Studies, Nagoya University,6

Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan7

(Dated: March 8, 2016)8

Abstract9

Scale-dependent phase analysis of velocity time series measured in a zero pressure gradient10

boundary layer shows that phase coupling between longitudinal and vertical velocity components11

is strong at both large and small scales, but minimal in the middle of the inertial regime. The same12

general pattern is observed at all vertical positions studied, but there is stronger phase coherence13

as the vertical coordinate, y, increases. The phase difference histograms evolve from a unimodal14

shape at small scales to the development of significant bimodality at the integral scale and above.15

The asymmetry in the off-diagonal couplings changes sign at the midpoint of the inertial regime,16

with the small scale relation consistent with intense ejections followed by a more prolonged sweep17

motion. These results may be interpreted in a manner that is consistent with the action of low speed18

streaks and hairpin vortices near the wall, with large scale motions further from the wall, the effect19

of which penetrates to smaller scales. Hence, a measure of phase coupling, when combined with a20

scale-by-scale decomposition of perpendicular velocity components, is a useful tool for investigating21

boundary-layer structure and inferring process from single-point measurements.22

a Corresponding author: c.keylock@sheffield.ac.uk
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I. INTRODUCTION23

An enhanced understanding of boundary-layer structure is crucial for improving our abil-24

ity to control and manipulate a variety of environmental and industrial, turbulent flows.25

An important practical need for such work arises in numerical work, where the use of fully-26

resolved simulations to the wall is extremely expensive computationally, resulting either in27

the use of wall-functions to span the gap to the first computational mode, or the use of28

hybrid methods such as Detached Eddy Simulation [54]. Consequently, there has been a29

significant amount of experimental research examining the degree of isotropy at inertial and30

dissipative scales in boundary-layers. These have often focused on very high Reynolds num-31

bers [50] where a clear scale separation can be deemed to hold between the integral and32

dissipative scales, leading to data that test the applicability of theories developed for homo-33

geneous, isotropic turbulence. Parallel experimental work has investigated and confirmed34

the basis for the Townsend [57] attached eddy hypothesis [46, 53], leading to revised models35

for near-wall flow structure [18, 47]. Recent work by de Silva et al. [10] has shown that the36

attached eddy model can be used to predict the logarithmic dependence of the even-ordered37

structure functions and that these predictions are borne out in data from experimental and38

atmospheric flows at a range of Reynolds numbers.39

Thus, understanding of boundary-layer processes requires an engagement with the com-40

plex inter-scale transfers of energy, vorticity and helicity found in turbulence [27, 33, 49, 58].41

Understanding the subtleties of these processes and developing models for them has formed42

a significant part of the research effort in the field [13, 27, 60]. For example, as alluded to43

above, the structure function approach to analysing the moments of the velocity increment44

distribution and their scaling [12] provides a popular means to investigate properties of45

models for turbulence dissipation and intermittency [29, 52]. More recently, the Caffarelli-46

Kohn-Nirenberg integral has been used to place bounds on the appropriate form for struc-47

ture function scaling in the inviscid limit [11]. Alternatively, the structure function, ξn, for48

moment order n may be linked to multifractal methods that characterize the singularity49

spectrum, D(α), of the sets of non-zero Hölder exponents, α via the Frisch-Parisi conjecture50

[39, 40]:51

D(α) =min
n
(αn − ξn + 1) (1)52

In addition to small-scale intermittency, other complications to the classical view of tur-53
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bulence energy transfer revolve around interscale coupling and the difficulty in viewing large54

and small scale interactions as independent. For example, the identification of triad inter-55

actions [43] complicates the notion of scale separation, while large-scale forcing has been56

shown to influence the structure of turbulence at smaller scales where classically one would57

deem the interscale transfers to simply follow Kolmogorov-scaling [38, 64]. More specifically,58

in the context of boundary-layer flows, the autogenic formation of larger scales of turbulence59

structure in boundary layers [1] and their organisation into packets [7, 15] has been shown60

to influence the structure of the smaller scales near the wall [16, 19, 37].61

This paper is a technical contribution that demonstrates that measures of phase coherence62

