
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/77362

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.

http://go.warwick.ac.uk/wrap
http://go.warwick.ac.uk/wrap/77353


Library Declaration and Deposit Agreement

1. STUDENT DETAILS

Stephen Dennis

0721479

2. THESIS DEPOSIT

2.1 I understand that under my registration at the University, I am required to
deposit my thesis with the University in BOTH hard copy and in digital format.
The digital version should normally be saved as a single pdf file.

2.2 The hard copy will be housed in the University Library. The digital version
will be deposited in the Universitys Institutional Repository (WRAP). Unless
otherwise indicated (see 2.3 below) this will be made openly accessible on
the Internet and will be supplied to the British Library to be made available
online via its Electronic Theses Online Service (EThOS) service. [At present,
theses submitted for a Masters degree by Research (MA, MSc, LLM, MS or
MMedSci) are not being deposited in WRAP and not being made available
via EthOS. This may change in future.]

2.3 In exceptional circumstances, the Chair of the Board of Graduate Studies
may grant permission for an embargo to be placed on public access to the
hard copy thesis for a limited period. It is also possible to apply separately
for an embargo on the digital version. (Further information is available in the
Guide to Examinations for Higher Degrees by Research.)

2.4 (a) Hard Copy I hereby deposit a hard copy of my thesis in the University
Library to be made publicly available to readers immediately.
I agree that my thesis may be photocopied.

(b) Digital Copy I hereby deposit a digital copy of my thesis to be held in
WRAP and made available via EThOS.
My thesis can be made publicly available online only after January 1st
2017.

3. GRANTING OF NON-EXCLUSIVE RIGHTS
Whether I deposit my Work personally or through an assistant or other agent, I
agree to the following: Rights granted to the University of Warwick and the British
Library and the user of the thesis through this agreement are non-exclusive. I
retain all rights in the thesis in its present version or future versions. I agree that
the institutional repository administrators and the British Library or their agents
may, without changing content, digitise and migrate the thesis to any medium or
format for the purpose of future preservation and accessibility.



4. DECLARATIONS

(a) I DECLARE THAT:

• I am the author and owner of the copyright in the thesis and/or I have
the authority of the authors and owners of the copyright in the thesis to
make this agreement. Reproduction of any part of this thesis for teaching
or in academic or other forms of publication is subject to the normal
limitations on the use of copyrighted materials and to the proper and full
acknowledgement of its source.
• The digital version of the thesis I am supplying is the same version as

the final, hardbound copy submitted in completion of my degree, once
any minor corrections have been completed.
• I have exercised reasonable care to ensure that the thesis is original,

and does not to the best of my knowledge break any UK law or other
Intellectual Property Right, or contain any confidential material.
• I understand that, through the medium of the Internet, files will be avail-

able to automated agents, and may be searched and copied by, for ex-
ample, text mining and plagiarism detection software.

(b) IF I HAVE AGREED (in Section 2 above) TO MAKE MY THESIS PUBLICLY
AVAILABLE DIGITALLY, I ALSO DECLARE THAT:

• I grant the University of Warwick and the British Library a licence to make
available on the Internet the thesis in digitised format through the Institu-
tional Repository and through the British Library via the EThOS service.
• If my thesis does include any substantial subsidiary material owned by

third-party copyright holders, I have sought and obtained permission to
include it in any version of my thesis available in digital format and that
this permission encompasses the rights that I have granted to the Uni-
versity of Warwick and to the British Library.

5. LEGAL INFRINGEMENTS
I understand that neither the University of Warwick nor the British Library have
any obligation to take legal action on behalf of myself, or other rights holders, in
the event of infringement of intellectual property rights, breach of contract or of
any other right, in the thesis.

Please sign this agreement and return it to the Graduate School Office when you sub-
mit your thesis.

Student’s signature: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Date: . . . . . . . . . . . . . . . . . .



Muon Antineutrino Disappearance and

Non-standard Interactions at the T2K Experiment

by

Stephen Dennis

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

Physics

October 2015



Abstract

T2K is a long-baseline neutrino oscillation experiment, which studies the changing

flavour composition of a νµ beam over a 295 km baseline from an accelerator at J-

PARC to Super-Kamiokande, a 50 kt water Čerenkov detector. The T2K neutrino

beam has an energy peak at 0.6 GeV which gives strong sensitivity to oscillations at the

atmospheric mass squared splitting. The beam can be run in two modes, producing a

beam either dominated by neutrinos or by antineutrinos. Collecting data in antineutrino-

mode allows the measurement of the neutrino mixing parameters on antineutrinos only.

In the first analysis of T2K antineutrino-mode data, we use beam data collected up to

June 2015 to measure sin2θ23 and |∆m2
32|. The 90% CL allowed values for mixing angle

are 0.327 < sin2θ23 < 0.692 (normal hierarchy) and 0.332 < sin2θ23 < 0.697 (inverted

hierarchy). The 90% CL allowed values for mass splitting are 2.03×10−3 eV2 < |∆m2
32| <

2.92×10−3 eV2 (normal hierarchy) and 2.03×10−3 eV2 < |∆m2
31| < 2.92×10−3 eV2

(inverted hierarchy). This is the world’s best measurement in sin2θ23.

A difference between neutrino and antineutrino survival probabilities could re-

sult from physics beyond the Standard Model, known as non-standard interactions. A

simultaneous fit to the T2K neutrino-mode and antineutrino-mode datasets allows for a

direct search for such interactions. We see no evidence for this hypothesis.

i
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Chapter 1

Introduction

Since its development in the 1960s, The Standard Model of Particle Physics has had

an impressive record of predictions, including the gluon, W and Z bosons and most

recently the Higgs boson. It has also made many precision predictions of many physical

observables which have been verified by the best possible experimental measurements.

However, the theory is not complete with open questions remaining about the origin of

gravity, dark matter and the matter-dominated universe itself.

This thesis covers two topics which are not in the Standard Model. The first is

neutrino oscillation, which was experimentally confirmed in the early 2000s. Neutrino

oscillation demonstrates that the neutrino is massive, requiring physics beyond the Stan-

dard Model. Oscillations also add the possibility of CP violation in the lepton sector,

which could help to explain the matter-antimatter asymmetry in the universe. T2K is a

powerful experiment designed to use an accelerator neutrino source to study oscillation

phenomena. This thesis contains the first analysis of T2K data taken in the antineutrino

beam mode, which shows strong evidence for muon antineutrino disappearance.

The second analysis topic concerns a search for evidence of new forms of neutrino

oscillation outside of the standard framework that has developed from the results of

many experiments stretching back to the pioneering measurements of Ray Davies in the

1950s. The hypothesis tested is the addition of novel flavour-changing neutral current

interactions with matter occurring along the experiment’s baseline. Evidence for these

new interactions would influence future attempts to measure CP violation in neutrinos,

as well as requiring major additions to our theories. Current and future limits for these

hypothetical phenomena are included, offering no evidence for their existence.
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Chapter 2

An Overview of Neutrino Physics

2.1 The History of the Neutrino

2.1.1 Prediction and Discovery

In 1930, a key issue in physics was the shape of the beta decay electron energy spectrum.

At the time, a normal beta decay was believed to be:

A
Z N→ A

Z+1N′ + e− (2.1)

In terms of nucleons, this is:

n→ p+ e− (2.2)

With only two outgoing particles, conservation of energy and momentum required that

the electron emission energy was uniquely specified and should have appeared as sharp

peak. Empirically, however, the spectrum had a distinctive, wide pattern which did not

fit with a two-particle final state. The shape of the beta decay spectrum can be seen

in Figure 2.1. The existence of spin makes this problem even worse: the single spin 1
2

neutron cannot produce a final state with exactly two spin 1
2 outgoing particles, implying

that the suggested beta decay process violates conservation of angular momentum as

well.

In order to resolve this tension, in 1930 Wolfgang Pauli proposed the neutrino:

beta decays would also emit a neutral fermion, although the shape of spectrum and

the particle’s previously undetected nature made clear that the new particle was both

light and reluctant to interact. With three decay products, the conservation issues were

resolved. Pauli referred to this particle as a ‘neutron’ but in 1932, before his theory

became accepted, that name was given to the neutral nucleon. Pauli’s particle became

known as the neutrino.

Orders of magnitude lighter than any other known fermion, and incapable of

2
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Figure 2.1: The beta-decay spectrum for Carbon-14. The blue line shows the spectrum with a
neutrino, while the red line shows the prediction for a two-body decay (not to scale).

interacting with the electromagnetic or strong forces, neutrinos were not detected directly

until the work of Reines and Cowan, published in 1956 [1]. The advent of fission reactors

gave mankind a new, high flux source of neutrinos, which made direct neutrino detection

a more feasible task. Reines and Cowan built their experiment 11 m from the Savannah

River nuclear reactor in South Carolina. They used water tanks, with dissolved cadmium

chloride, surrounded by scintillator layers. The neutrinos underwent the inverse beta

decay interaction:

νe+ p→ e+ + n (2.3)

The positron produced would then annihilate with an electron from the material, pro-

ducing a pair of photons, which would be detected in the scintillator. To better constrain

the signal, the neutron could also be captured by the cadmium solute:

n+ 108Cd→ 109Cd + γ (2.4)

Thus, the signal was a coincidence of detection of the pair production photons, followed

by detection of the gamma ray from the neutron capture. The experiment discovered a

significantly increased signal when the reactor was running than when it was dormant:

the first convincing observation of the neutrino. In 1995, after the death of Clyde Cowan,

Frederick Reines received the Nobel Prize in Physics, in large part due to this experiment.

Discovery of a single neutrino type was a huge step, but the story did not end

there. Reines-Cowan had seen the electron antineutrino (νe) as produced by a fission

reactor, but it did not remain unique for long.
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The muon neutrino was discovered in 1962 at Brookhaven National Laboratory,

in New York state [2]. The experiment used a proton beam to produce pions, which

decayed to produce muons and their associated neutrinos:

π± → µ± +
(−)
νµ (2.5)

The resulting neutrinos were detected using an aluminium spark chamber. They

produced only muons, rather than electrons, demonstrating that the muon and electron

neutrino flavour states are distinct. This work resulted in Lederman, Schwartz and

Steinberger receiving the 1988 Nobel Prize in Physics.

At this point in the timeline, we had observed three charged leptons, but only

two neutrino flavours. The existence of a neutrino partner to the heavy tau lepton was

inferred, yet it took many more years to be experimentally verified due to the tau’s high

mass and short lifetime.

In the 1990s, experiments at the Large Electron Positron collider (LEP) at CERN

demonstrated that there were three light active neutrinos [3]. This third neutrino was

finally directly observed by the DONUT (Direct Observation of NU Tau) experiment at

Fermilab, published in 2000 [4]. Using photographic emulsion sheets to get fine grained

observations of neutrino interactions, DONUT observed neutrino-induced interactions

with a muon-like track containing a kink shortly after the vertex, indicating the decay

of a tau to a muon and finally confirming the existence of the tau neutrino.

2.1.2 Neutrino Mixing

There exist three discovered neutrino flavour states, each associated with a charged lep-

ton flavour (νe, νµ and ντ ). Neutrino oscillation is the phenomenon by which the flavour

composition of a neutrino flux changes as it propagates. Several sets of experimental

evidence led toward the ultimate acceptance of oscillation as a theory.

2.1.2.1 The Solar Neutrino Problem

Neutrino oscillations were first hinted at by the Homestake Experiment in the late

1960s [5]. Homestake used a radiochemical method to detect solar electron neutrinos: a

large tank of pure C2Cl4 was used as a target. An inverse beta decay mechanism was

again used:
37Cl + νe → 37Ar + e− (2.6)

Roughly monthly, the argon atoms were removed by bubbling helium through the vol-

ume, and were then counted as they decayed giving a measurement of electron neutrino

flux. These electron neutrinos were produced in the Sun, and their rates were lower than

4



Figure 2.2: The energies and relative fluxes of the neutrinos produced by different solar processes.
The energy thresholds for various solar neutrino experiments are shown along the top of the figure.
Adapted from [9].

solar models predicted, by a factor of 2-3 [6]. Other experiments such as SAGE [7] and

GALLEX [8] used gallium to detect higher flux, lower energy solar neutrinos. These

experiments observed a smaller deficit, suggesting an energy dependence. These dis-

crepancies became known as the ‘solar neutrino problem’. The vast majority of solar

neutrinos being studied were below the energy threshold required for νµ or ντ charged

current (CC) interactions, so any oscillated flux could not be seen in these experiments.

The solar reactions that produce neutrinos, the energies of those neutrinos and thresholds

for detection methods can be seen in Figure 2.2.

2.1.2.2 The Atmospheric Neutrino Anomaly

Studies were also performed of neutrinos produced by muon decays in the atmosphere;

these measured the ratio of νµ to νe events as a function of zenith angle (a proxy for

baseline). In order to cancel systematic uncertainties, a double ratio of the predicted

rate to the expected rate for each of νµ and νe was used. The ratios measured were lower

than predicted - an indication of either νµ disappearance or νe appearance. This result

became known as the ‘atmospheric neutrino anomaly’. Importantly, Super-Kamiokande

demonstrated that the observed neutrino flux varied as a function of zenith angle (and

thus distance travelled) [10]. Neutrino oscillations were proposed as the cause of this [11].

More information on Super-Kamiokande and the water Čerenkov method can be found

in Section 3.3.
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2.1.2.3 Confirmation of Neutrino Oscillation

The Sudbury Neutrino Observatory (SNO) used heavy water in a Čerenkov detector

to detect solar neutrinos. Due to the use of heavy water, it could also detect neutral

current (NC) neutrino interactions on deuterium [12]:

να + 2D→ να + p+ n (α = e, µ, τ) (2.7)

The neutrons produced in this interaction can interact with another deuteron, producing

tritium and a 6.3 MeV photon.

n+ 2D→ 3T + γ (2.8)

Detecting the coincidence of these two interactions allowed the identification of NC

events. Later phases of SNO detected the neutrons using techniques with a higher

capture rate, first with a NaCl solute, then with Helium-3 proportional counters. Since

these neutral current interactions do not produced charged leptons, they are flavour-

independent. The rate matched the solar predictions, showing that the ‘missing’ solar

neutrinos were still there, and had only changed flavour state. SNO also observed charged

current events from solar neutrinos, and observed a deficit [13]. Taken together, these

results can be considered proof of flavour-changing neutrino oscillation.

The Standard Model was constructed with massless neutrinos for reasons that

will be explained in Section 2.2.4, but the evidence of neutrino oscillations demonstrated

that at least two neutrinos are massive, as explained in Section 2.2.5. While their

absolute mass is unknown, it has been experimentally confirmed that the neutrino masses

are < 2 eV using tritium decay [14]. Some cosmological experiments claim even more

stringent limits, like Σmν < 0.6 eV [15], although these are highly model dependent.

2.1.2.4 The LSND Anomaly

The neutrino oscillation story has one more major twist: the LSND anomaly [16]. LSND

(the Liquid Scintillator Neutrino Detector) was a short baseline (30 m) accelerator neu-

trino experiment at Fermilab designed to search for νe appearance in a νµ beam using

inverse beta decay: p+νe→ e+ +n. As will be seen in Section 2.2.5, oscillations depend

on the splitting of neutrino mass states:

∆m2
kj = m2

k −m2
j (2.9)

Previously, studies of oscillation in the atmospheric and solar sectors had measured

values of |∆m2
32| ≈ 2.3 × 10−3 eV2 and ∆m2

21 ≈ 8 × 10−5 eV2 respectively. In a three-

6



νµ µ−

W±

(a) Charged current.

νµ

Z0

νµ

(b) Neutral current.

Figure 2.3: Example weak interaction vertices.

flavour oscillation system, there are only two free mass splittings ∆m2
21 and |∆m2

32| since

∆m2
13 +∆m2

21 +∆m2
32 = 0. However, LSND found a splitting ∆m2

LSND ≈ 1.2 eV2 which

is inconsistent with the solar and atmospheric results in a three-flavour model. The LEP

experiment had confirmed that there are only three weakly interacting neutrinos lighter

than half the Z0 boson mass [3], while the LSND result needed a fourth neutrino. This

neutrino would thus have to be unable to couple to the weak force: it must be sterile.

Subsequent experiments have provided incompatible results in sterile studies, which have

yet to be reconciled.

2.2 Neutrino Theory

2.2.1 The Weak Interaction

The weak force is so named because the electromagnetic and strong interactions tend to

dominate it when they are allowed. However, neutrinos interact only via the weak force.

This results in neutrino interactions having very small cross sections. This is a major

reason that neutrinos evaded detection for so long, and is crucial to the design of neutrino

experiments: experiments must be designed to study very high neutrino fluxes, and have

large detector masses in order to accumulate usable event numbers. The weak force is

mediated by massive gauge bosons: the electrically charged W± bosons and the neutral

Z0 boson. It is the fact that the gauge bosons are massive (∼80 and ∼91 GeV) that leads

to the suppression of weak interactions, and thus the observed weakness of the force.

The charged and neutral bosons lead to two categories of weak interactions: charged

current (CC) and neutral current (NC) respectively. CC interactions respect flavour,

and produce the appropriate charged leptons. NC interactions have no dependence on

the (non-sterile) flavour state of the neutrino, and do not make charged leptons directly.

Feynman diagrams of the two types of weak vertex can be seen in Figures 2.3a and 2.3b.

For the analyses in this thesis, the main signal mode will be Charged Current
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Quasi-Elastic (CCQE), in which a neutrino interacts with a nucleon to produce only a

charged lepton and a daughter nucleon. This, and other neutrino interaction modes will

be explained in much greater detail in Section 4.2.1.

A key aspect of the weak interaction is its relationship with two linked concepts:

helicity and chirality. We define the helicity of a particle to be the dot product of its

spin and its direction of motion. This helicity commutes with the Hamiltonian, and is

thus conserved. For massless particles this is clearly defined, but for massive particles a

Lorentz boost can reverse the direction of motion without affecting the spin, switching

the helicity. Neutrinos are nearly massless, which means experimentally we observe

neutrinos with a well-defined helicity. In 1957, it was observed that neutrinos only

appear with left-handed helicity [17].

However, we now know that neutrinos have mass. For massive particles we must

define a rather more abstract quantity which is Lorentz invariant, at the expense of

its commutation with the Hamiltonian. This is the chirality, and we define the chiral

projection operators which break a Dirac spinor ψ into left-handed and right-handed

chiral components:

ψL = P̂Lψ =
1− γ5

2
ψ ; ψR = P̂Rψ =

1 + γ5

2
ψ (2.10)

where γ5 is the i times the product of the 4 gamma matrices in the Dirac equation [18].

Clearly, we see ψ = ψL + ψR. Since γ5 is Hermitian and {γ5, γµ} = 0, it also follows:

ψLψL =ψRψR = 0 (2.11)

The weak force is a chiral interaction, and in the Standard Model only left-handed

particles and right-handed antiparticles couple to the weak bosons.

2.2.2 CP Violation

One of the great questions of modern physics is the matter-antimatter asymmetry in

the universe. In order to explain why we do not see a universe with equal parts matter

and antimatter, three conditions must be met: Baryon number must be violated, C

and CP-symmetry must be violated and these processes must occur outside of thermal

equilibrium [19]. Neutrino physics could provide evidence for violation of CP-symmetry

beyond that already observed in the quark sector.

To explain this in a more useful fashion, a little more detail is required. We can

define a quantum mechanical charge conjugation operator Ĉ which replaces particles

with their antiparticles:

q → −q (2.12)
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where q represents each charge carried by the particle. We also define a parity operator

P̂ which reverses the sign of spatial dimensions:

t→ t x→ −x y → −y z → −z (2.13)

Since applying either of these operators twice gives the original input, P̂ 2 = Ĉ2 = 1 and

so the eigenvalues of these operators can have the values ±1. The parity of a system is

the product of the parities of its components. Similarly, the Ĉ eigenvalue of a system

(henceforth called C-parity) is the product of the C-parities of its components. By

convention, we give fermions a parity of +1 and anti-fermions a parity of −1.

Parity and C-parity are, to our knowledge, conserved in strong and EM inter-

actions. In 1956, however, it was demonstrated using beta decays from cobalt atoms

with aligned spins that parity is maximally violated by the weak interaction [20]. CP,

the product of parity and C-parity, appeared to be conserved until it was demonstrated

using kaon decays that CP is violated in a minority of weak interactions. Measuring CP

violation in the lepton sector remains a major goal of particle physicists. So far, evidence

suggests that we do reach a fully conserved quantity if we apply a third transformation

- time reversal (T̂ ):

t→ −t (2.14)

The property that applying these three transformations leaves physics unchanged is

known as CPT symmetry, and is an essential property of many physics models. CPT

violation would require a reinterpretation of most of modern physics, and CPT symmetry

will be considered to be true for the remainder of this work.

2.2.3 V-A Structure

The requirement that any given matrix element for an interaction must be Lorentz

invariant puts strict constraints on the possible form of the interaction vertex. There are

sixteen combinations of the gamma matrices and spinors that produce Lorentz invariant

currents. These form 5 categories according to the way they transform under parity:

scalar, pseudoscalar, vector, axial vector and tensor. Under a parity transformation, the

scalar and axial vector components remain the same, while the pseudoscalar and vector

are transformed.

Experimentally, it was determined that the structure of the charged current weak

interaction is Vector-Axial, in which a spin-1 particle is exchanged [21]:

JCC ∝ γµ(1− γ5) (2.15)

In this way, the vector and axial components both conserve parity on their own, but the
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difference V-A does not. The neutral current weak interaction follows a similar structure,

modified by a correction for the each of the vector (CfV ) and axial (CfA) components,

dependent on the type of fermion f interacting [22]:

JNC ∝ γµ(CfV − C
f
Aγ

5) (2.16)

In the Standard Model, CνV = CνA = 1
2 [21]. The contributions from the vector and

axial currents must be calculated separately, and will lead to different systematics in our

cross-section models.

2.2.4 Neutrino Mass

The non-zero neutrino mass raises an additional puzzle. In the Standard Model La-

grangian, particle masses are included by a Dirac mass term:

LD = mψψ

= m(ψL + ψR)(ψL + ψR)

= m(ψLψR +ψRψL)

(2.17)

Equation 2.11 was used for the final step here. As such, a Dirac mass appears in the

Lagrangian as a coupling of a left-handed to a right-handed chiral state. However, if the

neutrino has no right-handed state (and similarly the antineutrino has no left-handed

state), this term disappears. Thus, unless there exists a right-handed neutrino, the

neutrino cannot have a Dirac mass.

Since we know that the neutrino does have mass but have not observed a right-

handed state, we introduce an alternative mechanism. We can introduce a right-handed

neutrino field that does not couple to the weak interaction and carries no gauge quantum

numbers. Majorana proposed that we manufacture this right-handed field from the

charge conjugate of the left-handed field:

Ĉ = iγ2γ0 (2.18)

ψCL = ĈψL (2.19)

LM = −1

2
M(ψLψ

C
L +ψCLψL) (2.20)

Under this hypothesis, the right-handed component is accessed by the charge

conjugation operator applied to the left-handed state: the neutrino and the antineutrino

are the same particle. The two states are coupled by the Majorana mass M . The
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interactions of this single neutrino are dependent on which chiral state interacts with

the W boson. Thus the mass is included by the coupling of the left-handed state (which

interacts to produce negative leptons) to the right-handed state (which interacts to

produce positive leptons). Neutrinos are the only Standard Model fermions for which

this is possible since the others have electromagnetic charge, which would reverse under

the charge conjugation. This construction adds a number of interactions that violate

lepton number by ±2, such as neutrinoless double beta decay. Experimental searches

for these interactions are ongoing.

2.2.5 Neutrino Oscillation

The major topic of this thesis is the study of neutrino oscillation: a phenomenon in which

the flavour composition of a neutrino flux changes as it propagates. We will consider

neutrinos with three flavour states (νe, νµ and ντ ) and three mass states (ν1, ν2 and ν3).

The empirical observation of oscillation indicates that the neutrino flavour eigenstates

are not identical to the mass eigenstates. We produce and detect neutrinos in definite

flavour eigenstates, and they propagate according to their mass states. Each neutrino

flavour state is a different quantum mechanical superposition of the mass states. Flavour

oscillation is a direct consequence of this: the differing mass states propagate at slightly

different velocities. In the context of a coherent neutrino beam, this results in the mass

states having different relative phases at different points in the beam. When an inter-

action occurs, we have a neutrino with a set of mass states which yields a superposition

of different flavour states. The result is that neutrino beam can contain flavour eigen-

states which were not present in the beam when it was generated. This explains the

experimental data from solar and atmospheric neutrinos described in Section 2.1.2.

In order to calculate oscillation probabilities, we must consider the transforma-

tions between mass (k) and flavour (α) states. This transformation can be expressed as

a unitary rotation matrix U:

|να〉 =
∑
k

Uαk |νk〉 (2.21)

|νk〉 =
∑
α

U∗αk |να〉 (2.22)

Here, the matrix U for three flavour oscillation is known as the Pontecorvo-Maki-

Nakagawa-Sakata (PMNS) matrix, and is parameterised in terms of three mixing angles
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(θ12, θ23 and θ13) and a phase which describes CP violation (δcp) [14]:

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδcp

0 1 0

−s13e
iδcp 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδcp

−s12c23 − c12s23s13e
iδcp c12c23 − s12s23s13e

iδcp s23c13

s12s23 − c12c23s13e
iδcp −c12s23 − s12c23s13e

iδcp c23c13



(2.23)

For conciseness, the notation convention:

ckj = cos(θkj) ; skj = sin(θkj) (2.24)

has been used. The three flavour framework offers only one free physical phase, and its

association with θ13 in the above equation is an arbitrary choice made in the parame-

terisation. The time development of the mass eigenstates can be written:

i
d

dt

ν1

ν2

ν3

 = H

ν1

ν2

ν3

 (2.25)

Here, H is the Hamiltonian operator. In vacuum:

Hvacuum =
1

2E

m
2
1 0 0

0 m2
2 0

0 0 m2
3

 (2.26)

The total Hamiltonian will contain this vacuum Hamiltonian, but may contain other

terms from matter interaction, as will be explained in Section 2.2.7. Transforming to

the flavour states using the PMNS matrix U, we get:

i
d

dt

νeνµ
ντ

 = UHtotalU
†

νeνµ
ντ

 (2.27)

To calculate probabilities, we treat the evolving mass states as plane waves [18]:

|νk(t)〉 = e−iEkt|νk〉 (2.28)
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This means that a neutrino created at t = 0 with definite flavour α has a flavour

component at time t:

|να(t)〉 =
∑
k

U∗αke
−iEkt|νk〉 (2.29)

Combining equations 2.21 and 2.29, we get the flavour state at t as a superposition of

flavour states:

|να(t)〉 =
∑
β

(∑
k

U∗αke
−iEktUβk

)
|νk〉 (2.30)

From here, we get the amplitude of να oscillating to νβ:

Aνα→νβ (t) ≡ 〈νβ|να(t)〉 =
∑
k

U∗αkUβke
−iEkt (2.31)

with the oscillation probability:

Pνα→νβ (t) ≡ |Aνα→νβ (t)|2 =
∑
k,j

U∗αkUβkU
∗
αjUβje

−i(Ek−Ej)t (2.32)

For a neutrino of extremely small mass, the energies of different components of a neutrino

with energy E are:

Ek ' E +
m2
k

2E
(2.33)

This gives a difference of:

Ek − Ej '
∆m2

kj

2E
(2.34)

The mass splittings here are defined as:

∆m2
kj = m2

k −m2
j (2.35)

For an accelerator neutrino experiment like T2K, we know the baseline L, and since

our neutrinos are ultra-relativistic we can approximate t = L for the purposes of equa-

tion 2.32. This gives us oscillations as such:

Pνα→νβ (L,E) =
∑
k,j

U∗αkUβkU
∗
αjUβje

−i
∆m2

kjL

2E (2.36)

As such, we have oscillations of an amplitude specified by the mixing angles, and a phase

specified by mass splitting ∆m2
kj and the ratio L/E.
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We can calculate a disappearance or appearance probability in a vacuum [23]:

P (να → νβ) = δαβ − 4
∑
k>j

Re(U∗αkUβkUαjU
∗
βj) sin2

(
∆m2

kjL

4E

)

+ 2
∑
k>j

Im(U∗αkUβkUαjU
∗
βj) sin

(
∆m2

kjL

2E

) (2.37)

This probability is a function of baseline (L), neutrino energy (E) and the mass squared

splittings (∆m2
21 and |∆m2

32|) as well as the mixing angles. If we simplify this into a

two-flavour disappearance probability, and use a convenient unit convention, it looks like

this:

P (νx → νy) = sin2(2θ) sin2(1.27∆m2(eV2)
L(km)

E(GeV)
) (2.38)

The dimensionless factor 1.27 here corrects for the units involved, and it is important

to note that for ∆m2 = 0, no oscillations would be seen. As such, the observation of

oscillation requires massive neutrinos. It should also be noted that this probability is

dependent on the absolute value of ∆m2 and to first order, long-baseline experiments

provide no information about its sign or absolute magnitude.

In three-flavour oscillation, the fact that only the differences in squared mass

have an effect leads to an ambiguity in the ordering of the mass states. Matter effects

on oscillation in the sun allow determination that the sign of ∆m2
21 is positive. ∆m2

21

is of order 10−5 eV2 while |∆m2
32| is of order 10−3 eV2. This could be caused by either

two light neutrinos and one heavier one, or two heavier neutrinos and one lighter one.

The two options are respectively known as the normal hierarchy (NH) and the inverted

hierarchy (IH). A diagram of this can be seen in Figure 2.4. Oscillation results in this

document will generally be quoted for each of these two distinct hierarchies, and will be

calculated using a full three-flavour calculation. Figure 2.5 shows the flavour makeup of

an initially pure νµ beam at various values of L/E.

2.2.6 Maximality in Neutrino Oscillation

As trigonometric rotations, the mixing angles and complex phase are inherently periodic,

and their effects on the mixing matrix are bounded. For example, the value of sin2(θ)

can only take values between 0 and 1, as can the matrix elements Uαi. In an oscillation

measurement, these boundaries can be important: if a disappearance experiment has a

statistical fluctuation downwards, this can lead to a dataset whose ‘true’ best-fit point

lies at greater than maximal disappearance. As such, it is important to recognise the

position of the maxima and minima of the oscillation probabilities, and how these can

affect confidence regions. In particular, a dataset closer to maximum disappearance will
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Figure 2.4: The two possible hierarchies of neutrino mass states. Fractions of flavours here are
drawn with mixings sin2(θ23) = 0.527, sin2(θ12) = 0.304 and sin2(θ13) = 0.0248.

have a smaller confidence region. Additionally, as one moves away from maximal mixing,

one can travel in either direction, toward either octant. Now that it has been empirically

demonstrated that sin2(θ13) 6= 0, the two octants for a muon neutrino disappearance

experiment are guaranteed to be different. For off-maximal mixing, we expect to see

two different local minima, and the oscillation analysis must take this into account.

Maximum νµ disappearance occurs at:

sin2(θ23) =
1

2 cos(θ13)
(2.39)

A plot of the muon survival probability, demonstrating the shift in the position of max-

imal mixing can be seen in Figure 2.6.

