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Abstract 

 
This paper describes a new algorithm for optimal control of a PV system under partial shading. A 

multilevel DC-link is the essential part of the proposed system and its control engages a voltage-hold 

perturbation and observation (VH-P&O) method combined with a PWM algorithm with permutation 

of PV sources. The algorithm enables achieving the maximum power generation for any number of 

PV and converter modules.  The main features of the control are: (i) a continual operation of all PV 

sources, shaded and non-shaded, at their maximum power points, (ii) delivery of all extracted power 

from PV sources to the load and (iii) generation of multilevel output voltage waveform with a low 

total harmonic distortion. 

Keywords:    Multilevel Converters, MPPT, Partial Shading, Photovoltaic Panels  

 

1  Introduction 

 
PV power generators are commonly structured by connecting the PV modules in series to meet the 

load voltage requirement. This configuration constrains that the same current flows through the chain.  

However, the characteristics of the chained PV modules are not exactly identical even when they are 

manufactured in the same batch. A more profound issue is the levels of illumination on individual PV 

cells which may be different. Even if a single cell in the series chain is shaded, the current through the 

whole chain would be reduced according to the shaded cell and consequently the overall power output 

of the whole PV chain drops significantly. Furthermore the shaded cell or cells may be destroyed due 

to the increased power dissipation on them resulting hot spots. A classical method to prevent high 

power dissipation on shaded cells has been to connect bypass diodes across a set of chained cells 
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(normally 18). The drawback of such a method is that under uneven irradiance, when diode/s turn on 

to allow the current flowing through, the power from individual cells is lost.   

 
Various other methods have been developed to address the problem of partial shading. One of them 

uses the Module-Integrated PV Converter (MIPC) scheme [1 - 4] which is formed from a series 

connection of modules comprising a PV panel and a DC/DC converter. This enables the control of 

each PV source output voltage for maximum power generation, while maintaining the same current 

value at the converter output terminal. However the problem with this scheme is that the converter for 

the shaded PV panel may only be able to maintain the current equal to that of the other modules when 

the irradiance difference is moderate.  

 
Departure from the maximum power point (MPP) may be unavoidable for a shaded source with a 

larger light level discrepancy, and in this case the option may be to control the converter to bypass the 

shaded source. Another approach relies on connecting the PV sources into a number of clusters of 

nearly equal extracted power by using a switching matrix to reconfigure the clusters so that the PV 

sources of equal shading,  hence equal power generation, are connected in parallel. The method was 

presented in [5, 6] and implemented experimentally in [7]. Although tests have shown that this 

approach results in more power output than in the directly connected PV sources, the cluster which 

generates the least power will be bypassed completely. The third scheme, named the ‘Generation 

Control Circuit’ (GCC), uses a type of multilevel DC/DC converter with multiple DC/DC converters 

connected in series, each powered by a PV source [8]. The individual converter may be a buck-boost 

type and can be controlled to extract power from the PV sources and deliver it to the load directly.  

This idea was implemented in [9] using a fly-back converter allocated to each PV source. The main 

issue with this scheme is that the PV sources cannot be controlled completely independently. 

Consequently, locating the MPP of one PV source does not mean that the other PV sources operate at 

their MPPs. 

 
This paper presents a novel optimal control scheme for a PV system using a converter topology called 

the multilevel DC-link inverter. Similar to the MIPC above this system consists of multiple modules 
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connected in series, each module has a PV panel with a switch-diode pair at its output terminals.  A 

DC-AC bridge inverter is used at the output to convert the generated DC power into AC form [10].  

The topology and control strategy enables the system to achieve the MPP tracking for all PV sources 

in a system under any irradiation conditions. An initial investigation [11] has demonstrated the basic 

converter topology and control concept. It has been shown that the scheme allows flexible control of 

each PV source to make it operating at its respective MPP corresponding to its light level. In the 

current paper a further improved control algorithm is presented which combines a voltage-hold 

perturbation and observation (VH-P&O) method and the PWM algorithm with permutation of PV 

sources for achieving the maximum power generation for any number of converter levels. The method 

is presented by both simulation study and practical experimental test, and the results show a 

significant enhancement of the PV system performance. 

 
The paper is organised as follows. Section 2 describes the multilevel DC-link inverter topology. In 

Section 3 the new control algorithm which combines the VH-P&O scheme and permutation PWM 

strategy is presented in detail. Simulation study of the PV system and the control scheme, which is 

performed using a STATE-SPACE AVERAGE model for the multilevel DC-link inverter, together with 

the results obtained are discussed in Section 4. Finally, the experimental system and results obtained 

by testing are presented in Section 5. 

