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a b s t r a c t

Phytanic acid diastereomers, 3S,7R,11R,15-phytanic acid (SRR) and 3R,7R,11R,15-phytanic acid (RRR),

were determined by GC–MS in extracts of archaeological ceramic. The SRR% was higher in pottery from

coastal sites corresponding with 13C enriched n-alkanoic acid corroborating a predominantly marine

origin for the food residues. Conversely, low SRR% and 13C depleted n-alkanoic acid were found at inland

sites, which are most likely derived from ruminant products. These observations are explained by differ-

ences in the bacterial transformation of phytol to phytanic acid between ruminant and aquatic organisms

and allow these products to be easily distinguished in archaeological contexts.

� 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

Introduction

Molecular and stable isotope analyses of organic residues pre-

served in archaeological pottery provide valuable insights into

the cooking practices and diet of past societies, and have become

pivotal to the investigation of economic and cultural changes in

the past. Organic matter (particularly lipids) is trapped within

the clay matrix of ceramic vessels during food manipulation (e.g.,

cooking, storage) and occasionally forms a carbonized residue on

their surfaces. A wide range of analytical procedures have been

applied to characterise ancient biomolecules in pottery vessels

but in recent years, gas chromatography mass spectrometry (GC–

MS) and gas chromatography combined with isotope ratio mass

spectrometry (GC-C-IRMS)1,2 have become the methods of choice.

These techniques have been routinely used to discriminate various

mammal fats,3 fish oils,4,5 dairy products6,7 and edible plants8

based on the identification of lipid biomarkers and/or the isotopic

criteria of less diagnostic compounds, such as n-alkanoic acids.

Phytanic acid (3,7,11,15-tetramethylhexadecanoic acid) is a

tetramethyl-branched isoprenoid fatty acid that is readily extracted

from archaeological ceramics. This compound has been identified in

some of the oldest pottery vessels in the world.4,5,9–12 The presence

of phytanic acid, togetherwith other isoprenoid andx-(o-alkylphe-

nyl)alkanoic acids (APFAs) has been used to infer the processing of

aquatic organisms.4,5,9–12 Phytanic acid can also be found at high

concentrations in ruminant carcass tissues and dairy products and

is also a minor component of other food sources such as rabbit

meat.13 Phytanic acid originates from phytol14 (Fig. 1), a constituent

of chlorophyll. In ruminants, phytanic acid is formed in the

rumen through bacterial oxidation and hydrogenation of phytol

(3,7R,11R,15-tetramethylhexadec-2-en-1-ol).14,15 In freshwater

and marine organisms, it is formed from the digestion of phyto-

plankton chlorophyll by zooplankton and other invertebrates.16

Phytanic acid also has the potential to be transmitted through the

terrestrial and marine food chains17–20 and often accumulates in

lacustrine and marine sediments.21

Phytanic acid has three chiral centres at carbon positions 3, 7

and 11 (Fig. 1). In nature, the configuration of the stereocentre at

position 3 may be (S) or (R) (diastereomers), while the other chiral

centres are observed only in the (R) configuration, as in phytol.22,23

Crucially, the ratio of 3S,7R,11R,15-phytanic acid (SRR) and

3R,7R,11R,15-phytanic acid (RRR) varies between organisms and

depends on differences in its biosynthesis and dietary precursors.

Higher SRR/RRR ratios have been reported in marine animal

tissues24–26 compared to terrestrial, and more subtle differences

in the diastereomer ratios have been used as a means to authenti-

cate organic ruminant milk and dairy products.27–32 Based on this

research, herein, we investigate the utility of using phytanic acid

diastereomers recovered from archaeological pottery as a novel

biomarker to distinguish aquatic and ruminant products. As
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phytanic acid is frequently found in archaeological cooking vessels,

distinguishing its origin maybe extremely important in the

absence of other more diagnostic compounds.

Results

The diastereomers of phytanic acid were determined in 48 pot-

tery samples from 5 archaeological sites (Table 1); chosen due to

their geographical location (coastal vs. inland) and associated eco-

nomic activity (hunter–fisher–gatherer vs. farming). The contribu-

tion of the SRR isomer in total phytanic acid (SRR%) separates the

pottery samples into two significantly different groups (p < 0.001;

One-Way ANOVA). The first group where SRR dominates over the

RRR are all from coastal sites occupied by hunter–fisher–gatherers

in Japan and Alaska (TOR, XNI and GDN). The means SSR% of these

groups are 81.5% (TOR), 88.9% (GDN) and 90.9% (XNI). Vessels from

the second group with more similar relative abundances of SRR and

RRR, come from two inland British medieval sites Britain (FLX,

CPG). Here, the mean SRR% are 46.8% (CPG) and 54.8% (FLX). The

various extracts yielded a diverse range of lipid concentrations

(0.02–4.33 lg mg�1), however no statistically significant correla-

tion was found between the SRR% and the concentration

(rs = �0.28, p < 0.06; Spearman’s rho).

To provide independent corroborative evidence regarding the

source of residues in these pots, GC-C-IRMS was undertaken to

determine the d
13C values of C16:0 and C18:0 n-alkanoic acids

(Fig. 2). The d
13C values of C16:0 and C18:0 acids ranged from

�30.5‰ to �20.9‰, and �34.7‰ to �20.8‰, respectively. With

the exception of one sample from Torihama, the d
13C values of

C16:0 and C18:0 for the coastal sites are greater than �26.5‰ and

Table 1

Summary of the results

Code Site Location Context No. samples analysed No. samples

yielding Aqu. Bio.

