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ABSTRACT  

We report on the evaluation of InAs photodiodes and their potential for low temperature sensing. InAs n-i-p photodiodes 

were grown and analyzed in this work. Radiation thermometry measurements were performed at reference blackbody 

temperatures of 37 to 80 oC to determine photocurrent and temperature error.  The uncooled InAs photodiodes, with a 

cutoff wavelength of 3.55 m, detect a target temperature above 37 oC with a temperature error of less than 0.46 oC. When 

the photodiode was cooled to 200 K, the temperature error at 37 oC improves by 10 times from 0.46 to 0.048 oC, suggesting 

the potential of using InAs for human temperature sensing. 
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1. INTRODUCTION  

Radiation thermometry is used to monitor the temperature of an object without physical contact, by measuring the emitted 

energy from the object over a specific wavelength range, to determine its blackbody temperature. They have been widely 

used in steel [1], glass [2] and plastics industry [3]. Traditionally thermal detectors, such as thermopiles and pyroelectrics, 

or photon detectors, have been used. They respond to radiation over a broad spectrum by employing a wide band absorbent 

materials, thus can detect to low temperature range [4]. However, they suffer from low detectivity and have long response 

time. Hence, they are not suitable for high speed measurements. Instead of heating up a material in response to incident 

radiation, photon detectors experience an electronic state change when the incident wave is absorbed. Photon detectors 

present much faster response speed and higher detectivity than thermal detectors. Unlike the thermal detectors, the photon 

detectors have a limited wavelength response range determined by the band gap energy of the materials. Therefore 

semiconductors with different band gaps are normally employed to cover different temperature ranges.  

In practical measurements, a major challenge is the uncertainty of target emissivity which depends on the material physical 

property and its surface conditions. The emissivity factor is the ratio of the spectral radiance from an object to that of a 

blackbody at the same temperature. A small uncertainty in the emissivity will lead to significant error in radiation 

thermometry, particularly at longer infrared wavelengths.  Fortunately at shorter wavelengths the rate of change in the 

spectral radiance as a function of temperature increases more rapidly, leading to a smaller temperature error [5]. In addition 

to the smaller error, from semiconductor physics it is well known that the short wavelength detectors have lower leakage 

current and hence lower shot noise. Si and InGaAs photodetectors have been widely used as high temperature sensors in 

radiation thermometry with a working wavelength of 0.9 m and 1.6 m, respectively. Due to the non-linear spectral 

power of Planck’s law, they are limited to lower temperature limits of 400 oC for Si [5] and 150 oC for standard InGaAs 

[6]. As the target temperature decreases, the peak in spectral radiance shifts to longer wavelengths. Long wavelength 

operation needs to be selected for lower temperature measurements or to account for material optical transmission 

properties. By changing the alloy composition during the growth and optimization in fabrication process, InGaAs can be 

used to detect IR radiation up to 2.6 m. Yoon et al. [7] demonstrated that an extended InGaAs with a 2.5 m cut-off 

wavelength and cooled to -85 oC can be used to sense a 50 oC target with a noise-equivalent temperature difference (NETD) 

< 3 mK. Lead salt alloys PbSe photoconductors with cut-off wavelength 5.0 m have been widely used for sensing object 

above 30 oC [8]. However, it suffers from high 1/f noise and growth issues for availability of large scale arrays. Narrow 

band gap materials such as InSb are also used in a radiation thermometer for medium and low temperature range [9, 10]. 

Unfortunately, InSb detectors suffer from high dark current and needs to be cooled to liquid-nitrogen temperature.  

InAs photodiodes have recently been demonstrated as a promising material for infrared sensing [11]. With a band gap of 

0.36 eV, InAs photodiodes exhibit a cut-off wavelength of 3.55 m at room temperature, providing a high detectivity 

around 3.39 m. Therefore, InAs photodiodes is a potential candidate for low temperature thermometer or thermal imager 

without cooling or thermoelectric cooler. Recently Hobbs et al. [12] demonstrated that an avalanche photodiode can 
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provide significant signal to noise ratio improvement in radiation thermometry. InAs has also been demonstrated as an 

excellent avalanche photodiode that operates with single carrier multiplication to produce negligible excess noise, 

presenting a huge potential further improvement for infrared imaging [13, 14]. Moreover, Sandall et al. have reported 

linear arrays of 1×128 InAs avalanche photodiodes [15]. Therefore future IR radiation thermometers could potentially be 

enhanced using discrete and arrays of InAs photodiodes or avalanche photodiodes. In this work, we performed a detailed 

characterization of InAs photodiode and evaluated its potential for low temperature sensing.  