 

2     Structure of the PV System based on Multilevel DC-Link Converter 

 
Fig. 1 shows the configuration of a PV system comprising three PV units acting in conjunction with a 

multilevel DC-link converter. Each PV unit consists of a single PV source, a capacitor and a switch 

with a complimentary diode. The units are connected in series and any of them can be switched in or 

out of the chain by turning on or off its switch.  When a unit is switched off, it is being bypassed by a 

diode. The three switches (SW1, SW2, SW3) operate at a high frequency and are controlled by the 

direct PWM method [12] to form a three-level positive DC voltage.  The H–bridge inverter at the 

output serves to convert the multilevel DC voltage waveform to alternative positive and negative 
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output voltage half-cycles of the required output frequency (e.g. 50Hz). The generation of multiple 

voltage levels, combined with proper control, enables forming the approximate sinewave output. 
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Fig. 1:  PV system with multilevel DC- link converter 

 
3    Optimal Control Scheme based on Permutation of PV Sources  

 

The optimal control scheme should maximise the power transferred from PV sources to the AC load 

or grid in different light conditions, and generate a nearly sinusoidal voltage with minimum harmonic 

distortion and DC offset. Ideally, it should also ensure equal switching utilisation and hence the 

losses. The solution presented in this paper comprises two parts: (i) Voltage-Hold Perturb & Observe 

(VH P&O) method for generation of the MPP reference voltage and (ii ) PWM algorithm with 

permutation of PV sources for switching control. 



5 

 

 

 
3.1    The Voltage-Hold P&O Method for Reference Voltage Generation 

 
A classical strategy for the PV maximum power point tracking is the perturbation and observation 

(P&O) method, which has been widely studied and used in the PV MPPT controllers (e.g. [13-17]). 

The two problems linked with this simple search method are that the terminal voltage may oscillate 

around a MPP, and the system may lose the MPP during rapid irradiance changes. Some 

improvements have been proposed for reducing the number of oscillations around MPP (e.g. [18, 

19]), but a slow speed of the response may result in an incorrect MPPT if  the changes of irradiance 

are rapid. 

 
The voltage-hold (VH) P&O method proposed here overcomes the above limitation in terms of 

oscillations around MPPs, which cause noise and slow down the search process, and also it can cope 

with rapid irradiance changes. For solving the problem of oscillating around a MPP, the algorithm 

uses variable searching step size. As soon as the irradiation change stops, the tracking step size is 

gradually decreased towards zero when reaching close to the MPP. When an irradiation change 

occurs, the tracking step size will be reset to the initial value to maintain the fast tracking. At a rapid 

irradiance change, which can be detected by measuring the light level and the number of changes 

within a fixed time interval, the algorithm stops the searching process and sets the reference voltage to 

the measured PV capacitor voltage which is essential tracking quantity. Subsequently the algorithm 

resumes the perturbation process for searching the MPP voltage along the I-V characteristic 

corresponding to the new light level. 

 
The VH P&O method is applied in sequence to each PV unit at each sampling instant, to track 

individually their respective reference voltages. This may lead to different voltage values depending 

on the weather conditions and PV panel characteristics. For generating AC reference voltages these 

values are multiplied  by a unity  sinusoidal  signal  sin Ȧt  (Ȧ =  2ʌ × 50).  (For example, in the system 

with three PV units, the reference voltages  vref1(t), vref2(t) and vref3(t)  are  generated as shown in 

Fig.1.) 
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3.2    PWM Algorithm with Permutation of PV Sources 

 
The next step should naturally be generation of PWM signals for the switches of individual PV units. 

For maximum power extraction, the terminal voltage of each PV unit should be as close as possible to 

its individual reference voltage established by the VH P&O process. This also implies that with 

multiple PV units in a chain, the PWM reference signal for the whole system should be the sum of all 

individual reference voltages, i.e. vref1(t)+ vref2(t),…+ vref(n)(t). To meet these conditions and the criteria 

of equal switch utilisation and low waveform distortion, a novel PWM algorithm based on 

permutation of PV sources has been developed. The algorithm consists of three stages, which are 

performed within each PWM switching period Ts: the direct PWM [12], the sequential permutation of 

PV sources, and the AC output voltage generation. 