2.2.7 Matter Interactions in Oscillation Physics

2.2.7.1 Neutrino Mixing in Matter

In the previous section, we covered the mixing of neutrinos due to mass differences,

which can occur in a vacuum. In practice, our neutrinos propagate through matter with

high electron densities, although no muons or tau leptons. As a result, they undergo

additional effects due to their interactions with this medium. These interactions are

coherent elastic weak CC and NC scatterings, which each add an effective potential to

the Hamiltonian. If the potential VCC varies with neutrino flavour, then an additional

phase difference can be introduced making the neutrino oscillate as a result of matter

effects. With neutrino energy Eν , electron density Ne and Fermi constant GF , the
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Figure 2.5: Probabilities of observing a given neutrino flavour in a beam generated as pure νµ
at varying baselines. The oscillation parameters here are sin2 θ23 = 0.527, sin2(θ12) = 0.304,
sin2(θ13) = 0.0248, |∆m2

32| = 2.51×10−3 eV2, ∆m2
21 = 7.53×10−5 eV2and δCP = -1.55.

potential due to charged current effects has the following dependence [18]:

VCC = ±
√

2GFNe (2.40)

The coefficient is positive for neutrinos, and negative for antineutrinos. There are also

neutral current matter interactions, depending on the density of neutrons Nn in the

matter. Contributions from protons and electrons cancel each other out in neutral

matter.

VNC = ±1

2

√
2GFNn (2.41)

Since these interactions are neutral current, they are flavour independent. This means

that each flavour’s potential is altered by the same amount, leaving no net phase dif-

ference. As such, NC matter effects have no effect on an oscillation signal unless there

exist sterile neutrinos, and for the purposes of this thesis, they will not be considered

further.

This result gives us an effective Hamiltonian for flavour states of:

HF =
1

2Eν
(UM2U † + A) (2.42)

For the case of three neutrino mixing, the matrices here are the mass splittings:

M2 =

0 0 0

0 ∆m2
21 0

0 0 ∆m2
31

 (2.43)
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Figure 2.6: The muon survival probability as a function of sin2 θ23, with dashed lines marking
the position of maximum disappearance.

And the contributions of matter:

A = 2EνVCC

1 0 0

0 0 0

0 0 0

 (2.44)

2.2.7.2 The MSW Resonance

One of the most striking consequences of matter effects is the Mikheyev-Smirnov-Wolfenstein

(MSW) resonance, which can be observed in the sun [24, 25]. The sun produces elec-

tron neutrinos, and has an extremely high electron density (Ne) near the centre, which

smoothly decreases as the neutrinos propagate outwards. There exists a resonance point

in electron density (NR
e ) which leads to maximal mixing for neutrinos of a given energy.

The electron density in the sun is very high, such that for sufficiently high energy neu-

trinos, Ne � NR
e , and the neutrinos must pass through this resonance point on their

way out of the sun towards space.

In order to understand where this resonance point comes from, let us consider a

two flavour approximation with matter effects. With the two-flavour approximation, we

have one mixing angle ϑ and one mass splitting ∆m2, with a mixing matrix:

U =
1

4Eν

(
cosϑ sinϑ

− sinϑ cosϑ

)
(2.45)

The Hamiltonian for flavour states takes the form:

HF =
1

4Eν

(
−∆m2 cos 2ϑ+ 2EνVCC ∆m2 sin 2ϑ

∆m2 sin 2ϑ ∆m2 cos 2ϑ− 2EνVCC

)
(2.46)
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To get an effective Hamiltonian in matter for the mass states HM , we must diagonalise

using a rotation matrix UM :

UTMHFUM = HM (2.47)

which has an effective mixing angle ϑM :

UM =

(
cosϑM sinϑM

− sinϑM cosϑM

)
(2.48)

HM is a diagonal matrix parameterised with an effective mass splitting ∆m2
M :

HM =
1

4Eν

(
−∆m2

M 0

0 ∆m2
M

)
(2.49)

It can be shown that the effective mixing angle and mass splitting are [18]:

∆m2
M =

√
(∆m2 cos 2ϑ− 2EνVCC)2 + (∆m2 sin 2ϑ)2 (2.50)

tan 2ϑM =
tan 2ϑ

1− 2EνVCC
∆m2 cos 2ϑ

(2.51)

It is clear that this equation diverges for a matter potential contribution:

V R
CC =

∆m2 cos 2ϑ

2Eν
(2.52)

Using equation 2.40, we can see that this is equivalent to an electron density of:

NR
e =

∆m2 cos 2ϑ

2
√

2EνGF
(2.53)

When tan 2ϑ diverges, the value of ϑ is π/4, leading to maximal mixing. Using equa-

tion 2.50, we can see that the effective mass splitting reaches a minimum at this point:

∆m2
M,R = ∆m2 sin 2ϑ (2.54)

It can be seen equation 2.53 that the resonance electron density depends on neutrino

energy. For the sun, the threshold neutrino energy is approximately 6 MeV [26]. For

neutrinos above this energy deep inside the sun, the electron density vastly exceeds the

resonance density NR
e . Thus the mixing angle is effectively π/2 and thus the electron

neutrino is created as nearly pure ν2. As the neutrino propagates out of the sun, it

crosses the resonance point adiabatically, remaining in the ν2 state. Once it has exited
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the sun, its flavour makeup is:

ν2 = sinϑνe + cosϑνµ (2.55)

In the case of a minimal mixing angle ϑ ' 0, this leads to effectively all the electron

neutrinos having oscillated to muon neutrinos, despite a near-zero mixing angle.

2.3 Current Status of Neutrino Oscillation Research

2.3.1 Atmospheric Neutrino Experiments

The muon neutrino disappearance observed in atmospheric experiments is used to mea-

sure sin2 θ23 and |∆m2
32|. More recently, atmospheric measurements have been used to

constrain the mass hierarchy and sterile signal. Super-K atmospheric analyses express a

weak (1σ) preference for the normal mass hierarchy, and have constrained sterile PMNS

matrix elements (|Uµ4|2 < 0.041 and |Uτ4|2 < 0.18 at 90% C.L) [27].

IceCube is a cubic kilometre of ice at the South Pole, instrumented with PMTs

to detect Čerenkov light. While primarily designed to study cosmic neutrino signals,

the detector can also detect atmospheric neutrinos, particularly using the more densely

instrumented section of the detector known as DeepCore. IceCube’s best measurement

of atmospheric νµ disappearance gives limits of |∆m2
32| = 2.72+0.19

−0.20 × 10−3 eV2 and

sin2 θ23 = 0.53+0.09
−0.12 [28]. A future upgrade named PINGU (Precision IceCube Next

Generation Upgrade) aims to determine the mass hierarchy using atmospheric neutrino

data with as little as three years running [29].

2.3.2 Reactor Experiments

Nuclear reactors produce a significant flux of electron antineutrinos, and these are anal-

ysed at a variety of baselines. These experiments often use a near detector at a short

baseline to evaluate the produced neutrino flux and a far detector to observe the effects

of oscillation at a longer baseline. This is a powerful technique for reducing experimental

uncertainties, and is also used in long-baseline experiments. The contemporary reactor

oscillation experiments are Double Chooz, Daya Bay and RENO (Reactor Experiment

for Neutrino Oscillations). All of these search for electron antineutrino disappearance,

which allows for measurement of θ13, but does not offer any information about δCP . One

open question in reactor experiments is the observation of an excess of events around

5 MeV in all three of these experiments. This excess has been postulated as an oscilla-

tion signal, although is more likely to be related to modelling of reactor flux [30]. The

RENO 5 MeV excess can be seen in Figure 2.7.
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Figure 2.7: The RENO reactor antineutrino spectrum, demonstrating the 5 MeV excess. Repro-
duced from [31].

Double Chooz studies neutrinos from the Chooz nuclear power plant in France.

It uses two identical detectors: a near detector at 400 m and a far detector at 1050 m.

Double Chooz is the successor experiment to CHOOZ, which used only the far detector

site and was responsible for demonstrating that θ13 is small and thus the atmospheric

neutrino anomaly could not be caused by νµ → νe oscillation [32]. Each detector contains

8.8 t of gadolinium-doped liquid scintillator, surrounded non-doped scintillator in order

to capture photons. Double Chooz began collecting far detector data in 2009, and its

near detector was finally completely in September 2014. Double Chooz has measured

sin2 2θ13 = 0.090+0.032
−0.029 [33].

Daya Bay consists of six identical antineutrino detectors, each with an interaction

mass of 20 t of gadolinium-doped liquid scintillator. These detectors are all within

2 km of six nuclear reactors, giving the experiment a number of available baselines.

This experimental design means that all measurements of event rate are relative and

systematic errors can be cancelled effectively. This allowed Daya Bay to release the first

definitive evidence of non-zero θ13 with a 5.2σ significance result published in 2012 [34].

The current Daya Bay best measurement is sin2 2θ13 = 0.084 ± 0.005 and |∆m2
ee| =

2.42± 0.11× 10−3 eV2 [35]. |∆m2
ee| is an effective parameter, defined by:

sin2(∆m2
ee

L

4E
) = cos2 θ12 sin2(∆m2
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L

4E
) + sin2 θ12 sin2(∆m2

32

L

4E
) (2.56)
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RENO is a reactor experiment in South Korea, which uses the antineutrino flux

from six nuclear reactors. RENO uses two identical gadolinium-doped liquid scintillator

detectors at a flux weighted average baseline of 410 m and 1440 m. The current RENO

measurement is sin2 2θ13 = 0.101± 0.008(stat.)± 0.010(syst.) [36].

KamLAND (Kamioka Liquid Scintillator Anti-Neutrino Detector) was a 1 kt

liquid scintillator detector in the same mine as Super-K. It primarily observed electron

antineutrinos from 56 Japanese nuclear reactors at a mean baseline of 180 km, but also

performed measurements of solar neutrinos and geoneutrinos. The final three-flavour

KamLAND measurements yield limits of tan2 θ12 = 0.452+0.035
−0.033, ∆m2

21 = 7.50+0.19
−0.20 ×

10−5 eV2 and sin2 2θ13 = 0.020+0.016
−0.016 [37]. In 2011, the KamLAND tank had a balloon

of Xenon-doped liquid scintillator installed, becoming a neutrinoless double beta decay

experiment known as KamLAND-Zen.

The next generation of reactor experiments will include JUNO (Jiangmen Un-

derground Neutrino Observatory) and RENO-50, which are successors to Daya Bay and

RENO respectively. Both will use a baseline of approximately 50 km. Each will a large

liquid scintillator detector (20 kt for JUNO, 18 kt for RENO-50) instrumented by ap-

proximately 15000 PMTs. The L/E for RENO and JUNO is optimised for the mass

splitting ∆m2
21, but the wide range of energies produced by a reactor mean that if these

experiments achieve an energy resolution of approximately 3% for 1 MeV events, they

could observe the interference pattern between oscillations caused by ∆m2
32 and ∆m2

21,

allowing them to determine the mass hierarchy.

2.3.3 Long Baseline Accelerator Neutrino Experiments

Long-baseline neutrino beam experiments like T2K use a proton accelerator to pro-

duce a high-energy beam of muon neutrinos. These experiments are good for precision

measurements of neutrino disappearance, and can observe δCP by studying electron neu-

trino appearance in the beam. The comparatively small value of sin2 θ13 makes electron

neutrino appearance rare, which renders measurement of δCP difficult. The baseline

and peak beam energy are normally chosen such that the far detector lies at the first

oscillation maximum:
L(km)

E(GeV)
=
π

2

1

1.27∆m2(eV2)
(2.57)

For |∆m2
32| ≈ 2.5×10−3eV2, the appropriate ratio is approximately L/E = 500 km GeV−1.

Future experiments should be able to probe the second and even higher oscillation max-

ima. Long-baseline experiments allow good control over the beam energy, and relatively

accurate flux prediction. Use of beam timing triggers can reduce backgrounds greatly.

Muon neutrinos are made by firing a proton beam onto a target, and then using mag-

nets to select a specific charge from the resulting meson (pion and kaon) flux. Selecting
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for positive pions allows creation of a muon neutrino beam with a purity of over 90%.

Selecting for negative pions allows creation of a beam with an enhanced muon antineu-

trino component, although the purities are lower (approximately 80% νµ at T2K’s near

detector). There is a fuller discussion of T2K’s beam composition in Section 4.1.

K2K (KEK to Kamioka) was the predecessor to T2K, and was the first long

baseline accelerator neutrino experiment, running between 1999 and 2004. The beam

was produced at KEK in Tsukuba, Japan. As with T2K, the far detector was Super-

Kamiokande. The baseline was 250 km and an on-axis neutrino beam was used with a

peak energy of around 1 GeV. K2K observed a 4.2σ result confirming muon neutrino dis-

appearance, and placed limits on sin2 2θ23 and |∆m2
32| [38]. K2K’s two-flavour fit results

indicated maximal muon neutrino disappearance (sin2 2θ23 = 1) and a 90% confidence

region of 1.9× 10−3 eV2 < |∆m2
32| < 3.5× 10−3 eV2.

MINOS (Main Injector Neutrino Oscillation Search) was the next long-baseline

experiment, and used a 735 km baseline. The beam is produced at Fermilab’s NuMI

beamline, with the far detector in the Soudan Underground Laboratory in Minnesota.

The 5.4 kt MINOS far detector was turned on in 2003, and began taking NuMI beam data

in 2005. The neutrino beam used is on-axis, with energies of a few GeV. Magnetised steel-

scintillator detectors are used for both the near and far detectors. MINOS performed

measurements with a neutrino mode and an antineutrino mode beam. The MINOS

neutrino-mode dataset disfavoured maximal mixing at 86% confidence [39]. MINOS

has continued to run under the name MINOS+, using the upgraded NuMI beam line

designed for NOνA.

T2K is the subject of this thesis, and is described in more detail in Chapter 3. It

turned on in 2010, and is running to this day. T2K’s most important oscillation result

is the first > 5σ demonstration of electron neutrino appearance in a muon neutrino

beam [40], announced in 2013. The collaboration has also published precision measure-

ments of sin2 θ23 and |∆m2
32| in a disappearance-only analysis, and joint fits of electron

and muon data which, when combined with reactor constraints on sin2 θ13 can place a

90% exclusion region δCP [41].

NOνA (NuMI Off-axis νe Appearance experiment) is a newer experiment using

the Fermilab NuMI beamline, with a 14 kt far detector at Ash River, Minnesota - a

baseline of 810 km. Both the near and far detectors use a similar design, with liquid

scintillator stored in PVC cells, and these detectors are positioned off-axis. The detectors

are modular, and began taking some data in early 2014, with full operation using the

completed detector beginning in October 2014.

The future of the long-baseline field is currently likely to be one or both of DUNE

and T2HK. T2HK is an upgrade to T2K using a 1 Mt water off-axis far detector known

as HyperKamiokande (HK). It would also include a beam upgrade to the T2K beam and
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a new water Čerenkov near detector.

DUNE (Deep Underground Neutrino Experiment), formerly known as LBNE

(Long Baseline Neutrino Experiment), is a proposed 1300 km baseline experiment in the

USA. DUNE would use a beam from Fermilab, and would have an on-axis far detector in

the Sanford Underground Research Facility near Lead, South Dakota. The far detector

is intended to be a 40 kt liquid argon TPC, nearly 1.5 km underground. The wide-band

beam allows DUNE access to the second oscillation maximum, which offers a new source

of sensitivity to δCP .

2.3.4 Short Baseline Neutrino Oscillation Experiments

As well as the long-baseline accelerator experiments, we also perform short baseline

neutrino oscillation experiments. The LSND (Liquid Scintillator Neutrino Detector)

experiment ran at Los Alamos National Laboratory from 1993 to 1998. An accelerator

was used to produce muon antineutrinos in the energy range 0 to 53 MeV, which were

detected at a 31 m baseline. It famously observed a small but significant excess of νe

events, which is consistent with a sterile neutrino with ∆m2
sterile ≈ 1 eV2 [16].

A number of experiments were subsequently designed to confirm or refute this

result. MiniBooNE used a mineral oil based Čerenkov detector at a baseline of approx-

imately 500 m from the Fermilab Booster neutrino beamline. It used a typical neutrino

beam energy of 500 MeV, meaning that it had a similar L/E to LSND, but a very

different set of systematics. MiniBooNE was capable of running in both neutrino and

antineutrino beam mode, and ran from 2002 to 2012. It observed a significant excess at

low energy in both the νµ (3.4σ) and νµ (2.8σ) beam modes [42]. The νµ data agrees well

with the LSND result, but there is tension with the νµ result. MicroBooNE is a new

liquid argon detector in the same beamline which is intended to test the signal further,

using a liquid argon TPC. The liquid argon TPC will allow the detector to better reject

νµ NCγ events which could be causing the excess.

2.3.5 Global Fits

The world’s best knowledge of neutrino fit parameters can be determined by global fits,

including data from many experiments. The Particle Data Group (PDG) typically selects

one of these to be used as reference values. The current (2014) PDG recommendation

was performed by F. Capozzi et al. [43], using the data available up until the end of 2013

from MINOS, T2K, KamLAND, Super-K, Daya Bay and RENO. The best-fit parameters

from this global fit can be seen in Table 2.1.
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Parameter Best-fit (±1σ)

∆m2
21 7.54+0.26

−0.22 × 10−5 eV2

|∆m2| 2.43± 0.06(2.38± 0.06)× 10−3 eV2

sin2 θ12 0.308± 0.017

sin2 θ23 0.437+0.033
−0.023(0.455+0.039

−0.031)

sin2 θ13 0.0234+0.0020
−0.0019(0.0240+0.0019

−0.0022)

δCP (2σ range) 1.39+0.38
−0.27(1.31+0.29

−0.33)π

Table 2.1: Current knowledge of neutrino oscillation parameters from a global fit [43], via the
Particle Data Group’s 2014 release [44]. Values in brackets are for the inverted hierarchy. For
parity between the hierarchies, the definition of atmospheric mass splitting used here is ∆m2 =
m2

3 − (m2
2 +m2

1)/2.

2.3.6 Measurement of Oscillation Parameters on Antineutrinos

In the standard three-flavour neutrino oscillation framework, the neutrino masses and

PMNS matrix parameters are shared between neutrinos and antineutrinos. The global

fits described in the previous section make this assumption. However, in order to in-

terpret the antineutrino-specific data contained within this thesis, it is important to

separate the measurements made on neutrinos from those made on antineutrinos.

The precision of parameters measured on neutrinos is dominated by the long-

baseline accelerator experiments for θ13, θ23 and |∆m2
32|. T2K has the most precise

measurement of these parameters. For θ12 and ∆m2
21, the neutrino measurement is

dominated by solar neutrino experiments, although these are generally analysed in con-

junction with antineutrino data from KamLAND.

On antineutrinos, short baseline reactor experiments produce the most accurate

measurement of θ13 and via a measurement of the effective parameter |∆m2
ee|, the most

accurate measurement of |∆m2
32|. KamLAND provides the best measurement of θ12 and

∆m2
21. Prior to this analysis, the strongest constraint on θ23 measured on antineutrinos

was provided by a combined measurement of accelerator and atmospheric data at MI-

NOS. A summary of the antineutrino-only constraints and their source can be seen in

Table 2.2.
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Parameter Best-fit (±1σ) Source

Antineutrino-only

∆m2
21 7.50± 0.20× 10−5 eV2 KamLAND[37]

|∆m2
32| 2.37± 0.11 eV2 Daya Bay[35]

sin2 θ12 0.330+0.037
0.041 KamLAND[37]

sin2 2θ23 0.97+0.03
−0.07 MINOS[39]

sin2 2θ13 0.089± 0.005 Daya Bay[35]

Table 2.2: Best measurements of mixing parameters on neutrinos and antineutrinos.
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Chapter 3

The T2K Experiment

T2K is a long-baseline accelerator neutrino experiment consisting of three main com-

ponents: the beam source, the near detectors and the far detector. A beam of muon

neutrinos is generated at the Japan Particle Accelerator Complex (J-PARC) in Tokai,

Ibaraki. The near detector complex is 280 m away, also at J-PARC. The far detector is

the Super-Kamiokande (Super-K) water Čerenkov detector, 295 km away in Kamioka.

T2K uses an ‘off-axis’ beam to produce neutrinos with a smaller spread of energies in

order to allow precision measurements of oscillation parameters. A graphical represen-

tation of the T2K experiment can be seen in Figure 3.1.

Figure 3.1: The T2K Experiment. Reproduced from [45].

3.1 The J-PARC Neutrino Beam

The first step in the production of the neutrino beam is a proton beam produced by

a series of three accelerators, whose layout can be seen in Figure 3.2. First, a linear

accelerator (LINAC) is used to accelerate a beam of H− ions up to 400 MeV. These ions

are then injected into a rapid-cycling synchrotron (RCS), stripped of electrons and then

further accelerated up to 3 GeV. The RCS cycles at 25 Hz with two bunches per cycle.

From the RCS, the protons are directed to either the J-PARC Materials and Life Science

Facility or the main ring (MR) accelerator. Several cycles of the LINAC and RCS are
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Figure 3.2: The J-PARC Accelerator Complex. Reproduced from the J-PARC public website.

used to fill the MR. Each MR cycle has 8 bunches of protons. Inside the main ring, the

protons are accelerated to their final energy of 30 GeV, with the ring cycling at a rate

of 0.3 Hz. The bunch structure and timings can be seen in Figure 3.3. The T2K design

specified a beam power of 750 kW [45]. At the time of writing, the stable beam power

is around 340 kW, having ramped up steadily over time as can be seen in Figure 3.4.

The neutrino beamline at J-PARC uses a series of 5 kicker magnets to perform ‘fast

extraction’ in which all 8 proton bunches are extracted in one cycle.

The neutrino beamline consists of two sections, which can be seen in Figure 3.5.

The kicker magnets in the main ring direct the protons into the primary beamline in

which the beam is steered to point toward Kamioka, focused and directed into the target

station. The proton beam is monitored in a number of ways, including 21 electrostatic

monitors (ESMs) to measure beam position, 19 segmented secondary emission monitors

(SSEMs) to measure beam profile and 50 beam loss monitors (BLMs). Beam intensity is

measured by 5 current transformers (CTs), which allows calculation of delivered POT.

In the target station, the proton beam impinges on a 91.4 cm long, 2.6 cm diame-

ter graphite target. This corresponds to 1.9 interaction lengths, so approximately 85% of

protons interact. Additionally, inside the target station, there is the Optical Transition
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Figure 3.3: The T2K bunch structure. Each spill consists of 8 bunches of protons, each with a
length of 58 ns. There is a bunch every 581 ns, giving the entire spill a duration of 4.1 µs. The
spill repetition rate is approximately once every 3 s.

Figure 3.4: T2K delivered POT, broken down into individual T2K running periods.

Figure 3.5: The primary and secondary beamlines of the T2K neutrino beam. Reproduced from
J-PARC public website.
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Figure 3.6: The T2K muon monitor (MUMON). Reproduced from [46].

Radiation (OTR) monitor, which is used to measure beam direction and intensity. The

proton-carbon interactions produce a large number of pions and kaons which enter the

secondary beamline.

In the secondary beam line, three magnetic horns with a current of ±250 kA are

used to focus the mesons. The three-horn design was designed to optimise the focusing

efficiency for T2K’s low energy, high emittance meson production. The magnetic horns

have an opposite effect on positive and negative particles, so by reversing the current, one

can move between a mostly νµ beam called Forward Horn Current (FHC), and a beam

with an enhanced fraction of νµ known as Reversed Horn Current (RHC). The primary

analysis in this thesis is performed on data taken during RHC running. More information

on the beam composition with different horn currents can be seen in Section 4.1.

After the 96 m long decay pipe, there is a cooled 75 tonne graphite beam dump

to absorb most components of the remaining beam. The neutrino beam is hardly at-

tenuated, and the high energy (& 5 GeV) muons pass through the beam dump. These

muons are detected on a bunch-by-bunch basis by the muon monitor (MUMON), which

is located after the beam dump, 118 m from the target. The flux is approximately

1× 107 charged particles per cm2 per spill, with muons making up 87% of this flux and

the rest being mainly delta rays. MUMON is made up of ionisation chambers and silicon

photodiodes. An image of MUMON can be seen in Figure 3.6. The MUMON allows

measurement of the muon beam direction to a precision of 0.014◦ [46].

T2K running times are measured in terms of the number of incident protons on

the target (POT). A plot of the collected POT over time can be seen in Figure 3.4, while

the exact numbers of POT collected per T2K running period can be seen in Table 3.1.

Since oscillation has a neutrino energy dependence and neutrino energy recon-

struction is imperfect, it is desirable to have a neutrino flux with a sharp peak in energy

around the point of maximum oscillation. T2K achieves this goal using the off-axis
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T2K Run Number Begin Date End Date FHC POT (×1020) RHC POT (×1020)

Run 1 23 Jan. 2010 26 Jun. 2010 0.323 N/A
Run 2 18 Nov. 2010 11 Mar. 2011 1.108 N/A
Run 3 08 Mar. 2012 09 Jun. 2012 1.579 N/A
Run 4 19 Oct. 2012 08 May. 2013 3.560 N/A
Run 5 16 May. 2014 24 Jun. 2014 0.242 0.506
Run 6 30 Oct. 2014 01 Jun. 2015 0.102 3.505

Table 3.1: The T2K running periods and their accumulated POT.
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Figure 3.7: Neutrino energy as a function of pion momentum for decays with a selected angle
between pion direction and neutrino direction. Note that at the T2K off-axis angle, a large range
of pion momenta give similar neutrino energies.

technique. For small angles, the energy (Eν) of neutrinos produced by pion decay as a

function of pion energy (Eπ) and the angle between neutrino and pion (θ) is [47]:

Eν ≈
0.43Eπ

1 + γ2θ2
(3.1)

where γ = Eπ
mπ

. As such, Eν ∝ Eπ for θ = 0 but as one moves away from the forward-

going axis, the neutrino energy varies less. Figure 3.7 shows outgoing neutrino energy

as a function of pion energy at different angles from the beam centre, and it should be

noticed that at the T2K off-axis angle of 2.5◦, the neutrino energy distribution is nearly

flat. Figure 3.8 shows that this concentrates the neutrino beam flux at the first point of

maximum oscillation. T2K has its main detectors 2.5◦ away from the central axis of the

neutrino beam, which results in a neutrino beam with a peak energy of around 0.6 GeV.

A plot of the unoscillated on-axis and off-axis neutrino fluxes this produces can be seen

in Figures 3.9 and 3.10.
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Figure 3.8: T2K flux predictions for different angles from the beam central axis. Reproduced
from [45].

3.2 Near Detector Complex

T2K has two near detectors: an on-axis detector known as INGRID (Interactive Neutrino

Grid) and an off-axis detector which will be referred to as ND280 (Near Detector, 280 m).

INGRID is designed to measure the beam centre with enough statistics to provide a daily

measurement to a precision of 10 cm at 280 m (equivalent to 0.4 mrad). It also produces

a measurement of beam intensity to a 4% precision during normal running.

INGRID consists of 14 identical modules arranged in the cross pattern shown in

Figure 3.11, with a full span of 10 m in both X and Y. The neutrino beam centre lies

at the centre of the INGRID cross. Additionally, there are two shoulder modules which

can also be seen in Figure 3.11, used to evaluate the axial symmetry of the beam.

Each module is constructed from alternating layers of iron (the interaction mass)

and tracking scintillator planes (the detector). There are 9 layers of iron per module,

with dimensions 1240×1240×65 mm, producing an iron interaction mass of 7.1 tonnes.

Between these are the 11 scintillator planes, which each consist of 24 vertical bars and

24 horizontal bars. The scintillator bars used have dimensions 10 × 50 × 1203 mm.

The whole module is surrounded by additional scintillator planes to veto events which

occurred outside the module. Finally, at the centre of the INGRID cross, between

the modules in the vertical line and the horizontal line lies the Proton Module, which is

similar to the INGRID modules, but without the iron interaction mass, and with smaller

scintillator bars to allow more finely grained tracking. The goal of the Proton Module is
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Figure 3.9: T2K FHC flux predictions at
Super-Kamiokande.
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Figure 3.10: T2K RHC flux predictions at
Super-Kamiokande.

to identify both the muon and the proton from CCQE events, and use this to evaluate

and improve Monte Carlo modelling of these interactions.

ND280 has different objectives, and uses a number of different subdetector types

in order to allow many types of measurement. In order to perform precision oscillation

measurements, ND280 must measure accurately the energy spectrum and flavour compo-

sition of the neutrino beam. It also seeks to measure cross-sections for different neutrino

interaction modes, which are important to optimise measurement precision, in addition

to being interesting in their own right. It consists of a π0 detector (P0D) followed by a

tracker module made up of three gas time projection chambers (TPCs) interleaved with

a pair of fine-grained detectors (FGDs). These modules are surrounded by several elec-

tromagnetic calorimeters (ECals) which are known as the P0D ECal (around the P0D),

the Barrel ECal (around the tracker) and the downstream (DS) ECal (downstream of

the tracker). All of this lies within the SMRD (Side Muon Range Detector), and a 0.2 T

magnet to allow the measurement of momentum and charge identification. A schematic

can be seen in Figure 3.12.

Each ECal consists of layers of plastic scintillator and lead. The purpose of the

ECals is to detect and measure the energies of particles escaping the inner detector. The

information recorded by the ECals can be essential to particle identification (PID), and

its detection of photons is key to recognising π0 events. Each T2K ECal scintillator

bar has a hit efficiency of 97-99%, and is 4 cm wide. Alternating layers of vertical and

horizontal bars allow for 3D reconstruction. A summary of the different types of ECal

module and their construction is shown in Table 3.2. The time resolution of a typical

ECal track or shower is approximately 1 ns, which can allow determination of particle

direction, while the energy resolution is 7.5%/
√
E (GeV) [48].
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DS Ecal Barrel ECal P0D ECal

Length (mm) 2300 4140 2454
Width (mm) 2300 1676 top/bottom 1584 top/bottom

2500 side 2898 side
Depth (mm) 500 462 155
Weight (kg) 6500 8000 top/bottom 1500 top/bottom

10000 side 3000 side

Num. of layers 34 31 6

Bar orientation x/y Longitudinal and Perpendicular Longitudinal

Num. of bars 1700 2280 Longitudinal top/bottom 912 Longitudinal top/bottom
1710 Longitudinal sides 828 Longitudinal sides
6144 Perp top/bottom
3072 Perp sides

Bars per layer 50 38 Longitudinal top/bottom 38 Longitudinal top/bottom
57 Longitudinal side 69 Longitudinal sides
96 Perp top/bottom/sides

Bar length (mm) 2000 3840 Longitudinal 2340 Longitudinal
1520 Perp top/bottom
2280 Perp sides

Pb thickness (mm) 1.75 1.75 4.0

Table 3.2: Summary of the different ECal modules showing the overall dimensions, numbers of
layers, length and orientation of scintillator bars, numbers of bars, and lead thickness for each
module. The dimensions and weights apply to the complete module, including the bulkheads.
Reproduced from [48]

33



Figure 3.11: The layout of the modules in the on-axis near detector (INGRID). In this image, the
neutrino beam is travelling directly into the page. The modules in the vertical line are upstream,
followed by the Proton Module (not visible here) and then the modules in the horizontal line.
Reproduced from [45].

