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Abstract

The theory of parameterized complexity is an area of computer science focusing

on refined analysis of hard algorithmic problems. In the thesis, we give two

complexity lower bounds and define two novel parameters for matroids.

The first lower bound is a kernelization lower bound for the Permutation

Pattern Matching problem, which is concerned with finding a permutation

pattern inside another input permutation. Our result states that unless a cer-

tain (widely believed) complexity hypothesis fails, it is impossible to construct a

polynomial time algorithm taking an instance of the Permutation Pattern

Matching problem and producing an equivalent instance of size bounded by a

polynomial of the length of the pattern. Obtaining such lower bounds has been

posed by Stéphane Vialette as an open problem.

We then prove a subexponential lower bound for the computational com-

plexity of the Optimum Linear Arrangement problem. In our theorem, we

assume a conjecture about the computational complexity of a variation of the

Min Bisection problem.

The two matroid parameters introduced in this work are called amalgam-

width and branch-depth. Amalgam-width is a generalization of the branch-width

parameter that allows for algorithmic applications even for matroids that are not

finitely representable. We prove several results, including a theorem stating that

deciding monadic second-order properties is fixed-parameter tractable for gen-

eral matroids parameterized by amalgam-width. Branch-depth, the other newly

introduced matroid parameter, is an analogue of graph tree-depth. We prove

several statements relating graph tree-depth and matroid branch-depth. We also

present an algorithm that efficiently approximates the value of the parameter on

a general oracle-given matroid.
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Chapter 1

Introduction

Efficient computation is one of the main focal points of computer science. Since

the beginnings of the field, researchers have attempted to either find algorithms

minimizing resources exerted for obtaining the correct answer to algorithmic

problems or to find negative results – reasons why some problems should not

admit algorithms above certain levels of efficiency. The first theoretical notion

trying to characterize what is practically computable was the class P of algo-

rithmic problems solvable in polynomial number of steps. From a practical

standpoint, this mathematical formalization has several major issues. One par-

ticular is that many algorithmic problems widely believed to lie outside of P are

actually routinely solved in the real world, e.g. by CSP-solvers. The instances

encountered as a result of real applications sometimes seem to posses certain

structural properties that help to accelerate the computation. A more detailed

look at the (conjectured) land behind the boundaries of P is certainly warranted.

Parameterized complexity, the area to which this thesis mainly contributes,

provides a framework for such refined analysis. In this field, the set of all possible

inputs of an algorithmic problem (e.g., the set of all graphs) is divided into an

8



CHAPTER 1. INTRODUCTION 9

infinite number of layers by equipping the individual instances with a parame-

ter value. Different parameterizations of the same set of inputs are sometimes

sensible. Ideally, the parameter should, roughly speaking, correspond to the al-

gorithmic difficulty of resolving the instance. One of the main aims of the area

is to obtain fixed-parameter tractable (FPT) algorithms for parameterized prob-

lems. These are algorithms with the running time of O
(
f(k) · nc

)
, where f(·) is

a computable function, n the size of the input of the instance, k the value of the

parameter, and c a real constant.

An example of a parameterization is given by the classical notion of graph

tree-width, employed prominently in the proof of the Robertson-Seymour theo-

rem (see, e.g., [76]). The tree-width of a graph is a value proportional to the

“distance” the graph is from being a tree (or a forest). Graphs with tree-width 1

are actually precisely forests. The formal definition is given as Definition 8 in

Section 2.3. A large number of difficult (NP-hard) problems on graphs are easy

to solve on graphs of bounded tree-width: for any choice of a constant k, there

exists a polynomial algorithm solving the problem for graphs of tree-width at

most k. Many of the corresponding algorithms are FPT under this parameteriza-

tion. A classical result of Courcelle [21] generalizes this to all decision problems

expressible as formulas in monadic second-order logic.

Theorem 1 (Courcelle, [21]). Let ϕ be a fixed formula in monadic second-order

logic and k ∈ N. Then, there is an algorithm deciding whether a graph G satisfies

ϕ in linear time for graphs of tree-width at most k.

Parameterized complexity also provides us with the first formal framework to

theoretically analyze preprocessing algorithms through the notion of kerneliza-

tion. A preprocessing algorithm is an algorithm that transforms an instance of
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a problem to an equivalent instance of strictly smaller size. Such algorithms are

useful when it comes to solving difficult problems in practice: an efficient prepro-

cessing algorithm is applied exhaustively after which another approach is used to

solve the reduced instance. Obviously, it is desirable for the size of the reduced

instance to be as small as possible. We say that a parameterized problem has

a kernel if there exists a polynomial time preprocessing algorithm guaranteed to

produce an instance of size and parameter value bounded by a function of the

parameter of the initial instance. Such algorithm is then called a kernelization

algorithm. Conveniently, the class of FPT problems and the class of problems

with a kernel coincide [27]. A stronger notion is represented by the class of

problems with a polynomial kernel. For these, there is a kernelization algorithm

always producing an instance of size bounded by a polynomial of the parameter

value of the initial instance.

The first result of this thesis is a kernel size lower bound for the Permutation

Pattern Matching problem. A permutation π contains a permutation σ as

a pattern if it contains a subsequence of length |σ| whose elements are in the

same relative order as in the permutation σ. The Permutation Pattern

Matching problem is the corresponding algorithmic problem. The standard

parameterization is by |σ|. Guillemot and Marx [39] recently resolved the issue

of whether the problem is in FPT affirmatively, implying that the problem has a

kernel. Vialette [82] asked for lower bounds on the size of this kernel. We prove

the following:

Theorem 2. Unless NP ⊆ co-NP/poly, the Permutation Pattern Match-

ing problem does not have a polynomial kernel.

The assumption at the beginning of the theorem is a standard hypothesis
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in the field of computational complexity and one of the typical starting points

for obtaining kernelization lower bounds. Its failure would imply the collapse of

the polynomial hierarchy to the third level. Consequently, there is a high degree

of confidence in its validity within the research community. The proof of this

theorem is given in Chapter 3.

A lower bound of a different kind is presented in Chapter 4, where we are

concerned with the standard (i.e., non-parameterized) Optimum Linear Ar-

rangement problem. We prove a hardness result relative to the computational

complexity of the gap version of the Min Bisection problem. (The precise def-

initions of these algorithmic problems are deferred to Chapter 4.) Specifically,

we formulate the following conjecture:

Conjecture 3. There exist d0 ∈ N and α, β ∈ (0, 1), α < β such that for each

d ≥ d0 there is no 2o(n) time algorithm for (d, α, β)-Gap Min Bisection.

The (d, α, β)-Gap Min Bisection problem is defined in Chapter 4. Essentially,

it is a gap version of the Min Bisection problem on regular graphs. The mo-

tivation for this conjecture is given in Chapter 4. There, we prove the theorem

below.

Theorem 4. Unless Conjecture 3 fails, there is no 2o(n+m) time algorithm for

Optimum Linear Arrangement, where n is the number of vertices of the

input graph and m the number of its edges.

This is a similar kind of computational complexity bound to those based

on the Exponential Time Hypothesis (ETH), which stipulates that there is no

algorithm for the q-SAT problem running in 2o(n) time, where n is the number of

variables of the input formula. In fact, as a part of an ongoing research project
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reported in [6] we prove complexity lower bounds for several graph completion

problems first under the ETH and then apply Conjecture 3 and Theorem 4 to

substantially strengthen them.

Let us briefly comment on some results from [6] that are not part of this

thesis. Hopefully, they provide additional level of justification for our conjecture

and illuminate the relevance of Theorem 4. Graph completion problems are algo-

rithmic problems where the question to be decided is whether a certain number

of edges can be added to the input graph in such a way that the resulting graph

belongs to some class, e.g., the class of chordal graphs. We consider the natural

parameterization of these problems by the number of edges to be added and give

the following bounds. (We refer the reader to Section 2.4 for the definitions of

the algorithmic problems in question.)

Theorem 5 (Bliznets et al., [6]). Unless the ETH fails, there exists c > 0 such

that none of the following problems has a 2O(k
1
4 / logc k) · nO(1) algorithm, where k

is the value of the parameter and n is the input size: Chordal Completion,

Trivially Perfect Completion, Proper Interval Completion, and

Interval Completion.

The parameterized problems from the above theorem have been studied exten-

sively in the literature [34]. Theorem 4 allows us to obtain lower bounds that

essentially match the fastest presently known parameterized algorithms.

Theorem 6 (Bliznets et al., [6]). Unless Conjecture 3 fails, for all ε > 0 there

is no 2O(
√
k1−ε) · nO(1) algorithm for any of the following problems: Chordal

Completion, Trivially Perfect Completion, Proper Interval Com-

pletion, and Interval Completion.
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For example, the currently fastest known parameterized algorithm for Chordal

Completion runs in 2O(
√
k log k) + nO(1) steps [34].

In Chapter 5, we introduce the notion of amalgam-width. This is an attempt

to generalize the notion of width parameters to matroids. Several such param-

eters have already been introduced in the literature, including a direct general-

ization of tree-width [44] and clique-width [22]. However, our aim is to obtain

one that allows the algorithmic applications even for non-representable matroids.

Furthermore, amalgam-width has the nice property that it corresponds to a nat-

ural, standard gluing operation called amalgamation. We prove the following

theorem:

Theorem 7. For each k ∈ N and each formula ϕ in monadic second-order logic

there is an algorithm deciding whether a matroid M satisfies ϕ in linear time for

matroids of amalgam-width bounded from above by k (assuming the corresponding

amalgam decomposition T of the matroid is given explicitly as a part of the input).

Amalgam-width generalizes a parameter based on 2-sums introduced in [81]

and branch-width for matroids representable over finite fields. The later gener-

alization is in the sense that amalgam-width can be bounded by a function of

branch-width. The proof of this claim (Proposition 46) is constructive and leads

to an efficient algorithm constructing such amalgam decompositions.

The next chapter introduces another matroid parameter, the matroid branch-

depth. This time, the main motivation for our algorithmic results is structural.

The parameter is a matroid analogue of graph tree-depth, an established graph

parameter used among others by Nešetřil and Ossona de Mendez in their research

on combinatorial limits [66]. There, the notion of tree-depth is used to constrain

the elements of infinite convergent sequences of graphs so that the existence of
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a combinatorial limit called modeling can be guaranteed. In [52] we extend

this theory to matroids by introducing matroid modelings, the branch-depth

parameter, and the notion of first-order convergent sequences of matroids. Apart

from a number of negative results, we also prove a theorem analogous to the

abovementioned result on graphs. Specifically, we show that every first-order

convergent sequence of matroids with bounded branch-depth representable over

a finite field has a matroid modeling. The similarity between this statement and

the aforementioned result of [66] indicates that at least from some perspective

the branch-depth parameter is an analogous notion to tree-depth.

In Chapter 6 of this thesis, we focus exclusively on the algorithmic aspects of

the branch-depth parameter and on its relationship with tree-depth. We provide

an efficient algorithm approximating the parameter value for any oracle given

matroid. The close relation with tree-depth is substantiated by the following

properties:

� The branch-depth of a graphic matroid M(G) is at most the tree-depth

of G. Furthermore, it can be bounded from below by a function of the

tree-depth if G is 2-connected.

� Both branch-depth and tree-depth are minor monotone parameters.

� The branch-depth of a matroid is at most the square of the length of its

largest circuit (recall that the tree-depth of a graph G is at most the length

of its longest path).

� The branch-depth of a matroid is at least the logarithm of the length of

its largest circuit (note that the tree-depth of a graph G is at least the

logarithm of the length of its longest path).
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The branch-depth parameter is defined through a particular kind of decomposi-

tion (Definition 51 in Section 6.1).



Chapter 2

Preliminaries

In this chapter, we review the notation adopted by this thesis and reference results

from literature utilized in the proofs of the subsequent chapters. The contents

are not intended as an introductory text to the field. Rather, we hope to provide

a sufficient amount of context for our results while maintaining brevity. Many

of the elementary notions are mentioned simply to fix the notation. We refer

the reader to the monographs [25] and [71] for a comprehensive introduction to

graph theory and the theory of matroids, respectively. Parameterized algorithms

are treated in the recent book [23].

2.1 Basic notation

The set {i, i + 1, . . . , j − 1, j} is denoted by [i, j]. We let [n] := [1, n]. The set

of all subsets of the set X is denoted by S(X) and
(
X
r

)
is the set of all subsets

of X of size r ∈ N. For a function f and a set X we define f(X) to be the set

{f(x) : x ∈ X}. For a matrix M , the element in the i-th row and the j-th column

is denoted by Mi,j. A submatrix of a matrix M is a matrix obtained by deleting

16



CHAPTER 2. PRELIMINARIES 17

some rows and/or columns of M . For a non-empty set Σ, we denote by Σ∗ the

set of all sequences of finite length composed of elements from Σ. For example

{0, 1}∗ is the set of all finite binary strings. A formula in conjunctive normal

form (CNF) is a formula C1 ∧ C2 ∧ . . . ∧ Ck, where Ci are clauses of the form

Ci = `i1∨`i2∨ . . .∨`iki , where `ij is a literal (either a variable or a negated variable).

This formula is a q-CNF formula if all its clauses have precisely q literals.

2.2 Permutations

A permutation π is a bijection from [n] to [n]. The value π(i) is called the entry of

π at position i (or index i). We use |π| to denote the size of the domain of π. Two

common representations of a permutation π are used in the thesis: the vector

(π(1), π(2), . . . , π(n)) and the corresponding permutation matrix. The latter is a

|π| × |π| binary matrix with 1-entries precisely on coordinates (π(i), i).

2.3 Graphs

A graph is a pair (V,E), where V is the set of vertices and E ⊆
(
V
2

)
is the set of

edges. Therefore, unless otherwise specified, graphs in this thesis are undirected,

loopless, and without edge multiplicities. In line with common practice, an edge

e = {u, v} is denoted by (u, v) although the pair is not ordered. We say that an

edge e is incident with the vertex v if v ∈ e. The set of vertices of G is denoted

V (G) while E(G) is its edge-set. A hypergraph is a pair (V,E), where E ⊆ S(V ).

An r-uniform hypergraph is a hypergraph where E ⊆
(
V
r

)
. Therefore, the notions

of a graph and a 2-uniform hypergraph coincide. A graph H is a subgraph of G

if V (H) ⊆ V (G) and E(H) ⊆ E(G). The subgraph H is said to be induced if



CHAPTER 2. PRELIMINARIES 18

E(H) = E(G) ∩
(
V (H)

2

)
. We use G[X] to denote an induced subgraph of G with

vertex set X. A complete graph Kn on n vertices is the graph (V,
(
V
2

)
), where

V = [n]. A graph G contains a clique of size l if an isomorphic copy of Kl is

a subgraph of G.

For a vertex v, deg(v) is its degree: the number of edges incident with v. We

say that a graph is d-regular if all its vertices have degree d. We use ∆(G) :=

max{deg(v) : v ∈ V (G)} to denote the maximum degree of G. The set N(v) :=

{w : (v, w) ∈ E(G)} is the neighbourhood of v. This notation is extended to

subsets of vertices X, i.e. N(X) =
⋃
v∈X N(v) \X.

If X, Y ⊆ V are disjoint, then E(X, Y ) is the set of edges between X and

Y . We use G[X, Y ] to denote the induced bipartite subgraph of G with parts

X and Y . That is, G[X, Y ] is the graph with vertex set X ∪ Y that contains

precisely the edges E(X, Y ). For X ⊆ V , we denote by δ(X) the set of edges

with exactly one endpoint in X. A bipartition of a graph G is a pair (A,B),

where A,B ⊆ V (G), A ∩ B = ∅, and A ∪ B = V (G). A balanced bipartition of

a graph G is a bipartition (A,B) such that
∣∣|A| − |B|∣∣ ≤ 1. We define a cut as

the set of edges E(A,B), for a bipartition (A,B) of V . A balanced cut is the set

E(A,B) where (A,B) is balanced bipartition. The number |E(A,B)| is called

the size of the cut. A complement of G is the graph with the vertices V and

edges
(
V
2

)
\E. We denote it by G. We add subscripts to the above notation, e.g.,

degG(v), NG(X), δG(X), or EG(U, V ), when it is not clear from context which

graph we refer to.

A dominating set of a graph G is a subset X of the vertex set V := V (G) such

that X ∪N(X) = V . Chordal graphs are graphs where every cycle (of length at

least four) has a chord – an edge connecting two vertices of the cycle which is
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not a part of the edge-set of the cycle. An interval graph is a graph G such that

V (G) can be placed in correspondence to a set of intervals on the real line and two

vertices are connected precisely when they have a non-empty intersection. (We

also use the term interval graph for graphs isomorphic to such graphs.) A proper

interval graph is an interval graph where no pair of vertices corresponds to a pair

of intervals such that one properly contains the other. A trivially perfect graph

is an interval graph where each pair of vertices corresponds to a pair of intervals

that are either disjoint or one contains the other.

A k-tree is either a clique of size k+ 1 or a graph that can be obtained from a

smaller k-tree by adding a new vertex and connecting it to k vertices that already

form a clique.

Definition 8. Tree-width of a graph G is the least number k ∈ N such that G

is a subgraph of a k-tree.

2.4 Algorithms

Formally, an algorithmic problem is a mapping f : {0, 1}∗ → {0, 1}∗ prescribing

each binary input the appropriate output. We are interested in the construction of

Turing machines encoding the function f while simultaneously satisfying certain

requirements, typically on running time. Such a Turing machine (and the corre-

sponding algorithm) is said to solve the particular problem f . Complementarily,

we sometimes try to find reasons why a Turing machine with certain proper-

ties should not exist. For those arguments, additional hypotheses are typically

required.
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A decision problem is a special kind of algorithmic problem where the set

of values of the mapping is simply {0, 1}. The instances mapping to 1 are

sometimes termed the “YES” instances, while the rest are “NO” instances. A

decision problem can be identified with the subset of inputs {0, 1}∗ where the

mapping f from the above definition attains the value of 1. Such a set is often

called a language. We say that the Turing machine solving the decision problem

in question recognizes this set. Since this thesis is not concerned with the low-level

implementation details of Turing machines, we abuse the notation and identify

the finite binary sequences with the discrete structures (graphs, permutations,

formulas, subsets of vertices, etc.) they are representing. The particular choice

of representation is almost never an issue as long as it is reasonably efficient.