 
In Stage 1, the direct PWM determines the output voltage levels and switch-on time intervals as 

follows. The reference voltages vref(j)(t) (j = 1,…n), obtained from VH P&O process, are normalised as  

   
nV

tv
v

j
j /

)(

L

)ref(
)ref(           (1) 

where the standard voltage level VL equals VMPP for a single source (panel) at the standard irradiance 

of 1000 W/m2 and temperature 25ºC, and n is the total number of PV sources. (This makes normalised 

voltages  n×vref(j)/VL, i.e. they are normalized for the full system comprising n sources.)  

 
The integer part of each normalized reference voltage is defined as the offset voltage, i.e.  

 ][int )ref()offset( jj vv           (2)  

If voffset(j) > 1, the switch of the corresponding PV source should be in 'on' state during time interval 

  )( )offset()ref(s)on( jjj vvTt            (3) 

On the other hand if voffset(j) = 0, the switch of the corresponding PV source should be in 'off' state to 

allow the diode to bypass this source. Stage 1 generates all n values of voffset(j) and ton(j). 

 
In Stage 2, the sequential permutation algorithm is implemented to determine the switching states of 

all PV units for building up the output voltage of the system. All PV sources are sequentially 

permutated through consecutive PWM switching cycles according to the cyclic counter C as 
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illustrated in Fig.2. The PV source which sequentially comes in turn at the highest voltage level is the 

only one which is controlled at a particular switching period (Ts), while other sources are used to build 

up the appropriate voltage level. The benefits of such a process are: (i) all PV sources of the system 

are equally engaged and the switching losses of transistors associated with each PV source are 

balanced, (ii) the achievement of symmetrical positive and negative half-cycles of the AC output 

waveform under partial shading and (iii) the reduction of the voltage ripple on capacitors of PV units.  
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Fig. 2:   Permutation of PV sources through consecutive PWM switching cycles 

 
Unlike the basic algorithm [11], the improved algorithm does not represent the PV source at the 

output if its offset voltage is zero, except in the case when all offset voltages are zero. The reason for 

introducing this exception is to initiate the control and it is also required in the case of low PWM 

reference signals. 

 
In Stage 3 the terminal H-bridge converter is used to change the multilevel DC voltage waveform to a 

single-phase AC waveform of low frequency (e.g. 50 Hz) by tracking the sinusoidal reference signal. 

 
Table 1 presents the switching states and output voltage generation for the system with three PV 

sources (n = 3). According to formulae (1) - (2), the offset voltages voffset(j) (j = 1,2,3) can be either 0, 1 

or 2. Hence there are 27 combinations in total and 27 output voltage patterns, which makes the 

presentation quite cumbersome. For clarification, a graphical illustration of the process for generating 

the output waveform in the basic system with two PV sources is given in the Appendix. 
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Table 1:   Switching states and output voltage generation for the system with three PV sources 