The P0D also consists of layers of scintillator and layers of interaction mass. It

starts and finishes with ECals as described above, but in the middle the interaction

targets are sheets of brass and optionally pouches of water. It was intended that by

comparing runs with the pouches empty to runs with them filled with water, subtraction

could be used to measure neutrino interaction cross sections on water. This would

constrain systematics for observations at Super-K. In the most recent NC1π0 cross-

section analysis, the P0D reported a π0 vertex position resolution of approximately 8

cm and a π0 energy resolution of approximately 20% over the π0 momentum range [49].

The two FGDs have slightly different construction from one another. The first

FGD (FGD1) is entirely constructed of plastic scintillator, with 30 alternating layers of

vertical and horizontal bars, each 9.61 mm thick. The second FGD (FGD2) is the same

size, but has approximately half of the scintillator replaced by water, for the purpose

of constraining neutrino-Oxygen cross-sections. It has seven pairs of scintillator layers,

interleaved with six 2.5 cm layers containing water. FGD1 is the interaction target for

the ND samples used to constrain systematics for the analysis in this thesis. Future T2K

analyses will use near detector samples from both FGD1 and FGD2. The FGDs have a

timing resolution of 1.5 ns for a cluster [50].

The SMRD is made up of 440 modules which are attached to the magnet return

yokes. The SMRD modules are made of plastic scintillator, and are used to record high-

angle escaping muons, as well as serving as part of the cosmic ray trigger, and allowing
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some characterisation of events which occur in the magnet.

In all the scintillator detectors (INGRID, ECals, P0D, FGDs and the SMRD), the

scintillator bars are threaded with a wavelength-shifting fibre (WLS), and the emitted

light is read out using Multi-Pixel Photon Counters (MPPCs). The wavelength-shifting

fibres absorb light peaked at 430 nm, close to the emission peak of the scintillator at

420 nm (blue light). The WLS reemits the photons at 476 nm, in the green part of the

spectrum. The emitted light is partially contained by total internal reflection, allowing

a fraction to be detected by the MPPC. PMTs were unsuitable for ND280 readout due

to the strong (0.2 T) magnetic field which would disrupt PMT operation. MPPCs are

a novel form of photodiode which function reliably in a magnetic field, as well as being

compact and well-suited to the WLS wavelength [51]. T2K uses custom MPPCs, which

have 667-pixel readout in a 1.3 × 1.3 mm2 area. Over the entire ND280 and INGRID,

approximately 64,000 MPPCs are used. T2K was the first experiment to use large

numbers of MPPCs in this fashion.

The three TPCs use a drift gas made up of 95% Argon, 3% tetrafluoromethane

(CF4) and 2% isobutane (iC4H10). Charged particles cause ionisation of the gas, and the

resulting electrons drift away from the central cathode toward readout planes. The inner

volume of each TPC has exterior dimensions of 1808×2230×854 mm, and is surrounded

by an insulation volume of CO2. A simplified diagram of a TPC module can be seen

in Figure 3.13. The TPCs have a momentum resolution of approximately 0.1/p⊥, and

a spatial resolution of better than 1 mm, although the exact spatial resolution depends

on track angle and drift distance [52].

Information on the use of these detectors to constrain systematic uncertainties

on the oscillation result is available in Section 4.4.

Figure 3.12: A schematic of the arrange-
ment of detectors in the off-axis near detec-
tor (ND280). Reproduced from [45].
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Figure 3.13: A simplified diagram showing
the main elements of a TPC module. Re-
produced from [52].
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3.2.1 Simulation at ND280

The NEUT [53] Monte Carlo generator is used to simulate interactions in the INGRID

and ND280 detectors. The GENIE [54] MC generator can also be used with the ND280

software, although the constraints in this thesis are produced solely with NEUT. Inter-

actions inside the detector are simulated using the GEANT4 [55] package, and a custom

software package named elecSim (electronics Simulation) is used to simulate the detector

response. In the scintillator detectors, elecSim is responsible for simulating the scintilla-

tion light and the fibre transmission, as well as the MPPC readout and other electronics.

In the TPCs, elecSim calculates the numbers of ionised electrons, and then simulates

their drift trajectories and readout.

This produces calibration-level files similar to those produced by the first steps

of processing real data output. From here, the processing of data and Monte Carlo

through the reconstruction stages are very similar. Following the reconstruction stage,

the data is reformatted into a reduced format that allows fast and powerful access to

the information needed for a physics analysis.

3.3 Super-Kamiokande

The far detector is the Super-K water Čerenkov detector located in a mine below Mount

Ikenoyama at Kamioka in Gifu, Japan. The detector is a stainless steel tank contain-

ing 50,000 tonnes of ultra-pure water instrumented with 13,000 photomultiplier tubes

(PMTs), and it is positioned under a kilometre of rock to limit backgrounds from cosmic-

ray muons. The cosmic muon rate in Super-K is 2 Hz, a reduction of 5 orders of mag-

nitude from the cosmic rate it would experience on the surface [56]. Neutrinos interact

in the large water target mass, and produce leptons.

The tank is separated into two volumes. The inner detector (ID) is a cylinder

33.8 m in diameter and 36.2 m in height. The outer detector (OD) volume is the 2 m

of water surrounding the inner detector structure. The ID and OD are separated by a

large stainless steel frame, upon which the PMTs are mounted. On the OD side, this

frame is hung with sheets of a white reflective plastic known by the trademark Tyvek.

This material helps reflect light back into the OD, making greater light collection likely.

On the ID side, black sheets of polyethylene terephthalate (PET) are used to optically

isolate the inner detector. A photograph taken inside the T2K inner detector before

filling can be seen in Figure 3.14.

The outer detector is instrumented with 1,885 PMTs with a 20 cm diameter,

mounted facing outwards in order to veto charged particles which entered from outside

the detector (either cosmic muons or radioactive background from the surrounding rock).

On the inner surface, there are 11,129 PMTs of diameter 50 cm covering 40% of the total
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area. 26 pairs of Helmholtz coils are used to cancel out the earth’s magnetic field which

may otherwise interfere with PMT functionality. The inner detector has a mass of

32 kilotonnes, of which 25 kt are part of the fiducial volume. A diagram of Super-K can

be seen in Figure 3.15. Beam bunch timing is used to identify events caused by the T2K

beam using GPS modules at both J-PARC and Super-K.

Figure 3.14: A photograph of the Super-
Kamiokande inner detector, before it was
filled. Reproduced from Super-Kamiokande
public website.

Figure 3.15: A diagram of the Super-
Kamiokande detector. Reproduced
from [45].

3.3.1 Super-Kamiokande Event Reconstruction

When a charged particle travels through an insulating medium at faster than phase

velocity of light in that medium, it emits light. This ‘Čerenkov’ light is a result of a

polarisation of the medium due to the particle’s electric field. For a particle travelling

fast enough, the medium does not relax rapidly, and the disruption remains. The energy

stored in this is released as a coherent ‘shock wave’ of light, which appears as a ring

around the direction of motion of the charged particle. This ring appears at an angle

of [18]:

cos θ =
1

βn
(3.2)

Note that the opening angle is dependent on the momentum of the observed

particle. For water, the refractive index n is' 4/3, so the Čerenkov threshold is β & 0.75.

At T2K energies, the primary electron or muon from a CC event will usually be above

this threshold, but emitted nucleons and secondary hadrons will not be visible.

Super-K began collecting data in 1996, and as such its performance is well under-

stood. Mature algorithms have been developed to accurately reconstruct and identify

events with low ring multiplicity. First, PMT timing information is used to reconstruct

an initial estimate of the neutrino interaction vertex. After this, Hough transforma-

tions [57] are used to reconstruct rings based on the detected photoelectrons in the
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PMTs. After a ring is identified, the hits involved are subtracted and the algorithm

attempts to construct another new ring with the remaining hits.

After the ring fitting stage, there is a PID stage. Super-K aims to detect and

differentiate between electron and muon rings, and these are distinguished primarily by

measuring the ‘sharpness’ of the ring: electrons interact far more often in the water than

muons, producing many secondary particles, and thus the rings appear more fuzzy. An

example of a Super-K single ring muon and electron event can be seen in Figure 3.17.

Super-K’s reconstruction also looks for an electron-like ring shortly after a muon-like

ring, indicative of Michel decay.

Following this, there is a stage where all the ring candidates are refitted to re-

distribute the observed photoelectrons into all the ring candidates according to the best

estimate of their actual source. Additionally, at this stage, the vertex position is refitted

using the new PID information. Particle momentum can then be reconstructed using the

observed number of photoelectrons per ring, as well as information about expected detec-

tor effects (such as PMT coverage area, PMT acceptance and water attenuation). The

SuperK momentum (p) and angle resolutions are estimated to be 1.7 + 0.7
√
p[GeV/c]

and 1.8◦ respectively for single ring muon-like events. For electron-like events, the reso-

lutions are 0.6 + 2.6
√
p[GeV/c] and 3◦[41]. For a typical muon-like CCQE event at T2K

energies, these resolutions together smear neutrino energy by approximately 3%.

The final vertex position resolution is approximately 24 cm for muon-like events

and 35 cm for electron-like events. The PID is highly accurate, giving only an approxi-

mately 1% chance of confusing an electron and a muon [58]. A plot of the PID variable

which separates electron-like and muon-like rings can be seen in Figure 3.16. The energy

scale relative error is estimated as 2.4%[59].

Recently, optimised algorithms have been developed, based on code from Mini-

BooNE [61] which use both charge and timing information to form likelihood ratios

between different particle hypotheses. These offer much greater rejection of NC π0

events, which are a major background in the electron neutrino appearance analysis [41].

However, the analysis in this thesis uses only the muon sample, calculated using the long-

established SK reconstruction. More information on how the SK selection is performed

can be found in Section 4.5.

Super-K is well-suited to T2K’s 0.6 GeV neutrino beam, where the majority

of events are charged-current quasi-elastic (CCQE). This allows reconstruction of the

neutrino energy without observing the hadronic system, which will be explained in more

detail in Section 4.5. In a higher energy beam, Super-K’s PID efficiency and energy

resolution would suffer.
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Figure 3.16: The distribution of the Super-K PID variable for determining between µ-like and
e-like rings, for neutrino mode T2K data. Reproduced from [60].

Figure 3.17: Examples of a single ring muon-like, and a single ring electron-like event at Super-K.
Lepton flavours are primarily differentiated by the sharpness of the ring, which indicates whether
or not the particle showered. Reproduced from Super-Kamiokande public website.
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3.4 T2K Physics Results

T2K was initially designed to characterise neutrino oscillation. The primary goals were

precision measurements of sin2 θ23 and |∆m2
32| through muon neutrino disappearance,

and direct observation of non-zero θ13 through electron neutrino appearance. These

objectives have been achieved, with T2K’s neutrino-mode data yielding a 7.3σ discovery

of electron neutrino appearance [40], and a world-best precision measurement of the

disappearance parameters [62]. The two results have been combined into a joint fit of

the neutrino oscillation parameters, and the combination of T2K data with the reactor

constraints from Daya Bay, Double Chooz and RENO can exclude a small region of δCP

space [41]. Using combined ν-ν mode running, T2K will be able to increase its sensitivity

to δCP , and set stronger constraints on that parameter. The projected sensitivity to δCP

at T2K’s expected final POT can be seen in Figure 3.18.

In addition to these results T2K has performed non-standard oscillation studies

such as a sterile neutrino search at the ND280 looking for short baseline electron neutrino

disappearance [64], and a measurement searching for Lorentz Violation using sidereal

variations in neutrino event rate in the INGRID.

A key secondary goal of T2K was measurements of neutrino interaction cross-

sections, and T2K has a strong record of publishing results in this area. Cross-section

results already published from the ND280 include the CC inclusive cross-sections for

both νµ − C12 interactions [65] and for νe − C12 interactions [66]. Measurements of the

νµ CCQE cross-section have been performed on carbon in the ND280 [67] as well as on

both carbon and iron in the INGRID [68, 69]. T2K has also published a measurement

of the νe CC inclusive interaction on water in the ND280 P0D [70]. A measurement of

the NC interaction cross-sections on water was performed at Super-K [71].

Upcoming T2K neutrino-mode cross-section publications include measurements

of CC coherent pion production at both the ND280 and INGRID, CC 1π on water in

the ND280 and CC inclusive on scintillator and iron in the INGRID.

Now that T2K has accumulated a useful amount of POT in antineutrino beam-

mode, the experiment will begin publishing further antineutrino studies, including the

CC inclusive νµ and the νµ CC zero π cross-section. T2K will also soon publish additional

oscillation results showing electron antineutrino appearance in the muon antineutrino

beam mode, and a constraint on δCP using a combined fit to neutrino and antineutrino

beam mode data.

Up to the end of Run 6 (June 2015), the T2K integrated POT in FHC mode

is 6.91×1020, while the integrated POT in RHC mode is 4.011×1020. The final target

POT for both horn currents combined is 7.8×1021.
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Figure 3.18: Projected T2K δCP vs. sin2 2θ13 90% confidence level intervals for 7.8×1021 POT.
Contours are plotted for the case of true δCP = 0◦ and NH. The solid contours are with statistical
error only, while the dashed contours include the 2012 systematic errors fully correlated between
ν- and ν-mode. Reproduced from [63].
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Chapter 4

Inputs to the Oscillation Analysis

The analysis method used in this thesis relies on several sets of inputs. There is Monte

Carlo simulation of the beam, tuned on hadron production data, described in Section 4.1.

Neutrino interactions are simulated in both the near and far detectors using the methods

outlined in Section 4.2. Section 4.3 describes the use of external data to tune the cross-

section models. Section 4.4 discusses analysis of the T2K near detector data in order to

produce a tuning and covariance matrix for flux and cross-section parameters. The data

selection at Super-K is documented in Section 4.5, and the methods used to calculate

uncertainties at Super-K are discussed in Section 4.6.

A flowchart showing how these inputs feed into the final analysis can be seen in

Figure 4.1. A summary of all the inputs and the relevant versions used can be seen in

Table 4.1.

Input Version

JNUBEAM flux 13av1.1
NEUT 5.3.2

SKDETSIM v13p90
Super-K Software and MC 14a

Super-K Detector Systematics 2015v4
Super-K FSI Systematics 2015v1

External CCQE Fitter TNv2.1
ND280 Software v11r31
BANFF Fitter v3r15

Table 4.1: The versions of the software and productions used in this analysis.
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Figure 4.1: A flowchart demonstrating the stages of the T2K oscillation analysis. The dashed
box contains the section of the analysis performed as original work in this thesis.

4.1 Flux Prediction

The T2K flux is predicted using a simulation which is then tuned on both external and

T2K data. FLUKA2008 [72] is used to simulate the 30 GeV proton beam interacting

in the target and baffle, producing secondary pions and other particles. FLUKA was

selected as it showed the best agreement with hadron production data. The propagation

of these secondary particles through the rest of the T2K beam line is performed using

a GEANT3-based package known as JNUBEAM. This package simulates the secondary

particles through the entire beamline as displayed in Figure 3.5, including the baffle,

target, horn magnets, helium vessel, decay volume, beam dump, and muon monitor.

JNUBEAM also predicts the neutrino spectrum in the near and far detectors. Within

JNUBEAM, hadronic interactions are modelled with GCALOR [73].

The models in both GCALOR and FLUKA are tuned on hadron production

data, predominantly from the NA61/SHINE (SPS Heavy Ion and Neutrino Experiment)

experiment at CERN, henceforth referred to as simply NA61 [74, 75]. A schematic

layout of NA61 can be seen in Figure 4.2. It consists of five TPCs, of which two are

magnetised, and several ToF (time of flight) detectors. Measurements of dE
dX and ToF

are used for particle identification. Charge and momentum are reconstructed using the

track curvature in the magnetised TPCs.

For the data used in the T2K tune, NA61 uses the same proton beam energy

as T2K (30 GeV), and graphite target which is 2 cm long in the beam direction (ap-
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Figure 4.2: The detector layout of the NA61 detector. Reproduced from [76].

Figure 4.3: The phase space of pions and kaons contributing to the predicted neutrino flux at
SK, and the regions covered by NA61/SHINE measurements. Reproduced from [81].

proximately 4% of the interaction length). NA61 covers more than 90% of the pion

phase space relevant to T2K, as well as 60% of the kaon phase space, as can be seen

in Figure 4.3. In the regions of phase space which are not covered by the NA61 data,

alternative data is used from several other experiments [77–79]. In the future, NA61

data collected using a replica of the T2K target (90 cm or 1.9 interaction lengths long)

will be used in order to better characterise the effects of meson reinteractions in the

target[80].

The observed pion multiplicities can be seen in Figure 4.4, where they are com-

pared with the FLUKA predictions, showing good agreement. Kaon production data

also agree well with the FLUKA predictions. The NA61 data for proton multiplicity

exhibit a deficit compared to the FLUKA model[81].

Each neutrino in the flux prediction is associated with information about its

hadronic ancestor particles, the kinematics of these interactions and the distances trav-
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Figure 4.4: The observed multiplicity for π+ (left) and π− (right) production in bins of angle
and momentum using the NA61 thin target. The FLUKA 2011.2.8 prediction is shown in green.
Reproduced from [81].

elled by each ancestor. This information can be used to reweight the neutrino MC to

agree with the data collected by NA61. Total weights are calculated in two parts. First,

weights are calculated for the likelihood of an incident proton with momentum pin un-

dergoing a hadronic interaction in the target of density ρ with a nucleus of atomic mass

A at a distance d0 from the point of entry, producing a daughter with momentum pout

which travels another distance d1 before exiting the target:

W1(pin, pout, A, d0, d1) =
σdatap (pin, A)

σMC
p (pin, A)

×

exp
(
ρd0

[
σdatap (pin, A)− σMC

p (pin, A)
])
×

exp
(
ρd1

[
σdatap (pout, A)− σMC

p (pout, A)
]) (4.1)

where σdatap and σMC
p are the momentum and target dependent production cross-sections

from the data and the Monte Carlo prediction respectively. Most daughter hadrons exit

the target through the sides rather than the downstream end, and are focused along the

beamline (or defocused) by the first magnetic horn.

The second set of weights are calculated for all hadronic daughter particles in a
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Figure 4.5: νµ Run 5c-6e RHC flux tuning
weights applied to nominal νµ and oscillated-νe
MC templates (T2K flux version 13av1.1) [82].
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Figure 4.6: νµ Run 5c-6e RHC flux tuning
weights applied to nominal νµ and oscillated-νe
MC templates (T2K flux version 13av1.1) [82].

 (GeV)
ν

E
0 1 2 3 4

1
3
a
 t

u
n

in
g

 v
1
.1

/1
3
a
 n

o
m

in
a
l

0.8

1

1.2

1.4

Figure 4.7: νe Run 5c-6e RHC flux tuning
weights applied to nominal νe MC templates
(T2K flux version 13av1.1) [82].
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Figure 4.8: νe Run 5c-6e RHC flux tuning
weights applied to nominal νe MC templates
(T2K flux version 13av1.1) [82].

given angle θ and momentum p bin, based on the final state particle multiplicity (n) in

that bin over all events:
d2n(p, θ)

dpdθ
=

1

σp

d2σp(p, θ)

dpdθ
(4.2)

W2(p, θ) =

[
d2n(p, θ)

dpdθ

]
data

/

[
d2n(p, θ)

dpdθ

]
MC

(4.3)

The total weight for the simulated neutrino is the product of the appropriate

weights W1 and W2 given that particle’s ancestors. The resulting flux tuning for T2K an-

tineutrino beam mode for the data used in this analysis can be seen in Figures 4.5, 4.6, 4.7

and 4.8. The tuning increases the νµ, νe and νe event rates around the T2K beam peak,

and suppresses the number of high energy νe events.

The final predicted flux at Super-K, without oscillations or detector effects is 90%

νµ for RHC mode, with a contamination of 9% νµ and 1% νe. For FHC mode, the beam

is 93% νµ with a contamination of 6% νµ and 1% νe. The shape of these fluxes can be

seen in Figures 3.9 and 3.10.
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4.2 NEUT Monte Carlo

For an experiment to observe the chargeless neutrino, we require it to interact in the

detector, and observe the resultant particles. We calculate the cross-sections of these

interactions according to various interaction models, leading to several categories of final

states. For this analysis, the NEUT [53] neutrino Monte Carlo generator is used, both

to produce the near detector inputs and to simulate expected far detector data. The

simulation of neutrino interactions is a major source of uncertainty in neutrino oscillation

experiments, and care must be taken to parameterise and constrain these uncertainties.

The NEUT software version used is NEUT 5.3.2, for both the Super-K and ND280

datasets.

4.2.1 Neutrino Interaction Modes

4.2.1.1 Charged Current Quasi-Elastic (CCQE)

The main signal interaction mode for the studies described in this thesis is CCQE. In this

interaction, a neutrino interacts with a neutron, producing a proton and a negatively

charged lepton. Alternatively, an antineutrino interacts with a proton, producing a

neutron and a positively charged lepton. Feynman diagrams of these processes can

be seen in Figures 4.9 and 4.10. The free-nucleon CCQE interaction cross-section is

calculated using the model of Llewellyn Smith: [83]. The differential cross-section from

this model is:

dσ

dQ2
=
M2G2

F cos2 θc
8πE2

ν

[
A(Q2)±B(Q2)

(s− u)

M2
+ C(Q2)

(s− u)2

M4

]
(4.4)

where M is the nucleon mass, GF is the Fermi coupling constant, θc is the Cabbibo angle,

Eν is the neutrino energy and s and u are the Lorentz invariant Mandelstam kinematic

variables. For an outgoing lepton of mass m, (s− u) = 4MEν −Q2 −m2. A, B and C

are functions of the four momentum transfer to the nucleus Q2, and in turn depend on

six Q2-dependent form factors F1, F2, FA, FP , F3V and F3A which represent the nucleon

charge distribution. F1 and F2 are vector form factors which are well constrained by

electron scattering experiments. F3V and F3A have a very small effect on the νµ cross-

section, and their effect depends on the lepton mass. In this analysis, the uncertainties

on these form factors is folded into the νµ/νe cross-section normalisation. FA and FP

are axial form factors which introduce the largest uncertainty. For a given Q2, FP is a

multiple of FA, which is treated as a dipole:

FA(Q2) =
FA(0)

(1 +Q2/(MQE
A )2)2

(4.5)

47



νµ µ−

W±

n p

Figure 4.9: Feynman diagram of a neutrino
CCQE process.
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Figure 4.10: Feynman diagram of an an-
tineutrino CCQE process.

The value of FA at Q2 = 0 can be measured from beta decay, and does not provide

a significant uncertainty on the cross-section. The dipole form factor is parameterised

with the axial mass MQE
A , which would be expected to be around 1 GeV, similar to the

equivalent vector mass which can be measured by electron scattering experiments. Since

it can only be measured in neutrino scattering experiments, the uncertainty on MQE
A

is significant. There is some tension between published results for CCQE cross-sections

on deuterium and heavier targets, as well as a function of Q2 where the differences are

often interpreted as inconsistent values of MQE
A [84].

T2K does not use free nucleons as a target - the signal modes are interactions on

carbon (ND280) and oxygen (Super-K) nuclei. In this analysis, the nuclear model used to

calculate the cross-section for scattering off nucleons bound in a nucleus is the Relativistic

Fermi Gas (RFG) model of Smith and Moniz [85]. The nuclear model parameterisation

adds two systematic parameters: the Fermi momentum and the binding energy. For

oxygen, these parameters have prior values of 225 MeV and 27 MeV respectively [86].

Before being used for T2K fits, the CCQE model parameters and the underlying nuclear

model were tuned on external data, which is explained further in Section 4.3.

In a CCQE interaction, the energy of the initial neutrino can be reconstructed

from the momentum pl, energy El and angle cos θl of the final state lepton:

Ereco =
(Mn − V )El − M2

l
2 +MnV − V 2

2 +
M2
p−M2

n

2

Mn − V − El + pl cos θl
(4.6)

Mn, Mp and Ml are the neutron, proton and lepton masses respectively. V is the binding

energy of the target nucleus.
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4.2.1.2 Meson Exchange Currents (MEC)

For a muon antineutrino disappearance analysis, we expect to see a significant number of

events from ‘meson exchange current’ (MEC) interactions. This is motivated by electron

scattering measurements, which measure inclusive electron-nucleus cross-sections as a

function of electron energy loss [87]. These experiments see the QE peak, as well as a

delta resonance peak, and a growing contribution from inelastic interactions at higher

energies. However, without modelling MEC, one would expect to see a deep dip between

the QE and RES peaks. As can be seen in Figure 4.11, this dip is far less pronounced in

data. The extra events in this region are believed to be contributed by MEC interactions.

In an MEC event, the lepton interacts with more than a single nucleon, and a

meson is exchanged between the nucleons. An example of one type of MEC event can be

seen in Figure 4.12. All MEC events simulated are charged current, as neutral current

interactions of this type are effectively elastic neutrino-nucleus scatters and would not

be visible in Super-K. The NEUT Monte Carlo generator uses a model developed by J.

Nieves et al., which considers 49 separate Feynman diagrams known as ‘2p2h’, or two-

particle, two hole [88]. These can cause multiple nucleons to be ejected from the nucleus,

but since these will generally not be seen by Super-Kamiokande, MEC events appear

CCQE-like in our oscillation samples. However, the formula used for reconstructing the

neutrino energy (based on CCQE kinematics) is less accurate for MEC events, and this

results in them having a somewhat lower oscillation sensitivity.

The MEC cross-section uncertainties are implemented as a unique MEC normal-

isation parameter, in addition to all of the parameters which apply to the CCQE events.

MEC events appear CCQE-like at Super-K, and have the detector efficiency uncertainty

for CCQE events applied rather than the CCnonQE uncertainty.

4.2.1.3 Resonance (RES)

For neutrinos interacting with higher energies, it is possible to produce heavier interme-

diate particles. The neutrino interacts with a nucleon, producing a lepton and a heavier

baryon. This intermediate baryon then decays to a nucleon and another outgoing par-

ticle. The outgoing particle can be a photon or one of the heavier mesons, but is most

likely to be a pion.

NEUT considers 18 different resonances, up to a limit of hadronic invariant mass

W < 2 GeV. This upper limit is placed in order to prevent double-counting with deep

inelastic scattering events. The model is based on the work of Rein and Seghal [90].

In this study, we treat resonances that produce a single pion as an individual

mode (CC1π and NC1π). All other resonances are classified into the ‘CC other’ or ‘NC

other’ samples. A Feynman diagram of one possible CC1π event from a delta resonance
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Figure 4.11: Electron-nucleus scattering data from the JUPITER experiment, as a function of
W2, the squared invariant mass of the final state hadronic system. MEC here is shown as the
black line, labelled TE (transverse enhancement). Note the longer tail of the MEC cross-section
than the CCQE cross-section, reducing the depth of the dip between the QE and resonance
peaks. This data is measured at Q2 = 0.3 GeV2, while T2K’s zero π sample peaks at around
Q2 = 0.1 GeV2 so the MEC tail length for T2K would be even more pronounced. Reproduced
from [89].

can be seen in Figure 4.13.

Like the QE interactions, resonance interactions can be parameterised using a

number of form factors [91]. As in CCQE, the vector form factors are accurately con-

strained by electron scattering data. This leaves two parameters for the axial dipole

form factor which must be considered for a neutrino experiment. First, there is another

axial mass (MRES
A ) analogous to MQE

A . Since beta decay cannot be used to constrain

the resonance form factors, there is also additional form factor scaling parameter CA5 .

The Rein-Seghal quark model describes the final single-pion state entirely in

terms of resonances. However, both theory and data suggest the need for a non-resonant

contribution to single pion production. Rein and Seghal implement such a background

by modelling it as a resonance nucleon, controlled by an adjustable constant [90]. This

leads to an additional contribution to the single pion production cross-section which rises

smoothly with energy. The uncertainty on the constant controlling nonresonant pion

production is parameterised in this analysis as the isospin 1
2 background uncertainty.

4.2.1.4 Coherent Pion Production (COH)

Instead of interacting with individual nucleons, a neutrino can interact with an entire

nucleus. These interactions tend to produce very forward-going pions due to the in-

creased target mass. In NEUT, these interactions are modelled using the model of Rein
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Figure 4.12: Feynman diagram of an exam-
ple MEC process. In practice, 49 separate
diagrams are simulated by the NEUT gen-
erator.

νl l−

π+

∆+

n n

W±

Figure 4.13: Feynman diagram of single
pion production via a charged-current delta
resonance.

and Seghal [92], with an additional correction for the lepton mass in charged current

interactions [93]. Feynman diagrams of these processes can be seen in Figure 4.14.

In this analysis, the coherent models are treated with a single normalisation

parameter each for CC and NC interactions.

4.2.1.5 Deep Inelastic Scattering (DIS)

At higher neutrino energies, the struck nucleon breaks up. The hadronisation is modelled

in two separate ways, depending on the energy of hadronic system (W ). For 1.3 GeV <

W < 2 GeV, a bespoke piece of NEUT code is used to estimate pion multiplicities,

ν l∓

W±

A A

π±

P

(a) Charged current.

ν ν

Z0

A A

π0

P

(b) Neutral current.

Figure 4.14: Feynman diagrams of coherent pion production. P represents a pomeron carrying
four-momentum to the nucleus.
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and only multiple-pion events are used in order to avoid double-counting of single-pion

events from RES interactions. Nucleon structure functions are determined using the

GRV98 parton distribution function [94], with some corrections calculated by Bodek and

Yang [95] to improve agreement with charged lepton-hydrogen scattering data. Pion

multiplicities are tuned using data from antineutrino-proton scattering data collected

in a hydrogen bubble chamber [96]. For W > 2 GeV, the PYTHIA [97] simulation

package is used, and single pion events are not cut out. Neutral current cross-sections

are determined using empirical measurements of CC/NC branching ratios [98, 99].

These events form part of the CC other and NC other templates. In this analysis,

a fit parameter is associated with the uncertainty on the DIS CC pion multiplicity, and

a normalisation for NC events.

4.2.2 Interaction Modes

The NEUT Monte Carlo is used as an input to SKDETSIM, a GEANT3 based package

designed to simulate the response of Super-K to these neutrino interactions. GCALOR [73]

is used to simulate hadronic interactions in water, with the exception of pions with mo-

menta below 500 MeV, for which bespoke KamiokaNDE code is used [100].

Six separate samples of Monte Carlo are generated, of which two are oscillated

samples:

• νµ MC generated with the νµ neutrino flux.

• νµ MC generated with the νµ neutrino flux.

• νe MC generated with the νe neutrino flux.

• νe MC generated with the νe neutrino flux.

• νe MC generated with the νµ neutrino flux.

• νe MC generated with the νµ neutrino flux.

The numbers of events generated and the POT normalisation used can be seen

in Table 4.2.

These neutrinos can interact with matter in a number of ways, producing different

final states. For the purposes of this analysis, we simulate and analyse 46 of these. These

vary by initial neutrino flavour, the underlying physics model and the particles in the

final state. More detail on the processes involved can be seen in Section 4.2. The 46

modes used are explicitly listed in Appendix A.
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Sample Number of events Number of generated events
per 22.5 kt fiducial in true fiducial volume

per 1021 POT in all available MC

νµ 353.789 633988
νµ 208.369 634659
νe 6.811 127013
νe 8.941 127262

Oscillatedνe 376.420 126812
Oscillatedνe 215.099 127278

Table 4.2: POT normalisation of input Super-K MC samples for antineutrino beam mode.

