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Abstract

New bioimaging techniques have recently been proposed to visualise the colo-
cation or interaction of several proteins within individual cells, displaying the het-
erogeneity of neighbouring cells within the same tissue specimen. Such techniques
could hold the key to understanding complex biological systems such as the protein
interactions involved in cancer. However, there is a need for new algorithmic ap-
proaches that analyse the large amounts of multi-tag bioimage data from cancerous
and normal tissue specimens in order to begin to infer protein networks and unravel
the cellular heterogeneity at a molecular level.

In the �rst part of the thesis, we propose an approach to analyses cell pheno-
types in normal and cancerous colon tissue imaged using the robotically controlled
Toponome Imaging System (TIS) microscope. It involves segmenting the DAPI-
labelled image into cells and determining the cell phenotypes according to their
protein-protein dependence pro�le. These were analysed using two new measures,
Di�erence in Sums of Weighted cO-dependence/Anti-co-dependence pro�les (DiS-
WOP and DiSWAP) for overall co-expression and anti-co-expression, respectively.
This approach enables one to easily identify protein pairs which have signi�cantly
higher/lower co-dependence levels in cancerous tissue samples when compared to
normal colon tissue. The proposed approach could identify potentially functional
protein complexes active in cancer progression and cell di�erentiation.

Due to the lack of ground truth data for bioimages, the objective evaluation
of the methods developed for its analysis can be very challenging. To that end,
in the second part of the thesis we propose a model of the healthy and cancerous
colonic crypt microenvironments. Our model is designed to generate realistic syn-
thetic �uorescence and histology image data with parameters that allow control over
di�erentiation grade of cancer, crypt morphology, cellularity, cell overlap ratio, im-
age resolution, and objective level. The model learns some of its parameters from
real histology image data stained with standard Hematoxylin and Eosin (H&E) dyes
in order to generate realistic chromatin texture, nuclei morphology, and crypt archi-
tecture. To the best of our knowledge, ours is the �rst model to simulate image data
at subcellular level for healthy and cancerous colon tissue, where the cells are organ-
ised to mimic the microenvironment of tissue in situ rather than dispersed cells in a
cultured environment. The simulated data could be used to validate techniques such
as image restoration, cell segmentation, cell phenotyping, crypt segmentation, and

xi



di�erentiation grading, only to name a few. In addition, developing a detailed model
of the tumour microenvironment can aid the understanding of the underpinning laws
of tumour heterogeneity.

In the third part of the thesis, we extend the model to include detailed models
of protein expression to generate synthetic multi-tag �uorescence data. As a �rst
step, we have developed models for various cell organelles that have been learned from
real immuno�uorescence data. We then develop models for �ve proteins associated
with microsatellite instability, namely MLH1, PMS2, MSH2, MSH6 and p53. The
protein models include subcellular location, which cells express the protein and under
what conditions.
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Chapter 1

Introduction

In order to understand biological processes, there is an increasing need to quan-

titatively characterise phenotypes [1]. This is particularly true if we are to fully

understand how cancers form, develop and spread through the body. Cancer refers

to a group of diseases involving dynamic changes in the genome resulting in de-

fects in regulatory circuits that govern normal cell proliferation, di�erentiation and

death. It is widely believed that tumour development proceeds in a manner simi-

lar to Darwinian evolution, where a succession of genetic changes, each conferring

a type of growth advantage, leads to a progressive conversion of normal cells into

cancer cells [2]. Despite there being over 100 distinct types of cancer, there are

certain features that are shared by most, if not all, tumours. These include self-

su�ciency in growth signals, evading growth suppressors, evasion of programmed

cell death (apoptosis), enabling replicative immortality, inducing angiogenesis, acti-

vating invasion and metastasis, reprogramming of energy metabolism, and evading

immune destruction [3, 4]. It is now also understood that normal cells, forming the

tumour-associated stroma (connective tissue between glandular or tumour regions),

are active participants in tumourigenesis rather than passive bystanders. It has

been shown that they are critical for the development and expression of some of the

hallmarks of cancer [5]. Hence, in order to understand the biology of tumour, we

need to encompass the contributions of the �tumour microenvironment� rather than

considering tumours as insular masses [4].

Modern cancer treatment is based on accurate tissue diagnosis of samples

obtained from needle biopsy or surgical excision. Morphological interpretation, in-

cluding shape, texture and spatial context of the various cells in histological sections

forms the basis of diagnosis and prognosis for cancer [6]. The histopathologist assigns

a histopathological classi�cation as part of the clinical diagnosis by microscopically
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analysing routinely stained tissue sections, �rstly at low magni�cation to observe

the overall staining pattern, and then, if necessary, at higher magni�cation. Im-

munostaining and selected molecular tests are also used to help establish a speci�c

cancer diagnosis. The most widely used system for colorectal cancer (CRC) staging

is the tumour - node - metastasis (TNM) classi�cation, which considers the main

parameters of local growth, the presence of cancer cells in regional lymph nodes and

evidence for distant spread [7]. The TNM classi�cation has been used for over 80

years and has been continually re�ned with the seventh edition of the guidelines be-

ing issued by the Union for International Cancer Control in 2009. However, it is now

recognised that the clinical outcome can vary signi�cantly among patients within

the same stage [8]. With the increasing understanding of cancer pathology, addi-

tional features have been reported to improve the prognostic value. These include

lymphatic and vascular invasion, tumour budding and immune response [9, 10, 11].

Similarly, intratumour genetic heterogeneity is now recognised as a fundamental

driver of therapeutic resistance in most human cancers [12].

Immunohistochemistry (IHC) studies are also a major source of data on cell

phenotypes, protein expression and location. However, performing most of the clin-

ical work using visual examination to assess changes is a di�cult, subjective and

time-consuming task. It also leaves important questions unanswered, such as what

makes the observed structures, and if there are any speci�c protein interactions

associated with the observed morphological phenotypes. With the improvements

in high-throughput acquisition technologies like tissue microarrays and automated

whole-slide scanners, automated analysis of tissue images is highly desirable, and

studies have shown that quantitative software can detect changes in disease states

that are missed by visual inspection [13]. Several frameworks have been developed

to statistically characterise the histological features of the nuclei and cells [6, 14].

Usually these methods focus on the cell nuclei as the nucleus can hold the key to

understanding cell function [15].

In this thesis we focus on CRC which accounts for about 10% of all cancers

(after exclusion of non-melanoma skin cancer) and it is the fourth leading cause

of cancer death in the world [16]. CRC is the second leading cause of death from

malignancy in the industrialised world [17]. Every year, nearly one million people

world wide develop CRC, of which 50% die within 5 years [18]. Many Asian countries,

including China, Japan, South Korea and Singapore, have experienced an increase

of two to four times in the incidence of colorectal cancer during the past few decades.

The rising trend in incidence and mortality from colorectal cancer is more striking in

a�uent than in poorer societies and di�ers substantially among ethnic groups [19].
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1.1 Cancer Heterogeneity

Extensive genetic and phenotypic variation exists not only between tumours (inter-

tumour heterogeneity) but also within individual tumours (intratumour heterogene-

ity). Oncologists are increasingly using molecular characterisation of a sample from

a primary or metastatic tumour to guide treatment selection for the patient. Both

inter- and intra-tumour heterogeneity have signi�cant implications for the choice of

biomarkers to guide clinical decision-making in cancer medicine [20] and can a�ect

the patient outcome.

1.1.1 Intra-tumour Heterogeneity

Cancer is continuously revealed to be ever more complex than previously thought.

The remarkable complexity and heterogeneity of cells within an individual tumour

has been demonstrated by sequence analyses of cancer cell genomes [21, 22] and

metabolomic and proteomic techniques largely based on mass spectrometry [23,

24]. These �ndings demonstrate the various functionally important cell phenotypes

within any given tumour, including cancer cells [25, 26], cancer stem cells (CSCs)

[27], stromal cells [28, 29], vascular endothelium [30], and immunocytes [31]. In

addition to this, the cancer cell population may be even more heterogeneous than

previously anticipated on the basis of clonal evolution, at least in part due to the

e�ects of continuing lineage di�erentiation [21, 32]. Most of this diversity results

from genomic instability which can arise through various routes, such as deregulated

DNA replication, defects in chromosome segregation, or mutations in components

of the DNA repair pathways. The genomic instability is thought to enhance inter-

cellular heterogeneity, broadening the pool of cells that are subject to selection, and

therefore the likelihood of selective expansion of multiple di�erent subclones [33, 34].

Clonal dynamics may lead to the emergence of clinical resistance during disease pro-

gression despite the matching of targeted treatment to the mutation. Adding to the

complexity are �ndings demonstrating that epigenetic coding within tumours can

be highly heterogeneous and associated with tumour behaviour [35]. These results

point to the importance of a side population of stem cell-like cancer cells that may

be responsible for malignant behaviour [36, 27].

Intratumour heterogeneity may be so profound that the DNA copy number

pro�les of single tumour biopsies may more closely resemble those of tumours from

di�erent patients than those of adjacent biopsies of the same tumour [37]. All of the

above pose serious challenge to conventional 'omics' technologies, which rely on the

average expression pro�les of genes or proteins in a tissue that has been destroyed
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prior to the analyses [23, 38, 39, 24, 22]. The destruction of the tissue means that we

can't draw conclusions correlating phenotype, function and morphology. Analysing

microscopy images of the intact tissue with multiple protein markers could help

address this issue.

1.1.2 Inter-tumour Heterogeneity

Colorectal cancer is a heterogeneous group of diseases which have distinctive genetic

and epigenetic background [40]. It arises following one of the three pathways: the

microsatellite instability (MSI), the chromosomal instability (CIN) or CpG island

methylator phenotype (CIMP) pathways. Figure 1.1 summaries the current under-

standing of the molecular pathways involved in colorectal tumourigenesis [41]. The

CIN pathway is the most common and is characterised by widespread imbalances in

chromosome number and loss of heterozygosity (loss of an entire gene). It can result

from accumulation of mutations in speci�c tumour suppressor genes and oncogenes

that activate pathways critical for CRC such as chromosomal segregation, telomere

stability, and the DNA damage response [42]. On the other hand, epigenetic insta-

bility is now believed to be implicated in the pathogenesis of almost one third of

colorectal cancers [43]. Colorectal cancers with CIMP are characterised by epige-

netic loss of function of tumour suppressor genes without mutations [44, 43]. The

MSI pathway is discussed in more detail below.

Microsatellite Instability Pathway

Microsatellites are simple repeat sequences of 1 to 6 base pairs (also known as short

tandem repeats) and are particularly prone to replication errors. Defects in one of

the four DNA mismatch repair (MMR) genes (MLH1, MSH2, MSH6, PMS2) causes

small changes in the number of repeats of microsatellites throughout the genome,

hence manifesting MSI. Mismatch repair is a complex process that depends on the

MMR proteins and multiple proteins that interact directly with DNA [45].The MSH2

and MSH6 proteins exist as a heterodimer, which forms a sliding clamp on the DNA

strand. When MSH2 recognises a DNA base pair mismatch, it recruits the MLH1-

PMS2 heterodimer. Repairing the mismatch requires coordinated activity of DNA

repair proteins and the precise mechanisms are still under investigation [46, 47].

Around 15% of CRCs are characterised by a high degree of MSI (MSI-high)

[46], and of these, about 1 in 5 (3%�5% overall, [48]) are due to Lynch syndrome

(LS), previously known as hereditary nonpolyposis colorectal cancer (HNPCC). LS

is the most common inherited colorectal cancer syndrome and it predisposes the
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Figure 1.1: Molecular pathways in colorectal tumourigenesis. CRC, colorectal can-
cer; MSS, microsatellite stable; MSI-H, high level microsatellite instability; FAP,
familial adenomatous polyposis; AFAP, attenuated FAP; PJS, Peutz-Jeghers syn-
drome; JPS, juvenile polyposis syndrome; MAP, MUTYH-associated polyposis; CIN,
chromosomal instability pathway; MSI, microsatellite instability; CIMP, CpG island
methylator phenotype; ?, pathways yet unde�ned (Image credit: [41]).

patient to cancers of multiple organ systems, including the gastrointestinal tract. It

is important to identify patients with LS as it allows for increased surveillance of the

a�ected individual and of potentially a�ected family members. Hence, preliminary

screening is often done using IHC to detect MSI.

Most inherited MSI-high cancers are caused by epigenetic silencing of the

MLH1 gene (≈ 50%) or the MSH2 gene (≈ 40%) [49]. Mutations in MSH6 and

PMS2 occur only in about 10% of LS patients [50, 51]. Diagnosing LS is further

hindered by �ndings that there are common missense mutations of MLH1 which

may be associated with expression of an abnormal protein with normal IHC results

[49]. On the other hand, sporadic MSI is usually caused by epigenetic silencing

of MLH1. This typically occurs in CIMP-high tumours [52]. In addition, Samowitz

et al. [53] considered the relationship between p53 mutations and MSI in CRCs. The

study considered mutation in the p53 gene to be indicated by overexpression (over
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50% of tumour cells expressing) of the protein in IHC data. They found that p53

overexpression occurred in 56% of stable tumours and only 20% of unstable tumours.

MSI tumours have a more favourable prognosis and are less prone to lymph

node or distant metastasis [54]. This could relate to the high numbers of tumour

in�ltrating immune cells observed in these kind of tumours. Furthermore, MSI has

been associated with a lack of response to �uorouracil-based adjuvant chemotherapy

[55], although these �ndings do not currently in�uence the patient therapy [56].

Since the 1980s, it has been recognised that cancers arising in di�erent parts

of the colon involve di�erent genetic mechanisms [57, 58]. For instance, the Lynch

syndrome is most commonly found in the proximal colon (the right side of the colon).

In contrast, familial adenomatous polyposis (FAP) tends to show more polyps in the

left colon and arises in patients with inherited mutations in the Adenomatous poly-

posis coli (APC) gene, which has been the centre of the original Fearon-Vogelstein

model of colorectal tumourigenesis [59] that forms the basis of the CIN pathway.

This suggests that there are epigenetic or environmental factors playing a role in the

development of genomic instability.

The main goal of this research is to develop quantitative frameworks for

studying tumour heterogeneity. We �rst propose a framework that can identify

cell phenotypes with di�erent protein-protein co-dependence and highlight protein

pairs that exhibit di�erent levels of interaction in normal and cancerous tissue. We

then develop a model of the colorectal tumour microenvironment after quantitatively

studying inter- and intra-tumour heterogeneity. The model attempts to mimic intra-

tumour heterogeneity in the synthetic data, allowing us to better understand the

underlying principles of tumour heterogeneity and quantitatively evaluate image

analysis frameworks developed for histology and �uorescence data.

The rest of this chapter is organised as follows. In Section 1.2 a detailed

description of the normal architecture of colon tissue is presented, followed by a

description of how the architecture changes as cancer develops and becomes more

malignant, and how it is graded in clinical practice. Section 1.3 outlines the moti-

vation for this work. Section 1.4 brie�y presents the thesis organisation.

1.2 Tissue Architecture

The tumour microenvironment is a complex, dynamic environment, consisting of cells

of various types, soluble factors, signalling molecules and an extracellular matrix that

can promote tumour growth and invasion, as well as protect the tumour from the

host immune system [60]. The importance of the tumour microenvironment has only
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Figure 1.2: The histological structure of healthy colon tissue.

recently begun to be appreciated as the view of cancer diseases has shifted from a

cell-autonomous condition, whereby epithelial cells mostly comprise the tumour, to

a complex multicellular disease involving both epithelial cells and the surrounding

stromal elements.

In this work, we look into understanding the microenvironment of healthy

and cancerous colon tissue, as shown in Figure 1.2. The histological structure of

the healthy colon consists of four major layers. The innermost layer is the mucosa.

This is composed of a single layer of epithelium lining the innermost surface of the

colon, crypts of Lieberkuhn, lamina propria, which is the connective tissue beneath

the epithelium, and the lamina muscularis mucosae. Beyond the mucosa is the

submucosa where blood vessels, nerves and lymph nodes can be found. Further

outwards are a layer of smooth muscle called the mucularis propria and the serosa.

In this study we focus on the mucosa as this is where tumours usually arise. Such

epithelial tumours are known as adenocarcinomas.

The crypts consist mostly of three types of cells: epithelial (absorptive) cells,

goblet cells and stem cells (Figure 1.3), and extend down to sit on the muscularis

mucosae. Goblet cells predominate in the base of the glands, whereas the luminal

surface is almost entirely lined by columnar absorptive cells [61]. The tall columnar
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Figure 1.3: Colonic crypt organization. (a) In the epithelial lining of normal colonic
mucosa, stem cells (red) are located at the bottom of the crypts. Upon asymmetrical
divisions, the daughter cells undergoing di�erentiation migrate upward to give rise in
turns to transit-amplifying (TA) precursors (light blue) and terminally di�erentiated
cells (pink). (b) Cell types in the colon epithelium. Intestinal stem cells generate
three epithelial cell types: the absorptive columnar cells, the hormone-producing
enteroendocrine cells, and the mucous-producing goblet cells. (Image credit: [62]).

Figure 1.4: The structure of healthy colon tissue demonstrated using H&E markers.

absorptive cells have oval basal nuclei. In contrast, goblet cell nuclei are small and

condensed. There are also stem cells at the base of the crypts, which continuously

replace the epithelium. Lamina propria (also known as stroma) �lls the space be-

tween the crypts. This contains some blood vessels, lymphocytes, plasma cells and

�broblasts (Figure 1.4).

As adenocarcinoma develops from normal tissue, the epithelium exhibits in-

creased dysplasia (pre-malignant change in the epithelium with disordered growth

and mutation). The epithelial nuclei become larger in size. There are also fewer
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Figure 1.5: Abnormal colorectal tissue showing mitotic �gures (a) and areas of necro-
sis (dead tissue) within the glands (b). Objects of interest are identi�ed by the orange
arrows.

mucus-containing goblet cells, re�ecting a lack of normal cellular di�erentiation. Of-

ten one can observe mitotic �gures (Figure 1.5 (a)) or areas of necrosis (dead tissue)

within the glands (Figure 1.5 (b)).

Histopathological grading of tumours is performed to provide some indica-

tion of their aggressiveness, which relates to prognosis and/or choice of treatment.

The traditional tumour node metastasis (TNM) classi�cation system of grading also

used by the International Union Against Cancer (UICC) distinguishes four grades

of di�erentiation:

G1 : well di�erentiated

G2 : moderately di�erentiated

G3 : poorly di�erentiated

G4 : undi�erentiated

The percentage of tumour showing formation of gland-like structures can be

used to de�ne the grade. Well di�erentiated (grade 1) CRA lesions exhibit glandular

structures in >95% of the tumour; moderately di�erentiated (grade 2) adenocarci-

noma has 50-95% glands; poorly di�erentiated (grade 3) adenocarcinoma has 5-50%;

and undi�erentiated (grade 4) carcinoma has <5%. Grades 3 and 4 are often com-

bined. This will be the case in the discussion and analysis presented here. There

are some additional characteristics that can be used to di�erentiate between the

di�erent grades. Well di�erentiated tumours have well formed but slightly irregular
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glands (Figure 1.6 (b)). Nuclei are basally oriented and exhibit slight atypia, which

is characterised by variations in the size of the nuclei and visible nucleoli. In mod-

erately di�erentiated CRAs there is still a glandular con�guration, but the glands

are irregular and often very crowded (Figure 1.6 (c)). There can be loss of mucin

and budding of the crypts (asymmetric crypt division, Figure 1.7). One can also

observe loss of nuclear polarity and increased nuclei atypia. On the other hand,

in poorly di�erentiated tumours majority of the tumour (excluding the advancing

edge) is sheets of cells without gland formation. Some glands may still be observed,

but also single cells or clumps of cancerous cells, which are usually bigger than the

stromal cells (Figure 1.6 (d)).

In practice, most colorectal adenocarcinomas (∼70%) are diagnosed as mod-

erately di�erentiated. Well and poorly di�erentiated carcinomas account for 10% and

20%, respectively [41]. Tumour grade is generally considered as a stage-independent

prognostic variable, and high grade histology is associated with poor patient survival

[63, 64, 65].

1.3 Aims of the Thesis

The tumour microenvironment is a complex and dynamic system. It consists of a

multitude of components including cells of various types, signalling molecules and

the extracellular matrix. It has been shown to play an important part in promot-

ing tumour growth and invasion [60]. In this thesis, we aim to develop methods

for analysing and modelling the tumour microenvironment of colorectal carcinoma

(CRC) and studying cancer heterogeneity.