We now give an overview of the algorithmic problems that appear in this

thesis. SAT, Clique, and Dominating Set are well known NP-hard problems:

SAT

Input: A formula ϕ in the conjunctive normal form.

Question: Is there an assignment of values to the free variables of ϕ satisfying

the formula?

Clique

Input: A graph G = (V,E), an integer k.

Question: Does G contain a clique of size k?
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Dominating Set

Input: A graph G = (V,E), an integer k.

Question: Does G contain a dominating set of size k?

There are many variations on the SAT problem in the literature. Of particular

importance is the q-SAT problem, where q ∈ N.

q-SAT

Input: A formula ϕ in the conjunctive normal form where each clause con-

tains q distinct literals.

Question: Is there an assignment of values to the free variables of ϕ satis-

fying the formula?

Graph completion problems are a particular type of decision problems where

we ask whether a number of edges can be added to an input graph so that the

resulting graph belongs to a certain class of graphs, e.g., chordal graphs. The

following completion problems are NP-hard. Their parameterized variants (where

k is the parameter) are in FPT.

Chordal Completion

Input: A graph G, an integer k.

Question: Can k edges be added to G so that G is a chordal graph?

Trivially Perfect Completion

Input: A graph G, an integer k.

Question: Can k edges be added to G so that G is a trivially perfect graph?
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Proper Interval Completion

Input: A graph G, an integer k.

Question: Can k edges be added to G so that G is a proper interval graph?

Interval Completion

Input: A graph G, an integer k.

Question: Can k edges be added to G so that G is an interval graph?

2.5 Complexity classes

A complexity class is a (typically infinite) set of decision problems. The two

most fundamental complexity classes are P and NP. The former is the set of all

decision problems solvable by a Turing machine in polynomial time. The latter

is a set of decision problems that can be decided in polynomial time when an

appropriate certificate (i.e., an appropriate input dependent string of bits with

polynomial length) is given to the Turing machine in addition to the input. If C

is a complexity class, then co-C is the class

{
{0, 1}∗ \X : X ∈ C

}
.

For example, co-NP is the class of all problems, where the “NO” instances can

be identified in polynomial time when an appropriate certificate is provided.

Deciding a problem in NP is equivalent to determining if there exists a poly-

nomially long string of bits satisfying a certain property from P. When resolving

a problem in co-NP, we are effectively checking whether a certain property from
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P holds for all such strings. This leads to a method that takes a class of prob-

lems and generates a definition of a new complexity class. Iterating this gives us

the polynomial hierarchy of complexity classes. Structural complexity is not the

focus of this thesis and we reference the polynomial hierarchy in only a limited

number of places to provide basic information about how certain conjectures fit

within the rest of the theory. We therefore omit the precise definition of the

hierarchy and only recall two key properties. Firstly, the base level of the hier-

archy consists of the class P with the next level being formed by NP and co-NP.

Secondly, any class from the hierarchy is a superset of each of the classes on the

levels beneath it. These inclusions are widely believed to be strict. The famous

P 6= NP conjecture corresponds to a strict inclusion between the first two levels

of the polynomial hierarchy.

We can also define a so called non-uniform class C/poly for each complexity

class C. A decision problem L is in C/poly if there exists a set A ∈ C and an

advice function g : N→ {0, 1}∗ with the properties:

1. there exists k ∈ N such that |g(n)| ≤ nk for all n ∈ N ,

2. x ∈ L⇔ (x, g(|x|)) ∈ A.

2.6 Common hypotheses in complexity theory

The following two hypotheses are routinely assumed to hold in the area of com-

putational complexity:

Hypothesis 9. P 6= NP.

Hypothesis 10. NP 6⊆ co-NP/poly.
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Of course, Hypothesis 9 is the more likely answer to the central question of

computer science. Its failure would imply the collapse of the entire polynomial

hierarchy, something generally considered quite unlikely. Hypothesis 10 is slightly

stronger. Its failure would imply the collapse of the polynomial hierarchy to the

third level [20]. Still, even this stronger hypothesis is considered to be very safe

and is often used by researchers as a starting point from which complexity lower

bounds are derived. Yet another standard complexity hypothesis is discussed in

the following section.

2.7 Exponential Time Hypothesis

The trivial approach of solving the 3-SAT problem where the input formula ϕ

has n variables and m clauses uses O(m2n) steps. Although some improve-

ments on this are possible, the current state of research strongly suggests that

this exponential time complexity is unavoidable. This leads us to the following

hypothesis, which is called the Exponential Time Hypothesis (ETH) [49].

Exponential Time Hypothesis. The infimum of the set of constants c for

which there exists an algorithm solving 3-SAT in time O∗(2cn) is strictly larger

than zero.

The ETH asserts that 3-SAT cannot be solved in 2o(n) time. (There is a

stronger variant of the ETH, called the Strong Exponential Time Hypothesis [50].

However, the confidence in its validity is significantly weaker than the confidence

in the ETH.)

As already mentioned in the previous chapter, the ETH can be employed to

derive (subexponential) lower bounds on the time complexity of various algo-
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rithmic problems. Suppose there is an efficient reduction from 3-SAT to some

decision problem Q. An algorithm solving Q “too quickly” would then violate

the ETH. The precise lower bound on the runtime of any algorithm solving Q

obtained in this way depends on the properties of the reduction. Specifically,

we are concerned with the size of the instances of Q generated from an instance

of 3-SAT with n variables. Reductions that are guaranteed to generate smaller

instances result in stronger bounds on the complexity of Q.

Two issues come into the picture. Firstly, there might be an inherent blow-up

in the size of the instances when reducing to Q. For example, a 3-SAT instance

with n variables and m clauses might require instances of Q of size at least n2.

Secondly, we do not have exact knowledge of the number of clauses of the instance

of 3-SAT and thus can only assume m ≤ n3. Since polynomial reductions from

3-SAT often explicitly encode the individual clauses of the formula, this could

again result in a weaker bound. Fortunately, the second problem can be dealt

with through the Sparsification Lemma:

Theorem 11 (Sparsification Lemma, [50]). For any ε > 0 and q > 0, there

exists a constant C = C(ε, q) such that any q-CNF formula ϕ with n variables

can be expressed as
∧t
i=1 ψi, where t ≤ 2εn and each ψi is a q-CNF formula with

the same variable set as ϕ and number of clauses bounded by Cn. Moreover, this

formula can be constructed in O∗(2εn) steps.

When combined, the Exponential Time Hypothesis and Sparsification Lemma

imply there is no 2o(n+m) algorithm for 3-SAT. A reduction from 3-SAT to some

decision problem Q that results in instances of size bounded from above by f(n+

m) therefore implies there are no algorithms recognizing Q in 2o(f
−1(n+m)) steps

(assuming the ETH).
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2.8 Expanders

Expanders are sparse graphs that behave in a random-like manner. Their key

property is that if we look at any subset X of the vertex set of such a graph, we

are guaranteed to see a lot of edges going between X and the remainder of the

vertex set. In this work, expanders are used as a black box for a construction in

Chapter 4.

The Cheeger number h(G) of a graph G is the quantity

h(G) := min

{
|δ(X)|
|X|

: X ⊆ V (G), |X| ≤ |V (G)|
2

}
.

We say that a graph G is a (d, e)-expander if it is d-regular and has h(G) ≥ e.

The following theorem provides us with an explicit construction of expander

graphs [45].

Theorem 12. For every prime p and every k ∈ N we can construct in polynomial

time (d, d−2
√
d−1

2
)-expanders, where d = pk + 1.

We use Gn,d to denote a d-regular expander graph on n vertices such that

h(G) ≥ d

3
.

The above theorem provides us with a polynomial deterministic algorithm con-

structing Gn,d for some values of d.
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2.9 Parameterized complexity and kernelization

A parameterized problem is a set Q ⊆ Σ∗ × N, where Σ is a fixed alphabet.

The value k of the instance (x, k) ∈ Q is its parameter. A problem Q is in

FPT if there is an algorithm deciding (x, k) ∈ Q in time f(k)|x|O(1), where f is a

computable function. Similarly to the situation in “standard” complexity theory,

a hierarchy of classes of parameterized problems can be introduced along with

a suitable notion of fixed-parameter tractable reductions. One of such standard

hierarchies is the W -hierarchy, introduced by Downey and Fellows [27]:

FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ W[P ].

Similarly to the situation with the polynomial hierarchy discussed in Section 2.5,

we are not focusing on the structural aspects of parameterized complexity in

this work and the W -hierarchy is referenced only in a handful of places to pro-

vide additional context. The reader is referred to [33] for a detailed structural

treatment of the theory of parameterized complexity, the precise definitions of

the above complexity classes, and the notion of fixed-parameter tractable reduc-

tions. For our work, the following properties of the hierarchy are relevant. The

above inclusions are conjectured to be strict. In fact, the ETH discussed in Sec-

tion 2.7 implies FPT 6= W[1]. The Clique problem (parameterized by the size of

the clique) is complete for the class W[1], while the Dominating Set problem

(parameterized by the size of the dominating set) is complete for W[2].

Algorithms solving a decision problem are required to either output YES

or NO. This can be relaxed by not requiring the algorithm to output a definite

answer but rather to generate an equivalent instance of the same problem, ideally
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one that is as small as possible. This leads us to the notion of kernelization

algorithms, which we have already discussed in the previous chapter. Below, we

provide a rigorous definition.

Definition 13. A kernelization algorithm for a parameterized problem Q is an

algorithm that given an instance (x, k) ∈ Σ∗ ×N produces in p(|x|+ k) steps an

instance (x′, k′) such that

1. (x, k) ∈ Q⇔ (x′, k′) ∈ Q and

2. |x′|, k′ ≤ f(k),

where p(·) is a polynomial and f(·) a computable function.

If there is a kernelization algorithm for Q, we say that Q has a kernel. If the

function f(·) in the above definition can be bounded by a polynomial, we say

that Q has a polynomial kernel.

There is a simple relationship between the class FPT and problems with a

kernel given by the theorem below.

Theorem 14 (Theorem 1.39 in [33]). For every parameterized problem Q, the

following are equivalent:

1. Q is in FPT.

2. Q is decidable and has a kernel.

A result of Bodlaender et al. [8], which builds on [7, 35], is often used to de-

rive kernelization lower bounds under the widely believed complexity assumption

NP 6⊆ co-NP/poly from Hypothesis 10. As stated above, the current state of

research strongly suggests this hypothesis holds.
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We start a brief exposition of this standard machinery with two technical

definitions.

Definition 15 (Bodlaender et al., [8]). An equivalence relation R on Σ∗ is called

a polynomial equivalence relation if the following two conditions hold:

1. There is an algorithm that given two strings x, y ∈ Σ∗ decides whether x

and y belong to the same equivalence class in (|x|+ |y|)O(1) time.

2. For any finite set S ∈ Σ∗ the equivalence relation R partitions the elements

of S into at most (maxx∈S |x|)O(1) equivalence classes.

An example of such a relation is the grouping of instances of the same size.

Definition 16 (Bodlaender et al., [8]). Let L ⊆ Σ∗ be a set and let Q ⊆ Σ∗ ×

N be a parameterized problem. We say that L cross-composes into Q if there

is a polynomial equivalence relation R and an algorithm which, given t strings

x1, x2, . . . , xt belonging to the same equivalence class of R, computes an instance

(x∗, k∗) ∈ Σ∗ ×N in time polynomial in
∑t

i=1 |xi| such that:

1. (x∗, k∗) ∈ Q⇔ xi ∈ L for some 1 ≤ i ≤ t,

2. k∗ is bounded by a polynomial in maxti=1 |xi|+ log t.

As the following theorem states, widely believed complexity assumptions im-

ply that it is unlikely for an NP-hard problem to cross-compose into a parameter-

ized problem with a polynomial kernel. The reason behind this is that it would

then allow us to find a satisfiable instance of SAT among a very large set of

SAT-instances by dividing it in two halves, cross-composing the first half of the

instances, kernelizing the resulting instance, solving the resulting instance, and

then recursing into the first or second half of SAT instances based on the result.
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Of course, the running time of this routine is not polynomial but the existence of

such a “detection” algorithm is still something that is generally considered very

unlikely for SAT.

Theorem 17 (Bodlaender et al., [8]). Let L ⊆ Σ∗ be an NP-hard language. If L

cross-composes into the parameterized problem Q and Q has a polynomial kernel

then NP ⊆ co-NP/poly.

2.10 Matroids

We now present the basic concepts and definitions of the theory of matroids.

A matroid M is a tuple (E, I) such that E is finite and I ⊆ S(E) is the set of

independent sets of M . The set I is not a general set system – rather, it is required

to satisfy the following matroid axioms. Firstly, I is not empty. Secondly, it must

contain as elements all subsets of any independent set (including the empty set).

Finally, the set I must satisfy the exchange axiom:

∀F, F ′ ∈ I satisfying |F | < |F ′| there is x ∈ F ′ : F ∪ {x} ∈ I.

The set E is termed the ground set. For a general matroid M , we denote the

ground set by E(M) and call its elements the elements of M . If a set is not

independent, we call it dependent. Any minimal dependent set is called a circuit.

The set of all circuits of the matroid, denoted by C(M), uniquely determines the

matroid. Any maximal independent set is a basis of M . We note that while

we only work with finite matroids in this thesis, there are generalizations of the

theory to infinite matroids [13].

The rank r(F ) of a set F ⊆ E(M) is the size of the largest I ⊆ F such
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that I ∈ I. The closure operator cl(F ) acting on subsets of E(M) is defined as

cl(F ) :=
{
x : r(F ∪ {x}) = r(F )

}
. It can be shown that r(cl(F )) = r(F ). A

loop of M is an element e such that {e} is a circuit (alternatively, r({e}) = 0)

and a bridge is an element such that r(M \ {e}) = r(M)− 1. A set F satisfying

cl(F ) = F is called a flat.

By M \ F we denote the matroid resulting from deleting the elements of

F ⊆ E(M): the elements of M \ F are E(M) \ F , with F ′ ⊆ E(M \ F ) being

independent in M \F if and only if it is independent in M . The restriction M |F

of M to F is the matroid M \ sF , where sF denotes the complement of F in E(M).

Similarly to graphs, we also define element contraction: the matroid M/F is a

matroid with ground set E(M) \F where a set F ′ ⊆ E(M) \F is independent in

M/F if and only if r(F ∪F ′) = r(F ) + r(F ′). Matroid is a minor of a matroid M

if it can be obtained from M by a sequence of element deletions and contractions.

We refer to any bipartition of E(M) into A and B as a separation (A,B).

The size of the separation (A,B) is equal to r(A)+r(B)−r(M)+1. A separation

of size at most k is a k-separation. A matroid M is connected if the only two

subsets F ⊆ E(M) satisfying r(F ) + r( sF ) = r(M) are the empty set and E(M).

A component of M is an inclusion-wise maximal set F ⊆ E(M) such that M |F

is connected.

Examples of matroids include graphic matroids and vector matroids. The

former are derived from graphs in the following way: their elements are edges

and a set of edges is independent if it does not span a cycle. Vector matroids have

vectors as their elements and a set of vectors is independent if the vectors in the

set are linearly independent. A matroid M is called representable over a field F

if there exists a vector matroid over F isomorphic to M . A matroid is binary if
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it is representable over the binary field and it is regular if it is representable over

any field. Finally, a uniform matroid U r
n is a matroid defined on the universe of

size n where independent sets are precisely those with at most r elements.

When a matroid is given as the input of an algorithm by an oracle (e.g., by an

oracle encoding the set system I), the number of elements of the matroid is used

instead of the input length when discussing the time complexity. Furthermore,

the time the oracle spends computing the answer is not counted towards the

number of steps the main algorithm took – only the time spent on constructing

the input for the oracle and reading its output is accounted for in the overall

runtime.

2.11 Width parameters for matroids

A branch decomposition of a matroid M = (E, I) corresponds to how the matroid

M might be constructed by “gluing” elementary matroids along separations of

small size. The decomposition is an unrooted tree T in which all inner nodes

have degree exactly 3 and the leaves of T are in one-to-one correspondence with

the elements of E. Let us consider an edge e of T and define E1 and E2 as the

subsets of E(M) corresponding to the leaves of the two components of T \ e.

Then the width of an edge e of T is defined as r(E1) + r(E2) − r(E) + 1 (note

that (E1, E2) is a separation in M and the width of e is equal to its size). The

width of the branch decomposition T is defined as the maximum width of an edge

e ∈ T . The branch-width bw(M) of a matroid is the least value k for which a

branch decomposition of M with width k exists.

The question of constructing a branch decomposition of a small width was
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Figure 2.1: The underlying graphs of a pair of matroids (left) and the underlying graph

of the graphic matroid M1�p1,p2M2 (right), where M1,M2 is the pair of matroids shown

in the left part of the figure and p1, p2 are the edges represented by dashed lines.

settled in [69,70] for general matroids (given by an oracle).

Theorem 18 (Corollary 7.2, [69]). For each k, there is an O(|E|4) algorithm

constructing a decomposition of width at most 3k − 1 or concluding that the

matroid has branch-width at least k + 1.

Moreover, for matroids representable over a fixed finite field, an efficient algo-

rithm for constructing a branch decomposition of optimal width is given in [43].

Let M1 and M2 be two matroids satisfying pi ∈ E(Mi), for i ∈ {1, 2}. Then,

the 2-sum M1 �p1,p2 M2 is defined as the matroid with the set of circuits below:

C = C(M1 \ p1) ∪ C(M2 \ p2) ∪

{(C1 \ p1) ∪ (C2 \ p2) : pi ∈ Ci ∈ C(Mi) for i ∈ {1, 2}}.

An example of a 2-sum of a pair of graphic matroids can be found in Figure 2.1.