4.3 CCQE External Data Tuning

In order to improve the input prediction, the T2K Neutrino Interactions Working Group

(NIWG) performed fits to external data from the MiniBooNE [101, 102] and MINERνA [103,

104] experiments. For each experiment, one neutrino and one antineutrino dataset was

fitted. These fits affect the CCQE and MEC modes only.

The version of NEUT used for this analysis (5.3.2) uses the ‘spectral function’

(SF) model of Benhar [105]. Cross-section values for an alternative nuclear model, the

Relativistic Fermi gas (RFG) model of Smith and Moniz [85] are also calculated. This

allows event-by-event reweighting to produce a Monte Carlo prediction based on the

RFG model.

The RFG is a comparatively simple model, where all states in momentum space

are filled up to a certain level (the Fermi momentum), and above this no states are

filled. The particle distribution in momentum space is thus a step function. When the

RFG is used in this analysis, it is modified using a calculation known as the Random

Phase Approximation (RPA). RPA is a screening effect calculated from long-ranged

correlations between nucleons [88]. The authors of the RPA model provided two separate

calculations - relativistic RPA and non-relativistic RPA, which were initially considered

equally credible. The RPA calculations have only been calculated with the RFG model,

so no RPA contribution is used in conjunction with SF.

As a result, the external CCQE fits provided three options for the CCQE model

to be used as the default for the T2K oscillation analysis.

• Relativistic Fermi Gas and relativistic RPA.

• Relativistic Fermi Gas and non-relativistic RPA.

• Spectral Function

The MiniBooNE dataset fits were done using the cross-sections released as a
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Figure 4.15: MiniBooNE CCQE data for neutrino beam-mode running. Reproduced from [86].

double-differential with respect to Tµ, the kinetic energy of the muon and cos θµ, the

angle between the muon direction and the beam.

In the MiniBooNE neutrino dataset [101], events were selected as CCQE-like if

a single muon was detected but no pions above threshold. No cut was made on the

detection of the proton. The signal (CCQE+MEC) purity was 77%, with the majority

of the background coming from CC1π+, and the overall flux normalisation uncertainty

was 10.7%. The distributions released can be seen in Figure 4.15.

The MiniBooNE antineutrino dataset [102] had significant νµ contamination in

the νµ beam. MiniBooNE was not magnetised and was thus unable to separate νµ and

νµ events based on lepton charge, so an additional correction was applied to reduce

this background. The background is characterised using the fact that 8% of νµ CC

interactions produce no decay electron, and most π− mesons are absorbed, allowing a

separate measurement of νµ CCπ+. With this background subtraction, the CCQE-like

signal has a purity of 61% and an overall flux normalisation uncertainty of 13.0%. The

cross-section distributions can be seen in Figure 4.16.

MINERνA released cross sections measured as a single-differential function of

Q2
QE , defined for a muon with energy Eµ and angle cos θµ as:

Q2
QE = −m2

µ + 2EQEν (Eµ −
√
E2
µ −m2

µ cos θµ) (4.7)

using the reconstructed neutrino energy EQEν calculated using Equation 4.6. Here Eµ

is the reconstructed muon energy, Mn, Mp and mµ are the neutron, proton and muon

masses respectively and VC is the binding energy on carbon. The binding energy on

Carbon VC is assumed to be 30 MeV for the MINERνA antineutrino dataset, and 34 MeV

for the other analyses.

Both the neutrino [103] and antineutrino [104] MINERνA datasets follow the
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Figure 4.16: MiniBooNE CCQE data for antineutrino beam-mode running. Reproduced
from [86].
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Figure 4.17: MINERνA CCQE dataset for
neutrino beam-mode running. Reproduced
from [86].
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Figure 4.18: MINERνA CCQE dataset for
antineutrino beam-mode running. Repro-
duced from [86].

same method. Data was released in the form of a flux averaged cross-section over the re-

gion 1.5 GeV ≤ EQEν ≤ 10 GeV. Background corrections are applied by fitting simulated

background distributions to the data in terms of energy deposited outside the vertex (re-

coil energy). The purity of the neutrino sample is given as 49%, and the antineutrino

sample purity as 77%. The MINERνA datasets used can be seen in Figures 4.17 and

4.18.

The CC0π systematic parameters (MA, Fermi momentum, binding energy and

MEC normalisation) are fitted. MiniBooNE also has normalisation parameters λMB
ν

and λMB
ν̄ for the neutrino and antineutrino datasets respectively, which have published

uncertainties of ε = 10.7% and ε= 13.0%. MINUIT [106] is used to minimise the χ2 for
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Fit type χ2/DOF MQE
A (GeV) MEC (%) pF (GeV) λMB

ν λMB

ν
Rel. RPA + MEC 97.84/195 1.15±0.03 27±12 223±5 0.79±0.03 0.78±0.03

Non-rel. RPA + MEC 117.87/195 1.07±0.03 34±12 225±5 0.80±0.04 0.75±0.03

SF + MEC 97.46/196 1.33±0.02 0 (at limit) 234±4 0.81±0.02 0.86±0.02

Table 4.3: Best fit parameter values for the fits to all four datasets simultaneously for the CCQE
RFG+RPA+MEC and SF+MEC fits. The parameters λMB

ν and λMB

ν
are the MiniBooNE nor-

malisations. Note that the χ2/DOF is low due to issues related to the use of multiple independent
datasets, and the lack of correlation between data points in the MiniBooNE datasets. This is
discussed in greater detail in [107]. Table reproduced from [86].

the four datasets together, with the following definition:

χ2(θ) =

[
M∑
k=0

(
NDATA
k − (λMB

ν )−1NMC
k (θ)

σk

)2

+

(
λMB
ν − 1

ε

)2
]
→ MiniBooNE ν

+

M∑
l=0

(
NDATA
l − (λMB

ν̄ )−1NMC
l (θ)

σl

)2

+

(
λMB
ν̄ − 1

ε

)2

→ MiniBooNE ν

+

 16∑
i=0

16∑
j=0

(
NDATA
i −NMC

i (θ)
)
V −1
ij

(
νDATAj − νMC

j (θ)
)→ MINERνA

where θ represents the physics parameters, Vij is the MINERνA covariance matrix and

Nx is the number of events in bin x. M and M represent the number of bins in the

MiniBooNE neutrino and antineutrino samples respectively.

The results can be seen in Table 4.3, and the best-fit distributions can be seen in

Figures 4.19, 4.20, 4.21 and 4.22.
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Figure 4.19: CCQE best-fit distributions compared with the MINERνA neutrino dataset used
in the CCQE fit. The legend shows the χ2 contribution from this dataset only, with the total
χ2 for the combined four dataset fit in brackets. The RPA lines use the relativistic calculation.
Reproduced from [86].
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The fits disfavour the RFG model with non-relativistic RPA, and provide a lim-

ited distinction between the SF model and the RFG model with relativistic RPA. The

Spectral Function model fit suggested an MEC value at the limit of zero, and the RFG

model contains an appropriate treatment of the RPA correction. The RFG model with

relativistic RPA was selected as the nuclear model for the oscillation analysis. As such,

all Monte Carlo events used in the analysis have two weights initially applied for the

nuclear model. The first reweights the MC from Spectral Function to Relativistic Fermi

Gas, while the second reweights from the RFG to RFG with relativistic RPA.

It can also be seen in Table 4.3 that the best-fit point of MQE
A was tuned down

from its nominal value of 1.2 GeV to 1.15 GeV. This tune reduces the total predicted

ND280 event rate by about 20% from flux-tuned Monte Carlo. This effect can be seen

in the third column of Tables 5.2 and 5.3.
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4.4 Near Detector Flux and Cross-Section Constraints

For the oscillation analysis, the spectrum predictions used as input are tuned based

on an analysis of the near detector data in order to constrain the J-PARC neutrino

beam flux and neutrino interaction models. These parameters are fitted at the ND280

independent of the Super-K data, producing a tuned central value for each parameter,

and a covariance matrix representing the uncertainties on, and correlations between,

each flux and cross-section parameter.

4.4.1 Near Detector Samples

The ND280 systematic fits use events selected to form three samples for neutrino beam

mode, and four samples for antineutrino beam mode. The interaction target used is

FGD1, and we select for events with a single muon. For each beam mode, first a CC

inclusive sample is formed. In neutrino beam mode, this uses the following cuts[108]:

• Data quality: all ND280 systems working correctly, good beam spill.

• Total multiplicity: at least one track reconstructed in TPC2.

• Quality and fiducial volume: there must be one reconstructed track inside the

FGD1 fiducial volume, and it must be associated with a TPC object with more

than 18 clusters.

• Upstream background veto: veto events in which the second highest momentum

track starts 150 mm upstream of the muon candidate, in order to avoid selecting

muons created in the P0D where the reconstruction has created two tracks.

• Broken tracks: if there is at least one FGD-only track, require that the muon

candidate track starts less than 425 mm away from the FGD upstream edge, in

order to reject events where the reconstruction has split the track inside the FGD.

• Muon PID cut: TPC PID, which uses dE/dx information and track curvature,

identifies the highest momentum track as a negative muon.

The events passing this selection are subdivided into CC0π, CC1π and CC other by

reconstructing secondary tracks starting in FGD1. If the track is visible in the TPC,

the TPC PID algorithm is used. For positive tracks, a likelihood is calculated for three

different hypotheses: π+, proton and positron. For negative tracks, only the π− and

electron hypotheses are considered. Neutral pions are identified using the observation

of the electron and positron pair produced by a decay photon. For tracks not visible in

the TPC, charged pions can be identified either by observing the pion track itself in the

FGD, or observing the Michel electron from a muon produced by pion decay at rest.
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Events with no identified pions are selected as CC0π. Events with a single positive

pion identified in either the TPC or FGD, and no negative pions, electrons or positrons

are selected as CC1π. All other events which pass the CC inclusive selection are classified

as CC other.

In antineutrino beam mode, the same cuts are used to form two different CC

inclusive samples, differentiated by the identified charge of the muon candidate [109, 110].

These two samples are each further subdivided into CC 1-track and CC N-track. The

CC 1-track sample consists of events with an identified muon and no identified pions. All

other events passing the CC inclusive selection are placed into the CC N-track sample.

The charge selection provides strong separation of neutrino and antineutrino events, with

approximately 5% of the selected negative-charge events resulting from νµ, and 1.7% of

selected positive-charge events resulting from νµ interactions.

4.4.2 Near Detector Binning

All ND280 samples are binned in observed lepton momentum (p) and the cosine of the

angle between the neutrino beam and the observed lepton (cos θ). For neutrino beam

mode ND280 data, the sample binning is as follows:

• CC0π in 14 p bins, and 11 cos θ bins.

• CC1π in 13 p bins, and 11 cos θ bins.

• CC other in 14 p bins, and 11 cos θ bins.

The binning was selected to maximise signal over signal plus background per

bin, summed over all bins while maintaining a minimum of 25 expected MC events

per bin. Minimum bin sizes are set based on detector resolution. A more detailed

description of the optimisation process for this binning is given in [111]. For the purposes

of detector uncertainties, these are rebinned more coarsely in order to reduce the number

of parameters in the fit, and thus the computation time. The detector uncertainties use

10 bins in p and 7 bins in cos θ, for a total of 210 bins over the three samples.

For the antineutrino beam mode ND280 data, coarser binning was used due to

the low data statistics. Once again, the binning was optimised in order to have a similar

number of events per bin and an acceptable minimum number of events per bin. Each

of the four samples using the same binning:

• νµ CC 1-track, in 5 p bins, and 4 cos θ bins.

• νµ CC N-track, in 5 p bins, and 4 cos θ bins.

• νµ CC 1-track, in 5 p bins, and 4 cos θ bins.

• νµ CC N-track, in 5 p bins, and 4 cos θ bins.
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4.4.3 Near Detector Analysis Strategy

The software used to generate these inputs is known as the BANFF (Beam And Nd280

Flux extrapolation task Force) fitter. In the BANFF fit, both T2K’s neutrino beam mode

(FHC) and antineutrino beam mode (RHC) ND280 datasets are fitted simultaneously.

5.82×1020 POT of FHC data and 0.43×1020 POT of RHC data are used. Flux param-

eters are treated separately for each beam mode, while the cross-section parameters are

shared between both modes.

Detector uncertainties for these parameters use the same binning, for a total of

80 bins over the four RHC samples and a combined a total of 290 detector uncertainty

bins for the entire fit. Figures 4.23 and 4.24 show representative event displays for each

of these samples.

A binned likelihood is formed, and twice the negative logarithm of this likelihood

behaves as a χ2 distribution:

χ2
ND280 =2

Nbins∑
i

(
Np
i (~b, ~x, ~d)−Nd

i +Nd
i ln[Nd

i /N
p
i (~b, ~x, ~d)]

)
+

Nb∑
i

Nb∑
j

∆bi(Vb
−1)i,j∆bj +

Nx∑
i

Nx∑
j

∆xi(Vx
−1)i,j∆xj+

Nd∑
i

Nd∑
j

∆di(Vd
−1)∆dj

(4.8)

Here, Nd
i is the numbers of events observed in each bin (i) of the analysis. Np

i is the

predicted number of events for the ith bin and depends on the flux (~b), cross section (~x)

and detector (~d) systematic parameters. The first term of the equation represents the

difference between prediction and data, while the following three terms add a penalty

term as the fitted parameters move further from their prior value. Vb, Vx and Vd

represent the covariance matrices for the flux, cross section and detector parameters

respectively, while ∆b, ∆x and ∆d are the deviations of these parameters away from

their prior central values. Nx is the total number of cross-section parameters in the fit,

and Nb is the total number of parameters controlling normalisations of the flux bins.

Nd = 290, which is the previously mentioned number of detector uncertainty normali-

sation parameters. The uncertainties on these normalisations and their correlations are

determined by evaluating the effect on number of events per bin by tweaking the ND280

detector systematic parameters [112].
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(a) CC0π (b) CC1π

(c) CCother

Figure 4.23: Example data event displays for the neutrino beam mode ND280 fit samples. The
CC0π event contains a single muon-like track, from a CCQE (or possibly MEC) event. The
CC1π event contains a muon-like track (top) and a pion-like track (below), probably from a
resonance event. The CC other event contains a muon-like track and a number of other particles
including pair produced electrons.
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(a) νµ CC 1 Track (b) νµ CC N Tracks

(c) νµ CC 1 Track (d) νµ CC N Tracks

Figure 4.24: Example event displays for the antineutrino beam mode ND280 fit samples. Direc-
tion of curvature of the muon-like track is used to separate νµ from νµ.
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The BANFF fit contains 25 flux parameters each for ND280 FHC, ND280 RHC,

SK FHC and SK RHC fluxes, binned in true neutrino energy. For the purposes of this

analysis, only the 25 RHC flux parameters are used at Super-K. 16 cross-section parame-

ters are used, as well as 6 ND280 FSI parameters. The four carbon-specific cross-section

parameters as well as the 6 FSI parameters are marginalised away by performing a

numerical integration according to their postfit distribution, before the matrix is propa-

gated to SK leaving the oscillation analysis with 12 cross-section parameters. This gives

a total of 37 systematic parameters constrained by the near detector.

The main interaction mass of FGD1 is carbon, while the main nuclear target at

SuperK is Oxygen. The BANFF sample contains very few events on oxygen (approxi-

mately 0.5%), reducing our ability to constrain the errors on oxygen-specific cross-section

parameters. While it is not possible to significantly reduce the uncertainty on oxygen

using the ND280 data, the best-fit parameters from the fit to carbon are used as a tune.

For example, the CCQE tune suggests a prior central value of 0.27 for the MEC nor-

malisation on both nuclei with a prior error on oxygen of 1.04. The ND280 data fit to

carbon suggests a postfit central value of 1.031 for the MEC normalisation. This result

is used as the central value for the systematic on oxygen at Super-K, but the uncertainty

on oxygen is not reduced by the data collected on carbon, giving a final value for MEC

on oxygen of 1.031± 1.015. The cross-section and ND280 FSI parameters and whether

or not they are propagated to SK are shown in Table 4.4.

The fit results for cross-section, FHC flux errors and RHC flux errors can be seen

in Table 4.4, Table 4.5 and Table 4.6 respectively. The numbers of events predicted before

and after fitting the near detector data can be seen in Table 4.7. The exact set of which

systematics are applied to which interaction modes can be seen in Table 4.8. The BANFF

correlation matrix can be seen in Figure 4.25. Fitted distributions of ND280 data can

be seen in Figures 4.26 to 4.32. It should be observed that the ND280 data event rates

exceed the prediction from the external data CCQE tuning. As a result, the BANFF fit

results increase the predicted signal event rate at ND280 by approximately 15%. The

largest change is applied to the MEC normalisation parameter, which the CCQE tune

from its initial prediction (1) down to 0.27. The results of the T2K near detector fit

returned this parameter to close to its pre-tune value (at 103%). The corresponding

increase in Super-K event rate will be demonstrated in Tables 5.2 and 5.3.
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Cross Section Parameter Prefit BANFF postfit Type Used at SK

MQE
A (GeV/c2) 1.15 ± 0.069607 1.1371 ± 0.033559 Shape X

pF
12C (MeV/c) 223.0 ± 12.301 222.67 ± 8.8333 Shape

MEC 12C 27.0 ± 29.053 103.11 ± 17.245 Norm
EB

12C (MeV) 25.0 ± 9.0 23.903 ± 7.3458 Shape
pF

16O (MeV/c) 225.0 ± 12.301 224.43 ± 12.152 Shape X
MEC 16O 27.0 ± 104.13 103.11 ± 101.49 Norm X
EB

16O (MeV) 27.0 ± 9.0 27.045 ± 8.8047 Shape X
CA5RES 1.01 ± 0.12 0.86234 ± 0.074094 Shape X
MRES
A (GeV/c2) 0.95 ± 0.15 0.72437 ± 0.052156 Shape X

Isospin=1
2 Background 1.3 ± 0.2 1.4853 ± 0.19014 Shape X

νe/νµ 1.0 ± 0.02 1.0008 ± 0.019997 Norm X
CC Other Shape 0.0 ± 0.4 0.023024 ± 0.1928 Shape X
CC Coh 12C 1.0 ± 1.0 0.021658 ± 0.16037 Norm
CC Coh 16O 1.0 ± 1.0 1.0764 ± 0.97171 Norm X
NC Coh 1.0 ± 0.3 0.98 ± 0.29922 Norm X
NC Other 1.0 ± 0.3 1.4128 ± 0.1858 Norm X
FSI Inel. Low E 0.0 ± 0.41231 -0.30957 ± 0.15282 Norm
FSI Inel. High E 0.0 ± 0.33793 0.12113 ± 0.23671 Norm
FSI Pion Prod. 0.0 ± 0.5 -0.17671 ± 0.34675 Norm
FSI Pion Abs. 0.0 ± 0.41161 -0.06842 ± 0.23702 Norm
FSI Ch. Exch. Low E 0.0 ± 0.56679 0.66502 ± 0.43203 Norm
FSI Ch. Exch. High E 0.0 ± 0.27778 -0.098172 ± 0.19264 Norm

Table 4.4: BANFF cross-section parameters with their prefit and post-fit values and uncertain-
ties. Reproduced from [112].
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FHC Flux parameter Prefit Postfit

SK νµ (0.0 - 0.4 GeV) 1.0 ± 0.09873 1.2038 ± 0.05919
SK νµ (0.4 - 0.5 GeV) 1.0 ± 0.10349 1.2329 ± 0.05535
SK νµ (0.5 - 0.6 GeV) 1.0 ± 0.09644 1.1997 ± 0.04533
SK νµ (0.6 - 0.7 GeV) 1.0 ± 0.08670 1.1244 ± 0.03798
SK νµ (0.7 - 1.0 GeV) 1.0 ± 0.11305 1.0555 ± 0.04110
SK νµ (1.0 - 1.5 GeV) 1.0 ± 0.09175 1.0751 ± 0.04202
SK νµ (1.5 - 2.5 GeV) 1.0 ± 0.07017 1.1095 ± 0.04024
SK νµ (2.5 - 3.5 GeV) 1.0 ± 0.07368 1.1200 ± 0.04272
SK νµ (3.5 - 5.0 GeV) 1.0 ± 0.08737 1.1062 ± 0.04227
SK νµ (5.0 - 7.0 GeV) 1.0 ± 0.09794 1.0465 ± 0.04247
SK νµ (7.0 - 30.0 GeV) 1.0 ± 0.11436 1.0072 ± 0.05272
SK νµ (0.0 - 0.7 GeV) 1.0 ± 0.10258 1.1561 ± 0.08070
SK νµ (0.7 - 1.0 GeV) 1.0 ± 0.07853 1.0818 ± 0.04748
SK νµ (1.0 - 1.5 GeV) 1.0 ± 0.08445 1.0564 ± 0.06033
SK νµ (1.5 - 2.5 GeV) 1.0 ± 0.08557 1.0566 ± 0.07216
SK νµ (2.5 - 30.0 GeV) 1.0 ± 0.08643 1.1097 ± 0.07022
SK νe (0.0 - 0.5 GeV) 1.0 ± 0.08970 1.1903 ± 0.04718
SK νe (0.5 - 0.7 GeV) 1.0 ± 0.08995 1.1804 ± 0.04356
SK νe (0.7 - 0.8 GeV) 1.0 ± 0.08597 1.1697 ± 0.04152
SK νe (0.8 - 1.5 GeV) 1.0 ± 0.080912 1.1233 ± 0.03713
SK νe (1.5 - 2.5 GeV) 1.0 ± 0.07897 1.1117 ± 0.04086
SK νe (2.5 - 4.0 GeV) 1.0 ± 0.08385 1.0961 ± 0.04203
SK νe (4.0 - 30.0 GeV) 1.0 ± 0.09390 1.0903 ± 0.06037
SK νe (0.0 - 2.5 GeV) 1.0 ± 0.07403 1.1303 ± 0.05463
SK νe (2.5 - 30.0 GeV) 1.0 ± 0.12842 1.1559 ± 0.11855

Table 4.5: Prefit and postfit values for the Super-K FHC flux parameters. Reproduced from [112].
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RHC Flux parameter Prefit Postfit

SK νµ (0.0 - 0.7 GeV) 1.0 ± 0.09368 1.1424 ± 0.07101
SK νµ (0.7 - 1.0 GeV) 1.0 ± 0.07934 1.0907 ± 0.05294
SK νµ (1.0 - 1.5 GeV) 1.0 ± 0.07673 1.0791 ± 0.05176
SK νµ (1.5 - 2.5 GeV) 1.0 ± 0.08056 1.0740 ± 0.05976
SK νµ (2.5 - 30.0 GeV) 1.0 ± 0.08029 1.0497 ± 0.05277

SK νµ (0.0 - 0.4 GeV) 1.0 ± 0.10448 1.2044 ± 0.06858
SK νµ (0.4 - 0.5 GeV) 1.0 ± 0.10153 1.2104 ± 0.05785
SK νµ (0.5 - 0.6 GeV) 1.0 ± 0.09617 1.1801 ± 0.05066
SK νµ (0.6 - 0.7 GeV) 1.0 ± 0.08464 1.1282 ± 0.04076
SK νµ (0.7 - 1.0 GeV) 1.0 ± 0.12509 1.1232 ± 0.07706
SK νµ (1.0 - 1.5 GeV) 1.0 ± 0.10529 1.1177 ± 0.06761
SK νµ (1.5 - 2.5 GeV) 1.0 ± 0.07999 1.1206 ± 0.05296
SK νµ (2.5 - 3.5 GeV) 1.0 ± 0.07394 1.1215 ± 0.04904
SK νµ (3.5 - 5.0 GeV) 1.0 ± 0.09399 1.1224 ± 0.06676
SK νµ (5.0 - 7.0 GeV) 1.0 ± 0.09251 1.1122 ± 0.06375
SK νµ (7.0 - 30.0 GeV) 1.0 ± 0.13031 1.0930 ± 0.10825

SK νe (0.0 - 2.5 GeV) 1.0 ± 0.06888 1.1091 ± 0.04721
SK νe (2.5 - 30.0 GeV) 1.0 ± 0.08495 1.0898 ± 0.06720

SK νe (0.0 - 0.5 GeV) 1.0 ± 0.09470 1.1926 ± 0.05406
SK νe (0.5 - 0.7 GeV) 1.0 ± 0.09104 1.1842 ± 0.04732
SK νe (0.7 - 0.8 GeV) 1.0 ± 0.09101 1.1670 ± 0.04876
SK νe (0.8 - 1.5 GeV) 1.0 ± 0.08386 1.1411 ± 0.04436
SK νe (1.5 - 2.5 GeV) 1.0 ± 0.07958 1.1195 ± 0.05398
SK νe (2.5 - 4.0 GeV) 1.0 ± 0.08901 1.1231 ± 0.06779
SK νe (4.0 - 30.0 GeV) 1.0 ± 0.15581 1.1796 ± 0.14381

Table 4.6: Prefit and postfit values for the Super-K RHC flux parameters. Reproduced from [112].

Sample Data BANFF prefit MC BANFF postfit MC

νµ CC Inclusive (FHC mode) 25569 24145.26 25517.17
νµ CC0π (FHC mode) 17362 15624.99 17248.24
νµ CC1π (FHC mode) 3988 4748.21 4189.69
νµ CC Other (FHC mode) 4219 3772.06 4079.24

νµ CC Inclusive (RHC mode) 571 515.63 566.28
νµ CC 1-Track (RHC mode) 435 387.37 437.72
νµ CC N-Tracks (RHC mode) 136 128.26 128.56

νµ CC Inclusive (RHC mode) 276 288.73 291.33
νµ CC 1-Track (RHC mode) 131 141.42 147.31
νµ CC N-Tracks (RHC mode) 145 147.31 144.02

Table 4.7: Actual and predicted event rates for the different ND280 samples in the BANFF fit.
The MC predictions are shown both before and after the BANFF fit. Reproduced from [112].
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fBANFF0;t,r RHC X X X X X X X X X X X X X X

fBANFF1;t,r RHC X X X X X X X X X X X X X X

fBANFF2;t,r RHC X X X X X X X X X X X X X X

fBANFF3;t,r RHC X X X X X X X X X X X X X X

fBANFF4;t,r RHC X X X X X X X X X X X X X X

fBANFF5;t,r RHC X X X X X X X X X X X X X X

fBANFF6;t,r RHC X X X X X X X X X X X X X X

fBANFF7;t,r RHC X X X X X X X X X X X X X X

fBANFF8;t,r RHC X X X X X X X X X X X X X X

fBANFF9;t,r RHC X X X X X X X X X X X X X X

fBANFF10;t,r RHC X X X X X X X X X X X X X X

fBANFF11;t,r RHC X X X X X X X X X X X X X X

fBANFF12;t,r RHC X X X X X X X X X X X X X X

fBANFF13;t,r RHC X X X X X X X X X X X X X X

fBANFF14;t,r RHC X X X X X X X X X X X X X X

fBANFF15;t,r RHC X X X X X X X X X X X X X X

fBANFF16;t,r RHC X X X X X X X X X

fBANFF17;t,r RHC X X X X X X X X X

fBANFF18;t,r RHC X X X X X X X X X

fBANFF19;t,r RHC X X X X X X X X X

fBANFF20;t,r RHC X X X X X X X X X

fBANFF21;t,r RHC X X X X X X X X X

fBANFF22;t,r RHC X X X X X X X X X

fBANFF23;t,r RHC X X X X X X X X X

fBANFF24;t,r RHC X X X X X X X X X

Continued on next page
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fBANFF
M
QE
A

X X X X X X

fBANFF
MRES
A

X X X X X X X X X X X X X X

fBANFFNormMEC
X X X X X X

fBANFF
CA5

X X X X X X X X X X

fBANFFBgRES
X X X X X X X X X X

fBANFFpf
X X X X X X

fBANFFShapeCCoth
X X X X X X

fBANFFEB
X X X X X X

fBANFFNormCCcoh
X X X X X X

fBANFFNormNCother
X X X X X X X X X X X X

fBANFFNorm
(−)
νe →

(−)
νµ

X X X X X X X X X X X X X X X X

fSKE;r X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X

fSK+FSI
0;t,r RHC X X X X

fSK+FSI
1;t,r RHC X X X X

fSK+FSI
2;t,r RHC X X X X

fSK+FSI
3;t,r RHC X X X X X X

fSK+FSI
4;t,r RHC X X X X X X X X X X X X X X X X X X X X

fSK+FSI
5;t,r RHC X X X X X X X X X X X X X X X X

Table 4.8: Each row of this table represents one of the 44 systematic parameters considered in the νµ disappearance analysis and each column
represents one of the 46 MC templates used to construct the single µ-like ring reconstructed energy spectrum p.d.f. A X symbol denotes that
the given MC template is modified when the given systematic parameter is tweaked.
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Figure 4.26: Overlays of the data and the fitted MC prediction for the νµ CC0π selection (FHC).
Reproduced from [112].
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Figure 4.27: Overlays of the data and the fitted MC prediction for the νµ CC1π selection (FHC).
Reproduced from [112].
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Figure 4.28: Overlays of the data and the fitted MC prediction for the νµ CC other selection
(FHC). Reproduced from [112].
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Figure 4.29: Overlays of the data and the fitted MC prediction for the νµ CC 1-track selection
(RHC). Reproduced from [112].

Data
 CCQEν
 MECν
 CCRESν
 CCCOHν
 CCOTHERν
 NCRESν
 NCCOHν
 NCOTHERν
 CCQEν
 MECν
 CCRESν
 CCCOHν
 CCOTHERν
 NCRESν
 NCCOHν
 NCOTHERν

 CC-NTracks selection (RHC)µν

 (MeV/c)
µ

p

E
ve

n
ts

/(
10

0 
M

eV
/c

)

0 2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

3

3.5

4

4.5
 < 0.8θ-1.0 < cos

0 2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

3

3.5  < 0.9θ0.8 < cos

0 2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

3

3.5

4
 < 0.97θ0.9 < cos

0 2000 4000 6000 8000 10000

0.5

1

1.5

2

2.5

3
 < 1.0θ0.97 < cos

Figure 4.30: Overlays of the data and the fitted MC prediction for the νµ CC N-tracks selection
(RHC). Reproduced from [112].
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Figure 4.31: Overlays of the data and the fitted MC prediction for the νµ CC 1-track selection
(RHC). Reproduced from [112].
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Figure 4.32: Overlays of the data and the fitted MC prediction for the νµ CC N-tracks selection
(RHC). Reproduced from [112].
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4.5 Super-Kamiokande Samples

Events are selected at Super-K with the intention of getting a pure sample of νµ or

νµ CCQE-like interactions. First, cuts are applied to select good fully contained (FC)

events:

• Data Quality Cuts. Check for good beam spill, Super-K data quality flag, no

trigger activity in the 100 µs before the beam spill and the SK DAQ is fully

functional. Sometimes, due to a malfunction a PMT produces light itself, which

Super-K detects as a so-called ‘flasher’ event. Flasher events have a distinctive

spatial and timing distribution of PMT hits, which can be used to accurately

identify them. If 25 or more flasher events are seen in a 30 minute window, that

entire subrun is assumed to be bad.

• Timing Cuts. The event time relative to the beginning of the beam spill ∆T0 is

measured. In order to cut out background events not caused by the beam spill, a

cut of -2 µs < ∆T0 < 10 µs is used. The distributions of this variable can be seen

in Figure 4.33.

