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ABSTRACT

The ability to perceive facial expressions of emotion is essential for effective social

communication. We investigated how the perception of facial expression emerges from

the image properties that convey this important social signal, and how neural responses in

face-selective brain regions might track these properties. To do this, we measured the

perceptual similarity between expressions of basic emotions, and investigated how this is

reflected in image measures and in the neural response of different face-selective regions.

We show that the perceptual similarity of different facial expressions (fear, anger, disgust,

sadness, happiness) can be predicted by both surface and feature shape information in

the image. Using block design fMRI, we found that the perceptual similarity of

expressions could also be predicted from the patterns of neural response in the face-

selective posterior superior temporal sulcus (STS), but not in the fusiform face area (FFA).

These results show that the perception of facial expression is dependent on the shape and

surface properties of the image and on the activity of specific face-selective regions.
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INTRODUCTION

The ability to visually encode changes in facial musculature that reflect emotional state is

essential for effective social communication (Ekman, 1972; Bruce & Young, 2012). A full

understanding of the mechanisms that underpin the perception of facial expression requires

understanding both the way in which these processes are driven by visual properties of the

image and the way in which different brain regions are involved (Haxby, Hoffman, &

Gobbini, 2000; Bruce & Young, 2012).

Any facial image consists of a set of edges created by abrupt changes in reflectance

that define the shapes and positions of facial features and a broader pattern of reflectance

based on the surface properties of the face, also known as the albedo or texture (Bruce &

Young, 1998, 2012). Shape can be defined by the spatial location of fiducial points that

correspond to key features of the face. In contrast, surface properties reflect the

reflectance of light that is caused by pigmentation and shape from shading cues. Shape and

surface properties have both been proposed to contribute to the perception of identity and

expression (Bruce & Young, 1998; Calder, Young, Perrett, Etcoff, & Rowland, 1996), but with

the perception of familiar identity being relatively dominated by surface cues (Burton et al.,

2005; Russell & Sinha, 2007) and feature shapes being relatively dominant in perceiving

facial expressions (McKelvie, 1973; Etcoff & Magee, 1992; Butler, Oruc, Fox, & Barton,

2008). This differential use of image properties in the perception of identity and expression

is consistent with models of face perception which propose that they are processed

independently (Bruce & Young, 1998, 2012; Haxby, Hoffman, & Gobbini, 2000).

Support for the critical role of shape information in the perception of facial

expression is found in studies that show manipulations of the image that degrade surface

information, but leave shape information intact, have little impact on perceptual and neural
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responses to facial expression (Bruce & Young, 1998; Magnussen, Sunde, & Dyrnes, 1994;

White, 2001; Pallett & Meng, 2013; Harris, Young, & Andrews, 2014). Similarly, image

manipulations that completely remove surface information, such as line drawings of faces,

also show relatively preserved expression perception (McKelvie, 1973; Etcoff & Magee,

1992).

Although previous studies have suggested that feature shape is the dominant cue for

the perception of facial expressions, there is some evidence to suggest that surface

information may also play a role. Calder, Burton, Miller, Young & Amakatsu (2001) found

that Principal Components (PCs) that convey variation in surface information could be used

to categorize different facial expressions, albeit to a lesser extent than PCs that convey

variation in shape. More recently, Benton (2009) found a decrease in the emotional

expression aftereffect to facial expressions when images were negated, suggesting that the

perception of facial expression can be affected by changes in surface information. So, it

remains uncertain how different image properties contribute to the perception of facial

expression.

The first aim of this study was therefore to explore the relative importance of shape

and surface properties to the perception of facial expression. Specifically, we asked whether

the perceptual similarity of different facial expressions could be predicted by corresponding

similarities in the shape or surface properties of the image. The perceptual similarity task

involved rating the degree of similarity in expression between pairs of pictures of facial

expressions. This task was used to generate a matrix of perceived (rated) similarities

between exemplars of facial expressions of five basic emotions. This is equivalent to the

procedure used to establish widely-adopted perceptual models such as Russell's circumplex

(Russell, 1980), where expressions of emotion lie proximally or distally on a two-dimensional
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surface based on their perceived similarity, with the distance between expressions

reflecting their similarity or confusability to human observers.