A monadic second-order (MSO) formula ψ for a matroid M can contain the

following:

� logical connectives ∨,∧,¬,⇒,

� the equality predicate =,
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� quantifications ∃x over elements of E(M) – in this case, we call x an element

variable,

� quantifications ∃X over subsets of E(M) – there, X is called a set variable,

� the predicate x ∈ X of containment of an element in a set,

� and, finally, the independence predicate ind(X) determining whether a sub-

set X of E(M) is independent.

In line with the above, lowercase letters (such as x1, x2, . . .) are used to denote el-

ement variables while uppercase letters (such as X1, X2, . . .) denote set variables.

Deciding MSO properties of matroids is NP-hard in general, since, for exam-

ple, the property that a graph is hamiltonian can be determined by deciding the

following formula on the graphic matroid corresponding to the input graph:

∃H∃e
(
is circuit(H) ∧ is base(H \ {e})

)
,

where H is a set variable, e an element variable, and is circuit(·) and is base(·)

are predicates testing the property of being a circuit and a base, respectively.

These can be defined in MSO logic as follows:

is circuit(H) ≡
(
¬ind(H)

)
∧
(
∀e : (e ∈ H)⇒ ind(H \ {e})

)
,

is base(H) ≡ ¬
(
∃e : ind(H ∪ {e})

)
.



Chapter 3

Permutation Pattern Matching

In this chapter, we study an algorithmic problem where we are given two permu-

tations σ and π and are interested in whether σ is a pattern of π. A permutation

π contains a permutation σ as a pattern if it contains a subsequence of length

|σ| whose elements are in the same relative order as in the permutation σ. This

is illustrated in Figure 3.1.

Figure 3.1: A representation of the permutation matrices of permutations (1, 3, 2)

and (9, 2, 4, 5, 10, 8, 6, 1, 7, 3). White positions of the grid correspond to 0-entries of the

permutation matrix, non-white positions to 1-entries, the columns are indexed from left

to right, the rows from bottom to top. Thus, the (1, 1) entry of both matrices is located

in the bottom-left corner. The former permutation is contained within the latter as a

pattern. One of the occurrences of the pattern is highlighted in green.

The properties of such a partial order on the set of all permutations have

been investigated from a variety of angles in discrete mathematics, particularly

35
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in enumerative combinatorics. Knuth [55] has shown that the number of permu-

tations avoiding (2, 3, 1) is the nth Catalan number. Various choices of prohibited

patterns have been studied among others by Lovász [60], Rotem [77], and Simion

and Schmid [80]. This culminated in the Stanley-Wilf conjecture stating that for

every fixed prohibited pattern, the number of permutations of length n avoiding

it can be bounded by cn for some constant c. Klazar [54] reduced the question

to the Füredi-Hajnal conjecture, which was ultimately proved by Marcus and

Tardos in 2004 [65].

Wilf [83] also asked the algorithmic question of whether detecting a given

pattern (of length `) in a given permutation (of length n) can be done in subex-

ponential time. Subsequently, the problem was shown to be NP-hard in [12].

Ahal and Rabinovich have obtained an O(n0.47`+o(`)) time algorithm [1]. Fast

algorithms have been found for certain restricted versions of the problem [12,48].

The linear time dynamic programming algorithm for finding the longest increas-

ing subsequence [78] is even a standard content of many undergraduate courses

on algorithms.

Pattern matching has also received interest in the context of parameterized

complexity. Several groups of researchers have obtained W[1]-hardness results

for generalizations of the problem [15, 39]. For example, in one such gener-

alization the input permutations are colored and the requirement is to find a

color-preserving occurrence of the pattern. In [14] it was shown that the problem

is in FPT when parameterized by the number of runs (maximal monotonic con-

secutive subsequences) in the target permutation. The authors of [14] raise the

issue of whether their problem has a polynomial size kernel as an open problem.

The central question of whether the problem is in FPT when parameterized by `
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has been resolved by Guillemot and Marx [39], who obtained an algorithm with

asymptotic running time of 2O(`
2 log `) ·n. This implies the existence of a kernel for

the problem. Obtaining kernel size lower bounds was posed as an open question

during a plenary talk at Permutation Patterns 2013 by Stéphane Vialette.

In what follows, we prove that the permutation pattern problem under the

standard parameterization by ` does not have a polynomial size kernel (assuming

NP 6⊆ co-NP/poly). This is achieved by introducing a novel polynomial reduction

from the Clique problem to Permutation Pattern Matching and applying

the cross-composition machinery described in Section 2.9.

3.1 Problem definition and additional notation

Definition 19. A permutation σ on the set [l] is a pattern of a permutation π

on the set [n] if there exists an increasing function ϕ : [l]→ [n] such that

∀x, y ∈ [l] : σ(x) < σ(y) if and only if π(ϕ(x)) < π(ϕ(y)).

We say that the mapping ϕ certifies the pattern.

Permutation Pattern Matching is the following parameterized algorith-

mic problem:

Input: a permutation σ on [`], a permutation π on [n].

Parameter: `.

Question: is σ a pattern of π?

In this scenario, the permutation σ is called the pattern permutation while π is
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the target permutation.

In the sections below, we use the following additional notation. Recall there

are two common representations of a permutation π are used in the thesis: using

the vector (π(1), π(2), . . . , π(n)) and using a permutation matrix. Both are illus-

trated in Figure 3.1. A vector obtained from the vector representation by omitting

some entries is a subsequence of the permutation. Such subsequence is a consec-

utive subsequence if it contains precisely the entries with indexes from [i, j] for

some i, j ∈ N. We use π[i, j] to denote the set of entries {π(i), π(i+1), . . . , π(j)}.

A monotonic subsequence is a subsequence whose entries form a monotonic se-

quence. A run is a maximal monotonic consecutive subsequence. For example,

(4, 5, 3, 1, 2) contains a (decreasing) run of length 3.

3.2 Kernelization lower bounds

The main result of this thesis is the following theorem, which has already been

stated in Introduction.

Theorem 2. Unless NP ⊆ co-NP/poly, the Permutation Pattern Match-

ing problem does not have a polynomial kernel.

We prove Theorem 2 using Theorem 17. However, this requires a polynomial

time reduction that allows cross-composition without significantly increasing the

parameter value. Reductions described in the literature [12,15] have resisted our

attempts to apply the framework. Therefore, we introduce a new NP-hardness

proof that directly leads to a cross-composition. The new reduction is from the

well known Clique problem.

Let us first introduce an encoding πz(G) taking a graph G and z ∈ N and
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producing a permutation. The key property of the encoding is that for any

clique Kl on l vertices and any graph H we have Kl ⊆ H if and only if πz(Kl) is

a pattern of πz(H) for some particular choice of z. (The value of z depends only

on the size of the largest connected component of H.) This allows us to express

the Clique problem in terms of Permutation Pattern Matching.

The definition of π(·) is somewhat technical although the basic idea is quite

simple: we embed the upper-triangular submatrix of the adjacency matrix of the

input graph into a permutation. This is illustrated in Figure 3.2, where one can

see the permutation matrix of one such encoding permutation. In what follows,

we first give a rough sketch of how the construction of the encoding is organized.

Then, we describe the individual parts of the resulting permutation in more detail

and introduce some notation. Finally, the precise definition is given.

The encoding permutation itself consists of two types of entries: encoding

entries and separating entries. The former encode the edges of G. The encoding

entries of the same vertex form a consecutive subsequence of the permutation.

The separating entries form decreasing runs used to separate encoding entries

of different vertices. Looking at πz(G) as an embedding of the upper-triangular

submatrix of the adjacency matrix of G offers another perspective: the separating

runs mark where each row and column begins and ends, the encoding entries

determine where the 1-entries of the matrix are.

We start constructing πz(G) by imposing a total order on V (G) placing ver-

tices from the same connected component of G consecutively. Thus, we can
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assume that V (G) = [n] and set

N+
G (v) := {u : u > v ∧ {u, v} ∈ E(G)},

N−G (v) := {u : u < v ∧ {u, v} ∈ E(G)},

deg+
G(v) := |N+

G (v)|,

deg−G(v) := |N−G (v)|.

The vertices from the sets N+
G (v) and N−G (v) are called the right-neighbours and

left-neighbours of v, respectively. We now give a general overview of the structure

of the permutation πz(G); the specification of the exact values and indexes

employed is postponed to the following paragraphs. The permutation starts

with a decreasing run of length z, continues with the entries encoding the vertex

1 (i.e., encoding N+
G (1)), which is then followed by another decreasing run of

length z. This finishes the part of the permutation dedicated to the vertex 1 and

the segment for the vertex 2 begins. Again, it starts with another decreasing run

of length z, continues with the encoding entries of N+
G (2), and is finished by a

decreasing run of length z. This continues for all vertices of G. Note that for each

vertex v there is a pair of decreasing runs immediately surrounding the entries

encoding N+
G (v), one from left and one from right. These are called the left and

right separating runs of v, respectively. Together, we call these entries the pair

of separating runs of v. For example, four pairs of separating runs are depicted

in Figure 3.2.

To facilitate the formal definition of πz(G), we begin by introducing a notation

for important positions and values of the resulting permutation’s entries. This

includes the positions where the abovementioned runs start, the values with which
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they start, or the positions where the parts encoding N+
G (v), for individual choices

of v, start.

We use pL(v) and pR(v) as a shorthand for the positions on which the left

and right separating run of v starts, respectively. The first position of the seg-

ment encoding N+
G (v) is denoted by pM(v). This is illustrated in Figure 3.2.

Specifically, we set pL(1) := 1, pM(1) := z + 1, and pR(1) := z + 1 + deg+
G(1).

pL(1)

pM (1)

pR(1)

pL(2)

pM (2) · · ·

0 1 1 0

0 1 0

1 0

0




Figure 3.2: Left part shows the upper triangular submatrix of the adjacency matrix

of a graph G =
(
{1, 2, 3, 4},

{
{1, 2}, {2, 3}, {2, 4}, {3, 4}

})
. The right part shows the

permutation matrix representation of its encoding permutation π3(G). Once again,

the columns of both matrices are indexed from left to right, the rows from bottom to

top. White positions of the grid on the right correspond to 0-entries of the permu-

tation matrix, non-white positions are 1-entries. Separating runs are colored in light

gray, encoding entries in dark green. Note the one-to-one correspondence between the

1-entries of the matrix on the left with the encoding entries of the permutation matrix.

Horizontal green lines represent values attained at positions L(4) and R(4). Vertical

green lines denote indexes L(2) and R(2). Note that these four green lines induce a

rectangle with a single 1-entry. This encodes the 1-entry in the top-most position of the

second column of the adjacency matrix. Arrows below the permutation matrix illustrate

the notation pL(·), pM (·), and pR(·).
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For v ≥ 2, we have:

pL(v) := pR(v − 1) + z,

pM(v) := pL(v) + z,

pR(v) := pM(v) + deg+
G(v).

We also introduce notation for the values used by the separating runs. The left

separating run of v starts at the position pL(v) with the value qL(v). The right

separating run starts at pR(v) with the value qR(v). Finally, qM(v) is the least

value used by the encoding entries of vertices from N−G (v) to determine their

connection to v. (Specifically, vertices of N−G (v) use the values [qM(v), qM(v) +

deg−G(v) − 1] to encode this. If deg−G(v) is zero, the value qM(v) is actually not

used.) We set qL(1) := 2z, qM(1) := z + 1, and qR(1) := z. For v ≥ 2, let

qR(v) := qL(v − 1) + z,

qM(v) := qR(v) + 1,

qL(v) := qM(v) + z + deg−G(v)− 1.

We now define the values of π = πz(G). For each v, we introduce a decreasing

run of length z starting at the position pL(v):
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π(pL(v)) := qL(v),

π(pL(v) + 1) := qL(v)− 1,

π(pL(v) + 2) := qL(v)− 2,

. . .

π(pL(v) + z − 1) := qL(v)− (z − 1).

We also insert a decreasing run which starts at the position pR(v) with the value

qR(v):

π(pR(v)) := qR(v),

π(pR(v) + 1) := qR(v)− 1,

π(pR(v) + 2) := qR(v)− 2,

. . .

π(pR(v) + z − 1) := qR(v)− (z − 1).

This describes the entries represented by gray squares in Figure 3.2.

The remaining values are used to encode the edges of G. The neighbourhood

N+
G (v) is encoded by an increasing run on positions pM(v), pM(v)+1, . . . , pM(v)+

|N+
G (v)| − 1. We fix a vertex v ∈ V (G) and iterate through the neighbours

{u1, u2, . . . , uk} = N+
G (v). Assume u1 < u2 < . . . < uk. For i ∈ [k], we set:

π(pM(v) + i− 1) := qM(ui) + `(v, ui), (3.1)
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where `(v, ui) = |{w : w < v ∧ {w, ui} ∈ E(G)}|. The term `(v, ui) ensures that

no value in π is repeated.

The above procedure is carried out for each v ∈ V (G). This finishes the

construction of πz(G). We now provide two observations.

Observation 20. For any graph G and z ∈ N the function πz(G) is a permuta-

tion.

Proof. Let π := πz(G). It is straightforward to verify that π is a mapping from

[p] to [p], for p = 2zn + |E(G)|. It remains to show that π is injective, i.e. that

there is no pair of distinct indexes i, j such that π(i) = π(j). It can easily be

seen that such i and j cannot both be an index of an entry forming a separating

run, since the separating runs are explicitly constructed so that the sets of their

values are disjoint. For each vertex v there are exactly deg−G(v) values between

the values of its left and right separating run. These values are used to encode

the deg−G(v) edges connecting v to its left-neighbours. The left-most neighbour

is using the least value, the subsequent vertices are using values that increase by

1 with each neighbour (cf. the term `(v, ui) in equation (3.1)). Therefore, we

have neither a collision between a separating entry and an encoding entry nor

a collision between two entries encoding N−G (v) for the same v. Finally, it can

be easily seen that the sets of values encoding N−G (v) are pairwise disjoint for

different choices of v.

Observation 21. For any choice of z ∈ N and any choice of u, v ∈ V (G), there

is at most one 1-entry of πz(G) with an index in [pM(u), pR(u) − 1] and value

in [qM(v), qM(v) + deg−G(v) − 1]. Furthermore, there is an edge between vertices

u, v ∈ V (G), u < v if and only if there is exactly one such 1-entry.
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Proof. The entries of π := πz(G) with indexes from [pM(u), pR(u)−1] encode the

neighbourhood of the vertex u, i.e., N+
G (u). For each neighbour v from N+

G (u),

we insert a single entry with value from [qM(v), qM(v) + deg−G(v) − 1]. This is

because in equation (3.1) the term `(v, ui) is always strictly less than deg−G(v).

This implies both parts of the observation.

For the purpose of the proof of the lemma below, we define the following:

C(v) := [pM(v), pR(v)− 1],

L(v) := pL(v) + b z
2
c,

R(v) := pR(v) + b z
2
c.

Therefore, C(v) is the set of entries of π encoding the vertex v, L(v) denotes the

middle entry of the left separating run of v, and R(v) is the middle entry of the

right separating run of v. Once more, Figure 3.2 illustrates the notation.

The following lemma implies NP-hardness of the studied problem:

Lemma 22. For every clique G, Kl is a subgraph of G if and only if πz(Kl) is a

pattern of πz(G), for z = 4n′+4, where n′ is the number of vertices in the largest

connected component of G.

Proof. We let σ := πz(Kl) and π := πz(G).

If G contains a clique Kl of size l as a subgraph, then π contains the pattern σ

by construction. This is because if we consider the permutation matrix represen-

tation of π and delete all columns except the ones that correspond to separating

and encoding entries for vertices of Kl ⊆ G, we get a matrix that differs from the

permutation matrix of σ only by the additional presence of columns that encode
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the connection of the vertices of Kl to the vertices outside of Kl. By deleting

these columns (and the empty rows resulting from the above deletions) we arrive

at the permutation matrix representation of σ, implying σ is a pattern of π.

For the other direction, assume there is a function ϕ : [|σ|]→ [|π|] certifying

the pattern. We start by noting that there are no decreasing subsequences of

length 1
4
z in π avoiding all separating runs. This is because such a sequence

contains at most one entry from C(v) for each v ∈ V (G). At the same time,

it cannot simultaneously contain an entry from C(u) and C(v) for u, v chosen

from different connected components. This is because the construction of the

encoding permutation places vertices from the same component consecutively

and the entries encoding a component placed earlier in the ordering have strictly

smaller values than those from a later component. This bounds the length of the

subsequence by n′ < 1
4
z.

Furthermore, any decreasing subsequence of π contains entries from at most

one pair of separating runs. This is because once the sequence hits a separating

run of a vertex v, all its subsequent entries can only be from the pair of separating

runs of v. Any decreasing subsequence therefore starts with less than 1
4
z encoding

entries, which are then followed by entries of a pair of separating runs of some

vertex.

We now show that the certifying function ϕ naturally leads to a mapping

from V (Kl) to V (G). Consider any vertex v ∈ V (Kl). The function ϕ maps

the subsequence of σ formed by the pair of separating runs of v to a decreasing

subsequence of π of the same length. As argued, such a long decreasing subse-

quence starts with less than 1
4
z encoding entries of π, which are then followed by

at least 7
4
z entries from a pair of separating runs of some vertex u ∈ V (G). This
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implies that the middle entry L(v) of the left separating run of v in σ needs to be

mapped by ϕ to the left separating run of u ∈ G. Additionally, the middle entry

R(v) of the right separating run of v in σ needs to be mapped by ϕ somewhere in

the right separating run of the same vertex u. The above establishes a mapping

from V (Kl) to V (G) denoted by fϕ.

We claim fϕ to be a graph homomorphism. Fix any pair of vertices v1, v2

of Kl such that v1 < v2. We show that fϕ(v1), fϕ(v2) are connected by an

edge in G. Since there is an edge between v1 and v2 in Kl, Observation 21

implies that the set of values σ[L(v1), R(v1)] contains precisely one number p

with σ(R(v2)) ≤ p ≤ σ(L(v2)). Since ϕ certifies the pattern σ in π, there needs

to be an entry of π with an index between ϕ(L(v1)) and ϕ(R(v1)) and value

between π(ϕ(R(v2))) and π(ϕ(L(v2))). Observation 21 then implies there is an

edge between fϕ(v1) and fϕ(v2). Thus, fϕ is a homomorphism and G contains a

clique of size l.