• Containment Cuts. In order to reject events that are not fully contained, only

events for which the highest charge outer-detector cluster has less than 16 hits are

used.

In previous T2K analyses, there was also a cut to reject flasher events separate from the

data quality cut, but this was removed for the 2015 T2K oscillation analysis because the

accuracy of the beam trigger makes the likelihood of coincidence between a beam spill

and a flasher event extremely small. The following cuts are applied to the FC sample in

order to get the fully-contained fiducial-volume (FCFV) sample:

• Fiducial volume cut. The reconstructed vertex must be at least 2 metres from

any edge of the inner detector.

• Visible energy cut. The observed amount of Čerenkov light must be greater than

the amount that would be produced by an electron with an energy of 30 MeV.

After we have the FCFV sample, PID cuts are applied to get a sample of νµ or νµ CCQE

events:

• Single Ring Cut. There must be exactly one reconstructed ring in the event

according to the SK ring-counting algorithm, in order to reject events with an

additional visible charged particle. This rejects visible particles like a pion or

additional charged lepton. The proton from a ν CCQE event is not affected by

this cut as it will not be above the Čerenkov threshold.
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Figure 4.33: Distributions of ∆T0 at Super-
K for events in the Low Energy (LE), Outer
Detector (OD) and Fully Contained (FC)
events at SK from T2K runs 1-6. Repro-
duced from [60].

Figure 4.34: Distributions of ∆T0 at Super-
K for FC events in runs 1-5 and run 6.
Bunch centres are labelled with dotted
lines. Reproduced from [60].

Total MC νµ νµ
(−)
νµ

(−)
νe NC

CCQE CCQE CCnonQE CC

Interacted in FV 108.7 6.58 10.32 32.75 5.48 53.05
Single-ring 30.30 4.44 8.11 9.74 3.95 4.06
Muon-like PID 22.85 4.40 8.00 9.19 0.04 1.23
pµ > 200MeV/c 22.81 4.40 7.99 9.18 0.04 1.22
Ndecaye ≤ 1 20.97 4.32 7.96 7.48 0.03 1.17

Efficiency from Interaction in FV [%] 19.4 65.7 77.1 22.9 0.6 2.2

Table 4.9: Numbers of Monte Carlo events passing each stage of the SK PID, for 4.011×1020

with standard oscillations applied.

• Muon-like PID cut. The reconstructed event must appear muon-like, according

to the SK PID separator, which is described in Section 3.3.1.

• Muon momentum cut. The reconstructed muon momentum must be above

200 MeV, in order to reject charged pions and misidentified electrons.

• Decay electron cut. The number of observed electrons from muon decay must

be zero or one, in order to reject events with charged pions below the Čerenkov

threshold. Electrons originating from these decays are identified using timing in-

formation.

The effects of these cuts on event count can be seen in Figures 4.35 and 4.36 as well as

Table 4.9.
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Figure 4.35: Super-K PID distributions for run 5 and 6 (4.011×1020 POT). Reproduced from [60].

The kinematics of a CCQE interaction are used to reconstruct the neutrino energy

(Ereco) using the momentum and angle of the outgoing muon according to Equation 4.6.

The binding energy of oxygen, VO, is taken to be 27 MeV. This formula is accurate for

a CCQE interaction, but biased for the other interaction modes we observe in SK. The

relationship between true and reconstructed neutrino energy for different interaction

modes can be seen in Figures 4.37a, 4.37b and 4.37c.
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Figure 4.36: Cumulative effects of Super-K PID cuts on run 5 and 6 event numbers (4.011×1020

POT). Reproduced from [60].

4.6 Super-Kamiokande Detector and Final State Interac-

tion Systematics

Finally, there is a group of systematics which are unique to Super-Kamiokande but

are clearly correlated with one another. These represent the uncertainties in Super-K’s

detection efficiency, in the nuclear final state interactions (FSI) and in secondary inter-

actions (SI), the likelihood of pions interacting with a different nucleus to the one they

were produced in. Covariance matrices are produced independently which account for

detector efficiency uncertainties, and for FSI/SI. Both sets of uncertainties are calculated

using the same binning:

• (−)
νµ CCQE and MEC with Ereco < 0.4 GeV.

• (−)
νµ CCQE and MEC with 0.4 GeV < Ereco < 1.1 GeV.

• (−)
νµ CCQE and MEC with Ereco > 1.1 GeV.

• (−)
νµ CCnonQE.

• (−)
νe CC.

• All NC.

The CCQE bins were divided in order to have one bin covering the region of maximum

oscillation, and a bin each below and above this energy. Since the detector and FSI
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Figure 4.37: True vs. reconstructed neutrino energy for simulated νµ events by mode.

systematics use the same binning, the covariance matrices can be summed and the fit

can treat each detector+FSI bin as a single parameter. Each of these parameters is

evaluated for both neutrino beam mode and antineutrino beam mode. The correlated

detector/FSI parameters and their errors can be seen in Table 4.10. The correlation

matrix for antineutrino beam mode can be seen in Figure 4.38.

4.6.1 Final State Interactions and Secondary Interactions

FSI can cause issues for the oscillation analysis since pion absorption will cause a CC

event with emitted pions to appear in Super-K as a CCQE event with the wrong recon-

structed energy, which can cause background events to be reconstructed in the disap-

pearance region. T2K FSI effects are simulated using a cascade model in NEUT, with

the pion propagated through the nuclear medium in finite steps. At each point, the pion

can interact in a number of ways dependent on cross-section, allowing the initial particle

and any products to interact multiple times on the way out of the nucleus.
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Parameter Definition 1σ error SK Det FSI/SI

FHC 1
(−)
νµ CCQE, Ereco < 0.4 GeV 0.018 0.018 0.000

FHC 2
(−)
νµ CCQE, 0.4 GeV ≤ Ereco ≤ 1.1 GeV 0.017 0.017 0.000

FHC 3
(−)
νµ CCQE, Ereco > 1.1 GeV 0.018 0.018 0.001

FHC 4
(−)
νµ CCnonQE 0.077 0.046 0.062

FHC 5
(−)
νe CC 1.003 1.003 0.023

FHC 6 All NC 0.598 0.592 0.079

RHC 1
(−)
νµ CCQE, Ereco < 0.4 GeV 0.018 0.018 0.000

RHC 2
(−)
νµ CCQE, 0.4 GeV ≤ Ereco ≤ 1.1 GeV 0.016 0.016 0.000

RHC 3
(−)
νµ CCQE, Ereco > 1.1 GeV 0.016 0.016 0.001

RHC 4
(−)
νµ CCnonQE 0.089 0.034 0.082

RHC 5
(−)
νe CC 1.003 1.003 0.022

RHC 6 All NC 0.597 0.593 0.073

Table 4.10: Super-K selection efficiency and FSI+SI systematic parameters for neutrino beam
mode (FHC) and antineutrino beam mode (RHC). The SK detector errors and the FSI+SI errors
are added in quadrature to give the total 1σ error. The correlations between these parameters
can be seen in Figure 4.38.

In order to evaluate the FSI model uncertainty, the simulation was compared

to data from pion-nucleus scattering experiments. Twenty-three datasets were used,

over a wide range of pion energies and nuclear targets. The datasets used and nuclear

targets are described in [113]. The events were split into five categories, based on their

observable final state.

• Absorption: No pion appears in the final state.

• Inelastic Scattering: Only one pion in the final state with the same charge as

the pion beam.

• Single Charge Exchange: Only 1 π0 in the final state.

• Double Charge Exchange: Only one pion in the final state with the opposite

charge to the pion beam.

• Hadron Production: 2 or more pions in the final state.

Three parameters were varied in the fits: the mean free path, QE scattering

probability and charge exchange probability, and these were varied separately for low

energy (pπ < 500 MeV) and high energy (pπ > 500 MeV). Data fits to pion-carbon data

in these modes can be seen in Figures 4.39 and 4.40.
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Figure 4.38: Correlations in the Super-K detector and FSI/SI errors. Absolute error sizes can
be seen in Table 4.10. It should be observed that neutrino beam mode (FHC) and antineutrino
beam mode (RHC) systematics are highly correlated with one another for CCQE-like and NC
events.

Pion secondary interactions (SI) are modelled in a similar fashion, using the pion-

nucleus interaction cross-sections but with the pion beginning outside the nucleus rather

than inside as in FSI. SKDETSIM propagates the pion through Super-K simulating the

possibility of a pion reinteraction. Since the same interaction probabilities are used, the

secondary interaction and FSI systematics are evaluated simultaneously, and produce a

single uncertainty matrix. Full details can be found in [113].

4.6.2 Detector Efficiency Systematics

The Super-K detection efficiency systematics are evaluated using atmospheric neutrino

data from the Super-K Run IV period, between October 20th 2008 and September 20th

2014. Atmospheric data is used regardless of T2K beam mode. The uncertainties are

evaluated separately for each of the event selection cuts:

• Fiducial Volume (FV) selection.

• Ring Counting (RC).

• Outer detector (OD) activity.

• Particle identification (PID).
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Figure 4.39: π+-carbon scattering cross-
sections used to tune FSI systematics. ‘Re-
active’ here describes the inclusive inter-
action cross-section, and the plot contains
both the prior distribution (OldFSI) and
the fitted distribution (TunedFSI). Repro-
duced from [113].
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Figure 4.40: π−-carbon scattering cross-
sections used to tune FSI. ‘Reactive’ here
describes the inclusive interaction cross-
section, and the plot contains both the prior
distribution (OldFSI) and the fitted distri-
bution (TunedFSI). Reproduced from [113].

• Momentum cuts.

• Decay electron cuts.

Control samples are produced from the atmospheric data in each of the systematic bins

without the cut being studied applied. The distribution of the variable being cut on is

compared between data and Monte Carlo, and the difference treated as a 1σ error. The

cut is then varied by this amount and the effect on the number of events passing the

full 1-ring muon selection is evaluated. The systematics from each of these effects are

then combined to produce a single uncertainty for Super-K detector selection efficiency

in each bin.

The OD cut and momentum cut have a negligible effect on the uncertainty. The

decay electron and FV cuts yield an uncertainty of 1% each. The PID cuts add a 0.3%

uncertainty on CC events and a 55% uncertainty on NC events due to a large uncertainty

on the misidentification of the pion in NC1π± events. The ring-counting cuts have an

uncertainty of 1.84%, 2.21% and 3.25% for the CCQE-like bins, 8.1% for the CCnonQE

bin and 21.8% for the NC bin [114].

4.6.3 Super-K Energy Scale

The final Super-K systematic is a parameter controlling the absolute Super-Kamiokande

reconstructed energy scale. While clearly a Super-K detector systematic, it is not cor-

related with the others and is thus fitted independently.
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To evaluate the size of this systematic, four Super-K control samples are used

which cover different energy ranges. A Gaussian is fitted to the energy distribution of

each sample, and the difference between data and Monte Carlo peak positions is treated

as the uncertainty [59]. The four samples are:

• Decay electrons from stopping cosmic muons provide an estimate of the low-energy

uncertainty of 0.7±0.2%.

• NC atmospheric events with 2 rings and a reconstructed π0 invariant mass between

85 MeV and 185 MeV provide an estimated uncertainty of 0.5±0.7%.

• Cosmic stopping muons with a momentum between 200 MeV and 440 MeV provide

an estimated uncertainty around the T2K beam energy of up to 2.4%.

• Cosmic stopping muons with momenta greater than 1 GeV provide an estimated

uncertainty of up to 1.3% at higher energies.

The largest of these errors, from the lower energy cosmic stopping muon sample,

is used as the absolute uncertainty size (2.4%). The Super-K Ereco binning of detector

efficiencies and FSI listed in Section 4.6 apply to the initial Ereco values before the

application of this systematic parameter. The Super-K energy scaling systematic is

applied to binned data, assuming that events are distributed uniformly across each bin.
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Chapter 5

Muon Antineutrino

Disappearance Measurement

In 2014, T2K began collecting data in reverse horn current (RHC, or antineutrino) beam

mode. This chapter describes the first oscillation analysis performed with that data. This

dataset was collected in two run periods: Run 5, in May - June 2014 (0.506×1020 RHC

POT) and Run 6 from November 2014 - June 2015 (3.505×1020 RHC POT) making a

total POT of 4.011×1020. The pattern of the accumulation of this POT can be seen in

Figure 3.4.

Section 5.1 describes the hypothesis being tested, in which separate oscillation

parameters (sin2θ23 and |∆m2
32|) are fitted for antineutrinos. A likelihood ratio was used

to fit the reconstructed energy spectrum for muon-like events in the T2K RHC sample, as

described in Section 5.2. The predicted event rates and spectra are shown in Section 5.3.

The effects of the systematic parameters are quantified in Section 5.4. Goodness-of-fit

tests are described in Section 5.5 and the analysis is validated in Section 5.6.

The observed T2K data and best-fit spectra are presented in Section 5.9.1. Sec-

tion 5.9.2 contains the results of the goodness-of-fit tests which indicate that the data is

consistent with the hypothesis used.

Confidence regions were produced for the sin2θ23 and |∆m2
32| for the full Run

5 and 6 dataset. These contours are presented in Section 5.9.3. where they are also

compared to T2K’s neutrino-mode measurements as well as results from MINOS.

5.1 Hypothesis

In the past, T2K has performed precision measurements of sin2 θ23 and |∆m2
32| in a full

three-flavour oscillation framework using a neutrino mode (FHC) beam [41]. The goal

of this analysis is to provide the first T2K measurement of νµ disappearance parameters
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Parameter(s) Fixed value Fixed value
in fits (NH) in fits (IH)

sin2 θ23 0.527 0.533

sin2θ13 and sin2 θ13 0.0248 0.0252

sin2θ12 and sin2 θ12 0.304 0.304
|∆m2

32| (NH only) 2.51×10−3 eV2 -
|∆m2

31| (IH only) - 2.48×10−3 eV2

∆m
2

21 and ∆m2
21 7.53×10−5 eV2 7.53×10−5 eV2

δCP -1.55 -1.56

Table 5.1: Values of oscillation parameters that are fixed in fits (NH = normal mass hierarchy,
IH = inverted mass hierarchy). These are the results of the T2K Run1-4 oscillation fit performed
with the reactor constraint [41], and used are for real data fits.

in an antineutrino beam, and to evaluate if there is any difference between the squared

mass splittings and PMNS matrices as extrapolated from νµ and νµ disappearance mea-

surements. As such, we introduce an additional pair of parameters sin2θ23 and |∆m2
32|

which takes the place of sin2 θ23 and |∆m2
32| in the calculation of oscillation probabili-

ties for the beam νµ, νe and oscillated νe samples. It is these two parameters that this

analysis measures. The other oscillation parameters use the same values for neutrino

and antineutrino mixing.

For a νµ disappearance study, sin2 θ12, sin2 θ13 and ∆m2
12 have a small effect, and

their values are well constrained by the experiments as described in Section 2.3. δCP

is not well constrained, but produces a negligible effect on a statistics-dominated νµ

disappearance experiment. As a result, for the purposes of this analysis, these will be

fixed at the values shown in Table 5.1. Since the effects of the mixing angles are as a

rotation matrix, they only appear in the probability calculation in their trigonometric

forms. Measurements of mixing are usually performed in terms of either sin2(θ) or

sin2(2θ). The double-angle version of the formula loses octant information, and is a

natural choice for analyses performed using a two-flavour approximation since only these

terms appear in equation 2.38. However, this analysis is performed using a full three

flavour oscillation calculation and has some sensitivity to distinguish which octant the

true value is in, so all mixing angles will be used in their single-angle (sin2 θ) form. The

mass splitting parameter is often described as |∆m2
32|, but this parameter is only used

for the normal hierarchy (NH) fits. The inverted hierarchy fits instead use the parameter

|∆m2
31|, which differs from |∆m2

32| by the value of ∆m2
12. As can be seen in Figure 2.4,

this uses the second-largest mass-splitting each time, making the results for the two

hierarchies more directly comparable.
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5.2 Fit Method

For a given set of input parameter values, a prediction for the Super-Kamiokande 1-

ring muon-like spectrum in reconstructed neutrino energy is calculated. This is carried

out using Monte Carlo templates constructed from the outputs of the full Super-K

simulation, reconstruction and data reduction chain.

The templates used for the prediction are binned in true neutrino energy (Etrue)

and reconstructed neutrino energy Ereco. Oscillation probabilities are calculated and

applied for each Etrue bin, using the energy at the bin centre. For example, at T2K

when a typical set of oscillation parameters are applied, the νµ templates (described in

Section 4.2.2) are weighted down by νµ disappearance, while the oscillated νe templates

are weighted up representing νe appearance.

The binning regime was selected to optimise T2K’s sensitivity while ensuring a

reasonable number of expected events per reconstructed bin. The spectrum is most finely

binned near the beam energy peak (and oscillation maximum). The binning scheme in

Etrue has 84 bins total, and is as follows:

• 50 MeV bins from 0 to 0.3 GeV (6 bins).

• 25 MeV bins from 0.3 to 1 GeV (28 bins).

• 50 MeV bins from 1 GeV to 3 GeV (40 bins).

• 100 MeV bins from 3 GeV to 3.5 GeV (5 bins).

• One bin from 3.5 to 4 GeV.

• One bin from 4 to 5 GeV.

• One bin from 5 to 7 GeV.

• One bin from 7 to 10 GeV.

• One bin for events > 10 GeV.

Oscillation probabilities for these bins are calculated at the bin centre. For this pur-

pose, the last bin stops at 30 GeV. However, this bin is designed to also include any

events generated above this energy, although no such events exist in the current SK MC

production.

The Ereco binning scheme consists of 73 bins and is as follows:

• 50 MeV bins from 0 to 3 GeV (60 bins).

• 250 MeV bins from 3 GeV to 4 GeV (4 bins).
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• 500 MeV bins from 4 GeV to 6 GeV (4 bins).

• 1000 MeV bins from 6 GeV to 10 GeV (4 bins).

• One bin for events > 10 GeV.

The last bin is treated as having an upper limit at 30 GeV. An event being

reconstructed above 30 GeV is extremely unlikely: in the approximately two million

Monte Carlo events used for the analysis, there are two events reconstructed above

30 GeV. No such events exist in the data.

These bins are filled with the Monte Carlo described in Section 4.2, and weighted

for the appropriate POT (4.011×1020) using the normalisation factors in Table 4.2.

By summing over all of the interaction modes and all of the Etrue bins, a predicted

Ereco spectrum is produced for a given set of parameter values. The agreement between

this prediction and the true data can thus be calculated and used for a likelihood fit.

The expected number of events in a given Super-K reconstructed energy bin N exp
r is

given by:

N exp
r =

∑
m=mode

∑
t=true

∑
r′=reco

P oscm;t;~p Tr;r′;fE W
m;r′;t;~f N

exp
m;r′;t (5.1)

Here, P oscm;t;~p represents the oscillation probability for modem given a set of physics

parameters ~p and W
m;r′;t;~f represents a bin weight calculated given the current values

of systematic parameters (~f). Tr;r′;fE represents a transfer matrix which migrates frac-

tional events to neighbouring Ereco bins given the current value of the SK energy scale

systematic fE . N exp
m;r′;t is the number of events from the POT-weighted Monte Carlo pre-

diction for mode m, reconstructed energy bin r′ and true energy bin t. For the purposes

of this, ‘mode’ refers to the 46 templates listed in Appendix A.

The three-flavour oscillation probability P is calculated using a bespoke piece

of code, which calculates the oscillation probability in constant density matter. The

diagonalisation of the matter matrix was implemented using the method of Cardano,

as described by Kopp [115]. The accuracy of the probability calculation was verified

against the Prob3++ library [116].

The matter density used is 2.6 g cm−3, based on a geological survey of the T2K

baseline [117]. For the
(−)
νµ and non-oscillated

(−)
νe CC modes, the probabilities used are

for particle survival. For the oscillated
(−)
νe modes, the probabilities calculated are for

(−)
νµ →

(−)
νe . No oscillations are applied to the NC modes.

Two different methods are used in order to eliminate the nuisance parameters

allowing a final confidence region in terms of only sin2θ23 and |∆m2
32|. The first is

‘profiling’ in which the likelihood is minimised with respect to all nuisance parameters,
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and is described in Section 5.2.1. The second method is ‘marginalisation’, in which the

likelihood is integrated over the possible values of the nuisance parameters according to

their prior probability distributions. For continuity with published T2K neutrino-mode

results, the profiled result will be considered the primary result of this thesis, with the

marginalised results treated as a cross-check.

5.2.1 Profiled Systematics

In this analysis, the parameters being measured are sin2θ23 and |∆m2
32|. The parameters

sin2 θ23 and |∆m2
32| are applied to neutrinos only, while sin θ12, sin θ13, ∆m2

12 and δCP

are applied as normal to both neutrinos and antineutrinos. These remain fixed at their

values in Table 5.1. Applying an uncertainty to these parameters was demonstrated to

have a negligible effect on the final contour size in this statistics-dominated analysis,

and it was decided that the analysis use fixed values rather than an uncertainty based

on measurements made with the standard three-flavour oscillation hypothesis. The 44

systematic parameters are treated as ‘nuisance’ parameters.

Given a spectrum for Super-K sample s with an expected number of events N exp
r,s

and an observed number of events Nobs
r,s in each reconstructed energy bin r, the likelihood

ratio function that is minimised for a fit with profiled systematics is as follows:

χ2
prof = −2 lnLprof (sin2θ23, |∆m2

32|, ~f)

= 2
∑
s

Ns−1∑
r=0

(
Nobs
r,s · ln

(
Nobs
r,s

N exp
r,s

)
+N exp

r,s −Nobs
r,s

)
+ χ2

penalty(
~f)

(5.2)

This likelihood ratio function is designed to be able to fit many Super-K samples

simultaneously, but in this analysis only the RHC muon-like sample is used (Ns = 1).

The function tends to a χ2 distribution when there are many events per bin, and will

be referred to as χ2 for the remainder of this document. The MIGRAD algorithm from

the software package MINUIT is used to find the minimum of this function [106]. In the

fit with profiled systematics, when the nuisance parameters are varied away from their

central values, a penalty term is added to the likelihood in order to represent that these

values are considered less likely.

Given a vector of current nuisance parameter values ~f , a vector of central nui-

sance parameter values ~f0 and a covariance matrix containing their uncertainties C, this

penalty term is as follows:

χ2
penalty(

~f) = (~f − ~f0)T ·C−1 · (~f − ~f0) (5.3)

In the case of uncorrelated parameters with a central value (µp) and an uncer-
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tainty (σp), this would simplify to:

χ2
penalty(

~f) =
∑

p=nuisance

(
fp − µp
σp

)2

(5.4)

5.2.2 Marginalised Systematics

The alternative method used to eliminate the systematics is Bayesian marginalisation.

In this method, the likelihood distribution is integrated over the prior distribution (π)

of the nuisance parameters. This integral is approximated by summing over 10000 toy

experiments generated according to their prior parameter distribution.

Lmarg(sin2θ23, |∆m2
32|) =

∫
F
L(sin2θ23, |∆m2

32|, ~f)π(~f)d~f

≈
10000∑
i

Li(sin2θ23, |∆m2
32|, ~fi)π(~fi)

(5.5)

The likelihood ratio function used for each evaluation is:

− 2Li(sin2θ23, |∆m2
32|, fi) = 2

∑
s

Ns−1∑
r=0

(
Nobs
r,s · ln

(
Nobs
r,s

N exp
r,s

)
+N exp

r,s −Nobs
r,s

)
(5.6)

Once again, we use the fact that this likelihood behaves like a χ2 distribution:

χ2
marg = −2 lnLmarg (5.7)

The prior used for each parameter is a Gaussian with the mean and 1σ errors listed in

Tables 4.4, 4.6 and 4.10. The 10000 toy experiments are generated by randomising all of

the systematic parameters according to their priors. The random parameter variations

are generated with correlations using the Cholesky decomposition [118] of the BANFF

and Super-K covariance matrices. If any of the randomised systematic parameters lie

outside of the physically allowed range for that parameter the toy experiment is discarded

and another generated in its place.

5.3 Predicted Event Rates and Spectra

Tables 5.2 and 5.3 show the effects of the various tuning stages described in Chapter 4

on overall event rate, for the unoscillated and oscillated predictions. The effects of the

flux tuning described in Section 4.1 on the expected spectrum can be seen in Figure 5.1.

The flux tuning increases unoscillated event rate by approximately 4% and oscillated
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event rate by approximately 10%.

The external MiniBooNE and MINERνA data tune described in Section 4.3 re-

duces the expected event rate significantly, but the use of the T2K near-detector data fit

described in Section 4.4 returns the spectrum to within 3% of the flux-tuned prediction.

The effect of the near-detector tuning on the spectrum can be seen in Figure 5.2.

The final selected event rate predicted for the no-oscillation hypothesis is 103.6

± 10.5 (syst), while using the oscillation parameter values from Table 5.1, the expected

numbers of events are 34.58 ± 3.59 (normal) and 35.21 ± 3.65 (inverted). The expected

Super-K Ereco spectra without oscillation can be seen in Figures 5.3 and 5.4, with and

without the near-detector tune respectively. Similar spectra with typical oscillations

applied can be seen in Figures 5.5 and 5.6.
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Figure 5.1: Top: Reconstructed-energy spectrum of 1 µ-like ring events, for an exposure of
4.011×1020 POT in antineutrino beam mode both with and without the effect of the flux tuning
of the nominal MC templates. The spectra are shown both for no oscillations (left) and for
oscillations assuming the normal hierarchy with the oscillation parameters shown in Table 5.1.
Bottom: Ratio of flux-tuned spectrum to the nominal MC spectrum.
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Nominal MC Flux-tuned MC BANFF prefit MC BANFF postfit MC
(flux + CCQE tune)

Total 96.434 100.439 87.615 103.604

νµ CCQE 14.186 14.493 14.250 15.405
νµ CC 1π 4.792 5.019 5.019 3.666

νµ CC coherent 0.201 0.212 0.212 0.244
νµ CC MEC 2.630 2.707 0.731 3.022
νµ CC other 1.198 1.307 1.307 1.393

νµ/ντ NC 1π+/− 0.495 0.523 0.523 0.340
νµ/ντ NC 1π0 0.081 0.086 0.086 0.051

νµ/ντ NC coherent 0.001 0.001 0.001 0.001
νµ/ντ NC other 0.434 0.470 0.470 0.705

νµ CCQE 53.188 55.834 50.852 57.962
νµ CC 1π 7.506 7.658 7.658 6.746

νµ CC coherent 2.409 2.515 2.515 3.082
νµ CC MEC 7.382 7.699 2.079 9.037
νµ CC other 0.914 0.891 0.891 1.005

νµ/ντ NC 1π+/− 0.571 0.581 0.581 0.381
νµ/ντ NC 1π0 0.081 0.082 0.082 0.048

νµ/ντ NC coherent 0.006 0.006 0.006 0.007
νµ/ντ NC other 0.265 0.260 0.260 0.410
νe CCQE 0.003 0.004 0.003 0.004
νe CC 1π 0.003 0.003 0.003 0.003

νe CC coherent 0.000 0.000 0.000 0.000
νe CC MEC 0.001 0.001 0.000 0.001
νe CC other 0.001 0.001 0.001 0.001

νe NC 1π+/− 0.021 0.021 0.021 0.014
νe NC 1π0 0.003 0.004 0.004 0.002

νe NC coherent 0.000 0.000 0.000 0.000
νe NC other 0.022 0.022 0.022 0.035
νe CCQE 0.005 0.005 0.004 0.005
νe CC 1π 0.002 0.002 0.002 0.002

νe CC coherent 0.000 0.000 0.000 0.001
νe CC MEC 0.001 0.001 0.000 0.001
νe CC other 0.000 0.000 0.000 0.000

νe NC 1π+/− 0.016 0.016 0.016 0.010
νe NC 1π0 0.002 0.002 0.002 0.001

νe NC coherent 0.000 0.000 0.000 0.000
νe NC other 0.011 0.011 0.011 0.017

Table 5.2: Calculated predicted numbers of 1-ring µ-like events in antineutrino beam mode with-
out oscillations using the nominal MC templates, the NA61-tuned MC templates, the CCQE-
tuned MC templates and the BANFF-tuned MC templates. The BANFF prefit column is the
NA61 tuned data, with the CCQE samples reweighted according to the external data fits de-
scribed in Section 4.3. The total numbers of events and the numbers of events from each
mode considered in this analysis are shown. These numbers were calculated for an exposure
of 4.011×1020 POT.
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NSK NSK NSK NSK
Nominal MC Flux-tuned MC BANFF prefit MC BANFF postfit MC

(flux + CCQE tune)
Total 33.161 34.240 30.715 34.584

νµ CCQE 6.269 6.525 6.447 6.871
νµ CC 1π 3.155 3.349 3.349 2.415

νµ CC coherent 0.136 0.146 0.146 0.167
νµ CC MEC 1.365 1.428 0.386 1.578
νµ CC other 1.049 1.150 1.150 1.223

νµ/ντ NC 1π+/− 0.495 0.523 0.523 0.340
νµ/ντ NC 1π0 0.081 0.086 0.086 0.051

νµ/ντ NC coherent 0.001 0.001 0.001 0.001
νµ/ντ NC other 0.434 0.470 0.470 0.705

νµ CCQE 12.222 12.584 11.656 13.278
νµ CC 1π 3.556 3.552 3.552 3.048

νµ CC coherent 0.565 0.574 0.574 0.697
νµ CC MEC 1.978 2.015 0.544 2.350
νµ CC other 0.805 0.782 0.782 0.881

νµ/ντ NC 1π+/− 0.571 0.581 0.581 0.381
νµ/ντ NC 1π0 0.081 0.082 0.082 0.048

νµ/ντ NC coherent 0.006 0.006 0.006 0.007
νµ/ντ NC other 0.265 0.260 0.260 0.410
νe CCQE 0.003 0.003 0.003 0.004
νe CC 1π 0.003 0.003 0.003 0.003

νe CC coherent 0.000 0.000 0.000 0.000
νe CC MEC 0.001 0.001 0.000 0.001
νe CC other 0.001 0.001 0.001 0.001

νe NC 1π+/− 0.021 0.021 0.021 0.014
νe NC 1π0 0.003 0.004 0.004 0.002

νe NC coherent 0.000 0.000 0.000 0.000
νe NC other 0.022 0.022 0.022 0.035

Osc. νe CCQE 0.007 0.007 0.006 0.007
Osc. νe CC 1π 0.003 0.003 0.003 0.003

Osc. νe CC coherent 0.000 0.000 0.000 0.000
Osc. νe CC MEC 0.001 0.001 0.000 0.001
Osc. νe CC other 0.000 0.000 0.000 0.000

νe CCQE 0.005 0.005 0.004 0.005
νe CC 1π 0.002 0.002 0.002 0.002

νe CC coherent 0.000 0.000 0.000 0.000
νe CC MEC 0.001 0.001 0.000 0.001
νe CC other 0.000 0.000 0.000 0.000

νe NC 1π+/− 0.016 0.016 0.016 0.010
νe NC 1π0 0.002 0.002 0.002 0.001

νe NC coherent 0.000 0.000 0.000 0.000
νe NC other 0.011 0.011 0.011 0.017

Osc. νe CCQE 0.015 0.016 0.015 0.017
Osc. νe CC 1π 0.003 0.004 0.004 0.003

Osc. νe CC coherent 0.001 0.001 0.001 0.002
Osc. νe CC MEC 0.002 0.002 0.001 0.003
Osc. νe CC other 0.000 0.000 0.000 0.000

Table 5.3: Calculated predicted numbers of 1-ring µ-like events in antineutrino beam mode with
oscillations using the nominal MC templates, the NA61-tuned MC templates, the CCQE-tuned
MC templates and the BANFF-tuned MC templates. The BANFF prefit column is the NA61
tuned data, with the CCQE samples reweighted according to the external data fits described in
Section 4.3. The total numbers of events and the numbers of events from each mode considered
in this analysis are shown. The normal hierarchy was assumed, with oscillation parameters give
the values listed in Table 5.1. These numbers were calculated for an exposure of 4.011×1020

POT.
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Figure 5.2: Top: Reconstructed-energy spectrum of 1 µ-like ring events, for an exposure of
4.011×1020 POT in antineutrino beam mode both with and without the effect of BANFF postfit
tuning on the flux-tuned MC templates. The spectra are shown both for no oscillations (left) and
for oscillations assuming the normal hierarchy, and the oscillation parameters shown in Table 5.1.
Bottom: Ratio of BANFF-tuned spectrum to the flux-tuned spectrum.
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Figure 5.3: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contribu-
tions from various grouped true neutrino reac-
tion modes, for no oscillations and for an expo-
sure of 4.011×1020 POT in antineutrino beam
mode. The spectrum was generated using the
BANFF prefit MC templates.
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Figure 5.4: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contribu-
tions from various grouped true neutrino reac-
tion modes, for no oscillations and for an expo-
sure of 4.011×1020 POT in antineutrino beam
mode. The spectrum was generated using the
BANFF postfit-tuned MC templates.
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Figure 5.5: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contribu-
tions from various grouped true neutrino re-
action modes, with oscillations for an expo-
sure of 4.011×1020 POT in antineutrino beam
mode. The spectrum was generated using the
BANFF prefit MC templates. The spectrum
shown was generated assuming the normal hi-
erarchy, and the oscillation parameters shown
in Table 5.1. Note that the vertical axis is
zoomed in by a factor of more than 4 com-
pared with Figure 5.3.