Our second aim was to determine if the perceptual similarity of facial expressions is

reflected in the patterns of neural responses in face-selective regions of the brain. Neural

models of face perception suggest that a network of face-selective brain regions underpins

the perception of faces (Allison, Puce, & McCarthy, 2000; Haxby, Hoffman, & Gobbini, 2000;

Ishai, 2008), with the posterior superior temporal sulcus (STS) playing a key role in

processing facial expression (Winston, Henson, Fine-Goulden, & Dolan, 2004; Engell &

Haxby, 2007; Harris, Young, & Andrews, 2012; Baseler, Harris, Young, & Andrews, 2014;

Psalta, Young, Thompson, & Andrews, 2014). Recent evidence has shown that it is possible

to successfully decode some properties of facial expressions from face responsive brain

regions (Wegrzyn et al., 2015, Said, Moore, Engell, & Haxby, 2010). Nevertheless, the extent

to which the neural response can predict the fine-grained perception of facial expression

remains unclear. Using multi-voxel pattern analysis (MVPA) techniques, we asked whether

the perceptual similarity of expressions could be explained by the neural response in

different face-selective regions. Our prediction was that patterns of response in regions

associated with processing of facial expression should predict the perception of facial

expression.
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METHODS

Participants

Twenty-four healthy volunteers took part in the fMRI experiment and the behavioural

similarity ratings experiment (12 female, mean age = 25.2 years). All participants were right-

handed and had normal or corrected to normal vision with no history of neurological illness.

The fMRI work was approved and conducted following the guidelines of the York

Neuroimaging Centre Research Ethics Committee, University of York, and the behavioural

study by the Department of Psychology Ethics Committee. All participants gave written

consent prior to their participation.

Stimuli

Figure 1 shows all the stimuli from the five expression conditions. Static images of

expressions were presented as these are well-recognised as long as they represent the apex

of the pattern of muscle movements involved in producing the expression (see Bruce &

Young, 2012). By using well-validated images from the Radboud Face database (Langner et

al., 2010) we ensured that this criterion was met. Images were selected on the basis of high

recognisability of their facial expressions and the similarity of the action units (muscle

groups) used to pose each of the expressions. Only male faces were used to avoid any

confounds from characteristics introduced by gender differences in the images themselves.

For each of five models, images of expressions of fear, anger, disgust, sadness and

happiness were used.

Perceptual Similarity Experiment

First, we determined the perceptual similarity of different facial expressions. Participants

carried out a perceptual similarity rating task. Pairs of images were presented either side of
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a fixation cross and participants were asked to rate the images on the similarity of

expression on a scale of 1-7 (1: not very similar expressions, 7: very similar expressions).

Each possible combination of pairs of different images from the set of expressions was

displayed once in the perceptual similarity rating experiment, excluding pairs of images from

the same identity. This resulted in 200 trials in total. From these we were able to derive the

average rated similarity between examples of expressions of same or different basic

emotions. These similarity ratings were z-scored and then incorporated into a similarity

matrix for each participant.

Image Properties

To determine whether the patterns of perceptual similarity found in our behavioural task

could be explained by shape information in the face images, we defined the locations of 140

fiducial points corresponding to expressive features in each of the face images using

PsychoMorph software (Tiddeman, Burt, & Perrett, 2001). This produced a 2 x 140 matrix

for facial feature positions in 2D image space, with x and y co-ordinates for each fiducial

point (Figure 2). These fiducial locations were then used to provide a measure of facial

feature shape by entering the fiducial location matrices into a procrustean comparison