The above reduction can be directly used within the cross-composition frame-

work to show our result.

Proof of Theorem 2. We set L to be the set of all pairs (Kl, G), where Kl is a

clique, G is a connected graph containing Kl as a subgraph. It is widely known

that deciding x ∈ L is NP-complete.

We introduce a cross-composition of L into Permutation Pattern Match-

ing. Let R be an equivalence relation on {0, 1}∗ with the following properties:

the binary sequences that are not representing a pair (Kl, G), where Kl is a clique

and G a graph, are placed in a single equivalence class designated for malformed

input sequences; a pair of strings representing instances (K1, G1) and (K2, G2),
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respectively, is related in R if and only if |V (K1)| = |V (K2)|, |V (G1)| = |V (G2)|.

Clearly, R is a polynomial equivalence relation. For instances (Kl, G1), (Kl, G2),

(Kl, G3), . . ., (Kl, Gt) from the same equivalence class of R, we produce an in-

stance of the Permutation Pattern Matching problem where we ask if

πz(Kl) is in πz(G), where G is a disjoint union of graphs G1, . . . , Gt and z is set

to 4 · |V (G1)| + 4. Lemma 22 shows that the answer to this problem is YES if

and only if at least one of the instances (Kl, Gi) belongs to L. Since the pa-

rameter of the pattern matching instance is |πz(Kl)|, which can be bounded by

|V (Gi)| · 2z + |V (Gi)|2 for any i, we can apply Theorem 17.

3.3 Conclusion

Guillemot and Marx [39] have shown that the Permutation Pattern Match-

ing problem can be solved in 2O(`
2 log `) · n time. They raised the question of

whether a faster FPT algorithm could be obtained and outlined a strategy for

achieving this using their notion of decompositions of permutations. This relied

on the bound from the Stanley-Wilf conjecture not being tight. However, Fox [36]

has shown the bound is actually tight for almost all permutations. (Still, Fox [36]

gives an improved 2O(`
2) · n algorithm.)

Note that in order to rule out kernels of size P (n) for any polynomial P (·),

it suffices to find a cross-composition satisfying some polynomial constraint on

the value of the parameter of the resulting instance. In particular, the strength

of our bound does not depend on how slowly the value of the parameter of the

resulting instance grows. Our result rules out all polynomial upper bounds on

the kernel size of the Permutation Pattern Matching problem.



Chapter 4

Optimum Linear Arrangement

In the present chapter we give subexponential computational complexity lower

bounds for the Optimum Linear Arrangement problem relative to the Min

Bisection problem on d-regular graphs. This is achieved by introducing a poly-

nomial reduction from (a variant of) the Min Bisection problem to the Op-

timum Linear Arrangement problem. The key property of this reduction,

which allows us to prove our bounds, is that the instances of the former problem

result in instances of Optimum Linear Arrangement with at most O(nd)

edges. Therefore, the size of the instance is increased only linearly.

This reduction employs expanders in a black-box manner. We use the al-

gorithm implicit in Theorem 12 to construct these expanders. Other efficient

constructions could be substituted. Actually, any efficient construction generat-

ing d-regular graphs G with Cheeger number h(G) ≥ d
C

for some fixed constant

C ∈ N would suffice – potentially at the cost of an increase in multiplicative

constants irrelevant for the main hardness result. Let us note that this is one

of the aspects in which the contents of this chapter differ from the treatment in

the corresponding conference paper [6]. In this thesis, we assume the expander

49
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construction algorithm generates graphs with h(G) ≥ d
3
. In the conference paper,

the dependency on the value of the Cheeger number is made explicit at the cost

of having to deal with more complicated formulas. However, all ideas behind the

argument remain identical.

We begin by formalizing the abovementioned notions. The Min Bisection

problem is a classic NP-hard problem studied in various different areas, including

approximation algorithms [30,31,53,72], parameterized complexity [24], heuristic

algorithms [16,17], and average case complexity [18]:

Min Bisection

Input: A graph G = (V,E) on n vertices, an integer k.

Question: Is there a balanced bipartition (A,B) of G with |E(A,B)| ≤ k?

We focus on a variant that differs in two regards. Firstly, we restrict the input to

graphs that are d-regular for some fixed choice of d ∈ N. Secondly, we consider

a gap version of the problem. This variant is referred to as the (d, α, β)-Gap

Min Bisection problem, where d ∈ N and 0 ≤ α ≤ β ≤ 1.

(d, α, β)-Gap Min Bisection

Input: A d-regular graph G = (V,E) on n vertices.

Output: If there exists a balanced bipartition (A,B) of G such that

|E(A,B)| ≤ α
2
dn, output “YES”. If there is no balanced bipartition (A,B) of

G such that |E(A,B)| ≤ β
2
dn, output “NO”. Otherwise, the output can be

arbitrary.

To introduce the Optimum Linear Arrangement problem, we need some

definitions. A linear arrangement of a graph G is an injective mapping π :
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V (G)→ {1, . . . , n}. The value of the linear arrangement π is
∑
{u,v}∈E(G) |π(u)−

π(v)| (the individual summands of this sum are called the costs of the edges (u, v)

in π). We call π the optimum linear arrangement if its value is minimized and

denote this value by OLA(G). The Optimum Linear Arrangement problem

(also OLA) is defined as follows.

Optimum Linear Arrangement (OLA)

Input: A graph G = (V,E), an integer k.

Question: Does there exist a linear arrangement π of G with value at

most k?

Our reduction allows one to solve the instances of (d, α, β)-Gap Min Bisec-

tion by solving the resulting instance of Optimum Linear Arrangement.

This relates OLA to the following conjecture:

Conjecture 3. There exist d0 ∈ N and α, β ∈ (0, 1), α < β such that for each

d ≥ d0 there is no 2o(n) time algorithm for (d, α, β)-Gap Min Bisection.

The main result of this chapter is:

Theorem 4. Unless Conjecture 3 fails, there is no 2o(n+m) time algorithm for

Optimum Linear Arrangement, where n is the number of vertices of the

input graph and m the number of its edges.

Even though Conjecture 3 is not one of the widely believed hypotheses of the

theory of computational complexity, we believe it to be a reasonable starting point

to derive lower bounds such as the one from Theorem 4. We are, however, not

aware of any provably equivalent conjectures employed in the literature. Some

reasons for this have already been mentioned in Chapter 1. Additionally, the
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best known approximation algorithm for the Min Bisection problem has an

approximation ratio O(log n) [72]. In order for such an algorithm to violate

Conjecture 3, an approximation ratio arbitrarily close to 1 would be necessary.

We proceed by first describing a reduction T (·) from an instance G of Min

Bisection to an instance of Optimum Linear Arrangement. A technical

lemma, called Swapping Lemma, is proven. This is used to prove several other

lemmas that shed light on the structure of the optimum linear arrangement of

the instance T (G). Finally, we prove Theorem 4 by showing how to decide the

instances of (d, α, β)-Gap Min Bisection based on the value of the optimum

linear arrangement of the instances obtained after applying the reduction T (·).

Note that the values α and β are not under our control. The parameters of our

reduction will depend on the gap between them, with smaller gaps leading to

bigger multiplicative factors in the size of the resulting instances. Thankfully,

the conjecture guarantees that the choice of α and β is fixed for all problem

instances. The fact that our reduction exhibits only a linear increase in the size

of the instance is crucial in achieving the 2o(m+n) bounds. (This is similar to the

proofs of the ETH-based lower bounds reviewed in Section 2.7.)

4.1 Sparse reduction to OLA

The result of transformation T (·) is influenced by several parameters. The choice

of their values is deferred to the proof of Theorem 4. Consider an instance

G of the Min Bisection problem, where G is a dG-regular graph. Assume

V (G) = {v1, . . . , vn}. The transformation produces a graph G′ := T (G) with the

vertex set {v1, . . . , vn, x1, . . . , xMn}, for some constant M > 0 chosen later.
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G H1 H2 H3 HZ

H ≈ GMn,dH

G′

Hi ≈ Gϕn,dHi

Figure 4.1: The resulting instance G′ = T (G) after applying the reduction. The original

graph G is an induced subgraph of G′ with its edges shown in green. The edges of the

bipartite graph added between V (G) and V (H1) are shown in blue.

Note that G′ contains the vertices of G. Indeed, we are going to construct

the edge-set in such a way that G is an induced subgraph of G′. It is actually

convenient to introduce a notation for some of the induced subgraphs of G′.

The subgraph with the vertex set {x1, . . . , xMn} is denoted by H. The graph H

is (arbitrarily) divided into Z := M
ϕ

disjoint induced subgraphs Hi of size ϕn.

We can assume Z and ϕn to be integers. The result of the transformation is

illustrated on Figure 4.1. The edge-set of G′ is constructed as follows:

� The induced subgraph of G′ on {v1, . . . , vn} is G.

� We construct an expander GMn,dH using Theorem 12 and add its edges

on the vertices of H (recall that GMn,dH is a dH-regular expander on Mn

vertices).

� For each i ∈ {1, . . . , Z} we construct an expander Gϕn,dHi
using Theorem 12

and add its edges on the vertices of Hi.

� For each i ∈ {1, . . . , Z} we add a bipartite graph on parts V (G) and V (Hi)

such that all vertices of V (G) have degree 1 in this bipartite graph and the

degrees of vertices from V (Hi) differ by at most 1. We denote the maximum
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degree of the V (Hi) part of this added graph by ∆H,G. It is at most d 1
ϕ
e.

The resulting graph G′ is thus influenced (apart from the input graph G) by

our choice of parametersM,ϕ, dH , and dHi
. In Section 4.2, we give several lemmas

that impose a particular structure on the optimum linear arrangement of G′,

provided certain inequalities between these parameters are satisfied. Eventually,

they are employed in the proof of the main theorem of this chapter (Theorem

4), where the values of the parameters are determined. We begin by proving

Lemma 23, a technical lemma repeatedly utilized in the next section.

L(X) X R(X)

Figure 4.2: For the purposes of our proof, we order the vertices of the resulting graph

from left to right. The set of blue vertices is consecutive. The set of green vertices is

formed of two blocks. The left-most block is denoted by X. The sets L(X) and R(X)

are vertices to the left and right of X, respectively. The blue vertices form the inner

block of the green vertices.

In all proofs of this chapter, we understand the vertices of G′ to be ordered

from left to right according to some ordering σ. When we speak about the i-th

vertex (from the left), we mean the vertex mapped to the number i by σ. A set

of vertices U is consecutive in σ, if σ(U) = {p, p + 1, . . . , q − 1, q} for p, q ∈ N.

This is illustrated in Figure 4.2. The set of vertices that are to the left of every

vertex from some set U is called the set of vertices to the left of U and denoted by

L(U). Similarly, we define the set of vertices to the right of U and denote them

by R(U). A block of U is any inclusion-wise maximal non-empty subset of U that

is consecutive in σ. The left-most block of U is the block of U whose vertices are

mapped to the smallest values by σ. Second left-most block of U is the first block

of U to the right of the left-most block of U . Inner block of U is the set of all
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vertices from V (G′) \ U located simultaneously to the right the left-most block

of U and to the left of the second left-most block of U (in the case when U forms

a single block, the inner block does not exist).

The following technical Swapping Lemma establishes a condition on degrees

in two consecutive sets of G′ under which the swapping of the two sets results in

a decreased cost of the ordering. (Figure 4.3 illustrates the situation.)

Lemma 23 (Swapping Lemma). Consider an ordering σ of G′ obtained by the

reduction from a graph G. Assume that the sets X, Y ⊆ V (G′) are consecutive

and X immediately precedes Y . Let L := L(X) and R := R(Y ). Assume

� the value PX upper bounds the degree of vertices from X in the induced

bipartite subgraph G′[L,X],

� PC is an upper bound on the maximum degree of G′[X, Y ], and

� PY is an upper bound on the degree of a vertex from Y in G′[Y,R].

� Finally, let p be a lower bound on the average degree of a vertex from X in

G′[X,R].

Then the inequality p > PX + 2PC + PY implies that swapping the vertices of X

with the vertices of Y in the order specified by σ results in a decrease in the cost

of the ordering.

Proof. The length of edges connecting pairs of vertices from one of the sets

L,X, Y,R remains unchanged after swapping X and Y in the ordering. The

same holds for edges connecting L with R. The length of each edge connecting

X and Y increases by at most |X| + |Y | ≤ 2 max{|X|, |Y |}. The cost of each

edge connecting X and L increases by at most |Y |. Similarly, the cost of each
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G′

L := L(X) X Y R := R(Y )

PYPX

PC p

Figure 4.3: The vertex set of G′ is partitioned into four sets, L,X, Y, and R, in Lemma

23. The bounds PX , PY , PC (upper bounds), and p (a lower bound) on the degrees of

induced bipartite subgraphs are also shown.

edge connecting Y and R increases by at most |X|. On the other hand, the

edges connecting X and R are shortened, each by |Y |. The upper bounds on the

maximum degrees and the lower bound on the average degree from the statement

of the lemma allow us to lower-bound the decrease in the cost of ordering after

the swap is performed. For example, the decrease in total cost of the edges con-

necting X with R is at least p|X||Y |. The decrease in cost after swapping is at

least

p|X||Y | − 2 min
{
|X|, |Y |

}
PC max

{
|X|, |Y |

}
− |X|PX |Y | − |Y |PY |X|,

which is equal to

|X||Y |(p− 2PC − PX − PY ).

Assuming the inequality from the lemma, this is strictly larger than zero.

4.2 Structure of the solution

We now make several claims about the optimum ordering σ of G′.
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Lemma 24. If dH > 9∆H,G+9M
ϕ

+3dG and σ is the optimum linear arrangement

of G′, then V (H) is consecutive in σ.

Proof. Suppose V (H) is not consecutive in σ. Consider the left-most block of

V (H) and denote its elements by X. We can assume that |X| ≤ |H|
2

– otherwise

we take the right-most block of V (H) and proceed with a mirrored version of

the following argument. Denote by Y the inner block of V (H) and set L :=

L(X), R := R(Y ). The following choice of values satisfies the assumptions on

degree upper bounds of Lemma 23:

PX := ∆H,G, PY := dG +
M

ϕ
, PC := ∆H,G +

M

ϕ
.

Since H is an expander and H \X ⊆ R, we can take p = dH
3

. It remains to show

the inequality from the statement of the Swapping Lemma. We have:

p =
dH
3
> 3∆H,G + 3

M

ϕ
+ dG = PX + 2PC + PY .

Thus we can swapX and Y and decrease the cost of the ordering. This contradicts

the optimality of σ.

Lemma 25. If dHi
> 3dHi+1

+12dH+6∆H,G, σ is the optimum linear arrangement

of G′, and for each i′ < i the vertices of Hi′ are consecutive in σ, then the vertices

of Hi are consecutive in σ.

Proof. Assume Hi not to be consecutive and denote by X the left-most block

of V (Hi) in σ. We show that moving X to the right decreases the cost of the

arrangement.

Denote by u the vertex positioned by σ immediately to the right of X. Due to
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Lemma 24, we know u 6∈ V (G). Therefore, u ∈ V (Hj) for j 6= i. We distinguish

two cases: either j < i or j > i.

Suppose that j < i. Note that Hj is consecutive in σ. We set Y :=

V (Hj), L := L(X), and R := R(Y ). Again, we employ the Swapping Lemma.

The following degree upper bounds satisfy its assumptions:

PX := ∆H,G + dH , PY := ∆H,G + dH , PC := dH .

Since Hi is an expander and V (Hi) \X ⊆ R, we can set the average degree lower

bound p to
dHi

3
. By the inequality from the statement of the lemma, we have

p =
dHi

3
> 4dH + 2∆H,G = PX + 2PC + PY .

Thus, the inequality from the Swapping Lemma holds and we can use it to

decrease the cost of ordering, contradicting the optimality of σ.

Now suppose that j > i. We now use the Lemma 23 again to move the

block X one position to the right, effectively swapping X and Y := {u}. We set

L := L(X), R := R(Y ). This time, we set:

PX := ∆H,G + dH , PY := ∆H,G + dH + dHi+1
, PC := dH .

Similarly to the previous cases, we set p :=
dHi

3
. The inequality from the Swapping

Lemma is again satisfied:

p =
dHi

3
> 4dH + 2∆H,G + dHi+1

= PX + 2PC + PY .
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Once more, we get a contradiction with the optimality of σ.

Due to Lemma 24 we know that the optimal linear arrangement of G′ places

vertices of H consecutively, assuming the inequalities from its statement are

satisfied. By iterating Lemma 25, we get that within H, the vertices from each

Hi are grouped together in the optimal arrangement. The vertices of G can thus

be only to the left of H or to its right. The next lemma shows that H actually

divides the graph G into two roughly equal parts.

Lemma 26. Let γ > 0. Assume G′ has been constructed by transformation T (·)

with parameters satisfying the inequalities from the statements of Lemmas 24

and 25. Further assume that ϕ = γ
3dG

and M ≥ 2. Consider the optimal linear

arrangement σ of G′ and set V1 := L(H), V2 := R(H). Then
∣∣|V1| − |V2|∣∣ ≤ γn.

Proof. Assume the imbalance
∣∣|V1|−|V2|∣∣ is strictly larger than γn. Without loss

of generality, assume |V1| > |V2|. We consider the vertex u such that σ(u) = 1

(i.e., the one placed at the leftmost point in the arrangement).

Moving u to the right-most position results in the following changes in the cost

of the arrangement. The cost associated with the edges of G might be increased

by at most dG(M+1)n. In addition to this, the vertex u is connected to precisely

one vertex of each Hi. We cannot be sure precisely where the neighbouring vertex

is mapped by σ, which leads us to a possible increase that is upper-bounded by

M
ϕ
ϕn = Mn. The possible total cost increase related to this is upper-bounded

by (dG + 1)(M + 1)n. However, moving the vertex u to the other side also

leads to a decrease of γn for each edge between u and a subgraph Hi. This

represents a cost decrease of at least γnM
ϕ

. In total, we get a cost decrease of

γnM
ϕ
− 2dGMn = 3dGnM − 2dGnM = dGMn.
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For any γ > 0,M ∈ N,M ≥ 2, it is possible to satisfy the assumptions of the

previous lemmas simultaneously. This allows us to prove the main theorem:

Proof of Theorem 4. The choice of γ and M is deferred to the end of the proof.