C voffset1 voffset2 voffset3 Vol       Voh ton 

1 0 0 0 0 VPV1 ton1 

0 0 1 0 0 

0 0 2 VPV3 VPV3 

0 1 0 VPV2 VPV2 

0 1 1 VPV2 VPV2 

0 1 2 VPV2+VPV3 VPV2+VPV3 

0 2 0 VPV2 VPV2 

0 2 1 VPV2+VPV3 VPV2+VPV3 

0 2 2 VPV2+VPV3 VPV2+VPV3 

1 0 0 0 VPV1 

1 0 1 0 VPV1 

1 0 2 VPV3 VPV1+ VPV3 

1 1 0 VPV2 VPV1+ VPV2 

1 1 1 VPV2 VPV1+ VPV2 

1 1 2 VPV2+VPV3 VPV1+ VPV2+ VPV3 

1 2 0 VPV2 VPV1+ VPV2 

1 2 1 VPV2+VPV3 VPV1+ VPV2+ VPV3 

1 2 2 VPV2+VPV3 VPV1+ VPV2+ VPV3 

2 0 0 0 VPV1 

2 0 1 VPV3 VPV1+ VPV3 

2 0 2 VPV3 VPV1+ VPV3 

2 1 0 VPV2 VPV1+ VPV2 

2 1 1 VPV2+VPV3 VPV1+ VPV2+ VPV3 

2 1 2 VPV2+VPV3 VPV1+ VPV2+ VPV3 

2 2 0 VPV2 VPV1+ VPV2 

2 2 1 VPV2+VPV3 VPV1+ VPV2+ VPV3 

2 2 2 VPV2+VPV3 VPV1+ VPV2+ VPV3 

2 0 0 0 0 VPV2 ton2 

0 0 1 VPV3 VPV3 

0 0 2 VPV3 VPV3 

0 1 0 0 VPV2 

0 1 1 VPV3 VPV2+VPV3 

0 1 2 VPV3 VPV2+VPV3 

0 2 0 0 VPV2 

0 2 1 VPV3 VPV2+VPV3 

0 2 2 VPV3 VPV2+VPV3 

1 0 0 0 0 

1 0 1 VPV3 VPV3 

1 0 2 VPV1+VPV3 VPV1+VPV3 

1 1 0 0 VPV2 

1 1 1 VPV3 VPV2+ VPV3 

1 1 2 VPV1+VPV3 VPV1+ VPV2+ VPV3 

1 2 0 VPV1 VPV1+ VPV2 

1 2 1 VPV1+VPV3 VPV1+ VPV2+ VPV3 

1 2 2 VPV1+VPV3 VPV1+ VPV2+ VPV3 

2 0 0 VPV1 VPV1 

2 0 1 VPV1+VPV3 VPV1+ VPV3 

2 0 2 VPV1+VPV3 VPV1+ VPV3 

2 1 0 VPV1 VPV1+ VPV2  

2 1 1 VPV1+VPV3 VPV1+ VPV2+ VPV3 

2 1 2 VPV1+VPV3 VPV1+ VPV2+ VPV3 

2 2 0 VPV1 VPV1+VPV2 

2 2 1 VPV1+VPV3 VPV1+ VPV2+ VPV3 

2 2 2 VPV1+VPV3 VPV1+ VPV2+ VPV3 
c 

Continued … 

C voffset1 voffset2 voffset3 Vol       Voh ton 

3 0 0 0 0 VPV3 ton3 

0 0 1 0 VPV3 

0 0 2 0 VPV3 

0 1 0 0 0 

0 1 1 0 VPV3 

0 1 2 VPV2 VPV2+VPV3 

0 2 0 VPV2 VPV2 

0 2 1 VPV2 VPV2+VPV3 

0 2 2 VPV2 VPV2+VPV3 

1 0 0 VPV1 VPV1 

1 0 1 VPV1 VPV1+ VPV3 

1 0 2 VPV1 VPV1+ VPV3 

1 1 0 VPV1 VPV1 

1 1 1 VPV1 VPV1+ VPV3 

1 1 2 VPV1+VPV2 VPV1+ VPV2+ VPV3 

1 2 0 VPV1+VPV2 VPV1+ VPV2 

1 2 1 VPV1+VPV2 VPV1+ VPV2+ VPV3 

1 2 2 VPV1+VPV2 VPV1+ VPV2+ VPV3 

2 0 0 VPV1 VPV1 

2 0 1 VPV1 VPV1+ VPV3 

2 0 2 VPV1 VPV1+ VPV3 

2 1 0 VPV1+VPV2  VPV1+ VPV2  

2 1 1 VPV1+VPV2 VPV1+ VPV2+ VPV3 

2 1 2 VPV1+VPV2 VPV1+ VPV2+ VPV3 

2 2 0 VPV1+VPV2  VPV1+ VPV2 

2 2 1 VPV1+VPV2 VPV1+ VPV2+ VPV3 

2 2 2 VPV1+VPV2 VPV1+ VPV2+ VPV3 
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4      Simulation of the PV System Performance 

 
The multilevel DC-link converter is simulated using a state-space average (SSA) model having the 

general form given by [20]: 
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where, the input vector elements are the currents ipv1, ipv2,…ipv(n) of PV sources; the terminal voltages 

vpv1, vpv2,…vpv(n) form the state vector; Cpv1, Cpv2,…Cpv(n) are the corresponding terminal capacitances; 

Dl, D2, … Dn  are the state variables for switches SW1, SW2… SW(n);  R is the load resistance; D is the 

state variable of the single-phase output H-bridge inverter (D = 1 when S1&S4 are switched on, and D 

= 0 when S2&S3 are switched on). 