at a single point, when applied on a scale-by-scale basis using a wavelet transform, reveal63

how scales are coupled, and provide information on the nature of boundary-layer turbulence64

structure. Therefore, this approach considers a hierarchy of scales rather than the more65

common separation into large and small scales using box filters in time/space [8, 16], spectral66

filtering [14] or wavelets [22]. The wavelet approach provides a natural and consistent means67

of studying not just the coupling between small and large scales, but relations across a range68

of consistently defined frequency bands.69

II. TECHNIQUES70

A. Wavelet analysis71

Wavelets have been used extensively in turbulence research. This includes the identifi-72

cation of coherent structures in turbulence data [5, 61, 62], the analysis of the multifractal73

structure of turbulence by wavelet transform modulus maxima [2, 40], the formulation of74

randomisation schemes for turbulent inlet boundary condition generation in large-eddy sim-75

ulations [26] and as a means to examine the formulation of the Navier-Stokes equations76

themselves [31, 32]. The cross-wavelet spectrum (the wavelet equivalent of the Fourier co-77

spectrum [4, 6, 21]) has been calculated with the continuous wavelet transform (CWT) for78

some time [17, 36]. For example, Camussi et al. [6] analysed the cross-wavelet characteris-79

tics of pressure signals obtained with microphones at neighbouting locations at the wall in80

an anechoic wind tunnel. The structure of the observed pressure dipole was related to the81

presence of near-wall coherent flow structures. In contrast to the use of the CWT, there are82
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advantages in using discrete filter banks in wavelet analyses, and the notion of wavelet cross-83

covariance and wavelet cross-correlation were introduced in the context of a specific variant84

of the discrete transform (the Maximal Overlap Discrete Wavelet Transform or MODWT)85

by Lindsay et al. [35] and formalized by Whitcher et al. [63].86

B. The Maximal Overlap Discrete Wavelet Transform (MODWT)87

The MODWT is an undecimated transform meaning that, as with the continuous wavelet88

transform (CWT), N wavelet coefficients, wj,k (k = 1, . . . ,N) are generated at each scale,89

j, for a signal of length N [45]. It can also be applied to any N ∈ Ú+ while the discrete90

wavelet transform (DWT) requires that N = cw2J , where j = 1, . . . , J are the wavelet scales91

up to the largest scale of the decomposition, J , cw ∈ Ú+ and, commonly, cw = 1. However,92

like the discrete wavelet transform (DWT), it is built from a hierarchy of filter banks, giving93

an exact reconstruction property. In effect, a discrete transform is undertaken for all N94

circular rotations of a velocity time series, u(t), although effective implementation means95

that, in practice, the computation is O(N log2N) and not O(N2) [34]. The MODWT is96

described in detail by Percival and Walden [45] and is based on a conjugate pair of high and97

low pass filters which are then scaled proportional to 2j/2. Efficient implementation uses98

a periodization of the filters rather than explicit circular convolution and, in this study, a99

Daubechies least asymmetric wavelet with eight vanishing moments is adopted [9].100

Because it is exactly invertible and the energy at each scale is proportional to that101

in the Fourier amplitude spectrum at the equivalent frequency band (once edge effects are102

accounted for), the MODWT is an effective analysis tool for turbulence research, particularly103

regarding synthetic signal generation [25, 26]. In this paper, we study the longitudinal, u(t),104

and vertical, v(t), velocity components measured in a zero-pressure boundary-layer in a wind105

tunnel. The MODWT is then applied in turn to u(t) and v(t) to derive the w
(u)
ju,k

and w
(v)
jv ,k

.106

The cross-phase analysis is then performed over all k = 1, . . . ,N for all wavelet coefficients107

at a given choice of ju and jv.108

C. Phase Coupling Measures109

The scale-by-scale calculation of phase is performed using the Hilbert transform, which110
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is consistent with an approach taken by Kreuz et al. [30]. We define the analytical signal of111

w
(u)
ju,k

as w
(u)
ju,k
+ iŵ

(u)
ju,k
= aju,ke

iφju,k , where ŵ
(u)
ju,k

is the Hilbert transform of w
(u)
ju,k

:112

ŵ
(u)
ju,k
=
1

π
p.v.∫

+∞

−∞

w
(u)
ju,k
(κ)

k − κ
dκ (2)113

and p.v. is the Cauchy principal value. It then follows that the phase is given by114