We set

ϕ =
γ

3dG
,

which implies ∆H,G = 1
ϕ

= 3dG
γ

. We let

dH = 9∆H,G + 9
M

ϕ
+ 3dG + 1,

dHM
= 12dH + 6∆H,G + 1,

dHi
= 4dHi+1

.

If dH , dHi
are not prime powers (and thus Theorem 12 does not guarantee the

existence of an explicit construction of such expander), we increase the value of

the parameters to a larger prime power.

We show how to apply our transformation to distinguish instances G of Min

Bisection with at most α
2
dGn edges from those with at least β

2
dGn edges in the

optimum balanced cut. We proceed as follows:

� Denote by G′ the result of applying the transformation T (·) to G with

parameters γ,M, dH and dHi
, i ∈ N.

� Set

X := OLA(H) +
α

2
dGn

2(M + 1) +
dGn

2
· n

2
+

(n+ 2)nM

4ϕ
+ n

M
ϕ∑
i=1

iϕn,

where OLA(H) is the cost of the optimal arrangement of the induced sub-
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graph H from our reduction. Note that if we assume that the graph G has

a bisection with at most α
2
dGn edges, then X is an upper bound on the

cost of the optimum linear arrangement of G′. This is because it accounts

for all costs associated with an ordering of G′ constructed from the optimal

bisection of G. Denote by A,B the disjoint union of V (G) associated with

optimal bisection of G. The abovementioned ordering first lists all vertices

of A, then the vertices of H in the order of cost OLA(H), and then the ver-

tices of B. The first term of X counts the cost of all edges of G′ connecting

two vertices of H and the second term the cost of edges of G between A

and B. The third term the cost of edges within A and within B: there is

dGn
2

of these edges and each with a cost of at most n
2
. The last two terms

upper-bound the cost of edges connecting G to H. Every vertex v of G has

an edge to exactly one vertex of each H`i . If v ∈ A, we may bound its cost

by j(v) + iϕn, where j(v) is the length of the part of the ordering from v

to the first vertex in H. We first count the contribution of the j(v)-terms

in the above expression for all choices of v ∈ A. Since |A| = n
2
, summing

over all v ∈ A and i = 1, . . . , Z we get

|A|∑
j=1

j
M

ϕ
=

(
n
2

+ 1
)
n
2

2
· M
ϕ

=
1

2
· (n+ 2)nM

4ϕ
.

The situation is analogous for B. The very last term is obtained by sum-

ming the remaining edge costs iϕn for all i = 1, . . . , Z and v ∈ G. Clearly,

the value of the optimal ordering can be only smaller.

� If OLA(G′) ≤ X, output that the value of Min Bisection of G is at most

α
2
dGn (i.e., print “YES”).
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� Otherwise, we output “NO”, corresponding to the statement that the value

of Min Bisection of G is at least β
2
dGn.

It remains to argue there is a choice of constants γ and M , such that it is guar-

anteed that instances with large optimum bisection always satisfy OLA(G′) > X.

Suppose there are at least β
2
dGn edges in the optimum bisection of G. Lemma

24, Lemma 25, and Lemma 26 together restrict how the optimum ordering of G′

can look, which allows us to lower-bound its value. Therefore, the value of the

optimal arrangement of G′ is at least:

OLA(H) +
(β

2
− γ
)
dGn

2M +
(n+ 2)nM

4ϕ
+ n

M
ϕ∑
i=1

(
i− 1

)
ϕn,

where H is again the induced subgraph from our reduction. The first term lower-

bounds the cost of edges contained in H, the second term the cost of edges in the

minimum bisection (with at most γndG edges subtracted because we allow for

a slight imbalance), and the last two terms again lower-bound the cost of edges

connecting V (G) to V (H).

The difference between the lower bound on the value resulting from large

instances of Min Bisection and X is at least

(β − α− 2γ)

2
dGMn2 − α

2
dGn

2 − dGn

2
· n

2
− nM

ϕ
ϕn,

which is easily rewritten as

n2
[(β − α− 2γ)

2
dGM −

dG
α
− dG

4
−M

]
.

This quantity is strictly larger than 0 for γ = β−α
5
, dG ≥ 10

β−α and sufficiently
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large constant M . Thus, we never report a graph with minimum bisection of at

least β
2
dGn as a small instance.

4.3 Conclusion

Currently, the Optimum Linear Arrangement problem has a unique posi-

tion in the theory of NP-hardness because of the following. The only known

polynomial reductions proving the hardness of several algorithmic problems (in-

cluding Chordal Completion, Trivially Perfect Completion, Proper

Interval Completion, and Interval Completion) are all routed through

OLA. The NP-hardness of OLA itself has been established by a polynomial

reduction from Maximum Cut. For the purposes of obtaining subexponential

complexity lower bounds, there is a major disadvantage of this reduction: it

implies a substantial increase in the instance size. This in turn weakens the re-

sulting lower bounds based on the Exponential Time Hypothesis. We address

this in [6]. There, we also use Theorem 4 to obtain bounds on the complexity

of the abovementioned problems and their parameterized variants.



Chapter 5

Amalgam-width of matroids

The celebrated theorem of Courcelle [21], presented earlier as Theorem 1, pro-

vides a unifying framework for obtaining FPT algorithms for various algorithmic

problems defined on graphs parameterized by their tree-width. There are several

other width parameters for graphs with similar computational properties, e.g.,

boolean-width [19] and clique-width [22]. This chapter examines the challenges

of extending results of this type to matroids, which are combinatorial structures

generalizing the notions of graphs and linear independence. Although the tree-

width for matroids has been introduced [44], a more natural width parameter

for matroids is branch-width (for its definition, see Section 2.11). This is due to

the fact that the branch-width of graphs can be introduced without referring to

vertices, which are not explicitly available when working with (graphic) matroids.

However, most of the presently available width parameters, including branch-

width, do not allow corresponding extension for general matroids without ad-

ditional restrictions. Although computing decompositions of nearly optimal

width efficiently is usually still possible (the results [69, 70] managed this for

branch-width and clique-width), the picture becomes more complicated for de-

64
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ciding properties. Extensions to matroids are feasible but significant obstacles

emerge for non-representable matroids. This indicates a need for a width param-

eter reflecting the complex behavior of matroids that are not representable over

finite fields.

Let us be more specific with the description of the state of the art for matroids.

The analogue of Courcelle’s theorem was proven by Hliněný [42] in the following

form:

Theorem 27 (Hliněný, [42]). Let F be a finite field, ϕ be a fixed MSO formula,

and t ∈ N. Then there is a linear time algorithm deciding ϕ on F-represented

matroids parameterized by their branch-width bounded from above by t.

However, as evidenced by several negative results, a full generalization of the

above theorem to all matroids is not possible: Seymour [79] has shown that

there is no subexponential time algorithm testing whether a matroid (given by

an oracle) is representable over GF(2). Note that being representable over

GF(2) is equivalent to the non-existence of a uniform U4
2 minor, which can be

expressed in MSO logic. This result generalizes for all finite fields and holds even

when restricted to matroids of bounded branch-width. Subsequently, this implies

the intractability of deciding MSO formulas on general matroids of bounded

branch-width. See [56] for more details on matroid representability from a

computational point of view. Besides MSO properties, algorithmic aspects of

first-order properties have also been studied [37].

Two width parameters have been proposed to circumvent the restriction of

tractability results to matroids representable over finite fields: decomposition-

width [57] and another width parameter based on 2-sums of matroids [81]. The

latter allows the input matroid to be split only along 2-separations, making it



CHAPTER 5. AMALGAM-WIDTH OF MATROIDS 66

of little use for 3-connected matroids. On the other hand, though the first one

can split the matroid along more complex separations, it does not correspond to

any natural “gluing” operation on matroids. In this work, we present a matroid

parameter, called amalgam-width, that has neither of these two disadvantages

and still allows proving corresponding algorithmic results. An input matroid can

be split along complex separations and the parts of the decomposed matroid

can be glued together using the so-called amalgamation [71], which is a well-

established matroid operation.

5.1 Matroid amalgams

In this section we define the operation of a generalized parallel connection, which

plays a key role in the definition of an amalgam decomposition. We begin by

introducing matroid amalgams and modular flats.

Definition 28. Let M1 and M2 be two matroids with ground sets E1 and E2,

respectively. Let E := E1∪E2 and T := E1∩E2. We assume that M1|T = M2|T .

If M is a matroid with the ground set E such that M |E1 = M1 and M |E2 = M2,

we say that M is an amalgam of M1 and M2.

An example of an amalgam of two matroids is given in Figure 5.1, which

illustrates several other key notions of this chapter. An amalgam of two matroids

does not necessarily exist, even if the matroids coincide on the intersection of their

ground sets. Our aim is to investigate a condition on matroids sufficient for the

existence of an amalgam. To do so, we introduce the notions of free amalgams

and proper amalgams.
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Definition 29. Let M0 be an amalgam of M1 and M2. We say that M0 is the

free amalgam of M1 and M2 if for every amalgam M of M1 and M2 every set

independent in M is also independent in M0.

The definition of the more restrictive proper amalgam is more involved.

Definition 30. Let M1 and M2 be two matroids with rank functions r1 and r2,

respectively, and independent sets coinciding on T := E(M1) ∩ E(M2). First,

define functions η and ζ on subsets of E := E(M1) ∪ E(M2) as follows:

η(X) := r1
(
X ∩ E(M1)

)
+ r2

(
X ∩ E(M2)

)
− r(X ∩ T ),

ζ(X) := min{η(Y ) : Y ⊇ X},

where r is the rank function of the matroid N := M1|T = M2|T . (Note that η

provides an upper bound on the rank of the set X in a supposed amalgam of M1

and M2, while ζ is the least of these upper bounds.) If ζ is submodular on S(E),

we say that the matroid on E(M1) ∪ E(M2) with ζ as its rank function is the

proper amalgam of M1 and M2.

It can be verified that if the proper amalgam of two matroids exists then it is

the free amalgam. The next lemma provides a necessary and sufficient condition

for an amalgam to be the proper amalgam of two given matroids.

Lemma 31 (Oxley, [71]). Let M1 and M2 be two matroids, M one of their

amalgams, and T the intersection E(M1)∩E(M2). The matroid M is the proper

amalgam of M1 and M2 if and only if it holds for every flat F of M that

r(F ) = r(F ∩ E1) + r(F ∩ E2)− r(F ∩ T ).
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However, Lemma 31 says nothing about the existence of the proper amalgam

of M1 and M2. Below, we give a condition that guarantees it. The notion of

modular semiflats is necessary for this.

e1

e2

e3

e4

f1

f2

f3

f4

g1

g2

g3

h1

h2

h3

h4

Figure 5.1: Let M1 be a graphic matroid of a graph that contains exactly the blue and

yellow edges from the figure (and the incident vertices). Similarly, let M2 be a graphic

matroid of a graph containing exactly the green and yellow edges. Finally, let M be the

graphic matroid of a graph containing all of the above edges. Then, M is an amalgam of

M1 and M2. Denote by X the yellow edges (which are simultaneously elements of both

M1 and M2) and Y the set of all blue edges (which are also elements of M1). Both X

and Y are flats of M1. We have r(Y ) = 4, r(X) = 7, r(X ∪ Y ) = 10 and r(X ∩ Y ) = 0.

Therefore, X is not a modular flat in M1. It can be also easily verified that the two

matroids violate the statement of Lemma 35. We conclude that the generalized parallel

connection of M1 and M2 does not exist.

Definition 32. A flat X = cl(T ) of a matroid M is modular if for any flat Y

of M the following holds:

r(X ∪ Y ) = r(X) + r(Y )− r(X ∩ Y ).

Furthermore, we say that T is a modular semiflat if cl(T ) is a modular flat in

M and every element of cl(T ) is either in T , a loop, or parallel to some other

element of T .

For example, the set of all elements, the set of all loops, and any flat of rank one

are modular flats. Each single-element set is a modular semiflat. The following
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theorem is given in Oxley’s monograph [71]:

Theorem 33. Suppose that M1 and M2 are two matroids with a common re-

striction N := M1|T = M2|T , where T := E(M1) ∩ E(M2). If T is a modular

semiflat in M1, then the proper amalgam of M1 and M2 exists.

We are now ready to introduce the operation of a generalized parallel connec-

tion, which can be used to glue matroids.

If M1 and M2 satisfy the assumptions of Theorem 33, then the resulting

proper amalgam is called the generalized parallel connection of M1 and M2 and is

denoted by M1 ⊕N M2, where N := M1|
(
E(M1)∩E(M2)

)
. Since N is uniquely

determined by the two matroids, we sometimes omit it and use M1 ⊕ M2 instead.

The generalized parallel connection satisfies the following basic properties.

Lemma 34 (Oxley, Proposition 12.4.14(iii), [71]). If the generalized parallel con-

nection of matroids M1 and M2 exists, then cl
(
E(M2)

)
is a modular semiflat in

M1 ⊕M2.

Lemma 35 (Oxley, pg. 446, [71]). Let M1 and M2 be two matroids on ground

sets E1 and E2, respectively. Furthermore, let T := E1 ∩ E2, N be the matroid

M1|T = M2|T , and M := M1⊕NM2. For X ⊆ E1∪E2, let Xi = clMi
(X∩Ei)∪X.

It holds that

clM(X) = clM1(X2 ∩ E1) ∪ clM2(X1 ∩ E2), and

rM(X) = rM1(X2 ∩ E1) + rM2(X1 ∩ E2)− rM
(
T ∩ (X1 ∪X2)

)
.

The operation of generalized parallel connection also commutes:
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Lemma 36. Let K,M1 and M2 be matroids such that M1|T1 = K|T1 and M2|T2 =

K|T2, where T1 := E(M1) ∩ E(K) and T2 := E(M2) ∩ E(K). Let N1 :=

E(M1) ∩
(
E(M2) ∪ E(K)

)
and N2 := E(M2) ∩

(
E(M1) ∪ E(K)

)
. If T1 is a

modular semiflat in M1 and T2 is a modular semiflat in M2, then

M2 ⊕N2 (M1 ⊕T1 K) = M1 ⊕N1 (M2 ⊕T2 K).

5.2 Amalgam-width

Recall that the class of graphs of bounded tree-width can be introduced as the

set of all subgraphs of a k-tree, where a k-tree is a graph that can be obtained by

gluing two smaller k-trees along a clique of size k. Similarly, matroids of bounded

branch-width can be introduced in terms of an operation taking two matroids of

bounded branch-width and producing a larger matroid of bounded branch-width

by gluing them along a low-rank separation. The amalgam-width is also defined

using a gluing operation. Analogously to the definition of tree-width, where some

elements of the clique can be effectively removed after the gluing takes place, the

operation includes a set of elements to be deleted. A typical situation when

applying the gluing operation is illustrated on Figure 5.2.

Definition 37. Suppose we are given matroids M1,M2, and K such that E(M1)∩

E(M2) ⊆ E(K). Furthermore, suppose we are also given a set D ⊆ E(K). Let

Ji := E(Mi) ∩ E(K), i ∈ {1, 2} and assume the two conditions below hold:

� Mi|Ji = K|Ji, i ∈ {1, 2},

� J1 and J2 are both modular semiflats in K.
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Then, the matroid M1 ⊕K,D M2 is defined as follows:

M1 ⊕K,D M2 :=
(
(K ⊕J1 M1)⊕J2 M2

)
\D.

We also say that the matroid M1 ⊕K,D M2 is a result of gluing of M1 and M2

along K and removing the elements of D.

M1 M2

K

J1 J2
D

Figure 5.2: M1,M2 are the matroids being combined, K is a small matroid used to glue

them together, and D is a set of elements that are subsequently removed.

Note that Theorem 33 guarantees the matroid M1⊕K,D M2 to be well defined.

We are now ready to introduce our width parameter.

Definition 38. Matroid M has amalgam-width at most k ∈ N if |E(M)| ≤ 1,

or there are matroids M1 and M2 of amalgam-width at most k, a matroid K

satisfying |E(K)| ≤ k, and a choice of D ⊆ E(K) such that

M = M1 ⊕K,D M2.

Note that the first condition can be weakened to |E(M)| ≤ k without affecting

the definition. Every finite matroid M has an amalgam-width at most |E(M)|.

The amalgam-width of M is the smallest k such that M has amalgam-width at

most k. The definition above naturally yields a tree-like representation of the

construction of the matroid in question:



CHAPTER 5. AMALGAM-WIDTH OF MATROIDS 72

Definition 39. Assume that M is a matroid with amalgam-width k. Any rooted

tree T satisfying either of the following statements is called an amalgam decom-

position of M of width at most k:

� |E(M)| ≤ 1 and T is a trivial tree containing precisely one node,

� M = M1⊕K,DM2 and T has a root r with children r1 and r2 such that the

subtrees of T rooted at r1 and r2 are amalgam decompositions of M1 and

M2 of width at most k.

The above definition leads to a natural assignment of matroids to the nodes

of T : whenever a gluing operation is performed, we assign the resulting matroid

to the node. We use MT (v) to refer to this matroid and say that the node v

represents MT (v). For an internal node v ∈ T , we use MT
1 (v), MT

2 (v), KT (v),

DT (v), JT1 (v) and JT2 (v) to denote the corresponding elements appearing in the

gluing operation used to obtain MT (v) = MT
1 (v)⊕KT (v),DT (v)MT

2 (v). If v is a leaf

of a decomposition T , we let MT
1 (v) and MT

2 (v) be matroids with empty ground

sets, KT (v) = MT (v) the corresponding matroid containing a single element,

and DT (v) := ∅. Finally, we denote by JT (v) ⊆ K(v) the set of elements

used to glue M(v) to its parent. More formally, we set JT (v) := JTi (u), where

i ∈ {1, 2} is chosen depending on whether v is a left or right child of u. Since

the decomposition under consideration is typically clear from context, we usually

omit the upper index T .