 
Elements of the input vector [ipv1, ipv2,…ipv(n)] are found from the MPPs of the I-V characteristics 

which are generated using Bishop’s model for the PV source [21]. The I-V characteristics for different 

irradiance levels are shown in Fig.3 with indicated MPPs. Table 2 lists the system parameters used in 

the model. 
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Fig. 3:   I-V characteristics of the PV source for different irradiance levels  

 (MPP is indicated on each characteristic.) 

 

 

 

 

 

 

 

 

 

 

 
Table 2:   PV system parameters used in simulations 

 

The waveforms were simulated for the PV systems with n = 2, 3, 4 and 5 sources generating 

respectively five, seven, nine and eleven-level AC output voltages. The Fast Fourier Transformation 

(FFT) is applied to the output waveform to evaluate the fundamental harmonic and the total 

harmonics distortion (THD). 

Symbol             Parameter        Value 

PMPP Maximum power of PV source 250 W 

Cpv PV source terminal capacitor 5500 ȝF 

R Load resistance 

8.5 Ω  (5&7-level)  

18.5 Ω  (9-level) 

23 Ω  (11-level) 

ev P&O tracking step size 0.5 V 

Mf Frequency modulation index 
100  (5-level) 

300  (7,9&11-level) 

f AC output frequency 50 Hz 
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Fig. 4a shows five-level output voltage waveforms produced by the system with two sources PV1 and 

PV2 exposed to irradiances of 500 W/m2 and 1000 W/m2 respectively. The improved algorithm gives 

better voltage waveforms (shown on the right) compared with its predecessor. The THD of 43.5% and 

the 50-Hz fundamental peak voltage V1(p) = 76.8 V were achieved with the improved algorithm, 

compared to the THD of 58.65% and V1(p) = 70.7 V achieved with the predecessor. Similar comparison 

was made for the seven-level converter with three PV sources at irradiances of 1000, 500 and 1000 

W/m2 applied to PV1, PV2 and PV3 respectively.  The output voltage waveforms are shown in Fig. 

4b. The improved algorithm generates substantially better waveform with THD = 35.72% and V1(p) = 

108.64 V, compared to the THD = 57.41% and V1(p) = 95.81 V achieved with the predecessor. 

 

 

Fig. 4:   Output voltage waveforms simulated by the predecessor and the improved algorithm.  

(a)  five-level AC waveforms with sources PV1 and PV2 at irradiances 500 and 1000 W/m2;  

(b)  seven-level AC waveforms with sources PV1, PV2 and PV3 at irradiances 1000, 500 and 

1000 W/m2 respectively. 
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Fig. 5 illustrates output voltage waveforms and power extracted from the system with four PV sources 

using 9-level converter for two cases – (a) none of the sources are shaded and (b) one source is 

shaded. The power levels extracted from individual sources and the load power are shown by line 

graphs on the right-hand side. Referring to Fig. 5a, when all four PV sources are exposed to equal 

irradiance of 1000 W/m2, the THD is 18.4%, the 50-Hz fundamental peak voltage V1(p) = 194 V and 

the power extracted from each panel is 250 W giving 1000 W to the load. Referring to Fig. 5b, when 

one source is shaded, i.e. exposed to the halved irradiance (500 W/m2), the predicted THD is 21.67%, 

V1(p) = 176 V and the total power delivered to the load is 865 W conforming that it is very close to 

the sum of maximum power values found from I-V characteristics (3x250+116 W). 

 

 

Fig. 5:  Simulated output voltage waveforms and the extracted power achieved by the improved 

algorithm for 9-level converter with four PV sources.  

  (a)  all at the same irradiance of 1000W/m2;  

  (b)  at irradiances of 1000 W/m2 for PV1, PV2, PV3 and 500W/m2 for PV4. 
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Fig. 6 illustrates another example, which relates to the system with five PV sources and using 11-level 

converter. Referring to Fig. 6a, when all sources are exposed to equal irradiance of 1000 W/m2, the 

values of THD and the 50-Hz fundamental peak voltage V1(p) are respectively 14.95% and 241 V and 

both are improved compared to the values achieved by 9-level converter (18.4% and 194 V). Fig. 6b 

relates to the state when PV sources are exposed to different irradiances (250, 500, 750, 750 and 1000 

W/m2). The predicted THD is now 19.48%, and the total power delivered to the load is 790W which 

is very close to the sum of maximum power values of five PV sources found from I-V characteristics 

(53W, 116 W, 2x182 W and 250 W). 

 

 

Fig. 6:  Simulated output voltage waveforms and the extracted power achieved by the improved 

algorithm for 11-level converter with five PV sources.  