ϕ
(u)
ju,k
= tan−1

ŵ
(u)
ju,k

w
(u)
ju,k

(3)115

Hence, given ϕ
(u)
ju,k

and ϕ
(v)
jv ,k

, the phase difference is116

∆ϕ(k) ≡∆ϕju,jv ∣k = ϕ
(u)
ju,k
− ϕ

(v)
jv ,k

. (4)117

Two summarial measures of phase are adopted. The first is the mean phase coherence118

[30]: we average the angular distribution of phases on the unit circle in the complex plane:119

γ = ∣ 1
N

N

∑
j=1

ei∆φ(t)∣ (5)120

However, the distribution of γ is not uniform, meaning that to check for statistical signif-121

icance, surrogate values for γ denoted by γS are formed by phase-shuffling one of the time122

series before calculating the phase differences. The mean value, γ̄S, is then used to normalize123

the value of γ from the data:124

γ∗ = { 0 if γ < γ̄S
γ−γ̄S
1−γ̄S

if γ ≥ γ̄S
(6)125

Our second measure is based on an entropic formulation of the information in the phase126

difference distribution, ∆ϕju,jv . We discretize the interval −2π to +2π into B = 100 bins (the127

results converged at B ∼ 60 dependeing on y and j), and estimate the entropy according to128

the probability, p in each bin:129

E = −
B

∑
i=1

pi log pi. (7)130

In order to facilitate comparison to γ∗, we normalize by the maximum amount of disorder131

in the distribution, giving EI = 1 − (E/Emax) where Emax = −∑B
i=1(1/B) log(1/B).132

D. Summary of Implementation133

We take the MODWT of u, and v, and then align the wj,k at each j for each component134

based on the support, Lj, of the wavelet. We then calculate γ∗ and EI between all scales135
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ju ∈ {1, . . . , J} and jv ∈ {1, . . . , J}. Because the support of the wavelet is a function of j,136

edge effect size is also a function of j and if not accounted for, this will bias analysis [63].137

Hence, with jmax ≡ max{ju, jv}, we correct the calculation of the above measures by using138

data over k = Ljmax
+ 1, . . . ,N rather than all N samples.139

III. EXPERIMENTAL DATA140

The velocity data for this paper were obtained for two flow conditions (U∞ = 6 m s−1141

and 8 m s−1), with five replicated experiments for each case, in the zero pressure boundary142

layer wind tunnel at the Cryospheric Environment Simulator at the Shinjo branch of the143

Nagaoka Institute for Snow and Ice Studies. The wind tunnel has a square cross section144

of 1 m2 and a 14 m working section [41]. Experiments were performed over a fixed rough145

bed (ice coated snow grains) at −10○C. Based on the boundary layer thickness, δ ∼ 0.2146

m, the dimensionless roughness length, h/δ = 0.005, which is expressed in wall units as147

h+ = hu∗/ν and h+ ∼ 5.3 and h+ ∼ 6.7 for U∞ ∈ {6,8} ms−1, where u∗ is the shear velocity and148

ν is the kinematic viscosity. During each experiment, time series of N = 217 measurements149

of the longitudinal, u, and vertical, v, velocity were undertaken at eight vertical positions150

(y ∈ {0.01,0.02,0.03,0.055,0.07,0.10,0.12,0.15m}) at 5 KHz using a Kanomax cross-wire,151

constant temperature anenometer (model IFA 300 from TSI Inc.) with a 260 KHz response152

frequency, a length of 1 mm and a width of 5 µ m. Further details on calibration and gain for153

the wires is provided in Keylock, Nishimura, Nemoto and Ito [23]. Dimensionless distances154

from the wall for the sample locations are given in terms of wall units (y+ = yu∗/ν) in Table155