(Schönemann, 1966) to measure the similarity in feature locations between every possible

pair of images. The procrustean analysis rigidly aligns fiducial points allowing shape

translation, rotation or scaling to correct for image position or size without morphing or

non-linear image distortion. After alignment of a pair of images in this way, the procrustean

metric computes the averaged squared distance between each pair of aligned points giving

a value between 0-1. To create a similarity matrix, each value was subtracted from 1 and

then z-scored.
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We also calculated a surface measure of image differences that controlled for the

position of the facial features in the image. To do this each of the 25 original images was

reshaped (using a wavelet-based Markov random field sampling method) to the average

shape across all 25 images (Tiddeman, Stirrat, & Perrett (2005). This removed any

underlying shape cues to expression (as all images now shared exactly the same set of

fiducial points), but left the surface information relatively unchanged. We then correlated

the pixel values from the face for the same image pair combinations as for our procrustean

analysis. These pixel correlations were transformed using Fisher’s Z-transform. The values

were z-scored to create an average surface similarity measure between each expression

pairing.

fMRI experiment

To determine whether the patterns of perceptual similarity response in our behavioural task

could be explained by patterns of response in face-selective regions, we measured the

response in face-selective regions to different facial expressions. A block design was used

with each block comprising a series of face images depicting one of the five expressions

(fear, anger, disgust, sadness and happiness). Within each block, 5 images were each

presented for 1 second followed by a 200 ms fixation cross, giving a block duration of 6s

(Peirce, 2008). Stimulus blocks were separated by a fixation cross on a grey screen for 9s.

Each condition was repeated eight times in a counterbalanced order, giving a total of 40

blocks. To minimise any influence of task effects on the patterns of neural response to

expression, participants were not required to respond to the facial expressions during the

fMRI scan. Instead, an irrelevant task of pressing a button when a red spot appeared was

used to ensure that they paid attention to the stimuli without responding to their
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expressions per se. A small red spot appeared on 1 or 2 images in each block and

participants were instructed to press a response button whenever they saw the red spot.

Participants correctly detected the red spot on over 90% of trials (mean accuracy = 95.3 + 2

%, SD = 2).

Scanning was performed at the York Neuroimaging Centre at the University of York

with a 3 Tesla HD MRI system with an eight channel phased array head coil (GE Signa Excite

3.0 T, High resolution brain array, MRI Devices Corp., Gainesville, FL). Axial images were

acquired for functional and structural MRI scans. For fMRI scanning, echo-planar images

were acquired using a T2*-weighted gradient echo sequence with blood oxygen level-

dependent (BOLD) contrast (TR = 3 s, TE = 32.7 ms, flip-angle = 90°, acquisition matrix 128 x

128, field of view = 288 mm x 288 mm). Whole head volumes were acquired with 38

contiguous axial slices, each with an in-plane resolution of 2.25 mm x 2.25 mm and a slice

thickness of 3 mm. T1-weighted images were acquired for each participant to provide high-

resolution structural images using an Inversion Recovery (IR = 450 ms) prepared 3D-FSPGR

(Fast Spoiled Gradient Echo) pulse sequence (TR = 7.8 s, TE = 3 ms, flip-angle = 20°,

acquisition matrix = 256 x 256, field of view = 290 mm x 290 mm, in-plane resolution = 1.1

mm x 1.1 mm, slice thickness = 1 mm). To improve co-registration between fMRI and the

3D-FSPGR structural image a high resolution T1 FLAIR was acquired in the same orientation

planes as the fMRI protocol (TR = 2850 ms, TE = 10 ms, acquisition matrix 256 x 224

interpolated to 512 giving effective in-plane resolution of 0.56 mm). First-level analysis of

the facial expression scan was performed with FEAT v 5.98. The initial 9s of data were

removed to reduce the effects of magnetic stimulation saturation. Motion correction

(MCFLIRT, FSL) was applied followed by temporal high-pass filtering (Gaussian-weighted

least-squares straight line fitting, sigma = 120s). Spatial smoothing (Gaussian) was applied
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at 6 mm (FWHM). Individual participant data were entered into a higher-level group

analysis using a mixed-effects design (FLAME, http://www.fmrib.ox.ac.uk/fsl). Parameter

estimate maps were generated for each experimental condition; fear, anger, disgust,

sadness and happiness. These maps were then registered to a high-resolution T1-anatomical

image and then onto the standard MNI brain (ICBM152). Regions defined by the localiser

scan were used to constrict MVPA analyses to face-responsive regions only.