 (GeV)recoE
0 1 2 3 4 5 6

E
v
en

ts
 p

er
 0

.0
5
0
 G

eV

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Postfit

Oscillated

Total

 CCQEµν

 MECµν

 CCnQEµν

 CCµν

 CCeν,eν

NC

Figure 5.6: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contribu-
tions from various grouped true neutrino re-
action modes, with oscillations for an expo-
sure of 4.011×1020 POT in antineutrino beam
mode. The spectrum was generated using
the BANFF postfit-tuned MC templates. The
spectrum shown was generated assuming the
normal hierarchy, and the oscillation parame-
ters shown in Table 5.1. Note that the vertical
axis is zoomed in by a factor of more than 4
compared with Figure 5.4.
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5.4 Effects of Systematics on the Spectrum

It is important to examine the effects of the 44 systematics described in Chapter 4

on the predicted νµ-like reconstructed energy spectrum at Super-K. These effects are

shown both without oscillation and with oscillations applied assuming the normal mass

hierarchy with the parameter values shown in Table 5.1. All results are generated for an

integrated exposure of 4.011×1020 POT and tuned Monte Carlo templates are used.

The effects of systematic uncertainties on the predicted number of events are

summarised in Table 5.4. In this table, systematic parameters are grouped into five

categories and all parameter correlations are taken into account using the Cholesky de-

composition [118] of the parameter covariance matrices. Percentage uncertainties are

given both with and without the near detector constraint (BANFF) described in Sec-

tion 4.4, described as ‘postfit’ and ‘prefit’. The effects of BANFF postfit errors from

each individual systematic is shown in Table 5.5.

A number of representative error envelopes have been produced. These are the

±1σ spreads of each bin’s content over 105 toy Monte Carlo experiments generated with

randomised systematic parameters. All correlations were taken into account. Figure 5.7

shows the combined effect of the BANFF tune and all systematics on the unoscillated

Ereco spectrum’s error envelopes, while Figure 5.8 shows the same for the oscillated

spectrum. The envelopes for the oscillated spectrum are shown as a ratio to their nominal

value in order to demonstrate the relative size of the prefit and postfit uncertainties due

to Super-K, flux and cross-section systematics respectively in Figures 5.9, 5.10 and 5.11.

A similar envelope with all systematics included can be seen in Figure 5.12. It can be

seen that the largest relative reduction in uncertainty is applied to the flux systematics,

and that the reduction in relative error size does not vary significantly with the value of

Ereco.

The individual effect of each systematic parameter on the best-fit values of sin2θ23

and |∆m2
32| was quantified by generating the expected Super-K spectrum after applying

a +1σ tweak of a single systematic parameter. This spectrum was fitted for sin2θ23

and |∆m2
32| with all nuisance parameters fixed at their nominal values. The difference

between the best-fit values of sin2θ23 and |∆m2
32| for the tweaked toy experiment and

those of an untweaked spectrum was taken as the +1σ effect of that systematic parameter

on the oscillation parameters. Effects from a -1σ tweak were similarly evaluated. The

study was repeated at 12 true points in the sin2θ23 —|∆m2
32| plane, giving a total of

24 fits per systematic parameter. |∆m2
32| values of 2.0×10−3 eV2, 2.5×10−3 eV2, and

3.0×10−3 eV2 were used with each of sin2θ23 = 0.370, 0.500, 0.524, 0.650.

The results of these fits are used to produce an estimate of the size of the effect

from each systematic, which are shown in Table 5.6 ordered by the size of effect on
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sin2θ23. To make this estimate, the systematic effect is compared with the statistical

error for the specific values of sin2θ23 and |∆m2
32|. For each systematic, the tables contain

the largest observed effect on each of sin2θ23 and |∆m2
32| from any of the 24 fits. These

demonstrate the largest possible shift of the best-fit point by varying a parameter, and

do not necessarily correspond to the marginal effect of the parameter at the edge of the

contour, which can be expected to be small for a statistics-dominated analysis.

The largest uncertainty is the SuperK detector efficiency/FSI parameter for NC

events. The uncertainty on this efficiency has a large effect on the oscillation parameters

since the uncertainty itself is large (59.7% as listed in Table 4.10) and NC events consti-

tute a significant fraction of the number of events near the oscillation maximum as shown

in Figure 5.6. The second largest uncertainty is the MEC normalisation parameter on

Oxygen. This has a large effect on the oscillation parameters since the uncertainty itself

is large at 101% (as listed in Table 4.4), due to the fact that the ND280 data (with car-

bon as the signal target) does not constrain the uncertainty on the rate of MEC events

on oxygen.

Source of uncertainty δNSK/NSK δNSK/NSK

(Unoscillated) (Oscillated)

SuperK detector + FSI + SI 2.38% 4.23%
BANFF (prefit) 13.13% 13.04%
BANFF (postfit) 9.77% 9.47%

BANFF (Non-oxygen, postfit) 2.93% 2.95%
BANFF (Oxygen-specific postfit) 9.48% 9.12%

Total (BANFF prefit) 13.35% 13.71%
Total (BANFF postfit) 10.06% 10.37%

Table 5.4: Effect of 1σ variations of the groups of systematics parameters on total number of
1-ring muon-like events in the reverse-horn current sample. The BANFF parameters considered
to be oxygen-specific are Oxygen MEC normalisation, Fermi momentum, Binding energy, CC
coherent normalisation and the νe/νµ normalisation. The oscillation parameters used are those
from Table 5.1.
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Parameter BANFF tuned +1σ BANFF tuned -1σ

fBANFF0;t,r RHC 34.621 0.106 % 34.547 -0.106 %

fBANFF1;t,r RHC 34.630 0.132 % 34.538 -0.132 %

fBANFF2;t,r RHC 34.726 0.412 % 34.441 -0.412 %

fBANFF3;t,r RHC 34.829 0.708 % 34.339 -0.708 %

fBANFF4;t,r RHC 34.808 0.648 % 34.360 -0.648 %

fBANFF5;t,r RHC 34.728 0.417 % 34.440 -0.417 %

fBANFF6;t,r RHC 34.668 0.243 % 34.500 -0.243 %

fBANFF7;t,r RHC 34.602 0.051 % 34.566 -0.051 %

fBANFF8;t,r RHC 34.596 0.035 % 34.572 -0.035 %

fBANFF9;t,r RHC 34.812 0.659 % 34.356 -0.659 %

fBANFF10;t,r RHC 34.811 0.656 % 34.357 -0.656 %

fBANFF11;t,r RHC 34.785 0.581 % 34.383 -0.581 %

fBANFF12;t,r RHC 34.685 0.292 % 34.483 -0.292 %

fBANFF13;t,r RHC 34.697 0.326 % 34.471 -0.326 %

fBANFF14;t,r RHC 34.613 0.083 % 34.555 -0.083 %

fBANFF15;t,r RHC 34.590 0.018 % 34.578 -0.018 %

fBANFF16;t,r RHC 34.585 0.004 % 34.583 -0.004 %

fBANFF17;t,r RHC 34.586 0.005 % 34.582 -0.005 %

fBANFF18;t,r RHC 34.584 0.000 % 34.584 -0.000 %

fBANFF19;t,r RHC 34.584 0.000 % 34.584 -0.000 %

fBANFF20;t,r RHC 34.584 0.000 % 34.584 -0.000 %

fBANFF21;t,r RHC 34.584 0.001 % 34.584 -0.001 %

fBANFF22;t,r RHC 34.584 0.001 % 34.583 -0.001 %

fBANFF23;t,r RHC 34.584 0.002 % 34.583 -0.002 %

fBANFF24;t,r RHC 34.585 0.002 % 34.583 -0.002 %

fBANFFNormMEC
RHC 38.456 11.196 % 30.712 -11.196 %

fBANFF
CA5

RHC 35.145 1.624 % 34.084 -1.446 %

fBANFFBgRES
RHC 34.943 1.039 % 34.268 -0.914 %

fBANFF
MQE
A

RHC 35.021 1.264 % 34.149 -1.258 %

fBANFF
MRES
A

RHC 34.925 0.987 % 34.270 -0.907 %

fBANFFpf
RHC 34.268 -0.915 % 34.896 0.903 %

fBANFFShapeCCoth
RHC 34.711 0.368 % 34.456 -0.368 %

fBANFFEB
RHC 34.591 0.020 % 34.578 -0.018 %

fBANFFNormCCcoh
RHC 35.366 2.260 % 33.802 -2.260 %

fBANFFNormNCcoh
RHC 34.586 0.007 % 34.581 -0.007 %

fBANFFNormNCother
RHC 34.737 0.444 % 34.430 -0.444 %

fBANFFNormνe→νµ
RHC 34.585 0.003 % 34.583 -0.003 %

fSKE;rRHC 34.584 0.000 % 34.584 0.000 %

fSK+FSI
0;t,r RHC 34.631 0.137 % 34.536 -0.137 %

fSK+FSI
1;t,r RHC 34.709 0.363 % 34.458 -0.363 %

fSK+FSI
2;t,r RHC 34.802 0.630 % 34.366 -0.630 %

fSK+FSI
3;t,r RHC 35.366 2.262 % 33.802 -2.262 %

fSK+FSI
4;t,r RHC 34.638 0.156 % 34.530 -0.156 %

fSK+FSI
5;t,r RHC 35.791 3.492 % 33.376 -3.492 %

Table 5.5: ±1σ effect of the systematic parameters on the total number of SuperK events in
antineutrino beam mode, using 4.011×1020 POT, and the oscillation parameters in Table 5.1.
The variations are shown both as the total event rate, and as a percentage change from the event
rate with the systematic at its central value (34.584). The effects of these variations on Ereco
spectrum shape can be seen in Appendix B.
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Figure 5.7: Error envelopes for the energy spectrum of selected RHC 1-ring muon-like events
as a result of all systematic parameters. The ‘postfit’ envelope uses the ND280 constraint
described in Section 4.4, while the ‘prefit’ envelope (blue dotted lines) does not. 100k toy
MC experiments were generated with randomised systematic parameters and the 1σ spread
of bin contents was calculated. Correlations were taken into account. No oscillations were
applied.
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Figure 5.8: Error envelopes for the energy spectrum of selected RHC 1-ring muon-like events
as a result of all systematic parameters. The ‘postfit’ envelope uses the ND280 constraint
described in Section 4.4, while the ‘prefit’ envelope (blue dotted lines) does not. 100k toy MC
experiments were generated with randomised systematic parameters and the 1σ spread of
bin contents was calculated. Correlations were taken into account. Oscillations were applied
with the parameter values shown in Table 5.1.
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Figure 5.9: Antineutrino mode error en-
velopes, expressed as a fraction of event count,
for the energy spectrum as a result of Super-K
detector and FSI/SI systematics. 100k toy MC
experiments were generated with randomised
systematic parameters and the 1σ spread of
bin contents was calculated. Correlations were
taken into account. Oscillations were applied
with the parameter values shown in Table 5.1.
The near-detector fit does not reduce the size
of the uncertainties on these systematics, but
the changes in the spectrum shape and com-
position lead to a small reduction in relative
uncertainty.
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Figure 5.10: Antineutrino mode error en-
velopes, expressed as a fraction of event count,
for the energy spectrum as a result of the
BANFF flux systematics. 100k toy MC exper-
iments were generated with randomised sys-
tematic parameters and the 1σ spread of bin
contents was calculated. Correlations were
taken into account. Oscillations were applied
with the parameter values shown in Table 5.1.
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Figure 5.11: Antineutrino mode error en-
velopes, expressed as a fraction of event count,
for the energy spectrum as a result of the
BANFF cross-section systematics. 100k toy
MC experiments were generated with ran-
domised systematic parameters and the 1σ
spread of bin contents was calculated. Cor-
relations were taken into account. Oscillations
were applied with the parameter values shown
in Table 5.1.
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Figure 5.12: Antineutrino mode error en-
velopes, expressed as a fraction of event count,
for the energy spectrum as a result of all sys-
tematics. 100k toy MC experiments were gen-
erated with randomised systematic parameters
and the 1σ spread of bin contents was calcu-
lated. Correlations were taken into account.
Oscillations were applied with the parameter
values shown in Table 5.1.
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Parameter
δsyst sin2θ23

δstat sin2θ23

δsyst|∆m2
32|(eV2)

δstat|∆m2
32|(eV2)

SKDet + FSI/SI ; Ereco range 0.00 - 30.00 GeV; all NC 1.101 0.296
Meson exchange current normalisation for 16O 0.920 0.154

CC coherent for 16O normalisation 0.517 0.034
CA5 nucleon to ∆ transition axial form factor 0.439 0.034

SK energy scale; RHC 0.417 0.133
CCQE axial-mass scaling factor 0.416 0.032

NC other normalisation 0.367 0.039
RHC νµ flux normalisation, E = 0.7 - 1.0 GeV 0.347 0.066
Scale of isospin 1/2 nonresonant background 0.330 0.018

SKDet + FSI/SI ; Ereco range 0.00 - 30.00 GeV;
(−)
νµ CCnQE 0.315 0.029

Resonance-production axial-mass scaling factor 0.250 0.016
RHC νµ flux normalisation, E = 0.0 - 0.4 GeV 0.242 0.026

SKDet + FSI/SI ; Ereco range 0.40 - 1.10 GeV;
(−)
νµ CCQE 0.238 0.031

SKDet + FSI/SI ; Ereco range 0.00 - 30.00 GeV;
(−)
νe CC 0.224 0.012

RHC νµ flux normalisation, E = 1.0 - 1.5 GeV 0.210 0.021
Fermi momentum for 16O 0.202 0.034

RHC νµ flux normalisation, E = 0.4 - 0.5 GeV 0.201 0.039
RHC νµ flux normalisation, E = 1.0 - 1.5 GeV 0.154 0.012
RHC νµ flux normalisation, E = 0.6 - 0.7 GeV 0.149 0.014
RHC νµ flux normalisation, E = 0.5 - 0.6 GeV 0.124 0.033

SKDet + FSI/SI ; Ereco range 1.10 - 30.00 GeV;
(−)
νµ CCQE 0.122 0.008

SKDet + FSI/SI ; Ereco range 0.00 - 0.40 GeV;
(−)
νµ CCQE 0.118 0.010

RHC νµ flux normalisation, E = 0.7 - 1.0 GeV 0.118 0.008
RHC νµ flux normalisation, E = 0.0 - 0.7 GeV 0.111 0.012
RHC νµ flux normalisation, E = 1.5 - 2.5 GeV 0.110 0.009

CC other shape 0.095 0.005
RHC νµ flux normalisation, E = 3.5 - 5.0 GeV 0.087 0.003
RHC νµ flux normalisation, E = 1.5 - 2.5 GeV 0.071 0.008

RHC νµ flux normalisation, E = 2.5 - 30.0 GeV 0.070 0.007
Binding energy for 16O 0.067 0.011

RHC νµ flux normalisation, E = 2.5 - 3.5 GeV 0.064 0.002
NC coherent normalisation 0.020 0.000

RHC νµ flux normalisation, E = 5.0 - 7.0 GeV 0.016 0.001
RHC νµ flux normalisation, E = 7.0 - 30.0 GeV 0.009 0.000

CC νe normalisation 0.008 0.000
RHC νe flux normalisation, E = 2.5 - 30.0 GeV 0.006 0.000
RHC νe flux normalisation, E = 0.0 - 2.5 GeV 0.004 0.000
RHC νe flux normalisation, E = 4.0 - 30.0 GeV 0.003 0.000
RHC νe flux normalisation, E = 2.5 - 4.0 GeV 0.002 0.000
RHC νe flux normalisation, E = 1.5 - 2.5 GeV 0.001 0.000
RHC νe flux normalisation, E = 0.8 - 1.5 GeV 0.000 0.000
RHC νe flux normalisation, E = 0.0 - 0.5 GeV 0.000 0.000
RHC νe flux normalisation, E = 0.5 - 0.7 GeV 0.000 0.000
RHC νe flux normalisation, E = 0.7 - 0.8 GeV 0.000 0.000

Table 5.6: Maximum deviations, as a fraction of statistical error at the oscillation parameter

grid point, from the input values of fits for only sin2θ23 and |∆m2
32| to datasets with ±1 sigma

individual systematic variations at a range of 23-sector oscillation points. |∆m2
32| values of

2.0×10−3 eV2, 2.5×10−3 eV2, and 3.0×10−3 eV2 are used with each of sin2θ23 = 0.370, 0.500,
0.524, 0.650. All other oscillation parameters are fixed at the values in Table 5.1. These maximum
deviations usually occur at maximum disappearance, where the statistical error is smaller, as
explained in Section 5.6. The values are sorted by the size of the deviation in sin2θ23.



5.5 Method for Goodness-of-fit Tests

When fitting data to a model, it is important not just to extract the parameter values

that offer the best agreement, but to consider how well the model and data agree. The

binned likelihood ratio function shown in Equation 5.2 tends to a χ2 distribution as

the number of events increases, so it can be used as a goodness-of-fit test[119]. A very

coarse binning scheme in Ereco is used to ensure that there are approximately four or

more expected events in each bin; this scheme has 5 bins from 0-0.4, 0.4-0.7, 0.7-1.0,

1.0-2.0 and > 2.0 GeV. The Etrue binning is the same as described in Section 5.2. The

expected spectrum using this binning can be seen in Figure 5.13. 1000 toy experiments

are generated for each mass hierarchy, with both statistical fluctuations and systematics

thrown according to their priors. All 44 systematic parameters are profiled in the fits to

these toy datasets. The fraction of fits for which χ2
toy > χ2

data is used as a representative

P-value. Additionally, the resulting χ2 distribution can be fitted varying the number of

degrees of freedom, demonstrating that the fit is working as intended.

5.6 Validation of the Oscillation Fitter

Validation of the fitting software was performed using ensembles of 5000 toy Monte

Carlo datasets, created to mimic real results of the experiment. Statistical fluctuations

were applied, and the true values of the systematic parameters were thrown according

to their Gaussian prior, with correlations calculated using the Cholesky decomposition

of the covariance matrix.

Toy ensembles were generated for each of the normal and inverted mass hierar-

chies, and for both the original expected POT for this analysis (2.5×1020) and the T2K

final goal POT (7.8×1021). For the purposes of calculating pulls, the MINUIT best-fit

point and HESSE error were calculated for each dataset. Nine sets of oscillation param-

eters are used: the combinations of sin2θ23 = 0.35, sin2θ23 = 0.527 and sin2θ23 = 0.65,

and |∆m2
32| = 2.2, |∆m2

32| = 2.5 and |∆m2
32| = 2.8 × 10−3 eV2. All other oscillation

parameters are fixed at their values in Table 5.7.

For each toy experiment i and parameter f with true value xf,i,true, fitted value

xf,i,fitted and HESSE uncertainty σf,i,Hesse, the pull Pf,i is calculated according the

following formula:

Pf,i =
xf,i,fitted − xf,i,true

σf,i,Hesse
(5.8)

For a parameter behaving as a Gaussian in the fit, the mean of the pull over

many toys should be 0, and the RMS should be 1.
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Figure 5.13: Predicted reconstructed-energy spectrum of 1 µ-like ring events, using ND280 postfit
systematic values and using the goodness-of-fit binning, for an exposure of 4.011×1020 POT in
antineutrino beam mode. Event counts are shown as total per bin, without accounting for bin
width. Oscillations are applied at the values from Table 5.1. Note that the highest bin here,
from 2.0 GeV onwards, contains all events with energies greater than 2.0 GeV.

Parameter(s) Fixed value Fixed value
in fits (NH) in fits (IH)

sin2 θ23 0.524 0.534

sin2θ13 and sin2 θ13 0.0422 0.0491

sin2θ12 and sin2 θ12 0.304 0.304
|∆m2

32| (NH only) 2.51×10−3 eV2 -
|∆m2

31| (IH only) - 2.49×10−3 eV2

∆m
2

21 and ∆m2
21 7.53×10−5 eV2 7.53×10−5 eV2

δCP 1.91 1.01

Table 5.7: Values of oscillation parameters that are fixed in validation fits (NH = normal mass
hierarchy, IH = inverted mass hierarchy). These are the results of the T2K Run1-4 oscillation fit
performed without the reactor constraint [41], and are used for certain validation plots. These
validations were performed before the decision to use the reactor-constrained measurements in
Table 5.7, and are computationally expensive to repeat.
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Figure 5.14: Distributions of the pulls of |∆m2
32| from 5k toy MC experiments generated at

sin2θ23 = 0.527 and |∆m2
32| = 2.51×10−3 eV2, including statistical fluctuations and randomised

systematics. The other parameters are fixed at their values in Table 5.1, and the normal mass
hierarchy is assumed. Distributions are shown for both 2.5×1020 and 7.8×1021 POT.

5.6.1 Oscillation Parameter Biases

|∆m2
32| behaves mostly as desired, as can be seen in Figure 5.14, although a small bias of

approximately 0.1 sigma can be seen at high POT due to the effect of the energy scale

systematic discussed in the next section. In sin2θ23, we see a bias towards maximum

disappearance. This is due to the presence of the physical boundary of the disappearance

probability at 1, as described in Section 2.2.6. If the number of events has a statistical

fluctuation down in the oscillation region, the number of events can be below the number

expected with maximum disappearance. All datasets in which this happens will get the

same best-fit point in sin2θ23, leading to a spike in the pull distribution.

This effect (and its reduction with increased statistics) can be seen in Figure 5.15

with a true sin2θ23 value at maximum disappearance, leading to a large spike at 0.

Figure 5.16 shows the best-fit value distribution for a true value of sin2θ23 = 0.35, with

a similar but smaller spike at maximum disappearance for the lower statistics fits, and

no obvious spike in the high statistics fits. The pull distribution this leads to can be

seen in Figure 5.17.

5.6.2 Systematic Parameter Biases

A check was also made of the pull distributions of the systematic parameters using

two different methods to select random values of the parameters. In both methods,

the true systematic parameter values were thrown according to a Gaussian with their
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Figure 5.15: Distributions of the pulls of sin2θ23 from 5k toy MC experiments generated at

sin2θ23 = 0.527 and |∆m2
32| = 2.51×10−3 eV2, including statistical fluctuations and randomised

systematics. The other parameters are fixed at their values in Table 5.1, and the normal mass
hierarchy is assumed. Distributions are shown for both 2.5×1020 and 7.8×1021 POT.
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Figure 5.16: Distributions of the best-fit values of sin2θ23 from 5k toy MC experiments generated

at sin2θ23 = 0.35 and |∆m2
32| = 2.51×10−3 eV2, including statistical fluctuations and randomised

systematics. The other parameters are fixed at their values in Table 5.1, and the normal mass
hierarchy is assumed. Distributions are shown for both 2.5×1020 and 7.8×1021 POT.
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Figure 5.17: Distributions of the pulls of sin2θ23 from 5k toy MC experiments generated at

sin2θ23 = 0.35 and |∆m2
32| = 2.51×10−3 eV2, including statistical fluctuations and randomised

systematics. The other parameters are fixed at their values in Table 5.1, and the normal mass
hierarchy is assumed. Distributions are shown for both 2.5×1020 and 7.8×1021 POT.

central value as mean, and their input uncertainty as sigma. In the first study, throws

of systematic parameters were allowed to vary outside their physical limits, leading to

a full Gaussian distribution of thrown values. For the second method, parameters were

restricted to their allowed values, and all parameters were rethrown if any extracted value

was outside these limits. Thus the throw distribution formed a truncated Gaussian.

The physical limits imposed are a lower limit of zero for all normalisations, CA
5 ,

MQE
A and MRES

A . Two additional limits are applied; the Fermi momentum of Oxygen is

constrained to the range 200 MeV - 275 MeV, while binding energy has limits at 12 MeV

and 42 MeV due to NEUT validity [86].

A summary of the mean and RMS of pulls from the unrestricted fits can be seen

in Figures 5.18 and 5.19 for the normal and inverted hierarchy respectively. No problems

were identified with the fitter, which performed as expected, and there are only small

deviations from the expected mean of 0 and RMS of 1.

Pulls for the restricted fits can be seen in Figure 5.20 and 5.21 for the normal and

inverted hierarchy respectively. These pulls are Gaussian with mean 1 and RMS 0 for

most systematic parameters, but show small differences from this for a few parameters.

Pull distributions for these parameters can be seen in Figure 5.22. The differences from

a Gaussian with mean 0 and RMS 1 for these parameters are understood:

• Super-K energy scale (fSKE;r ). This systematic is different from the others in

that it migrates events from bin to bin instead of increasing or decreasing the

numbers of events in the bins of reconstructed energy. Its pull is not expected
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to be a Gaussian with zero mean since a positive tweak of this parameter has

a different effect on the spectrum shape than a negative tweak. This leads to a

different shaped χ2 for values of the parameter above and below zero, preventing

the expected Gaussian behaviour. The differing distributions also increase the

chance of the minimum χ2 existing at the zero point, which contributes to a small

spike in the number of fits with this best-fit point. An example of this discontinuity

can be seen in Figure 5.23.

• Fermi Momentum (f banffPf
). This systematic has a limit between 200 MeV and

275 MeV due to NEUT validity. The unconstrained parameter value is 225 MeV

and the 1σ error is 31 MeV. Consequently, the parameter has physical limits at

around -1 and +2σ. The fitter cannot reach the true values when the parameter

is thrown beyond these limits. The asymmetry of the allowed region around the

central value results in a small downward bias in the pulls.

• MEC Normalisation (f banffNormMEC
). The MEC normalisation on 16O has a nom-

inal value of 1.0 and a prefit error of 73.3%. This means that some unrestricted

throws of this parameter are < 0, which is unphysical. Hence, the restricted throws

have a Gaussian distribution that is truncated at its lower end. The throw values

that are truncated are the lowest values, and these would be expected to have pos-

itive pulls due to the penalty term pulling them towards the nominal value. This

leads to a pull distribution that is narrower on the plus side than on the minus

side.

• CC Coherent Normalisation (f banffNormCCcoh
). The CC coherent normalisation

has a nominal value of 1.0 and a prefit error of 100%. This means that some

unrestricted throws of this parameter are < 0, which is unphysical. Hence, the

restricted throws have a Gaussian distribution that is truncated at its lower end.

The throw values that are truncated are the lowest values, and these would be

expected to have positive pulls due to the penalty term pulling them towards the

nominal value. This leads to a pull distribution that is narrower on the plus side

than on the minus side.

• Super-K Detector + FSI + SI Parameter 6 - all NC events (fSK+FSI
5;t;r ).

The bias in this parameter comes from a statistical effect combined with the limit

of the fitted normalisation at zero. When Poisson fluctuations are made of the

bin contents of the Ereco distributions, a downward fluctuation is more likely than

an upward fluctuation. For example, a Poisson distribution with mean 3 has P(1)

= 0.149 and P(2) = 0.224, whereas P(4) = 0.168 and P(5) = 0.101. The NC

events are mainly around the oscillation maximum where there are few events,
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and downward Poisson fluctuations are more likely than upward ones. Fitting

these downward fluctuations involves moving this parameter down from zero, and

this explains the negative bias in its pull.
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Figure 5.18: Summary of systematic pull distributions for all systematic parameters for 5k
toy MC experiments at 2.5×1020 POT including statistical fluctuations and with randomised
systematic parameters. Black circles show the mean of the pull, while red triangles show the
RMS. Throws of systematic parameters were allowed to be thrown outside the physical region.

|∆m2
32| and sin2θ23 were fitted. All other oscillation parameters were fixed at their values from

Table 5.7. The normal mass hierarchy is assumed.
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Figure 5.19: Summary of systematic pull distributions for all systematic parameters for 5k
toy MC experiments at 2.5×1020 POT including statistical fluctuations and with randomised
systematic parameters. Black circles show the mean of the pull, while red triangles show the
RMS. Throws of systematic parameters were allowed to be thrown outside the physical region.

|∆m2
32| and sin2θ23 were fitted. All other oscillation parameters were fixed at their values from

Table 5.7. The inverted mass hierarchy is assumed.
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Figure 5.20: Summary of systematic pull distributions for all systematic parameters for 5k
toy MC experiments at 2.5×1020 POT including statistical fluctuations and with randomised
systematic parameters. Black circles show the mean of the pull, while red triangles show the

RMS. Systematic parameters were rethrown if an unphysical thrown value was obtained. |∆m2
32|

and sin2θ23 were fitted. All other oscillation parameters were fixed at their values from Table 5.7.
The normal mass hierarchy is assumed.
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Figure 5.21: Summary of systematic pull distributions for all systematic parameters for 5k
toy MC experiments at 2.5×1020 POT including statistical fluctuations and with randomised
systematic parameters. Black circles show the mean of the pull, while red triangles show the

RMS. Systematic parameters were rethrown if an unphysical thrown value was obtained. |∆m2
32|

and sin2θ23 were fitted. All other oscillation parameters were fixed at their values from Table 5.7.
The inverted mass hierarchy is assumed.
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Figure 5.22: Distributions of pulls for four systematic parameters that have small biases. These
distributions are shown for both 2.5×1020 POT (Runs 5 and 6, black histograms) and 7.8×1021

POT (the T2K ultimate goal).
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Figure 5.23: The chi-square distribution when varying Super-K energy scale for a single ran-
domised toy experiment. Note that the distribution is different on the two sides of the zero
point, leading to a kink in the plot at zero. In the vast majority of datasets, this kink is im-
perceptible; the toy plotted here was selected specifically from our validation toys as a clear
demonstration of the effect.
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5.7 Method for Construction of Confidence Regions

In order to produce confidence regions, the ‘constant-∆χ2’ method is used. First, the

data is fitted with both the parameters of interest and the nuisance parameters free, in

order to find the unbinned best-fit point (using MINUIT [106]), which has a χ2 of χ2
min.