I. The logarithmic fits to the velocity profiles produced a non-dimensional collapse of the156

data as seen in Fig. 3a of Keylock, Nishimura and Peinke [24].157

The average Taylor Reynolds numbers over the profile for U∞ = 6 m s−1 case was Reλ = 205,158

while it was Reλ = 405 for U∞ = 8 m s−1. This increase was a consequence of a constant159

turbulence intensity (scaling with the mean velocity), but an increase in the estimated mean160

Taylor length scale from 8 mm to 12 mm with the velocity increase. The extent of the161

inertial regime was estimated from the limits to the power-law scaling of the third order162

structure function and its upper limit equated to ℓ ∼ 1000 samples on average. This can be163

seen in an alternative fashion, from the mean Fourier amplitude spectrum, in Fig. 1, which164

shows the well-developed scaling region in the data. With N = 217, a value of J = 13 was165
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selected, at which our wavelet has an effective support of LJ = 215.8. These wavelet scales166

are superimposed on Fig. 1 and it is clear that the low frequency limit of the scaling region167

lies in the interval 7 < j < 8.168

IV. RESULTS169

Results for γ∗ at y = 0.55 m (y+ = 280) and U = 6 m s−1 are shown in Fig. 2. Our170

color scheme is such that if γ < γ̄S (i.e. results are insignificant), they are shown in white,171

with otherwise a linear evolution from dark to lighter shades. For each of the J2 cells, we172

extracted the minimum, median, and maximum values for γ∗ over the five replicates, and173

these form panels (a) to (c) in Fig. 2. For all cases, it is the results along the diagonal174

that have the greatest significance but at both small and large scales there are significant175

couplings off the diagonal, which ‘pinch off’ at j = 4,5 i.e. the mid-point of the scaling176

regime from Fig. 1. Note that there is strong connectivity between velocity components at177

large scales and although this is reduced from j = 7,8 down to j ∼ 4, it is still significant178

[20]. Interscale connectivity for boundary-layer flows in terms of an amplitude modulation179

of the small scales by the large has recently been considered in some detail [14, 16, 37] and180

evidence for interscale connectivity is readily apparent in Fig. 2. For the majority of the181

rest of the paper we focus on the results on the diagonal (i.e. the phase coherence between182

the two velocity components at a given scale). We explain the observed pattern in terms of183

an evolution of the probability distributions for phase as a function of j.184

The median values for γ∗, i.e. [γ∗]50, along the diagonal ju = jv are shown in the top two185

panels in the left column of Fig. 3. It is clear that the pattern seen in Fig. 2 occurs for both186

U and all y. Furthermore, the results for EI (bottom panels on the left of Fig. 3) are very187

similar to those for [γ∗]50. Figure 4 checks the convergence of the results for [γ∗]50 on the188

diagonal (ju = jv) as a function of the sample size, N over which the values are estimated for189

the U∞ = 6 m s−1 dataset (up to the full length of the dataset, N = 217 samples). Each panel190

is for a separate j, and the eight lines in each panel are for different y. Hence, the right-hand191

values in each panel are those shown as lines in Fig. 3a. Thus, the very similar, small values192

for [γ∗]50 at j = 4 in Fig. 3a, are reflected in the barely differentiable lines in the j = 4193

panel of Fig. 4. The use of a log abscissa underplays the quality of the convergence, which194

is shown for a subset of six of the thirteen values for j in Fig. 5 using a linear abscissa.195
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While convergence takes longer for greater j (as anticipated, owing to the wider support196

of the wavelet filter at this scale), by N = 215 samples (i.e. a quarter the number used in197

analysis) there is only a minor variation in the values obtained even at j = 13. Hence, the198

results shown in Fig. 3 and hereafter may be deemed to be sufficiently precise to permit199

comparisons as a function of y and j at the very least for j ≤ 12.200

A. Inner and Outer Boundary-Layer Behavior201

Figure 3 shows stronger phase coherence (less disorder) for high j, attains a minimum in202

the center of the scaling range and then increases again as one moves towards λ. The data203