To identify face-selective regions, data from a series of localizer scans with a

different set of participants (n = 83) was used (Flack et al., 2014). The localizer scan included

blocks of faces and scrambled faces. Images from each condition were presented in a

blocked design with five images in each block. Each image was presented for 1 s followed by

a 200-ms fixation cross. Individual participant data were entered into a higher-level group

analysis using a mixed-effects design (FLAME, http://www.fmrib.ox.ac.uk/fsl). Face-

responsive regions of interest were defined by the contrast of faces>scrambled faces at the

group level and spatially normalised to an MNI152 standard brain template. The peak voxels

for the OFA, FFA and STS in each hemisphere were determined from the resulting group

statistical maps. Then the 500 voxels with the highest z-scores within each region were used

to generate a mask. Masks were combined across hemispheres to generate 3 masks for the

OFA, FFA and posterior STS, which form the core face-selective regions in Haxby et al's

(2000) neural model (Supplementary Figure 1).

Parameter estimates in the main experimental scan to each expression were

normalised independently in each voxel by subtracting the mean parameter estimate across

all expressions and then registered onto the standard MNI152 brain. Pattern analyses were

then performed using the correlation-based MVPA method devised by Haxby and colleagues

(Haxby, Gobbini, Furey, Ishai, Schouten & Pietrini, 2001). After separating the data across
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odd and even blocks for each participant (as was done by Haxby, et al., 2001), we

determined the reliability of the patterns within participants by correlating patterns across

odd and even runs for each condition. This procedure was performed 24 times (i.e. once for

each participant) for each of the 15 possible combinations of basic emotions. The final

correlation matrix provides a measure of the similarity in the pattern of response across

different combinations of facial expressions. These neural correlations were transformed

using Fisher’s Z-transform and then converted into z scores.

Regression analyses

To then determine whether the pattern of perceptual similarity responses was best

predicted by variance in facial shape or surface information, a linear regression analysis was

performed using the similarity matrix for shape and surface analyses as independent

regressors and the perceptual similarity rating correlation matrices from each individual as

outcomes. Our linear regression method is similar to a Representational Similarity Analysis

(RSA; Kriegeskorte, Mur, & Bandettini, 2008; Kriegeskorte, 2009) which can characterise the

information carried by a given representation in behavioural response patterns, neural

activity patterns or a representational model. By analyzing the correspondence between

participant responses and neural response we can test and compare different models. For

example if either the shape or surface regressors are able to explain a significant amount of

the variance in the corresponding perceptual similarity rating matrices, the model

regression coefficient can be expected to be significantly greater than zero. All regressor

and outcome variables were Z-scored prior to the regression analysis. However, it is

important to note that the similarity responses are not fully independent. The same method

was used to measure similarity between predictor models based on neural response
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patterns in OFA, FFS and STS regions and perceptual ratings of expression similarity as

outcomes.
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RESULTS

Perception of facial expression is predicted by shape and surface properties of the image

Figure 3 shows the average perceptual similarity scores for each of 15 possible combinations

of facial expression across all participants. We then determined the extent to which

perceptual similarity of facial expressions could be predicted by the normalized shape and

surface properties of the image, by generating a corresponding similarity matrix for these

image properties. The group averaged matrix for perception was significantly correlated

with both shape (r (15) =.61, p=.016) and surface (r (15) =.77, p<.001) properties. In these

analyses, images were normalized through rigid realignment of fiducial positions in the

shape (procrustes) analysis and through a non-rigid transform to create fixed-shape images

for the measure of surface similarity.