After this, the parameter space in the parameters of interest is binned, and the fit is

re-run with these parameters fixed at the values in that bin, and the nuisance parameters

left free. For each fit, MINUIT is run twice, first in the upper octant in mixing angle

(starting at sin2θ23 = 0.6) and then in the lower octant (starting at sin2θ23 = 0.4). The

lower χ2 of these two fits is used.

For this analysis, 201 bins were used in each of sin2θ23 and |∆m2
32|, requiring

40401 independent fits. The limits used were 0 < sin2θ23 < 1 and 0.0002 eV2 < |∆m2
32| <

0.02 eV2. This information is summarised in Table 5.8. By performing the fit with the

physics parameters of interest fixed at the grid point and the nuisance parameters free,

a value for χ2
i,j can be calculated, which is dependent on the two parameters of interest,

but has had the nuisance parameters profiled out. The value ∆χ2 is then calculated at

each point (i, j) in the parameter space:

∆χ2
i,j = χ2

i,j − χ2
min (5.9)

Reference values ∆χ2
crit are then used to define the edge of the contour for a

region of given confidence level. Any point in the sin2θ23 —|∆m2
32| plane for which

∆χ2
i,j < ∆χ2

crit is considered to be inside the confidence region. The ∆χ2
crit values used

are shown in Table 5.9.

5.8 Expected Sensitivity

Sensitivities were calculated for the oscillation analysis using the so-called ‘Asimov

dataset’ [120]. A more traditional method of calculating the expected sensitivity of

an experiment involves the production and fitting of many toy experiments, requiring a

sin2θ23 |∆m2
32|

Number of Bins 201 201
Min Value 0 2 ×10−4eV2

Max Value 1 2 ×10−2eV2

Step Value 0.005 9.9 ×10−5eV2

Table 5.8: The binning used for the calculation of confidence regions. Note that the minimum
and maximum value quoted are the centres of the first and last bin - the points at which the
likelihood for those bins is evaluated.
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NP = 1 NP = 2 NP = 3

68.3% confidence 1.00 2.30 3.53
90.0% confidence 2.71 4.61 6.25
99.7% confidence 9.00 11.83 15.16

Table 5.9: The critical values ∆χ2
crit used for construction of confidence regions using the

constant-∆χ2 method for a contour with NP free parameters [44].

great deal of processing. In order to avoid such a computationally expensive method,

we use the Asimov dataset as a substitute.

The Asimov dataset is selected as the single ‘most representative’ dataset, allow-

ing a median sensitivity to be calculated without fitting large numbers of toys. In this

analysis, the Asimov dataset is the expected Super-K Ereco spectrum with all parameters

at their prior central values, and without any statistical fluctuations applied. Figure 5.24

shows the expected sensitivity for the Asimov dataset using the prior oscillation values

from Table 5.1.
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Figure 5.24: 68% CL (red) and 90% CL (black) allowed regions, constructed with the constant-
∆χ2 method, from the fit of the 4.011×1020 Asimov dataset, with the effects of statistical fluc-
tuations and postfit systematic variations being included. Contours are shown for both the T2K
run 1-4 best-fit oscillation parameters shown in Table 5.1, and with the MINOS νµ-only best-fit

parameters converted to the single-angle convention and using the upper octant (sin2θ23 = 0.587,

|∆m2
32| = 2.5× 10−3 eV2) [39].
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5.9 Results of the νµ Disappearance Analysis

5.9.1 Best-fit Oscillation Parameters and Spectra

Two 3-flavour νµ disappearance fits were performed on the combined 4.011×1020 POT

Run 5+6 dataset, using the method described in Section 5.2. In the first fit, the normal

mass hierarchy was assumed, and sin2θ23 and |∆m2
32| were allowed to float. In the second

fit, the inverted mass hierarchy was assumed and sin2θ23 and |∆m2
31| were allowed to

float. In both fits, all 44 systematic parameters considered in this analysis were allowed

to float.

The reconstructed energy distribution of the Run 5+6 single µ-like ring 4.011×1020

POT dataset is shown in Figure 5.25 along with the best-fit energy spectrum assum-

ing the normal mass hierarchy. The same Run 5+6 data spectrum is also shown with

the best-fit energy spectrum assuming the inverted mass hierarchy in Figure 5.26. A

summary is given of the best-fit oscillation parameters, χ2, p-values and event rates in

Table 5.10.

A set of comparative best-fit spectra are also included, which use a coarser binning

in reconstructed energy. The bin edges used are {0.0, 0.4, 0.7, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0,

30.0 GeV}. Figures 5.27 and 5.28 show a comparison between the best-fit spectrum from

this analysis and the spectrum given by the T2K run 1-4 joint fit result.

Hierarchy sin2θ23 |∆m2
32| or |∆m2

31| Nobs Nexp χ2
bf/NDOF p-value

Normal 0.450 2.518× 10−3 34 34.985 57.727/71 0.42

Inverted 0.453 2.490× 10−3 34 35.727 57.726/71 0.42

Table 5.10: Summary of best-fit parameters from the fits of the combined Run 5+6 dataset.
The quoted best-fit χ2 values (χ2

bf ) were computed from Equation 5.2 using the reconstructed
energy binning scheme given in Section 5.2. The table also shows the p-values obtained from
the goodness-of-fit test described in Section 5.9.2. As described in that section, these p-values
do not necessarily correspond to the χ2/NDOF values in this table.

5.9.2 Goodness-of-fit Tests

Goodness-of-fit tests were performed for the fits of the real data as described in Sec-

tion 5.5, and the results are shown in Figures 5.29 and 5.30. The p-values are 0.42 for

the normal hierarchy fit, and 0.42 for the inverted hierarchy, indicating that both results

are plausible. The fitted number of degrees of freedom is approximately 3.6, which is

reasonable given five bins and two correlated free parameters.
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5.9.3 Confidence Regions

∆χ2 surfaces are shown in Figure 5.31 for the normal mass hierarchy and in Figure 5.32

for the inverted mass hierarchy. The 68% and 90% allowed regions calculated according

to the constant-∆χ2 method in Section 5.7 are shown in Figure 5.33. These figures show

the difference between statistics-only fits and fits with the systematic parameters profiled

away. Figure 5.34 shows a comparison between the allowed regions from the fits of the

combined run 5+6 dataset with those from the fits of the Asimov dataset. This Asimov

contour was produced at the best-fit oscillation parameter values from this fit for sin2θ23

and |∆m2
32|, with other values fixed at values from the T2K run 1-4 joint fit with reactor

constraint, which can be seen in Table 5.1. In Figure 5.35, the T2K result is compared

with the MINOS muon antineutrino disappearance result [39]. In Figure 5.36, the T2K

run 5-6 νµ result is compared with the T2K run 1-4 νµ result. The confidence region

from this analysis is consistent with these other contours. A comparison between the

contours produced using systematic profiling and the marginalisation method described

in Section 5.2.2 can be seen in Figure 5.37. The contour produced using the marginalised

likelihood has a best-fit point closer to maximum disappearance, leading to a somewhat

smaller overall contour than the profiled measurement as described in Section 2.2.6.

One dimensional ∆χ2 surfaces and confidence intervals are shown for each of

sin2θ23 and |∆m2
32| separately in Figures 5.38 and 5.39 respectively. These figures were

made independently, using fits of the Run 5+6 dataset in which the oscillation parameter

not shown was profiled without a penalty term. Similar fits were performed where this

parameter was fixed at its best-fit position, and these gave extremely similar results.

These results rule out sin2θ23 = 0 at 7.3σ.
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Figure 5.25: The Run 5+6 single µ-like ring 4.011×1020 POT dataset and the best-fit re-
constructed energy spectrum. The normal mass hierarchy result is shown, and is compared
with the event rate prediction in the absence of oscillation.
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Figure 5.26: The Run 5+6 single µ-like ring 4.011×1020 POT dataset and the best-fit re-
constructed energy spectrum. The inverted mass hierarchy result is shown, and is compared
with the event rate prediction in the absence of oscillation.
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Figure 5.27: The Run 5+6 single µ-like ring 4.011×1020 POT dataset and the best-fit spec-
trum. The binning is coarser than that used in the actual analysis (0.0, 0.4, 0.7, 1.0, 1.5,
2.0, 3.0, 4.0, 5.0, 30.0 GeV) and event counts are shown per bin. The normal mass hierarchy
result is shown, and is compared with the best-fit spectrum from the νµ dataset fixing all the
ν and ν oscillation parameters to the T2K best-fit values from the Run 1-4 joint analysis as
shown in Table 5.1, while still profiling the systematics.
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Figure 5.28: The Run 5+6 single µ-like ring 4.011×1020 POT dataset and the best-fit spec-
trum. The binning is coarser than that used in the actual analysis (0.0, 0.4, 0.7, 1.0, 1.5, 2.0,
3.0, 4.0, 5.0, 30.0 GeV) and event counts are shown per bin. The inverted mass hierarchy
result is shown, and is compared with the best-fit spectrum from the νµ dataset fixing all the
ν and ν oscillation parameters to the T2K best-fit values from the Run 1-4 joint analysis as
shown in Table 5.1, while still profiling the systematics.
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Figure 5.29: Distribution of χ2
gof , the goodness-of-fit (gof) χ2, from 1k toy MC exper-

iments whose true input values are the best-fit oscillation parameters from the fit of

the real data (sin2θ23 = 0.450, |∆m2
32| = 2.518× 10−3 eV2). Systematic variations and

statistical fluctuations are applied to the toy datasets, and all 44 systematic parame-
ters are included in the fits. The toy experiments are generated for 4.011×1020 POT
and the normal mass hierarchy is assumed. The χ2 value from the fit of the real data
assuming the normal mass hierarchy (with all 44 systematic parameters included in the
fit) is shown as a red line. A χ2 distribution with a fitted number of degrees of freedom
is shown in blue.
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Figure 5.30: Distribution of χ2
gof , the goodness-of-fit (gof) χ2, from 1k toy MC exper-

iments whose true input values are the best-fit oscillation parameters from the fit of

the real data (sin2θ23 = 0.453, |∆m2
31| = 2.490× 10−3eV2). Systematic variations and

statistical fluctuations are applied to the toy datasets, and all 44 systematic parameters
are included in the fits. The toy experiments are generated for 4.011×1020 POT and
the inverted mass hierarchy is assumed. The χ2 value from the fit of the real data
assuming the inverted mass hierarchy (with all 44 systematic parameters included in
the fit) is shown as a red line. A χ2 distribution with a fitted number of degrees of
freedom is shown in blue.
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Figure 5.32: ∆χ2 surface from the fit of the 4.011×1020 POT Run 5+6 dataset. The ∆χ2

values are calculated relative to the minimum at χ2 = 57.726. The inverted mass hierarchy is
assumed. 68% and 90% confidence contours are shown.
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between the full contour with systematics profiled and the contour with the systematic pa-
rameters fixed at their best-fit values. It can be seen that the fit is statistically limited. The
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Figure 5.34: 90% CL allowed regions, constructed with the constant-∆χ2 method, from the
fit to the Run 5+6 dataset, with the effects of statistical fluctuations and profiled systematic
variations being included. These contours compare a fit to the Asimov dataset with the fit
to the real data. The normal hierarchy is assumed, and the data best-fit values of sin2θ23 =

0.450 and |∆m2
32| = 2.518 × 10−3 are used. Other oscillation parameters are fixed at their

values from the T2K run 1-4 joint fit with reactor constraint (Table 5.1).
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5.10 Summary

The T2K run 5+6 antineutrino beam mode dataset corresponds to an integrated J-PARC

neutrino beam exposure of 4.011×1020 POT. This dataset has been studied to measure

νµ disappearance.

This analysis predicts 103.6 ± 10.5 (syst) single µ-like ring events in Super K in

the absence of any oscillation, but only 34 were observed. The observed deficit exhibits

a strong energy dependence: the ratio of the number of observed events to the number

expected under the no-oscillation hypothesis is ∼31.48% < 0.5 GeV, ∼12.84% between

0.5 and 1 GeV and ∼69.94% > 1 GeV.

Aνµ-disappearance analysis was performed in a framework of 3-flavour oscillations

including matter effects in constant-density matter. The observed reconstructed energy

spectrum of single µ-like ring events was fitted, and separate fits were made for the

normal and the inverted mass hierarchies. In these fits, sin2θ23 and either |∆m2
32| (normal

hierarchy) or |∆m2
31| (inverted hierarchy) were allowed to float, while all other oscillation

parameters in both sets were fixed to T2K best-fit or PDG 2014 values. All 44 systematic

parameters considered in this analysis were also allowed to float in the fits.

For the normal mass hierarchy, the 3-flavour νµ-disappearance fit of the combined

Run 5+6 dataset gives sin2θ23 = 0.450 and |∆m2
32| = 2.518 × 10−3 eV2 as the best-fit

values (p-value = 0.42). The fit for the inverted mass hierarchy yields sin2θ23 = 0.453

and |∆m2
31| = 2.490× 10−3 eV2 as the best-fit values (p-value = 0.42). The p-value for

the normal hierarchy antineutrino-mode dataset given a null hypothesis of the normal

hierarchy best-fit values of the equivalent parameters from the official Run 1-4 neutrino-

mode analysis is 0.60; thus the results of this analysis considered together with the Run

1-4 neutrino-mode results are consistent with CPT being conserved.

Confidence regions in the parameter space sin2θ23 - |∆m2
32| (normal hierarchy)

and sin2θ23 - |∆m2
31| (inverted hierarchy) are shown using the constant-∆χ2 method.

Each parameter was also fitted individually and 1-dimensional confidence regions pro-

duced. The 90% CL allowed values for mass splitting are 2.03×10−3 eV2 < |∆m2
32| <

2.92×10−3 eV2 (normal hierarchy) and 2.03×10−3 eV2 < |∆m2
31| < 2.92×10−3 eV2 (in-

verted hierarchy). The 90% CL allowed values for mixing angle are 0.327 < sin2θ23 <

0.692 (normal hierarchy) and 0.332 < sin2θ23 < 0.697 (inverted hierarchy). These con-

tours rule out sin2θ23 = 0 at 7.3σ.

The confidence regions were compared with the current best results produced by

MINOS. T2K provides the world’s best measurement of sin2θ23.
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Chapter 6

Non-standard Neutrino-Matter

Interactions

6.1 Introduction

Neutrino oscillation probabilities are modified by interactions with electrons in the mat-

ter they propagate through. As described in Section 2.2.7, these only have an effect on

the electron flavour component due to the negligible muon and tau content of normal

matter.

It has been theorised that there could exist additional flavour-dependent matter

interactions beyond this, which can lead to new flavour changing behaviour [121]. For

the purposes of this document, these will be called Non-standard Interactions (NSI).

Charged current NSI could affect neutrino source and detector processes, allowing a

charged lepton to produce a neutrino of a different flavour or vice versa. They could also

produce a charged lepton somewhere along the baseline which would not be detected.

Data from short-baseline experiments such as NOMAD [122] and KARMEN [123] can

be used to constrain these effects [124], and they would not have an observable effect at

T2K. As a result, this analysis will only consider neutral current NSI. If the neutrino

undergoes NC NSI between the source and detector the flavour of the final neutrino

could change, leading to a different flavour content being observed at the far detector.

The matter NSI are described by an addition to the Standard Model Lagrangian

density [124]:

LMNSI = −2
√

2GF ε
fc
αβ[fγµPcf ][ναγµPLνβ], (6.1)

Here f represents the Fermion types in normal matter (electron, up quark, down quark),

and εfcαβ are parameters scaling the size of deviation from standard interactions for neu-

trino flavours α and β and chirality c. For the purposes of a phenomenological study

searching for the existence of any NSI at all, it is useful to reduce the large parameter
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space to effective parameters, summed over chirality and fermion flavour in the medium:

εαβ =
∑
f,c

εfcαβ
Nf

Ne
, (6.2)

Nf represents the number density of fermion f , with Ne representing the electron number

density.

In a neutrino oscillation experiment, NSI effects with this parameterisation ap-

pear as an additional contribution to the standard matter Hamiltonian shown in Equa-

tion 2.44. The new matter contribution is given in terms of the 6 new free parameters:

Amatter = 2EνV

1 + εee ε∗eµ ε∗eτ

εeµ εµµ ε∗µτ

εeτ εµτ εττ

 (6.3)

The factor of 1 in the first diagonal matrix element represents normal matter effects. As

in Section 2.2.7, V is defined as:

V = ±
√

2GFNe (6.4)

Assuming the Earth’s crust has an equal number of protons and neutrons, the electron

number density is:

Ne =
ρNA

2
(6.5)

where NA is the Avogadro constant. The matter density ρ used is 2.6 g cm−3, based on

a geological survey of the T2K baseline [117], leading to a value V = 9.9× 10−14 eV.

This is a phenomenological model, independent of the underlying physics which

would cause the new interactions. Many beyond-the-Standard-Model theories can add

interactions of this form, such as introducing additional scalar exchange bosons or lep-

toquarks [125].

The parameters εαβ could be complex, and can be either flavour-changing or

flavour-conserving, but for the purposes of this study we will examine the real part

of the flavour-changing εµτ , which leads to a difference in muon neutrino and muon

antineutrino disappearance probability. The other parameters εαβ have a negligible

effect on the probability of muon neutrino survival at T2K. All other components, real

and complex are set to zero. If we make a similar two-flavour oscillation approximation to

the one used for Equation 2.38 for muon survival only, we get the following expressions:

P(
(−)
νµ →

(−)
νµ ) = 1−Fsin2φ (6.6)
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Figure 6.1: Survival probabilities of muon neutrinos for different values of the NSI parameter
εµτ , given the T2K baseline of 295 km. The probabilities are shown both over a wide energy
range, and close to the oscillation maximum.

φ = L

√(
∆m2

32

4Eν

)2

∓ 2sin(2θ23)
∆m2

32

4Eν
εµτ |V |+ (εµτV )2 (6.7)

F = 1− cos22θ23

1∓ 2sin(2θ23
4εµτ |V |
∆m2

32
Eν +

(
4εµτV

∆m2
32
Eν

)2 (6.8)

For the purposes of all studies in this thesis, the full three-flavour calculation is per-

formed numerically, without the use of such approximations. Muon neutrino survival

probabilities at the T2K baseline can be seen in Figure 6.1. It can be observed that a

positive value of εµτ leads to the oscillation peak energy being slightly higher for νµ and

more disappearance in the tail of the distribution, with the opposite effect on νµ.

A comprehensive review of available data in 2009 for all of these parameters as-

suming matter with an equal number of protons and neutrons gives the upper bounds [124]:

|εαβ| <

 4.2 0.33 3.0

0.33 0.068 0.33

3.0 0.33 21

 (6.9)

The relevant limit for this analysis is |εµτ | < 0.33 at 90%. More recently, the

MINOS experiment has published a long-baseline limit using a combined neutrino-

antineutrino fit similar to the one described in this chapter. The MINOS data gives a 90%

confidence region −0.20 < εµτ < 0.07 [126]. Finally, the Super-K experiment performed

an analysis on their atmospheric neutrino sample giving a 90% limit of |εµτ | < 0.011 [127].

The SK measurement used atmospheric data binned in energy and zenith angle allowing

the study to be performed at many different values of L/E, where the relative effects of

normal disappearance parameters and NSI could be separated. This method is comple-
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mentary to the method of studying possible differences in oscillation probability between

neutrinos and antineutrinos in an accelerator driven experiment.

6.2 Analysis Strategy

In general, the NSI analysis strategy mirrors the methods used for the normal disap-

pearance analysis as described in Section 5.2, using MINUIT to minimise the likelihood

function given in Equation 5.2. The most important differences are the introduction of

the neutrino beam mode event sample, and the modification of the fit hypothesis. We

now consider a single set of oscillation parameters affecting both neutrinos and antineu-

trinos: the six oscillation parameters used in a normal three-flavour fit, and the NSI

parameter εµτ . No limits are set on the range of the NSI parameter. The neutrino and

antineutrino beam-mode datasets are fitted simultaneously. Identical Super-K binning

is used for the two datasets in both Ereco and Etrue, giving a total of 146 observable

bins.

The addition of the neutrino mode dataset introduces another 25 flux systematic

parameters, and another 6 Super-K efficiency systematics. The FHC systematics are

correlated with their RHC counterparts. The values of the new flux parameters used are

listed in Table 4.5, while the values of the detector efficiencies are listed in Table 4.10.

The correlations between the neutrino and antineutrino parameters can be seen in Fig-

ures 4.25 and 4.38. Note that the CCQE-like and NC efficiencies at Super-K are strongly

correlated between beam modes. Similarly, the FHC νµ flux is strongly correlated with

the RHC νµ flux. In order to obtain results in terms of εµτ , all systematic parameters as

well as sin2 θ23 and |∆m2
32| are profiled in these fits, according to the method described

in Section 5.2.1.

6.3 Predicted Event Rates and Spectra

The NSI analysis uses a combined fit to both forward horn current and reverse horn

current data. The spectrum predictions for RHC are described in detail in Section 5.3.

This section describes equivalent spectra for the forward horn current data.

Tables 6.1 and 6.2 show the effects of the various tuning stages described in

Chapter 4 on the overall event rate, for the unoscillated and oscillated prediction. The

effects of the flux tuning described in Section 4.1 on the expected spectrum can be seen

in Figure 6.2. The effect of the BANFF tuning described in Section 4.4 can be seen in

Figure 6.3. It should be observed that the BANFF tuning increases both the unoscillated

event rate and the event rate with expected oscillations by around 14%.

The final selected event rate predicted for the no-oscillation hypothesis is 460.4
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± 45.9 (syst), while for the oscillated hypothesis using the numbers from Table 5.1,

the expected numbers of events are 125.8 (normal) and 128.5 (inverted). The expected

Super-K Ereco spectra without oscillation can be seen in Figures 6.4 and 6.5, with and

without the near-detector tune respectively. Similar spectra with oscillations applied can

be seen in Figures 6.6 and 6.7. These plots use a POT of 6.91×1020, the T2K collected

POT in neutrino beam mode to date.
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Figure 6.2: Top: Reconstructed-energy spectrum of 1 µ-like ring events, for an exposure of
6.91×1020 POT in neutrino beam mode both with and without the effect of the flux tuning
of the nominal MC templates. The spectra are shown both for no oscillations (left) and for
oscillations assuming the normal hierarchy with the oscillation parameters shown in Table 5.1.
Bottom: Ratio of flux-tuned spectrum to the nominal MC spectrum.
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133

NSK NSK NSK NSK
Nominal MC Flux-tuned MC BANFF prefit MC BANFF postfit MC

(flux + CCQE tune)
Total 421.230 450.235 404.951 460.434

νµ CCQE 304.816 324.495 312.478 337.776
νµ CC 1π 44.769 49.110 49.110 38.272

νµ CC coherent 2.033 2.231 2.231 2.684
νµ CC MEC 40.210 43.087 11.634 48.817
νµ CC other 6.573 7.923 7.923 9.216

νµ/ντ NC 1π+/− 4.778 5.251 5.251 3.846
νµ/ντ NC 1π0 0.670 0.747 0.747 0.495

νµ/ντ NC coherent 0.014 0.015 0.015 0.017
νµ/ντ NC other 2.292 2.695 2.695 4.438

νµ CCQE 8.926 8.727 8.047 8.915
νµ CC 1π 2.817 2.694 2.694 2.300

νµ CC coherent 0.494 0.481 0.481 0.576
νµ CC MEC 1.592 1.547 0.418 1.778
νµ CC other 0.522 0.491 0.491 0.544

νµ/ντ NC 1π+/− 0.224 0.214 0.214 0.138
νµ/ντ NC 1π0 0.029 0.028 0.028 0.016

νµ/ντ NC coherent 0.001 0.001 0.001 0.001
νµ/ντ NC other 0.153 0.144 0.144 0.225
νe CCQE 0.031 0.034 0.034 0.038
νe CC 1π 0.019 0.021 0.021 0.018

νe CC coherent 0.001 0.001 0.001 0.001
νe CC MEC 0.006 0.006 0.002 0.007
νe CC other 0.007 0.008 0.008 0.009

νe NC 1π+/− 0.109 0.123 0.123 0.088
νe NC 1π0 0.021 0.023 0.023 0.015

νe NC coherent 0.000 0.000 0.000 0.000
νe NC other 0.094 0.108 0.108 0.176
νe CCQE 0.002 0.002 0.002 0.002
νe CC 1π 0.001 0.001 0.001 0.001

νe CC coherent 0.000 0.000 0.000 0.000
νe CC MEC 0.000 0.000 0.000 0.000
νe CC other 0.001 0.000 0.000 0.001

νe NC 1π+/− 0.013 0.012 0.012 0.008
νe NC 1π0 0.002 0.002 0.002 0.001

νe NC coherent 0.012 0.011 0.011 0.012
νe NC other 0.000 0.000 0.000 0.000

Table 6.1: Calculated predicted numbers of 1-ring µ-like events in neutrino beam mode without
oscillations using the nominal MC templates, the NA61-tuned MC templates, the CCQE-tuned
MC templates and the BANFF-tuned MC templates. The BANFF prefit column is the NA61
tuned data, with the CCQE samples reweighted according to the external data fits described in
Section 4.3. The total numbers of events and the numbers of events from each mode considered
in this analysis are shown. These numbers were calculated for an exposure of 6.91×1020 POT.
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NSK NSK NSK NSK
Nominal MC Flux-tuned MC BANFF prefit MC BANFF postfit MC

(flux + CCQE tune)
Total 110.201 121.340 109.941 125.767

νµ CCQE 58.367 63.780 61.350 69.147
νµ CC 1π 18.568 21.217 21.217 16.738

νµ CC coherent 0.780 0.898 0.898 1.122
νµ CC MEC 9.930 11.011 2.973 13.057
νµ CC other 5.775 7.017 7.017 8.137

νµ/ντ NC 1π+/− 4.778 5.251 5.251 3.846
νµ/ντ NC 1π0 0.670 0.747 0.747 0.495

νµ/ντ NC coherent 0.014 0.015 0.015 0.017
νµ/ντ NC other 2.292 2.695 2.695 4.438

νµ CCQE 4.407 4.234 3.951 4.358
νµ CC 1π 1.956 1.852 1.852 1.555

νµ CC coherent 0.264 0.252 0.252 0.301
νµ CC MEC 0.876 0.838 0.226 0.960
νµ CC other 0.460 0.432 0.432 0.478

νµ/ντ NC 1π+/− 0.224 0.214 0.214 0.138
νµ/ντ NC 1π0 0.029 0.028 0.028 0.016

νµ/ντ NC coherent 0.001 0.001 0.001 0.001
νµ/ντ NC other 0.153 0.144 0.144 0.225
νe CCQE 0.029 0.031 0.032 0.036
νe CC 1π 0.018 0.020 0.020 0.017

νe CC coherent 0.001 0.001 0.001 0.001
νe CC MEC 0.005 0.006 0.002 0.007
νe CC other 0.007 0.008 0.008 0.009

νe NC 1π+/− 0.109 0.123 0.123 0.088
νe NC 1π0 0.021 0.023 0.023 0.015

νe NC coherent 0.000 0.000 0.000 0.000
νe NC other 0.094 0.108 0.108 0.176

Osc. νe CCQE 0.224 0.237 0.231 0.247
Osc. νe CC 1π 0.082 0.087 0.087 0.072

Osc. νe CC coherent 0.003 0.003 0.003 0.004
Osc. νe CC MEC 0.031 0.032 0.009 0.036
Osc. νe CC other 0.002 0.002 0.002 0.002

νe CCQE 0.002 0.002 0.002 0.002
νe CC 1π 0.001 0.001 0.001 0.001

νe CC coherent 0.000 0.000 0.000 0.000
νe CC MEC 0.000 0.000 0.000 0.000
νe CC other 0.001 0.000 0.000 0.001

νe NC 1π+/− 0.013 0.012 0.012 0.008
νe NC 1π0 0.002 0.002 0.002 0.001

νe NC coherent 0.012 0.011 0.011 0.012
νe NC other 0.000 0.000 0.000 0.000

Osc. νe CCQE 0.001 0.001 0.001 0.001
Osc. νe CC 1π 0.001 0.001 0.001 0.000

Osc. νe CC coherent 0.000 0.000 0.000 0.000
Osc. νe CC MEC 0.000 0.000 0.000 0.000
Osc. νe CC other 0.000 0.000 0.000 0.000

Table 6.2: Calculated predicted numbers of 1-ring µ-like events in neutrino beam mode with
oscillations using the nominal MC templates, the NA61-tuned MC templates, the CCQE-tuned
MC templates and the BANFF-tuned MC templates. The BANFF prefit column is the NA61
tuned data, with the CCQE samples reweighted according to the external data fits described in
Section 4.3. The total numbers of events and the numbers of events from each mode considered
in this analysis are shown. The normal hierarchy was assumed, with oscillation parameters give
the values listed in Table 5.1. These numbers were calculated for an exposure of 6.91×1020 POT.



 (GeV)recoE

0 1 2 3 4 5 6 7

E
v
en

ts
 p

er
 0

.0
5
0
 G

eV

0

5

10

15

20

25

30

35

40

Flux tuning applied

BANFF tune applied

 (GeV)recoE

0 1 2 3 4 5 6 7

E
v
en

ts
 p

er
 0

.0
5
0
 G

eV

0

1

2

3

4

5

6

7
Flux tuning applied

BANFF tune applied

 (GeV)recoE

0 1 2 3 4 5 6 7

B
A

N
F

F
 t

u
n
ed

 /
 f

lu
x
 t

u
n
ed

0.8

0.9

1

1.1

1.2

 (GeV)recoE

0 1 2 3 4 5 6 7

B
A

N
F

F
 t

u
n
ed

 /
 f

lu
x
 t

u
n
ed

0.85

0.9

0.95

1

1.05

1.1

1.15

Figure 6.3: Top: Reconstructed-energy spectrum of 1 µ-like ring events, for an exposure of
6.91×1020 POT in neutrino beam mode both with and without the effect of postfit BANFF flux
and cross-section tuning on the NA61-tuned flux MC templates. The spectra are shown both
for no oscillations (left) and for oscillations assuming the normal hierarchy, and the oscillation
parameters shown in Table 5.1. Bottom: Ratio of BANFF-tuned spectrum to the flux-tuned
spectrum.
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Figure 6.4: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contri-
butions from various grouped true neutrino
reaction modes, for no oscillations and for
an exposure of 6.91×1020 POT in neutrino
beam mode. The spectrum was generated
using the BANFF prefit MC templates.
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Figure 6.5: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contri-
butions from various grouped true neutrino
reaction modes, for no oscillations and for
an exposure of 6.91×1020 POT in neutrino
beam mode. The spectrum was generated
using the BANFF postfit-tuned MC tem-
plates.
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Figure 6.6: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contri-
butions from various grouped true neutrino
reaction modes, with oscillations for an ex-
posure of 6.91×1020 POT in neutrino beam
mode. The spectrum was generated us-
ing the BANFF prefit MC templates. The
spectrum shown was generated assuming
the normal hierarchy, and the oscillation pa-
rameters shown in Table 5.1. Note that the
vertical axis is zoomed in by a factor of more
than 4 compared with Figure 6.4.
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Figure 6.7: Predicted reconstructed-energy
spectrum of 1 µ-like ring events, and contri-
butions from various grouped true neutrino
reaction modes, with oscillations for an ex-
posure of 6.91×1020 POT in neutrino beam
mode. The spectrum was generated using
the BANFF postfit-tuned MC templates.
The spectrum shown was generated assum-
ing the normal hierarchy, and the oscillation
parameters shown in Table 5.1. Note that
the vertical axis is zoomed in by a factor of
more than 4 compared with Figure 6.5.
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6.4 Effects of Systematics on the Neutrino-Mode Spec-

trum

The addition of the neutrino mode muon-like event sample introduces 25 additional flux

systematics and 6 extra Super-K efficiency systematics. The new FHC flux systematics

are correlated with the RHC flux systematics and the cross-section systematics. The

FHC Super-K detector efficiencies are correlated with the RHC efficiencies. The cross-

section systematics and Super-K energy scale systematic are shared between the beam

modes.