5.3 Algorithms

As the main result of this section, we show that the problem of deciding monadic

second-order properties is computationally tractable for matroids of bounded
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amalgam-width:

Theorem 7. Let ϕ be a fixed formula in monadic second-order logic and k ∈

N. Then, there is an algorithm deciding whether a matroid M satisfies ϕ in

linear time for graphs of amalgam width bounded from above by k (assuming the

corresponding amalgam decomposition T of the matroid is given explicitly as a

part of the input).

Later, in Section 5.4, we discuss when the requirement of having the amalgam

decomposition available as a part of the input can be dropped while maintaining

polynomial time complexity. For the purpose of induction used in the proof of

Theorem 7, we need to generalize the considered problem by introducing free

variables:

INPUT:

� an MSO formula ψ with p free variables,

� amalgam decomposition T of a matroid M with width at most k,

� a function Q defined on the set {1, . . . , p} assigning the i-th free variable

its value; specifically, Q(i) is equal to an element of E(M) if xi is an

element variable, and it is a subset of E(M) if xi is a set variable.

OUTPUT:

� ACCEPT if ψ is satisfied on M with the values prescribed by Q to its

free variables,

� REJECT otherwise.
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The resulting problem is referred to as the MSO-DECIDE problem. To simplify

notation, let us assume that if ψ is a formula with free variables, we use xi for

the i-th variable if it appears in ψ as an element variable and Xi if it appears as

a set variable. We prove the following generalization of Theorem 7:

Theorem 40. For a fixed choice of ψ and k ∈ N, the problem MSO-DECIDE can

be solved in linear time (assuming the corresponding amalgam decomposition T

of the matroid is given as a part of the input).

Our aim in the proof of Theorem 40 is to construct a linear time algorithm

based on deterministic bottom-up tree automata. Let us introduce such au-

tomata.

Definition 41. A finite tree automaton is a 5-tuple (S, SA, δ,∆,Σ), where

� S is a finite set of states containing a special initial state 0,

� SA ⊆ S is a non-empty set of accepting states,

� Σ is a finite alphabet,

� δ : S × Σ → S is set of transition rules that determine a new state of the

automaton based on its current state and the information, represented by

Σ, contained in the current node of the processed tree, and

� ∆ : S × S → S is a function combining the states of two children into a

new state.

Let us also establish the following simple notation.

Definition 42. Consider an instance of an MSO-DECIDE problem. In particular,

let Q be the variable-assignment function as in the definition of our generalized
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problem. For F ⊆ E(M), we define the local view of Q at F to be the following

function:

QF (i) :=



Q(i) ∩ F if the i-th variable is a set variable,

Q(i) if the i-th variable is an element variable and Q(i) ∈ F ,

� otherwise,

where � is a special symbol that is not an element of the input matroid.

The symbol � stands for values outside of F . We simplify the notation by

writing Qv(xi) instead of QE(K(v))(i), where v is a node of T from the problem’s

input.

The alphabet Σ of the automaton we construct will correspond to the set of all

possible “configurations” at a node v in an amalgam decomposition of width at

most k. A finite tree automaton processes a tree (in our case T ) from its leaves to

the root, assigning states to each node based on the information read in the node

and on the states of its children. When processing a node whose two children

were already processed the automaton calculates the state s := ∆(s1, s2), where

s1 and s2 are the states of the children, and moves to the state δ(s, q), where

q ∈ Σ represents the information contained in that node of the tree. If the state

eventually assigned to the root of the tree is contained in the set SA, we say that

the automaton accepts. It rejects otherwise.

As a final step of our preparation for the proof of Theorem 40, we slightly alter

the definition of an MSO formula by replacing the use of ind(X) predicate with

the use of x1 ∈ cl(X2), where cl(·) is the closure function of M . The predicate
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ind(X) can be expressed while adhering to the altered definition as follows:

ind(X) ≡ ¬
(
∃e ∈ X : cl(X) = cl(X \ {e})

)
.

Proof of Theorem 40. We proceed by induction on the length of the formula ψ,

starting with simple formulas such as x1 = x2 or x1 ∈ X2. In each step of the

induction, we design a tree automaton processing the amalgam decomposition

tree T and correctly solving the corresponding MSO-DECIDE problem. As al-

ready mentioned, the alphabet will encode all possible non-isomorphic choices of

the matroid K(v), sets J(v), J1(v), J2(v), and D(v) combined with all possible

local views of Q at v, allowing this information to be read when processing the

corresponding node. Note that if k is bounded, the size of the set Σ of such

configurations is bounded. Since the automaton size does not depend on n and

the amount of information read in each node of T is bounded by a constant (as-

suming bounded amalgam-width), we will be able to conclude that the running

time of our algorithm, which will just simulate the tree automaton, is linear in

the size of T .

To start the induction, we first consider the case ψ ≡ (x1 ∈ X2). Such

instances of MSO-DECIDE can be solved by the automaton given in Figure 5.3.

This automaton stays in its original state if x1 is assigned � by the local view

of Q at E(K(v)). Otherwise, it moves to designated ACCEPT and REJECT

states based on whether Qv(x1) ∈ Qv(X2) holds. The set SA is defined to be

{ACCEPT}. The function ∆ : S × S → S assigns the ACCEPT state to any

tuple containing an ACCEPT state. Similarly for the REJECT state. We are

guaranteed not to encounter the situation where one child node is in the ACCEPT
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0

ACCEPT

REJECT

Qv(x1) ∈ Qv(X2)

Qv(x1) 6∈ Qv(X2) ∪ {�}

Qv(x1) = �

all cases

all cases

Figure 5.3: The states and transition rules δ of the tree automaton for the formula

x1 ∈ X2. Here, v is the currently processed node of the amalgam decomposition. The

names of the states are typed using bold font.

state and the other in the REJECT state, since the free variable assignment

function Q maps x1 precisely to one element of E(M). It is clear that this tree

automaton correctly propagates the information of whether x1 ∈ X2 or not from

the leaf representing the value of x1 to the root of T .

The cases of formulas x1 = x2 and X1 = X2 can be handled similarly. For

formulas of the form ψ1 ∨ ψ2, we construct the automaton by taking the Carte-

sian product of the automata Ai = (Si, SiA, δ
i,∆i,Σi), i ∈ {1, 2} for the partial

formulas ψi. Specifically, Σ = Σ1×Σ2, S = S1×S2, SA = (S1
A×S2)∪ (S1×S2

A),

∆
(
(x, y)

)
=
(
∆1(x),∆2(y)

)
, δ
(
(x, y), (q, r)

)
=
(
δ1(x, q), δ2(y, r)

)
. Informally, the

two automata run in parallel and the new automaton accepts precisely if at least

one of the two is in an accepting state. A formula of the form ¬ψ can be pro-

cessed by the same automaton as ψ, except we change the set accepting states

to their complement. The connectives ∧,⇒, . . . can be expressed using ∨ and ¬

by a standard reduction.

The special properties of amalgam decompositions come into play when con-

structing the automaton deciding the formula x1 ∈ cl(X2). When processing

a node v ∈ T , we see the elements of K(v), can query the independent sets on

E(K(v)), and see a local view of Q(X2) at E(K(v)). Our strategy will be to

compute clM(X2) restricted to E(K(v)) and determine whether x1 is contained
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in it. However, the state at v does not encode necessary information about the

remaining part of M . The matroid M(v) is joined to this part by a general-

ized parallel connection using J(v). Lemma 35 says that the remaining part of

M can influence the restriction of the closure of X2 on E(K(v)) only through

forcing some of the elements of this modular flat into the closure. Since |J(v)| is

bounded, we can pre-compute the behavior of the resulting closure for all possible

cases. This information is encoded in the state of the finite automaton passed

to the parent node. The parent node can then use the information encoded in

the states corresponding to its children when pre-computing its intersection with

clM(X2). We formalize this approach using the following definition.

Definition 43. Let v be a node of an amalgam decomposition T of M and X be

a subset of E(M). A map fXv from 2J(v) → 2J(v) satisfying

fXv (Y ) = clM(v)

((
X ∩ E(M(v))

)
∪ Y

)
∩ J(v)

is called the type of a node v with respect to X.

When processing a node v, we can assume we are given the types fX1 and fX2

of the children of v and we want to determine the type of v, which we denote

by fXv1 +K(v) f
X
v2

. This type is then encoded into the state of the finite automaton

(along with the information for which choices of Y ⊆ J(v) the formula ψ holds)

and is passed to the parent node. The information is then reused to determine the

type of the parent node, etc. This process is captured by the following definition.

Definition 44. Let v be a node of an amalgam decomposition T of a matroid

M , v1 and v2 the children of v, and X a subset of E(M). If fXv1 is the type of v1

with respect to X and fXv2 is a type of v2 with respect to X, we say that the type
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fXv1 +K(v) f
X
v2

of v is the join of fXv1 and fXv2 if for every subset Y of J(v) it holds

that fXv1 +K(v) f
X
v2

= Z ∩ J(v), where Z is the smallest subset of E(K(v)) such

that

(1) fXv1 (Z ∩ J1(v)) = Z ∩ J1(v),

(2) fXv2 (Z ∩ J2(v)) = Z ∩ J2(v),

(3) Z ⊇ Y ∪ (X ∩ E(K(v))).

Lemma 35 implies that fXv1 +K(v) f
X
v2

is the type of the node v with respect to

X. Observe that the type fX1 +K(v) f
X
2 in the above definition is determined by

fXv1 , f
X
v2
, K(v) and X ∩ E(K(v)) – each of which has bounded size. This implies

that the computation of the type fX1 +K(v) f
X
2 can be wired in the transition

function of the automaton. Deciding if Q(x1) ∈ cl(X2) ∩ J(v) is then reduced to

verifying if Q(x1) ∈ fX2
v (Y ) for a particular choice of Y .

The case where the formula ψ is of the form ∃x : ψ1 is solved by a standard

argument of taking the finite tree automaton recognizing ψ1 and transforming it

to a non-deterministic finite tree automaton that tries to guess the value of x (in

our case, the automaton also checks if this guessed value of x lies in the set D(v) of

deleted elements). This automaton can in turn be simulated using a deterministic

finite tree automaton with up to an exponential blow-up of the number of states.

Note that this blow-up does not negatively affect the asymptotic running time

of the algorithm when seen from the perspective of Theorem 7. This is because

the formula ψ is fixed and the matroid M (along with its decomposition) is the

only variable part of the input. It is true, however, that each occurrence of a

universal or existential quantifier in the MSO formula ψ leads to an algorithm

with a (significantly) larger multiplicative constant.
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The case ∃X : ψ is solved analogously.

Since the algorithm simulating the automaton on T spends O(1) time in each

of the nodes of T , there exists a linear time algorithm solving the problem from

the statement of the theorem.

5.4 Conclusion

Strozecki [81] introduced a similar parameter which uses the operation of a ma-

troid 2-sum instead of the generalized parallel connection. However, its appli-

cability is limited since it allows to join matroids only using separations of size

at most 2 and thus any decomposition of a 3-connected matroid M has a width

of |E(M)|. The next proposition implies that amalgamation is able to express

the 2-sum operation as a special case. Therefore, the amalgam-width is a more

general parameter than the one from [81].

Proposition 45. A 2-sum of matroids M1 and M2 can be replaced by finitely

many operations of generalized parallel connections and deletions.

Furthermore, the amalgam-width is a generalization of the branch-width pa-

rameter for finitely representable matroids in the sense that a bound on the value

of branch-width implies a bound on the amalgam-width:

Proposition 46. If M is a matroid with branch-width k and M is representable

over a finite field F, then the amalgam-width of M is at most |F|3k/2.

Proof. Suppose we are given a (non-trivial) branch decomposition B of the ma-

troid M of width k, along with the representation of M over F. The elements of

M are vectors from Fd for some dimension d ∈ N. Since branch decomposition
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is an unrooted tree, we select an arbitrary internal node as the root node. We

construct an amalgam decomposition T of width at most |F|3k/2. The leaves of

T are the leaves of B and correspond to the same elements of M . Similarly, the

internal nodes of T are the internal nodes of B and the associated matroids K(v)

(for v ∈ T ) are defined as follows. Consider an internal node v ∈ B with children

v1 and v2. We use E1 and E2 to denote the set of elements of M represented

by the leaves in the subtree of B rooted at v1 and v2, respectively. We also let

E ′ := E(M) \ (E1 ∪E2). Finally, we set F ⊆ E(M) to be the set of all elements

in at least two of the sets cl(E1), cl(E2) and cl(E ′). Note that dim(F ) ≤ 3
2
k.

We construct K(v) by taking as its ground set all linear combinations of vectors

from F . Consequently, the sets J1
v and J2

v are E(K(v)) ∩ E1 and E(K(v)) ∩ E2,

respectively.

We need to check that the conditions of Theorem 33 are met. However, every

flat X in a matroid containing all d-dimensional vectors over F is modular, since

for any flat Y we have:

r(X∪Y ) = dim(X∪Y ) = dim(X)+dim(Y )−dim(X∩Y ) = r(X)+r(Y )−r(X∩Y ),

where dim(·) is the dimension of a vector subspace of Fd.

The additional elements E(K(v)) \E(M) included in the construction above

can be subsequently removed by including them in the set D(u) at an ancestor u

of v, ensuring that the decomposition represents precisely the input matroid.

On the other hand, every amalgam decomposition can be turned into a branch

decomposition:

Proposition 47. Let M be a matroid and T its amalgam decomposition of width
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k. Then there exists a branch decomposition B of M with width at most 2k + 1.

Proof. For simplicity, we assume the sets DT (v) to be empty for all v ∈ T . If T is

a trivial amalgam decomposition containing a single node, then there clearly is a

corresponding branch decomposition satisfying the statement of the proposition.

Otherwise, let r be the root of T . We partition the ground-set of M = MT (r) into

two sets: E1 = E(MT
1 (r)) ∪ E(KT (r)) and E2 =

(
E(MT

2 (r)) ∪ E(KT (r))
)
\ E1.

By induction, we can assume there are branch decompositions B1 and B2 of the

matroids M |E1 and M |E2, respectively. The desired branch decomposition B is

formed by a new node r′ connected to an element of B1 and an element of B2.

It is left to show that the branch-width of this decomposition is at most 2k + 1.

Specifically, we need to show that

r(E1 ∪ E2) ≥ r(E1) + r(E2)− 2k.

Since cl(E1) is a modular semiflat, Definition 32 implies:

r(E1 ∪ E2) = r
(
E1 ∪

(
E2 ∪ E(K)

))
= r(E1) + r

(
E2 ∪ E(K)

)
− r
(
E(K)

)
≥ r(E1) + r(E2)− 2k.

This proposition and Theorem 18 immediately imply the following algorithmic

result:

Theorem 48. For each k, there is an O(n4) algorithm taking a matroid repre-

sentable over a finite field F as its input and constructing an amalgam decompo-

sition of width at most 6k− 1 or concluding that the matroid has amalgam-width
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at least 2
3

log|F|(k + 1).

This allows us to remove the assumption of having the amalgam decomposition

as a part of the input from Theorem 7 for matroids representable over finite fields:

Theorem 49. For each k ∈ N and each formula ϕ in monadic second-order

logic there is an algorithm deciding whether a matroid M representable over a

fixed finite field satisfies ϕ in polynomial time for matroids of amalgam width

bounded from above by k.



Chapter 6

Branch-depth of matroids

This chapter introduces another matroid parameter, which we refer to as branch-

depth. Compared to the case of amalgam-width defined in Chapter 5, our

motivation for the introduction of this parameter is more structural than al-

gorithmic. Branch-depth is a matroid analogue of graph tree-depth, which was

applied by Nešetřil and Ossona de Mendez in their research on combinatorial

limits [66, 67]. The theory of combinatorial limits is a rapidly growing field of

research [2, 4, 9–11, 28, 40, 63, 73]. It has been originally introduced for dense

graphs [62], but has since been extended to many other structures including hy-

pergraphs [29] and permutations [46,47]. Since the introduction of the theory, a

series of interesting applications and connections with other areas of mathematics

has been obtained [3,41,51,58,59,74]. This motivates its extension to matroids.

Let us provide an informal picture of the situation. The aim is mostly to

illustrate the position of the tree-depth parameter within the theory.

There are various notions of combinatorial limits [61] one might attempt to

generalize, including graphons (dense graph limits) and graphings (sparse graph

limits). In [52], we argue that the notion of a limit object called graph model-

84
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ing [66, 67] is a good candidate for this extension. One of the obstacles of in-

troducing matroid limits is that, when treated as hypergraphs (with hyperedges

corresponding to the bases), matroids are too sparse for the dense approach of

graphons and too dense for the sparse approach of graphings. The benefit of

starting instead with graph modelings is that the associated notion of first-order

convergence can be generalized to matroids while avoiding this problem.

In some sense, graph modelings capture more information than graphons and

graphings. This however implies that stronger conditions are required in order

to guarantee a modeling to exist. In particular, the authors of [66, 67] employ

the tree-depth parameter and limit themselves to graphs of bounded tree-depth.

Therefore, in order to extend the abovementioned theory to matroids, one would

need – among other things – to resolve the issue of generalizing the tree-depth

to matroids. The original notion is defined as follows.

Definition 50. The tree-depth td(G) of a graph G is the smallest possible depth

of a rooted tree T with the property that G ⊆ T ′, where T ′ denotes the transitive

closure of T , i.e. the graph with vertex set V (T ) and an edge connecting each

pair of vertices u and v such that u is an ancestor of v in T . Any such T is called

the optimal tree-depth decomposition of G.

In the present chapter, we define branch-depth – a matroid parameter that

we claim represents a notion analogous to the above definition. To substantiate

this, we show that these two parameters share several fundamental properties.

These include minor monotonicity (Proposition 53) and a relation between the

tree-depth of a given graph and the branch-depth of the corresponding graphic

matroid (Proposition 55 and Proposition 56). An algorithm efficiently computing

an approximate value of the parameter for an oracle-given matroid is presented
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in Section 6.3. The algorithm also produces a certifying decomposition as a part

of its output.