An important question concerns whether these transforms were necessary, or

superfluous because the same characteristics were present in low-level properties of the

untransformed images. A similar analysis with the raw images failed to show a significant

relationship between perception and either shape (r (15) =.27, p=.31) and surface (r (15)

=.37, p=.16) properties. This suggests that the mechanism underlying the perception of

facial expression involves some form of equivalent normalization process.

To measure the reliability across participants, a regression analysis was performed in

which the models derived from the shape or surface analyses were independently used as

predictor variables and the perceptual similarity ratings matrices from each individual as

outcomes (Kriegeskorte et al. 2008). First, we checked that our image property models

(shape model and surface model) were not colinear. The variance inflation factor (VIF)

value for the shape and surface models was 3.17, which does not exceed the recommended

threshold of 5 (Montgomery, Peck, & Vining, 2012). The output of the regression analysis
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shows that the perceptual similarity of the facial expression could be explained by both the

shape (F(1,358) = 178, β=.58, p<.001) and the surface (F(1,358) = 399.5, β=.73, p<.001)

properties in the images.

In Figure 3 it is clear that the perceptual similarity between expressions can in part

be driven by high similarity ratings along the diagonal (where one fear expression is seen as

very similar to another fear expression, and so on). We will refer to these as within-category

comparisons. To determine the extent to which these within-category comparisons were

responsible for the result of the regression analysis, we repeated the analysis with just the

between-category (off-diagonal) comparisons, looking to see whether the pattern of

perceptual similarities between different expressions might still be tracked by the image

properties. Again, we found that the perceptual similarity of the expressions was

significantly predicted by both the shape (F (1,238) = 51.81, β=.42, p<.001) and the surface

(F(1,238) = 61.14, β=.46, p<.001) properties of the image, offering strong evidence of their

importance.

Perception of facial expression is predicted by neural responses in face-selective regions

Figure 4 shows the average correlation matrix for expressions involving each of the 15

possible combinations of basic emotions in each of the core face-selective regions. To

measure the reliability of the neural response to each facial expression, the data were

analysed in each face responsive region with a 5 x 2 repeated measures ANOVA with

Comparison (within-category, between-category) and Expression (Fear, Anger, Disgust,

Sadness and Happiness) as factors. There was a significant main effect of Comparison in the

STS (F (1, 23) =5.27, p=.03) and OFA (F (1, 23) =6.45, p=.018), but not in the FFA (F (1, 23)

=0.067, p=.8). This suggests that there are reliable patterns of response to facial expression
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in STS and OFA. We did not find any effect of Expression (STS: F (4, 92) =.59, p=.67, OFA: F

(4, 92) =1.2, p=.31, FFA: F (4, 92) =1.38, p=.248) or any interaction between Comparison and

Expression (STS: F (4, 92) =.77, p=.55, OFA: F (4, 92) =.94, p=.45; FFA: F (4, 92) =1.32, p=.27)

in any of the core face-selective regions. This suggests that the ability to discriminate

expressions was not driven by any specific expressions, but rather by a generalised ability to

discriminate all patterns of neural response to expressions.

Next, we determined how the pattern of perceptual similarity might be linked to the

patterns of response in different face-selective regions. We compared the similarity of

patterns of response to different facial expressions in each face-selective region (see Fig. 4)

with perceived similarity of the expressions (see Fig. 3). There was a significant correlation

between perception and patterns of response in the STS (r (15) = 0.62, p = .014) and OFA (r

(15) = 0.67, p<.001). However, there was no significant correlation between perception and

patterns of neural response in the FFA (r (15) = -0.08, p=.77).

To measure the reliability across participants, a linear regression analysis was used

with the neural responses in the different face responsive regions (OFA, FFA and posterior

STS) responses as individual regressors and the perceptual similarity ratings matrices from

each individual as the outcome. The perceptual similarity of the facial expressions could be

predicted by neural response to facial expressions in STS (F (1,358) = 181.2, β=.58, p<.001)

and OFA (F (1,358) = 235.7 , β=.63, p<.001) regions but not in the FFA region (F(1,358) =

2.11, β=-.08, p = .15).