1.3.1 Cell-Level Protein Network Analysis

New bioimaging techniques have recently been proposed to visualise the co-location

or interaction of several proteins within individual cells, displaying the heterogeneity

of neighbouring cells within the same tissue specimen. Such techniques could hold

the key to understanding complex biological systems such as the protein interactions

involved in cancer. In this thesis, we aim to develop new algorithmic approaches that

analyse the large amounts of multi-tag bioimage data from cancerous and normal

tissue specimens in order to begin to infer protein networks and unravel the cellular

heterogeneity at a molecular level.

As there is now evidence that rearrangement and di�erent protein interac-

tions, rather than up-or down- regulation of proteins could be key to generating new

cell functionalities [66], we aim to consider the protein-protein dependence instead
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a) b)

c) d)

Figure 1.6: Examples of real images for di�erent grades: (a) healthy tissue, (b) well,
(c) moderately and (d) poorly di�erentiated cancerous tissue. Images are at 20×
magni�cation. Size of the scalebar is 100 µm.
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Figure 1.7: Example of crypt budding.

of the raw protein expression pro�les. Furthermore, we perform the analysis at cell

level rather than pixel level. This enables us to gain a better understanding of the

heterogeneity within the cancer cell population.

Our aim is to investigate if multi-channel imaging techniques could be used

to �nd new multiplex biomarkers to improve patient diagnosis by distinguishing

between di�erent types of samples using protein co-dependence. For this purpose we

develop a framework for studying the localised protein networks.

1.3.2 Modelling the Tumour Microenvironment

There have been great advancements in the �eld of digital pathology and multiplex

immuno�uorescence (IF). As studies relying on analysis of the digital images pro-

duced by these technologies become popular, the validation of such analytical tools

gains signi�cance. A common approach for validation is to compare the algorithm's

results with expert-labelled data. Nevertheless, the repeatability and accuracy of

manual labelling can always be questioned due to human error sources [67] and

the process is very time-consuming. We aim to address this problem by developing

benchmark synthetic datasets for objectively validating and comparing these meth-

ods. In addition, developing a detailed model of the tumour microenvironment can

aid our understanding of the underpinning laws of tumour heterogeneity.

Our aim here is to develop a realistic model of the tumour microenvironment

by performing detailed quantitative study of real data and incorporating the various

learned parameters into the model. In order to achieve this, we study not only how

the overall architecture of the colon tissue changes from healthy into increasingly
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more malignant cancer, but also take into account the distributions of various cellular

phenotypes associated with each stage.

1.3.3 Sub-cellular Protein Expression

Finally, the thesis aims to study the tumour heterogeneity by combining the detailed

study of the spatial microenvironment with the study of the molecular microenvi-

ronment. This is achieved by developing sub-cellular models for protein expression

within the tissue architecture. The models include the sub-cellular location and

strength of expression of the proteins, which types of cells express them and under

what conditions (i.e. presence of mutation). Developing realistic models is achieved

by detailed analysis of high-resolution confocal images of cell cultures, demonstrating

the sub-cellular expression patterns, and histology images of CRA samples, allowing

for analysis of cell phenotypes.

1.4 Thesis Organisation

Chapter 2 contains a brief review of current literature on multiplex imaging tech-

niques, including the Toponome Imaging System (TIS), data from which has been

used within the thesis, and other similar systems, as the analytical frameworks pre-

sented within the thesis can be easily generalised to other multiplex imaging data.

It also reviews existing literature on generating synthetic �uorescence images and

modelling protein expression.

In Chapter 3, we propose a framework to extract cell-level protein networks

from multiplex IF data. The framework highlights protein pairs with di�erent co-

localisation patterns in healthy and cancerous tissue samples, which could potentially

be useful cancer biomarkers.

Chapter 4 proposes a model of tumour heterogeneity capable of simulating

IF and histology images of healthy colon tissue and CRCs of di�erent di�erentiation

grades.

The tumour heterogeneity model is then expanded to generate multiplex IF

data in Chapter 5. In this chapter we consider methods for simulating protein

expression patterns by considering a group of �ve proteins associated with MSI.

Finally, Chapter 7 concludes the thesis, discusses limitations of the work,

possible application and future directions.
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Chapter 2

Literature review

In this chapter, we review multiplex �uorescence imaging techniques and the meth-

ods developed for analysing such data. The chapter also reviews current methods

for generating synthetic �uorescence data and frameworks for simulating protein

expression.

2.1 Multiplex Imaging

A cell in a human tissue can be de�ned as an assembly of thousands of proteins

which interact together to de�ne cell functions [68, 69]. In order to understand cel-

lular biology on a systems level, relationships between molecular components must

be understood not only at a functional level but also localised in the spatial domain

[70]. This is due to the fact that proximity of key proteins provides an indication of

the possible existence of functional protein complexes. Furthermore, it is increasingly

important to measure not just the average expression of molecules in homogenised

tissue but also their spatial distribution while preserving cellular and tissue archi-

tectural features [71]. This results from the complexity of tissue samples studied in

anatomic pathology. This complexity is made evident by multi-parameter detection

methods such as gene/protein expression arrays and �ow cytometry. The protein

compositions can be decoded by using modern �uorescence imaging techniques. Most

�uorescence microscopy techniques are limited to up to ten �uorescent tags which

can point to simultaneous localisation of the corresponding biomolecules and protein

structures inside the cells of a tissue specimen [72]. In order to more fully understand

complex cellular systems, new bioimaging techniques have been recently proposed

to visualise the colocation or interaction of several proteins in cells in intact tissue

specimen. These include Toponome Imaging System (TIS) [73], MALDI imaging
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[74], Raman microscopy [75], multi-spectral imaging methods [76], MxIF [77], and

imaging mass cytometry [78, 79]. These techniques are discussed below.

2.1.1 Toponome Imaging System

TIS is an automated high-throughput technique able to co-map up to a hundred

di�erent proteins or other tag-recognisable bio-molecules onto the same pixel on a

single tissue section [80]. It runs cycles of �uorescence tagging, imaging and soft

bleaching in situ (Figure 2.1). While co-location does not necessarily imply inter-

action, it has been consistently found that clusters containing particular proteins

are found in speci�c sub-cellular compartments, hence allowing such a hypothesis

to be generated [68]. For instance, the spherical and the exploratory cell states of

rhabdomyosarcoma cells had identical average protein pro�les. In contrast, when

sub-cellular protein clusters were determined, striking di�erences were found [66].

Hence, rearrangement, rather that up- or down-regulation of proteins is (or can

be) key to generating new cell functionalities [80]. This shows the importance of

co-dependence of proteins rather than abundance on its own. Also, co-dependence

between two proteins is a potential indication for an interaction that is not necessar-

ily direct. The importance of studying protein interactions is further highlighted by

evidence that cancer proteins interact with higher number of proteins and tend to

play a more central role in proteome networks [81, 82]. TIS has a sub-cellular max-

imum lateral resolution of 206 × 206 nm/pixel [68] which allows the determination

of sub-cellular protein network architectures. The combination of proteomic infor-

mation with spatial sub-cellular level topographical data in morphologically intact

cells and tissues has been termed `toponomics' [83, 80].

Biomarkers used in current clinical practice are limited to the simultaneous

analysis of only a handful of proteins. They, therefore, fail to assess the true com-

plexity of cancer, and the resulting biomarkers have a low prognostic value [22]. The

capabilities of the TIS hold promise for developing a new generation of multiplex

biomarkers [84] which could aid the development of personalised medicine. Studying

the protein interactions in cancer could uncover previously unknown mechanisms

of tumour formation and could identify new potential drug targets in the form of

protein interactions.

The standard way to analyse TIS images is to apply a threshold to each

image of the stack and so reduce it to binary values, representing a combinatorial

molecular phenotype (CMP) [73]. The CMP code consists of either tag present

(=1) or tag absent (=0) for each data point [85, 69, 73, 86, 80]. The CMPs are

grouped together into 'CMP motifs' according to certain rules. All CMPs within a
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Figure 2.1: Toponome Imaging System (TIS) data acquisition cycle.

CMP motif contain at least one or more of the same protein (lead proteins), they

never contain certain proteins (absent proteins), and they variably contain additional

proteins (wild-card proteins). This suggests a hierarchical organisation, and lead

proteins have been found to control protein network topology and (dys)function.

Several studies have found that when a lead protein is blocked or down-regulated,

the corresponding functional network disassembles [73, 80, 87]. This phenomenon has

been observed experimentally in chronic neuropathic pain and in cultured tumour

cells [73], mouse models for Amyotrophic Lateral Sclerosis (ALS) [88] and clinical

trails for ALS [89]. Another study using TIS studied the immune system in CRC

and showed that it induces a tremendous modi�cation of protein expression pro�les

in the lumina propria [90].

It has been shown that TIS imaging can be used in cancer research for pro-

tein network mapping [68]. However, while thresholding is straightforward and can

be performed objectively [91], by reducing the image to binary, a lot of potentially

important information is lost. Recently, such non-threshold methods have been pre-

sented [92, 93]. These algorithms cluster molecular co-expression patterns (MCEPs)
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on a pixel level and therefore fail to capture the variation at a cell level. This can

be crucial when analysing cancerous samples due to the heterogeneity of cancer cells

[22]. Furthermore, these algorithms are based on the raw expression levels, which

are intensity dependent and hence may vary between di�erent stacks. A similar

approach is used in the Web-based Hyperbolic Image Data Explorer (WHIDE) [94],

which allows analysis of the space and colocation using a H2SOM clustering [95].

While this tool is very e�ective at identifying molecular co-expression patterns, the

cellular structure is lost and hence the method is unable to analyse the di�erent cell

phenotypes that may be present in the samples. More recently, focus has been shifted

towards cell-level analysis. In a study by Khan et al. [96] cells were phenotyped after

dimensionality reduction of their raw expression vector using t-Distributed Stochas-

tic Neighbour Embedding (t-SNE) [97].

2.1.2 Other Techniques

While the frameworks presented in Chapter 3 have been developed for the analysis of

data obtained by the TIS microscope, they are easily generalisable to other multiplex

techniques.

Raman

Raman microscopy [98] can image protein and gene expression directly, i.e. without

the need for labelling (Figure 2.2). Several variations of this have been developed

and used for cellular imaging. These include resonant Raman scattering [99, 100],

coherent anti-Stokes Raman scattering (CARS) [101, 102], and Fourier transform

infra-red absorption (FTIR) [103, 104]. However, these techniques use wavelength

bands which cannot identify speci�c proteins. They are insensitive to protein sec-

ondary structure and can only detect the number of protein CH2 and CH3 groups.

Raman spectral images have been used to visualise mitochondrial distribution [105]

and to distinguish normal and malignant cultured cell lines in a variety of cancers, in-

cluding thyroid [106], lymphoma [107], cervical [108] and colorectal [109]. It has also

proven e�ective in grading tissue biopsies from prostate cancer [110, 111]. However,

due to its di�culty of identifying speci�c proteins and the low resolution, Raman

microscopy fails to capture the true complexity of cancer and the variations in pro-

tein interactions. In addition, Raman imaging causes thermal damage to the tissue

[112].
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Figure 2.2: Typical diagram of Raman-based apparatus for investigating cells in their
natural physiological conditions. The integration of the inverted microscope and
environmental enclosure allows time-course CRMS imaging over extended periods of
time. The �uorescence imaging enables label-based molecular-speci�c assays on the
same cells (Image credit: [113]).

MALDI

Another emerging technique is matrix-assisted laser desorption/ionization (MALDI)

imaging mass spectrometry (IMS) (Figure 2.3) [114]. It can determine the dis-

tribution of hundreds of unknown compounds in a single measurement [74]. Key

advantages of this technology are that it does not require molecule-speci�c tags or

chemical modi�ers to facilitate detection and does not rely on any prior knowledge

of the tissue proteome. It can achieve a lateral resolution of approximately 30�50

µm [115]. However, similarly to Raman microscopy, it destroys the sample and it

is di�cult to identify particular proteins. In addition, it has inherent limitations

owing to its requirement for a crystalline chemical matrix [116, 117]. The matrix,

combined with the instrument sensitivity, reduces achievable resolution and obscures

the signal from elemental reporters. MALDI IMS has been used to investigate sev-

eral forms of cancers including gliomas [118, 39], breast cancer [119, 120], prostate

cancer [121, 122], colon cancer [123] and lung cancer [124]. Several studies have

demonstrated the potential of the technology to identify new candidate biomarkers

of disease [125, 126, 127, 128, 129]. Simple methods for analysing the data such

as hierarchical clustering and principal component analysis have been successfully
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Figure 2.3: MALDI-TOF MS uses laser light in conjunction with a chemical matrix
to impart a charge to the sample (ionization) in question and then accelerates the
charged ions through a �ight tube to the detector, which measures particle counts
as a function of time. The time-of-�ight (TOF) is directly proportional to the mass
of the molecule (Image credit: [131]).

applied for classi�cation of cancerous tissue [130, 128]. While Raman imaging and

MALDI IMS provide spectral information, considering the height of selected peaks

at each pixel can produce protein expression images similar to those obtained using

�uorescent imaging. Hence, the same analytical methods can be applied after feature

selection.

Multi-Spectral Imaging

The capabilities of standard �uorescent microscopy have been enhanced by the use

of multi-spectral imaging (MSI), which enables one to resolve multiple overlapping

�uorophores [132]. MSI enables the analysis of multi-color IHC, and drastically

reduces the impact of contrast-robbing tissue auto�uorescence common in formalin-

�xed, para�n-embedded (FFPE) tissues [71]. In fact, MSI approaches can result in

a 99% reduction in auto- �uorescence and a concomitant reduction in limits of detec-

tion and increase in signal to noise ratio [133, 134]. The most common data analysis

method applied to microscopy-based MSI data is linear unmixing [135]. The method

is a least squares �t, or linear regression, of a number of given spectral shapes (basis

functions; often termed a 'spectral library') into a spectrum acquired from the sam-

ple [134]. It is worth noting that obtaining correct and quantitative results from this

process relies on having accurate examples of the spectral shapes of the �uorophores

that will be found in the sample. A number of automated spectral decomposition

methods have been developed to �nd the correct signatures [133, 136, 134]. However,
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many prefer to create a set of singly stained spectral control samples from which the

signatures can be created. In these cases it is necessary to use computational method

to discriminate the spectral signature of the �uorophore from the auto�uorescence

in the sample [133, 136, 134]. MSI has been used for the multiplexed analysis of

proteins [76] and the automated localisation and quanti�cation of proteins [137] in

tissue sections. It has also been used in numerous cancer studies including prostate

[138, 139], ovarian [140, 141], breast [142, 143], liver [144, 145] and pancreas can-

cers [146, 147]. However, despite the use of MSI methods, these studies use only a

handful of antibody markers due to the increasing complexity of the signal. On the

other hand, a proposed method for exciting several �uorophores at the same wave-

length and unmixing their emission signals could increase the number of biomolecules

considered [76].

MxIF

More recently, the number of �uorescent antibodies that can be imaged has been

greatly improved by the introduction of multiplex cyclic technologies. One example

is MxIF [77], which uses iterative staining and chemical inactivation of the dyes

(Figure 2.4). The study used 61 protein antigens to stain 747 colorectal cancer

specimen placed in tissue microarrays. K-median cluster analysis of the data allowed

clustering to phenotype segmented cells and studying the tumour heterogeneity.

However, the system requires manual bleaching which could potentially damage the

tissue. In addition, the conclusions in this study about pathways in colon cancer were

drawn by only visual inspection of the phenotypes obtained and without considering

any control samples.

Imaging Mass Cytometry

Another multiplex imaging technique is imaging mass cytometry (IMC), which com-

bines IHC and immunocytochemical methods with high-resolution laser ablation

with CyTOF mass cytometry [78, 79]. It uses antibodies labelled with rare earth

metal to achieve simultaneous imaging of up to 32 proteins with resolution of 1 µm

(Figure 2.5). IMC is highly quantitative as there is no sample auto�uorescence, there

are no matrix e�ects as found in MALDI, and there is no need for an ampli�cation

step such as is often needed in IHC. However, the antibodies used pose a limitation as

often antibodies are not available for a given target or in the format needed for mass

cytometry, and those that work well in single-plex assays may behave di�erently

in multiplex assays [79]. IMC, combined with spanning-tree progression analysis of
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Figure 2.4: Overview of the MxIF technique. Background auto�uorescence tissue
images are acquired before subsequent application of �uorescent dye-conjugated pri-
mary antibodies. Stained images are then acquired, followed by dye inactivation and
re-staining with new directly conjugated antibodies. New images are acquired, and
the cycle is repeated until all target antigens are exhausted. Times associated with
each step are indicated (Image credit: [77]).

density-normalized events (SPADE) analysis [148], has been applied to human breast

cancer samples, allowing delineation of cell subpopulations and cell-cell interactions

and highlighting tumour heterogeneity [79].

2.2 Synthetic Fluorescence Images

The recent emergence of Digital Pathology is generating massive amounts of digital

histopathology image data produced by pathology laboratories embracing the digital

slide scanning technologies. Similar trends can be observed with the popularisation

of multiplex imaging. By consequence, the demand for development of robust ana-

lytical methods for quantitative morphometric analysis of the histopathology as well

as multiplex IF image data is on the rise. The acceptance of analytical technologies

for such image data depends largely on their ease-of-use and usefulness in terms

of accurate quanti�cation. A common approach for validation is to compare the

algorithm's results with expert-labelled data. Nevertheless, the repeatability and

accuracy of manual analysis can always be questioned due to human-based error

sources [67] and the process is very time-consuming. In order to overcome these

di�culties, several frameworks for synthetic �uorescent image data generation have

been proposed. The simplest of these simulate populations of spots. Grigoryan et al.

[149] proposed a toolbox which simulates each spot as a sphere randomly placed in

3D space and overlap between objects is allowed only under certain conditions. Man-
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Figure 2.5: Overview of the IMC technique. Biological specimens, such as FFPE
tissue or cell suspensions, are immobilised on a conductive substrate. Samples are
subsequently stained with antibodies conjugated to unique transition element isotope
reporters, dried and loaded under vacuum for MIBI analysis. The sample surface
is rasterised with an oxygen primary ion beam that sputters the antibodyspeci�c
isotope reporters native to the sample surface as secondary ions. Metal-conjugated
antibodies are quanti�ed via replicate scans of the same �eld of view, where up
to seven metal reporters are measured with each scan. ROIs demarcating nuclear
and cytosolic compartments of each cell are integrated, tabulated and categorised.
Composite images comprised of pseudocolored categorical features and quantitative
three-colour overlays are constructed to summarise multidimensional expression data
(Image credit: [78]).
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ders et al. [150], on the other hand, used a large grid of Gaussian-like 3D objects

to verify their region-growing segmentation algorithm. Lockett et al. [151] used a

more complex set of shapes, such as curved spheres, discs, bananas, satellite discs,

and dumbbells. Graner and Glazier [152] simulated large cell populations by adopt-

ing the statistical large-Q Potts model to simulate the reorganisation of uniformly

distributed cell-like objects. This ensured the natural shape and distribution of the

cells. More recently, more realistic simulations have been presented. For example,

Lehmussola et al. [153] designed a simulator called SIMCEP, which can simulate

large 2D cell populations with realistically looking cytoplasm, nuclei and cell or-

ganelle. Svoboda et al. [154] generated a model to simulate fully 3D image data of

cell nuclei of cell populations, with realistic distribution [155], and later of healthy

colon tissue [156]. There has also been considerable advances in modelling time-lapse

microscopy of cell populations [157] and evolving chromatin texture [158]. However,

these models only include cell nuclei. In addition, the shape of the nuclei in the

colon tissue model of [156] is not very realistic and does not re�ect the variety of cell

phenotypes found in real tissue. Heterogeneous cell populations expressing di�erent

protein markers can be simulated using the SimuCell toolbox [159]. The �rst method

for simulating bright-�eld microscopy was proposed for generating synthetic cervical

smears [160].

A di�erent approach has been to use statistical generative models based on

distributions of cellular morphology and organisation [161, 162, 163, 164]. These

methods use imaging data to learn models that describe the relationship between

compartments and the distribution of markers within them and build models based

on the underlying population variances within the cell populations. These genera-

tive modelling methods have been combined in CellOrganizer, an open source tool

currently developed by the Murphy Lab incorporating both parametric and non-

parametric models [165]. The parametric models in CellOrganizer can be used to

describe cell and nuclear shape, vesicular shape, frequency and location, and micro-

tubule number, length and linearity. These models are limited by their parameter-

isation of the cell, as, for instance, B-spline models of nuclear shape are restricted

to modelling star polygons [161, 162, 164]. On the other hand, the non-parametric

large deformation di�eomorphic metric mapping [166] approach in CellOrganizer can

be used to model arbitrary polygons or sets of polygons jointly assuming shapes can

be properly registered using non-rigid image registration [167, 165]. This approach

generates a �shape space� by reducing the dimensions of the pairwise di�erences in

cell shape obtained through non-rigid image registration. The main advantage of

the machine learning approach is that it could extract a more precise shape model
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from real data, but the model cannot be described in precise mathematical terms.