in Fig. 3 are plotted such that lines become more solid, and the color changes from black204

to red as the y-coordinate of the measurements increases. It is clear that there is stronger205

phase coherence further from the wall, but that otherwise the pattern is similar for all y,206

with the exception that close to the wall, the coherence minimum is expressed at somewhat207

smaller scales. The differences seen in the left-hand panels of Fig. 3 are too small to attempt208

a collapse with y or y+. Hence, the right-hand panels examine scaling with Taylor Reynolds209

number, Reλ(y), in panels (e) and (f), and local mean velocity ⟨u(y)⟩ in (g) and (h). Note210

that because of the decrease in u′2 with increasing y, normalization with Reλ(y) is expressed211

as a product. Results as a function of Reλ(y) collapse better for U = 6 ms−1 in Fig. 3e than212

U = 8 ms−1 in Fig. 3(f), and this additional U -dependence suggests that scaling on inner213

variables is less physically relevant than using ⟨u(y)⟩.214

While the curves in Fig. 3(a) and 3(b) exhibit an approximate random variation about215

the trend, in Fig. 3(e)-3(h), there is a more systematic y dependence, with the bottom216

three measurements (y ≤ 0.03 m) exhibiting a higher phase coherence at intermediate scales,217

and all measurements for greater y collapsing onto the same curve. A value of y = 0.03 m218

corresponds to y+ = 151 to 154 wall units over the five replicates (U = 6 m s−1) and y+ = 191219

to 194 for U = 8 m s−1. The next sample vertically is at y = 0.055 m, which for U = 6 m220

s−1, equates to y+ = 280. Ganapathisubramani et al. [15] showed that organized hairpin-221

like structures are responsible for a significant proportion of the total Reynolds stress at222

y+ ≤ 150. However, for y+ ≥ 200, while various coherent structures existed, there was no223

evidence for long, low speed streaks, or other wall-related structures. Hence, the differences224

observed here appear to relate to the physical basis for the standard separation between the225
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lower and upper parts of the outer layer at y+ ∼ 200, with the important role of coherent226

structures near the wall evident in the greater phase coherence in that region.227

B. Distributions for ∆φ(t)228

A preliminary inspection of the histograms for ∆ϕ(t) revealed a tendency towards a229

bimodal response at large j. Hence, making use of the fact that the fourth standardized230

moment of a distribution (the normalized flatness or kurtosis) has a lower bound given by231

the squared skewness plus one [44], Sarle’s multimodality coefficient, b, for a variable, u, is232

given by233

b(u) = S(u)2 + 1
K(u) + 3(N−1)2

(N−2)(N−3)

234

K(u) = ∑N
i=1(u − u)4/N

σ(u)4 − 3 (8)235

where S is the sample skewness, K is the sample excess kurtosis, where the subtraction236

adjustment yields a value of 0 for a Gaussian distribution, N is the sample size, and σ is237

the standard deviation. Values for the multimodality coefficient are shown in Fig. 6 as a238

function of U , y, and j, where the symbols indicate the median value and the vertical bars239

about these symbols (which are barely visible, except at small j in some panels) indicate the240

range of values for the replicated experiments. The dotted, horizontal line at b = 5/9 shows241

the expected value for both a uniform and an exponential distribution. For b to exceed these242

values, the kurtosis must be excessive. There are three primary features in Fig. 6:243

1. The general increase in b with j, with a peak occurring at j ∼ 10, followed by a244

plateauing or a decrease;245

2. The increase in maximum values for b as y increases, with the data nearest the wall246

failing to exhibit clear multimodality for any j; and,247

3. A reduced propensity for significant multimodality at small j as U increases.248

Given the low errors across the replicates in Fig. 6, the median results were deemed represen-249

tative and the median phase difference ([∆ϕ(t)]50) histograms for all j, U and y are shown250

in Fig. 7. The results are very similar for both input velocities, with any slight differences251

either due to experimental error or the fact that y has been used for the plotting (to permit252
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two lines in the same panel) rather than the more dynamically relevant, dimensionless, wall253