Again, one possible interpretation of these results is that they might be driven

primarily by the higher within-condition compared to between-condition correlations. To

determine if this was the case, we repeated the analysis only using the off-diagonal

elements of the correlation matrices. As before, results showed that the perceptual
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similarity of the facial expressions could be predicted by neural response to facial

expressions in the STS (F(1,238) = 7.18 , β=.17, p<.008) and OFA (F(1,238) = 9.96 , β=.25,

p<.002), but not in the FFA region (F(1,238) = 1.5 , β=.08, p = .22).

To determine whether the patterns of response in the face-selective regions could

be explained by the magnitude of response to different expressions, we performed a

univariate analysis on each region of interest. Table 1 shows the % MR signal to each

expression. In contrast to the MVPA, Table 1 shows that similar levels of activation were

evident to all expressions within each region. A repeated measures ANOVA showed that

there was an effect of Region (F=63.0, p<0.0001), which was due to lower responses in the

STS. However, there was only a marginal effect of Expression (F=2.38, p=0.073) and a

marginal interaction between Region and Expression (F=2.11, p=0.066). This marginal

interaction likely reflects a relatively larger response to happiness compared to other

expressions in the OFA and STS, but a relatively larger response to fear compared to other

expressions in the FFA. It may also reflect the low response to sadness in the FFA but the

high response to sadness in the OFA and STS.

Finally, we determined how the pattern of perceptual similarity might be linked to

the patterns of response in regions outside the core face-selective regions. The localiser

scan was able to define other face-selective regions in the inferior frontal gyrus (IFG),

amygdala and precuneus, which are part of the extended face processing network. We

compared the similarity of patterns of response to different facial expressions in each face-

selective region with perceived similarity of the expressions. There was a significant

correlation between perception and patterns of response in the IFG (r (15) = 0.63, p =0.01),

but not in the amygdala (r (15) = 0.28, p=0.31) or precuneus (r (15) = -0.25, p=0.37).

However, when only the between-category comparisons were measured we did not see any
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significant correlations in any of these face regions (IFG: r (10) = -0.01, p = 0.97; amygdala: r

(10) = -0.33, p = 0.23; precuneus: r (10) = 0.02, p = 0.94).

To determine whether regions outside the face-selective ROIs could also predict

patterns of response to facial expression, we repeated the analysis using the Harvard Oxford

anatomical masks (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). First we asked whether

there were distinct patterns of response to different facial expressions. From the 48

anatomical regions, only the Inferior Temporal Gyrus posterior (ITGp, F = 17.9, p<.001) and

the Middle Temporal Gyrus posterior division (MTGp, F = 4.3, p=.048) showed distinct

patterns (Suppl. Table 1). Next, we compared the similarity of patterns of response to

different facial expressions in each region with perceived similarity of the expressions. In

contrast to the face-selective ROIs, neither the ITGp (r (15) = 0.15, p = .59), the MTGp (r (15)

= 0.48, p = .077) nor any other anatomical region showed a significant correlation between

patterns of response and perceptual similarity.
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DISCUSSION

Facial expressions are signalled by complex patterns of muscle movements that create

changes in the appearance of the face. The aims of the present study were to determine

how our perception of expression is linked to (1) the image properties of the face and (2)

the neural responses in face-selective regions. Together, our findings show that the

mechanisms that underpin the perception of facial expression are tightly linked to both

shape and surface properties of the image and to the pattern of neural response in specific

face-selective regions.