In addition, these generative models are restricted to individual cells in culture and,

hence, fail to capture the heterogeneity and organisation of tissue cells.

When simulating microscopy data, it is essential that the method also in-

cludes consideration of the degradation of the image during the acquisition process.

In optical microscopy, the �rst stage to consider is the signal transmission where

characteristics of the environment can intervene with the signal. The most typical

of these is the impulse response of the system, often called the point spread function

(PSF) [168]. This drastically a�ects the �nal results and is usually simulated by

convolving the incoming signal with the given or estimated PSF [154]. However,

�nding the PSF is commonly simpli�ed by approximating it as a simple Gaussian

kernel [151, 169, 150, 170]. Other phenomena that may a�ect the transmitted signal

include uneven illumination [171], chromatic [172] and monochromatic aberrations

[173], and re�ection or refraction on lens surfaces that could result in artefacts.

The second stage corresponds to the device sensors detecting the signal and con-

verting it to a digital representation. The use of sensors introduces Poisson noise

[151, 153, 169, 154], which can typically be observed even with the naked eye. In

addition to this, the A/D converter and ampli�cation electronics introduce additive

white Gaussian noise [151, 170, 154]. If the equipment is not properly cooled, CCD

detectors can also introduce �xed-pattern noise and blooming e�ect.

2.3 Protein Expression Models

Building accurate models for protein expression requires not only the chemical prop-

erties of the molecules involved, but also their spatial distributions. This is especially

important for proteins because the subcellular location of a protein is so critical to

its function that the same protein can have di�erent functions at di�erent locations

[174]. In addition, for some proteins such as β-catenin [175] and NF-κB [176], the

extent of localisation in the nucleus can be used as a biomarker to predict cancer

patient prognosis. A number of studies have been concerned with simulating protein

expression within a single cell. Most of these models consider the dynamic behaviour

of interacting molecules over time. Simpli�ed models analyse protein-protein inter-

action networks using homogeneous methods in which chemical species are assumed

to be well mixed. Such methods include systems of ordinary di�erential equations

(ODEs) and the Gillespie method [177, 178]. These methods can be extended to

include compartmental models in which one can de�ne homogeneous computational

�compartments� determining which molecules can interact with each other. The high
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e�ciency of these methods have made them very popular for modelling systems in

which the copy number of each species is large and compartments are expected to

be reasonably well mixed.

However, for some proteins the number of molecules found in a cell can be

very low and vary greatly between cells [179]. In addition, the heterogeneous na-

ture of cells is critical to their function [180]. As a result, signi�cant e�orts have

been made to develop spatial models for these biochemical systems. For example,

a simple model of an idealised cell demonstrated how the eccentricity of the cell

a�ects plasma membrane signalling [181]. The Virtual Cell project [182] enables the

formulation of both compartmental and spatial partial di�erential equation models,

the latter with either idealized or experimentally derived geometries of one, two or

three dimensions. Similarly, Monte Carlo Cell (MCell) and Smoldyn [183, 184, 185]

use agent-based methods which simulate each molecule individually and evaluate

their di�usion and probability of interactions on a per-particle basis for each time

step. Although extremely computationally expensive, these methods have very high

spatial resolution and are very successful at modelling interactions of small numbers

of heterogeneously distributed molecules. However, as these methods are stochastic,

they require multiple random initialisations of the simulation in order to determine

the expected behaviour of the system, further adding to the computational cost of

these simulations.

Nevertheless, majority of cellular modelling continues to be with a homoge-

neous spread of the molecules despite the development of these spatially resolved

simulation tools. This is due in part to the limited realistic geometries available for

simulation which are often either hand segmented or manually fabricated, both of

which can be very time-consuming. In addition, there is still need for the devel-

opment of e�cient ways to study cellular response using targeted geometries and

organisations, as these simulation tools currently require a large amount of training

to properly use. Furthermore, while these methods can be useful for studying the

dynamics of protein interaction, they do little to simulate the corresponding mi-

croscopy image data, which is necessary for validation of image analysis methods

such as cell-compartment classi�cation methods [186, 161, 162, 167, 163]. To ad-

dress this issue, Zhao and Murphy [164] presented a machine learning method to

generate realistic cells with labelled nuclei, membranes and a protein expressed in a

cell organelle. Parameters for these models were learned from real images of cells in

culture. However, these generative models are restricted to individual cells in culture

and only one protein of interest at a time. Hence, this method struggles to capture

the dynamic interplay between cells.
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Chapter Summary

In this chapter, we have reviewed the existing literature on multiplex imaging. The

review covered quantitative data mining methods developed for analysis of the TIS

imaging data. These include pixel-level analyses both with and without tresholding

the intensity values. Due to the general nature of the analysis framework presented

in the next chapter, we also brie�y reviewed studies that have been performed with

other multiplex techniques such as MALDI, Raman, multi-spectral imaging, MxIF

and imaging mass cytometry. The chapter also included a review of frameworks for

the generation of synthetic image data. Currently, the majority of these methods

focus on the generation of homogeneous cell populations in culture. We have also

brie�y reviewed current methods for simulating protein expression.
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Chapter 3

DiSWOP: A Novel Measure for

Cell-Level Protein Network

Analysis in Localised Proteomics

Image Data

In this chapter, we propose a framework for analysing multiplex image data. As

discussed in Chapter 2, the standard way of analysing image data obtained using TIS

is to threshold it and then cluster CMPs into CMP motifs. While the lead proteins

identi�ed using this approach have been shown to be of functional signi�cance, by

thresholding the data a lot of potentially important information is lost. On the other

hand, if one considers the raw protein expression pro�les without tresholding, the

data �rst needs to be normalised in a robust manner. This is due to inter-sample and

inter-protein intensity variations that could result from small di�erences in sample

preparation, imaging and antibody concentrations. This could be a very di�cult

issue to address due to the lack of controls and ground truth data. Instead here

we focus on obtaining the protein interaction networks by considering the protein-

protein dependence pro�le (PPDP) of the cells instead of the raw protein expression

pro�les. In Section 3.3 we present several measures that could be used to calculate

the PPDP and demonstrate why some of them and the raw expression pro�les fail.

Furthermore, we perform the analysis at cell level rather than pixel level.

This minimises noise from unspeci�c binding of the protein antibodies to the extra-

cellular matrix, stroma and lumen. In addition, the pixel size is not of any biological

relevance. Hence, clustering of pixels gives large amounts of noisy data of little

biological meaning. Our approach phenotypes the cells according to their PPDP.
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Figure 3.1: Overview of the proposed framework.

This enables us to gain a better understanding of the heterogeneity within the cancer

cell population. We can also compare cell phenotypes present in healthy tissue and

di�erent cancers.

Lastly, two new measures are proposed to enable us to infer small-scale protein

networks. These new measures highlight protein pairs which have very di�erent

interaction in cancer and normal tissue. An overview of the approach is presented

in Figure 3.1.

3.1 Data

The image data used in this study was acquired using a TIS microscope [73] installed

at the University of Warwick. Samples had been surgically removed from colon

cancer patients. One sample was taken from the surface of the tumour mass, and

another one was selected from apparently healthy colonic mucosa at least 10cm away

from the visible margin of the tumour. Two visual �elds were manually selected in
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each tissue sample, resulting in up to four TIS data sets from each patient. However,

many of the visual �elds were not available for analysis as they had been identi�ed as

poor quality by the biologists performing the experiments. This was due to issue with

the microscope during image acquisition. The results presented here were obtained

by considering a total of 11 samples � 6 healthy and 5 cancerous. The samples were

obtained from 5 patients, with one patient having all four visual �elds, one patient

missing only a cancer sample, one patient with two normal samples and two patients

with a single cancer sample. The data used was obtained from 26 cycles of the TIS

machine chosen based on recent �ndings [68]. However, some of these were excluded

from the analysis using the following criteria:

1. Function of the tag not relevant to the study - this way we excluded 2 DAPI

channels with di�erent tag concentrations and 5 PBS runs, which were per-

formed to remove auto�uorescence.

2. Tag was not registered properly by the RAMTaB algorithm [69] (see below).

3. Invalid expression - images were checked by a pathologist to validate expression

of the protein tag in the image. This resulted in all images of the Ki67 tag to

be excluded. This protein is expected to be found in increased concentrations

only in proliferating cells but this was not the case (Figure 3.2).

This resulted in a library of 12 antibody tags that were used, details of which are

shown in Table 3.1. Some of the tags are known tumour markers or cancer stem cell

markers. These were CD133, CK19, Cyclin A, Muc2, CEA, CD166, CD36, CD44,

CD57, CK20, Cyclin D1 and EpCAM. The stacks also included a DAPI tag used to

identify the cell nuclei. A previously presented protocol for sample preparation and

image acquisition was used [68].

Table 3.1: List of all antibodies with known information.

Molecule

(o�cial

symbol)

Location Known function

CD133

(PROM1)

Expression

in luminal

membranes

of glandular

epithelia.

Prominin-1 is a pentaspan transmembrane

glycoprotein. The protein localises to mem-

brane protrusions and is often expressed on

adult stem cells, where it is thought to func-

tion in maintaining stem cell properties by

suppressing di�erentiation.
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Table 3.1: Continued

Molecule Location Known function

Ck19

(KRT19)

Cytoplasmic

and membra-

nous expression

in epithelium

tissue.

This smallest known acidic cytokeratin is not

paired with a basic cytokeratin in epithelial

cells. It is speci�cally expressed in the perid-

erm, the transiently super�cial layer that en-

velopes the developing epidermis.

Cyclin A

(CCNA2)

Nuclear and

to some extent

cytoplasmic

staining in

proliferative

cells.

This cyclin is expressed in all tissues tested.

This cyclin binds and activates CDC2 or

CDK2 kinases, and thus promotes both cell

cycle G1/S and G2/M transitions.

Muc2

(MUC2)

Selective cyto-

plasmic expres-

sion in mucus

producing cells

of the gastroin-

testinal tract.

Mucin 2 is secreted and forms an insolu-

ble mucous barrier that protects the gut lu-

men. The protein polymerises into a gel

of which 80% is composed of oligosaccharide

side chains by weight.

CEA (CEA-

CAM1)

Membranous

expression

mostly in

epithelium

cells.

This is a glycoprotein, with a series of Ig

like domains. Its normal tissue distribution

includes columnar epithelial cells and goblet

cells in colon, mucous cells in stomach, squa-

mous epithelium of tongue, esophagus and

cervix and prostate. It is used clinically as

a tumor marker for colorectal cancer.

CD166 (AL-

CAM)

Cytoplasmic

and membra-

nous expression

mostly in

epithelium

cells.

Activated leukocyte cell adhesion molecule is

a member of a subfamily of immunoglobulin

receptors with �ve immunoglobulin-like do-

mains (VVC2C2C2) in the extracellular do-

main. This protein binds to T-cell di�erenti-

ation antigene CD6, and is implicated in the

processes of cell adhesion and migration.
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Table 3.1: Continued

Molecule Location Known function

CD36

(CD36)

No data avail-

able

CD36 is a major glycoprotein of the platelet

surface and serves as a receptor for throm-

bospondin in platelets and various cell lines.

The protein may have important functions as

a cell adhesion molecule. It binds to colla-

gen, thrombospondin, anionic phospholipids

and oxidized LDL.

CD44

(CD44)

Mainly lo-

calised to the

plasma mem-

brane but also

to the Golgi

apparatus

CD44 is a cell-surface glycoprotein involved

in cell-cell interactions, cell adhesion and

migration. It participates in a wide vari-

ety of cellular functions including lympho-

cyte activation, recirculation and homing,

hematopoiesis, and tumor metastasis.

CD57

(B3GAT1)

Cytoplasmic

expression in

several cell

types.

This glycoprotein is expressed normally

in hematopoietic cells (Natural killer cells

and CD8 positive Tlymphocytes), neuro-

ectodermal cells, neuro endocrine cells, stri-

ated muscles and epithelium of prostate. It

is possibly related to cell-cell interaction.

Laminin, P-selectin and N-selectin are its nat-

ural ligands.

Ck20

(KRT20)

Selective cy-

toplasmic

expression in

gastrointestinal

epithelium.

The keratins are intermediate �lament pro-

teins responsible for the structural integrity

of epithelial cells and are subdivided into cy-

tokeratins and hair keratins. This cytokeratin

is a major cellular protein of mature entero-

cytes and goblet cells and is speci�cally ex-

pressed in the gastric and intestinal mucosa.

It is known to be overexpressed in CRA as

compared to normal colon.
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Table 3.1: Continued

Molecule Location Known function

Cyclin D1

(CCND1)

Localised to the

nucleus but ex-

cluded from the

nucleoli.

This cyclin forms a complex with and func-

tions as a regulatory subunit of CDK4 or

CDK6, whose activity is required for cell cy-

cle G1/S transition. Mutations, ampli�cation

and overexpression of this gene, which alters

cell cycle progression, are observed frequently

in a variety of tumors and may contribute to

tumorigenesis.

EpCAM

(EpCAM)

Selective ex-

pression in the

cytoplasm and

cell membranes

of glandular

cells.

Epithelial cell adhesion molecule is expressed

on most normal epithelial cells and gastroin-

testinal carcinomas and functions as a ho-

motypic calcium-independent cell adhesion

molecule. The antigen is being used as a tar-

get for immunotherapy treatment of human

carcinomas.

4,6-

diamidino-2-

phenylindole

(DAPI)

Chromatin DAPI is an intercalating agent. It is a �uo-

rescent molecule and has been used to stain

DNA nucleic acids.

3.2 Pre-processing

Background auto�uorescence is digitally subtracted at an early stage. Hence, any

remaining �uorescence should be true protein expression. In each of the stacks, the

images were aligned using the RAMTaB (Robust Alignment of Multi-Tag Bioimages)

algorithm [69]. This is done in order to prevent possible noise resulting from the slight

mis-alignment of the multi-tag images obtained using TIS. A measure of con�dence

in the registration results is given by the standard deviation of shifts computed by

di�erent blocks and images were discarded if this exceeded a pre-de�ned threshold.

This method has been shown to achieve sub-pixel accuracy of registering this data

[69]. Then, if there are K tags, each having a corresponding image of size m × n,
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Figure 3.2: Expression of Ki67 in a normal sample

the data can be represented as a K ×mn matrix

X =


x11,1 x11,2 · · · x1m,n

x21,1 x21,2 · · · x2m,n
...

...
. . .

...

xK1,1 xK1,2 · · · xKm,n

 , (3.1)

where xki,j is the expression level of protein k (k < K) at pixel (i, j). In our experi-

ments K = 12,m = 1027 and n = 1056.

A method was recently proposed to perform cell segmentation of TIS stacks

in order to restrict the analysis to cellular areas only [187]. This ensures that signals

from stroma and lumen are removed as they can potentially add noise to the subse-

quent analysis. To follow best practice, one should segment entire cells since some

of the proteins observed are located in parts of the cells other than the nucleus, such

as the cytoplasm, vesicles or the Golgi apparatus. However, this is challenging in

cancerous tissues because of the variable orientation of cells due to disrupted tissue

architecture and a tag of the cell membrane was not used in this set of experiments

to enable us to precisely identify entire cells. Instead, each image was segmented

using a modi�ed form of the graph cut method [188] applied to a DAPI channel

[187] (Figure 3.3). Initially, each image is binarised using graph-cut based algorithm

to extract the foreground. Next, an initial segmentation is performed by detecting

seed points on the foreground of the binarised image by using a multi-scale Lapla-
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cian of Gaussian (LoG) �lter [189]. The initial segmentation is then re�ned using a

second graph-cut based algorithm. Finally, the nuclei segmentation results obtained

using the framework are post-processed by either eliminating very small nuclei or

merging them with nearby nuclei, as they usually result from segmentation errors.

This �nal step ensures that analysis is restricted only to clearly distinguishable nu-

clei. This serves as a rough approximation of the pixels belonging to the cells. This

was necessary in order to extract pixel locations of the nuclei and their immediate

neighbourhood only, as the DAPI tag stains the DNA. Using only nuclei may reduce

the amount of cell available for analysis but is comparatively unambiguous and can

be used as a rough approximation of the cells. Segmentation is an issue as gold-

standard data is not available and perfect cutting of sections is impossible. Future

experiments should include a membrane tag, which would resolve this problem.

Segmentation resulted in a total of 2945 cells being identi�ed. The cell-

localised protein expression values for each of the K proteins is collected in a protein

expression matrix Xc of the order K ×Nc for each cell c

Xc = {xi,j | (i, j) ∈ Ωc} , (3.2)

where Ωc = {(i1, j1), (i2, j2), ..., (iNc , jNc)} denotes the set of pixel coordinates in

cell c, Nc = |Ωc| denotes the number of pixels in each cell c and the vector xi,j =

[x1i,j , ..., x
K
i,j ] is the expression levels of each tag at pixel (i, j). In matrix form this is

given by

Xc =


x1i1,j1 x1i2,j2 · · · x1iNc ,jNc

x2i1,j1 x2i2,j2 · · · x2iNc ,jNc
...

...
. . .

...

xKi1,j1 xKi2,j2 · · · xKiNc ,jNc

 . (3.3)

3.3 Protein-protein dependence pro�le (PPDP)

The pairwise maximal information coe�cient (MIC) [190] for each pair of proteins,

localised to an individual cell c, is calculated to obtain the protein-protein depen-

dence pro�le (PPDP) of the cell. We used this statistic since it has been shown

to capture a wide range of associations, both functional and not, and it gives sim-

ilar scores to equally noisy relationships of di�erent types [190]. The MIC for each

pair of proteins, localised to an individual cell c, is calculated by considering the

intensities of the two proteins pixel by pixel. The MIC is calculated by exploring all

grids on the scatter-plot up to a maximal grid resolution dependent on the grid size,
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a)

b)

Figure 3.3: Segmentation results on a part of a normal sample (a) and a part of a
cancer sample (b). The size of the scale bars is 10 µm.

computing for every pair of integers (k, l) the largest possible mutual information

achievable by any k-by-l grid applied to the data (Figure 3.4 (a)). The values found

are then normalised as follows: for a grid G, let IG denote the mutual information of

the probability distribution induced on the grid boxes of G, where the probability of

a box is proportional to the number of points that fall in the box. The highest nor-
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Figure 3.4: Computing MIC (A) For each pair (x,y), the MIC algorithm �nds the
x-by-y grid with the highest induced MI. (B) The algorithm normalises the MI scores
and compiles a matrix that stores, for each resolution, the best grid at that resolution
and its normalised score. The normalised scores form the characteristic matrix; MIC
corresponds to the maximum of this matrix. In this example, there are many grids
that achieve the highest score. The star in (B) marks a sample grid achieving this
score. Image credit: [190].

malised mutual information achieved by any k-by-l grid is recorded as the element

mk,l of a characteristic matrix M, where

mk,l =
max(IG)

log(min{k, l})
, (3.4)

with the maximum being taken over all k-by-l grids G (Figure 3.5 (b)). The normal-

isation ensures a fair comparison between grids of di�erent sizes and obtains values

between 0 and 1. The MIC is the maximum value of M [190]. As suggested by [190],
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Figure 3.5: Protein-protein dependence pro�le (PPDP) of two cells from the same
specimen.

the maximum size of the grids considered was set to be kl < N0.6
c where Nc is the

number of pixels in the cell c. For each cell c, a K(K − 1)/2-dimensional vector µc
of pairwise MIC scores is obtained. The vector represents the PPDP of the cell and

can be expressed as

µc =
[
µ1,2c µ1,3c · · ·µ1,Kc µ2,3c µ2,4c · · ·µ2,Kc · · ·µK−1,K

c

]
, (3.5)

where µi,jc ∈ [0, 1] is given by the MIC between rows i and j of the matrix Xc. The

PPDP for two sample cells from the same tissue specimen is shown in Fig 3.5.

Other co-dependence measures were also considered for the analysis. Pear-

son's and Spearman correlations fail to capture non-linear relationships between

protein expression pro�les, which often occur due to the inhomogeneous structure

of the cells. An example of this can be seen in Figure 3.6. In Figure 3.6 (a) we

can see that the two proteins are weakly dependent on each other. However, the

Pearson's coe�cient for this cell was -0.01, whereas the MIC was 0.33. Mutual in-

formation and normalised mean expression values were also tested. However, each

of these resulted in a batching e�ect where some phenotypes (See section 3.4) were

predominantly located in a single, usually cancerous, sample and the samples were

split into a handful of phenotypes (Figure 3.7). This seems biologically unlikely as

we expect that there should be some normal cells within the tumour tissue and that

cancers share some common types of cells. These �ndings are consistent with the

�ndings that functionality can be determined by colocation rather than changes in

abundance levels [66]. For result comparison Distance Correlation (DC) [191] was

also used. The �nal results obtained were very similar to the ones obtained using

MIC (See Table 3.2). However, it has been found that the distance correlation has

a strong preference for some types of dependencies and gives di�erent scores at the

same noise levels [190]. Therefore, the MIC is preferred due to its robustness to

37



a)

b) c) d)

Figure 3.6: An example of non-linear dependence between protein expressions in a
cell. Figure (a) shows a scatter plot of the pixel intensities of CK19 and CD166 in
a cancer cell. Figures (b) - (d) show the DAPI, CK19 and CD166 expression of the
cell outlined in red.

variations in the type of dependence.