2. DEVICE STRUCTURE AND CHARACTERISATION

Figure 1. (a)The schematic structure and (b) top view image of fabricated device of various sizes

The InAs wafer studied in this work was grown by Molecular Organic Chemical Vapour Deposition (MOCVD). The

structure was grown on 2” p-type InAs substrates. The structure comprised  of a 2 µm p+ layer (1×1018 cm-3) followed by 

an intrinsic region thicknesses of 8 µm and then a 2 µm n+ layer (1×1018 cm-3), as shown in Figure 1(a). Ti/Au metal with 

thickness of 20/200 nm was deposited to form top and bottom ohmic contacts. The sample was fabricated using wet

chemical etchants [16] of 1:1:1 (phosphoric acid: hydrogen peroxide: deionized water) etch, followed by a finishing etch 

of 1:8:80 (sulphuric acid: hydrogen peroxide: de-ionized water), to define the mesa diodes with diameters of 420, 220, 120 

and 70 m in Figure 1(b).  

Current-voltage (I-V) measurement was performed using a Keithley 236 source measure unit. The dark current densities 

from on-wafer diodes with different diameters are in good agreement (not shown here), indicating that bulk dark current 

dominates at room temperature.  Figure 2(a) shows the temperature dependence of dark current of InAs photodiodes with 

a diameter of 420 m. The reverse dark current reduces ~ 3 orders of magnitude from 295 to 200 K which is similar to the

trend in the work by Ker et al. [17]. The capacitance-voltage (C-V) measurements were also performed on these devices 

to study the material background doping. To perform accurate measurement, the detector was cooled to 77 K to reduce 

errors induced by the high dark current.  Figure 2(b) shows the capacitances and depletion width of InAs with different 

sizes as a function of reverse bias.  C-V results suggest this wafer is not fully depleted at zero bias and has an unintentional 

doping level of 6 × 1014 cm-3 in the i-InAs layer. 

(b)

2m p-InAs

p-InAs substrate

8 m i-InAs

2m n-InAs

(a)
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Figure 2. (a) Temperature dependence of dark current of the InAs photodiodes with diameter of 420 m and (b) Capacitance 

and depletion width of InAs photodiodes with different diameters at 77 K  

The spectral response on InAs was also performed in this work. Figure 3(a) shows the room temperature responsivity 

comparison of our InAs photodiodes and commercial InAs detectors. The responsivity was deduced using normalized 

spectral response obtained from the FTIR and the peak responsivity measured using a TBB = 800 oC. Responsivity values 

at wavelengths of 633, 1520 and 2004 nm were cross-checked using CW lasers at the respective wavelengths. At 0 V, the 

InAs diode shows a peak responsivity of 1.28 A/W at 3.35 m and a cut-off wavelength (at 50% of peak response) of 3.55 

m, giving ~ 48% external quantum efficiency (EQE) across the whole spectrum. The responsivity from our InAs diode 

is higher than that from Hamamatsu InAs diode [18] and lower than Judson diode [19] at longer wavelengths.  However, 

this external quantum efficiency can be improved by increasing the depletion width. The depletion width at 0 V is only 

0.95 m and increases with reverse bias, as shown in Figure 2(b).  Based on the measured dark current and responsivity at 

0 V, our InAs detectivity values were calculated and compared to those from Hamamatsu and Judson InAs, as shown in 

Figure 3(b). Despite lower responsivity and shorter cut-off wavelength than Judson InAs, our diode shows higher 

detectivity than commercial InAs detectors. This is due to lower detector dark current than that of Judson InAs and higher 

responsivity than that from Hamamatsu InAs.   

 

    

Figure 3. (a) Responsivity and (b) detectectivity of our InAs photodiode and commercial InAs detectors at room temperature 
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3. RADIATION THERMOMETRY 

The temperature dependence of thermometry measurement was performed using the cooling system illustrated in Figure 

4. A LANDCAL P80P blackbody source, with an aperture diameter of 7.5 mm, was set at temperatures between 37 and 

80 oC with the detector temperature set to 295 and 200 K in these measurements. The photocurrent was measured using a 

phase sensitive detection (PSD) method, where the light signal from a blackbody source is modulated at a frequency of 

420 Hz. The device under test (DUT) was placed at a distance of 300 mm from the blackbody source and a ZnSe lens with 

50 mm focal length was used to focus light onto the detector. We noted that the optical spot size is not fully optimized as 

it is larger than the device area. The output photocurrent was amplified by a transimpedance amplifier (TIA) with an overall 

gain of 106 and then measured using a SR830 lock-in amplifier. In this work, the device with 420 m diameter was used 

for thermometry measurement.  