The effects of BANFF postfit errors from the individual systematics are shown

in Table 6.3. Table 6.4 summarises the effects of groups of systematics on the final event

rate in neutrino beam mode. Percentage uncertainties are given for both the BANFF

prefit and postfit errors.

Representative error envelopes are shown in Figures 6.8 to 6.13. These are the

±1σ spreads of each bin’s content over 105 toy Monte Carlo experiments generated with

randomised systematic parameters. All correlations were taken into account. Figure 6.8

shows the combined effect of the BANFF tune and all systematics on the unoscillated

Ereco spectrum’s error envelopes, while Figure 6.9 shows the same for the oscillated

spectrum. The envelopes for the oscillated spectrum are shown as a ratio to their nominal

value in order to demonstrate the relative size of the prefit and postfit uncertainties due

to Super-K, flux and cross-section systematics respectively in Figures 6.10, 6.11 and 6.12.

A similar envelope with all systematics included can be seen in Figure 6.13. It can be

seen that the largest relative reduction in uncertainty is applied to the flux systematics,

and that the reduction in relative error size does not vary significantly with the value of

Ereco. The equivalent envelopes for the RHC sample can be found in Section 5.4.
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Parameter BANFF tuned +1σ BANFF tuned -1σ

fBANFF0;t,r 126.351 0.460 % 125.193 -0.460 %

fBANFF1;t,r 126.197 0.338 % 125.348 -0.338 %

fBANFF2;t,r 125.892 0.095 % 125.653 -0.095 %

fBANFF3;t,r 125.906 0.106 % 125.639 -0.106 %

fBANFF4;t,r 126.771 0.794 % 124.773 -0.794 %

fBANFF5;t,r 127.021 0.993 % 124.523 -0.993 %

fBANFF6;t,r 126.813 0.827 % 124.732 -0.827 %

fBANFF7;t,r 126.328 0.442 % 125.216 -0.442 %

fBANFF8;t,r 126.224 0.359 % 125.321 -0.359 %

fBANFF9;t,r 126.082 0.246 % 125.463 -0.246 %

fBANFF10;t,r 125.825 0.042 % 125.719 -0.042 %

fBANFF11;t,r 125.791 0.015 % 125.754 -0.015 %

fBANFF12;t,r 125.794 0.017 % 125.751 -0.017 %

fBANFF13;t,r 125.879 0.085 % 125.666 -0.085 %

fBANFF14;t,r 125.935 0.130 % 125.609 -0.130 %

fBANFF15;t,r 126.022 0.198 % 125.523 -0.198 %

fBANFF16;t,r 125.773 0.000 % 125.772 -0.000 %

fBANFF17;t,r 125.773 0.001 % 125.771 -0.001 %

fBANFF18;t,r 125.773 0.000 % 125.772 -0.000 %

fBANFF19;t,r 125.776 0.003 % 125.769 -0.003 %

fBANFF20;t,r 125.777 0.003 % 125.768 -0.003 %

fBANFF21;t,r 125.776 0.003 % 125.769 -0.003 %

fBANFF22;t,r 125.774 0.002 % 125.770 -0.002 %

fBANFF23;t,r 125.773 0.001 % 125.772 -0.001 %

fBANFF24;t,r 125.775 0.002 % 125.770 -0.002 %

fBANFFNormMEC
139.613 11.004 % 111.932 -11.004 %

fBANFF
CA5

127.748 1.571 % 123.932 -1.463 %

fBANFFBgRES
126.991 0.969 % 124.700 -0.852 %

fBANFF
MQE
A

127.533 1.400 % 123.987 -1.420 %

fBANFF
MRES
A

127.376 1.275 % 124.224 -1.231 %

fBANFFpf
124.611 -0.923 % 126.884 0.884 %

fBANFFShapeCCoth
126.274 0.399 % 125.271 -0.399 %

fBANFFEB
125.805 0.026 % 125.750 -0.018 %

fBANFFNormCCcoh
127.062 1.025 % 124.483 -1.025 %

fBANFFNormNCcoh
125.778 0.004 % 125.767 -0.004 %

fBANFFNormNCother
126.411 0.508 % 125.134 -0.508 %

fBANFFNormνe→νµ
125.781 0.007 % 125.764 -0.007 %

fSKE;r 125.772 0.000 % 125.772 -0.000 %

fSK+FSI
0;t,r 125.927 0.123 % 125.618 -0.123 %

fSK+FSI
1;t,r 126.374 0.478 % 125.171 -0.478 %

fSK+FSI
2;t,r 126.534 0.606 % 125.010 -0.606 %

fSK+FSI
3;t,r 127.961 1.740 % 123.583 -1.740 %

fSK+FSI
4;t,r 126.210 0.348 % 125.334 -0.348 %

fSK+FSI
5;t,r 131.439 4.505 % 120.106 -4.505 %

Table 6.3: ±1σ effect of the systematic parameters on the total number of SuperK events in
neutrino beam mode, using 4.011×1020 POT, and the oscillation parameters in Table 5.1. The
variations are shown both as the total event rate, and as a percentage change from the event
rate with the systematic at its central value (125.772).



Source of uncertainty δNSK/NSK δNSK/NSK

(Unoscillated) (Oscillated)

SuperK detector + FSI + SI 2.37% 5.40%
BANFF (prefit) 12.94% 13.15%
BANFF (postfit) 8.94% 8.77%

BANFF (Non-oxygen, postfit) 2.02% 1.94%
BANFF (Oxygen-specific, postfit) 8.58% 8.70%

Total (BANFF prefit) 13.25% 13.15%
Total (BANFF postfit) 8.65% 9.98%

Table 6.4: Effect of 1σ variations of the groups of systematics parameters on total number of
1-ring muon-like events in the neutrino beam mode sample. The BANFF parameters considered
to be oxygen-specific are Oxygen MEC normalisation, Fermi momentum, Binding energy, CC
coherent normalisation and the νe/νµ normalisation. The oscillation parameters used are those
from Table 5.1.
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Figure 6.8: Neutrino mode error envelopes for
the energy spectrum at SuperK as a result
of all systematic parameters. 100k toy MC
experiments were generated with randomised
systematic parameters and the 1σ spread of
bin contents was calculated. Correlations were
taken into account. No oscillations were ap-
plied. Absolute event numbers shown are for
6.91×1020 POT.
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Figure 6.9: Neutrino mode error envelopes for
the energy spectrum at SuperK as a result
of all systematic parameters. 100k toy MC
experiments were generated with randomised
systematic parameters and the 1σ spread of
bin contents was calculated. Correlations were
taken into account. Oscillations were ap-
plied with the parameter values shown in Ta-
ble 5.1. Absolute event numbers shown are for
6.91×1020 POT.
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Figure 6.10: Neutrino mode error envelopes,
expressed as a fraction of event count, for the
energy spectrum as a result of Super-K de-
tector and FSI/SI systematics. 100k toy MC
experiments were generated with randomised
systematic parameters and the 1σ spread of
bin contents was calculated. Correlations were
taken into account. Oscillations were applied
with the parameter values shown in Table 5.1.
The near-detector fit does not reduce the size
of the uncertainties on these systematics, but
the changes in the spectrum shape and com-
position lead to a small reduction in relative
uncertainty.
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Figure 6.11: Neutrino mode error envelopes,
expressed as a fraction of event count, for the
energy spectrum as a result of the BANFF flux
systematics. 100k toy MC experiments were
generated with randomised systematic param-
eters and the 1σ spread of bin contents was cal-
culated. Correlations were taken into account.
Oscillations were applied with the parameter
values shown in Table 5.1.
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Figure 6.12: Neutrino mode error envelopes,
expressed as a fraction of event count, for the
energy spectrum as a result of the BANFF
cross-section systematics. 100k toy MC exper-
iments were generated with randomised sys-
tematic parameters and the 1σ spread of bin
contents was calculated. Correlations were
taken into account. Oscillations were applied
with the parameter values shown in Table 5.1.
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Figure 6.13: Neutrino mode error envelopes,
expressed as a fraction of event count, for the
energy spectrum as a result of all systematics.
100k toy MC experiments were generated with
randomised systematic parameters and the 1σ
spread of bin contents was calculated. Corre-
lations were taken into account. Oscillations
were applied with the parameter values shown
in Table 5.1.
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6.5 Validation of the Oscillation Fitter for the NSI Hy-

pothesis

The fits for NSI were performed using the fitting software package developed for the νµ

disappearance analysis, and validation of the software for that analysis can be seen in

Section 5.6. However, the joint neutrino-mode and antineutrino-mode NSI fit adds 25

flux systematics, 6 detector systematics and the NSI parameter εµτ itself.

Similarly to the validation of the disappearance analysis, ensembles of 5000 toy

experiments were generated with statistical fluctuations and systematic parameters ran-

domised according to their priors. These were generated at 27 points in the oscilla-

tion parameter space, using all the combinations of three values for each of the oscil-

lation parameters. The parameter values used were sin2 θ23 = 0.35, sin2 θ23 = 0.527

and sin2 θ23 = 0.65, |∆m2
32| = 2.2, |∆m2

32| = 2.5 and |∆m2
32| = 2.8 × 10−3 eV2 and

εµτ = −0.5, εµτ = 0.0 and εµτ = 0.5. These were fitted using MINUIT and HESSE

errors were calculated. The parameter εµτ behaved as desired. Three sets of best-fit

parameter values can be seen in Figure 6.14, while Figure 6.15 shows the distribution of

their pull values. For each toy experiment i and parameter f with true value xf,i,true, fit-

ted value xf,i,fitted and HESSE uncertainty σf,i,Hesse, the pull Pf,i is calculated according

the following formula:

Pf,i =
xf,i,fitted − xf,i,true

σf,i,Hesse
(6.10)

The new flux and Super-K parameters also behaved as expected. A summary of

their pull distributions can be seen in Figure 6.16. The systematic parameters behave

as expected, with the pull distributions forming a Gaussian with a mean of 0 with the

exception of a slightly biased mean in the Super-K NC systematic (fSK+FSI
5;t;r ). This

effect is explained in Section 5.6.2. The νe CC systematic fSK+FSI
5;t;r has a low pull RMS

due to the full correlation with the equivalent RHC parameter, which can be seen in

Figure 4.38. This parameter was fixed as it adds no additional freedom to the fit.
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Figure 6.14: Distributions of the best-fit values of εµτ from 5k toy MC experiments generated
at εµτ = 0 and εµτ ± 0.5 including statistical fluctuations and randomised systematics. The
other oscillation parameters are fixed at their values in Table 5.1, and the normal mass
hierarchy is assumed. The fits were performed with the T2K target POT (7.8×1021) divided
equally between neutrino and antineutrino mode.
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Figure 6.15: Distributions of the pulls of εµτ from 5k toy MC experiments generated at
εµτ = 0 and εµτ ± 0.5 including statistical fluctuations and randomised systematics. The
other oscillation parameters are fixed at their values in Table 5.1, and the normal mass
hierarchy is assumed. The fits were performed with the T2K target POT (7.8×1021) divided
equally between neutrino and antineutrino mode.
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Figure 6.16: Summary of systematic pull distributions for FHC-specific systematic parameters
for 5k toy MC experiments with the current T2K data POT: 6.91×1020 in neutrino mode and
4.011×1020 in antineutrino mode. The RHC and common parameters all appear similar to
their distributions in Figure 5.18 and have been left out for clarity. Statistical fluctuations are
included, and systematic parameters are randomised according to their priors. Black circles show
the mean of the pull, while red triangles show the RMS. |∆m2

32|, sin2 θ23 and εµτ were fitted.
All other oscillation parameters were fixed at their true values. The normal mass hierarchy is
assumed.



6.6 Method for Construction of Confidence Regions

The method used for the construction of confidence regions for the NSI parameter εµτ is

similar to the method used for the muon antineutrino disappearance study described in

Section 5.7. For the NSI parameter, the primary result is a 1d confidence region in the

range −1 ≤ εµτ ≤ 1 with 201 evenly spaced bins. The fit is performed with εµτ free, to

find the unbinned best-fit point with a χ2 of χ2
min. The fit is then re-run with εµτ fixed

to the value of every bin i, giving a value for χ2
i .

For each fit, MINUIT is run twice, first in the upper octant in mixing angle

(starting at sin2 θ23 = 0.6) and then in the lower octant (starting at sin2 θ23 = 0.4). The

lower χ2 of these two fits is used. This means that a hypothetical dataset could have

sin2 θ23 best-fit points in different octants in neighbouring εµτ bins, although this has

never been observed in any fitted dataset.

For the NSI analysis, two different results are measured. The first is a T2K-

only data fit, in which |∆m2
32| and sin2 θ23 are profiled with no prior constraint, and all

systematics are profiled according to their prior constraint. For the remainder of this

document, this fit will be referred to ‘flat prior’. The second fit uses a constraint on

the values of the standard muon-neutrino disappearance parameters from the MINOS

experiment [39]. A penalty term is added to the χ2 described in Equation 5.2, according

to a Gaussian with sin2 2θ23 = 0.950 ± 0.036 and |∆m2
32| = 2.41 ± 0.10. Note that

while we fit the single angle parameter sin2 θ23, the constraint is calculated based on a

Gaussian in sin2 2θ23, as this is the measurement published by MINOS. This fit will be

referred to as the ‘MINOS prior’. It should be noted that the MINOS data was fitted

assuming standard oscillations. If NSI effects are real, they would also have an effect on

this measurement, altering the prior probability. The fit with the MINOS prior should

be interpreted as an indication of the result a combined MINOS/T2K fit would achieve,

rather than a completely robust measurement of εµτ .

By performing the fit with εµτ fixed and the nuisance parameters free, a value

for χ2
i can be calculated, which is dependent only on εµτ . The value of ∆χ2 is calculated

at each point (i) in the parameter space:

∆χ2
i = χ2

i − χ2
min (6.11)

Reference values ∆χ2
crit are then used to define the edge of the region of given

confidence level. Any point in εµτ for which ∆χ2
i < ∆χ2

crit is considered to be inside the

confidence region. The ∆χ2
crit values used are the same as those in the used in the muon

antineutrino disappearance analysis, shown in Table 5.9.
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6.7 Expected Sensitivity for Current and Future Datasets

As described in Section 6.7, sensitivities were calculated using the Asimov dataset

method.

In this analysis, the Asimov dataset is the expected Super-K Ereco spectrum

with all parameters at their prior central values, and without any statistical fluctuations

applied. The standard oscillation values from Table 5.1 are used. Figure 6.17 and

Figure 6.18 shows the expected sensitivity using the prior oscillation values for T2K’s

current accumulated POT, and projected final POT respectively.

The expected sensitivity at 90% confidence with current data was calculated as

−0.825 < εµτ < 0.775 using a T2K only fit, and −0.645 < εµτ < 0.725 using MINOS

constraints on sin2 θ23 and |∆m2
32|. At T2K’s projected final POT, the sensitivity with

current systematic uncertainties was calculated to be −0.285 < εµτ < 0.285, with little

added sensitivity from the MINOS prior. Removing the systematic uncertainties, this

sensitivity is improved to −0.265 < εµτ < 0.265.
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Figure 6.17: T2K expected sensitivity to εµτ for a true value of εµτ = 0, using T2K’s current
POT (6.91×1020 FHC POT, 4.011×1020 RHC POT). The normal hierarchy is assumed, as
are the oscillation parameters in Table 5.1. The 90% confidence regions constructed using
the constant ∆χ2 technique are shown for a T2K only fit with free sin2 θ23 and |∆m2

32|, and
for a fit using the MINOS constraint on sin2 θ23 and |∆m2

32|.
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Figure 6.18: T2K expected sensitivity to εµτ for a true value of εµτ = 0, using T2K’s projected
final POT (7.8×1021) divided equally between FHC and RHC beam mode. The normal
hierarchy is assumed, as are the oscillation parameters in Table 5.1. The 90% confidence
regions constructed using the constant ∆χ2 technique are shown for a T2K only fit with free
sin2 θ23 and |∆m2

32|, and for a fit using the MINOS constraint on sin2 θ23 and |∆m2
32|.146



6.8 Results of the Non-standard Matter Interactions Anal-

ysis

6.8.1 Best-fit Oscillation Parameters

T2K’s entire Run 1-6 dataset was analysed using the method described in Section 6.2,

totalling 6.91×1020 POT in neutrino beam mode and 4.011×1020 POT in antineutrino

beam mode. Two different sets of fits were performed, one applying an external con-

straint from MINOS to the parameters sin2 θ23 and |∆m2
32|, and another with these

parameters left unconstrained.

A summary is given of the best-fit oscillation parameters, χ2 and p-values in

Table 6.5. All of the fit results are compatible with εµτ = 0. The data and best-fit

spectra are shown in Figures 6.19 and 6.20 for neutrino mode and antineutrino mode

respectively.

Fit sin2 θ23 |∆m2
32| or |∆m2

31| εµτ χ2
bf/NDOF p-value

Flat prior (normal) 0.514 2.506× 10−3 0.021 122.57/ 143 0.90

Flat prior (inverted) 0.511 2.553× 10−3 -0.019 122.57/ 143 0.87

MINOS prior (normal) 0.556 2.508× 10−3 0.041 124.11/ 145 0.75

MINOS prior (inverted) 0.554 2.525× 10−3 -0.128 124.24/ 145 0.73

Table 6.5: Summary of best-fit parameters from the fits of the combined full T2K Run 1-6
dataset. The quoted best-fit χ2 values (χ2

bf ) were computed from Equation 5.2. The table
also shows the p-values obtained from the goodness-of-fit test described in Section 6.8.2. As
described in that section, these p-values do not necessarily correspond to the χ2/NDOF values
in this table.

6.8.2 Goodness-of-fit Tests

Goodness-of-fit tests were performed for the fits of the real data as described in Sec-

tion 5.5. The results for the fit using the MINOS constraint are shown in Figures 6.21

and 6.22. The p-values are 0.75 for the normal hierarchy fit, and 0.73 for the inverted

hierarchy, indicating that both results are plausible. The fitted number of degrees of

freedom is 9, as expected given 10 bins and a single unconstrained parameter. For the

fits performed without the MINOS constraint, the p-values are 0.90 and 0.87 for normal

and inverted hierarchy respectively.

6.8.3 Confidence regions

Confidence regions for the data fit are shown in Figure 6.23 and Figure 6.24 for the nor-

mal hierarchy and inverted hierarchy respectively. The confidence regions are consistent
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with a value for εµτ of zero, and there is a clear improvement in sensitivity using the

external constraint on sin2 θ23 and |∆m2
32|. A comparison between the fitted normal

hierarchy data result and the expected sensitivity can seen in Figures 6.25 and 6.26 for

the fits with and without the MINOS constraint. The data is very similar to the pre-

dicted sensitivity, as would be expected given that the oscillation parameters used for

this sensitivity study come from a fit to the FHC component of the data being fitted

here.

6.9 Summary

Using the combined neutrino and antineutrino beam mode datasets from T2K, it is possi-

ble to perform fits to non-standard neutrino interaction models. Studies were performed

evaluating the sensitivity of the T2K experiment to matter effects on muon neutrino and

antineutrino disappearance which would lead to a difference in survival probability, in

terms of a parameter εµτ .

The expected sensitivity at 90% confidence with current data was calculated as

−0.825 < εµτ < 0.775 using a T2K-only data, and −0.645 < εµτ < 0.725 using a

constraint on sin2 θ23 and |∆m2
32| from the MINOS experiment. Given the T2K pro-

jected final POT, T2K can achieve a sensitivity of −0.285 < εµτ < 0.285 with current

systematic parameters, or −0.265 < εµτ < 0.265 in a statistics-only fit. These studies

demonstrated that T2K is less sensitive to these effects than MINOS, which used a wide-

band beam and thus had access to more events in the tail of the Ereco spectrum, as well

as a significantly longer baseline leading to stronger matter effects, and a magnetised

far detector allowing separation of events caused by neutrinos and antineutrinos, which

Super-K is currently not capable of.

The T2K run 1 to 6 data was fitted, and set a limit at 90% confidence of −0.925 <

εµτ < 0.825 with no external constraint on the disappearance parameters, and −0.695 <

εµτ < 0.725 using the MINOS constraint on sin2 θ23 and |∆m2
32|. These values are

consistent with no non-standard matter interactions, as well as consistent with other

experiments [126, 127].
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Figure 6.19: The Run 5+6 single µ-like ring 6.91×1020 POT neutrino-mode dataset and
the best-fit reconstructed energy spectrum when fitting the NSI hypothesis with the MINOS
prior. For clarity, a coarser binning is used in this figure than in the fit. The normal mass
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Figure 6.20: The Run 5+6 single µ-like ring 4.011×1020 POT antineutrino-mode dataset and
the best-fit reconstructed energy spectrum when fitting the NSI hypothesis with the MINOS
prior. For clarity, a coarser binning is used in this figure than in the fit. The normal mass
hierarchy is assumed.
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Figure 6.21: Distribution of χ2
gof , the goodness-of-fit (gof) χ2, from 1k toy MC ex-

periments whose true input values are the best-fit oscillation parameters from the fit
of the real data for the normal hierarchy (εµτ = 0.041, sin2 θ23 = 0.556, |∆m2

32| =
2.508 × 10−3 eV2). The MINOS constraint was used. Systematic variations and sta-
tistical fluctuations are applied to the toy datasets, and all 44 systematic parameters
are included in the fits. The χ2 value from the fit of the real data assuming the normal
mass hierarchy (with all 44 systematic parameters included in the fit) is shown as a red
line. A χ2 distribution with a fitted number of degrees of freedom is shown in blue.
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Figure 6.22: Distribution of χ2
gof , the goodness-of-fit (gof) χ2, from 1k toy MC ex-

periments whose true input values are the best-fit oscillation parameters from the fit
of the real data for the inverted hierarchy (εµτ = -0.128, sin2 θ23 = 0.554, |∆m2

32| =
2.525× 10−3 eV2). The MINOS constraint was used. Systematic variations and statis-
tical fluctuations are applied to the toy datasets, and all 44 systematic parameters are
included in the fits. The χ2 value from the fit of the real data assuming the inverted
mass hierarchy (with all 44 systematic parameters included in the fit) is shown as a red
line. A χ2 distribution with a fitted number of degrees of freedom is shown in blue.
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Figure 6.23: Results of the T2K Run 1 to 6 data fit for the NSI parameter εµτ , in the normal
mass hierarchy. Results are shown both with and without a MINOS constraint on sin2 θ23
and |∆m2

32|. The single parameter 90% CL allowed intervals are -0.925 < εµτ < 0.825 (with
flat prior) and -0.695 < εµτ < 0.725 (with MINOS prior).

τµ∈

1− 0.5− 0 0.5 1

∆
χ
2

0

1

2

3

4

5

6

Flat prior

MINOS prior

 < 0.925 (at 90%)
τµ

∈Flat prior:  0.825 < 

 < 0.755 (at 90%)
τµ

∈MINOS prior: 0.685 < 

Figure 6.24: Results of the T2K Run 1 to 6 data fit for the NSI parameter εµτ , in the inverted
mass hierarchy. Results are shown both with and without a MINOS constraint on sin2 θ23
and |∆m2

32|. The single parameter 90% CL allowed intervals are 0.825 < εµτ < 0.925 (with
flat prior) and -0.685 < εµτ < 0.755 (with MINOS prior).
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Figure 6.25: Results of the T2K Run 1 to 6 data fit for the NSI parameter εµτ , in the normal
mass hierarchy, compared to the expected sensitivity. No constraint was put on sin2 θ23 and
|∆m2

32|.
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Figure 6.26: Results of the T2K Run 1 to 6 data fit for the NSI parameter εµτ , in the normal
mass hierarchy, compared to the expected sensitivity. sin2 θ23 and |∆m2

32| were constrained
using the published results from MINOS, as described in Section 6.6.



Chapter 7

Conclusions and Outlook

This thesis presents two analyses of the T2K beam data, both of which fit the muon-like

reconstructed energy spectrum at Super-K. The first uses only the antineutrino beam

mode dataset collected by June 2015, totalling 4.011×1020 protons on target. With an

unoscillated expectation of 103.6 events and an observation of 34 events, the antineutrino

oscillation parameters were measured to be 0.327 < sin2θ23 < 0.692 (0.332 < sin2θ23 <

0.697) and 2.03×10−3 eV2 < |∆m2
32| < 2.92×10−3 eV2 and (2.03×10−3 eV2 < |∆m2

31| <
2.92×10−3 eV2) for the normal (inverted) hierarchy. The T2K data gives a world leading

measurement on sin2θ23, and rules out sin2θ23 = 0 at 7.3σ.

The second analysis uses similar techniques to test the hypothesis of nonstan-

dard neutrino-matter interactions (NSI), which could lead to a difference between the

survival probabilities P (νµ → νµ) and P (νµ→ νµ). This analysis simultaneously fits the

6.91×1020 POT neutrino-mode sample and the 4.011×1020 anti-neutrino mode sample.

We find no evidence for NSI. The future sensitivity of T2K to NSI has been evaluated,

showing that with the expected final POT delivered, we expect to be able to set limits

of −0.925 < εµτ < 0.825 at 90% confidence without an external constraint.

T2K will continue to collect data toward a final goal of 7.8×1021 POT, and will

perform measurements of νµ disappearance and νe appearance to even greater preci-

sion. With 7.8×1021 POT divided equally between neutrino and antineutrino beam

modes, T2K should achieve a 1σ resolution of 0.054 on sin2 θ23 and 0.045×10−3eV2 on

|∆m2
32| [63]. The methods and software developed for this analysis will be used to con-

strain δCP at T2K. Joint analysis using the T2K and NOνA datasets will allow improved

limits to be set on the δCP and stronger hints about the neutrino mass hierarchy. The

combination of the two datasets can exclude δCP = 0 at 90% confidence for an approxi-

mately 60◦ range of true δCP values, although the exact range which can be excluded is

dependent on the other oscillation parameters and the hierarchy. The next generation of

neutrino experiments including DUNE and HyperKamiokande experiments are currently

in development, and will provide ever more data to resolve these open questions.
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Appendix A

Interaction Modes in the Analysis

• νµ CCQE. A muon neutrino interacts with a neutron, producing a proton and a

negatively charged muon. This interaction is the main signal mode for T2K FHC

disappearance studies.

• νµ CC MEC. A muon neutrino interacts with multiple nucleons in the nucleus,

producing a negatively charged muon and other nucleons which are not seen by

Super-K. These events are considered CCQE-like.

• νµ CC1π. A muon neutrino interacts with a nucleon, to produce a final state

with a negatively charged muon and a pion. This category includes three different

interactions:

? νµ + p→ µ− + p+ π+

? νµ + n→ µ− + p+ π0

? νµ + n→ µ− + n+ π+

• νµ CC coherent. A muon neutrino interacts coherently with the entire nucleus,

producing a negative muon and a positive pion, leaving the original nucleus intact.

• νµ CC other. Other interactions where a muon neutrino produces a negative

muon.

• να NC1π±. A neutrino interacts with a nucleon, changing the nucleon type and

producing a charged pion.

• να NC1π0. A neutrino interacts with a nucleon, producing a neutral pion.

• να NC other. Other neutral current neutrino interactions.
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• νµ CCQE. A muon antineutrino interacts with a proton, producing a neutron and

a positively charged muon. This interaction is the main signal mode for the RHC

disappearance study in this thesis.

• νµ CC MEC. A muon antineutrino interacts with multiple nucleons in the nucleus,

producing a positively charged muon and other nucleons which are not seen by

Super-K. These events are considered CCQE-like.

• νµ CC1π. A muon antineutrino interacts with a nucleon, to produce a final state

with a positively charged muon and a pion. This category includes three different

interactions:

? νµ+ n→ µ+ + n+ π−

? νµ+ p→ µ+ + n+ π0

? νµ+ p→ µ+ + p+ π−

• νµ CC coherent. A muon antineutrino interacts coherently with the entire nu-

cleus, producing a positively charged muon and a negative pion.

• νµ CC other. Other muon antineutrino interactions which produce a positive

muon.

• να NC1π±. An antineutrino interacts with a nucleon, changing the nucleon type

and producing a charged pion.

• να NC1π0. An antineutrino interacts with a nucleon, producing a neutral pion.

• να NC other. Other neutral current antineutrino interactions.

• νe CCQE. An electron neutrino interacts with a neutron, producing a proton and

an electron. This interaction is the main signal mode for T2K FHC appearance

studies.

• νe CC MEC. An electron neutrino interacts with multiple nucleons in the nucleus,

producing an electron and other nucleons which are not seen by Super-K. These

events are considered CCQE-like.

• νe CC1π. An electron neutrino interacts with a nucleon, to produce a final state

with an electron, any pion and a nucleon.

• νe CC coherent. An electron neutrino interacts coherently with the entire nu-

cleus, producing an electron and a positive pion, leaving the original nucleus intact.

• νe CC other. Other interactions where an electron neutrino produces an electron.
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• νe CCQE. An electron antineutrino interacts with a proton, producing a neutron

and a positron. This interaction is the main signal mode for the T2K appearance

studies.

• νe CC MEC. An electron neutrino interacts with multiple nucleons in the nucleus,

producing a positron and other nucleons which are not seen by Super-K. These

events are considered CCQE-like.

• νe CC1π. An electron antineutrino interacts with a nucleon, to produce a final

state with a positron, any pion and a nucleon.

• νe CC coherent. An electron antineutrino interacts coherently with the entire

nucleus, producing a positron and a negative pion.

• νe CC other. Other electron antineutrino interactions which produce a positron.

• Oscillated νe CCQE.

• Oscillated νe CC MEC.

• Oscillated νe CC1π.

• Oscillated νe CC coherent.

• Oscillated νe CC other.

• Oscillated νe CCQE.

• Oscillated νe CC MEC.

• Oscillated νe CC1π.

• Oscillated νe CC coherent.

• Oscillated νe CC other.
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Appendix B

Effects of Systematics on the

Spectrum

This appendix contains plots showing the effects of varying the T2K Super-K systematics

listed in Table 4.8 to the single ring νµ-like sample in RHC mode. The values are

presented as a ratio to spectrum shown in Figure 6.7. The lines are shown for +1σ

(cyan), +3σ (blue), −1σ (violet) and −3σ (red).
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