Our use of a measure of the perceptual similarity between expressions allows a more

fine-grained analysis than the more standard method of categorizing each expression as one

of the basic emotions (e.g. Mattavelli et al., 2013). Instead, we were able to track the

magnitude of perceived differences between emotions, and to demonstrate that this

pattern of between-category differences could still be modelled both from normalized

image properties and from neural responses in STS. The fact that the link between image

properties and perception was still evident when the within-category correlations (fear with

fear, etc.) were removed from the analysis shows that the findings are not driven solely by

the relatively high within-category relationships. Rather, it suggests a more continuous

representation of facial expression involving a distinct between-category structure.

Different facial expressions can be defined by edge-based shape cues that result

from changes in the shape of the internal features (Ekman, 1972; Bruce & Young, 1998,

2012). Previous studies have suggested that these shape cues are important for the

perception of facial expressions (Bruce & Young, 1998; Magnussen et al., 1994; White, 2001;

Harris et al., 2014). Although changes in facial expression also affect the surface properties

of the face (Calder et al., 2001), this information has not been thought to be particularly
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diagnostic for discriminating facial expression (Bruce & Young, 1998). In this study, we found

that both the shape and surface properties correlated highly with perceptual judgements.

So, while the present findings provide further support for the long held assertion that shape

cues are important for the perception of expression, the novel finding from this study is that

surface properties are as important. This usefulness of both types of cue may reflect the

natural intercorrelation between shape and surface cues within many expressions. For

example, fear expressions involve opening the mouth and widening the eyes (shape cues)

and this creates salient contrast changes in the eye and mouth regions (surface cues).

Neuroimaging studies have previously revealed a number of regions that respond

selectively to facial expression (Haxby et al., 2000; Allison et al., 2000). We found that the

perceptual similarity of different facial expressions could be predicted by the similarity in

the pattern of neural response in the OFA and STS. That is, facial expressions that were

perceived as being similar had more similar neural patterns of response in these regions,

which is of course consistent with Haxby et al.'s (2000) idea that they are important to the

analysis of changeable aspects of faces such as expression. Our findings are also consistent

with a recent study showing that patterns of neural response correlated with the perceptual

similarity of dynamic facial expressions in the posterior superior temporal sulcus (Said, et al

2010). Indeed, the correspondence between perception and neural response in the superior

temporal region is consistent with the role of this region in the perception of facial

expression (Haxby et al., 2000; Winston et al., 2004; Engell & Haxby, 2007; Harris, Young &

Andrews, 2012; Harris et al., 2014; Baseler, Harris, Young & Andrews , 2014; Pitcher, 2014;

Psalta et al., 2014; Wegrzyn et al., 2015).

The OFA is thought to be the primary input area in the face processing network and

has projections to both the STS and FFA (Haxby et al., 2000). However, more recently there
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is evidence that face processing can occur in the absence of input through the OFA (Rossion

et al., 2003). Our finding that the OFA can decode expression and contains representations

of perceived similarity of these images suggests that it is involved in representing facial

expression. This fits with other studies showing that the OFA adapts to facial expression

(Fox et al., 2009) and that applying TMS to the OFA disrupts the perception of facial

expression (Pitcher, 2014).

In contrast to the STS and OFA, patterns of response in the FFA did not predict the

perception of facial expression. Although our findings are consistent with neural models

that suggest that this region is important for the representation of relatively invariant facial

characteristics associated with recognition of identity (Allison et al., 2000; Haxby et al.,

2000), they contrast with more recent studies that have shown responses in the FFA can be

linked to the perception of facial expression (Harry, Williams, Davis & Kim, 2013; Wegrzyn et

al., 2015). One potentially crucial difference between our study and these previous studies

is that they asked only whether patterns of response to different facial expressions were

distinct. In our study, we addressed the more fine-grained question of whether the

perceptual similarity of different facial expressions can be explained by the similarity in the

patterns of neural response.