3.4 Cell phenotyping based on localised PPDP

We consider and compare the results from three di�erent clustering frameworks.

Ideally, the �nal results of the analysis should be independent of the phenotyping

method.

3.4.1 A�nity Propagation Clustering (APC)

The vector µc is the PPDP of the cell c and can be used to determine the cell

phenotype using a clustering algorithm. A�nity Propagation Clustering (APC) is a

clustering method, which takes as input a matrix containing measures of similarity

between pairs of data points. Real-valued messages are passed between data points

until a high-quality set of exemplars and corresponding set of clusters gradually

emerges [192]. We have used a Gaussian Kernel based on the Euclidean distance

between the protein co-dependence pro�les of cells as an a�nity matrix, so for a
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a)

b)

Figure 3.7: Distribution of phenotypes obtained using APC based on the mutual in-
formation pro�le of the cells amongst (a) cancerous samples and (b) normal samples.
Each colour corresponds to a di�erent sample. The 41 phenotypes are shown along
the x-axis. The y-axis shows proportion of the phenotype located in each sample.

pair of cells a and b with PPDPs µa and µb, respectively, the (a, b) entry of the

similarity matrix (for a ̸= b) is given by

sa,b = exp

(
−∥µa − µb∥2

2σ2

)
, (3.6)

where σ = (maxa,b∥µa − µb∥) /3 and ∥ · ∥ is the Euclidean distance. All diagonal

entries of the matrix are set to equal the minimum value of the matrix. This means

that each cell is equally likely to be a cluster centroid and results in a moderate

number of clusters. We denote the number of cell phenotypes resulting from this

approach by Ĉ, which in this instance was found to be 41. An Agglomerative Hi-
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Table 3.2: Top and bottom 10 DiSWOP results from di�erent dependency measures
(MIC and DC) and clustering methods (APC, GBHC and AHC). Pairs are shown
with decreasing DiSWOP score. All results have been obtained by considering the
top 5 PPDP scores for each phenotype.

MIC and AP MIC and GBHC MIC and AHC DC and AP

CEA & EpCAM CK20 & EpCAM CEA & EpCAM CEA & EpCAM
CD133 & EpCAM CEA & EpCAM CD133 & CK20 CD133 & Muc2
CEA & CK20 Muc2 & EpCAM CK19 & CK20 CK19 & CEA
CD133 & Muc2 CD133 & CEA CK19 & EpCAM CK19 & EpCAM
CD133 & CEA Muc2 & CEA CK19 & CEA CK19 & CD57
CK19 & EpCAM CK19 & CEA Muc2 & EpCAM CD133 & EpCAM
CK20 & EpCAM CD133 & Muc2 CD57 & EpCAM Cyclin A & CD57
CD133 & Cyclin D1 CK19 & CK20 CEA & CK20 CD133 & CEA
Muc2 & EpCAM CEA & CK20 CD133 & CEA Muc2 & EpCAM
CD57 & EpCAM CK19 & EpCAM Cyclin A & EpCAM CD57 & EpCAM

CD166 & Cyclin D1 Cyclin A & CD57 CD44 & CK20 CD57 & Cyclin D1
Cyclin A & CK20 CD133 & Cyclin D1 Muc2 & CD44 Muc2 & CD44
CD166 & CD57 CD166 & CD57 Muc2 & CD166 Muc2 & CD36
Muc2 & CD44 CD57 & Cyclin D1 CD57 & Cyclin D1 Muc2 & CD57
Muc2 & CD166 CD166 & CD36 CK19 & CD57 Cyclin A & CK20
CK19 & Cyclin A Cyclin A & CD166 CD166 & CD36 CD166 & CD36
CD166 & CD36 CD44 & EpCAM CD166 & Cyclin D1 Cyclin A & CD166
CD36 & Cyclin D1 CD166 & Cyclin D1 CD36 & CD57 CD44 & EpCAM
CD36 & CD57 CD36 & Cyclin D1 CD36 & Cyclin D1 CD36 & Cyclin D1
CD44 & EpCAM CD36 & CD57 CD44 & EpCAM CD36 & CD57

erarchical Clustering (AHC) [193] and Gaussian Bayesian Hierarchical Clustering

(GBHC) [194, 195] approach with the same number of clusters was also considered.

It was encouraging to see that these gave similar results, which are shown in Table

3.2.

3.4.2 Agglomerative Hierarchical Clustering (AHC)

This is a bottom-up clustering method [193], which starts with each of the N PPDPs

µ as belonging to a di�erent cluster. At each iteration the algorithm merges two

clusters together by aiming to minimise the increase in the variance of clusters [196].

If at each iteration level k∗ we have clusters Sj = {µ(j,1), . . . , µ(j,nj)}, where nj = |Sj |
and j ∈ {1, . . . , N − k∗}, clusters at level k∗ + 1 are obtained by �nding clusters u

and v such that

u, v = argmax
u,v∈{1,...,N−k∗}

nunv
(
∥S̄u − S̄v∥2

)2
nu + nv

, (3.7)
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where S̄j is the mean vector for Sj . This step reduces the number of clusters by one

by merging clusters Su and Sv. The number of clusters was set to equal that found

by AP clustering, so the tree was cut at level N − Ĉ.

3.4.3 Gaussian Bayesian hierarchical clustering (GBHC)

As this method is computationally expensive, we employed a feature selection tech-

nique to reduce the number of features considered. The protein pairs that best

discriminate between cancer and normal samples were selected using the Wilcoxon

rank sum test [197]. For a protein pair, this was done by calculating the p-value

that the PPD values of the cancer cells and of the normal cells come from distribu-

tions with a di�erent median. Then, out of the 66 protein pairs, the 33 with lowest

p-values were selected for clustering to be performed on. This drastically speeds up

performance of the algorithm. Cells with similar phenotype are expected to have

PPDPs with similar nature. In terms of probability, we can hypothesise that di�erent

phenotypes are explained by di�erent probability distribution, and cells with similar

phenotype should come from the same distribution. Cell phenotyping can therefore

be achieved through GBHC [194], which models data as a mixture of probability

distributions.

Let the PPDP of the ith cell be denoted by x(i) = (x
(i)
1 , . . . , x

(i)
d ), where x(i)j

is a PPD value of the jth protein pair for the ith cell, and d = 33 is the number of

protein pairs after feature selection. Without loss of generality, we assume that the

whole PPD data have zero mean and unit variance. Let Dk denote a set of PPD data

for nk cells belonging to the kth phenotype. According to the assumptions of GBHC,

for each protein pair j, x(i)j are independent and identically normal distributed with

unknown mean µj and variance σ2j , i.e.

x
(i)
j ∼ N (x|µj , σ2j ) ∀x(i) ∈ Dk. (3.8)

Furthermore, µj and σ2j are assumed to be normal-gamma distributed with hyper-

parameters λ0, β0, and κ0. The marginal likelihood of Dk based on this hierarchical

probabilistic model can be expressed as

P (Dk|λ0, β0, κ0) =
d∏
j=1

Γ(λnk
)

Γ(λ0)

βλ00

β
λnk
nk,j

(
κ0
κnk

) 1
2

(2π)
−nk
2

 , (3.9)

where

λ0, β0, κ0 > 0, (3.10)
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κnk
= κ0 + nk, (3.11)

λnk
= λ0 +

nk
2
, (3.12)

x̄j =
1

nk

nk∑
i=1

x
(i)
j , (3.13)

βnk,j = β0 +
1

2

[
nk∑
i=1

(
x
(i)
j − x̄j

)2
+
κ0nkx̄

2
j

κnk

]
, (3.14)

and Γ(·) denotes a gamma function. This likelihood term indicates how likely it

is that cells in Dk have the same phenotype, and it will be used as an alternative

to a distance-based dissimilarity measure, which is normally used in agglomerative

hierarchical clustering methods.

GBHC uses Bayesian model selection to decide which pair of small data sets

Dk and Dl is the most probable to belong to the same distribution, and should be

merged together to form a larger data set Dm. This is done through Bayes' rule:

rm =
πmP (Dm|λ0, β0, κ0)

πmP (Dm|λ0, β0, κ0) + (1− πm)P (Dk|λ0, β0, κ0)P (Dl|λ0, β0, κ0)
, (3.15)

in which P (Dk|λ0, β0, κ0) is the marginal likelihood of a cluster Dk as de�ned in

Equation 3.9, πm = αΓ(nm)/ρm, ρm = αΓ(nm) + ρkρl, we set πk = 1, ρk = α for

every initial cluster set and α is a concentration parameter related to the expectation

of the number of clusters in the data. As we climb up a hierarchical tree, the

probability that two clusters being merged come from the same distribution gets

lower. Using this information, GBHC does not consider merges with probability less

than 0.5 as valid merges. This in turn results in the algorithm automatically giving

the �nal number of clusters, here found to equal 25.

Since there is no ground truth available for the number and distribution of

cell phenotypes in these samples, evaluating the accuracy of the clustering methods

is challenging. Hence, this clustering method was selected mainly due to its con-

trasting approach from APC. This allows us best to demonstrate the robustness of

the DiSWOP results.

3.5 Protein-protein co-dependence and anti-co-dependence

measures

Once the cell phenotype clusters have been obtained, an average PPDP, µ̄S is cal-

culated for each cluster S. For a protein pair (i, j) (with i < j ≤ K) µ̄i,jS is given
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by

µ̄i,jS =

∑
c∈S µ

i,j
c

|S|
. (3.16)

Then µ̄S is the vector

µ̄S =
[
µ̄1,2S µ̄1,3S · · · µ̄1,KS µ̄2,3S µ̄2,4S · · · µ̄K−1,K

S

]
. (3.17)

In order to more objectively investigate the protein pairs which have higher

dependency and are more frequent in cancer samples, a di�erence of weighted sums

was calculated by considering the top N (here set to equal 5 or 10) dependency

scores of the ten most frequent phenotypes in each sample. The measure weights

the dependency score with the phenotype probability in the sample, and sums all

occurrences of the protein pair in all the cancerous samples and of all the normal

samples. The sums are normalised by the number of samples. It then subtracts the

score for the normal from the score for the cancer samples, hence giving a positive

score if a pair appears more frequently and with higher dependency scores in the

cancerous samples. More formally, if µ̂S is the vector with the elements of µ̄S (lying

in [0, 1]) sorted in descending order, prS is the probability of phenotype S in sample

r, Sα,r is the αth most frequent phenotype in sample r, and

M i,j
S =

µ̄
i,j
S , if µ̄i,jS is one of the �rst N elements of µ̂S

0, otherwise
, (3.18)

then the di�erence of the sum of frequency-weighted localised protein-protein co-

dependence values for a protein pair (i, j), wi,j is given by

wi,j =
1

|ψ|
∑
r∈ψ

10∑
α=1

prSα,r
M i,j
Sα,r

− 1

|ν|
∑
r∈ν

10∑
α=1

prSα,r
M i,j
Sα,r

. (3.19)

where ψ is the set of cancerous samples, ν is the set of normal samples.

A similar quantity of anti-co-dependence has also been considered by looking

at the bottom N dependency scores, so we de�ne

M̂ i,j
S =

µ̄
i,j
S , if µ̄i,jS is one of the last N elements of µ̂S

0, otherwise
, (3.20)

and use 1− M̂ i,j
S instead of M i,j

S to measure anti-co-location of protein pairs, i.e.

43



ŵi,j =
1

|ψ|
∑
r∈ψ

10∑
α=1

prSα,r

(
1− M̂ i,j

Sα,r

)

− 1

|ν|
∑
r∈ν

10∑
α=1

prSα,r

(
1− M̂ i,j

Sα,r

)
.

(3.21)

Hence, we introduce two new measures called Di�erence in Sum of Weighted

cO-dependence/Anti-co-dependence pro�les, further referred to as DiSWOP (Equa-

tion 3.19) and DiSWAP (Equation 3.21). Large positive values of DiSWOP indicate

that the protein pair (i, j) is more co-dependent in cancer samples, while a low nega-

tive DiSWOP value means that the protein pair is more co-dependent in the normal

samples. Similarly for DiSWAP a large positive value suggests that the protein pair

is more anti-co-dependent in cancer and a large negative value that the protein pair

is more anti-co-dependent in healthy samples. The DiSWOP and DiSWAP scores

are shown in Figures 3.8 and 3.9, respectively. Various combinations of number of

phenotypes and dependency scores were also considered. Altering the number of

clusters caused very little change to the results as the phenotypes that were added

or excluded have very low probability in the samples. On the other hand, increasing

the number of dependency scores considerably changed the protein pairs highlighted.

However, if more than the top ten scores are included, the average dependency score

added to the analysis is below 0.5 and so the proteins are more anti-co-dependent

than they are co-dependent. Therefore, these scores should not be included as part

of the DiSWOP measure. Further biological validation and analysis of a greater

number of samples is needed to determine the optimal number of dependency scores

to be considered as part of the dependency measures.

3.6 Results

The results presented in Figures 3.8 and 3.9 suggest that it is in fact the combina-

tions of protein pairs with high dependency scores that identify cancer cells, which is

to be expected, considering the complexity of the system. Calculating the DiSWOP

and DiSWAP measures identi�ed pairs which are signi�cantly more co-dependent or

anti-codependent in cancer samples than in normal tissue. As can be seen in Figure

3.8 and Table 3.2, EpCAM and CEA have very high positive DiSWOP score for all

results. It is encouraging to see that most of the protein pairs highlighted are the

same when di�erent methods are used for phenotyping. This may be due to the fact
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a)

b)

c)

Figure 3.8: The social networks of proteins' colocalisation. Each node represents a
protein and each edge colour shows a protein pair with di�erent level of co-expression
in the normal and cancer samples. Only edges with the top 10% and the bottom
10% of the DiSWOP values are shown. Figures (a) and (b) show DiSWOP values
obtained using APC when considering the top 5 and 10 dependency scores, respec-
tively. Figure (c) show DiSWOP values obtained using GBHC when considering the
top 5 dependency scores. Here, a large positive value (shown in red) indicates that
the protein pair is more co-dependent in cancer samples, whereas a large negative
value (shown in blue) means that the protein pair is more active in normal tissue.
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a)

b)

Figure 3.9: The social networks of proteins' anti-colocalisation. Each node repre-
sents a protein and each edge colour shows a protein pair with di�erent level of
co-expression in the normal and cancer samples. Only edges with the top 10% and
the bottom 10% of the DiSWAP values are shown. Figures (a) and (b) show DiS-
WAP values obtained using APC when considering the top 5 and 10 dependency
scores, respectively. In this case, a large positive value (shown in red) indicates that
the protein pair is more anti-co-dependent in cancer samples, whereas a large nega-
tive value (shown in blue) means that the protein pair is more anti-co-dependent in
normal tissue.
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a) d)

b) e)

c) f)

Figure 3.10: Protein expression images. Figures (a) - (c) show CEA, EpCAM and
CD44 expression levels, respectively, in a cancer sample. Figures (d) - (f) show CEA,
EpCAM and CD44 expression levels, respectively, in a normal sample. The scale bar
in (a) is 10 µm
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that both proteins are involved in cell adhesion (details of all the proteins considered

have been previously presented [68]). On the other hand, the pairs CD36 and CD57,

and CD44 and EpCAM were more likely to interact in the normal tissue samples

(Figures 3.8). These dependencies can be seen in the data. Figure 3.10 shows the

expression levels of CEA, EpCAM and CD44 in a cancer and a normal sample. It is

clear that protein expression in Figures 3.10 (a) and (b) illustrate a higher depen-

dence than in Figures 3.10 (d) and (e), whereas the expression patterns in Figures

3.10 (b) and (c) di�er more than those in Figures 3.10 (e) and (f). Similar trends can

be seen in most of the other samples. Considering the DiSWAP measure also high-

lights some pairs of proteins such as CD44 and CD57 being more anti-codependent

in cancer samples and Ck19 and CD133 in normal samples. It is worth noting that

when we compare the results for DiSWOP obtained using APC and GBHC there

is very high agreement as to which pairs have high positive or negative DiSWOP

values. In order to quantitative evaluate the similarity between the networks we cal-

culate distance measures between the vectors containing the DiSWOP values. The

L1 norm between all the edges in the graphs shown is 0.636 and the mean of the

relative absolute di�erence between the edge weights, as de�ned by

mean

(
|w(1) − w(2)|

max(|w(1)|, |w(2)|)

)
(3.22)

is found to be 0.683, where w(1) and w(2) are the weights of the two graphs shown

in Figure 3.8 (a) and (c), respectively. The later measure can take values between 0

and 2, with 0 meaning that all the edges are the same, 1 meaning that non of the

edges co-occur and 2 showing that all w(1) = −w(2). On the other hand, when all

of the edges (thresholded and non-thresholded) are considered, the L1 norm is 0.89

and the mean of the relative absolute di�erence between the edge weights is found to

be 0.561. In both cases, the maximum absolute di�erence between the edge weights

is 0.0624.

It is important to note that these results were obtained using only 11 samples

which, while being a great improvement on previous studies in the toponomics of

colon cancer [68, 93], is still insu�cient to draw signi�cant biological conclusions.

3.7 Results Signi�cance

In order to further analyse the consistency of the two dependency measures, the anal-

ysis was performed on 16 di�erent combinations of 3 cancer and 3 normal samples.

The results are shown in Figure 3.11 where it can be seen that the protein pairs

with highest and lowest DiSWOP and DiSWAP scores are the same as the ones
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a)

b)

Figure 3.11: Mean (a) DiSWOP and (b) DiSWAP values (using the top 5 dependency
scores) obtained using 16 di�erent combinations of 3 cancer and 3 normal samples.
The error bars are the size of one standard deviation. Numbers along the x-axis
correspond to di�erent protein pairs. Note that the labelled protein pairs are the
same as the ones highlighted from the analysis of all 11 samples.

found when all 11 samples were analysed (Figures 3.8 and 3.8). The large standard

deviation bars for some of the protein pairs illustrate the inter-sample heterogeneity.

A further experiment was performed in order to assess the signi�cance of

the results. For each protein channel and each cell we randomly permuted the pixel

intensity values. This should break any real dependence between protein expressions

and results in noise. Once the pixel intensities are permuted, the PPDP for each cell

is calculated and DiSWOP analysis is performed as above. The experiment was run

11 times and results are shown in Figure 3.12. The scale in Figure 3.12 is di�erent

to that in Figure 3.11 due to the normalisation factors in the DiSWOP analysis.

3.8 Protein - Protein Interaction Pathways

In addition, some of these protein pairs have been experimentally found to interact

or to be part of a pathway involved in colorectal cancer. For example, several

studies have established that CEA and EpCAM interact through the pathway CEA
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Figure 3.12: Results for DiSWOP from signi�cance experiment using permuted pixel
values. Red stars represent the DiSWOP values found in the original data. Circle
markers of di�erent colours demonstrate results from di�erent permutation experi-
ments. The dashed lines indicate the standard deviation of all permuted DiSWOP
values.

� SOX9 � Claudin7 � EpCAM [198, 199, 200, 201] (Figure 3.13), which plays an

important role in determining the morphology of the colon epithelium and promotes

colorectal cancer progression [201]. In addition, physical interaction pathways have

been established between CD44 and EpCAM, and between CD36 and CD57 (Figure

3.14) [198].

Further analysis of the results have been performed using an interactive tool

for localisation of high PPD within the di�erent samples, as shown in Figure 3.15.

It enables the user to consider two protein pairs simultaneously and see where their

PPD is above manually set thresholds (Figure 3.15). Alternatively, there is the option

to see all cells in the samples coloured corresponding to the dependence between a

selected protein pair. In this case, the PPDs are binned in intervals of size 0.2 and

each cell is displayed in a corresponding colour (Figure 3.16). Screen-shots of the

tool has been shown in Figure 3.15, which shows the cells expressing high PPD

(above 0.7) of the two pairs CEA and EpCAM, and CD36 and CD57. We can easily

see that normal and cancerous samples show di�erences in the distribution of high

PPD for these two protein pairs. This tool con�rms the heterogeneity of protein co-

localisation both of neighbouring cells within the same tissue specimen and between

di�erent cancerous and normal samples. It could help identify complex biomarkers
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Figure 3.13: CEA and EpCAM interaction pathway [198]. Sox 9 has been found to
activate expression of CEA [199] and mediate repression of Claudin-7 by Tcf-4 [200].
Claudin-7 and EpCAM have been found to co-express in colon tissue and possibly
be part of a complex [201].

for cancer stem cells or cancer prognosis.