Average SRR (%) Average value

d
13C16:0 (‰)

Average value

d
13C18:0 (‰)

TOR Torihama Japan Coastal, HG 12 11 81.6 (±7.1) �25.1 (±1.6) �25.1 (±2.1)

GDN Nunalleq USA Coastal, HG 7 6 88.9 (±3.8) �24.2 (±1.2) �23.8 (±1.2)

XNI Nash Arbor USA Coastal, HG 6 4 90.9 (±2.3) �22.2 (±0.9) �22.9 (±1.8)

CPG Coppergate UK Inland, Far 12 0 46.8 (±11.3) �28.5 (±0.6) �30.4 (±0.8)

FLX Flixborough UK Inland, Far 11 0 54.8 (±7.8) �29.3 (±0.9) �32.0 (±2.2)

Hunter–fisher–gatherer (HG), Farming (Far). Aquatic biomarkers (Aqu. Bio.) are defined by the presence of a combination of specific compounds, C20 or C22 x-(o-alkylphenyl)

alkanoic acids associated with at least one isoprenoid fatty acid.33 SRR (%) is the percentage contribution of SRR diastereomer in total phytanic acid.
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Figure 2. Fatty acid stable carbon isotope ratios – plot of the d
13C values of C16:0

and C18:0 fatty acids from the archaeological residues extract considered in this

study.
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consistent with lipid originating from marine resources.9,10 A high

proportion of these samples also contained lipid biomarkers diag-

nostic of aquatic organisms,33 such as other isoprenoid alkanoic

acids (4,8,12-trimethyltridecanoic acid – 4,8,12,TMTD, and

3,7,11,15-tetramethylhexadecanoic acid, pristanic acid) and a wide

array of x-(o-alkylphenyl)alkanoic acids (Fig. 3, Table 1). In con-

trast, inland samples generally have d
13C values of C16:0 and C18:0

lower than �27‰, which are typically associated with terrestrial

mammals, dairy products and plants. The absence of aquatic

biomarkers in these samples, combined with the lower d13C values

of C18:0 compared to C16:0 (expressed as D13C; <�1‰), in all but

one FLX and one CPG sample, indicate that the main source of

lipids were from ruminant meat and/or dairy products.34

Discussion

The presence of diagnostic molecular biomarkers and the stable

isotope ratios of alkanoic acids extracted from coastal and inland

pottery discussed in this study, clearly discriminate between the

two main sources of animal products: aquatic and ruminant. The

frequency of the two isomers of phytanic acid, SRR and RRR also

differentiates between these two food groups. For example the

SRR% show a strong positive linear correlation with the d
13C values

of palmitic acid and stearic acid (r = 0.83 and 0.84, respectively)

(Fig. 4). This demonstrates that the ratio of phytanic acid stereoiso-

mers to a large extent reflects the dominant source of animal prod-

ucts processed in the pottery.

Phytanic acid isomers have been studied in a variety of marine

or freshwater fish, zooplankton, reptiles and mam-

mals.18,19,24,25,29,35,36 Variability of SRR% can be observed in aquatic

ecosystems (e.g., 28.6–98.3%) and is related to the inherent com-

plexity of phytanic acid synthesis and transmission in marine

organisms.17 Despite such variability, the SRR isomer generally
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predominates with an average value of 76% (±16.6, n = 58) (ESI,

Supplementary Table 1). The results obtained from the coastal pot-

tery are consistent with these modern aquatic data (Fig. 5). The

majority of these samples also have D13C values greater than

�1‰, which is typically observed in non-ruminant mammals,

plants and fish (Fig. 6).

Recent studies have demonstrated that the ratio of diastereoiso-

mers in ruminant fat is directly related to feeding practice and in

turn the composition of rumen bacteria. For example, phytanic acid

directly synthesised in the laboratory by chemical hydrogenation

and oxidation from plant phytol appears to have almost an equiv-

alent abundance of both diastereomers.23,35 A similar ratio has

been encountered in organic milk, whereas conventional milk

shows a clear dominance of SRR29 linked to increased amount of

maize silage in diet.27,28,30,37

Interestingly, organic cheese products also show a systematic

increase of the SRR%.28,38 The incorporation of increased silage in

the feed of cattle for semi-hard cheese has been proposed as an

explanation for this phenomena,28 but samples of moose milk

and cheese from the same farm also show an increase of the SRR

%.29 Thus, the preferential reduction of the RRR isomer, most likely

during bacterial enzymatic transformation during the cheesemak-

ing process, may serve as useful way for distinguishing cheese

from milk in archaeological vessels. In total, five FLX samples have

4
13C values consistent with ruminant dairy fats (i.e.,

4
13C < �3.3‰34). Two of these have SRR% that are compatible with

modern cheeses (Fig. 6). Clearly however, the effect of soil bacteria

on alterations to the SRR% also needs to be considered, especially

during the early stages of diagenesis. Nevertheless, our data sug-

gest that meaningful SRR% is retained despite extensive exposure

to the burial environment.

Conclusion

The ratio of the two naturally-occurring diastereomers of phy-

tanic acid preserved in archaeological pottery distinguishes marine

and ruminant food sources. The contribution of SRR correlates with

stable isotope data from the same samples and so does not appear

to be grossly affected by food cooking or post-depositional process.

Nevertheless subtle differences occur between residues derived

from milk and cheese and the impact of food preparation needs

to be explored further. Moreover, as phytanic acid is also found

in lipid extracts from archaeological bone,39 the SRR% could offer

new insights into cattle husbandry, seasonality or even human

diet.40
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