In conclusion, we show that perceptual patterns of response to facial expression are

correlated with statistical properties of face images and with neural responses. We found

that changes in both the shape and surface properties of the face predict perceptual

responses to facial expression and that difference in the neural patterns of response in the

STS, but not the FFA can also predict perceptual responses to facial expressions. Together,

these results show the importance of image properties in understanding higher level
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perceptual judgements and suggest that these factors may be an important organizing

principle for the neural representations underlying the perception of facial expression.
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Fear Anger Disgust Sad Happy

OFA 0.87 + 0.08 0.79 + 0.07 0.79 + 0.08 0.79 + 0.09 0.88 + 0.09

STS 0.34 + 0.08 0.33 + 0.07 0.28 + 0.08 0.31 + 0.09 0.34 + 0.09

FFA 0.82 + 0.08 0.73 + 0.07 0.72 + 0.07 0.70 + 0.08 0.81 + 0.08

Table 1 %MR signal in face-selective regions to different facial expressions.
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Figure 2 Exemplars of faces posing different expressions (top) and the location of the key

fiducial points in each face (bottom).
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Figure 3 Regression analyses of the perceptual similarity data with shape and surface

properties of the image. The analysis shows that the perceptual similarity of facial

expressions can be predicted by both the shape and surface properties of the face. Error

bars represent 95% confidence intervals. * denotes p<.001. Colour bars for each grid

represent z score scale.
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Figure 4 Regression analyses of the perceptual similarity data (shown in Figure 2) with the

fMRI data from different face-selective regions. The analysis shows that the perceptual

similarity of facial expressions can be predicted by the pattern of response in the OFA and

STS, but not in the FFA. Error bars represent 95% confidence intervals. * denotes p<.001.

Colour bars for each grid represent z score scale.
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Supplementary Figure 1 Location of the core (superior temporal sulcus: STS, occipital face

area: OFA, fusiform face area: FFA) and extended (inferior frontal gyrus: IFG, amygdala:

AMG, PC: precuneus) face-selective regions
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Harvard Oxford Brain Region Within vs between level discrimination (p value)

Angular Gyrus .29

Central Opercular Cortex .78

Cingulate Gyrus anterior division .07

Cingulate Gyrus posterior division .18

Cuneal Cortex .09

Frontal Medial Cortex .75

Frontal Operculum Cortex .81

Frontal Orbital Cortex .60

Frontal Pole .49

Heschls Gyrus includes H1 and H2 .4

Inferior Frontal Gyrus pars opercularis .33

Inferior Frontal Gyrus pars triangularis .22

Inferior Temporal Gyrus anterior division .35

Inferior Temporal Gyrus posterior division .001

Inferior Temporal Gyrus temporo occipital part .61

Insular Cortex .37

Intracalcarine Cortex .45

Juxtapositional Lobule Cortex formerly SMA .77

Lateral Occipital Cortex inferior division .12

Lateral Occipital Cortex superior division .07

Lingual Gyrus .61

Middle Frontal Gyrus .63

Middle Temporal Gyrus anterior division .51

Middle Temporal Gyrus posterior division .05

Middle Temporal Gyrus temporooccipital part .16

Occipital Fusiform Gyrus .92

Occipital Pole .59

Paracingulate Gyrus .44

Parahippocampal Gyrus anterior division .95

Parahippocampal Gyrus posterior division .29

Parietal Operculum Cortex .29

Planum Polare .65

Planum Temporale .99

Postcentral Gyrus .53

Precentral Gyrus .24

Precuneus Cortex .06

Subcallosal Cortex .95

Superior Frontal Gyrus .97

Superior Parietal Lobule .75

Superior Temporal Gyrus anterior division .47

Superior Temporal Gyrus posterior division .80

Supracalcarine Cortex .86

Supramarginal Gyrus anterior division .07

Supramarginal Gyrus posterior division .24

Temporal Fusiform Cortex anterior division .87

Temporal Fusiform Cortex posterior division .60

Temporal Occipital Fusiform Cortex .82

Temporal Pole .98

Suppl. Table 1 Significance values for within>between category expression discrimination in

48 cortical brain regions as defined by the Harvard Oxford brain atlas