3.9 Discussion

The framework presented here is novel as it clusters the cells found in a sample,

rather than the pixels, as in previous methods [92, 93, 94]. Hence this method

enables us to consider the heterogeneity of the samples. Using the MIC scores means

that the PPDP is considered rather than the raw expression pro�le. Therefore, the

method is independent of the intensity of the images and hence di�erent stacks can

be considered simultaneously. Furthermore, it enables the identi�cation of pairs of

proteins which are more active in cancer cells than in normal cells and vice versa.

The approach has been developed for images obtained using TIS, but it can also be

easily used for other multi-variate imaging techniques, such as MALDI imaging [74],

Raman microscopy [75] and multi-spectral imaging methods [76].
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Figure 3.14: CD44 and EpCAM, and CD36 and CD57 interaction pathways [198].

The proteins used were not chosen because links between them were expected

to show up in a protein network, but for a di�erent scienti�c purpose, namely to help

identify cell type. For this reason, relatively few links were considered signi�cant,

though with a compensating chance that these links were previously unknown. In

the future, we will use additional proteins and we expect to �nd additional links.

Previous work on exploring protein networks in colon cancer have used techniques

like microarrays which, unfortunately, destroy all anatomical details. The advantage

of our approach is that links in the protein network are found by studying individual

cells. A disadvantage, however, is that we are restricted to at most 100 proteins,

whereas microarrays measure expression of thousands of genes simultaneously.

The proposed measures could prove more useful once a membrane tag is used

to help in a more accurate segmentation of cells. Many of the proteins considered

are located in parts of the cell other than the nucleus and these interactions are

currently not fully taken into account. Furthermore, a study with an extended tag

library may reveal more prominent dependencies speci�c to cancerous tissue.
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a)

b)

Figure 3.15: Screen-shots of the interactive tool for high PPD localisation. The tool
displays the location of PPD above a threshold of 0.7 between CEA and EpCAM (in
red) and between CD57 and CD36 (in green). Overlap between the two is shown in
yellow and other nucleic regions are shown in blue. We can observe the heterogeneity
of protein interactions in four (a) cancerous and (b) normal samples. In both �gures
colours are overlaid on top of a phase image. Below each sample is information about
the fraction of cells above the threshold, the minimum and maximum PPD between
each of the two protein pairs.
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Figure 3.16: Screenshot of the interactive tool for high PPD localisation. It displays
the heterogeneity of the distribution of cell phenotypes characterised by the co-
localisation of CEA and EpCAM in four cancer samples. Each colour corresponds
to an interval of values of PPD as shown in the legend. Colours are overlaid on top
of a phase image. Below each sample is information about the fraction of cells above
the threshold, the minimum and maximum PPD between each of the two protein
pairs.
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The binarisation method [73] introduced the ideas of lead and absent proteins

in motifs of protein clusters, where a lead protein is one which is present after

binarisation in all clusters and an absent protein is one which is not present in any

of the clusters. These ideas in a way have been expanded by the DiSWOP and

DiSWAP measures, which also identify colocation and anti-co-location, respectively.

The quantities introduced here provide a measure of the degree, rather than a simple

Yes-No classi�cation, of the co-dependence of proteins. Furthermore, they overcome

the fact that these proteins are found in both types of tissue by considering the

di�erence between cancer and normal samples.

Chapter Summary

In this chapter we have introduced a novel method for analysing multi-label image

data such as the TIS image data. The main novelties of the algorithm are that it

performs cell rather than pixel level analysis of the samples, intensity independence,

and phenotyping of cells based on their protein co-expression pro�le. We have con-

sidered several measures of dependence between protein expression and have selected

the MIC due to its abilities to capture a wide variety of associations and its robust-

ness. We have also compared three di�erent methods for cell phenotyping and have

shown that the results obtained from the new measures of co-dependence and anti-

co-dependence, DiSWOP and DiSWAP, are independent of the choice of clustering.

Due to the general nature of the framework, the method could be applied to other

tissues and/or images obtained from other multivariate imaging techniques.

Applying these over a TIS dataset of eleven samples of cancerous and nor-

mal colon tissue, we have found protein pairs that are much more co-dependent or

anti-codependent in cancerous than in normal tissue, pointing to the possibility that

combinations of protein pairs rather than single proteins will lead to speci�c markers

for cancer. The results presented here are only preliminary and need to be validated

using a larger number of samples and subsequently by other biological techniques.

While the number of samples considered is insu�cient to draw signi�cant biolog-

ical conclusions, this is the largest study of colon cancer using TIS conducted to

date. Furthermore, we have performed several validation checks which give con�-

dence that our novel measures can help identify and quantify important examples of

codependence and anti-codependence of protein pairs.
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Chapter 4

A Model of Spatial Tumour

Heterogeneity in Colorectal

Adenocarcinoma Tissue

The validation of quantitative results from analysis of bioimages poses a great chal-

lenge. This is due to the lack of ground truth data. One way of solving this problem

is to generate realistic synthetic data where the ground truth is generated as part of

the model. Hence, in this chapter we develop a model of the colon tissue architec-

ture both for healthy and cancerous cases at di�erent stages. As the architecture is

mostly characterised by the di�erentiation grade, we focus on how this parameter af-

fects the crypt structures and cell phenotypes present in the tissue. As most imaging

in clinical pathology labs is done using histology techniques, we consider extending

the model from IF to IHC data. This greatly improves the model's usability. An

overview of the model is presented in Figure 4.1.

4.1 Materials and Methods

4.1.1 Data acquisition

In order to make the model realistic, H&E slides from colon cancer patients were

analysed. The slides were digitally scanned at 40× magni�cation by Zeiss MIRAX

MIDI Slide Scanner. For cell-level analysis, a total of 42 visual �elds at 40× mag-

ni�cation were considered. These, including a context at 4× magni�cation, were

graded by three pathologists and the majority vote was taken. The visual �elds

were categorised as 7 healthy, 4 well-di�erentiated, 26 moderately di�erentiated and

5 poorly di�erentiated samples. Individual nuclei in each image were hand-marked

56



Figure 4.1: Flowchart of the simulation process. Blue boxes indicate parts of the
model, green boxes contain model inputs, purple box shows the outputs. The sample
grade and crypt sizes from real data input into the architecture generated. The
number of cells is determined by the architecture and the user-de�ned cell overlap
and cellularity. Cells are then iteratively generated with input of the cell phenotype
distributions and the nuclear sizes and texture found in the real data. Ideal images
are then degraded in order to mimic errors in an image acquisition system with
parameters of noise variance de�ned by the user. In addition to the �nal image,
various ground truth data is output.

as epithelial or stromal. A total of 5,826 nuclei were hand-marked for analysis. In

addition, 31 visual �elds at 20× were selected for analysis of the crypt structures.

These were split into 9 healthy and 22 cancerous samples. In these, 480 healthy and

396 cancerous crypts were hand-marked. More cancerous samples were required to

obtain a similar number of crypts as cancerous crypts tend to be signi�cantly larger.

4.1.2 Learning from the real data

As whole-cell segmentation is di�cult to obtain from H&E slides, we concentrate

on studying the nuclear regions. This approach is supported by �ndings that the

nucleus can hold the key to understanding cell function [15]. In order to extract cell

information visual �elds at 40× magni�cation were analysed. Size and 13 Haralick

texture features were extracted for each nucleus. A�nity Propagation [192] was

used to phenotype the nuclei according to the textural features. This clustering
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(a) (b)

(c) (d)

Figure 4.2: Frequency of each type of cell belonging to a phenotype. (a) shows
frequencies for healthy epithelial and stromal cells. (b)-(d) show frequencies for
well, moderately and poorly di�erentiated, respectively.

algorithm automatically determines the number of clusters found in the data. The

main purpose for clustering the cells is to group together cells with similar texture

and increase the texture samples available for texture synthesis. For each of the 17

phenotypes found in this way, mean and standard deviation of the length of the major

axis and the ratio between the minor and major axes were obtained (Table 4.1). In

addition, we calculated the frequency with which nuclei belonging to each phenotype

are found to be epithelial or stromal, and incorporate the phenotype frequency into

our model as described in Section 2.4. These frequencies are shown in (Figure 4.2).

Some of these phenotypes were found to contain mostly cancerous epithelial cells

(Figure 4.3 top row), whereas others consisted of predominantly stromal cells (Figure

4.3 bottom row). The average pro�les for size and texture features are shown in

Tables 4.2 and 4.3, respectively. In addition, we obtained hand-marked images for

crypt texture. One image was used to obtain healthy lumen texture (Figure 4.4

(a)). Seven crypts from di�erent cancer samples were also marked and texture was

extracted. Figures 4.4 (c) and (e) show two of these.
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Figure 4.3: Selection of cells belonging to di�erent phenotypes with the correspond-
ing texture images below. The phenotypes shown are numbers 2, 3, 8, 12, 14, and 17
from Figure 4.2. One can easily see that the �rst row of phenotypes contains mostly
tumour and epithelial cells, whereas the second one consists mostly of stromal cells.
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a) b)

c) d)

e) f)

Figure 4.4: Obtaining lumen texture. Figure (a) shows extracted lumen texture
from a healthy sample. Figures (c) and (e) show two of the extracted lumen texture
from cancer samples. Figures (b), (d) and (f) show the respective generated texture
images.
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Table 4.1: Main parameters of the model.

Description Annotation Source Typical Values
Image size ih × iw User-de�ned 1000× 1000

Magni�cation User-de�ned 40×, 20×
Size of CCD pixel User-de�ned 11µm
Cancer grade S User-de�ned {0, 1, 2, 3}
Cellularity of epithelial cells νe User-de�ned [0, 1]
Cellularity of stromal cells νs User-de�ned [0, 1]
Cell overlap Lmax User-de�ned [0, 1]
Variance of point spread function G User-de�ned 1
Variance of the CCD detector
noise

σG User-de�ned 0.00025

Stain matrix User-de�ned
Distribution of nuclei major axis
length

µl, σl H&E data

Distribution of nuclei minor axis
length

µw, σw H&E data

Distribution of crypt minor axis
length

µb, αb, βb H&E data

Distribution of crypt ratio be-
tween axes

αe, βe H&E data

Distribution of cell phenotypes H&E data
Approximate cell radius r [202] 6µm

Number of crypts Nc Eq. 4.1
Rotation of crypts ϕ Random [0, 2π]

Number of cells N Section 4.1.3
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Table 4.2: Size feature pro�les for nuclear texture phenotypes found in the real data.
Sizes are in pixels for 40× images.

Phenotype Area Minor axis Minor/ Major
1 379.52 ±196.62 26.71 ±8.75 0.682 ±0.161
2 420.13 ±175.84 27.68 ±7.25 0.704 ±0.150
3 464.99 ±217.80 28.54 ±7.27 0.729 ±0.147
4 494.08 ±228.90 28.99 ±7.99 0.744 ±0.134
5 577.00 ±291.98 32.23 ±10.68 0.716 ±0.150
6 446.53 ±192.06 28.46 ±7.12 0.709 ±0.152
7 391.79 ±197.94 27.19 ±8.14 0.675 ±0.172
8 504.45 ±225.19 29.48 ±7.10 0.732 ±0.127
9 419.92 ±187.77 27.76 ±7.40 0.702 ±0.150
10 179.70 ±166.93 18.62 ±9.51 0.637 ±0.197
11 337.19 ±188.38 25.54 ±8.81 0.656 ±0.172
12 167.03 ±143.80 20.16 ±10.02 0.562 ±0.217
13 418.80 ±210.43 28.18 ±8.28 0.678 ±0.172
14 103.40 ±56.67 16.97 ±6.83 0.548 ±0.231
15 323.81 ±205.63 25.45 ±9.38 0.626 ±0.175
16 247.69 ±200.77 21.86 ±10.03 0.634 ±0.195
17 356.95 ±205.14 26.17 ±8.82 0.654 ±0.172
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Table 4.3: Texture feature pro�les for phenotypes found in the real data.

Pheno-

type

Energy Cont-

rast

Corr. SOSV IDMN Sum

aver-

age

Sum

vari-

ance

Sum

en-

tropy

Ent-

ropy

Di�e-

rence

variance

Di�e-

rence

entropy

Inf1 Inf2

1 0.172

±0.055
0.800

±0.381
0.797

±0.123
12.54

±0.74
0.988

±0.005
6.46

±0.26
28.53

±1.46
1.93

±0.24
2.19

±0.30
0.800

±0.381
0.772

±0.119
-0.470

±0.084
0.850

±0.065
2 0.164

±0.048
1.017

±0.283
0.825

±0.071
18.01

±0.88
0.987

±0.003
7.75

±0.29
44.74

±1.46
1.98

±0.22
2.20

±0.27
1.017

±0.283
0.771

±0.099
-0.478

±0.069
0.859

±0.050
3 0.155

±0.047
1.177

±0.328
0.838

±0.061
22.08

±1.03
0.985

±0.004
8.57

±0.29
56.64

±2.12
2.06

±0.21
2.27

±0.26
1.177

±0.328
0.784

±0.090
-0.484

±0.064
0.869

±0.049
4 0.154

±0.046
1.312

±0.346
0.844

±0.055
27.13

±1.12
0.984

±0.004
9.57

±0.28
72.93

±2.70
2.04

±0.21
2.24

±0.24
1.312

±0.346
0.768

±0.085
-0.488

±0.058
0.869

±0.043
5 0.153

±0.064
1.384

±0.529
0.847

±0.074
31.55

±1.82
0.983

±0.006
10.38

±0.40
87.08

±4.50
2.05

±0.25
2.25

±0.27
1.384

±0.529
0.773

±0.077
-0.483

±0.082
0.863

±0.078
6 0.159

±0.048
1.096

±0.270
0.833

±0.055
19.80

±0.82
0.986

±0.003
8.12

±0.25
49.95

±1.62
2.02

±0.21
2.24

±0.27
1.096

±0.270
0.780

±0.101
-0.482

±0.063
0.866

±0.043
7 0.191

±0.072
0.652

±0.268
0.801

±0.118
10.88

±0.69
0.991

±0.004
6.04

±0.24
24.36

±1.02
1.85

±0.26
2.08

±0.32
0.652

±0.268
0.728

±0.108
-0.477

±0.081
0.844

±0.077
8 0.143

±0.039
1.191

±0.308
0.848

±0.052
24.73

±1.01
0.985

±0.004
9.11

±0.26
64.43

±2.36
2.10

±0.20
2.32

±0.24
1.193

±0.308
0.784

±0.084
-0.490

±0.059
0.877

±0.043
9 0.171

±0.055
0.961

±0.276
0.822

±0.070
16.26

±0.86
0.987

±0.003
7.35

±0.27
39.61

±1.54
1.96

±0.24
2.19

±0.29
0.961

±0.276
0.768

±0.103
-0.479

±0.068
0.857

±0.053



Table 4.3: Continued

Pheno-

type

Energy Cont-

rast

Corr. SOSV IDMN Sum

aver-

age

Sum

vari-

ance

Sum

en-

tropy

Ent-

ropy

Di�e-

rence

variance

Di�e-

rence

entropy

Inf1 Inf2

10 0.333

±0.106
0.375

±0.186
0.554

±0.203
4.03

±0.48
0.994

±0.003
3.79

±0.21
8.04

±0.83
1.25

±0.24
1.53

±0.29
0.375

±0.186
0.613

±0.128
-0.346

±0.130
0.665

±0.142
11 0.220

±0.093
0.650

±0.291
0.765

±0.139
9.46

±0.69
0.991

±0.004
5.65

±0.23
21.00

±0.96
1.73

±0.29
1.97

±0.34
0.650

±0.291
0.717

±0.119
-0.458

±0.094
0.816

±0.092
12 0.337

±0.073
0.302

±0.143
0.574

±0.156
2.91

±0.35
0.996

±0.002
3.22

±0.21
5.40

±0.70
1.16

±0.15
1.38

±0.21
0.302

±0.143
0.571

±0.126
-0.310

±0.128
0.608

±0.127
13 0.179

±0.066
0.852

±0.298
0.820

±0.089
14.30

±0.92
0.988

±0.004
6.88

±0.32
33.94

±1.60
1.93

±0.26
2.16

±0.32
0.852

±0.298
0.757

±0.109
-0.478

±0.079
0.852

±0.066
14 0.503

±0.167
0.212

±0.098
0.459

±0.175
1.81

±0.40
0.997

±0.002
2.54

±0.26
3.49

±0.39
0.86

±0.26
1.01

±0.31
0.212

±0.098
0.483

±0.132
-0.209

±0.116
0.434

±0.158
15 0.231

±0.068
0.518

±0.262
0.745

±0.131
6.91

±0.57
0.993

±0.004
4.85

±0.24
14.40

±1.02
1.61

±0.23
1.89

±0.27
0.518

±0.262
0.675

±0.122
-0.454

±0.097
0.807

±0.078
16 0.251

±0.098
0.490

±0.256
0.635

±0.206
5.41

±0.58
0.993

±0.004
4.34

±0.25
10.86

±0.95
1.46

±0.25
1.77

±0.28
0.490

±0.256
0.671

±0.133
-0.404

±0.122
0.751

±0.124
17 0.226

±0.085
0.576

±0.375
0.766

±0.138
8.22

±0.64
0.992

±0.005
5.27

±0.24
17.68

±1.03
1.6920

±0.27
1.95

±0.31
0.576

±0.375
0.694

±0.115
-0.460

±0.095
0.816

±0.091
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In addition to this, visual �elds at 20× magni�cation were selected for the

analysis of crypt shapes and sizes. We calculated the distributions of the minor axis

and the ratio between minor and major axes for each group. These were modelled

as Gamma functions and the parameters were incorporated into the model. The �t

of the Gamma distributions is shown in Figure 4.5.

4.1.3 Tissue structure

In this section we describe how the tissue microenvironment in CRA is modelled.

We begin by explaining the overall organisation in terms of the crypts and stroma.

We then describe how individual cells are modelled.

Crypts

Given an image resolution and magni�cation level, we assume the appropriate ra-

dius, r, of the cells to be 6µm [202], while a suitable value for the radius of the crypts

corresponds to the mean length on the minor axis, µb, found from the H&E images

(Section 4.1.2). The generated image depends on the di�erentiation grade, S, of the

CRA, which can take the values of [0, 1, 2, 3], corresponding to healthy tissue, well

di�erentiated, moderately di�erentiated and poorly di�erentiated cancers, respec-

tively. The number of crypts and cells to be simulated in the image are determined

using their rough sizes. The number of crypts, Nc in an ih× iw image is determined

as follows:

Nc = fc⌊ih/(2µb)⌋⌊iw/(2µb)⌋. (4.1)

where fc is the fraction of the sample covered in crypts and is given by

fc =


1, if S = 0, 1

U(0.5, 0.95)|U(1, 1.3), if S = 2

U(0, 0.5), if S = 3,

(4.2)

where U(x1, x2) is a number uniformly drawn from the range [x1, x2]. There are

two cases if S = 2 selected at random with equal probability, corresponding to fewer

crypts than normal tissue or overcrowding (with overlapping) of crypts. Both of these

phenomena can be observed in moderately di�erentiated CRA. The value ranges for

fc were determined from pathology guidelines and discussions with pathologists. To

create colon tissue structure (Figure 1.4) crypts are simulated as elliptical structures.

For each crypt, the minor axis b is sampled from the Gamma distribution Γ(αb, βb),
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a)

b)

c)

d)

Figure 4.5: Distribution of crypt shape parameters extracted from the real data.
Figures (a) and (b) show the minor axis length and the ratio between the minor and
major axes, respectively, for healthy crypts. Figures (c) and (d) show the minor axis
length and the ratio between the minor and major axes, respectively, for cancerous
crypts. Frequencies are normalised so that sum of areas of bars equals 1.
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where αb and βb are the parameters for the distribution of the minor axis estimated

from the H&E images. To determine the length of the major axis, a, we use the

ratio between the minor and major axes, e = b/a. Then a is given by b/(Γ(αe, βe)),

where αe and βe are the parameters for the distribution of the ratio (Table 4.1). The

degree of rotation of the major axis, ϕ, of the crypts is chosen at random. The crypt

outline is then computed as follows,

R(θ) =
ab
√
2√

(b2 − a2) cos(2θ − 2ϕ) + a2 + b2
+ u, (4.3)

where R(θ) is the polar radius, θ ∈ [0, 2π] is the polar angle and u = (S2 +

1)U(−0.06, 0.1) is a degree of deformation of the crypts, a function of the grade

S.