Since structural results are outside of the scope of this thesis, we refer the

reader to the result [52] for such applications of the branch-depth parameter.

6.1 Definition and basic properties

The branch-depth of a matroid is equal to the optimal height of a certain kind

of decomposition tree. In the definition below and in the proofs of subsequent

claims, we use ‖T‖ to denote the number of edges of a tree T .

Definition 51. Let M be a finite matroid. A depth decomposition of M is a

pair (T, f), where T is a rooted tree and f : M → V (T ) is a mapping such that

(i) r(M) = ‖T‖, and

(ii) r(X) ≤ ‖T ∗(X)‖ for every X ⊆M ,

where T ∗(X) is the subtree of T formed by the union of paths from the root to

all the vertices in f(X). The branch-depth of a matroid M , denoted by bd(M),

is the smallest depth of a rooted tree T such that (T, f) is a depth decomposition

of M .

For any matroid M there is a trivial decomposition where the tree is a path

of length r(M) and all the elements are mapped to the leaf. The following lemma

describes a structural property of depth decomposition.

Lemma 52. Let M be a finite matroid. If (T, f) is a depth decomposition of M ,

then there is a depth decomposition (T, f ′) such that f ′(e) is a leaf of T for every

element e of M .
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Proof. Let (T, f) be a depth decomposition of M . For every inner node v of T ,

let `(v) be a leaf of T that is a descendant of v. For every e ∈ M , define f ′ as

follows.

f ′(e) :=


f(e) if f(e) is a leaf of T,

`(f(e)) otherwise.

Part (i) of Definition 51 is trivial. For part (ii), note that for a subset X of the

elements of M , the number of edges of T ∗(X) does not decrease.

As with the notion of graph tree-depth [68] the parameter matroid branch-

depth is also minor monotone.

Proposition 53. If M ′ is a minor of M , then bd(M ′) ≤ bd(M).

Proof. It is enough to show that if M is a matroid and e is an element of M ,

then the branch-depth of both M/e and M \ e is at most bd(M). Fix a matroid

M and e ∈ E(M). Let (T, f) be a depth decomposition of M of depth bd(M).

By Lemma 52, we can assume that f(e) is a leaf of T for every e ∈M .

If e is a loop in M then M1 := M \ e = M/e. It is easy to see that for every

X ⊆ M1 we have rM1(X) = rM(X). Hence, (T, f |M1) is a depth decomposition

of M1.

We now assume that e is not a loop. Let M1 := M/e, u be the leaf f(e), and

v the parent of u. Set T1 = T \ u and define f1 : M1 → V (T1) as follows:

f1(x) =


v if f(x) = u, and

f(x) otherwise.

We now show that (T1, f1) is a depth decomposition of M1. First of all, since e

is not a loop, we have r(M1) = r(M)− 1. Thus, ‖T1‖ = r(M1). Now, consider a
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subset X ⊆M1. Recall that rM1(X) = rM(X ∪{e})−1. If u ∈ f1(X), we employ

the bound on the rank function provided by the depth decomposition of M :

‖T ∗1 (f1(X))‖ = ‖T ∗(f(X ∪ {e}))‖ − 1 ≥ rM(X ∪ {e})− 1 = rM1(X).

Otherwise, we have

‖T ∗1 (f1(X))‖ = ‖T ∗(f(X))‖ ≥ rM(X) ≥ rM1(X).

Let M2 = M \ e. If e is a bridge then M \ e = M/e. Hence, we may

assume that e is not a bridge in M . In this case, we claim that (T, f |M2) is a

depth decomposition of M2. Since the rank of M2 equals the rank of M , we have

r(M2) = ‖T‖ and ‖T ∗(f(X))‖ ≥ rM(X) = rM2(X) for every X ⊆M2.

The next proposition relates the length of circuits in the matroid to its branch-

depth. This is analogous to how the graph tree-depth is related to the existence

of long paths.

Proposition 54. Let M be a matroid and g the size of its largest circuit. Then

bd(M) ≥ log2(g).

Proof. By Proposition 53, it suffices to show that the branch-depth of Cd is at

least log2 d, where Cd is the matroid that consists of exactly one circuit of size d.

We prove this statement by induction on d.

Let (T, f) be a depth decomposition of Cd such that T has depth bd(Cd)

and such that f(e) is a leaf of T for every e ∈ Cd. Its existence follows from

Lemma 52.

We first prove that the root r of T has degree 1. Suppose not. Let (T1, T2) be
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a partition of T into two edge-disjoint subtrees both rooted at r. Then ‖Ti‖ ≥

r(f−1(V (Ti))) = |f−1(V (Ti))| for i ∈ {1, 2}. Hence r(Cd) = ‖T‖ = ‖T1‖+‖T2‖ =

|Cd| = r(Cd) + 1, a contradiction.

Let v be a vertex of T of degree larger than 2 that is as close to the root r as

possible. If there is no such vertex, T is a path and it has depth d− 1 ≥ log2(d).

Let P be a path from r to v, ` its length, and (T1, T2) a split of T \ (P \ v)

into two edge-disjoint trees rooted at v. Let mi = ‖Ti‖ and ni = |f−1(V (Ti))| for

i ∈ {1, 2}. Observe that both n1 and n2 are non-zero, and that

m1 +m2 + ` = r(Cd) = d− 1 and n1 + n2 = |Cd| = d. (6.1)

Since any proper subset of Cd is independent, ni ≤ mi + ` for i ∈ {1, 2}. By

symmetry, we may assume that n1 ≤ n2, which gives n1 ≤ d
2
.

Let M ′ := Cd/f
−1(V (T1)). Note that M ′ is isomorphic to Cn2 . Also, observe

that the tree T2 with f |M ′ is a depth decomposition of M ′. By induction, the

depth of T2 is at least log2
d
2
. We conclude that the depth of T is at least

log2
d
2

+ ` = log2 d− 1 + ` ≥ log2 d.

We next relate the branch-depth of a graphic matroid to the tree-depth of the

underlying graph.

Proposition 55. The branch-depth of a graphic matroid M(G) is at most td(G).

Proof. Let G be a graph on n vertices and let M := M(G) be the corresponding

graphic matroid. We can assume that G is 2-connected, since otherwise we can

construct the depth decompositions of the 2-connected components of G and then

join them by identifying their roots.
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Let T be the optimal tree-depth decomposition of G. We construct a depth

decomposition (TM , fM) as follows. We set TM := T . Next, we define the function

fM . Consider e = {u, v} ∈ E(M). By symmetry, we can assume that u is an

ancestor of v in T . We set the function fM to map the matroid element e to v.

We verify the two conditions of Definition 51. Since G is connected, we indeed

have r(M) = n− 1 = |V (T )| − 1. Consider any subset X ⊆ E(M) and use U to

denote the set of those vertices of G that are incident to an edge in X. It suffices

to show rM(X) ≤ |T ∗M(X)| for acyclic X, since removing an edge of a cycle in

X does not decrease rM(X) and also does not increase |T ∗M(X)|. Therefore, we

have rM(X) = |X| − c + 1, where c is the number of components of the graph

(V (G), X), and |T ∗M(X)| ≥ |X|.

Note that the converse of Proposition 55 does not need to hold since the

graphic matroids of a star and a path with the same number of edges are identical;

at the same time the graphic matroid of any star has a branch-depth of 1 and

the branch-depth of the graphic matroid of a path is equal to the length of the

path. Nevertheless, the following inequality holds for 2-connected graphs.

Proposition 56. Let G be a 2-connected graph with tree-depth d. Then, the

branch-depth of a graphic matroid M(G) is at least 1
2

log2 d.

Proof. Since td(G) = d, the graph G contains a cycle of length
√
d, by [68,

Proposition 6.2]. Therefore, by Proposition 54, bd(M(G)) ≥ 1
2

log2 d.
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6.2 Technical lemmas

After introducing a combinatorial parameter, it is natural to turn to the question

of whether its value can be efficiently calculated or at least approximated. We

give such an algorithm in Section 6.3. This section lists proofs of several technical

statements that allow us to present the algorithm and its proof. Roughly speak-

ing, the algorithm proceeds by identifying a circuit of the matroid and gradually

contracting its elements. Essentially, two things can happen: either the matroid

“falls apart” into several components or it remains connected after the entire

circuit is contracted. In the former case, the algorithm calls itself recursively on

the individual components. This case results in a branching of the decomposition

tree. In the latter case, it selects another circuit and continues. That leads to an

increase of the height of the decomposition tree.

In the present section, we prove lemmas that allow us to track how are circuits

of a matroid affected by element contractions. Ultimately, this allows us to

construct an obstruction to small branch-depth of M , which is then used to

prove that the approximation ratio of the algorithm of Section 6.3.

The following claim follows directly from the definition of contraction of an

element in a matroid.

Lemma 57. Let C be a circuit in a matroid M . Let e ∈ C. If |C| ≥ 1, then the

set C \ e is a circuit in M/e.

When encountering a circuit, the algorithm is going to proceed by contracting

one of its elements. The following lemma will be crucial for the analysis.

Lemma 58. Let M be a connected matroid, e an element of M such that M/e

is disconnected, and let M1, . . . ,Mk be components of M/e. For every circuit C
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of M containing e, there exists i ∈ {1, . . . , k} such that C ⊆Mi ∪ {e}.

Proof. Assume the contrary. Let M1 ∪M2 be a non-trivial partition of the ele-

ments of M/e such that r(M1) + r(M2) = r(M/e). Let Di := C ∩Mi 6= ∅ for

i ∈ {1, 2}. Then we have a contradiction:

|D1|+ |D2| = |C| − 1 = rM(C) = rM/e(C \ e) + 1

= rM/e(D1) + rM/e(D2) + 1 = |D1|+ |D2|+ 1.

Lemma 57 and Lemma 58 yield the following.

Lemma 59. Let M be a connected matroid. Let e be an element of M such that

M/e is not connected and let M1, . . . ,Mk be the components of M/e. For each

i = 1, . . . , k there is a circuit Ci in M containing e such that Ci ⊆Mi ∪ {e}.

The following lemma allows us to find an obstruction to small branch-depth.

We utilize them to show that Algorithm 1 always returns a depth decomposition

of depth at most 4bd(M).

Lemma 60. Let M be a matroid. Let e1, . . . , ek be distinct elements of M and

C0, C1, . . . , Ck subsets of M such that

|Ci| ≥ 3 for i = 0, . . . , k,

Ci−1 ∩ Ci = {ei} for i = 1, . . . , k,

Ci ∩ Cj = ∅ for |i− j| ≥ 2.
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Let e0 ∈ C0 \ {e1} and e′i ∈ Ci−1 \ {ei−1, ei}, i = 1, . . . , k. Further, set

Mi :=


M for i = 0,

Mi−1/(Ci−1 \ {ei, e′i}) for i = 1, . . . , k.

If Ci is a circuit in Mi for i = 0, 1, . . . , k, then M contains a circuit of length at

least k + 3 containing e0.

Proof. We prove the statement by induction on k. For k = 0 it suffices to take

the circuit C0 itself.

Let k ≥ 1. By induction, M1 = M0/(C0 \ {e1, e′1}) contains a circuit C of

length at least k + 2 that contains e1. Let D = C \ e1. Since C is a circuit, D is

independent in M1 and thus in M0. Also note |D| ≥ k + 1.

Let N = M0/(C0 \ {e0, e1, e′1}). Since C0 is a circuit in M0, {e0, e1, e′1} is a

circuit in N . Furthermore, it holds that M1 = N/e0. If Y is a circuit in N , then

there is a circuit Y ′ ⊇ Y in M . Therefore, it suffices to find a circuit of length at

least k+ 3 in N . We will show that D ∪ {e0, e′1} or D ∪ {e0, e1} is a circuit in N .

Since D is independent in N/e0, we get that D ∪ {e0} is independent in M .

We have rN(X∪{ei, ej}) = rN(X∪{e0, e1, e′1}) for any ei, ej ∈ {e0, e1, e′1}, ei 6= ej

and for any set X ⊆ N by the submodularity of the rank function:

rN({ei, ej}) + rN(X ∪ {e0, e1, e′1}) ≤ rN(X ∪ {ei, ej}) + rN({e0, e1, e′1}).

Hence, for any proper subset D′ ( D we have

rN(D′ ∪ {e0, e′1}) = rN(D′ ∪ {e0, e1}) = rM1(D
′ ∪ {e1}) + 1 = |D′|+ 2,
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where the last equality follows from the fact that D ∪ {e1} is a circuit in M1.

Thus, both D′ ∪ {e0, e′1} and D′ ∪ {e0, e1} are independent in N . On the other

hand, it also holds that

rN(D ∪ {e0, e′1}) = rN(D ∪ {e0, e1}) = rM1(D ∪ {e1}) + 1 = |D|+ 1,

since D ∪ {e1} is a circuit in MM1 . Consequently, neither D ∪ {e0, e1} nor

D ∪ {e0, e′1} is independent. It suffices to prove that D ∪ {e1} or D ∪ {e′1} is

independent in N . Indeed,

rN(D ∪ {e1}) + rN(D ∪ {e′1}) ≥ rN(D) + rN(D ∪ {e1, e′1}) = 2|D|+ 1.

The proof is now complete.

We get the following corollary.

Corollary 61. Let M be a matroid. If C0, C1, . . . , Ck and M0, . . . ,Mk are as in

Lemma 60, then the matroid M contains a circuit of length at least
√∑k

i=0 |Ci|.

Proof. Let t :=
∑k

i=0 |Ci|. If t ≤ (k+ 1)2, then by Lemma 60 there is a circuit of

length at least k + 3 >
√
t. On the other hand, if t > (k + 1)2, then there exists

i ∈ {0, 1, . . . , k} such that |Ci| ≥ t
k+1

>
√
t.

6.3 Approximating branch-depth

We now present our polynomial time algorithm for constructing a depth decom-

position of an oracle-given matroid M with depth at most 4bd(M). The pseu-

docode is given as Algorithm 1 in the form of a routine taking three parameters:
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a connected matroid M , one of its circuits C, and a non-loop element e ∈ C.

For disconnected matroids we process the components individually and glue the

resulting depth decompositions by identifying their roots. Note that every con-

nected matroid has a circuit and a non-loop element in it unless |M | = 1.

If the rank of M is at most one, the routine returns the trivial depth decom-

position. Assume r(M) ≥ 2. If |C| ≤ 2, we find another circuit containing e of

size at least three (the existence of such circuit in a connected matroid with rank

at least two is implied by the definition of connectivity). We assume |C| ≥ 3,

proceed by contracting e in M and analysing the resulting matroid. If it is

connected, the algorithm calls itself recursively (Step 3 of Algorithm 1) on the

contracted matroid. The recursive call is made for the contracted matroid, its

circuit C \ {e}, and a non-loop element e1 of the circuit. The existence of these

is guaranteed by the assumption |C| ≥ 3. After the call is finished, we alter the

resulting decomposition by adding a new root.

If M/e is not connected, the recursive calls are performed on each component

separately (Step 4 and Step 5). The resulting decomposition is obtained by

identifying the roots of the individual decompositions.

It is easily verified that the algorithm finishes in time polynomial in the num-

ber of elements of the input matroid: if the recursive call in Step 2 is executed,

the next execution avoids this step and instead either immediately returns a triv-

ial decomposition or performs one of the other recursive calls, which in turn lead

to a decrease in the input size. If Step 3 is reached, only a single recursive call is

made by the routine, in which the number of matroid elements is decreased by

one. If Steps 4 and 5 are reached the number of recursive calls equals the number

of connected components with the sizes of the corresponding inputs distributed
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proportionally to the component size.

We next establish that the obtained depth decomposition is valid.

Lemma 62. Algorithm 1 returns a valid depth decomposition of M .

Proof. Let M be the input matroid and (T, f) the output of the Algorithm 1.

Clearly, T is a tree and f a mapping from E(M) to V (T ). Thus, we need to

verify the two conditions from Definition 51. Establishing the first condition,

r(M) = ||T ||, is straightforward: we contract a non-loop element of the matroid

precisely when we are decreasing the rank of the currently processed matroid.

Indeed, whenever Step 2 of the routine is reached, the recursive call is performed

on the same input and the resulting output is returned without extending the

decomposition. Whenever Step 3 is reached, the matroid rank is decreased by one

for the recursive call and the output decomposition is extended by a single edge.

When Steps 4 and 5 are reached, the contracted matroid is split into connected

components, and the resulting depth decompositions are glued together with a

single edge introduced. Note that the contraction of the edge e results in the

sum of ranks of the individual components being equal to r(M) − 1. Therefore,

we get r(M) = ||T ||.

To establish the second condition from Definition 51, we proceed by induction

on the size of M . Assume X is a subset of E(M). In the trivial case when M

has rank at most 1, the inequality r(X) ≤ ||T ∗(X)|| is clearly satisfied. Suppose

therefore that Step 3 is reached, i.e., the matroid M/e is connected. From the

induction hypothesis we get r(X \ {e}) ≤ T0
∗(X \ {e}), where T0 is the depth

decomposition of M/e returned by the recursive call. Since T is obtained by
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Algorithm 1: construct(M,C, e)
Input: a connected matroid M , a circuit C of M , and a non-loop

element e ∈ C
Output: a depth decomposition of M
if r(M) = 0 then

Step 0 return one-vertex tree with f mapping all elements to the root;

else
if r(M) = 1 then

Step 1 return one-edge tree with f mapping all elements to the leaf;

else
if |C| = 2 then

Step 2 choose C ′ satisfying e ∈ C ′ and |C ′| ≥ 3;
return construct(M,C ′, e);

else
if M/e is connected then

Step 3 choose a non-loop element e1 ∈ C \ e;
(T ′, f ′) := construct(M/e,C \ e, e1);
T := (v(T ′) ∪ {v0}, E(T ′) ∪ {v0r}) where r is the root of T ′,
rooted at v0;
f(e) := r; f(e′) := f ′(e′) for e′ 6= e;
return (T, f);

else
Step 4 for the component M0 of M/e containing C \ e do

choose a non-loop element e0 ∈ C \ e;
(T0, f0) := construct(M0, C \ e, e0);

end
Step 5 for each component Mi of M/e disjoint from C do

choose a circuit Ci of M contained in Mi ∪ {e} that
contains e;
choose ei ∈ Ci \ e;
(Ti, fi) := construct(Mi, Ci \ e, ei);

end
identify all the roots ri of Ti into a single r, obtaining T ′;
T := (v(T ′) ∪ {v0}, E(T ′) ∪ {v0r}), choosing v0 as the root;
f(e) := r, f(ei) := fi(ei) for ei ∈Mi;
return (T, f);

end

end

end

end
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adding a new root and connecting it by an edge with the old root, we get:

r(X) ≤ r(X \ {e}) + 1 ≤ ‖T0∗(X \ {e})‖+ 1 = ‖T ∗(X)‖ .