  (a)  all at the same irradiance of 1000W/m2;  

  (b)  at irradiances of 250, 500, 750, 750 and 1000 W/m2. 
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from each source delivering a total of 750 W to the load. In the time between 2 and 5 seconds, the 

irradiance to PV3 source is halved (500 W/m2), while PV1 and PV2 are still at full irradiance. The 

extracted power from PV3 is now reduced to 116 W, which matches the MPP on the I-V 

characteristic at irradiance of 500 W/m2 in Fig.3. The power levels from PV1 and PV2 are not 

affected by the shading of PV3, so the total delivered power is 616 W. During the time interval 

between 5 and 8 seconds, both PV2 and PV3 are shaded at the halved irradiance (500 W/m2) while 

PV1 is under full irradiance, and the delivered power is 482 W.  Between 8 and 11 seconds, all three 

PV sources are shaded to the halved irradiance (500W/m2), and the power delivered to the load is 

reduced to 348 W. After 11 seconds all three PV sources are again exposed to the full irradiance and 

are recovered to their MPPs of 250 W delivering the power of 750 W to the load. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Power responses of the system with seven-level DC-link converter during irradiance changes. 

(a)   irradiance variations in time;  

(b)-(d)   extracted power from individual sources PV1, PV2 and PV3;  

(e)   total power delivered to the load. 
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5     Experimental Results 

 
Laboratory experiments were performed on a system having three identical small serially connected 

PV modules (sources) with an in-house built 7-level converter.  Each module was exposed to a 

separate artificial sunlight with adjustable irradiance emulated by three halogen bulbs each of which 

was supplied from a different phase of a 3-phase variac connected to the 3-phase 50-Hz mains supply. 

This arrangement provides a fairly uniform irradiance to each module. 

 
The parameters of the experimental system are listed in Table 3. The measured I-V characteristic of 

the PV module are shown in Fig. 8 under different irradiance levels at room and surface temperatures 

of 20°C and 38°C respectively. 

 

 

 

 

 

 

 

 

         Table 3:   Experimental system parameters 

 

Though the power ratings of the PV panels are lower than those used in the simulation study, this is 

considered adequate for verifying the principle of the proposed control scheme for the following 

reasons: (i) With the artificial sun light simulator set up in the available laboratory, the measured I-V 

characteristics of small PV panels corresponding to various light and temperature levels follow 

closely the characteristics given in the data sheets. However, panels with higher power rating (over 

100 W) give significantly lower output power compared to what they should generate based on the 

data sheet; (ii) For validating the proposed control scheme the difference in power rating is not 

considered an issue, because the controller can be scaled up for higher power system without causing 

dynamic stability problems. 

Symbol        Quantity Value 

PMPP PV source maximum power 10 W 

Cpv PV source terminal capacitor 2200 ȝF 

R Load resistance 30 Ω 

ev P&O tracking step size 0.2 V 

Mf Frequency modulation index 100 

f Output frequency 50 Hz 
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Fig. 8.   Measured I-V characteristic of a 10W PV module at different irradiances 
 

The improved control algorithm has been applied to the experimental system. The control is 

implemented via a digital processing unit eZdspTM F28335 in real-time [22], and the Matlab-Simulink 

real time data exchange (RTDX) is employed to display the extracted power and to modify the system 

parameters via a graphical user interface (GUI). Details of this are presented in [21]. 

 
The extracted power from each PV module can be monitored on the bar chart of the GUI window in 

real-time mode as illustrated in Fig. 9 which shows two examples with different shading conditions. 

The graphs demonstrate that the developed system ensures that shaded PV module/s do not affect the 

operation of non-shaded module/s which continue to generate their maximum power. 

 

        

    Fig. 9:   GUI window showing the extracted power from each PV module at different irradiances 
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Table 4 summarizes the THD and the 50Hz fundamental amplitude of the load voltage waveforms 

which are shown in Fig. 10 for both the previous and improved PV permutation algorithms as a 

function of the PV extracted power. It is apparent that at the same conditions of partial shading, the 

improved PV permutation algorithm has resulted in a lower output harmonic distortion and larger 

amplitude of the fundamental harmonic (50 Hz), compared to the precursor algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 Fig.10: Output voltage and current waveforms of 7-level converter: measured under control by 

precursor algorithm (column 1); measured and simulated under control by improved 

algorithm (columns 2 and 3).  Irradiances applied to sources PV1, PV2 and PV3 in W/m2, 

top to bottom row: (1000, 500, 1000); (1000, 1000, 150); (1000, 750, 250); (500, 1000, 250). 
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Table 5 lists the numerical values obtained by measurements and simulation of the power delivered to 

the load when the improved control algorithm is applied. The small discrepancies between measured 

and simulated results are principally caused by the inverter losses which were not accounted for in 

simulations. 