Then, the crypt centres, c = (xc, yc), are selected so that the crypts don't

overlap for healthy or well di�erentiated samples. For tissues of grades 2 and 3,

at most 2 ellipses can overlap to a certain extent. In these cases, one crypt would

be modelled by several overlapping deformed ellipses. This generates the "gland

within gland" phenomenon and more complex glandular structures often observed

in higher grade cancers. In order to speed up the selection of the crypt centre, we

only consider a sample of points in a randomly placed grid structure with distance

between vertices of 0.6b. The epithelial cells are placed at a random location along

or close to the crypt edge according to the equation

x = x0 + rGux

y = y0 + rGuy,
(4.4)

where (x0, y0) is a randomly selected point on the outline of the crypt, and ux and

uy are random scaling factors with ux,y = U(−0.75, 0.25)/3. It is di�cult to extract

the exact value of this parameter from real data, so the range was chosen with

the aim to maximise the visual similarity between the real and synthesised images.

Hence, in healthy tissue the epithelial cells are attached to the crypt boundary and

the structure becomes increasingly distorted for higher di�erentiation grades. Once

the cells are placed, they are rotated so they point towards the crypt centre and, if

G < 2, their nuclei are displaced closer to the edge of the crypt. The stromal cells

are placed uniformly in the space outside the crypts. All stromal cells are rotated

in a direction given by ϕ+ U(−π/6, π/6) (Table 4.1), to re�ect the structure of the

stromal tissue that can be observed in histology images.
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Number of cells

The maximum amount of cell overlap is controlled by a parameter Lmax. The relative

amount of overlap, Lij , that is caused on the region of pixels Ri de�ned by one

simulated cell by the region of pixels Rj of another cell is measured by

Lij =
|Ri ∩Rj |

|Ri|
, i ̸= j (4.5)

where |·| is the cardinality of a set. With this de�nition setting Lmax = 1 doesn't pose

any restrictions on overlap, whereas Lmax = 0 doesn't allow any overlap. Overlap

can be controlled either on the cytoplasm or nuclei regions. When a cell is placed

randomly, if it overlaps with an already placed cell to an extent that is greater than

Lmax, a new set of coordinates is chosen.

In addition to this, in poorly di�erentiated samples, we place clusters of

cancer cells in the stroma. Stromal cells are placed within a cluster with probability

of 50%. A cluster is a region of size 10r × 10r and cells placed in it have value of

maximum overlap equal to min(2Lmax, 0.8).

Once the number and size of crypts has been determined and the crypts have

been placed, we calculate the number of cells, N that will be placed in the image.

Firstly, an estimate of the area of a stromal cell, A is calculated:

A = π[(1.7− 0.7Lmax)r]
2. (4.6)

Here the multiplication factor of r accounts for the e�ect of overlap and doesn't go

below 1 as stromal cells are generally sparse. The area covered by stroma, As is

found by counting the pixels outside the outlines of the crypts. Then the number of

stromal cells is given by Ns = νsAs/A, where νs ∈ [0, 1] is a user-de�ned parameter

for the cellularity (density) of stromal cells.

Similarly, the number of epithelial cells is determined by

Ne =
νeP

2(1.25− Lmax)r
. (4.7)

where P is the sum of the perimeters of the crypts in the image, νe ∈ [0, 1] is a

user-de�ned parameter for the cellularity of epithelial cells, and the factor in the

denominator accounts for the e�ects of overlap. The overlap factor is smaller than

the one for stromal cells because epithelial cells are more tightly packed. Then the

�nal number of cells is given by N = Ns +Ne.
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Lumen and goblet cells

When a sample is being generated, the inside of the crypts is �lled with lumen

texture. In order to generate the lumen, we employed the non-parametric model

presented by Efros and Leung [203] which generates texture from a given source

image. In this framework, the value of a pixel is determined by �nding all patches in

the source image that resemble the �lled part of the neighbourhood of the pixel in

question. One of these patches is selected at random and the value of the centre pixel

is assigned to the pixel to be �lled. We model the gray-scale texture of hand-marked

lumen regions from the H&E training images (Section 4.1.2) in order to generate a

large texture image corresponding to each crypt texture (Figure 4.4). Seven textures

were generated for cancer crypts and one for normal lumen texture. When a crypt

is being synthesised, a random part of a texture image is selected and used as the

texture. For healthy samples, the normal lumen texture is used. When a cancer

sample is being generated, a texture image is selected at random for each crypt.

In healthy samples once the lumen texture is placed, we generate the goblet

cells structure. This is done using Voronoi diagrams [204]. The crucial step when

generating a Voronoi diagram is to select the centres of gravity for the regions. The

observed structure of the goblet cells depends on the angle at which the crypt is

sliced through (Figure 4.6). Alternatively, we can consider the ratio e between the

minor and major axes of the crypt as a surrogate indicator of the structure observed.

If e ≈ 1, (i.e., a round crypt) we get a single ring of goblet cells (Figure 4.6 (a)).

The number of goblet cells in this ring for a particular crypt is given by γ = a/r.

However, if e < 1, we de�ne κ ≈ 1/e, κ ∈ N, and we get additional 2κ(κ− 1) goblet

cells around each end of the major axis of the crypt. To determine their location,

we take even angular increments from the centre of the ellipse and place the points

on the outer ring a distance from the crypt boundary equal to the cell radius r. The

additional points are placed along the 2κ angles closest to the major axis a distance

2i, i = 2, ..., κ from the boundary (Figure 4.7). A centre of gravity for the Voronoi

diagram is also added at the centre of the crypt. A small amount of variation is

allowed for the location of each point and the Voronoi diagram is generated. To

make the boundaries more realistic, they are dilated and the corners at each Voronoi

vertex are rounded using dilation. Some texture [205] is added to the boundaries,

they are convolved with a Gaussian and added to the �nal image.
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Figure 4.6: Di�erent goblet cell structures. A roughly circular crypt is shown on the
left (κ = 1) and a more elliptical (κ = 3) on the right. Scalebars are 50µm.

Figure 4.7: An illustration of the initial locations for the centres of gravity (grey
circles) for Voronoi diagram in a crypt with κ = 2. Dashed line gives the major axis.

4.1.4 Single cell

Each of the N cells is constructed separately. Before a cell is synthesised, it is

assigned to one of the phenotypes found in the real data with probability equal to

the probability of the phenotypes in real H&E tissues of the same grade. We then

generate images for the cell cytoplasm and nucleus.

Shape

Two types of shapes are included in our model. First, the cytoplasm for stromal

cells and cell nuclei are generated using a parametric model proposed in [153]. In

this case, the shapes are initialised as a circle parametrised by (x(θ), y(θ)), where

θ ∈ [0, 2π] is the polar angle. The angle θ is sampled at k(k = 10) equidistant points

to generate a regular polygon (Figure 4.8 (a)). Then a random polygon is created
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by randomising the spatial locations of the vertices as follows:

xi(θi) = [U(−α, α) + cos(θi + U(−β, β))],
yi(θi) = [U(−α, α) + sin(θi + U(−β, β))]

(4.8)

for i = 1, ..., k, where α controls the randomness of the circle radius and β controls

the randomness of the angle of sampling. The value for α is dependent on the cancer

grade by α = 0.1(G+1), whereas the value of β has been set to 0.05. Taking k = 10

is a good compromise between taking too few points and not allowing su�cient

control over the shape (Figure 4.8 (e, f)), and taking too many points and obtaining

complicated shapes unrealistic for cells in a tissue environment (Figure 4.8 (g, h)).

Then we obtain the means, µl and µw, and standard deviations, σl and σw, for the

nuclei major and minor axes, respectively, from the H&E data phenotypes. These

are used to obtain the sizes for the modelled nuclei as

µnl = N(µl, σl),

µnw = N(µw, σw).
(4.9)

Then, the size of the modelled cell cytoplasm is chosen to be

µcl = U(1.5, 2.2)µnl ,

µcw = U(1.5, 2.2)µnw
(4.10)

The lack of a membrane marker makes it di�cult to obtain exact cell size estimates

but the interval 1.5�2.2 gives a good approximation of observation from real data

(Figure 1.6). Normal stromal cells are assigned with equal probability to be either

�broblasts or lymphocytes. For cancer samples, the stromal cells are assigned to be

cancerous with probability 1 − 0.2S. In order to ensure realistic appearance of the

stromal cells, the �broblast cell sizes are rescaled as

µ̂nw = 0.8µnw,

µ̂cl = 1.8µcl ,

µ̂cw = 0.5µcw

(4.11)

and for lymphocytes as
µ̂nl = 0.8µnl ,

µ̂nw = 0.8µnw,

µ̂cl = 0.7µcl ,

µ̂cw = 0.7µcw.

(4.12)

This generates �broblast cells with thin nuclei and long and thin cytoplasm,
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 4.8: Examples of cell nuclei and cytoplasm shapes. Figures (a, c) show
polygons without any randomness for k = 10 for the (a) stromal and (c) epithelial
cells. Figures (b, d) show the corresponding shapes with dislocated vertices after
spline interpolation. Figures (d) and (e) show randomised polygons initialised as
circles for k = 5 and k = 20, respectively. Figures (f) and (g) show the corresponding
shapes after spline interpolation. Here α = 0.2, β = 0.05, µl = 2µw and the major
axis is shown in the horizontal direction.

and lymphocytes that are smaller than epithelial cells. The cytoplasm of epithelial

cells is generated starting from the polygon shown in Figure 4.8 (c). The set of

original coordinates {(xi, yi), i = 1, ..., k} is then randomised and scaled

x̂i = µclN (xi, α/2) ,

ŷi = µcwN (yi, α/2) .
(4.13)

The polygons are scaled with the respective value as

x̂i(θi) = xi(θi)µ
n/c
l ,

ŷi(θi) = yi(θi)µ
n/c
w .

(4.14)

where µn/c refers to either µn or µc. Finally, the vertices are interpolated using cubic

splines (Figure 4.8 (b) and (d)).

Texture

Texture for the cytoplasm is generated using a well-known procedural model [205]

for texture synthesis. In location (x, y), the texture t is given by a weighted sum of

n octaves of basic noise function ηxy. This is de�ned as
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t(x, y) = B +

n−1∑
i=0

piηxy(2
i) (4.15)

where scaling of the noise functions is controlled by the persistence parameter p, and

the bias is given by B. As the nuclei chromatin texture is an important factor when

grading the CRA, a more sophisticated method was adopted for synthesising it. In

particular, we used the non-parametric model presented by Efros and Leung [203].

The model is applied to the grey-scale texture of all the nuclei found to belong to the

phenotypes (Section 4.1.2) in order to generate a large texture image (Figure 4.3).

When a nucleus of a particular phenotype is being synthesised, a random part of the

corresponding texture image is selected and used as the texture. The sampling is

done with replacement, and hence, although unlikely, two nuclei could have the same

texture. Although this texture synthesis method produces more realistic results, it

is very computationally expensive and so its use has been limited within the model.

Texture images and sample of cells belonging to the corresponding phenotype for

several of the phenotypes found in the real data have been shown in Figure 4.3. The

same method is also used to generate the lumen textures shown in Figure 4.4.

4.1.5 Measurement error

The �nal step of the simulation degrades the ideal images constructed in the previous

sections. This resembles the degradation caused by the real measurement system.

For histology images, convolution with a 2D Gaussian, G, is used to simulate the

leaking of photons between neighbouring pixels. We also add zero mean Gaussian

noise, NG with variance σG to approximate the CCD detector noise (Table 4.1).

Hence, the simulated image degraded by the acquisition system, Î, obtained from

an ideal image I is given by:

Î = I ∗G+NG, (4.16)

where ∗ denotes the convolution operator. For �uorescence images there is a larger

number of degradation e�ects that need to be simulated. Firstly, uneven illumina-

tion, Is, is simulated by adding a second degree parabolic polynomial with parame-

ters as established by Svoboda et al. [206]. The centre of the simulated illumination

source can be input. The energy of the illumination source is controlled by a param-

eter Es. The auto-�uorescence e�ect, Ia with energy Ea, is simulated as a spatially

slowly changing random texture Perlin [205]. In addition, convolution with a 2D

Gaussian, G, is used to simulate the point spread function. Finally, we add zero

mean Gaussian noise, NG with variance σG to approximate the CCD detector noise.
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Figure 4.9: Example of a synthesised �uorescence image of a healthy sample at
magni�cation 40×. The cytoplasm is shown in red and nuclei in blue. Here Lmax =
0.6 and the cellularity νs = νe = 1.

Hence, the simulated image degraded by the acquisition system, Î, obtained from

an ideal image I is given by:

Î = [(I + EsIs + EaIa) ∗G] +NG. (4.17)

The resulting �uorescence image is shown in Figure 4.9.

4.1.6 Histology Simulation

The generated cytoplasm and nuclei channels are converted into H & E stains (Figure

4.10) using the colour deconvolotion matrix suggested by Ruifrok and Johnston [207]

(unless otherwise stated). By simulating IHC stains, the usability of the model is

expanded to veri�cation of a wide range of methods for analysis of H & E images.

As one can choose the stain vector used to generate the images, the model can be

easily utilised to validate stain normalisation methods. In addition, H & E images

are easily assessed by pathologists who routinely deal with histology slides.
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4.2 Discussion and Validation

THeCoT models the tumour heterogeneity in colorectal tissue. An example of the

resulting images for a healthy sample is shown in Figure 4.10 (a). There are sev-

eral user de�ned parameters which allow control over the appearance of the imaged

tissue. Figures 4.10 (a) and (b) illustrate how changing the parameters for overlap

and cellularity a�ects the resulting images. Depending on the purpose for image

synthesis, one may require to have fewer, easily separable cells (Figure 4.10 (b)),

or more crowded and overlapping cells (Figure 4.10 (a)). Manipulating these pa-

rameters could be very important when testing cell segmentation algorithms, for

instance. The results from cell counting experiments, similar to the ones in [153],

using ImageJ [208] and CellPro�ler (CP) [209] are shown in Table 4.4. Cell counting

was done on a total of 20 simulated samples, 10 healthy and 10 moderately di�er-

entiated cancerous images at 40× magni�cation, and cellularities νs = νe = 1. It

was performed both on the non-overlapping nuclei regions and on the cytoplasmic

regions where overlap of 0.4 was allowed. In CP segmentation was performed by

�rst using an Otsu thresholding with an adaptive threshold. When performing nu-

clei segmentation minimising the weighted variance gave the best results. However,

for segmenting the overlapping cytoplasms, minimising the entropy gave better re-

sults and these are reported in Table 4.4. Objects outside the diameter range [8,

50] pixels for nuclei and [8, 100] pixels for cytoplasm were considered mis-segmented

and hence were discarded. In ImageJ, two di�erent approaches of segmentation were

adopted. Firstly, cells were counted using the ITCN (Image-based tool for counting

nuclei) Plugin for ImageJ developed by Thomas Kuo and Jiyun Byun at the Center

for Bio-image Informatics at UC Santa Barbara [210]. Its algorithm assumes nuclei

to be blob-like structures with roughly convex local intensity distributions whose

iso-level contour is approximately ellipsoidal; nuclei are �tted by an inverted Lapla-

cian of Gaussian �lter [210]. Images were inverted before using ITCN. Cell detection

was performed by detecting dark peaks with the following parameters: cell width

= 22, minimum distance = 4, threshold = 1. This method was unable to segment

the cytoplasmic images due to their more complex shapes. Hence, a second method

for segmentation was tested where the images were �rst thresholded manually and

then watershed was used to attempt to segment regions further. We can see that

CellPro�ler performed signi�cantly better on the healthy than the cancerous images

due to the more consistent nuclei sizes. Similar behaviour was observed for ImageJ

using both segmentation algorithms, with cell counting results closer to the ground

truth for the healthy images. However, we can see from Figure 4.11 that, in fact

75



a) b)

c) d)

e) f)

Figure 4.10: Examples of synthesised images demonstrating the e�ects of di�erent
parameter values. Figures (a)-(c) show examples of simulated images of healthy
colon tissue. The images are 1000 × 1000 pixels, at magni�cation (a, b) 40× and
(c) 20×. In �gure (b) the overlap Lmax = 0.2 and the cellularity νs = νe = 1. All
other �gures have Lmax = 0.6 and the cellularity νs = νe = 1. Figures (d)-(f) show
various di�erentiation grades. The images are 1000 × 1000 pixels, at magni�cation
20×. The �gures show (d) well di�erentiated, (e) moderately di�erentiated, and (f)
poorly di�erentiated cancers. Figures (a) and (b) were generated using the stain
vector proposed by Ruifrok and Johnston [207], whereas the rest of the Figures were
generated using a di�erent stain vector.
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ITCN tended to over-segment larger nuclei while missing smaller ones (Figure 4.11

(b)). On the other hand, watershed under-segmented cells but picked up regions of

the goblet cells cytoplasmic architecture (Figure 4.11 (d)). This is con�rmed further

by the large under-segmentation of the cancerous images. It is important to note

that above algorithms may perform better with further tuning of their parameters.

This study only aimed to demonstrate how such algorithms could be compared based

on performance on the synthetic data generated by THeCoT.

Figures 4.10 (c) - (f) show how the tissue structure changes as the di�erenti-

ation grade is increased. When the user speci�es the cancer grade, there is a number

of parameters integrated as part of the model that also change. These include the

size, shape and appearance of the crypts, whether nuclei are basally orientated, and

the frequency of cell phenotypes (Table 4.1). It is worth noting that in the model

we assume that Eosin is highly speci�c to marking the cytoplasm. While in reality

this is not necessarily the case, the lack of a membrane marker in the ground truth

data makes it di�cult to separate and model the non-speci�c binding. We plan to

address this issue and model the extracellular matrix in the future.

To assess how realistic the appearance of the images generated by the model

is, we asked three pathologists to grade them. They were presented with images

for the four grades, at magni�cations of 40× and 20× and with overlap of 0.2 and

0.6 (total of 16 images). They consistently rated the number of crypts, epithelial

and stromal cells as realistic, suggesting that this is a suitable range for the overlap

parameter. Grades for the appearance of the tissue are shown in Table 4.5. The

average grade given was 4.28 out of 5. The pathologists on the whole graded the

stromal cells as being less realistic because, while one could tell they are stromal

cells, one couldn't determine what type of stromal cells they are. This is something

that will be addressed in future developments of the model.

The most distinguishing characteristic of the colon microenvironment is the

crypt structure. We evaluate this by comparing the overall distributions of morpho-

logical features of the synthesised crypts with those calculated from the hand-marked

histology images. We have found excellent agreement between the distribution of

the minor axis length and the ratio between the minor and major axes and the

Gamma distributions estimated from the real data. The results are shown in Figure

4.12. In order to evaluate the overall appearance of tissue, we utilised a thresholded

probability map method proposed by Sirinukunwattana et al. [194]. We generated a

database of 15 images for each grade (60 in total). The H&E images were generated

using a stain vector of a real image used to train the crypt segmentation method.

The stain vector was determined using the method proposed by Trahearn et al. [211].
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Table 4.4: Cell counting results for ImageJ(IJ) and CellPro�ler (CP) with counting
based on non-overlapping nuclei or cytoplasm regions with Lmax = 0.4. Mean ±
standard deviation are shown normalized by the ground truth. A value over 1 shows
over-segmentation, whereas a value under 1 demonstrates under-segmentation.

Image
type

CP nuclei CP
cytoplasm

IJ nuclei
ITCN

IJ nuclei IJ
cytoplasm

Mean All 1.007 ±
0.014

0.919 ±
0.149

0.952 ±
0.036

1.094 ±
0.041

0.945 ±
0.283

Mean
Healthy

1.014 ±
0.011

1.046 ±
0.084

0.976 ±
0.022

1.062 ±
0.023

1.139 ±
0.291

Mean
Cancer

1.001 ±
0.015

0.792 ±
0.071

0.929 ±
0.031

1.125 ±
0.029

0.751 ±
0.021

Table 4.5: Average evaluation of the appearance of synthetic images by 3 patholo-
gists. Healthy (H), well di�erentiated (WD), moderately di�erentiated (MD), and
poorly di�erentiated (PD) images were evaluated at magni�cations 20× and 40×.
(1 = Not realistic at all, 5 = Very realistic, '-' means feature is not relevant).

H H WD WD MD MD PD PD

40× 20× 40× 20× 40× 20× 40× 20×
Architecture 5 5 5 4 4 4 5 5

Crypt shape 5 5 5 5 5 5 4.5 4.5

Lumen 5 5 5 5 5 5 - -

Goblet cells 4 4 - - - - - -

Epithelial cells 4 4 4 4 4 4 4 4

Stromal cells 3 3 3 3 3 3 3 4

The results for the Dice coe�cient on both pixel-level and object-level are shown in

Table 4.6. Most of the results are comparable with results for real data [194]. The

method performs worse for high grade cancerous samples when trained and tested

on di�erent datasets. This is likely to be due to the fact that the segmentation

framework relies heavily on the texture within and outside the cancerous crypts.