 

 

Figure 4. Radiation thermometry setup 

 

As device dark current increases much faster than the responsivity with increased reverse bias, the radiation thermometry 

measurements were performed at 0 V to minimize the influence of dark current. Figure 5 shows the mean photocurrent of 

the InAs photodiode. As TBB increases, the photocurrent increases due to higher incident photon flux. As the detector 

temperature reduces from 295 to 200 K, the output photocurrent is reduced by around 50% at all TBB range. This is due to 

the cut-off wavelength shifting to lower wavelengths when the detector was cooled to lower temperature. The normalized 

InAs spectrum at detector temperatures of 295 to 200 K is shown in Figure 6. From Planck’s curve of radiated energy from 

blackbody, the majority of radiated photons from the blackbody at 37-80 oC are at longer wavelengths. The smaller overlap 

between the spectral response at lower detector temperature and blackbody radiated spectrum results in reduced 

photocurrent.  

 

TIA

Rotary pump

Temperature 

controller

Computer

KBr window
ZnSe lens

DUT

Cryostat

Blackbody

ApertureChopper controller

LIA

Proc. of SPIE Vol. 9639  96390V-4

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 10/20/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



 

 
 

 

  

Figure 5.  Mean Photocurrent of the InAs photodiodes at different detector temperatures at 0 V 

  

Figure 6.  Normalized spectrums of the InAs photodiodes at different detector temperatures of 295 to 200 K and blackbody 

radiance at TBB = 50, 80 and 100 oC 

 

4. TEMPERATURE ERROR ANALYSIS 

The output signal-to-noise ratio (SNR) was taken the ratio of the mean output photocurrent, <Iph>   to the standard deviation 

of output photocurrent, (Iph). In order to evaluate the detector performance as a radiation thermometer, the temperature 

error can be calculated. This value was calculated from the ratio of percentage error of output photocurrent to the 

percentage in output for a 1 C rise in the target temperature, known as percent-per-degree. The percentage error of the 

output, %𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟 , is related to SNR and is expressed as  

    %𝑜𝑢𝑡𝑝𝑢𝑡 𝑒𝑟𝑟𝑜𝑟 = 100 ×
𝜎(𝐼𝑝ℎ)

<𝐼𝑝ℎ>
 .  (1) 

The Percent-per-Degree, which is given by [20] 

    %/℃ = 100 ×
𝑐2

𝜆𝑇2. (2) 
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where c2 is Planck’s second constant (1.4388 cm∙K),  is the effective operational wavelength of the thermometer, and T 

is the object temperature in Kelvin. The effective wavelength is derived from the gradient of the natural logarithm of output 

photocurrent plotted as a function of 1/T [21]. This method is based on the Wien’s law approximation to Planck’s Law and 

is useful to model broad band radiations as a single monochromatic wavelength [22].  

The mean SNR and temperature errors at different detector temperatures are shown in Figure 7. Following the trend of 

photocurrent, the SNR increases with blackbody temperatures. Despite the drop in photocurrent, the SNR increases with 

decreasing detector temperature. This is because as the temperature is reduced the dark current drops much more rapidly 

than the photocurrent as illustrated in Figure 2 and Figure 5. For instance, the photocurrent drops only 1/3 while the dark 

current drops by more than 20 times at 250 K relative to the values at room temperature. The temperature error of InAs 

photodiodes in Figure 7 reduces slowly from 250 to 200 K. It is of particular interest to note that the device dark current 

reduces by 1000 times when the diode is cooled from room temperature to 200 K. The temperature error improves by 10 

times from 0.46 to 0.048 oC at a TBB = 37 oC, confirming the potential of using InAs for low temperature sensing, including 

human temperature sensing. The amplifier noise is around 125 nV/Hz1/2 (obtained through separate measurements using 

an FFT spectrum analyzer) which gives an equivalent noise current level of ~50 nA. As detector temperature reduces, the 

noise from dark current reduces such that the amplifier noise becomes dominant at 200 K. Therefore, a lower noise 

amplifier will allow the InAs photodiodes to be used for performing more accurate at lower temperature. An alternative 

approach is to use a smaller device to reduce the detector dark current. For instance halving the detector diameter will 

reduce the dark current by 4 times so that the dark current reduces to ~5 nA at 200 K. Provided that the optical coupling 

can be optimized, it should be possible to operate in the avalanche mode which will provided a higher SNR and lower 

temperature error in future work.  

 

  

Figure 7. SNRs (lines) and temperature errors (symbols) and of the InAs photodiodes at detector temperatures of 295 K 

(Black), 250 K (Red) and 200 K (Blue) 

 

5. CONCLUSION 

In conclusion, the electrical and optical performance of InAs photodiodes have been characterized. They show bulk dark 

current mechanism and high quantum efficiency at room temperature. Compared with commercial InAs detectors, our 

InAs showed higher detectivity values within the spectral range. We have also studied the performance of InAs photodiodes 

for use in radiation thermometry. For uncooled operation, a target temperature of above 37 oC can be measured with a 

temperature difference of ±0.46 oC. This temperature error can be reduced to 0.048 oC at a device temperature of 200 K, 

demonstrating the huge potential for low temperature sensing. 
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