unit-based vertical coordinate, y+.254

For j < 4 the phase differences have a clear, single mode positioned at ∆ϕ(t) ∼ −π/6,255

highlighting the v - u, ejection-sweep structure. The increase in b through j = 4 to j = 8256

is due to a movement of the mode towards zero phase lag, a flattening of this mode as the257

distribution tends towards uniform probability within −π < ∆ϕ(t) < +π, followed by the258

emergence of two modes at the edge of the flattened part of the histogram by j = 7. These259

modes at ∣∆ϕ(t)∣ ≲ π become ever more clearly expressed as j → J . At y = 0.02 m it is260

clear for j = 5, . . . ,8 that the negative ∆ϕ(t) peak initially dominates, while for j = 9, . . . , 13261

there is a transition to the positive peak. In contrast, the negative ∆ϕ(t) peak dominates262

for j = 9, . . . ,13 at y = 0.15 m. Hence, the large-scale structure in a boundary-layer alters in263

nature between the inner and outer regions, with two modal responses present in both, but264

a difference in their relative frequency occurring.265

These differences can be analysed by considering the derivative skewness of ∆ϕ(t), which266

leads to changes in the behavior of the zero-crossings of the signal. Study of the zero267

crossings of turbulence data [55] and investigation of the (fractal) properties thereof has a268

history that dates back to Kolmogorov [28]. Indeed, the quantity describing the scaling of269

the zero-crossings has subsequently been termed the Kolmogorov Capacity [25, 42, 59]. Here,270

we consider changes in the skewness by the difference in the spacing in time of the zero-271

crossings (∆(t)(Z0)) for positive to negative crossings (∆(t)(Z0)

(+−)
) and negative to positive272

crossings (∆(t)(Z0)

(−+)
). Based on the results in Fig. 7, we focus on j = 10 and consider the273

flow near the wall (z = 0.01 m) and in the outer layer (z = 0.15 m), which for U = 6 ms−1274

equate to y+ = 50 and y+ = 765, respectively. The histograms in Fig. 8 show that there is275

no real difference in ∆(t)(Z0)

(+−)
at either height and that ∆(t)(Z0)

(−+)
is very similar to ∆(t)(Z0)

(+−)
276

at y+ = 765. That these similar marginal distributions result in a correlated structure for277

y+ = 765 is clear in the bottom right figure - a longer time between a negative crossing278

to a positive crossing is correlated (R = 0.31) to the time between a positive crossing to a279

negative crossing. In contrast, and as seen in the top-right panel, near the wall, ∆(t)(Z0)

(−+)
280

is very differently distributed, with no clear mode and a much longer tail than the other281

cases (despite the fact that near the wall, typical timescales for turbulence are shorter).282

This results in a decorrelation between ∆(t)(Z0)

(−+)
and ∆(t)(Z0)

(+−)
as shown in the bottom-left283

scatterplot of Fig. 8. The similarity of the marginals, and the significance covariance in the284
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joint distribution at y+ = 765, means that a model for the phase difference histogram at this285

height is one where the signal has some asymmetry (the mode for ∆(t)(Z0)

(+−)
, the time spent286

in the ∆ϕ(t) < 0 state, is a little longer than for ∆(t)(Z0)

(+−)
) and periods of positive phase287

coherence are coupled to periods of negative coherence. For y+ = 50, while the duration288

distribution in the ∆ϕ(t) < 0 state is similar, the distribution for ∆(t)(Z0)

(−+)
has a longer289

tail, resulting in more time spent in the ∆ϕ(t) > 0 state on average. This interpretation is290

consistent with the differences in mass either side of ∆ϕ(t) = 0 in Fig. 7 but provides greater291

information on the structure. Specifically, the decoupling (correlation coefficient, R = 0.08)292

at y+ = 50 means that the extended ∆ϕ(t) > 0 events are approximately independent of293

the ∆ϕ(t) < 0 cases. That this is a near-wall phenomenon is clear in Fig. 7 where the294

tendency for greater mass in the positive mode of the histogram at large j has disappeared295

by y = 0.055 m (y+ = 280 for U = 6 ms−1).296

C. Asymmetry in the Interactions297

We define an asymmetry measure for the off-diagonal interactions involving γ∗ as298