The model currently does not include a model for the extra-cellular matrix which

generates the texture between the stromal cells. In addition, the model may need a

wider variety of textures available for inside the cancer crypts.

A further set of 20 samples (10 healthy and 10 moderately di�erentiated)

were simulated at 40× with an average of 360 cells per sample. In order to check

that the synthesis of nuclei texture has produced satisfying results, we analysed
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a) b)

c) d)

Figure 4.11: Examples of segmentation results using ImageJ. Figures (a) and (b)
show original data for a cancerous image and results from segmentation using the
ITCN plugin. Red dots mark centres of detected regions. Figures (c) and (d) show
original data for a healthy image and results from segmentation using thresholding
and watershed segmentation. Figure (d) shows the borders of the segmented regions
with a red cross identifying the proposed segmented cells.
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a)

b)

c)

d)

Figure 4.12: Distribution of parameters extracted from synthetic data. Figures (a)
and (b) show the minor axis length and the ratio between the minor and major axes,
respectively, for healthy crypts. Figures (c) and (d) show the minor axis length
and the ratio between the minor and major axes, respectively, for cancerous crypts.
Frequencies are normalised so that sum of areas of bars equals 1. The probability
distribution functions shown are the ones estimated for the real data.
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Table 4.6: Pixel-level and object-level dice coe�cient for crypt segmentation of syn-
thetic images of various grades at 20× magni�cation. Crypts were segmented using
a thresholded probability map method [194]. Results are shown when the method
was trained and tested on the synthetic and on real data. The reported �gures are
the average ± standard deviation.

Training data Test Grade Dice-Pixel Dice-Object

Synthetic Synthetic

Healthy 0.96 ± 0.003 0.91 ± 0.03

Well 0.94 ± 0.005 0.90 ± 0.03

Moderately 0.91 ± 0.02 0.90 ± 0.03

Poorly 0.65 ± 0.15 0.65 ± 0.13

Real Synthetic

Healthy 0.87 ± 0.01 0.85 ± 0.02

Well 0.89 ± 0.01 0.84 ± 0.03

Moderately 0.88 ± 0.11 0.52 ± 0.11

Poorly 0.59 ± 0.16 0.36 ± 0.11

Synthetic Real

Benign 0.69 ± 0.11 0.53 ± 0.13

Moderately 0.58 ± 0.16 0.43 ± 0.13

Poorly 0.60 ± 0.17 0.44 ± 0.17
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Figure 4.13: Clustering results of real and synthetic nuclei texture.

the nuclei of the 20 synthetic images described above and the hand-marked nuclei

from real H&E images. The Haralick features of all the nuclei were calculated and

these were phenotyped using A�nity Propagation. The clustering was not able to

distinguish between the real and synthetic nuclei and all nuclei phenotypes contained

a combination of the two (Figure 4.13). This demonstrates the suitability of the

framework adopted for chromatin texture synthesis. In addition, we can see that the

distribution of the phenotypes of the real and synthetic nuclear textures are nearly

equal.

Chapter Summary

In this chapter we present a model for tumour heterogeneity in colorectal tissue (THe-

CoT). It is capable of simulating healthy and cancerous colonic crypt architecture

and generating both immuno�uorescence and histology image data. THeCoT has

several user-de�ned parameters, which allow control over the tissue appearance. We

have demonstrated how changing these allows to validate image analysis algorithms

such as cell segmentation frameworks. The model also has a number of incorporated

parameters learned from real hand-marked H&E images. These help the synthesis

of realistic cell phenotypes, chromatin and lumen texture, nuclei morphology, and

crypt architecture. Integrated parameters depend heavily on the cancer grade, and

control aspects such as the size, shape and appearance of the crypts, whether nuclei

are basally orientated and the frequency of cell phenotypes present in the sample.

We have evaluated the main aspects of the model by assessing various features

of the generated images. Semi-quantitative evaluation was performed by pathologists

who rated the appearance of a range of features. The majority of these were rated as
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very realistic. We have also performed validation analysis on the nuclear texture and

found that a clustering algorithm could not distinguish between real and synthetic

texture. In addition the clustering found very similar distribution of the texture

phenotypes in the real and synthetic images.

The synthetic images generated by the model would enable quantitative com-

parison of di�erent image analysis frameworks, including image restoration, cell and

crypt segmentation, cancer grading and stain separation.
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Chapter 5

Modelling Protein Expression

As mentioned in Section 1.1, it is important to identify patients with MSI, as this

could guide treatment and help diagnose Lynch syndrome. This motivated us to

expand the THeCoT model (Chapter 4) to simulate the expression of relevant pro-

teins. We have considered the four MMR proteins (MLH1, PMS2, MSH2, MSH6).

Mutations in genes producing these proteins are the cause for MSI. In addition, we

consider P53 which has been found to be also associated with the condition. These

�ve proteins have varied sub-cellular expression patterns (Table 5.1) and provide an

interesting case study demonstrating how any protein expression could be included

within the model.

In order to model the expression of proteins, we �rst need to have models for

the cell organelles where the proteins of interest are expressed. These are detailed

in Table 5.1. For this purpose, we use real high-resolution �uorescence data to

learn features of the organelles that can then be incorporated into the model. The

�uorescence images of cultured cells are utilised instead of the IHC images of CRA as

the later do not provide high-enough resolution to consider the sub-cellular protein

expression patterns. Once we have realistic models for the cell organelles, we then

develop models for the proteins based on where they are expressed and under what

conditions. Details of this process are given below.

5.1 Data

We have utilised high resolution immuno�uorescence images of cultured cells from the

Human Protein Atlas (HPA, http://proteinatlas.org) [212] for learning parameters

for our model. In order to model the proteins that we are interested in, we need to

develop models for the nucleoli, golgi apparatus and the vesicles. For each organelle,
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Table 5.1: Details of the subcellular location of proteins.

Protein Subcellular location

MLH1 Nucleoli, weak expression in the nucleus and cytoplasm
PMS2 Nucleus but not nucleoli, weak expression in cytoplasm
MSH2 Nucleus but not nucleoli, vesicles
MSH6 Mainly in the nucleus but not nucleoli. In addition

localised to the cytoplasm, golgi apparatus & vesicles.
P53 Nucleus but not nucleoli

we have used proteins known to be highly speci�c to that organelle. To avoid bias

that could be introduced by the binding of the protein, we have used 2 proteins for

each cell organelle, as detailed in Table 5.2. For each cell organelle, we consider a

total of 10 images split nearly evenly between the two proteins.

Cell organelle Protein tags

Nucleoli MLH1 & RRP1B
Golgi GOLGA2 & GORASP2
Vesicles ABCD3 & PECR

Table 5.2: Proteins tags used for modelling cell organelles.

5.2 Learning from Real Data

In order to be able to learn from the real immuno�uorescence data we needed to

be able to reliably segment the individual cells, nuclei and cell organelles. Cell and

nuclei segmentation was performed using a seeded watershed segmentation method

proposed earlier [213, 186]. The procedure involves thresholding the DAPI image

with the threshold being determined as the intensity of the most common pixel.

Next, the binary nuclear image is eroded and small objects and objects touching the

boundary of the image are removed. Objects with areas outside a speci�ed range

are considered erroneous seeds and are also removed. For cell segmentation the

endoplasmic reticulum (ER) channel was used to determine background seeds from

large areas of pixels with zero intensity. The seeds, along with an inverted ER image,

are then used in the seeded watershed algorithm, and resulting regions corresponding

to background or erroneous seeds are removed. For nuclear segmentation, the nuclear

channel was used to determine both foreground and background seeds. Examples of

the results are shown in Figure 5.1.

For the purpose of segmenting the cell nucleoli, a single channel showing a
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a) b)

c) d)

Figure 5.1: Examples of cell and nuclear segmentation. Figures (a) and (c) show the
original channels. Figures (b) and (d) show the segmentation borders in green.

relevant antibody was thresholded to remove background noise and used to obtain

both background and foreground seeds. The same segmentation as above was then

followed. The results are shown in Figure 5.2

When segmenting the vesicles and golgi apparatus, this method didn't per-

form satisfactorily due to the small size of the objects and the high level of noise

in the images (Figures 5.3 (d) and 5.4 (d)). For this reason we have instead used

an adaptive thresholding method which uses an adaptive mean �lter to highlight

image features and then Otsu threshold to segment the image (Figures 5.3 and 5.4).

We can see that the method performs very well even at high levels of noise (Figure

5.4 (f)). On the other hand, this method tends to over-segment the nucleoli and

detect noise outside the nucleus as possible nucleoli detections (Figure 5.2 (d)). The

segmentation procedure resulted in 484 nucleoli from 471 cells, 3433 golgi objects
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a) b)

c) d)

Figure 5.2: Examples of nucleoli segmentation. Figures (a) and (c) show the original
channels for MLH1 and RRP1B images, respectively. Figure (b) shows segmentation
results from the seeded watershed segmentation method with borders shown in green.
Figure (d) shows segmentation results from the adaptive thresholding method.
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a) b)

c) d)

Figure 5.3: Examples of golgi segmentation. Figure (a) shows the original channel
for a GOLGA2 image. Figures (b) and (c) show segmentation results from the
adaptive thresholding method with borders shown in green. Figure (c) shows a
zoomed in section of Figure (b). Figure (d) shows segmentation results from the
seeded watershed segmentation method.
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a) b)

c) d)

e) f)

Figure 5.4: Examples of vesicles segmentation. Figure (a) shows the original chan-
nel for an ABCD3 image. Figures (b) and (e) show enlarged sections of the original
channels for ABCD3 and PSAP images, respectively. Figures (c) and (f) show seg-
mentation results from the adaptive thresholding method with borders shown in
green. Figure (d) shows segmentation results from the seeded watershed segmenta-
tion method.
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a) b)

c) d)

e) f)

Figure 5.5: Estimated probability distribution functions for the number (left column)
and position (right column) of the (a, b) nucleoli, (c, d) golgi and (e ,f) vesicles.
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a) b)

c) d)

e) f)

Figure 5.6: Estimated probability distribution functions for the ratios between the
minor axes of the organelles and the nucleus of the corresponding cell (left column)
and between the minor and major axes of the organelles. Figures show the ratios for
(a, b) nucleoli, (c, d) golgi and (e, f) vesicles.
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from 83 cells and 12,764 vesicles from 72 cells being identi�ed.

Once we have all objects segmented, we can extract features representing

the cell organelles to be incorporated into the model. We extract several features

describing the organelles and their distribution within the cell. For each of them,

we then estimate a probability distribution function (PDF) which is incorporated

into the model. Firstly, we obtain the numbers of organelles within each segmented

cell. These are modelled using a Gamma PDF and the results are shown in Figure

5.5 (left column). We then consider the size and shape of the organelles. As the

real data available is for di�erent types of cultured cells, instead of estimating the

size of the cell organelles directly, we consider the ratio between the minor axes of

the cell organelle and the corresponding nucleus. We assume that the cell nucleus

approximately holds its shape when the cell is in a tissue and in cell culture. The

distributions of this ratio and the estimated Gamma PDFs for each cell organelle are

shown in Figure 5.6 (left column). Considering this ratio gives better generalisability

to cells in a tissue and at di�erent magni�cations. To estimate the shape of the

organelles, we consider the ratio between the minor and major axes of the segmented

objects. The distributions of this feature and the estimated Gamma PDFs for each

cell organelle are shown in Figure 5.6 (right column). The last feature considered

describes the position of the organelle within the cell. We considered the line from

the centre of the cell nucleus going through the centre of the organelle of interest.

Let the distance between the centre of the nucleus and the point where the line

crosses the nuclear membrane be given by N . Let the distance between the centres

of the nucleus and the organelle be given by O, and the distance between the points

where the line crosses the nuclear and plasma membranes be given by C (as shown

in Figure 5.7). Then, the distance feature is given by

D = 1− N −O

N + C
. (5.1)

Consequently, the minimum value of D = 1 − N/(N + C) means the organelle is

located at the centre of the nucleus and as D → 1 the cell compartment is located

closer to the nuclear membrane but within the nuclear boundary. A value of D > 1

describes an organelle that is outside the nuclear boundary and the distance from

it is given proportionate to the distance between the centre of the nucleus and the

plasma membrane. The distributions of this feature and the estimated PDFs for

each cell organelle are shown in Figure 5.5 (right column). The distribution of the

nucleoli position was well estimated by a Gamma PDF. On the other hand, most of

the vesicles and golgi objects were found close to the nuclear membrane and so a t
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Figure 5.7: Diagram for calculating the position feature. The star marks the position
of the organelle of interest

Location-Scale distribution gave a better �t.

5.3 Modelling Cell Organelles

For modelling the di�erent cell compartments, we use the deformed circle model pre-

sented in Section 4.1.4. When we are generating cell organelles of a particular type,

we draw parameter values from the relevant PDFs. However, we also impose certain

restrictions on the parameter values based on the size of the cell in consideration.

For each cell, �rst we choose the number of organelles to be created. Nonetheless,

we only place a new cell organelle if that type of organelles are not taking up more

than 12% or 18% of the cell area for golgi and vesicles, respectively, and 20% of the

nuclear area for nucleoli. These constraints were set up to address the fact that other

parameter values are drawn independently and so may result in unrealistic examples

where a large number of organelles with relatively great size are generated. The

values were set based on observations from the real data where golgi and vesicles

took up to 4% and 6% of the cell area, and the nucleoli took up to 19.3% of the

nucleus. The �rst two values were scaled up as the cytoplasm of cells in a tissue

has more compact shape and so the 2D projection of it would give a much smaller

area. On the other hand, we don't expect the nucleus to signi�cantly change shape

and so the threshold was held nearly the same. For each cell organelle to be placed,

we choose the length of the minor axis by drawing a value for the ratio between the
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nuclear minor axis and that of the organelle. A minimum length of 1 pixel is set. To

determine the length of the major axis, we draw a value from the PDF estimated for

the ratio between the minor and major organelle axes. Finally, we need to estimate

the position of the organelle. For this, we draw a value from the PDF of the distance

feature and select the direction from the nuclear centre at random. Using Equation

5.1 we can estimate the distance from the nuclear centre. The resulting organelles

are shown in Figure 5.8.

5.4 Modelling Protein Expression

With a view to include the protein channels into the model, three user-de�ned pa-

rameters were introduced per protein. These de�ne whether or not the protein has

been imaged, whether there is a mutation in the gene and what fraction of the ep-

ithelial cells express the protein. Five proteins were included in the model, namely

MLH1, PMS2, MSH2, MSH6 and P53. Details of each are given below. In addition,

the user could choose to produce samples that are representative of the population.

In this case, the model would include an MMR protein mutation with a 15% prob-

ability. If a mutation occurs, it has a probability of 50% of being in the MLH1 gene

with , 40% in MSH2, 7% in MSH6 and 3% in PMS2 [49]. In cases without mutation,

P53 has 50% probability of being overexpressed in epithelial cells, whereas in MSI

cases it is overexpressed in only 20% of the cases Samowitz et al. [53].

5.4.1 Modelling the MLH1 expression

The subcellular expression for MLH1 was modelled at described in Table 5.1 and

shown from confocal �uorescence images of cultured cells in Figure 5.9 (a), namely

the protein has a strong expression in the nucleoli and weak expression in the rest of

the nucleus. We can see that this also agrees with what is observed when the cells

are in a tissue (Figure 5.9 (b)). If the user speci�es a mutation in the MLH1 gene,

the protein is not expressed in the epithelial cells. Otherwise, the user can specify

what fractions of the epithelial cells are expressing the protein. It is worth noting

that, in practice, even if only a small fraction of epithelial cells express the MMR

proteins, the sample is graded as positively stained. Most stromal cells would always

express the MMR proteins and, in the clinic, this serves pathologists as a positive

control that the tissue has been stained. Within the model, all stromal cell would

always express MLH1. Example of the protein expression images generated is shown

in Figure 5.9 (c, d).
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a) b)

c) d)

e) f)

Figure 5.8: Examples of generated cell organelles. In all images the cytoplasm is
shown in red, nuclei in blue and the green channel shows (a, b) the nucleoli, (c, d)
the golgi and (e, f) the vesicles. Figures (b, d, f) show close-up sections of Figures
(a, c, e), respectively, with the section identi�ed by the green square.
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a) b)

c) d)

Figure 5.9: Modelling MLH1. Figure (a) shows the subcellular location in cultured
cells imaged using a confocal �uorescence microscope. Figure (b) shows MLH1 ex-
pression in a histology image of CRA. Images (a, b) are from the HPA. Figures (c,
d) show examples of synthetic images for MLH1 with (d) a scaled up sections from
(c). Images are from the same sample as shown in Figure 5.8. In this simulation all
cells are expressing the protein.
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Table 5.3: E�ects of mutations in the MMR genes on protein expression in epithelial
cells.

Defective gene Imaging results

MLH1 Loss of MLH1, PMS2

PMS2 Isolated Loss of PMS2

MSH2 Loss of MSH2, MSH6

MSH6 Isolated Loss of MSH6

5.4.2 Modelling the PMS2 expression

The subcellular expression for PMS2 was modelled at described in Table 5.1 and

shown from confocal �uorescence images of cultured cells in Figure 5.10 (a), namely

the protein has a strong expression in the nucleus excluding the nucleoli and weak

expression in the cytoplasm. We can see that this also agrees with what is observed

when the cells are in a tissue (Figure 5.10 (b)). If the user speci�es a mutation in

the PMS2 gene, the protein is not expressed in the epithelial cells. In addition, the

same limited expression would occur if there is a mutation in the MLH1 gene as the

two are binding partners (Table 5.3). Otherwise, the user can specify what fractions

of the epithelial cells are expressing the protein and these are taken to be a subset of

the epithelial cells expressing MLH1. As above, all stromal cell would always express

PMS2. Example of the protein expression images generated are shown in Figure 5.10

(c, d).

5.4.3 Modelling the MSH2 expression

The subcellular expression for MSH2 was modelled as described in Table 5.1 and

shown from confocal �uorescence images of cultured cells in Figure 5.11 (a), namely

the protein has a strong expression in the nucleus and weak expression in the nucleoli.

We can see that this also agrees with what is observed when the cells are in a tissue

(Figure 5.11 (b)). To generate a realistic texture for this protein we use the chromatin

texture used for the nuclear channel of the THeCoT model (Chapter4.1.4). If the

user speci�es a mutation in the MSH2 gene, the protein is not expressed in the

epithelial cells. Otherwise, the user can specify what fractions of the epithelial cells

are expressing the protein. All stromal cells would always express the molecule.

Example of the protein expression images generated are shown in Figure 5.11 (c, d).
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a) b)

c) d)

Figure 5.10: Modelling PMS2. Figure (a) shows the subcellular location in cultured
cells imaged using a confocal �uorescence microscope. Figure (b) shows PMS2 ex-
pression in a histology image of CRA. Images (a, b) are from the HPA. Figures (c,
d) show examples of synthetic images for PMS2 with (d) a scaled up sections from
(c). Images are from the same sample as shown in Figure 5.8.

5.4.4 Modelling the MSH6 expression

The subcellular expression for MSH6 was modelled as described in Table 5.1 and

shown from confocal �uorescence images of cultured cells in Figure 5.12 (a), namely

the protein has a strong expression in the nucleus excluding the nucleoli, the vesicles

and golgi apparatus, and weak expression in the cytoplasm. We can see that this

also agrees with what is observed when the cells are in a tissue (Figure 5.12 (b)). If

the user speci�es a mutation in the MSH6 gene, the protein is not expressed in the

epithelial cells. In addition, the same limited expression would occur if there is a

mutation in the MSH2 gene as the two are binding partners (Table 5.3). Otherwise,
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a) b)

c) d)

Figure 5.11: Modelling MSH2. Figure (a) shows the subcellular location in cultured
cells imaged using a confocal �uorescence microscope. Figure (b) shows MSH2 ex-
pression in a histology image of CRA. Images (a, b) are from the HPA. Figures (c,
d) show examples of synthetic images for MSH2 with (d) a scaled up sections from
(c). Images are from the same sample as shown in Figure 5.8.

the user can specify what fractions of the epithelial cells are expressing the protein

and these are taken to be a subset of the epithelial cells expressing MSH2. As above,

all stromal cells would always express MSH6. Example of the protein expression

images generated are shown in Figure 5.12 (c, d).