Finally, suppose that Steps 4 and 5 are executed, i.e., the matroid M/e is

divided into components M1, . . . ,Mk. By induction, we get rMi
(X ∩ E(Mi)) ≤

‖Ti∗(X ∩ E(Mi))‖, where Ti is the depth decomposition of Mi returned by the

recursive call for Mi. Since the resulting depth decomposition is constructed by

identifying the roots of T1, . . . , Tk and connecting them to a new root node, we

get

r(X) ≤ 1 +
∑
i

rMi
(X ∩ E(Mi)) ≤ 1 +

∑
i

‖T ∗(X ∩ E(Mi))‖ = ‖T ∗(X)‖ .

Lemma 63. Algorithm 1 returns a depth decomposition of M with depth at most

4bd(M).

Proof. Let d be the depth of the depth decomposition T returned by the algorithm

for a matroid M . Let r = v0, v1, . . . , vd be a path in T of length d from the root

to one of the leaves. It is easy to see that each vertex of T which is not a leaf

is the root of some subtree of T during the execution of the algorithm. For

i = 0, 1, . . . , d− 1 let (Mi, Ci, ei) be the matroid (together with a circuit and an

element of it) such that its decomposition tree is the subtree of T rooted at vi

with the root of degree one which contains vi, vi+1, . . . , vd during the execution

of the algorithm. Clearly, M0 = M and C0 = C. Moreover, r(Md−1) = 1 and

|Cd−1| = 2.
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For every i = 0, . . . , d− 3 precisely one of the following cases occurs:

� Mi+1 = Mi/ei, Ci+1 = Ci \ ei (Step 3),

� Mi+1 is a component of Mi/ei, Ci+1 = Ci \ ei (Step 4), or

� Mi+1 is a component of Mi/ei, Ci+1 ∩Ci = ∅, but Ci+1 ∪{ei} is a circuit in

Mi (Steps 2 or 5 of the algorithm).

Note that in all the cases we have f(ei) = vi+1.

Let Cj0 , . . . , Cjk be the subsequence of inclusion-wise maximal sets among

C0, . . . , Cd−1. These are pairwise disjoint due to the fact that the algorithm

proceeds by contracting elements (possibly with an additional branching into a

particular component).

Let C ′0 := Ci0 = C0 and e′0 := e0; let C ′i := Cji ∪ {eji−1} and e′i := eji−1

for i = 1, . . . , k. The circuits C ′0, . . . , C
′
k and the elements e′0, . . . , e

′
k fulfil the

conditions of Lemma 61. Since each C ′i is contracted at most |C ′i − 2| times, we

have
∑k

i=0 |C ′i| > d.

By Lemma 61, M has a circuit of length at least
√∑k

j=0 |Cij | >
√
d. By

Proposition 54 we have bd(M) ≥ 1
2

log2 d.

6.4 Conclusion

The value of the branch-depth parameter is closely related to the length of the

largest circuit. Proposition 54 provides a lower bound while the analysis of the

previous section yields the following upper bound.

Corollary 64. The branch-depth of a finite matroid M is at most `2, where ` is

the size of the largest circuit of M .
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For some applications, a depth decomposition with a particular property

might be more suitable from a technical point of view. In Lemma 52, we have

seen we can assume all the elements of the matroid in question to be mapped

to the leafs of the decomposition tree. Algorithm 1 guarantees the existence of

another type of depth decomposition:

Corollary 65. For each matroid M , there is a depth decomposition (T, f) and

a basis B of M such that f |B is a bijection from B to V (T ) \ {r}, and f(e) is a

leaf for every e 6∈ B. Furthermore, the depth of T is at most 4bd(M).

This is implied by the fact that each inner node of the tree returned by the

algorithm corresponds to an element of a circuit of the matroid. Depth decom-

positions that feature additional properties such as the one above have a potential

to simplify various technical arguments. Our structural proofs in [52] are an ex-

ample of this.



Chapter 7

Conclusion and future work

This thesis presents results from several different corners of parameterized com-

plexity. These include both constructive ones and negative ones:

� The non-existence of a polynomial time kernel for Permutation Pattern

Matching, under a realistic complexity-theoretic assumption.

� The non-existence of a subexponential time algorithm for the Optimum

Linear Arrangement problem, under the assumption of a non-existence

of a subexponential time approximation scheme for Min Bisection.

� The introduction of a novel matroid parameter – amalgam-width – along

with the corresponding Courcelle-like meta-algorithm.

� The introduction of another matroid parameter – branch-depth – along with

an efficient algorithm approximating its value on an oracle-given matroid.

Proving complexity upper bounds by designing efficient algorithms and establish-

ing lower bounds by designing efficient reductions is often connected. When try-

ing to devise a suitable reduction (e.g., from 3-SAT when proving non-existence

101
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of a subexponential algorithm under the ETH) it is helpful to look at the state-

of-the-art algorithm and consider its bottleneck – the subroutine that consumes

the largest portion of the runtime. One might then try to exploit this subrou-

tine in order to solve the original problem. Correspondingly, a reduction proving

a certain hardness property hints at what all algorithms will need to overcome

when solving the problem.

This might be useful for resolving a natural open question concerning Per-

mutation Pattern Matching: is there a parameterized algorithm solving

the problem in 2O(`)nO(1) time? As mentioned in Chapter 3, the currently fastest

known parameterized algorithm [36] for the problem takes 2O(`
2)n steps. Alter-

natively, one might want to establish an ETH lower bound for the running time

of any parameterized algorithm for the problem. This would be done by con-

structing a reduction from 3-SAT that results in instances where the length of

the pattern ` is bounded by a function of v+ s, where v and s are the number of

variables and clauses, respectively, of the original instance of 3-SAT. The slower

this function grows the tighter lower bound is obtained. Specifically, a polyno-

mial time reduction that results in instances with parameter O(g(v + s)), where

g(·) is a function on N, implies the non-existence of an algorithm solving the

problem in 2o(g
−1(`)) · nO(1) steps, where g−1(·) is the inverse of g(·).

Our proof of kernelization lower bounds for Permutation Pattern Match-

ing employs a new polynomial time reduction that is specifically tailored for

cross-composition. It also leads to a new proof of NP-hardness of Permutation

Pattern Matching. It is interesting to compare our reduction with the origi-

nal one from [12]. The original reduction starts from 3-SAT and also establishes

#P-hardness. This is because there is a one-to-one correspondence between the
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solutions to the instance of 3-SAT and the occurrences of the pattern in the

resulting instance of Permutation Pattern Matching. Our reduction is

quite different in this regard. Inspecting the proof of Lemma 22, we see that we

“control” the position of only a portion of the occurrences of the pattern’s en-

tries within the second permutation. Specifically, consider a pair of permutations

πz(Kl) and πz(G) as in the statement of Lemma 22 and assume that the former

is a pattern of the latter. The proof constrains where all the encoding entries

and also the middle entries of the individual separating runs get mapped by the

certifying mapping. However, nothing is claimed about the position of the rest

of the pattern entries within the target permutation. Indeed, given a mapping

certifying the pattern πz(Kl) in πz(G) it will typically be possible to shift where

at least some of the separating runs of πz(Kl) are mapped within πz(G) without

invalidating any constrains of Definition 19. It can be easily verified that this is

particularly true if the clique is not detected on vertices of G with indices forming

a consecutive set (i.e., with indices {i, . . . , i + l − 1} for some i ∈ N). In such

cases the entries of separating runs of some vertices of Kl can be remapped to

encoding entries of the skipped vertices (i.e., those not in the detected clique) of

G and the result is still a valid mapping certifying the pattern. This way, a large

number of additional occurrences of the pattern can be constructed in almost all

cases.

Therefore, in some sense, our polynomial reduction is “robust” – a single

clique in the input graph leads to many different occurrences of the pattern (for

almost all inputs). This can be easily extended to all inputs by a straightforward

generalization of our reduction. First note that instead of searching for πz(Kl) in

πz(G), we can use πz(Kl) and πz′(G) for z′ := d1.1ze. The proofs remain identical.
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Secondly, our reduction can be extended straightforwardly to cases where G

is a multigraph (i.e., edge multiplicities are allowed). Running Permutation

Pattern Matching instead on πz(Kl) in πz′(G
′), where z′ := d1.1ze and G′

is a multigraph obtained from G by giving each edge, e.g., constant multiplicity,

then ensures that the aforementioned robustness property can be guaranteed.

A random deletion of an element from the target permutation then does not

affect the outcome.

A common property of the two reductions is that they both use long de-

creasing subsequences within both of the permutations of the resulting instance

as separators. These ensure that certain sets of entries of the pattern permu-

tation are mapped in the same part of the target permutation. For example,

the original reduction from [12] considers a 3-CNF formula and creates a pair of

permutations, both of which have two parts: the first encodes the variables of

the formula and the second corresponds to its clauses. A separator is inserted

between these parts to enforce that all entries of the first part of the first per-

mutation map to the first part of the other permutation (and analogously for

the second part). However, the two reductions differ significantly in how these

separators are constructed. In [12], the reduction places a long monotonic subse-

quence of unique length in both of the resulting permutations. Since neither of

them contains any other monotonic subsequence of such length, these two subse-

quences must be mapped to each other by the certifying function (provided one

actually exists). The individual elements of this long subsequence are then used

as separators. This approach cannot be employed in our case since the number

of our separators grows with the size of the graph G (which is the input graph of

the Clique problem) and we want to avoid a dependence of the pattern length
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(i.e., the length of the first permutation) on the size of G. Indeed, the length of

the pattern in our reduction depends only on the size of the maximum connected

subgraph of G. We hope this provides further insight into the complexity of the

Permutation Pattern Matching problem.

Our second non-existence result is conditioned on Conjecture 3, which states

that there is no subexponential time approximation scheme for Min Bisection

on d-regular graphs, for some fixed d ∈ N. This conjecture could possibly be

refuted by the construction of such approximation scheme. On the other hand,

it would be interesting to reduce this conjecture to one of the more established

complexity hypotheses, e.g., the ETH.

We have attempted to connect Conjecture 3 to a hypothesis of Feige [32],

which is concerned with the hardness of distinguishing satisfiable instances of

3-SAT from the “typical” instances of this problem:

Hypothesis 66 (Feige, [32]). Even when ∆ is an arbitrarily large constant inde-

pendent of v, there is no polynomial time algorithm that rejects most instances of

3-SAT with v variables and ∆ · v clauses, and never wrongly rejects a satisfiable

instance of 3-SAT.

The following variant on this conjecture is also introduced there:

Hypothesis 67 (Feige, [32]). For every fixed ε > 0, for ∆ sufficiently large

constant independent of v, there is no polynomial time algorithm that rejects

most instances of 3-SAT with v variables and s = ∆ · v clauses, but never rejects

an instance of 3-SAT with (1− ε) · s satisfiable clauses.

Feige provides some rationale in favor of these hypotheses and also some

reasoning against them. Still, the validity of both remains open. The latter
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hypothesis is weaker. The concept of R-3-SAT-hardness is then introduced:

Definition 68. A computational problem is R-3-SAT-hard if a polynomial time

algorithm for the problem contradicts Hypothesis 67.

It is then deduced that the problem of approximating Min Bisection within a

ratio below 4
3

is R-3-SAT-hard. This is significant because of the present lack of

other approximation-hardness results for this problem. A similar hardness result

for the problem of finding the densest subgraph on a specified number of vertices

in a given graph is also obtained in [32].

We have found no immediate reason violating Hypothesis 67 when strength-

ened to subexponential time. Perhaps, it could be possible to deduce Conjecture 3

from such a variation of Feige’s hypothesis. Unfortunately, we have encountered

a series of obstacles when trying to pursue this direction. For example, one would

need to enforce the regularity of the graphs in the resulting instance of Min Bi-

section and also reduce the quadratic blowup of the instance size exhibited by

Feige’s reduction.

In Chapter 5 and Chapter 6 we introduce two parameters for matroids. The

definitions of the parameters are motivated by recent research in graph theory.

Extending graphic notions and theorems to matroids is a major theme in matroid

theory that arguably lies behind some of the most interesting results in the area.

Probably the best recent example of this would be the announced proof of Rota’s

conjecture – a major matroid conjecture – by Geelen, Gerards, and Whittle [38].

The proof utilizes an extension of the graph minors project [75] to matroids,

which was also announced by the authors of [38].

The fields of graph limits and graph decompositions are further examples

of areas that currently receive a considerable degree of interest by the research
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community and have some potential of providing new insights into matroids.

The goal of Chapter 5 is the introduction of a natural matroid width pa-

rameter for which it would be possible to extend the Courcelle-like algorithmic

results to matroids that are not finitely-representable. In some ways, finitely-

representable matroids still “behave” similarly to graphs. For example the ma-

troid analogue of the Courcelle theorem, the theorem of Hliněný [42] (stated in

this thesis as Theorem 27), requires the input matroid to be finitely-represented

in addition to having a bounded branch-width. In some sense this is natural

since providing a representation over a finite field is an efficient way of specifying

a matroid as an algorithmic input. However, results such as the non-existence of

subexponential time algorithms for detecting U4
2 minors in general matroids [79]

indicate that it is only behind the boundary of finite representability where the

true generality of matroids reveals itself.

Similar motivation can be found behind the decomposition-width parameter

introduced in [57]. Let us briefly sketch the definition of this parameter. The

decomposition on which the parameter is based is called a K-decomposition. It

is a rooted tree in which all inner nodes have exactly two children and each inner

node is labelled by two functions, both of them defined on the set {0, . . . , K}2.

The leaves of the tree correspond to the elements of the decomposed matroid.

Information about whether the element is a loop is stored in its leaf. The purpose

of the two functions is as follows. One of the functions encodes how the rank

function of the matroid behaves when combining subsets of elements from the

leaves descending from the left child with subsets of elements corresponding to the

leaves in the right subtree. It calculates the rank of a subset of matroid elements

based on a limited amount of information passed from its children and encoded
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in the form of a number between 0 and K. Determining what information should

the currently processed node send to its parent is the purpose of the second

function. The function receives this limited information from both of its children

and returns the value sent to its parent (the leaves of the tree send a number that

depends chiefly on whether the corresponding element is contained in the subset

whose rank is being calculated). In this way, the computation proceeds towards

the root of the decomposition at which point the rank of the subset is revealed.

The width of the decomposition is equal to K.

The notion of a K-decomposition is a very general abstraction of the calcu-

lations that one might be doing when computing the value of the rank function

of the decomposed matroid. However, it does have the disadvantage that the

way in which the matroid is decomposed into the individual pieces does not cor-

respond to any fundamental matroid-theoretic notion. In contrast to this, the

notion of generalized parallel connection employed in amalgam decompositions

is very natural. The downside is that it is not guaranteed to exist for a general

pair of matroids. Perhaps one might devise another matroid gluing operation for

which this situation is more balanced.

As already stated, Chapter 6 is motivated by an extension of the theory

of combinatorial limits to matroids. One of the goals of this area is to design

combinatorial limit objects – structures (typically uncountably infinite ones) that

encode extremal properties of discrete structures such as graphs. This can be

useful when proving, e.g., an extremal statement about some class of graphs:

instead of dealing with the set of all graphs from the class, one can consider the

set of limit objects (e.g., a set of graphings or a set of graphons [61]) encoding the

extremal properties of these graphs. A proof of a corresponding statement for all
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such limit objects then implies the proof of the original extremal statement for

all graphs. Results of this type typically stem from the particularly developed

area of dense limits (examples include [3, 58,59,74]).

The branch-width parameter has been used in [52] to establish a theorem

guaranteeing the existence of a limit object called matroid modeling (specifically a

variant of an infinite matroid based on the result [13]) under conditions analogous

to the result of Nešetřil and Ossona de Mendez [67]. The statement of the theorem

is as follows:

Theorem 69 (Král’ et al., [52]). Every first-order convergent sequence of ma-

troids with bounded branch-depth that is representable over a fixed finite field has

a limit matroid modeling.

This can be compared to the theorem that motivated this work:

Theorem 70 (Nešetřil and Ossona de Mendez, [67]). Every first-order convergent

sequence of graphs with bounded tree-depth has a limit modeling.

(In the statement of the respective theorems, first-order convergence corresponds

to the following condition: for each first-order formula, the probability that a

uniformly random assignment of graph vertices or matroid elements to the free

variables satisfies the formula converges.) Clearly, the first result is a direct

analogy of the second one.

Independently of us, Devos and Oum (private communication) investigated a

similar matroid parameter inspired by the work of Ditmann and Oporowski [26].

Their definition is recursive: a matroid formed only by loops and co-loops is

assigned the parameter value 0, a general matroid is assigned the minimum value

k such that there is an edge that can be contracted to obtain a matroid with
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parameter value k−1. Like branch-depth, such a parameter is also related to the

length of the largest circuit. This parameter has applications in combinatorial

optimization.



List of Abbreviations

CNF . . . Conjunctive Normal Form

CSP . . . Constraint Satisfaction Problem

ETH . . . Exponential Time Hypothesis

FPT . . . Fixed-Parameter Tractable

MSO . . . Monadic Second-Order

OLA . . . Optimum Linear Arrangement

SAT . . . Satisfiability problem
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