A
γ
ju,jv
=

[γ∗ju,jv]50 − [γ∗jv ,ju]50
1

2
([γ∗ju,ju]50 + [γ∗jv ,jv]50) (9)299

Because of the symmetry of ∣Aγ
ju,jv
∣, we plot results for U = 6m s−1 and U = 8m s−1 in the300

lower and upper halves, respectively, of the panels in Fig. 9. There is a more pronounced301

asymmetry for the fine scales, with the results at (ju = 2,3, jv = 3,2) particularly marked.302

Results are consistent for both U and different y, with a change in the sign of Aγ
ju,jv

close to303

the diagonal occurring at j ∼ 5, i.e. the middle of the inertial range, and increasing to j = 6304

for y = 0.15m. For j < 5, larger scales for u are more strongly coupled to smaller scales for305

v on average, with the opposite the case for larger j. Note that the small j behavior is also306

consistent with a hairpin model of short-term, intense ejections, coupled to and followed by307

a more sustained sweeping motion. At the larger scales, the vertical advection of packets308

of hairpins [1] that have a local longitudinal velocity similar to the background velocity309

field, such that variations in u are induced by the vorticity of the structures themselves,310

would explain the coupling between longer duration vertical movements and shorter duration311

changes in u.312

11



V. CONCLUSION313

Both measures of phase coherence, when applied on a scale-by-scale basis, revealed similar314

features of a turbulent boundary-layer from measurements of velocity at a single point. Given315

that Lj=1 in this study is ≃ λ, and Lj=7 ≃ ℓ, the distinct zones in Fig. 2 correspond to (with316

lengths derived for the U = 8 ms−1 case):317

1. 1 ≤ j ≤ 4 (0.01 m to 0.17 m): Inertial regime with growing coherence as one moves318

from large to small scales;319

2. 4 ≤ j ≤ 6 (0.17 m to 0.485 m): Inertial regime with only weak phase-coupling to smaller320

scales;321

3. j > 6: (> 0.485 m): The upper part of the inertial regime and then very large scale322

motions (VSLMs) [1] with significant phase coherence across scales.323

This pattern persists for all y, meaning that the effect of the VSLMs effects the smaller scales324

[14, 16] and persists down towards the wall [37]. However, near the wall there is greater325

coherence than anticipated relative to the local mean velocity (attempted collapse on the326

right-hand side of Fig. 3). This enhanced organization reflects the presence of near-wall327

streaks and hairpin-like structures.328

The significant phase coupling between virtually all j in the high frequency end of the329

scaling region for the dynamics (j ≲ 5) is consistent not only with a “hand-to-hand” transfer330

of energy [48], but correlated behavior across scales [3], with the phase asymmetry, Aγ

j(u),j(v)
331

indicating that higher frequency (low j) variability in v is more strongly coupled to larger332

scale, lower frequency variation in u than vice versa. Similar multiscale coupling is seen at333

the largest scales in both Fig. 2 and Fig. 9, particularly in the nearer wall locations in Fig.334

9. This implies that there are two scales to turbulence energy transfer, with the middle of335

the inertial region acting as a (permeable) barrier to continuous transfer. Hence, this study336

provides some evidence to support traditonal scale-separation arguments in turbulence [56]337

and the rationale behind the definition of subfilter scales in large-eddy simulations [51] but338

it also highlights that this is an approximation and that large scales leave an imprint on339
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smaller scales in boundary-layers. [24, 37, 38, 43, 64].340
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FIG. 1. The mean Fourier amplitude spectrum for the data in this study (black), with 95%

confidence intervals based on the standard error (gray lines) also shown. The vertical dotted lines

show the equivalent frequencies of the wavelet scales used in the study.
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(black, dashed); y = 0.055 m (black, solid); y = 0.07 m (red, dotted); y = 0.10 m (red, dot-dashed);

y = 0.12 m (red, dashed); and, y = 0.15 m (red, solid).
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