5.4.5 Modelling the P53 expression

The subcellular expression for P53 was modelled as described in Table 5.1 and shown

from confocal �uorescence images of cultured cells in Figure 5.13 (a), namely the

protein has a strong expression in the nucleus excluding the nucleoli. We can see
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a) b)

c) d)

Figure 5.12: Modelling MSH6. Figure (a) shows the subcellular location in cultured
cells imaged using a confocal �uorescence microscope. Figure (b) shows MSH6 ex-
pression in a histology image of CRA. Images (a, b) are from the HPA. Figures (c,
d) show examples of synthetic images for MSH6 with (d) a scaled up sections from
(c). Images are from the same sample as shown in Figure 5.8.

that this also agrees with what is observed when the cells are in a tissue (Figure 5.13

(b)). Unlike the MMR genes, P53 is not expressed in the stromal cells. Hence, to

avoid a blank image in the stack, the model assumes that there is some expression

of the protein in the epithelial cells. The user can specify what fractions of the

epithelial cells are expressing the protein. Example of the protein expression images

generated are shown in Figure 5.13 (c, d).
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a) b)

c) d)

Figure 5.13: Modelling P53. Figure (a) shows the subcellular location in cultured
cells imaged using a confocal �uorescence microscope. Figure (b) shows P53 expres-
sion in a histology image of CRA. Images (a, b) are from the HPA. Figures (c, d)
show examples of synthetic images for P53 with (d) a scaled up sections from (c).
Images are from the same sample as shown in Figure 5.8.

5.5 Discussion and Validation

This chapter has extended the THeCoT model to include models for protein expres-

sion. We have focussed on �ve proteins associated with MSI. These are commonly

screened for in clinical practice and developing the protein expression models could

aid the development of frameworks for automatic grading. The user could choose

to have a sample that is generated with the probability of mutation representative

of the general population. In this case, they also need to specify which of the �ve

proteins they wish to be included in the resulting images. Alternatively, they can

specify where the mutation occurs. The model takes into account dependencies of
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binding pairs of the MMR proteins, and hence, if a mutation occurs in MLH1 or

MSH2, its binding partner would also have inhibited expression in epithelial cells.

Each protein subcellular expression pattern mimics the behaviour observed in real

high-resolution IF data. In this way, we can capture protein co-localisation patterns.

In addition, developing realistic protein expression models could potentially aid the

discovery of yet unknown protein interactions.

In order to assess the quality of the protein models, we begin by assessing

how well the cell organelles have been modelled. We �rst consider how accurately

organelle features that have been used as input to the model have been generated

within the synthesised data. The distributions of the numbers of organelles per cell

and their position are shown in Figure 5.14. We can see that the distributions of

the numbers of organelles are reasonably good approximations of the real PDFs. For

the number of golgi, we can see that there are a small number of cells with a very

high number of golgi organelles. However, a similar, although smaller peak in the

histogram can be observed in the real data (Figure 5.5 (c)). On the other hand, we

can see a wider distributions for the position parameter of the synthesised golgi and

vesicles. This is due to the fact that when the position of these organelles is being

calculated, the method assumes that the nucleus is in the centre of the cell, rather

than displaced towards the base of the cell. Hence, the problem does not occur in

stromal cells and high-grade cancer samples. On the other hand, the distributions

for the ratio between the minor axes of the synthesised organelles and the nucleus of

the corresponding cell as shown in Figure 5.15 (left column) and between the minor

and major axes of the synthesised organelles in Figure 5.15 (right column) show

very good agreement with the PDFs estimated from the real data. We have also

considered features that have not been explicitly learned from the real data. Figure

5.16 shows the distributions of the solidity for real and synthesised organelles and

we can observe very good agreement between the two. In Figure 5.17 we consider

the area taken up by the organelles as a fraction of the total area of the cell, for

the golgi and vesicles, or of the nucleus, for the nucleoli. Although the area of the

organelles is not speci�ed explicitly within the model, we observe good agreement

between the real and synthesised distributions.

5.5.1 Protein Network Analysis

In Chapter 3, we introduced a framework for analysing multiplex IF data, such as the

one simulated by the model described above. In this section, we apply the DiSWOP

framework to a set of simulated images. For this purpose, we generated 10 healthy

and 10 moderately di�erentiated cancerous samples at 40× magni�cation. From
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a) b)

c) d)

e) f)

Figure 5.14: Probability distribution functions for the synthesised number (left col-
umn) and position (right column) of the (a, b) nucleoli, (c, d) golgi and (e ,f) vesicles.
The probability distribution functions shown are the ones estimated for the real data,
shown in Figure 5.5.
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a) b)

c) d)

e) f)

Figure 5.15: Probability distribution functions for the ratios between the minor axes
of the synthesised organelles and the nucleus of the corresponding cell (left column)
and between the minor and major axes of the synthesised organelles (right column).
Figures show the ratios for (a, b) nucleoli, (c, d) golgi and (e, f) vesicles. The
probability distribution functions shown are the ones estimated for the real data,
shown in Figure 5.6.
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a) b)

c) d)

e) f)

Figure 5.16: Probability distribution functions for the real (left column) and synthe-
sised (right column) solidity of the (a, b) nucleoli, (c, d) golgi and (e ,f) vesicles. The
probability distribution functions shown are the ones estimated for the real data.
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a) b)

c) d)

e) f)

Figure 5.17: Probability distribution functions for the cell area fraction taken up by
the real (left column) and synthesised (right column) organelles. Figures (a, b) show
the fraction of nuclear area taken up by the nucleoli. The fraction of cytoplasmic
area taken up by (c, d) golgi and (e ,f) vesicles is also considered. The probability
distribution functions shown are the ones estimated for the real data.
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Figure 5.18: Distribution of phenotypes within cancer samples simulated at 40×
magni�cation. Phenotypes are shown along the x-axis and the fraction of the phe-
notype that is found within each type of cancer samples is shown along the y-axis.
Cancer samples without mutation are shown in blue, samples with MLH1 mutation
are shown in teal and yellow shows the samples with MSH2 mutation.

the 10 cancerous samples, 4 had no mutation, 3 had a mutation in the MLH1 gene

and 3 had a mutation in the MSH2 gene. The same dataset was also simulated at

20× magni�cation to investigate the dependence of the DiSWOP measure on the

magni�cation scale.

For each of the cells, we calculate the PPDP using the MIC. The protein

pairs are shown in Table 5.4. The cells are phenotyped using A�nity Propagation

according to their PPDP. The distribution of the phenotypes within the cancerous

samples simulated at 40× magni�cation is shown in Figure 5.18. We can see that

phenotypes 7 and 8 that can be found only in samples with MLH1 mutation. Their

PPDPs are highlighted in red in Figure 5.19. From Figure 5.19, we can see that

phenotype 7 exhibits non-zero dependence only between MSH2 and MSH6, whereas

phenotype 8 also has non-zero dependencies between these two proteins and P53.

This can also be observed from the real data. We can see in Figure 5.20 that the

two phenotypes include all of the epithelial cells, with phenotype 8 including all
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PMS2 MSH2 MSH6 P53
MLH1 1 2 3 4
PMS2 5 6 7
MSH2 8 9
MSH6 10

Table 5.4: Protein pair numbering.

epithelial cells expressing P53. On the other hand, phenotypes 10, 11, 12 and 16

are found only in samples with MSH2 mutation. Phenotypes 10, and 16 (marked in

blue in Figure 5.19) show non-zero dependencies between MLH1, PMS2 and P53,

splitting the epithelial cells expressing P53 in two phenotypes. These are shown in

Figure 5.21. This demonstrates that the clustering is able to detect meaningful cell

phenotypes, although the real phenotypes could be split into two or more phenotypes

found by the algorithm.

Once we have obtained the phenotypes, we calculate the DiSWOP measure.

We consider the top 3 protein pairs in each phenotype. This was chosen because,

when the values in the PPDPs were ordered by size, the mean values only for the

top 3 protein pairs were above 0.5. The DiSWOP results for the simulated samples

at 40× and 20× magni�cation are shown in Figure 5.22. We can see that nearly

the same results are obtained, demonstrating that the measure is independent of the

magni�cation scale and size of the cells. Figure 5.22 also shows that DiSWOP is

able to detect that the dependences between MLH1, PMS2 and MSH2 are stronger

in the healthy samples, suggesting that they are broken in at least some of the

cancer samples. However, it's di�cult to interpret the results further as within the

cancer samples there are a number of non-MSI samples and cells which have the

same protein expressions as the healthy samples. To further analyse the simulated

data, we considered dividing the cancer samples into three sets depending on the

presence of a mutation. We re-run the analysis framework when considering non-MSI

samples versus MSI samples with both mutations (Figure 5.23 (a)), and versus each

mutation separately (Figure 5.23 (b) and (c)). When samples with both mutations

are considered, the results are very similar to those seen in Figure 5.22. This is due

to the fact that the mutations cause all of the protein pair interactions to be broken

down in some of the samples. However, the negative values again clearly indicate

the lack of co-localisation of the MMR proteins. On the other hand, if we consider

non-MSI samples versus samples with MLH1 mutation (Figure 5.23 (b)), we can see

that, as expected, the interactions of MLH1 and PMS2 are weaker in the MSI sample

while MSH6 shows stronger interactions with MSH2, P53 and MLH1. The latter
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Figure 5.19: Average protein-protein dependence pro�les (PPDPs) for the pheno-
types found within healthy and cancerous samples simulated at 40× magni�cation.
Phenotypes found only in samples with MLH1 mutation are highlighted in red. Some
of the phenotypes found only in samples with MSH2 mutation are highlighted in blue.
The numbering of the phenotypes is the same as in Figure 5.18. The numbering of
the protein pairs is shown in Table 5.4. Black indicates PPD value of 0, and white
shows a PPD value of 1.

interaction is likely to occur only in the stromal cells which express all proteins.

Lastly, we compared non-MSI and MSH2 mutated samples (Figure 5.23 (c)). As

would be expected, we observe stronger interactions of MSH2 with other proteins

in the non-MSI samples. The mutated samples are characterised by increased co-

localisation of P53 and PMS2.

With this set of proteins, it would be easier to simply consider the raw protein

expression values. This is because there is no evidence to suggest that the expression

patterns of these proteins within the cells change as a result of cancer and this has

been re�ected in the model. Hence, this experiment aims to demonstrate only how

the DiSWOP framework could be used to analyse the synthesised data. However,

DiSWOP would provide a signi�cantly greater advantage if the simulated proteins

changed their subcellular expression patterns. Detecting such changes were the aim

of the study presented in Chapter 3. Proteins that exhibit such changes in locali-
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a) b)

c) d)

Figure 5.20: Simulated protein expression in cell phenotypes found only in MLH1
mutated samples. The images show the expression for (a) MSH2, (b) MSH6 and (c,
d) P53. The red outlines indicate the cells belonging to phenotypes (a - c) 7 and (d)
8.

sation could be easily modelled using the framework presented above. These could

be proteins with known response to cancer or one could generate random changes in

localisation in order to test hypotheses.

Chapter Summary

In this chapter we have developed models for the protein expression patterns for �ve

proteins associated with MSI, namely MLH1, PMS2, MSH2, MSH6 and P53. The

models have been developed as an extension of the THeCoT model presented in the

previous chapter. These �ve proteins have been chosen as a case study to illustrate

how the model could be developed to generate synthetic multiplex IF data. Further
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a) b)

c) d)

Figure 5.21: Simulated protein expression in cell phenotypes found only in MSH2
mutated samples. The images show the expression for (a) MLH1, (b) PMS2 and (c,
d) P53. The red outlines indicate the cells belonging to phenotypes (a - c) 10 and
(d) 16.

proteins could be included within the model in a similar manner to enable the study

of a larger set of proteins of interest and their interactions.

In order to develop realistic subcellular localisation of the proteins, relevant

cell organelles have been modelled. The statistics for these have been obtained

from real IF data obtained from the HPA. Comparison between the distribution of

various features obtained from the real and synthetic organelles has shown very good

agreement. This has included both features that have been used as part of the model

input and ones that have not been explicitly considered.

Finally, we presented a study of how the DiSWOP framework presented in

Chapter 3 could be used to analyse the synthetic data. This kind of analysis would

be invaluable in detecting changes in subcellular expression patterns resulting from
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a)

b)

Figure 5.22: DiSWOP results for the simulated samples at (a) 40× and (b) 20×
magni�cation. Each node represents a protein and each edge colour shows a protein
pair with di�erent level of co-expression in the normal and cancer samples. Here,
a large positive value (shown in red) indicates that the protein pair is more co-
dependent in cancer samples, whereas a large negative value (shown in blue) means
that the protein pair is more active in normal tissue.

the development of cancer.
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a)

b)

c)

Figure 5.23: DiSWOP results for comparing MSI and non-MSI sets of the simulated
cancer samples at 40× magni�cation. Di�erent results are shown when comparing
non-MSI samples to (a) both mutations, (b) MLH1 mutation only, and (c) MSH2
mutation only. Each node represents a protein and each edge colour shows a protein
pair with di�erent level of co-expression in the normal and cancer samples. Here,
a large positive value (shown in red) indicates that the protein pair is more co-
dependent in the mutated samples, whereas a large negative value (shown in blue)
means that the protein pair is more active in non-MSI tissue.
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Chapter 6

Conclusions and Future Directions

This thesis proposed di�erent methods for studying the tumour microenvironment

in colorectal cancer. This was done by analysing multiplex immuno�uorescence

images and by generating synthetic multiplex immuno�uorescence and histology im-

ages. This chapter summarises and concludes the work presented in this thesis and

discusses some future directions.

In Chapter 1, we have introduced the reader to the heterogeneity present

within and between CRC tumours. Recent developments in cell-level analysis tech-

niques have revealed great variation in cell phenotypes present within a tumour.

The diversity within the cancer cell population may lead to the emergence of clinical

resistance during disease progression. Inter-tumour heterogeneity has been widely

studied and there are a number of cancer therapies which address certain mutations

present in a sub-population of cancer patients. In CRC, it is crucial to detect cases

exhibiting MSI, as some of these could be due to the inherited Lynch syndrome.

Identifying patients with LS has implications on the care and monitoring of the pa-

tient and potentially a�ected family members. In addition, a detailed description of

the normal architecture of colon tissue is presented. This is followed by a description

of how the architecture changes as cancer develops and becomes more malignant, and

how it is graded in clinical practice.

In Chapter 2, we review the existing literature on multiplex imaging. The

review covered the approaches taken so far to extract meaningful quantitative results

from the TIS imaging data. These include pixel-level analyses both with and without

thresholding the intensity values. We also brie�y reviewed studies that have been

performed with other multiplex techniques such as MALDI, Raman, multi-spectral

imaging, MxIF and imaging mass cytometry. The review of these techniques has been

included, despite the fact that the frameworks developed within this thesis have been

114



designed for TIS image data, as they can easily be applicable for other multiplex

imaging techniques. The same chapter also included a review of frameworks for the

generation of synthetic image data. Currently, the majority of these methods focus

on the generation of homogeneous cell populations in culture. It also brie�y reviewed

current methods for simulating protein expression.

We have introduced a novel method for analysing multiplex image data such

as the TIS image data in Chapter 3. It is di�erent from previously presented methods

in that it considers the samples at cell rather than at pixel level, it is intensity inde-

pendent, and it allows phenotyping of cells based on their protein co-expression pro-

�le. We have presented two new measures of co-dependence and anti-co-dependence,

namely DiSWOP and DiSWAP. Applying these over a TIS dataset of eleven sam-

ples of cancerous and normal colon tissue, we have found combinations of protein

pairs that are much more co-dependent or anti-codependent in cancerous than in

normal tissue, pointing to the possibility that combinations of protein pairs rather

than single proteins will lead to speci�c markers for cancer. The resulting protein

pair interactions have been validated by consulting with literature on protein inter-

action pathways established through experimental techniques. In addition, we have

investigated where in the data cell phenotypes of interest are located, enabling us to

study the inter- and intra- tumour heterogeneity present in our samples. The results

presented here are only preliminary and need to be validated using a larger number

of samples and subsequently by other biological techniques. While the number of

samples considered is insu�cient to draw signi�cant biological conclusions, this is

the largest study of colon cancer using TIS conducted to date. A study with a larger

number of proteins could also aid the optimisation of the number of proteins and

cell phenotypes to be considered when calculating the DiSWOP measure. Due to

the general nature of the framework, the method could be applied to other tissues

and/or images obtained from other multiplex imaging techniques. The method can

also be used on other high-throughput techniques that measure localised expression

of DNA or RNA, as long as individual cells can be identi�ed or approximated.

Modern high-throughput imaging methods have raised the need for auto-

mated analytical frameworks. However, validation of such methods has been chal-

lenging since ground truth information in cell biological research is often missing, and

veri�cation using manual methods introduces variable results. Hence, simulation is

a valuable tool when trying to develop, validate, and compare analytical methods.

In Chapter 4, we presented a model for simulating healthy and cancerous

colonic crypt architecture. The proposed model for tumour heterogeneity in col-

orectal tissue (THeCoT) has several parameters, which allow control over the tissue
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appearance. Detailed analysis of hand-marked H&E images has enabled us to make

the model realistic by learning parameters to generate realistic cell phenotypes, chro-

matin and lumen texture, nuclei morphology, and crypt architecture. To the best

of our knowledge, ours is the �rst model to simulate histology image data at sub-

cellular level, where the cells have several compartments and are organised to mimic

the microenvironment of tissue in situ rather than dispersed cells in a cultured envi-

ronment. Majority of features of the histology images produced by the model have

been rated as being very realistic by the pathologists. The feature rated as least real-

istic was the appearance of the stromal cells. Dividing stromal cells in the real H&E

images according to their functional phenotypes and analysing them separately to

obtain their characteristic features to input into the model could address this prob-

lem in future developments of the model. We have also shown an example of how a

crypt segmentation method can be used on the synthetic data. When the method

was trained on real data, it performed worse when trying to segment the high-grade

cancer crypts. This is likely to be due to the fact that currently the model does not

include model for the extracellular matrix. Including this would generate a more

realistic texture outside the cancer glands. We have also demonstrated that pheno-

typing of the cells on the basis of their textural characteristics showed consistency in

the results based on real and synthetic nuclei. The synthesised data could be used to

validate techniques such as image restoration, cell and crypt segmentation, stain nor-

malisation, and cancer grading. An interesting application of the synthesised data

would be to pre-train convolutional neural networks. These methods are attracting

more and more interest in the �eld of digital pathology but require large amounts of

ground truth data for training. The model could be used to generate a signi�cant

number of images to pre-train the convolutional networks, which can later be �ne-

tuned on a more limited set of manually annotated real data. In future, the model

could also be extended to include 3D colonic tumour microenvironment taking into

account 3D spatial arrangements of all tissue constituents in situ. This will allow

the model to simulate events due to sectioning commonly observed in histopathology

images, such as apparent overlap between cells or cells without nuclei. In addition,

extending the model to 3D will allow the simulation of serial sections. Furthermore,

the model could be extended to a larger visual �eld which can contain a wide va-

riety of histopathological features that have been recently shown to be associated

with poor prognosis or metastasis. These include immune in�ltration, tumour bud-

ding, density of macro- and micro-vascular blood vessels, and functional state of

lymphatics. While so far we have focused on developing a model only for the spatial

microenvironment in CRA, we are also developing a method for generating such a
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model. In particular, the same approach can be used to develop models for other

epithelial tumours such as prostate, pancreatic or esophageal cancers.

Lastly, in Chapter 5 we extend the THeCoT model to simulate multiplexed

IF data. We investigate how to realisticly simulate the expression of �ve proteins

associated with MSI, namely MLH1, PMS2, MSH2, MSH6 and p53. Following the

same method, further proteins of interest could be easily added to the model to

increase its usability. This could aid the study of toponomics. In order to simulate

the subcellular location of the proteins, we developed models for the cell nucleoli,

golgi and vesicles, using parameters obtained from real �uorescence data of cells in

culture. Comparison between the distribution of various features obtained from the

real and synthetic organelles has shown very good agreement. This has included both

features that have been used as part of the model input and ones that have not been

explicitly considered. The addition of further proteins of interest may require more

of the cell organelles to be modelled, such as the cytoskeleton and the endoplasmic

reticulum. It would be di�cult to represent these using the deformed circle model,

so a di�erent approach may need to be developed. Finally, we presented a study of

how the DiSWOP framework presented in Chapter 3 could be used to analyse the

synthetic data. Using the framework to compare the protein co-localisation in MSI

versus non-MSI samples was able to detect the presence of mutations. While for the

set of proteins considered in this study, it could also be achieved by consideration

of the raw expression values, this kind of analysis would be invaluable in detecting

changes in sub-cellular expression patterns resulting from the development of cancer.

Proteins that exhibit such changes in localisation could be easily modelled using the

framework presented in order to test various hypotheses.
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