 

 

 

 

 

 

 

Table 4:   Summary of measured and simulated results at various shading levels 

  

 

 

 

 

 

 

Table 5:  Measured and simulated values of power delivered to the load at various shading levels 

 

6     Conclusions 

 
The main features of the newly developed control scheme, which uses the VH P&O method and 

improved PV source PWM permutation algorithm, are: (i) the upholding of operation of all PV 

sources (shaded or not shaded) at their MPPs, (ii) the delivery of all extracted power from PV sources 

to the load and (iii) the generation of improved multilevel voltage waveforms with low THD.  

Extracted power (W) 
Precursor algorithm 

Measured results 
Improved algorithm 

Measured results 
Improved algorithm 
Simulated Results 

PV1 PV2 PV3 THD (%) V1(P) (V)  THD (%) V1(P) (V)  
THD 

(%) 
V1(P) (V)  

10 5 10 40.26 35.16 36.00 36.33 34.05 36.23 

10 10 1.5 55.21 30.83 34.80 33.26 33.68 34.18 

10 7.5 2.5 64.92 29.91 40.50 31.37 42.38 31.80 

5 10 2.5 61.22 27.95 38.46 29.07 43.65 29.37 

 

Extracted power (W) Measured 

Load Power (W) 

Simulated 

Load Power (W) PV1 PV2 PV3 

10 10 10 28.89 29.96 

10 5 10 23.81 24.96 

10 10 1.5 21.01 21.44 

10 7.5 2.5 19.34 19.98 

5 10 2.5 17.20 17.49 
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The proposed system was simulated using Matlab–Simulink for multilevel DC link converters with 

five, seven, nine and eleven-level AC output voltages. Static and dynamic irradiance levels were 

applied to test the system behaviour with respect to the MPP tracking and the quality of the output 

waveforms. The comparison between the previous and the improved algorithm have shown that the 

latter generates a lower distortion of the waveform and higher amplitude of the fundamental (50-Hz) 

harmonic of the output voltage. Experimental tests on a small-scale system, which uses three PV 

sources and seven-level DC-link converter, have validated the advantages of the new scheme. 

 
The time varying irradiance levels were applied to test dynamic behaviour of the system in terms of 

the MPP tracking. The algorithm enables the recovery of each shaded PV source to its MPP without 

affecting other PV sources connected in the chain. 

 

Appendix 

 
When C = 1: 

If  voffset1 is either 0 or 1 and voffset2 = 0, then: 

SW1 is ‘on’ during interval ton1 and ‘off’ otherwise; 

SW2 is ‘off’ during entire period Ts. 

If  voffset1 = 0 and voffset2 = 1, then: 

SW1 is ‘off’ and SW2 is ‘on’ during entire period Ts. 

If  voffset1 = 1 and voffset2 = 1, then: 

SW1 is ‘on’ during interval ton1 and ‘off’ otherwise; 

SW2 is ‘on’ during entire period Ts. 

 
When C = 2: 

If  voffset2 is either 0 or 1 and voffset1 = 0, then: 

SW1 is ‘off’ during entire period Ts; 

SW2 is ‘on’ during interval ton2 and ‘off’ otherwise. 

If  voffset2  is 0 and voffset1 = 1, then: 

SW2 is ‘off’ and SW1 is ‘on’ during entire period Ts. 

If  voffset1 = 1 and voffset2 = 1, then: 

SW1 is ‘on’ during entire period Ts; 

SW2 is ‘on’ during interval ton2 and ‘off’ otherwise. 
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In Fig. A1, vref1 and vref2 are two reference voltages of the five-level converter. These signals are 

sampled at periods Ts yielding Mf samples for each reference signal over the time period Tr = 1/fr. (fr 

denotes the required output frequency, e.g. 50 Hz.)   At each period Ts, the sampled values are applied 

to the Eqs. (1) - (3) for generating the required control signals. 
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Fig. A1:   Graphical illustration of the process for generating the output waveform in the basic 

system with two PV sources 
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